
CAE TOOL FOR
PROGRAMMABLE LOGIC

SLASHES
ENGINEERING TIME

Fusible links mean logic design variety

Dave B. Pellerin, Software Design Engineer, Data 110 Corp.
Michael J . Holley, Staff Design Engineer, Data 1/0 Corp.

Traditionally, engineers have de
signed digital logic circuits by inter
connecting off-the-shelf, function
logic res on a PC board. The advan
tages of these discrete logic elements
are low cost and easy availability.
Alternatively , the engineer can use a
custom integrated circuit for the
same design , if minimizing space and
power consumption is required. Un
fortunately , the large design effort
and long lead times restrict the use of
custom res to high-volume applica
tions.

A third alternative , programmable
logic, combines many of the benefits
of custom res with the off
the-shelf availability of
fixed function ICs. Fur
thermore , new design
tools allow you to design
and produce custom logic
circuits with program
mable logic devices in
much less time than tradi
tional methods require. A
programmable logic devel
opment workstation com
posed of a personal com
puter, logic programmer ,
and logic development
software can be purchased
for less than $10,000.

by fusible links that can be pro
grammed to implement a wide varie
ty of logic designs. Generally , the
device architecture, as shown in Fig.
1, consists of inputs fed into AND
gates , which are then fed into OR
gates to provide the desired outputs .
Additionally, many devices provide
features such as output registers ,
feedback , and exclusive-OR gates for
implementing more complex logic
designs.

Fig. 2 shows a simple logic func
tion. While this function would re
quire several 74LSOO-type devices, it
can be implemented in a portion of a

single programmable logic device,
such as a PAL 14L4. When designing
for programmable logic, the first step
is to write a Boolean equation that
describes the logic function . The
Boolean equation below describes
the logic function shown in Fig. 2.
X= ((A$ B) # !(C& D))& (!E #F# G)

The Boolean operators !, &, #,
and $ stand for NOT; AND , OR,
and exclusive-OR , respectively.
These operators are standard in
high-level logic design languages.

Before this logic equation can be
mapped onto the device, it must be
converted into a sum-of-products

form and reduced . In the
past, designers had to per
form tedious hand conver
sions to achieve this form .
Now, with the aid of high
level languages, the logic
function can be expressed
in its natual form-with
sum-of-products conver
sion and logic reduction
performed automatically .
The ABEL design
language

Programmable logic de
vices consist of an array of
logic gates interconnected

One such high-level
lanugage , Data I/O's
"ABEL", incorporates a
language processor that
converts the Boolean

ABEL is also available as part of complete development system
that allows the engineer to design, program and test more than 130 equation into the form re
logic devices. quired for the device . 9

Design News/10-8-84/135

CAE TOOL

ABEL language processor

The ABEL langua~e processor con
verts logic descriptions to industry
standard programmer load files that
can be downloaded to a logic pro
grammer for device programming.
The language processor checks your
logic description, performs logic re
duction, simulates the operation of the
programmed device, and creates de
sign documentation. A diagram of the
ABEL processing flow is shown in Fig.
B.
Here are the six steps in processing
an ABEL source file:
STEP/ACTION
1. PARSE: Read the source file, check
for correct syntax, expand macros, act
on directives.
2. TRANSFOR: Transform original
equations with set notation into nor
mal Boolean equations using only
basic Boolean operators.
3. REDUCE: Perform DeMorgan con
versions and logic reduction.
4. FUSEMAP: Create the programmer
load file.
5. SIMULATE: Simulate the function
of a programmed device.
6. DOCUMENT: Create comprehen
sive design documentation. 0

History of programmable
logic devices

The first field-programmable logic de
vice was the biporar PROM (program
mable read-only memory). Today, EP
ROMs (erasable PROMs) as large as
64 kbytes are available, although the
much smaller 32-byte PROM is still a
popular logic element. The first field
programmable lo_!iliC array was intro
duced by Slgnet•cs in 1975. A few
years later, Monolithic Memories in
troduced the "PAL" (programmable
array logic) and the first logic design
language, PALASM. Today there are
a dozen companies producing or de
veloping programmable logic devices.
The newest logic devices are equiva
lent to more than 1000 AND gates. 0

136/Design News/1 0-8-84

ABEL converts the exclusive-OR ex
pression into an AND-OR expres
sion , which is then transformed into
the following active low, sum-of
products equation.

! [X] = A & B & C & D
#!A & !B & C & D
E & !F & !G

Next, ABEL maps the equation
onto the programmable logic device,
as shown in Fig. 3. The fuse~ marked
with an X are kept intact when the
device is programmed, and the re
maining fuses are blown. The pro
grammed device will then perform
the logic function resulting from this
fuse pattern .
Design example: A microprocessor
address decoder

Here is how ABEL can be used in
a typical microprocessor-based con
troller. The system uses a MC6809
microprocessor, a 32-kbyte EPROM,
three 8-kbyte static RAMs, an
AD7528 digital-to-analog converter
(DAC) , an 8-channel analog to digit
al converter (ADC) and an SCN2651
serial interface . All decoding and
control logic is contained in a single
programmable logic device , a
PAL20L10.

The PAL 20L10 monitors the mi
croprocessor address bus and , based
on the value of these addres bits ,
selects the proper memory segment

by placing a low (logical zero) on its
appropriate output pin .

Using ABEL, the engineer can
express this design clearly in Boolean
equations , with the help of high-level
language constructs such as set nota
tion and relational operators. Fig. 6
shows a complete ABEL source file
implementing this design .

In the first section of the source
file , a module name and descriptive
title are followed by declarations of
the device to be used , and input and
output pin names . Only the pins
used for this design need to be de
clared. A 20L10 PAL device was
selected for this design , although one
of many other common devices
would suffice . (Substituting a differ
ent device is a simple matter of
changing the device name in the dec
laration and , if necessary, changing
the pin numbers.)

Constants are also declared in this
section. Constant declarations are a
powerful way to make a design more
meaningful to read and easier to
write; frequently used expressions
involving single constants, sets , and
even entire logical expressions can
be given symbolic names that are
used in the remainder of the source
file. These symbolic names simplify
complex expressions .

The address decoder design is sim-

Although ABEL version shown here runs on personal computer,
version that runs on DEC VAX is also available.

ABEL converts state diagrams into reduced Boolean equations for
programming into device.

plified by grouping the nine address
line inputs and seven "don 't care"
values into a set of 16 members
named Address. A " don't care", in
dicated by the special constant
" .X.", is a way of specifying that a
signal can be either high or low. In
this way , the true memory addresses
may be used in the equations. The
ABEL relational operators allow the
designer to use a " natural" form for
expressing the logic function , rather
than restricting him to standard
Boolean operators . For each output
pin , the designer writes one equation
that expresses the logical conditions
which will produce the desired func
tion for that output .
Simulation

The source file also includes a test
vector section. Test vectors are an
important part of any programmable
logic design , and are used by the
ABEL simlulator to verify that the
design will produce the intended out
puts for a given set of inputs.

INPUTS

7 7 7 7 7

1\i "' rv 1\i rv rv rv

Address Range

0000- 1FFF
2000- 3FFF
4000- 5FFF
6000- 600F
6010- 601 F
6020- 602F
8000- FFFF

Device Selected

RAM1
RAM2
RAM3
Digital to Analog
Analog to Digital
Serial Interface
EPROM

Fig. 5 - Memory map of microprocessor system.

The ability to simulate the func
tion of the design with test vectors
can result in significant savings of
time and money , because the design
er can be sure that the device will
perform as expected before pro
gramming it. The same test vectors
may also be used by the program
ming hardware so that the device
functions properly after it is pro
grammed . When writing the test vec
tors, the engineer can again use set
notation , resulting in a clearly reada
ble source file and reducing chances
that incorrect test vectors will be

written. In Fig. 6, three separate test
vector sections are written for testing
the memory and 1/0 decoding , and
control signal functions.
ABEL processing

When the source file is processed
by ABEL, set equations are ex
panded and the relational operators
are converted to equivalent equa
tions using standard Boolean opera
tors. Logic reduction is then per
formed to minimize the number of
product terms used to perform the
desired logic function . Automatic
logic reduction allows the designer to

A B C D E F G

r-}---,

r->--p---t>-t-
t--T"l
~

OUTPUTS
X • INTACT FUSE

~[)4>-~)---
>--

Fig. 3 - Logic function mapped onto programmable logic
array. Fuse locations marked with 'X' are intact.

,t;'o OR
GATES GATES

Fig. 1 - Typical architecture of programmable logic devices.

E
F

G

X • ((A$8) II (C&D)) & (!EIFMG)

Fig. 2 - Typical logic function expressed with discrete
logic elements.

X

!X = A & B & C & D
#!A & IB & C & D
E & !F & !G

MICROPROCESSOR
MC6809

CONTROL LOGIC
PAL 20L10

3RAMs
8 kbyte

EPROM
32 kbyte

DIGITAL TO ANALOG
AD7528

ANALOG TO DIGITAL
AD7581

Fig. 4 - Block diagram of microprocessor-based controller.

Design News/10-8-84/137

CAE TOOL

express his design in a clear, straight
forward manner-as opposed to the
restrictive sum-of-products form re
quired by the logic device. Fig. 7
shows the reduced equations as
printed by the ABEL document gen
erator. Also shown are the expanded
test vectors produced by ABEL from
the vectors in the source file. The
expanded test vectors contain ex
pected values for all input and out
put pins .

ABEL maps the reduced equa
tions onto the fuse array of the speci
fied device and simulates the design
with the use of the test vectors
provided. Simulation errors, if any ,
are reported by a listing of which
vectors failed and what results were
actually obtained on the outputs .

The final output includes an indus
try-standard format (JEDEC VStan
dard No. 3) download file for device
programming, as well as a compre
hensive document file and simula
tion results .
Conclusion

For many logic designs, program
mable logic has significant advantag
es over traditional methods using
discrete devices or custom ICs .

New, advanced logic design tools
such as ABEL provide the designer
with new flexibility in the way logic
designs are expressed. Designs may
be written as truth tables , state dia
grams , or Boolean equations . The
powerful set notation and a variety
of logical and relational operators
allow designs to be written in the
form most natural to the designer.
Automatic logic reduction and De
Morgan conversion save the designer
hours or even days of tedious hand
calculations. Design simulation saves
time and money , helping to ensure
that the design functions as expected
before a device is programmed.

As designs to be implemented in
programmable logic become more
complex , advanced logic design tools
are required for the conversion of
conceptual designs to working
devices. D

138/Design News/1 0-8-84

1--- PAOGAAMMER LOAD FILE

SIMULATION OUTPUT FILE DOCUMENTATION FILE

Fig. 8- ABEL processing flow.

Ul device
Al5,AI4,AI3,AI2,All,AIO
A6, AS, A4
E,RW
RAMI,RAM2,RAH3,EPROM
SERIAL,DAC,ADC
SRW,WR

R,L,X . 1,0, .x . ;
Address . [A15,AI4,A13,AI2,

' P20LIO';
pin 1,2,3,4,5,6;
pin 7 ,8,9;
pin 10,11;
pin 14,15,16,17;
p 1 n. I 8 , 1 9 , 2 0;
pin 21,22;

A11,AIO,X,X, X ,A6 ,AS ,A4, X,X,X,X];

equations
!RAMI . (Address <· "hlFFF);

IRAH2 . (Address >• "h2000) & (Address <· "h3FFF);

IRAM3 . (Address >· "h4000) & (Address <· "h5FFF);

IDAC . (Address >· "h6000) & (Address <· "h600F);

IADC . (Address >· "h6010) & (Address <· "h601F);

!SERIAL • (Address)• "h6020) & (Address <• "h602F);

!EPROM • (Address)• "h8000);

IWR • B & I RW; "write strobe for AD7528 DAC"

ISRW • RW; "inverted RW for SCN2651 serial port"

teat_vectors 'teat RAM and EPROM decode '

test_vectors

test vectors -

end System

([Address) -) [RAHI,RAM2,RAM3,BPROM)
["hOOOO I -> [L, R, R, R I
["hlOOO] -> [L, R, B, R)
("h2000) -> [B, L , R, B)
["h3000] -> [R, L, R, R)
["h4000) -> [R, R, L, B)
("h5000 I -> [R, R, L, R I
("h6000) -> [H, R, H, H I
["h8000 I -> [H, H, H, L I
["hAOOO I -> [R, H, R, L I
("hCOOO) -> [H, H, H, L)
["hFFFF I -> [R, H, R, L I

'teat I/O decode'
([Address] -) [DAC,ADC,iERIAL))

["h6000 I -> [L, H, R];
["h6008 I -> [L, R, H);
["h6010 I -> [H, L, R];
("h6020 J -) [R, R, L);
["h6030] -> [R, R, R);

~test control signals '
([E, RW] -> [WR,SRW])
[0, 0) -> [R, R l;
[0. I) -> [R, L];
[I, 0] -> [L, R I;
[I , 1) -> [H, L);

Fig. 6 • Complete ABEL source file for address decoder and control logic design.

no~ efficiency; 431n-lbs.

OurFH
Qear...-.

BISON
GIVES YOU
LESS FOR

THE MONEY!
About 30% less in overall space yet it
delivers 43% more power! The reason?
Bison gearmotors are engineered smarter
out of stronger materials! We include
better bearings, oil filled boxes, and
hardened steel gears. They're designed
to AGMA standards to deliver more
torque in less space.

And in OEM quantities, they do it more
economically. So that chances are good
you can replace your present gear
motors with built-to-last Bisons and save
money. Because the other thing less
about Bison gearmotors are
their prices!

We make your
products go.

BISON
Gear & Engineering corp.

2424 Wisconsin Avenue
Downers Grove, IL 60515
312·968·6400

Circle No. 421
140/Design News/1 0-8-84

CAE TOOL Did you find this article interesting? If
so,let us know. Circle No. 855

Equations for Module System
Device Ul

Reduced Equations:

RAMI • I(IA13 & IA14 & IA15);

RAM2 • I (AI) & 1Al4 & IA15);

RAM3 • I(!AI) & Al4 & IAJ5);

DAC • !(IIIlO & 11111 & IA12 & All 6 Al4 & 11115 & 1114 & 1115 &

I A6);

ADC • 1(11110 & !All & !Al2 & Al3 & A14 & !IllS & A4 & !AS &
! 116);

SERIAL • I(IAIO & !All & 1Al2 & A13 & Al4 & !&15 & !A4 & AS
& I A6);

EPROM • !(IllS);

IIR • I(E & IR\1);

SRII • I (RW);

Chip diagram for Module System
Devi c e Ul

P20LIO

----------\ 1----------
\ 1 I

AIS 24

Al4 23

Al3 22

Al2 21

All 5 20

AIO 6 19

A6 18

AS 8 I 7

A4 9 16

E 10 15

Rll II 14

GND 12 13

Test Vectors for Module System
Device U I
test RAM and EPROM decode

I (0000 0000 0--- ----1 -> [----
2 [0001 0000 0--- ----1 -> [----
3 IOOIO 0000 0--- ----1 -> [----
4 [0011 0000 o--- ----1 -> [----
5 (0100 0000 0--- ----1 -> [----
6 10101 0000 0--- ----1 -> 1----
7 [0110 0000 0--- ----1 -> [----
8 [1000 0000 o--- ----1 -> [----
9 (1010 0000 0--- ----1 -> (----

10 [1100 0000 0--- ----1 -> (----
II (1111 1111 1--- ----1 -> !----

test 1/0 decode

12 [OliO 0000 0--- ----1 -> (----
13 I OliO 0000 0--- ----1 -> (----
14 (OliO 0000 1--- ----1 -> l----
15 (OliO 0001 0--- ----1 -> 1----
16 (OliO 0001 1·-- ----1 -> 1----

test control signals

17 (---- -oo- ---- ----1 -> (----
18 [---- ---- ·01- ---·- ----1 -> [----
19 1---- ---- -10- ---- ----1 -> !----
20 1---- ---- -II- ---- ----1 -> (----

end of module Syate•

Vee

IIR

SRII

ADC

DAC

SERIAL

EPROM

RAH3

RAH2

RAMI

Fig. 7 • ABEL documentation including reduced equations,
chip diagram and test vectors.

-LHB R---
-LRH H---
-BLR H---
-RLR R---
-RBL R---
-RRL 8---
-888 H--·
-RBB L-·-
-888 L---
-888 L---
-888 L·-·

-BLH
-RLH
-HHL
-LB8
·HHB

----1
----1
----1
----1
----1
----1
----1
----1
----1
----1
----1

----1;
----1;
----1;
----I;
----1;

88--l;
LB--1;
HL-- I;
LH·- 1,;

	DN_Oct_8_1984_pg135
	DN_Oct_8_1984_pg136
	DN_Oct_8_1984_pg137
	DN_Oct_8_1984_pg138
	DN_Oct_8_1984_pg140

