
A High-Level Design Language
For Programmable Logic Devices

Kyu Y. Lee, M ichael J. Holley, Mary L. Bailey, and Walter Bright, Data VO Corp .. Redmond. WA

This article describes AB EL, a design tool for program­
mable logic device such as PAL , FPLAs and
PROMs. AB EL (advanced Boolean expre sion lan­

guage) consist of a high-level hardware des ign language and
a language proce sor that provides syntax checking , logic
reduction, and design simulation. In this paper the structure
and operation of the language processor are explained with
the help of two practica l examples. Actual execution times for
converting a high-level description of a logic des ign to fuse
states are given. Finall y , a recently developed PLD test
program generator is di cu ed.

Programmable logic devices uch as PALs, FPLAs, and
PROMs are replacing random and custom logic in a variety of
applications. New device introduced by the semiconductor
manufacturers have shown increa ing complex ity and fl ex i­
bility with more product terms, larger number of input and
output pins, internal feedback, internal registers and pro­
grammable device characteri tic . The complexity of many
new device approache that of low-end gate arrays. Unfortu­
nately, automated des ign tools fo r programmable logic have
been rare and often limited to one device type. One popular
tool is PALASM (Birkner and Coli , 1983) , a simple language
in which Boolean equations are converted to fuse maps that
are used to program PALs. One drawback of PALASM ,
however, i that the de igner must use simple Boolean equa­
tions to describe the full function of the PAL. These equations
must be reduced manually using Kam augh maps and De
Morgan's theorem for the most efficient use of the product
terms in the PAL. Another di advantage to using PALASM is
that it can describe designs only for PALs, and not for FPLAs
or PROMs.

The Language Processor

AB EL' language proce sor contain ix program module
that proce de igns de cribed in the ABEL design language
(Data l/0 , 1984). The language proces or takes test fil e
created with any general-purpose editor and produces a pro­
grammer load fi le that can be used with a logic or PROM
programmer to program a device. The ABEL language pro­
ce sor performs automatic logic reduction, de ign imulation
and veri fication, yntax checking, and logical checking, as
well a generating des ign documentation. The structure and
operation of the language processor are discussed in detail
later in thi article .

AB EL is a high-level language for describing logic design

SO VLSI DESIGN June 1985

for a variety of programmable logic devices . Any combina­
tion of state diagrams, truth tables , and Boolean equations
can be used to describe a design. The de igner choo es the
construct that best fits the logic des ign.

The Design Language

The syntax resemble the C programming language. As
uch, it includes IF-THEN-ELSE and CASE statement ;

logical, relational , and arithmetic operator ; ets; and macros.
AB EL design are in general, ea ier to read and to under­
stand , compared to orne other notation . For example , Fig­
ure I hows a file containing an AB EL des ign for a BCD to
seven-segment display decoder. A truth table i used to
de cribe the decoding function. Figure 2 hows the same
de ign de cribed with PALASM for comparison.

The language proces or i made up of six program mod ule
that can be executed independently or equentiall y to process
a logic des ign. The program are PARS E, TRANSFOR,
REDUCE FUSEMAP, SIM ULATE, and DOCUMENT.
Each program creates an intermediate fi le that pa e infor­
mation to the next program, as shown in Figure 3.

PARSE

The PARSE program reads the input file contain ing a logic
de ign and

• Check for and report yntax error in the input fi le
• Convert state diagrams to Boolean equations
• Converts truth table to Boolean equations
• Translates te. t vectors
• Expands set references to actual et
• Expands macros
• Creates a li ting file containing error me age and

expanded macro if desired
• Creates an intermediate output file u ed by TRA SFOR

PARSE makes ure that the input is in the correct format
and prepare that input for proce ing by the remaining
program module . If syntax error are found in the input file ,
PARSE report the error to the designer' termi nal screen
and writes error message to the li ting fi le . Error me age
are pecific and indicate the approx imate location of the
errors .

PARSE also processe macro . Macros let the de igner
specify tex t ub titut ions in a compact form . Macro can be
used to de cribe large et of te t vector or equation wi th a

module bcd7 flag ·13
title bed to seven segment display decoder
~ 110 Corp Redmond WA 24 Feb 1984

a a

P-:lb 03 b
D2 c
01 d
DO e ---- t_jc f
enct g

U6 device P16l8 ;
03,02,01 ,00 pin 1,2,3,4;
a,b,c,d,e,f,g pin 12,13,14,15,16,17,18;
ena pin9;
bed = (03,02,01 ,00);
led = [a,b,c,d,e,f,g) ;

ON, OFF = 0,1; ' lor convnon anode LEOs
L,H,X,Z = 0,1,.X.,.Z.;

enable led = lena;

truth-table
(bed ·>

0 ·>
1 ·>
2 ·>
3 ·>
4 ·>
5 ·>
6 ·>
7 ·>
8 ·>
9 ·>

end bcd7

(a, ll, c, d, e, f, g J)
(ON, ON, ON, ON, ON, ON, OFFJ;
[OFF, ON, ON, OFF, OFF, OFF, OFFJ;
(ON, ON, OFF, ON, ON, OFF, ON);
(ON, ON, ON, ON, OFF, OFF, ON);
[OFF, ON, ON, OFF, OFF, ON, ON);
(ON, OFF, ON, ON, OFF, ON, ON);
(ON, OFF, ON, ON, ON, ON, ON);
(ON, ON, ON, OFF, OFF, OFF, OFFJ;
I ON, ON, ON, ON, ON, ON, ON);
I ON, ON, ON, ON, OFF, ON, ON);

FIGURE 1. BCD to seven-segment decoder writ­
ten in the ABEL design language.

few simple expressions. PARSE expands macros into the full
ABEL text that" they represent.

TRANS FOR

The TRANSFOR program reads an intermediate file ere·
ated by PARSE and

• Replaces sets by equivalent equations without sets
• Replaces all operators with NOT, AND, OR, and

XOR operators
• ORs together equations for the same output
• Performs basic logic reduction
• Creates an intermediate output file used by REDUCE
• Resolves all references to " don ' t cares"

A set is a group of signals defined by the designer in the
original input file. TRANSFOR expands equations contain­
ing sets into equations for each signal in the set so that the
equations can be reduced . Similarly , TRANSFOR replaces
all logical , arithmetic , and relational operators in the equa­
tions with just four logical operators: NOT (!), AND (&), OR
(#) , and XOR ($).

REDUCE

The reduce program takes the Boolean equations from
TRANSFOR, applies DeMorgan ' s theorem to convert them
to sum-of-products form , and reduces the equations . Logic

FIGURE 2. BCD to seven-segment decoder writ­
ten in PALASM.

reduction is performed according to one of three reduction
algorithms selected by the designer . The three types of
reduction are simple reduction , PRESTO reduction , and
PRESTO-by-pin reduction .

Simple logic reduction is performed according to the fol­
lowing rules of Boolean algebra:

!0 = I
!I = 0

A&O = O
A&l = A
A#O =A
A#l = l
A#A=A
A&A = A
A & !A = 0
A# !A= I

Simple logic reduction is performed as a preliminary step to
both PRESTO and PRESTO-by-pin .

PRESTO is a logic reduction algorithm developed by
Antonin Svoboda that eliminates input terms and product
terms (Brown, 1981). PRESTO, as implemented in ABEL,
takes into account possible product term sharing among
outputs. Thus, for devices such as FPLAs that can share

VLSI DESIGN June 1985 51

FIGURE 3. Data flow through the language
processor.

product terms , ABEL can produce a set of equations that as a
group use fewer product terms than if each equation were
reduced independently.

PRESTO-by-pin reduction is a variation on straight PRES­
TO in that it deliberately does not consider product term
sharing among the outputs. Each equation is reduced indepen­
dent of the others to a near-minimal form. PRESTO-by-pin is
faster than PRESTO and is the preferred reduction for devices
such as PALs that cannot share product terms.

FUSE MAP

The FUSEMAP module produces a programmer load file
from the reduced equations. These load files are produced in
JEDEC (JEDEC, 1983), Motorola lixorciser, or Intellec
8/MDS formats to support a variety of logic and PROM
programmers.

52 VLSI DESIGN June 1985

The programmer load file contains the required instructions
to disconnect (blow) or leave connected fuses in the program­
mable device. This file may also contain test vectors used by
the programmer to test the programmed device for correct
operation. These test vectors are a translated version of those
described in the ABEL source file .

FUSEMAP uses device specification files provided with
ABEL to translate the reduced equations and test vectors to
the fuse states that will correctly program a device. FUSE­
MAP also determines whether the device contains enough
terms to . implement the design.

One device specification file is provided for each device
type supported by ABEL. Each device specification file
typically supports devices from several different manufactur­
ers. For example, the device specification file named Pl6R8
supports MMI, AMD, Tl, and National Semiconductor 16R8
parts and the Harris 77212 . ABEL currently supports over 95
devices . Simple PAL and PROM specification files are 200 to
400 bytes long (device files for more complicated devices can
be up to l .5K bytes long). All processor modules except
TRANSFOR uses the specification files .

SIMULATE

The SIMULATE program uses the intermediate file pro­
duced by FUSEMAP and a device specification file to simu­
late programmable logic designs. SIMULATE uses an itera­
tive solution process to simulate synchronous and
asynchronous designs, and designs with feedback . The itera­
tive process also allows the detection of unstable designs .

SIMULATE does not use the original equations contained
in the source file to simulate device operation. Instead, it uses
output from the FUSEMAP program, which takes device
characteristics into account , and further device-specific infor­
mation from the device specification file . In this way, SIMU­
LATE can simulate operation of a specific device pro­
grammed with the design .

DOCUMENT

The DOCUMENT program uses intermediate output files
from PARSE, TRANSFOR, REDUCE, FUSEMAP, and
SIMULATE to create a test file containing design documenta­
tion . The design documentation includes (if the user desires)
original Boolean equations and Boolean equations produced
from truth tables and state diagrams; transformed equations
produced by TRANSFOR; reduced equations; the number of
terms used; a pictorial fusemap showing blown and connected
fuses; a symbol table listing names assigned to pins and
internal nodes; test vectors; and a chip diagram showing
pinouts . The documentation file can be retained on disk or
printed as a permanent record of the design .

Example 1

Figure 4 shows a source file for a simple design described
by one Boolean equation . The design monitors four input
lines , V3-VO, and produce one output NormaL Normal is
high if the binary value on the input lines is less than 9 and
greater than 3. The design is implemented on a 14H4 PAL.
The inputs are assigned to pins 1-4, and , for simplicity, are
grouped into the set named Value. The output is assigned to
pin 14. Test vector are included for simulation.

To process the design, the user starts the language proces-

module Range flag "-13"
title "Relational Operators Example"

U1 device "P14H4";

V3,V2,V1 ,VO pin 1,2,3,4;
Normal pin 14;

Value = (V3,V2,V1 ,W);

equations
Normal = (Value > 3) & (Value < 9);

test-vectors (Value ·> Normal)
0 ·> 0;
2 ·> 0;
3 ·> 0;
4 ·> 1;
7 ·> 1;
8 ·> 1;
9 ·> 0;

14 ·> O;
end

FIGURE 4. ABEL source file (RANGE) for a value
comparator.

sor by typing the command ABEL RANGE. The design is
processed as follow .

The source fi le contains the set name Value , representing
V3-YO, in the Boolean equation shown here:

Normal = (Value > 3) & (Value < 9)

PARSE replaces the set name with the elements of the set to
create the following equation:

Normal = ([Y3, Y2 VI , YO] > 3) & ([V3, V2, VI , YO] < 9)

TRANSFOR converts this equation to one containing no
sets and only AND , OR , NOT, and XOR operators. This
conversion is performed according to the following rules ,
stated for general A < B. A and B are sets with k elements.
An is the nth element of set A (rightmost element is element I)
and Bn is the nth element of set B (':: =' means 'is defined
as') .

A < B :: = Ck

ck is defined by iteratively applying the following two rules
for n ranging from I to k:

C0 :: = 0 (used only to calculate C,)
Cn :: = (! An & (Bn # C,.,) # An & Bn & C,.,

Other relational operators are defined in terms of the <
operator a follows:

A > B :: = B < A
A ~ B :: = !(B < A)
A ~ B :: = !(A < B)

In thi example, the Boolean equation produced by PARSE
is converted to:

Normal = (Y3 # Y2) & (! V3 # Y3 & !Y2 & !Y I & !YO)

REDUCE reduces the equation using simple and PRESTO
reduction to:

Normal = (Y2 & !Y3 # !YO & !Y I & !Y2 & V3)

FUSEMAP reads the intermediate file created by REDUCE
and the device specification file associated with the 14H4

54 VLSI DESIGN June 1985

Vector4
Input Reg(....................)

Ou1put
Pin Name Enable

14 Normal
15
16
17

OR gate
Register
Ou1put

v
v
v
v

v 0004 [01()()()()()()().)

First
Fuse

336
224
112

0

Product Terms

TFFF
FFFF
FFFF
FFFF

· > [............. Hill ...)
·> [....................)
·> (............. HLLL ... J
·> [............ . HNNN ...)

FIGURE 5. Simulation output file ; output for one
test vector.

device and creates a programmer load file and an intermediate
file. The programmer load file can be loaded into a logic
programmer to program a 14H4 device . First, however, the
design is simulated, and the results of the simulation should
be checked.

The intermediate file created by FUSEMAP contains de·
vice information and a translated version of the test vectors
contained in the original source file. SIMULATE uses this
information along with information in the 14H4 device speci­
fication file to simulate operation of the programmed device.
This design operates correctly in the chosen device . Figure 5
hows a portion of a simulation output file. The output shows

inputs, outputs, and logic levels of internal nodes. If simula·
tion errors occur, the output contains a message indicating the
expected output and the actual output from simulation. Figure
5 shows the output for one test vector. A full simulation
output file contains similar output for each test vector in the
source file.

The final program , DOCUMENT, combines information
created by the other five programs into one documentation
file .

Example 2

Figure 6 shows a source fi le for an octal up/down counter.
The counter is implemented on an 82S I 05 fuse programmable
logic sequencer (Signetics, 1984) using the ABEL state
diagram construct. The state diagram uses CASE statements
to describe the state transitions. Each CASE statement corre­
sponds to a state in the state machine and describes the next
state for given conditions.

Figure 7 shows a portion of the logic diagram for an
82S I 05. Equations are written for the device' s flip-flop inputs
to set or reset the RS flip-flops. Note that these flip-flop
inputs are not output pins of the device but are internal nodes.
The following ABEL statements define signal names for these
nodes so that equations can be written to control the flip-flop
states:

PO node 37; RPO node 43;
PI node 38; RPI node 44;
P2 node 39; RP2 node 45·

These ignal are then grouped into a set named " OUT" for
easy reference . The language processes this de ign as
follows .

PARSE reads the source file and , among the many oper­
ations it performs converts the state diagram ro Boolean

module cnt8 flag "-r2"
title "Octal Up!Oown counter
Data 110 Corp 1 Nov 1984"

Ck,X,Z = .C .•. X., .Z.;

SM8 device "F82S105";

" Assign pin and node names
Clk,Dir,Cir pin 1 ,2,3;

" Internal state counter
PO node 37; RPO node 43;
P1 node 38; RP1 node 44;
P2 node 39; RP2 node 45;

out = [P2,P1 ,PO];

" Counter modes
Mode = [Cir.Dir] ;
Up = [1 • 1);
Down = [1 ' 0];
Clear = (0, X];

test-vectors ([Cik , Mode -> out)
[Ck . Clear -> 0 ;
[Ck. Up -> 1;
[Ck . Up · > 2;
[Ck , Up ·> 3;
(Ck, Up ·> 4;
[Ck. Up -> 5;
[Ck , Up ·> 6;
(Ck , Up · > 7;
[Ck , Up -> 0 ;
[Ck , Up ·> 1'
[Ck, Down ·> 0;
[Ck , Down ·> 7;
[Ck , Down -> 6;
[Ck, Clear ·> 0 ;

state.diagram out
State 0 : case (Mode == Up) 1;

(Mode = = Down) 7;
(Mode : = Clear) 0 ;

endcase;

State 1: case (Mode == Up) : 2;
(Mode = = Down) : 0 ;
(Mode = = Clear) : 0 ;

endcase;

State 2: case (Mode == Up) : 3;
(Mode = = Down) : 1;
(Mode : = Clear) : O;

endcase;

State 3: case (Mode == Up) : 4;
(Mode = = Down) : 2;
(Mode = = Clear) : 0;

endcase;
State 4: case (Mode == Up) : 5;

(Mode : = Down) : 3;
(Mode = = Clear) : 0;

endcase;

State 5: case (Mode == Up) : 6;
(Mode = = Down): 4;
(Mode = z Clear) : 0 ;

endcase;

State 6: case (Mode == Up) : 7;
(Mode = = Down) : 5;
(Mode = = Clear) : 0;

endcase;

State 7: case (Mode == Up) : 0 ;
(Mode = = Down) : 6;
(Mode = = Clear) : 0 ;

endcase;
end cnt8

FIGURE 6 . An octal up/down counter source file.

58 VLSI DESIGN June 1985

I 11)1 (J()I) I)I~~)I)
_r-

__....., - 'i'O Pa
__..., • • tp ro ,_..! -__.....,

~ ~ _;::; s Q -... • • ~ F" ro -_.....,
~ ~ _;: s Q

• • ~ = Fa -
- r!...,!l-

_....., ISii ... • • 1-
0

= ro l.,. - -r= __ro,
~~---- 0

FIGURE 7. 825105 logic diagram.

equations that contain et elements rather than et names.
These equation are hown for the State 3 CAS E tatement in
Figure 8.

A indicated in the figure , the equation created from the
tate diagram construct include sets of the tate regi ter
ignal , the current tate , the counter mode , the next state ,

and a mask. The equations a sign appropriate values for the
next state to the state register signals based on the current state
and counter mode. Becau e only equations for State 3 are
shown , the current tate in the e equation i alway 3. The
counter mode is either up (Cir = I , Dir = I) , down
(Cir = I , Dir = 0), or clear (Cir = 0).

PARSE determine which of the state reg ister signals need
to change value for a given tate transition. The program
generates a rna k that prevents ignals that do not need to
change from changing, thereby saving product term . For
example, in the equation for the et flip-flop inputs for a
transition from State 3 to State 4 , the tate regi ter value for
State 3 are [0 , I , I] and the values for State 4 are [I ,0 ,0] . To
change from State 3 to State 4 , all three state regi ter signal
mu t change. Thu the mask is l I , I , I] . This rna k is ANDed
with the next tate and the result is that the set inputs
[P2, Pl ,PO] are changed to [1 ,0,0] .

However, for the transition from State 3 ([0 , I I]) to State 2
{[0 , I ,OJ) , only one of the state regi ter signals changes value .
In both the et and reset equation for this transition, only the
low-order signal needs to change so the mask i [0 ,0 , I]. The
et input, PO , for this transition should be 0 , and the AND

operation performed on the next tate and the rna k produce
the correct value .

The PARS E program create similar equations with rna k

STATE REGISTER CURRENT STATE MODE NEXT MASK
SIGNALS STATE

(P2.P1,PO) • (IP2,P1,POJ 3) & ((Cir,Dir) (1,1D & (1,0,0) & (1,1,1);

(AP2,RP1,RPO) • ((P2,P1 ,PO) 3) & ((Cir ,DirJ (1,1D & (0,1,1) & (1,1,1);

(P2.P1,PO) • (IP2,P1,POJ 3) & ((Cir ,DirJ 11.0D & (0,1,0) & (0,0,1);

(RP2,RP1,RPO) • ((P2,P1,PO) 3) & ((Cir,DirJ I1.0D & (1,0,1) & (0,0, 1);

(P2.P1,PO) • ((P2,P1,PO) 3) & ((Cir,DirJ (O,.X.D & (0,0,0) & (0,1,1);

(RP2,RP1,RPO) • ((P2,P1,POJ 3) & ((Cir,DirJ (O,.X.D & (1,1,1) • (0,1,1);

FIGURE 8. Boolean equations for State 3 created by PARSE.

for all of the counter's state transitions . TRANSFOR reads
these equations and removes the set notation . If the State 3
transitions were the only equations in the state diagram, the
transformed equations would be as follows:

P2 !P2 & PI & PO & Clr & Dir
RP2 0
PI 0
RPI !P2 & PI & PO & Clr & Dir

!P2 & PI & PO & !Clr
PO 0
RPO !P2 & PI & PO & Clr & Dir

!P2 & PI & PO & Clr & !Dir
!P2 & PI & PO & !Cir

The Boolean equations produced from the state diagram
include equations for every state transition . This means that
there will be multiple equations for each signal. TRANSFOR
ORs the equations for the same signal together to create one
complete equation for each signal. For example, the full
equations for P2 and P l , including the effect of all state
transitions , are:

P2 !P2 & !PI & !PO & Clr & !Dir
!P2 & PI & PO & Clr & Dir

PI !P2 & !PI & !PO & Clr & !Dir
!P2 & !PI & PO & Clr & Dir
P2 & !PI & !PO & Clr & !Dir
P2 & !PI & PO & Clr & Dir

Each OR (#) operation in the above equations combines
equations created from different state transitions. Notice that
the first product term in the equation for P2 is the product
term from the State 3 transitions .

REDUCE reduces these equations to a near-minimal form .
Because the design in this example is implemented in an
82S l 05 that can share product terms , regular PRESTO reduc­
tion is used . Figure 9 shows the full set of reduced equations
for this design. Ten product terms are used.

Note that the first product term for P2 and PI in the reduced
equations is identical. This product term is shared by those
two signals. If PRESTO-by-pin reduction is used to reduce
this design , 12 product terms are used, as opposed to the 10
used with straight PRESTO. (If no reduction is performed , 23
terms are used.)

System Portability and Run Times

The ABEL software is written in the C programming
language for maximum portability to different computer sys-

60 VLSI DESIGN June /985

terns . Currently, it is implemented on the IBM PC, XT, and
AT and other MS-DOS based microcomputers; VAX VMS
and VAX UNIX systems; the Valid CAE workstation; and the
Apollo CAE workstation.

The speed at which ABEL processes logic designs depends
greatly on the processing power of the system being used.
Table I shows typical run times on different systems. These
run times include full processing by the language processor,
including parsing, logic reduction, creation of the program­
mer load file , simulation, and creation of design documenta­
tion . The number of product terms shown for each design in
the table is the final number of terms created by ABEL, after
logic reduction. Table 2 shows the distribution of time among
the different language processor programs for processing on a
VAX 111750.

Typically , logic reduction is the most processing-intensive
and time-intensive step in design processing. The correct
choice of logic reduction algorithms can have a significant
impact on execution time. One startling example of this
impact occurred during the design of a waveform controller
board for a logic programmer. The design included two state
machines implemented in a 16R8 PAL. All outputs of the
PAL were used . When straight PRESTO reduction was per­
formed on an unloaded VAX 111750, the reduction time was
one hour. PRESTO-by-pin reduction took only 35 seconds.
Only 38 of the 64 available product terms were used.

In general , for PAL designs, PRESTO-by-pin reduction
should be used . For FPLA designs, straight PRESTO should
be used to minimize the number of product terms used.

PLDtest

After the device programmer has blown the appropriate
fuse in the programmable logic device (based on the infor­
mation provided by ABEL's JEDEC-format fuse map) , the
device must be tested. This step is necessary both to verify
that the programmed device accurately replicates the original
de ign and to make sure that the device is fully functional.
Device verification testing is performed by the device pro­
grammer after programming is completed.

In testing PLDs, as in designing them, automated design
tools make the design engineer's life easier. PLDtest, for
example, not only performs the testing but also makes sure
that the specified test vectors are sufficient to fully test the
device. This step is particularly important in view of the
increased complexity of current PLDs, which has made it
more difficult to write test vectors that thoroughly exercise
each component in a device.

Dealgn IBM XT Valid VAX 750
MS-DOS UNIX UNIX

Memory address decoder
Relational equations 59 33 17
6 product-terms

Seven-segment decoder
Truth table n 50 25
33 product-terms

Black Jack machine
State diagram
42 test vectors 180 98 47
31 product-terms

Decade counter
0 ftiplllops
State diagram 117 65 32
17 product-terms

Octal countar
RS fliplllops
State diagram 160 85 43
10 product-terms

64 state couritar end
8-bit barrel shifter

State diagrem 3050 720 361
MEGA PAL 32R16
105 product-terms

TABLE 1. Run times on various systems.

Counter-Barrel Shifter on DEC VAX 750

PARSE 20
TRANS FOR 42
REDUCE 138
FUSEMAP 18
SIMULATE 110
DOCUMENT 14

TABLE 2. Execution times for language proces­
sor programs.

PLDtest assists the design engineer with the testing process
in three ways: testability checks, fault-grading, and supple­
mentary test vector generation. PLDtest specifies whether the
design of the device allows it to be fully tested . For example,
a design involving oscillating circuits cannot be completely
tested because the output for any given input is unstable ,
oscillating between logic I and logic 0 . Similarly , a design
that includes redundant circuits cannot be fully tested , be­
cause the contribution of the redundancy may " fix " the
output, so that it shows no change with a change of input. If
the original design included oscillating or redundant circuitry,
the design engineer will have to remove these features to
produce a testable device.

Faults must be detectable at the output pins if a device is to
be thoroughly tested. To fault-grade the test vectors , PLDtest
first simulates operation of the design and then traces a path
backward from each output pin to determine whether poten­
tial faults can be detected from that pin. The output of this
step tells the designer what percentage of the total design can
be verified with the test vectors he generated.

If PLDtest finds the specified test vectors insufficient to
fully test the device , it will generate additional test vectors to
exercise the unverified components. Note , however, that
these can never replace the design-verification test vectors
supplied by the design engineer, because PLDtest has no way

P2

P1

PO

RP2

RP1

RPO

Clr & IDir & IPO & IP1 & IP2
Clr & D1r & PO & P1 & IP2;

Clr & IDir & IPO & IP1 & IP2
Clr & 1D1r & IPO & IP1 & P2
Clr & Dlr & PO & IP1 ;

Clr& IPO;

Clr & IDir & IPO & IP1 & P2
ICir& P2

Dlr& PO& P1 & P2;

Clr& Dlr& PO& P1 & IP2
IDir & IPO & P1
D1r & PO & P1 & P2

ICir& P1;

PO;

FIGURE 9. Reduced equations for Example 2.

of knowing the intended function of the device. All the
software can do is to make sure that the design, as specified,
is correctly implemented in the device , and that the number of
test vectors is sufficient to detect all possible faults.

Running PLDtest consists of specifying the input file (fuse
map), the output file (to which the trace output is to be
written) , the desired format for the output file (e.g., JEDEC) ,
and the type of device being tested. At the end of the run, the
software provides a report with the following information:

• The number of iterations performed to test the device .
For each iteration , it lists the number of detected and
undetected faults (that is, those that were known to exist
but could not be detected at the output pins). It also
specifies the percentage of fault coverage provided .
• A detailed list of each of the detected faults, specifying,
in each case, the test vectors used to discover them.
• A detailed list of each of the known but undetected
faults, specifying both the fuse number and the type of
fault , so that the designer can go back and correct the
problem.
• A list of any faults that are totally undetectable due to the
nature of the design (e.g. , a design that includes oscillating
or redundant circuits) . The designer can use this informa­
tion to correct the design so the device will be fully
testable.

Conclusion

ABEL supports design efforts from conception to imple­
mentation in programmable logic . Because the same source
file can be used to program devices from different families,
ABEL offers the designer flexibility. ABEL helps to produce
error-free and efficient designs for direct implementation in a
device. Automatic logic reduction and simulation eliminate
tedious manual methods of reducing the number of logic
terms required by a design , and they provide verification that
the reduced design will work as expected . D

Acknowledgments

The authors would like to extend thanks to Gerrit Barrere , Bjorn
Benson, Brenda French. Ngoc Nicholas, Charles Olivier, and Dave
Pellerin for their contribution to the ABEL project , and to the
personnel at the Beta test si tes, who provided valuable input and
suggestions in the early stages of the project . The authors would also

VLSI DESIGN June 1985 61

The STM 4000 is a fully integrated digital function tester.
Available at PC prices. Perfect for incoming inspec­
tion of digitaiiCs. Lets you automate inspection andre­
ject bad ICs. Test MICROs , EPROMs, RAMs , ROMs,
PALs, PLAs, PLDs, UARTs, 7400s, and custom/semi­
custom VLSI parts. Performs pass/fail tests , as well as
detailed failure analysis.

Easy to use. No special skills required. Powerful menu
driven software eliminates programming. The STM
4000 can directly drive your autoprobe/autofeed stations
with no additional equipment required.

Complete 7400 test library, vector generators, and
adapters are available. Price for 64 channels and soft­
ware to meet all of your basic needs is $4895.

Available now from CADIC Inc., Beaverton, Oregon.
1 (800) 824 -1617 or (503) 626-7902.

CIRCLE NUMBER 34

Here's the programmer
you've been waiting for!

The new OMNI64 has 10A, BOV
software configured bipolar pin
drivers on every pin. Pin drivers
so fast and accurate that they
can program every EPROM,
PROM, PAL, FPLA, or single
chip uP manufactured today
without a single family pack or
configuration module!

The OMNI 64 is so flexible it can
call the factory by modem and
update itself with new program­
ming algorithms within minutes!

And best of all , the OMNI 64 is plug compatible with over 300
different computers and operating systems.

Isn't it time to stop throwing good money after bad on a never
ending list of configuration modules, pinout adapters and
family packs? Call (818) 240-0080 now for a free demonstra­
tion of the fastest software configured programmer on the
market or for a free copy of the "Universal Programmer
Buyer's Guide".

Ol iver Advanced Engineering, Inc.
676 West Wilson Avenue
Glendale. California 91203
818-240-0080. Telex: 194773

CIRCLE NUMBER 35

62 VLSI DESIGN June 1985

like to thank Daniel Burrier for hi a i tance in preparing the
manuscript.

References

Birkner. J.M., and Y.J. Coli. 1983. PAL Programmable Array
Logic Handbook , 3d ed., Monolithic Memories Inc., Santa
Clara, CA .

Brown, D.W. 1981. " A State Machine Synthe izer- SMS," 18th
Design Awomation Conference , Na hville , TN .

Data 1/0 Corp. 1984. ABEL User's Manual .
JEDEC Solid State Products Engineering Council. October 1983.

JEDEC Preparation System and Programmable Logic Device
Programmer.

Kang, S. 1981. Minimizing, Partitioning, and Symhesis of Pro­
grammable Logic Arrays. Ph.D. dissertation , Stanford Univer­
ity , Stanford , CA .

Kang, S., and W .M . van Cleemput. 1981. " Automatic PLA Syn­
the i from a DDL-P Description," 18th Design Alllomation
Conference .

Signetics Corp. 1984. IFL lmegrated Fuse Logic Data Manual .

About the Authors

Kyu Y . Lee i the vice president of engi­
neering with Butler Controls in Kirkland,
WA . Prior to taking this posi tion, he was
director of software engineering and man­
ager of de ign automation product at Data
UO, re ponsiblc for the development and
marketing of ABEL and other design auto­
mation products. Before that , he was director
of the software engineering program at Seat­
tle Univer ity, software development man­
ager at EG&G, and sy tems programmer at Fermilab. He received
his B .S. from Seoul National University and hi Ph.D . from Indiana
University.

Michael J, Holley i the project engineer­
ing manager for logic tool at Data UO .
Currently he i developing new CAE tool
for programmable logic device and other
cmicu tom integrated circuits . He is al o a

member of the JEDEC ubcommittce for
olid state memorie and programmable log­

ic. He received his B.S.E.E. from Seattle
Univer ity.

Mary L . Bailey hold a B.A. in math­
ematic and physics from Vanderbilt Univer­
ity and a M .A . from the Univer ity of

Wa hington . Currently she i a principal
oft ware engineer at Data 110 Corp., where

she is working on logic design tools , pecial­
izing in logic reduction . She is enrolled in the
Ph .D . program in computer science at the
Univer ity of Wa hington . Her research area
is parallel algorithm and architecture.

Walter G. Bright i a enior software
engineer at Data l/0 . He received his B .S. in
engineering and applied cience from the
California Institute of Technology. His prin­
cipal interests are in oft ware tool for digital
circuit design . His other interests are in com­
piler de ign and implementation .

	VLSI_Design_Jun_1985_pg050
	VLSI_Design_Jun_1985_pg051
	VLSI_Design_Jun_1985_pg052
	VLSI_Design_Jun_1985_pg054
	VLSI_Design_Jun_1985_pg058
	VLSI_Design_Jun_1985_pg060
	VLSI_Design_Jun_1985_pg061
	VLSI_Design_Jun_1985_pg062

