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This article describes AB EL, a design tool for program­
mable logic device such as PAL , FPLAs and 
PROMs. AB EL (advanced Boolean expre sion lan­

guage) consist of a high-level hardware des ign language and 
a language proce sor that provides syntax checking , logic 
reduction, and design simulation. In this paper the structure 
and operation of the language processor are explained with 
the help of two practica l examples. Actual execution times for 
converting a high-level description of a logic des ign to fuse 
states are given. Finall y , a recently developed PLD test 
program generator is di cu ed. 

Programmable logic devices uch as PALs, FPLAs, and 
PROMs are replacing random and custom logic in a variety of 
applications. New device introduced by the semiconductor 
manufacturers have shown increa ing complex ity and fl ex i­
bility with more product terms, larger number of input and 
output pins, internal feedback, internal registers and pro­
grammable device characteri tic . The complexity of many 
new device approache that of low-end gate arrays. Unfortu­
nately, automated des ign tools fo r programmable logic have 
been rare and often limited to one device type. One popular 
tool is PALASM (Birkner and Coli , 1983) , a simple language 
in which Boolean equations are converted to fuse maps that 
are used to program PALs. One drawback of PALASM , 
however, i that the de igner must use simple Boolean equa­
tions to describe the full function of the PAL. These equations 
must be reduced manually using Kam augh maps and De 
Morgan's theorem for the most efficient use of the product 
terms in the PAL. Another di advantage to using PALASM is 
that it can describe designs only for PALs, and not for FPLAs 
or PROMs. 

The Language Processor 

AB EL' language proce sor contain ix program module 
that proce de igns de cribed in the ABEL design language 
(Data l/0 , 1984). The language proces or takes test fil e 
created with any general-purpose editor and produces a pro­
grammer load fi le that can be used with a logic or PROM 
programmer to program a device. The ABEL language pro­
ce sor performs automatic logic reduction, de ign imulation 
and veri fication, yntax checking, and logical checking, as 
well a generating des ign documentation. The structure and 
operation of the language processor are discussed in detail 
later in thi article . 

AB EL is a high-level language for describing logic design 
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for a variety of programmable logic devices . Any combina­
tion of state diagrams, truth tables , and Boolean equations 
can be used to describe a design. The de igner choo es the 
construct that best fits the logic des ign. 

The Design Language 

The syntax resemble the C programming language. As 
uch, it includes IF-THEN-ELSE and CASE statement ; 

logical, relational , and arithmetic operator ; ets; and macros. 
AB EL design are in general, ea ier to read and to under­
stand , compared to orne other notation . For example , Fig­
ure I hows a file containing an AB EL des ign for a BCD to 
seven-segment display decoder. A truth table i used to 
de cribe the decoding function. Figure 2 hows the same 
de ign de cribed with PALASM for comparison. 

The language proces or i made up of six program mod ule 
that can be executed independently or equentiall y to process 
a logic des ign. The program are PARS E, TRANSFOR, 
REDUCE FUSEMAP, SIM ULATE, and DOCUMENT. 
Each program creates an intermediate fi le that pa e infor­
mation to the next program, as shown in Figure 3. 

PARSE 

The PARSE program reads the input file contain ing a logic 
de ign and 

• Check for and report yntax error in the input fi le 
• Convert state diagrams to Boolean equations 
• Converts truth table to Boolean equations 
• Translates te. t vectors 
• Expands set references to actual et 
• Expands macros 
• Creates a li ting file containing error me age and 

expanded macro if desired 
• Creates an intermediate output file u ed by TRA SFOR 

PARSE makes ure that the input is in the correct format 
and prepare that input for proce ing by the remaining 
program module . If syntax error are found in the input file , 
PARSE report the error to the designer' termi nal screen 
and writes error message to the li ting fi le . Error me age 
are pecific and indicate the approx imate location of the 
errors . 

PARSE also processe macro . Macros let the de igner 
specify tex t ub titut ions in a compact form . Macro can be 
used to de cribe large et of te t vector or equation wi th a 



module bcd7 flag ·13 
title bed to seven segment display decoder 
~ 110 Corp Redmond WA 24 Feb 1984 

a a 

P-:lb 03 b 
D2 c 
01 d 
DO e ---- t_jc f 
enct g 

U6 device P16l8 ; 
03,02,01 ,00 pin 1,2,3,4; 
a,b,c,d,e,f,g pin 12,13,14,15,16,17,18; 
ena pin9; 
bed = (03,02,01 ,00); 
led = [a,b,c,d,e,f,g) ; 

ON, OFF = 0,1; ' lor convnon anode LEOs 
L,H,X,Z = 0,1,.X.,.Z.; 

enable led = lena; 

truth-table 
( bed ·> 

0 ·> 
1 ·> 
2 ·> 
3 ·> 
4 ·> 
5 ·> 
6 ·> 
7 ·> 
8 ·> 
9 ·> 

end bcd7 

( a, ll, c, d, e, f, g J) 
( ON, ON, ON, ON, ON, ON, OFFJ; 
[OFF, ON, ON, OFF, OFF, OFF, OFFJ; 
( ON, ON, OFF, ON, ON, OFF, ON); 
( ON, ON, ON, ON, OFF, OFF, ON); 
[OFF, ON, ON, OFF, OFF, ON, ON); 
( ON, OFF, ON, ON, OFF, ON, ON); 
( ON, OFF, ON, ON, ON, ON, ON); 
(ON, ON, ON, OFF, OFF, OFF, OFFJ; 
I ON, ON, ON, ON, ON, ON, ON); 
I ON, ON, ON, ON, OFF, ON, ON); 

FIGURE 1. BCD to seven-segment decoder writ­
ten in the ABEL design language. 

few simple expressions. PARSE expands macros into the full 
ABEL text that" they represent. 

TRANS FOR 

The TRANSFOR program reads an intermediate file ere· 
ated by PARSE and 

• Replaces sets by equivalent equations without sets 
• Replaces all operators with NOT, AND, OR, and 

XOR operators 
• ORs together equations for the same output 
• Performs basic logic reduction 
• Creates an intermediate output file used by REDUCE 
• Resolves all references to " don ' t cares" 

A set is a group of signals defined by the designer in the 
original input file. TRANSFOR expands equations contain­
ing sets into equations for each signal in the set so that the 
equations can be reduced . Similarly , TRANSFOR replaces 
all logical , arithmetic , and relational operators in the equa­
tions with just four logical operators: NOT (!), AND (&), OR 
(#) , and XOR ($). 

REDUCE 

The reduce program takes the Boolean equations from 
TRANSFOR, applies DeMorgan ' s theorem to convert them 
to sum-of-products form , and reduces the equations . Logic 

FIGURE 2. BCD to seven-segment decoder writ­
ten in PALASM. 

reduction is performed according to one of three reduction 
algorithms selected by the designer . The three types of 
reduction are simple reduction , PRESTO reduction , and 
PRESTO-by-pin reduction . 

Simple logic reduction is performed according to the fol­
lowing rules of Boolean algebra: 

!0 = I 
!I = 0 

A&O = O 
A&l = A 
A#O =A 
A#l = l 
A#A=A 
A&A = A 
A & !A = 0 
A# !A= I 

Simple logic reduction is performed as a preliminary step to 
both PRESTO and PRESTO-by-pin . 

PRESTO is a logic reduction algorithm developed by 
Antonin Svoboda that eliminates input terms and product 
terms (Brown, 1981). PRESTO, as implemented in ABEL, 
takes into account possible product term sharing among 
outputs. Thus, for devices such as FPLAs that can share 
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FIGURE 3. Data flow through the language 
processor. 

product terms , ABEL can produce a set of equations that as a 
group use fewer product terms than if each equation were 
reduced independently. 

PRESTO-by-pin reduction is a variation on straight PRES­
TO in that it deliberately does not consider product term 
sharing among the outputs. Each equation is reduced indepen­
dent of the others to a near-minimal form. PRESTO-by-pin is 
faster than PRESTO and is the preferred reduction for devices 
such as PALs that cannot share product terms. 

FUSE MAP 

The FUSEMAP module produces a programmer load file 
from the reduced equations. These load files are produced in 
JEDEC (JEDEC, 1983), Motorola lixorciser, or Intellec 
8/MDS formats to support a variety of logic and PROM 
programmers. 
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The programmer load file contains the required instructions 
to disconnect (blow) or leave connected fuses in the program­
mable device. This file may also contain test vectors used by 
the programmer to test the programmed device for correct 
operation. These test vectors are a translated version of those 
described in the ABEL source file . 

FUSEMAP uses device specification files provided with 
ABEL to translate the reduced equations and test vectors to 
the fuse states that will correctly program a device. FUSE­
MAP also determines whether the device contains enough 
terms to . implement the design. 

One device specification file is provided for each device 
type supported by ABEL. Each device specification file 
typically supports devices from several different manufactur­
ers. For example, the device specification file named Pl6R8 
supports MMI, AMD, Tl, and National Semiconductor 16R8 
parts and the Harris 77212 . ABEL currently supports over 95 
devices . Simple PAL and PROM specification files are 200 to 
400 bytes long (device files for more complicated devices can 
be up to l .5K bytes long). All processor modules except 
TRANSFOR uses the specification files . 

SIMULATE 

The SIMULATE program uses the intermediate file pro­
duced by FUSEMAP and a device specification file to simu­
late programmable logic designs. SIMULATE uses an itera­
tive solution process to simulate synchronous and 
asynchronous designs, and designs with feedback . The itera­
tive process also allows the detection of unstable designs . 

SIMULATE does not use the original equations contained 
in the source file to simulate device operation. Instead, it uses 
output from the FUSEMAP program, which takes device 
characteristics into account , and further device-specific infor­
mation from the device specification file . In this way, SIMU­
LATE can simulate operation of a specific device pro­
grammed with the design . 

DOCUMENT 

The DOCUMENT program uses intermediate output files 
from PARSE, TRANSFOR, REDUCE, FUSEMAP, and 
SIMULATE to create a test file containing design documenta­
tion . The design documentation includes (if the user desires) 
original Boolean equations and Boolean equations produced 
from truth tables and state diagrams; transformed equations 
produced by TRANSFOR; reduced equations; the number of 
terms used; a pictorial fusemap showing blown and connected 
fuses; a symbol table listing names assigned to pins and 
internal nodes; test vectors; and a chip diagram showing 
pinouts . The documentation file can be retained on disk or 
printed as a permanent record of the design . 

Example 1 

Figure 4 shows a source file for a simple design described 
by one Boolean equation . The design monitors four input 
lines , V3-VO, and produce one output NormaL Normal is 
high if the binary value on the input lines is less than 9 and 
greater than 3. The design is implemented on a 14H4 PAL. 
The inputs are assigned to pins 1-4, and , for simplicity, are 
grouped into the set named Value. The output is assigned to 
pin 14. Test vector are included for simulation. 

To process the design, the user starts the language proces-



module Range flag "-13" 
title "Relational Operators Example" 

U1 device "P14H4"; 

V3,V2,V1 ,VO pin 1,2,3,4; 
Normal pin 14; 

Value = (V3,V2,V1 ,W); 

equations 
Normal = (Value > 3) & (Value < 9); 

test-vectors (Value ·> Normal) 
0 ·> 0; 
2 ·> 0; 
3 ·> 0; 
4 ·> 1; 
7 ·> 1; 
8 ·> 1; 
9 ·> 0; 

14 ·> O; 
end 

FIGURE 4. ABEL source file (RANGE) for a value 
comparator. 

sor by typing the command ABEL RANGE. The design is 
processed as follow . 

The source fi le contains the set name Value , representing 
V3-YO, in the Boolean equation shown here: 

Normal = (Value > 3) & (Value < 9) 

PARSE replaces the set name with the elements of the set to 
create the following equation: 

Normal = ([Y3, Y2 VI , YO] > 3) & ([V3, V2, VI , YO] < 9) 

TRANSFOR converts this equation to one containing no 
sets and only AND , OR , NOT, and XOR operators. This 
conversion is performed according to the following rules , 
stated for general A < B. A and B are sets with k elements. 
An is the nth element of set A (rightmost element is element I) 
and Bn is the nth element of set B (':: =' means 'is defined 
as') . 

A < B :: = Ck 

ck is defined by iteratively applying the following two rules 
for n ranging from I to k: 

C0 :: = 0 (used only to calculate C,) 
Cn :: = (! An & (Bn # C,.,) # An & Bn & C,., 

Other relational operators are defined in terms of the < 
operator a follows: 

A > B :: = B < A 
A ~ B :: = !(B < A) 
A ~ B :: = !(A < B) 

In thi example, the Boolean equation produced by PARSE 
is converted to: 

Normal = (Y3 # Y2) & (! V3 # Y3 & !Y2 & !Y I & !YO) 

REDUCE reduces the equation using simple and PRESTO 
reduction to: 

Normal = (Y2 & !Y3 # !YO & !Y I & !Y2 & V3) 

FUSEMAP reads the intermediate file created by REDUCE 
and the device specification file associated with the 14H4 
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Vector4 
Input Reg( .................... ) 

Ou1put 
Pin Name Enable 

14 Normal 
15 
16 
17 

OR gate 
Register 
Ou1put 

v 
v 
v 
v 

v 0004 [01()()()()()()().) 

First 
Fuse 

336 
224 
112 

0 

Product Terms 

TFFF 
FFFF 
FFFF 
FFFF 

· > [ ............. Hill ... ) 
·> [ .................... ) 
·> ( ............. HLLL ... J 
·> [ ............ . HNNN ... ) 

FIGURE 5. Simulation output file ; output for one 
test vector. 

device and creates a programmer load file and an intermediate 
file. The programmer load file can be loaded into a logic 
programmer to program a 14H4 device . First, however, the 
design is simulated, and the results of the simulation should 
be checked. 

The intermediate file created by FUSEMAP contains de· 
vice information and a translated version of the test vectors 
contained in the original source file. SIMULATE uses this 
information along with information in the 14H4 device speci­
fication file to simulate operation of the programmed device. 
This design operates correctly in the chosen device . Figure 5 
hows a portion of a simulation output file. The output shows 

inputs, outputs, and logic levels of internal nodes. If simula· 
tion errors occur, the output contains a message indicating the 
expected output and the actual output from simulation. Figure 
5 shows the output for one test vector. A full simulation 
output file contains similar output for each test vector in the 
source file. 

The final program , DOCUMENT, combines information 
created by the other five programs into one documentation 
file . 

Example 2 

Figure 6 shows a source fi le for an octal up/down counter. 
The counter is implemented on an 82S I 05 fuse programmable 
logic sequencer (Signetics, 1984) using the ABEL state 
diagram construct. The state diagram uses CASE statements 
to describe the state transitions. Each CASE statement corre­
sponds to a state in the state machine and describes the next 
state for given conditions. 

Figure 7 shows a portion of the logic diagram for an 
82S I 05. Equations are written for the device' s flip-flop inputs 
to set or reset the RS flip-flops. Note that these flip-flop 
inputs are not output pins of the device but are internal nodes. 
The following ABEL statements define signal names for these 
nodes so that equations can be written to control the flip-flop 
states: 

PO node 37; RPO node 43; 
PI node 38; RPI node 44; 
P2 node 39; RP2 node 45· 

These ignal are then grouped into a set named " OUT" for 
easy reference . The language processes this de ign as 
follows . 

PARSE reads the source file and , among the many oper­
ations it performs converts the state diagram ro Boolean 



module cnt8 flag "-r2" 
title "Octal Up!Oown counter 
Data 110 Corp 1 Nov 1984" 

Ck,X,Z = .C .•. X., .Z.; 

SM8 device "F82S105"; 

" Assign pin and node names 
Clk,Dir,Cir pin 1 ,2,3; 

" Internal state counter 
PO node 37; RPO node 43; 
P1 node 38; RP1 node 44; 
P2 node 39; RP2 node 45; 

out = [P2,P1 ,PO]; 

" Counter modes 
Mode = [Cir.Dir] ; 
Up = [ 1 • 1 ); 
Down = [ 1 ' 0]; 
Clear = (0, X]; 

test-vectors ( [Cik , Mode -> out) 
[ Ck . Clear -> 0 ; 
[Ck. Up -> 1; 
[Ck . Up · > 2; 
[Ck , Up ·> 3; 
(Ck, Up ·> 4; 
[Ck. Up -> 5; 
[Ck , Up ·> 6; 
(Ck , Up · > 7; 
[Ck , Up -> 0 ; 
[Ck , Up ·> 1' 
[Ck, Down ·> 0; 
[ Ck , Down ·> 7; 
[Ck , Down -> 6; 
[ Ck, Clear ·> 0 ; 

state.diagram out 
State 0 : case (Mode == Up) 1; 

(Mode = = Down) 7; 
(Mode : = Clear) 0 ; 

endcase; 

State 1: case (Mode == Up) : 2; 
(Mode = = Down) : 0 ; 
(Mode = = Clear) : 0 ; 

endcase; 

State 2: case (Mode == Up) : 3; 
(Mode = = Down) : 1; 
(Mode : = Clear) : O; 

endcase; 

State 3: case (Mode == Up) : 4; 
(Mode = = Down) : 2; 
(Mode = = Clear) : 0; 

endcase; 
State 4: case (Mode == Up) : 5; 

(Mode : = Down) : 3; 
(Mode = = Clear) : 0; 

endcase; 

State 5: case (Mode == Up) : 6; 
(Mode = = Down): 4; 
(Mode = z Clear) : 0 ; 

endcase; 

State 6: case (Mode == Up) : 7; 
(Mode = = Down) : 5; 
(Mode = = Clear) : 0; 

endcase; 

State 7: case (Mode == Up) : 0 ; 
(Mode = = Down) : 6; 
(Mode = = Clear) : 0 ; 

endcase; 
end cnt8 

FIGURE 6 . An octal up/down counter source file. 
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FIGURE 7. 825105 logic diagram. 

equations that contain et elements rather than et names. 
These equation are hown for the State 3 CAS E tatement in 
Figure 8. 

A indicated in the figure , the equation created from the 
tate diagram construct include sets of the tate regi ter 
ignal , the current tate , the counter mode , the next state , 

and a mask. The equations a sign appropriate values for the 
next state to the state register signals based on the current state 
and counter mode. Becau e only equations for State 3 are 
shown , the current tate in the e equation i alway 3. The 
counter mode is either up (Cir = I , Dir = I) , down 
(Cir = I , Dir = 0), or clear (Cir = 0). 

PARSE determine which of the state reg ister signals need 
to change value for a given tate transition. The program 
generates a rna k that prevents ignals that do not need to 
change from changing, thereby saving product term . For 
example, in the equation for the et flip-flop inputs for a 
transition from State 3 to State 4 , the tate regi ter value for 
State 3 are [0 , I , I] and the values for State 4 are [I ,0 ,0] . To 
change from State 3 to State 4 , all three state regi ter signal 
mu t change. Thu the mask is l I , I , I] . This rna k is ANDed 
with the next tate and the result is that the set inputs 
[P2, Pl ,PO] are changed to [1 ,0,0] . 

However, for the transition from State 3 ([0 , I I]) to State 2 
{[0 , I ,OJ) , only one of the state regi ter signals changes value . 
In both the et and reset equation for this transition, only the 
low-order signal needs to change so the mask i [0 ,0 , I]. The 
et input, PO , for this transition should be 0 , and the AND 

operation performed on the next tate and the rna k produce 
the correct value . 

The PARS E program create similar equations with rna k 



STATE REGISTER CURRENT STATE MODE NEXT MASK 
SIGNALS STATE 

(P2.P1,PO) • (IP2,P1,POJ 3) & ((Cir,Dir) (1,1D & (1,0,0) & (1,1,1); 

(AP2,RP1,RPO) • ((P2,P1 ,PO) 3) & ((Cir ,DirJ (1,1D & (0,1,1) & (1,1,1); 

(P2.P1,PO) • (IP2,P1,POJ 3) & ((Cir ,DirJ 11.0D & (0,1,0) & (0,0,1); 

(RP2,RP1,RPO) • ((P2,P1,PO) 3) & ((Cir,DirJ I1.0D & (1,0,1) & (0,0, 1); 

(P2.P1,PO) • ((P2,P1,PO) 3) & ((Cir,DirJ (O,.X.D & (0,0,0) & (0,1,1); 

(RP2,RP1,RPO) • ((P2,P1,POJ 3) & ((Cir,DirJ (O,.X.D & (1,1,1) • (0,1,1); 

FIGURE 8. Boolean equations for State 3 created by PARSE. 

for all of the counter's state transitions . TRANSFOR reads 
these equations and removes the set notation . If the State 3 
transitions were the only equations in the state diagram, the 
transformed equations would be as follows: 

P2 !P2 & PI & PO & Clr & Dir 
RP2 0 
PI 0 
RPI !P2 & PI & PO & Clr & Dir 

# !P2 & PI & PO & !Clr 
PO 0 
RPO !P2 & PI & PO & Clr & Dir 

# !P2 & PI & PO & Clr & !Dir 
# !P2 & PI & PO & !Cir 

The Boolean equations produced from the state diagram 
include equations for every state transition . This means that 
there will be multiple equations for each signal. TRANSFOR 
ORs the equations for the same signal together to create one 
complete equation for each signal. For example, the full 
equations for P2 and P l , including the effect of all state 
transitions , are: 

P2 !P2 & !PI & !PO & Clr & !Dir 
# !P2 & PI & PO & Clr & Dir 

PI !P2 & !PI & !PO & Clr & !Dir 
# !P2 & !PI & PO & Clr & Dir 
# P2 & !PI & !PO & Clr & !Dir 
# P2 & !PI & PO & Clr & Dir 

Each OR (#) operation in the above equations combines 
equations created from different state transitions. Notice that 
the first product term in the equation for P2 is the product 
term from the State 3 transitions . 

REDUCE reduces these equations to a near-minimal form . 
Because the design in this example is implemented in an 
82S l 05 that can share product terms , regular PRESTO reduc­
tion is used . Figure 9 shows the full set of reduced equations 
for this design. Ten product terms are used. 

Note that the first product term for P2 and PI in the reduced 
equations is identical. This product term is shared by those 
two signals. If PRESTO-by-pin reduction is used to reduce 
this design , 12 product terms are used, as opposed to the 10 
used with straight PRESTO. (If no reduction is performed , 23 
terms are used.) 

System Portability and Run Times 

The ABEL software is written in the C programming 
language for maximum portability to different computer sys-
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terns . Currently, it is implemented on the IBM PC, XT, and 
AT and other MS-DOS based microcomputers; VAX VMS 
and VAX UNIX systems; the Valid CAE workstation; and the 
Apollo CAE workstation. 

The speed at which ABEL processes logic designs depends 
greatly on the processing power of the system being used. 
Table I shows typical run times on different systems. These 
run times include full processing by the language processor, 
including parsing, logic reduction, creation of the program­
mer load file , simulation, and creation of design documenta­
tion . The number of product terms shown for each design in 
the table is the final number of terms created by ABEL, after 
logic reduction. Table 2 shows the distribution of time among 
the different language processor programs for processing on a 
VAX 111750. 

Typically , logic reduction is the most processing-intensive 
and time-intensive step in design processing. The correct 
choice of logic reduction algorithms can have a significant 
impact on execution time. One startling example of this 
impact occurred during the design of a waveform controller 
board for a logic programmer. The design included two state 
machines implemented in a 16R8 PAL. All outputs of the 
PAL were used . When straight PRESTO reduction was per­
formed on an unloaded VAX 111750, the reduction time was 
one hour. PRESTO-by-pin reduction took only 35 seconds. 
Only 38 of the 64 available product terms were used. 

In general , for PAL designs, PRESTO-by-pin reduction 
should be used . For FPLA designs, straight PRESTO should 
be used to minimize the number of product terms used. 

PLDtest 

After the device programmer has blown the appropriate 
fuse in the programmable logic device (based on the infor­
mation provided by ABEL's JEDEC-format fuse map) , the 
device must be tested. This step is necessary both to verify 
that the programmed device accurately replicates the original 
de ign and to make sure that the device is fully functional. 
Device verification testing is performed by the device pro­
grammer after programming is completed. 

In testing PLDs, as in designing them, automated design 
tools make the design engineer's life easier. PLDtest, for 
example, not only performs the testing but also makes sure 
that the specified test vectors are sufficient to fully test the 
device. This step is particularly important in view of the 
increased complexity of current PLDs, which has made it 
more difficult to write test vectors that thoroughly exercise 
each component in a device. 



Dealgn IBM XT Valid VAX 750 
MS-DOS UNIX UNIX 

Memory address decoder 
Relational equations 59 33 17 
6 product-terms 

Seven-segment decoder 
Truth table n 50 25 
33 product-terms 

Black Jack machine 
State diagram 
42 test vectors 180 98 47 
31 product-terms 

Decade counter 
0 ftiplllops 
State diagram 117 65 32 
17 product-terms 

Octal countar 
RS fliplllops 
State diagram 160 85 43 
10 product-terms 

64 state couritar end 
8-bit barrel shifter 

State diagrem 3050 720 361 
MEGA PAL 32R16 
105 product-terms 

TABLE 1. Run times on various systems. 

Counter-Barrel Shifter on DEC VAX 750 

PARSE 20 
TRANS FOR 42 
REDUCE 138 
FUSEMAP 18 
SIMULATE 110 
DOCUMENT 14 

TABLE 2. Execution times for language proces­
sor programs. 

PLDtest assists the design engineer with the testing process 
in three ways: testability checks, fault-grading, and supple­
mentary test vector generation. PLDtest specifies whether the 
design of the device allows it to be fully tested . For example, 
a design involving oscillating circuits cannot be completely 
tested because the output for any given input is unstable , 
oscillating between logic I and logic 0 . Similarly , a design 
that includes redundant circuits cannot be fully tested , be­
cause the contribution of the redundancy may " fix " the 
output, so that it shows no change with a change of input. If 
the original design included oscillating or redundant circuitry, 
the design engineer will have to remove these features to 
produce a testable device. 

Faults must be detectable at the output pins if a device is to 
be thoroughly tested. To fault-grade the test vectors , PLDtest 
first simulates operation of the design and then traces a path 
backward from each output pin to determine whether poten­
tial faults can be detected from that pin. The output of this 
step tells the designer what percentage of the total design can 
be verified with the test vectors he generated. 

If PLDtest finds the specified test vectors insufficient to 
fully test the device , it will generate additional test vectors to 
exercise the unverified components. Note , however, that 
these can never replace the design-verification test vectors 
supplied by the design engineer, because PLDtest has no way 
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RPO 
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# 

# 
# 

# 
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# 

Clr & IDir & IPO & IP1 & IP2 
Clr & D1r & PO & P1 & IP2; 

Clr & IDir & IPO & IP1 & IP2 
Clr & 1D1r & IPO & IP1 & P2 
Clr & Dlr & PO & IP1 ; 

Clr& IPO; 

Clr & IDir & IPO & IP1 & P2 
ICir& P2 

Dlr& PO& P1 & P2; 

Clr& Dlr& PO& P1 & IP2 
IDir & IPO & P1 
D1r & PO & P1 & P2 

ICir& P1; 

PO; 

FIGURE 9. Reduced equations for Example 2. 

of knowing the intended function of the device. All the 
software can do is to make sure that the design, as specified, 
is correctly implemented in the device , and that the number of 
test vectors is sufficient to detect all possible faults. 

Running PLDtest consists of specifying the input file (fuse 
map), the output file (to which the trace output is to be 
written) , the desired format for the output file (e.g., JEDEC) , 
and the type of device being tested. At the end of the run, the 
software provides a report with the following information: 

• The number of iterations performed to test the device . 
For each iteration , it lists the number of detected and 
undetected faults (that is, those that were known to exist 
but could not be detected at the output pins). It also 
specifies the percentage of fault coverage provided . 
• A detailed list of each of the detected faults, specifying, 
in each case, the test vectors used to discover them. 
• A detailed list of each of the known but undetected 
faults, specifying both the fuse number and the type of 
fault , so that the designer can go back and correct the 
problem. 
• A list of any faults that are totally undetectable due to the 
nature of the design (e.g. , a design that includes oscillating 
or redundant circuits) . The designer can use this informa­
tion to correct the design so the device will be fully 
testable. 

Conclusion 

ABEL supports design efforts from conception to imple­
mentation in programmable logic . Because the same source 
file can be used to program devices from different families, 
ABEL offers the designer flexibility. ABEL helps to produce 
error-free and efficient designs for direct implementation in a 
device. Automatic logic reduction and simulation eliminate 
tedious manual methods of reducing the number of logic 
terms required by a design , and they provide verification that 
the reduced design will work as expected . D 
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The STM 4000 is a fully integrated digital function tester. 
Available at PC prices. Perfect for incoming inspec­
tion of digitaiiCs. Lets you automate inspection andre­
ject bad ICs. Test MICROs , EPROMs, RAMs , ROMs, 
PALs, PLAs, PLDs, UARTs, 7400s, and custom/semi­
custom VLSI parts. Performs pass/fail tests , as well as 
detailed failure analysis. 

Easy to use. No special skills required. Powerful menu 
driven software eliminates programming. The STM 
4000 can directly drive your autoprobe/autofeed stations 
with no additional equipment required. 

Complete 7400 test library, vector generators, and 
adapters are available. Price for 64 channels and soft­
ware to meet all of your basic needs is $4895. 

Available now from CADIC Inc., Beaverton, Oregon. 
1 (800) 824 -1617 or (503) 626-7902. 

CIRCLE NUMBER 34 

Here's the programmer 
you've been waiting for! 

The new OMNI64 has 10A, BOV 
software configured bipolar pin 
drivers on every pin. Pin drivers 
so fast and accurate that they 
can program every EPROM, 
PROM, PAL, FPLA, or single 
chip uP manufactured today 
without a single family pack or 
configuration module! 

The OMNI 64 is so flexible it can 
call the factory by modem and 
update itself with new program­
ming algorithms within minutes! 

And best of all , the OMNI 64 is plug compatible with over 300 
different computers and operating systems. 

Isn't it time to stop throwing good money after bad on a never 
ending list of configuration modules, pinout adapters and 
family packs? Call (818) 240-0080 now for a free demonstra­
tion of the fastest software configured programmer on the 
market or for a free copy of the "Universal Programmer 
Buyer's Guide". 

Ol iver Advanced Engineering, Inc. 
676 West Wilson Avenue 
Glendale. California 91203 
818-240-0080. Telex: 194773 
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