
A STATE-MACHINE SYNTHFSIZER- SMS

Dou.Jias W. Brown
.Del. Stat. 92-515

Tektronix, Inc.
P.O. Box 500

Beaverton, Oreaon 97rT77

Much of dle work in implementiq a state machine involves tedious
calculations that require ao c:rcativity. This repon describes the
dev.dopment of a diaital-c:ircuit synthesis proaram that helps reduce the
ted1um. SMS accepts a hiaJt-level description of a state machine and
returns equations for implementation that assume a sum-of-products
oext-state and output functions and that also assume .JK or D nip-Oops
for memory.

INTRODUCllON

A state machine has been defined by Clare' to be a circuit block eon
tainina memory and combinational loaic:. The memory defines the state
of the circuit block. The lo&ic: defines the outputs and the next state as a
function of the inputs and of the current state.

State machines have not been replaced by mic:ropUK:CSSOrs. State
machines are still needed to interface: with microprocessors and for
hiah·speed applications. Also, state-machine synthesis will become an
important part of VLSI desian.

Most of the c:rcativity in designing state machines is in drawina the
ASM (algorithmic state machine) chart; as shown by Clare: I and in
assianing states. The rest of the: wort is well-suited for auto..;ation.

This paper describes the development of a state-machine synthesizer
program named SMS. To use SMS, an enainec:r prepares a text file eon
tainina a high-level description of a state: machine. SMS reads that file
and prints another file that contains the equations for implementin& the:
state: machine. Implementation uses either JK or D flip-nops for state:
memory and assumes sum-of-products equations for the next-state and
output functions. An example state-machine desisn usina SMS is
described in the Appendix of this paper. A different approach to a
similar problem is described by Dictmeyer2 and by Diet-er and
Doshil. -·-~

Th~ major eqineerina problem encountered in the: project was the
equation reducer. The method of calc:ulatina equations produced
results that were not reduced enouah for production. An alaorithm had
to be developed that could reduce equations for the: size of state
machines we had. A desc:ription of the: aJaorithms that were developed
is inc:ludect in this paper.

GOALS OF' THE PROJECT

The main purpose of the SMS project was to replace a similar proaram
with one that could handle more variables and that had a friendlier user
interface. The existlq prosram had an exponential rise in computation
time for the equation-reduction step as the number of variables in
c:reased and became impractical for state machines that had more than
ten inputs. Enaineers had state machines that exceeded this limit, so
faster computation for the equation-reduction step was soUJht.

Enaineers had also requested a friendlier interface. This request was
satisfied by deveJopiq a manual, an input lanauaae. and an Input
lanauaae procasor that provide the followiq features:

• The manual is small and easy to read. The c:nainc:er wants to
spend minimum time: readina the: manual in order to learn how to
describe a state: machine.

• No ambiJuous constructs are allowed in the input lanauagc:. This
constraint diminata user traps and allows the enaineer to quietly
describe a state machine. The dac:ription will either be inter
preted the way the enainc:er intended or it will not be a valid
dacription.

• The ~ins feature is unu•blc unless the input lanauqe proc
essor IJVC:S enor messaaes that enable the: ensineer to easily see
the enor and correct the state-machine description. Good error
messqes are a must.

STRUCTURE OF' THE PROGRAM

The prosram is divided into modules, which are separate proarams
that communicate throqh text flies. The advantaaes of usina modules
are:

• Any module: can be easily replaced. For example, four dif
ferent versions of the equation reducer have: already been used.

• The most efficient lanauage can be used for each module. It was
felt that the proper choice of a lanauase can have a dramatic d·
feet on the simplicity of the: program and, therefore: on the
rdiability. The: advantaac: of the description of an algorlthm in a
well-suited language has to be weiahed qainst the: problem that
arises when a lansuase is so esoteric that few proarammers can
use the: languqc: or that the: computer system staff cannot support
the compiler. (For a discussion of the importance: of simplicity,
f!liability, and adaptability of lanauages versus portability, effi·
etency, and generality, see Hansen4 .)

• Communication between the modules through text flies has
several advantaaes. Test data can be entered into a text file in
order to test a module during initial development. A module: can
be re-run without the need for special code to save and restore: the:
~t~ for each run. This feature can be used to debus or to op
unuze a module:. An enor can be traced to a module by examin·
in& the text file, so the file saves some special data-printina code:
durin& debugiq.

COMPONENTS OF THE PROGRAM

SMS is divided into four modules aceordina to function:

• The Input Lanauaac: Processor reads and c:hec:ts the engineer's
bigb-levd desc:ription of a state machine.

• The Equation Calc:ulator calculates next-state: and output func
tions for flip-&ps.

• The Equation Reducer reduces the equations to reduce the size of
tbe resultina circuit. . .

• The Equation Printer prints the results.

18th O.ign Auto!Mtion Conftnlnce Paper 15.1
301 0146-712318110001).4)301100.75 C>1181 IEEE

lapat Lanpqe Proceuor

The input·lanauaae processor was written in FLAJC, which is a
compiler-compiler developed at Tektronix for in-house use. The input
processor checks for syntax errors alona with the easier semantic errors,
such as duplicate state assianments. There is also type-checltina for
names to avoid confusion between the names of states, state variables,
state-machine inputs, and state-machine outputs. Error messqes are
written, when appropriate, alona with some warning messqes for
possible errors, such as multiple transitions to the same state.

The input processor passes information on to the equation c:alc:ulator
in an intermediate-level lanauqe (ILL). Althouah the ILL is still in
human-readable form, it is much more computer readable because
numbers have replaced all but the initial definition of names and
reverse-polish notation has replac:ed (boolean) alaebraic equations.

The choice of any aeneral-purpose Janauqe to develop the input
processor would have resulted in a much laraer proaram (unless a set of
routines for compiler-aeneration were available, which is what the
compiler-compiler is). The input processor was able to achieve the
described aoals in just over 300 lines of FLAJC code.

Equd011 c.Jnlator

Another advantaae of the input processor convertin& the input to an
ILL, besides makina the fields of data easier to read by the equation
calculator, is allowina the equation calculator to assume that the syntax
is correct at this point. This advantaae eliminates the need for com
plicated error-recovery code. (This task is pushed off onto the input
processor. Fonunately, the proc:asor is written in a Janauqe that
makes error recovery easy.)

The equation calculator was written in PASCAL. Because the
calculator has to do boolean operations on boolean func:tions and
various traversals of trees destribina the state machine, a Janauaae that
could handle unusual data types and that could do type c:heckina was
required. PASCAL was the best supponed lanauqe available that fit this
requirement.

Before the equation calculator calculates equations, it does some
checkina that is too complicated to do easily in the input processor.
This checking includes seeins that all of the conditions for transitions to
next states from a &iven state are disjoint. Then, the calculator writes
out the flip-flop equations. The next-state and output tables are
aenerated durins data read and write. The calculation of the equations
is a strai&htforward process, as described by Claret.

Eqaatloa Redaeer

The equation reducer is the computation-intensive pan of the pro
aram. The equation reducer was written in FORTRAN because that was
the most efficient Janawae on the machine.

The equation reducer reads a multiple-output sum-of-products func
tion, with incomplete specification ("don't care's" on some outputs);
performs a sub-optimal reduction; and writes out the function In a
completely specified form. One requirement was that the reducer had to
reduce both the product terms and the number of literals in the product
terms. PLA-directed reduction would only require that the number of
product terms be reduced. Four equation-reduction modules have been
implemented so far.

The first reducer was based on Hona's MINI'. MINI uses heuristic
methods to reduce the equations. The alaorithm is able to handle multi·
valued IOJic and is &eared toward PLA's (reduces only the number of
product terms). However, it was easy to implement the dqenerate case
of boolean lo&ic and to add a final step that reduces the literals in the
product terms. The resultina equations were quite ac:ceptable for SMS,
but the amounts of computer time and required memory were not.

The second implementation of the equation reducer module was
Svoboda's pRESll)6, The al&orithm is described in more detail later in
this paper. The reduction in PRESTO was aenerally almost as &oocl as in
MINI, and the computer time and memory requirements were drastitally
reduced, maltin& the packqe muc:b more acceptable for SMS. The only

hper15.1
302

drawback to the ori&inal PRESTO was a sharp rise in execution time for a
larae number of variables. This increased execution time was
reasonable for all the state machines that had come alons at that time,
but there was a strona possibility that someone would try a state
macbine with too many Input variables (say thiny) and would be unable
to run the reducer in a practical amount of time.

The current reducer is an extended version of PRESTO (details follow).
The oriainal PRESTO contained a step that had to check every minterm
of a product term, which made it sensitive to the number of variables,
but extended PRESTO uses a tree alaorithm for the same step and keeps
the time more reasonable. This implementation provides the same
reduction results with nq)iaibly increased memory requiretnents. Ex·
tended PRESTO is so thrifty with computer time and memory (including
the size of the proaram) that even a microprocessor version is practital.

Ddlaldo81. In the followina discussions of alaorithms, "function"
is a boolean multiple-output sum-of-products. The function consists of
a list of product terms, each represent ina an AND &ate. It is convenient
to let the outputs to which an AND pte is connected be associated with
the product term for that aate. Each input literal tan be present in
either its true or its complemented form, or each input literal tan be ab·
sent. If the literal is present, the AND pte is connected to that input.
Each output tan be present or absent. If the literal is present, the output
of the AND pte is connected to the input of the OR pte that forms
that output. Fiaure I demonstrates the relationship between inputs,
outputs, product terms, and ptes.

ouJu.rs Y.A! + ~ ~ I X:ACD I 1

Z=ACO + AIC FUNCTION

3 IACDXZ PRODUCT AI Y
TERMS illc yz I SAME

FUNCTION

A
c X
D

4 A SAME INPUTS y
4A,I,C.Dt I FUNCTION

X z I
c

Ftaure I. Relationship between inputs, outputs, product terms, and
pta.

The concepts of "parts" and "distance" between product terms were
taken from Hona. et al,' and concepts of "tdistance" and "jdistance"
were added in order to simplify algorithm descriptions. The position
for each input literal in a product term is a pan. The positions for all
output literals In a product term make one pan. Fiaure 2 shows an ex·
ample of parts.

A ~
A I
A I c

4
INPUT
PARTS

D

s
PARTS

X z
y
y z

1
OUTPUT

PART

F"lJUle 2. Example of "pans" in product terms.

I•

Let A ud B be product terms. An ilfPut ptlrt in A covrn the cor
respondina part in B if the literal is absent from the part in A or if the
literal is the same (both true or both complemented) in A and B. The
output ptlrt in A cowntheoutput part in B if, for each literal present in
the output of B, the correspondina literal is also present in the output of
A. An input ptlrt in A is disjoint from the correspondina part in B if the
literal is present in the part and different (one ttue ud the other com
plemented) in A and B. The output ptlrt of A is disjoint from the output
part of B if, for each literal present in the output of A, the correspond-·
ing literal is absent in the output of B. A ptlrt of A inten«ts the cor
respondillJ part of B if the parts are not disjoint.

The distance between two product terms is the number of partS in
which they differ. A distance of zero means the product terms are
equal. A distance of one means the product terms can be meraed. If the
differmce is in an input part, then the meraed product term will have
no literal in that part. If the difference is in the output part, then the
meraed product term will have all the literals that were present in either
of the meraed product terms.

The cdistUJce, or .. cover distUice," from product term A to B is the
number of parts in A that do not cover the correspondina parts in B. If
the cdistance from A to B is zero, then A covers B; otherwise, A does
not cover B. The concept of how close a product term comes to cover
ing another is valuable in the extended PRESTO alaorithm.

The jdistance between product terms A and B is the number of parts
in A that are disjoint from the correspondina parts in B. The jdistance
is also the minimum distance between a pair of minterms of A and B. A
jdistance of zero means two product terms Intersect.

Function F intersects product term PT if any product term in F in
tersects PT. Function Fl intersects function F2 if any product term of
Fl intersects any product term of F2. Coverqe with functions is best
described with minterms (the reason is involved in the step from PRESTO
to extended PRESTO). A function F covers a product term PT if every
minterm of PT appears in F. Function Fl covers function F2 if every
minterm of F2 appears in Fl.

Details of PRESTO. The theoretical details of PRESTo are described by
Svoboda&. The following is a description of the alaorithm. PRESTO ac
cepts an incompletely specified multiple-output sum-of-products func
tion. The incomplete specification means there are "don't cares" in the
outputs. PRESTO forms two functions, F and FDC, from the original
function. F is the oriainal function with the "don't-cares" all set to
zero, and FDC has them set to one. Thus, F has the minimum number
of minterms for an acceptable final solution, and FDC has the maxi
mum. PRESTO works with F by addin& minterms from FDC that reduce
the resultina circuit.

The main loop for PRESTO follows:

• First, try to eliminate each input literal. Take each input literal
in each product term in order, remove the literal, and see if the
product term is still covered by FDC. If the product term is still
covered, then leave the literal out; if not, put the literal back.

• Next, try to eliminate each output literal. Take each output
liteJal in c.ch product term in order, remove the output literal,
and see if the produCt term beina uncovered by the retnoval of
the output literal is still covered by the rest of F. If all the output
literals of any product term are removed, then the product term
can be removed, which reduces the siz.e of the circuit by one
AND pte or product term.

• Repeat the preceditta two steps until there is no c:hanae
in F. F is the result.

PRESTO is currendy order dependent. Antonin Svoboda (the author
of PRESTO) chose a minimal set of operations that were fast and that re
quired litde computer memory. Orderlna of the product terms or of the
peru within the product terms would result in areater reduction;
however, for SMS. the extra reduction would probably not be worth the
COst.

In the oriainal PltESTO, the test for a function covering a product
term was done as a loop throuah all the: minterms of the product term.
This test was a simple algorithm and has been acceptable for all SMS
problems seen to date,)lut the potential exists for a state machine that
is too large to reduce practically with PRESTO, so a faster method of
testina product-term coverqe was souJht.

Extended PRESTO. Extended PRESTO contains a tree method of
checking to see if a product term is covered by a function rather than
checking every minterm in the product term. Let the product term we
are c:heckina be PTO, and let the function be G. We will work with
product term PT, which wiU start out equal to PTO. The stack starts
out empty. The steps of the coveraae test are:

I. If PT is covered by any product term of G and the stack is
empty, then PTO is covered by G.

2 . If PT is covered by any product term of G and the stack is NOT
empty, then pop a new PT off the stack and go to step I.

3 • If PT does not intersect G, then PTO is not covered by G;

4 . otherwise, push half of PT onto the stack and leave: the other
half in PT. Cio to step I.

"Splittin& in hair' is lakin& one product term and forming two that
differ in one part. When splitting on an input part, the original product
term will have the input literal absent in the splitting part, and the
resultant product terms will have the literal and its complement in that
part. When splitting on the output part, each output literal of the
ori&inal product term aoes either to one half or to the other but not to
both.

Splittina in half is truly splitting the number of minterms into two
equal aroups on input splits. The worst-case of the tree method is to
split PTO down to its individual minterms. How the product term is
split determines how c:Jose we come to worst-case.

A "dumb" split would juSI take the next part of the product term
with a literal absent and split there. This split was tested and found to
be unacceptably slow. A "smart" split is necessary. The method chosen
is to find a product term PTG in G that intersects PT and has the
shortest cdiSiance to PT. Split along a part in PT that is not covered by
the correspondina part in PTG.

An efficient output split is: Let H be the product terms whose input
parts all cover the corresponding parts of PT. Remove from PT any
output literals found in H. PT is the result, and nothing is pushed onto
the stack. (The product term that would have been pushed onto the
stack is already known to be covered.) This output split can be used on·
ly when no input splits are possible.

Let A, B, C, D be inputs and X. Y. Z be outputs.

Input split example:

A C D X Z --> A B C D X Z and A li C D X Z.

Output split example:

AfDXZ --> A~DXanciA~DZ.
Dumb split examples:

ADXY --> ABDXYandABDXY

A B D X Y --> A B C D X YandA B CD X Y.

Smart split example:

PT•ADXY

0 a: A D X Y , A C D X Z , A "I C D X Z.

Piper 15.1
303

--

product term of G

ADXY
At"DXZ
AliCDXZ

JOIST ANCE to PT

I

· CDISTANCE to PT

0
0

I
2
3

ADXY cannot be PTG because it does not intersect PT
(JDISTANCE does not equal 0). ACDXZ has the miDimum
CDIST ANCE of the remainina product terms. So

PTG • A~DXZ.

SpUt the part containiDJ literal C, because for all other input parts,
the put ill PTG covers the correspondiDJ put in PT.

ADXY --> ACDXYandACDXY

The current implementation of PUSTO is limited to 29 inputs, 59 out
puts, and 1500 product terms. The fint two can be extended with a
small amount of codina, and the last is a sinale parameter. Table I lists
example runs that Jive an idea of aecution time.

Table1.
Equation Reducer Timing Examples

PRODUCT PRODUCT
TEAMS TERMS

8EFOR£ AFTER CVBER171
RUN INPUTS OUTPUTS IIIEDUCTION REDUCTION CPU SECONDS

1 • • :n 14 a.
2 10 I • 11 0.10
I I I • • 0.11

• 14 I • ., 061
I I 14 ., 21 0.11

• 11 11 1CIII • U7
7 111 23 101 42 1.215
I 12 25 2311 • a.

An experimental version of SMS uses Svoboda's absolute minimizer
OPTIMA' for the reduction step. OPTIMA is a aood complement to
PRESTO because PRESTO quickly reduces equations that are too complex
for any known technique to find the absolute minimum, while OPTIMA
finds the absolute minimum for the simpler equations.

Egaatloa Prtater

The last module of the SMS proaram is the equation printer. This
module prints a list of Ill the product terms in the solution, a list of the
product terms summed in each output, and a list of the sum-of
products for each output. Like the equation calculator, the equation
printer processes complex data structures, so PASCAL wu a &ood
lanauaae for this application.

The initial project called for printiDJ the results. A proaram has been
written to link the SMS output to a PROM proarammer for proaram
miDJ FPLA's.

!!!!!!!
Althouah not a proaram module, the manual is an important put of

the project. The manual, the input IIDJuaae, and the input processor
must all work toaether to form an attractive tool for the enaineer. The
approach used in the manual is a tutorial that is quick to read. The
manual is not necessarily a comprehensive reference work. The tutorial
consists of a series of examples startiDJ with a basic state machine, with
each example addina another feature. The input lanauaae Is desiped to
make this possible, and the input processor has to aive aood feedb..:k
to make up for lack or detail in the manual. Reprdina the latter case,
the manual does not even mention maximum name Jenaths, because the
input processor's error feedback is sufficient to notify the enJineer.

RESULTS OJ' PROIECT

SMS has about five reaular users and about twenty users who have
tried it. We expect the number of users to aradually increase judaiJII

....... 1&.1
304

from aperience with previous circuit-desip-aid prosrams. Most
enaineen have not yet aained complete faith in SMS. They use it as a
check on, instead of as a replacement for, their work. SMS has caught a
few erron made by the enaineers, typically a product term lost in the
equation-reduction step. Findina these erron has saved considerable
time, because the errors were corrected before a prototype was built.
Oc:casionally, a lost product term can be difficult to detect.

Feedback from qineen has been encourqiDJ. The basic aoals of
the project have been achieved satisfactorily. No enaineer has been
unable to desian a state machine usiDJ SMS due to the state machine
size, and no enaineer has complained about the interface. Neptive
feedback has been in the form of requests for more features. Graphic
input and output is a favorite request. Automatic state assipment plus
hazard and race detection are also requested. There are scattered needs
for state machines that use somethiDJ other than JK or D flip-Oops as
state memory, e.a .• shift reaisters.

CONCLUSION

A state-machine-synthesis proaram (SMS) was developed that pro
vides the friendly interface and fast equation reduction required to be
useful. A new, non-optimal, multiple-output-logic-function reclucer
was also developed. EDJineers have used SMS successfully and have sua
aested areas for improvement.

ACKNOWLEDGMENTS

Philip White, Ron Bohlman, Allen Hollister, Graeme Boyle, and
Henry Alward all made important contributions to SMS. Antonio
Svoboda's PRESTO llaorithm is currently an indispensable part of SMS.
The author wishes to thank the reviewer who pointed out several key
typoaraphical errors and who helped further by improvina a confusina
paraaraph.

APPENDIX-EXAMPLE STATE MACHINE

The example state machine shown in Fiaure 3 has four states:
ALPHA, BET A, GAMMA, and ERROR that have state assignments
00, 01, 10, and II, respectively. The two inputs are X andY. and the
three outputs are PHASEl, PHASE2, and ERROROUT. The next
state after ALPHA is BETA if X is hiah; otherwise, the next state is
GAMMA. The next state after BETA is ALPHA if Y is hish; other
wise, the state remains BETA. GAMMA aoes to ALPHA if both X and
Yare hiah; otherwise, GAMMA aoes to ERROR. ERROR never goes
to another state. BETA outputs PHASE2 ifY is high; otherwise, BETA
outputs PHASEl. ERROR unconditionally outputs ERROROUT.

Fipre 3 shows an ASM chart for the state machine:

F'qure 3. ASM chart, u described by CJanil, for aample state
machine.

This example uses JK nip-Oops Sl and S2 for the state memory. lbe
followiiiJ is the SMS input for this state machine:

SMS EXAMPLE FOR THE 18TH DAC

STATE ALPHA 00
ON X OOTO BETA
ON -X OOTO GAMMA

STATE BETA 01
ON Y

OOTOALPHA
OUTPHASE2

ON -Y

STATE GAMMA 10

OOTOBETA
OUT PHASEI

ON X•Y OOTO ALPHA
ON -(X•Y) OOTO ERROR

STATE ERROR II
UOOTO ERROR
UOUT ERROROUT

VARDEF Sl S2

TYPEFF JKFF

The followina is the SMS output for the example state machine:

PI-X•-SI
P2= -X•-S2
P3=Y•-SI•S2
P4= -Y•-SJ•S2
PS=X•Y•-S2
P6= -X•SI
P7=- Y•SI
P8=SI•S2

SI(J) .. P2
SI(K)=PS
S2(J)=Pl + P6+P7
S2(K)=P3
PHASE2=P3
PHASEl=P4
ERROR OUT= P8

SI(J)=-X•-S2
Sl(K)=X•Y•-S2
S2(J)=X•-SI + -X•Sl +- Y•SI
S2(K)=Y•-SI•S2
PHASE2=Y•-SI•S2
PHASE!= -Y•-SJ•S2
ERROR OUT= Sl• S2

I
11

' .,

FiJure 4 shows an implementation of the state 1n:.cbine:

11

li

12 r-----IIMASU
=o~

fi1ure 4. Implementation of example state machine.

REFERENCES

!Christopher R. Clare, Designing Logic Syst~ms Using Stat~
Machinn, (McGraw-Hill Book Company, New York, 1973).

lo.L. Dietmeyer, "Connection arrays from equations," Journg/ of
Design Automation tlfld Fau/t-Tol~rant Computing, vol. 3, pp.
109-125, (April 1979).

'D.L. Dietmeyer and M.H. Doshi, "Automated PLA synthesis of
the combinational logic of a DDL description," Journg/ of Design
Automgtion and Fault-Tol~rant Computing, vol. 3, pp. 241-257,
(Winter 1979).

4Per Brinch Hansen, The Ardit«tun of Concurrent Progrgms,
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1977), ch. J.

5S.J. Hong, R.G. Cain, D.L. Ostapko, "MINI: A heuristic approach
for logic minimization," IBM Journal of Research gnd Development,
pp. 443-458, (September, 1974).

'A. Svoboda, "Fast multiple output logical circuit minimization."
Svoboda died before he could publish this work. Douglas W. Brown,
the author of this paper, has the preliminary version of Svoboda's final
report on PRESTO to Tektronix, Inc. This preliminary version is based
on: A. Svoboda, "The concept of term exclusiveness and its effect on
the theory of boolean functions," Journal of the Associgtion of Com
puting Mgchinery, vol. 22, no. 3, pp. 425-440, (July 1975) and on R.C.
DeVries and A. Svoboda, "Multiple output minimization with mosaics
of boolean functions," IEEE TrafiSDCtions on Computers, vol. C-24,
no. 8, pp. 777-785, (Ausust 1975).

7A. Svoboda and Donnamaie E. White, Advanced Logical Circuit
Design T«hniqun, (Garland Press, New York, 1979), ch. 4 and 5.

Peper 15.1
305

