A STATE-MACHINE SYNTHESIZER — SMS

Douglas W. Brown
Del. Stat. 92-515
Tektronix, Inc.
P.O. Box 300
Beaverton, Oregon 97077

ABSTRACT

Much of the work in implementing a state machine involves tedious
calculations that require no creativity. This report describes the
development of a digital-circuit synthesis program that helps reduce the
tedium. SMS accepts a high-level description of s state machine and
returns equations for implementation that assume a sum-of-products
pext-state and output functions and that also assume JK or D flip-flops
for memory.

INTRODUCTION

A state machine has been defined by Clare! to be a circuit block con- -

taining memory and combinational logic. The memory defines the state
of the circuit block. The logic defines the outputs and the next state as a
function of the inputs and of the current state.

State machines have not been replaced by microprocessors. State
machines are still nceded to interface with microprocessors and for
high-speed applications. Also, state-machine synthesis will become an
important part of VLSI design.

Most of the creativity in designing state machines is in drawing the
ASM (algorithmic state machine) chart, as shown by Clare,! and in
assigning states. The rest of the work is well-suited for automation.

This paper describes the development of a state-machine synthesizer
program named $MS. To use SMS, an engineer prepares a text file con-
taining a high-level description of a state machine. sms reads that file
and prints another file that contains the equations for implementing the
state machine. Implementation uses cither JK or D flip-flops for siate
memory and assumes sum-of-products equations for the next-state and
output functions. An example state-machine design using SMS is
described in the Appendlx of this paper. A different approach to a
;&nlar problem is described by Dietmeyer? and by Dietmeyer and

hi?

The major engineering problem encountered in the project was the
equation reducer. The method of calculating equations produced
results that were not reduced enough for production. An algorithm had
to be developed that could reduce equations for the size of state
machines we had. A description of the algorithms that were developed
is included in this paper.

The manual is small and easy to read. The engineer wants to
spend minimum time reading the manual in order to learn how to
describe a state machine.

No ambiguous constructs are aliowed in the input language. This
constraint eliminates user wraps and allows the engineer to guickiy
describe a state machine. The description will cither be inter-
preted the way the engineer intended or it will not be a valid
description.

The preceding feature is unusabie unless the input language proc-
essor gives error messages that enable the engineer to easily see
the error and correct the state-machine description. Good error
messages are a must,

STRUCTURE OF THE PROGRAM

The program is divided into modules, which are separate programs
that communicate through text files. The advantages of using modules

are:

Any module can be easily replaced. For example, four dif-
ferent versions of the equation reducer have already been used.

The most efficient language can be used for each module. It was
felt that the proper choice of a language can have a dramatic ef-
fect on the simplicity of the program and, therefore, on the
reliability. The advantage of the description of an algorithm in a
well-suited language has to be weighed against the problem that
arises when a language is so esoteric that few programmers can
use the language or that the computer system staff cannot support
the compiler. (For a discussion of the importance of simplicity,
reliability, and adaptability of languages versus portability, effi-
ciency, and generality, see Hansen?.)

Communication between the modules through text files has
several advantages. Test data can be entered into a text file in
order to test a module during initial development. A module can
be re-run without the need for special code to save and restore the
data for each run. This feature can be used to debug or to op-
timize a module. An error can be traced to a module by examin-
ing the text file, so the file saves some special data-printing code
during debugging.

COMPONENTS OF THE PROGRAM

GOALS OF THE PROJECT SMS is divided into four modules according to function:
: . P The Input Language Processor reads and checks the engineer’s
The main purpose of the SMS project was to replace a similar program e I . .
with one that could handie more variables and that had a friendlier user bigh-level description of a state machine.
interface. The existing program had an exponential rise in computation .
time for the equation-reduction step as the number of varisbles in- ® The E‘.q"'".on Calculator calculates next-state and output func-
creased and became impractical for state machines that had more than tions for flip-flops.
m'::puamo“q“nl 'f' “h::e :\::t;:fmrctliﬁ:m w‘::h:m it, 30 ® The Equation Reducer reduces the equations to reduce the size of
T the resulting circuit.
Engineers had also requested a friendlier interface. This request was . . .
satisfied by developing a manual, an input language, and an input ® The Equation Printer prints the results.
language processor that provide the following features:
18th Design Automation Confersnce Paper 15.1

'0146-7123/81/0000-0301500.75 © 1981 IEEE

lnput Language Processor

The input-language processor was written in FLAK, which is a
compiler-compiler developed at Tektronix for in-house use. The input
processor checks for syntax errors along with the easier semantic errors,
such as duplicate state assignments. There is also type-checking for
names to avoid confusion between the names of states, state variables,
state-machine inputs, and state-machine outputs. Error messages are
written, when appropriate, along with some warning messages for
possible errors, such as multiple transitions to the same state.

The input processor passes information on to the equation calculator
in an intermediate-level language (ILL). Ailthough the ILL is still in
human-readable form, it is much more computer readable because
numbers have replaced all but the initial definition of names and
reverse-polish notation has replaced (boolean) algebraic equations.

The choice of any general-purpose language to develop the input
processor would have resulted in a much larger program (unless a set of
routines for compiler-generation were available, which is what the
compilercompiler is). The input processor was able to achieve the
described goals in just over 300 lines of FLAK code.

Equation Calculator

Another advantage of the input processor converting the input to an
ILL, besides making the fields of data easier to read by the equation
calculator, is allowing the equation calculator to assume that the syntax
is correct at this point. This advantage eliminates the need for com-
plicated error-recovery code. (This task is pushed off onto the input
processor. Fortunately, the processor is written in a language that
makes error recovery easy.)

The equation calculator was written in PASCAL. Because the
calculator has to do boolean operations on boolean functions and
various traversals of trees describing the state machine, a language that
could handle unusual data types and that could do type checking was
required. PASCAL was the best supported language available that fit this
requirement.

Before the equation calculator caiculates equations, it does some
checking that is too complicated to do easily in the input processor.
This checking includes seeing that all of the conditions for transitions to
next states from a given state are disjoint. Then, the calculator writes
out the flip-flop equations. The next-state and output (ables are
generated during data read and write. The calculation of the equations
is a straightforward process, as described by Clare!.

Ellll.ll)l Reducer

The equation reducer is the computation-intensive part of the pro-
gram. The equation reducer was written in FORTRAN because that was
the most efficient language on the machine.

The equation reducer reads a multiple-output sum-of-products func-
tion, with incomplete specification (‘‘don’t care’s’’ on some outputs);
performs a sub-optimal reduction; and writes out the function in a
completely specified form. One requirement was that the reducer had to
reduce both the product terms and the number of literals in the product
terms. PLA-directed reduction would only require that the number of
product terms be reduced. Four equation-reduction modules have been
implemented so far.

The first reducer was based on Hong’s MINIS. MINI uses heuristic
methods to reduce the equations. The algorithm is able to handie multi-
valued logic and is geared toward PLA’s (reduces only the number of
product terms). However, it was easy to implement the degenerate case
of boolean logic and to add a final step that reduces the literals in the
product terms. The resulting equations were quite acceptable for sMs,
but the amounts of computer time and required memory were not.

The second implementation of the equation reducer module was
Svoboda’s P . The algorithm is described in more detail later in
this paper. The reduction in PRESTO was generally almost as good as in
MINIL, and the computer time and memory requirements were drastically
reduced, making the package much more acceptable for SMs. The only

Paper 15.1
302

drawback to the original PRESTO was a sharp rise in execution time for a
large number of variables. This increased execution time was
reasonable for all the state machines that had come along at that time,
but there was a strong possibility that someone would try a state
machine with too many input variables (say thirty) and would be unable
to run the reducer in a practical amount of time.

The current reducer is an extended version of PRESTO (details follow).
The original PRESTO contained a step that had to check every minterm
of a product term, which made it sensitive to the number of variables,
but extended PRESTO uses a tree algorithm for the same step and keeps
the time more reasonable. This implementation provides the same
reduction results with negligibly increased memory requirements. Ex-
tended PRESTO is so thrifty with computer time and memory (including
the size of the program) that even a microprocessor version is practical.

Definitions. In the following discussions of algorithms, *‘function”
is a booiean multiple-output sum-of-products. The function consists of
a list of product terms, each representing an AND gate. It is convenient
to let the outputs to which an AND gate is connected be associated with
the product term for that gate. Each input literal can be present in
either its true or its complemented form, or each input literal can be ab-
sent. If the literal is present, the AND gate is connected to that input.
Each output can be present or absent. If the literal is present, the output
of the AND gate is connected to the input of the OR gate that forms
that output. Figure 1 demonstrates the relationship between inputs,
outputs, product terms, and gates.

X=ACD 1
Y=AB + ABC | MoLTREE

3
out um[Z=ACD + ABC | FUNCTION

r A= \
T X
0
4 A ==

}- SAME
aeco) - Y ¢ FUNCTION

R =
\ 0—1 z P
c—

Figure 1. Relationship between inputs, outputs, product terms, and
gates.

The concepts of *‘parts’’ and *‘distance’’ between product terms were
taken from Hong, 7 a/,5 and concepts of “‘cdistance’” and *‘idistance”
were added in order to simplify algorithm descriptions. The position
for each input literal in a product term is a part. The positions for all
output literals in a product term make one part. Figure 2 shows an ex-
smple of parts.

A Tlpj|x z 3
AlS Y PRODUCT
X|s|c Yy 2z | TERMS
M 1
PARTS PART
| N 4
3 4
PARTS

Figure 2. Example of ‘“‘parts’’ in product terms.

Let A and B be product terms. An input part in A covers the cos-
responding part in B if the literal is absent from the part in A or if the
literal is the same (both true or both complemented) in A and B. The
oufput par! in A covers the output part in B if, for each literal present in
the output of B, the corresponding literal is also present in the output of
A. An input part in A is disjoint from the corresponding part in B if the
literal is present in the part and different (one true and the other com-
plemented) in A and B, The output part of A is disjoint from the output
part of B if, for each literal present in the output of A, the correspond-"
ing literal is absent in the output of B. A pars of A intersects the cor-
responding part of B if the parts are not disjoint.

The distance between two product terms is the number of parts in
which they differ. A distance of zero means the product terms are
equal. A distance of one means the product terms can be merged. If the
difference is in an input part, then the merged product term will have
no literal in that part. If the difference is in the output part, then the
merged product term will have all the literals that were present in either
of the merged product terms.

The cdistance, or ‘“cover distance,” from product term A to B is the
number of parts in A that do not cover the corresponding parts in B. If
the cdistance from A to B is zero, then A covers B; otherwise, A does
not cover B. The concept of how close a product term comes to cover-
ing another is valuable in the extended PRESTO algorithm.

The jdistance between product terms A and B is the number of parts
in A that are disjoint from the corresponding parts in B. The jdistance
is also the minimum distance between a pair of mintermsof Aand B. A
jdistance of zero means two product terms intersect.

Function F intersects product term PT if any product term in F in-
tersects PT. Function Fl intersects function F2 if any product term of
F1 intersects any product term of F2. Coverage with functions is best
described with minterms (the reason is involved in the step from PRESTO
to extended PRESTO). A function F covers a product term PT if every
minterm of PT appears in F. Function F1 covers function F2 if every
minterm of F2 appears in Fl1.

Detsils of PRESTO. The theoretical details of PRESTO are described by
Svoboda®. The following is a description of the algorithm. PRESTO ac-
cepts an incompletely specified multiple-output sum-of-products func-
tion. The incomplete specification means there are ‘“‘don’t cares’ in the
outputs. PRESTO forms two functions, F and FDC, from the original
function. F is the original function with the ‘‘don’t-cares™ all set to
zero, and FDC has them set to one. Thus, F has the minimum number
of minterms for an acceptable final solution, and FDC has the maxi-
mum. PRESTO works with F by adding minterms from FDC that reduce
the resulting circuit.

The main loop for PRESTO follows:

@ First, try to eliminate each input literal. Take each input literal
in each product term in order, remove the literal, and see if the
product term is still covered by FDC. If the product term is still
covered, then leave the literal out; if not, put the literal back.

@ Next, try to eliminate each output literal. Take each output
literal in each product term in order, remove the output literal,
and see if the produtt term being uncovered by the removal of
the output literal is still covered by the rest of F. If all the output
literals of any product term are removed, then the product term
can be removed, which reduces the size of the circuit by one
AND gate or product term.

® Repeat the preceding two steps until there is no change
in F. F is the result.

PRESTO is currently order dependent. Antonin Svoboda (the author
of PRESTO) chose a minimal set of operations that were fast and that re-
quired little computer memory. Ordering of the product terms or of the
parts within the product terms would result in greater reduction;
bowever, for sMs, the extra reduction would probably not be worth the
cost.

In the original PRESTO, the test for a function covering a product
term was done as a loop through all the minterms of the product term.
This test was a simple algorithm and has been acceptable for all SMs
problems seen to date. But the potential exists for a state machine that
is too large to reduce practically with PRESTO, 50 a faster method of
testing product-term coverage was sought.

Extended PRESTO. Extended PRESTO contains a tree method of
checking to see if a product term is covered by a function rather than
checking every minterm in the product term. Let the product term we
are checking be PTO, and let the function be G. We will work with
product term PT, which will start out equal to PTO. The stack starts
out empty. The steps of the coverage test are:

1. If PT is covered by'nny product term of G and the stack is
empty, then PTO is covered by G.

2. If PT is covered by any product term of G and the stack is NOT
empty, then pop a new PT off the stack and go to step 1.

3. if PT does not intersect G, then PTO is not covered by G;

4 . otherwise, push half of PT onto the stack and leave the other
half in PT. Go to step 1.

“Splitting in half’ is taking one product term and forming two that
differ in one part. When splitting on an input part, the original product
term will have the input literal absent in the splitting part, and the
resultant product terms will have the literal and its complement in that
part. When splitting on the output part, each output literal of the
original product term goes either to one half or to the other but not to
both.

Splitting in half is truly splitting the number of minterms into two
equal groups on input splits. The worst-case of the tree method is to
split PTO down to its individual minterms. How the product term is
split determines how close we come to worst-case.

A “dumb” split would just take the next part of the product term
with a literal absent and split there. This split was tested and found to
be unacceptably slow. A “*smart’’ split is necessary. The method chosen
is to find a product term PTG in G that intersects PT and has the
shortest cdistance to PT. Split along a part in PT that is not covered by
the corresponding part in PTG.

An efficient output split is: Let H be the product terms whose input
parts all cover the corresponding parts of PT. Remove from PT any
output literals found in H. PT is the result, and nothing is pushed onto
the stack. (The product term that would have been pushed onto the
stack is already known to be covered.) This cutput split can be used on-
ly when no input splits are possible.

Let A, B, C, D be inputs and X, Y, Z be outputs.

Input split example:

ATDXZ ——> ABCDXZumdABTDXZ

Output split example:

ATDXZ ——> ATDXandATDLZ

Dumb split examples:

ADXY ———> ABDXYandABDX Y

ABDXY —~——> ABCDXYandABCDXY.
Smart split example:

PT=ADXY

G=ADXY, ACpDXx2z, ABCcDXx 2

Paper 15.1
303

product term of G JDISTANCE to PT ‘CDISTANCE to PT
ADXY 1 1
ACDX1z 0 2
ABCDX2z 0 3

ADXY cannot be PTG because it does not intersect PT
(JDISTANCE does not equal 0). ACDXZ has the minimum
CDISTANCE of the remaining product terms. So

PIG = ACDXZ.

Split the part containing literal C, because for all other input parts,
the part in PTG covers the corresponding part in PT.

ADXY > ACDXYandACDXY

The current implementation of PRESTO is limited to 29 inputs, 59 out-
puts, and 1500 product terms. The first two can be extended with a
small amount of coding, and the last is a single parameter. Table 1 lists
example runs that give an idea of execution time.

Table 1.
Equation Reducer Timing Examples
PRODUCT | PRODUCT
TERMS TERMS
AUN | INPUTS REDUCTION | REDUCTION | CPU sew'u’%s

1 e | @ 3 [000
2 ©] » 18 0.10
3] [] n) 0.18
4 1 5 s « 087
5 9 " q n 0.15
s . . 100 2 087
7 1% F3) 106] 125
] 12 P 25 o 208

An experimental version of SMS uses Svoboda’s absolute minimizer
OPTIMA? for the reduction step. OPTIMA is a good complement to
PRESTO because PRESTO quickly reduces equations that are too complex
for any known technique to find the absolute minimum, while OPTIMA
finds the absolute minimum for the simpler equations.

Equation Printer

The last module of the sMS program is the equation printer. This
module prints a list of all the product terms in the solution, a list of the
product terms summed in each output, and a list of the sum-of-
products for each output. Like the equation calculator, the equation
printer processes complex data structures, so PASCAL was a good
language for this application.

The initial project called for printing the results. A program has been
written to link the sMs output to a PROM programmer for program-
ming FPLA's.

Manual

Although not a program module, the manual is an important part of
the project. The manual, the input language, and the input processor
must all work together to form an attractive tool for the engineer. The
approach used in the manual is a tutorial that is quick to read. The
manual is not necessarily a comprehensive reference work. The tutorial
consists of a series of examples starting with a basic state machine, with
each example adding another feature. The input language is designed to
make this possible, and the input processor has to give good feedback
to make up for lack of detail in the manual. Regarding the latter case,
the manual does not even mention maximum name lengths, because the
input processor’s ervor feedback is sufficient to notify the engineer.

RESULTS OF PROJECT

SMS has about five regular users and about twenty users who have
tried it. We expect the number of users to gradually increase judging

Paper 16.1
304

from experience with previous circuit-design-aid programs. Most
engineers have not yet gained complete faith in sMs. They use it as a
check on, instead of as a replacement for, their work. SMs has caught a
few errors made by the engineers, typically a product term lost in the
equation-reduction step. Finding these errors has saved considerable
time, because the errors were corrected before a prototype was built.
Occasionally, a lost product term can be difficult to detect.

Feedback from engineers has been encouraging. The basic goals of
the project have been achieved satisfactorily. No engineer has been
unable to design a state machine using SMS due to the state machine
size, and no engineer has complained about the interface. Negative
feedback has been in the form of requests for more features. Graphic
input and output is a favorite request. Automatic state assignment plus
hazard and race detection are also requested. There are scattered needs
for state machines that use something other than JK or D flip-flops as
state memory, e.§., shift registers.

CONCLUSION

A state-machine-synthesis program (SMS) was developed that pro-
vides the friendly interface and fast equation reduction required to be
useful. A new, non-optimal, multiple-output-logic-function reducer
was also developed. Engineers have used $MS successfully and have sug-
gested areas for improvement.

ACKNOWLEDGMENTS

Philip White, Ron Bohlman, Allen Hollister, Graeme Boyle, and
Henry Alward all made important contributions to SMS. Antonin
Svoboda’s PRESTO algorithm is currently an indispensable part of sms,
The author wishes to thank the reviewer who pointed out several key
typographical errors and who helped further by improving a confusing
parsgraph.

APPENDIX—EXAMPLE STATE MACHINE

The example state machine shown in Figure 3 has four states:
ALPHA, BETA, GAMMA, and ERROR that have state assignments
00, 01, 10, and 11, respectively. The two inputs are X and Y, and the
three outputs are PHASE], PHASE2, and ERROROUT. The next
state after ALPHA is BETA if X is high; otherwise, the next state is
GAMMA. The next state after BETA is ALPHA if Y is high; other-
wise, the state remains BETA. GAMMA goes to ALPHA if both X and
Y are high; otherwise, GAMMA goes to ERROR. ERROR never goes
to another state. BETA outputs PHASE2 if Y is high; otherwise, BETA
outputs PHASE!. ERROR unconditionally outputs ERROROUT.

Figure 3 shows an ASM chart for the state machine:

—s

Figure 3. ASM chart, as described by Clare!, for example state
m‘ .

This example uses JK flip-flops S1 and S2 for the state memory. The Figure 4 shows an implementation of the state inuchine:
following is the sMS input for this state machine:

SMS EXAMPLE FOR THE 18TH DAC R .
& — ‘ ofest Vo
STATE ALPHA 00 ! . 3 - PHASE1
ON X GOTO BETA x— s ©
ON =X GOTO GAMMA ; Y = K
- =] " -
STATE BETA 01 ﬁ—|
ON Y ‘
ST E— D e
ON -Y 2
GOTO BETA ‘ YN
OUT PHASE! o) - T ::D'm
o ‘
STATE GAMMA 10
ON X*Y GOTO ALPHA
ON —(X=*Y) GOTO ERROR Figure 4. Implementation of example state machine.
STATE ERROR 11 REFERENCES
UGOTO ERROR
UOUT ERROROUT IChristopher R. Clare, Designing Logic Systems Using State

Machines, (McGraw-Hill Book Company, New York, 1973).
VARDEF S1 82
2D.L. Dietmeyer, “‘Connection arrays from equations,” Journal of
TYPEFF JKFF Design Automation and Fault-Tolerant Computing, vol. 3, pp.
109-125, (April 1979).
The following is the SMS output for the example state machine:
3D.L. Dietmeyer and M.H. Doshi, *‘Automated PLA synthesis of

Pl=X*-S] the combinational logic of a DDL description,”’ Journal of Design

P2= -X*-82 Automation and Fauli-Tolerant Computing, vol. 3, pp. 241-257,

P3=Yes -S}*S2 (Winter 1979).

P4= —Y*-S]e§2

P5=XeYe-_§2 “Per Brinch Hansen, The Architecture of Concurrent Programs,

Pé= - XS] (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1977), ch. 1.

P7=-YsS1

P8=S1+S2 35.J. Hong, R.G. Cain, D.L. Ostapko, *MINI: A heuristic approach
{or logic minimization,” JBM Journal of Research and Development,

S1(J)=P2 pp. 443-458, (September, 1974).

SIK)=P5

S2()=P1+P6+P7 6A. Svoboda, *‘Fast multiple output logical circuit minimization.”

S2(K)=P3 Svoboda died before he could publish this work. Douglas W. Brown,

PHASE2=P3 the author of this paper, has the preliminary version of Svoboda’s final

PHASEl=P4 report on PRESTO to Tektronix, Inc. This preliminary version is based

ERROROUT=P8 on: A. Svoboda, ‘“The concept of term exclusiveness and its effect on
the theory of boolean functions,”® Journal of the Association of Com-

Si(J)= -~ Xe-8S2 puting Machinery, vol. 22, no. 3, pp. 425-440, (July 1975) and on R.C.

SI{K)=XeYe-S2 DeVries and A. Svoboda, ‘“Multiple output minimization with mosaics

S2())=Xe -8l + - XS] + - Ys*S] of boolean functions,' JEEE Transactions on Computers, vol. C-24,

SAK)=Y*-S]*82 no. 8, pp. 777-785, (August 1975).

PHASE2=Y*-S1¢82

PHASE] = — Y*—-S]*S2 TA. Svoboda and Donnamaie E. White, Advanced Logical Circuir

ERROROUT=S1#82 Design Technigues, (Garland Press, New York, 1979), ch. 4 and 5.

- Paper 15.1
' » 305

