
Interoffice
Correspondence

o For Your Comments 0 For Your uuorrnation

o For Your Approval 0 Note & Return

o Please Take Action 0 Note & File

o Call Me 0 For Your Signature

o See Me 0 Please Advise Status

o Per OUr Conversation 0 Per Your Request

o Read Initial & Return 0 Please Advise
Appropriate Employees
In Your Department

To, Vic Belmondo
Geo rge James
Wayne Paulson

Date, December 9, 1981

CG

From, Russ dePi na

Subject Generalized Logic Development Language

Enclosed is a preliminary specification of the Data I/O Proprietary
Logic Development Language. Feel free to make any comments or
questions.

RMdP:l c
Attachment

SPECIFICATION FOR AN ADVANCED
BOOLEAN EXPRESSION LANGUAGE (ABEL)

Prepared by Russell dePina
December 8, 1981

SPECIFICATION FOR AN ADVANCED BOOLEAN EXPRESSION LANGUAGE (ABEL)

1. APPLICATIONS
ABEL is being developed to allow users of programmable logic devices to have
a universal language with which they may specify the logic structure for the
devices regardless of the manufacturer. The ABEL processor will be resident
within the Data I/O Logic Pak so that, once the logic structure is defined,
the fuse pattern may immediately be programmed into the device.

2. MEMORY REQUIREMENTS
The ABEL processor will reside in the PROM space of the Logic Pak and shall
occupy no more than 8K of memory. ABEL will also have the capability to use
floppy disk storage when the Logic Pak is tied to a DCU.

3. DEVELOPMENT LANGUAGES
The language that will be used for the development of the ABEL processor should
be a high level language capable of performing string operations, matrix mani-
pulation as well as logic functions. The development language should also
support I/O operations to and from peripherals such as floppy disk. The fol-
lowing are languages that could be considered for the development of ABEL:

PASCAL
C

FORTH
PL/I and derivatives

FORTH is an attractive possibility because it is an interpretive language and
is very efficient in its machine code production. However, there may be
problems installing FORTH on the PDP-ll and VAX. PASCAL, C, and PL/I are
block-structured languages which have good support and can be implemented
with almost no problems. One drawback to most of these languages is that
there does not exist a cross-compiler for the 6800/6809 that runs on the PDP-ll.
The reasons why this is important are:
A. The object code from the cross-compiler will run on the target computer

(6800/6809), thus eliminating the need for extra compilers in the develop-
ment database.

B. Development time is decreased because of fewer errors in transporting to
the development system. Also, the larger host computer will run the com-
piler faster than the small er machine and a more powerful tnst r-uctjons et of
the development language can be implemented. -

-1-

4. OPERATION OF THE ABEL PROCESSOR
The operation of the ABEL processor should be kept as simple as possible.
The typical ABEL program will include module specification. device speci-
fication. data definition sections. and a program section where the logic
equations are defined. An end of module specification designates the end
of the device module specification.

5. DATA DEFINITION SECTION
5.1 Program Specification

An ABEL module specification is an alphanumeric string used to identify
a specific ABEL module. This feature is used especially when more than
one module occupies a program unit. This feature allows for multiple
device definition in the event a user wishes to define an entire network
of logic devices. Up to 3 distinct modules can be specified in a single
program unit. This option is selected when the ABEL processor is invoked.
The syntax for the program unit specification is as follows:

PROGRAM <name>
<Name> - <letter><alphanumeric>O:5

The PROGRAM specification is used only when the user wishes to define more
than one device. When only one device is specified. a module specification
is different. (Note: because of the extra memory required to store
multiple fuse patterns. the PROGRAM feature can be implemented only on
a system with some form of mass storage (floppy disk).

5.2 Module Specification
The ABEL module is where the device logic specification is made. An ABEL
module consists of data definition sections and a logic definition section
(boolean equations) from which the ABEL processor will create a device
fuse pattern. The syntax of the module specification is shown below:

MODULE <module name>
<Module name> . -= <letter><alphanumeric>O:5

5.3 Device Specification
The Device Specification statement tells the ABEL processor how to set up
the universal fuse matrix to conform to a particular device. It also
allows the use of certain ABEL instructions. depending on the device. The
Device Specification syntax is shown below:

-2-

DEVICE < devi ce spec>
<device spec> ::=<mmi spec> <sig spec> <amd spec> <harris spec>

<national spec> <ti spec>

<mm i spec> ::= MMI20 <mmi series 20 number>
MMI24 <mmi series 24 number>

<mmi series 20 part number> ..= 10H8.r.12H6.1.14H4.1.16H2
1.16L2.1.16L8.1.16R8.1.16R4.
1.16X4.1.16A4

<mmi series 24 number> ,,= 12Ll0 14L8 I 16L6
118L4 I 20L2 I 20Cl
I 20 L10 I 20 X10 I 20 X8
120x4

<sig spec> ..= <iFl-20 part number> <iFl-28 part number>
<i fl-20 part no> ::= 82S150 82S151 82S152 82S153 82S154

82S155 82S156 82S157 82S158 82S159

<ifl-28 part no> ..= 82S100 82S101 82S102 82S103 82S104
82S105 82S106 82S107

<amd spec> ..= <amd designator><pa1 part no.>
<amd designator>::= AND
<pal part no> ::= <mmi series 20 part no.>

mmi series 24 part no.>

5.4 Pin List Specification
The pin list is used to give symbolic representation to the pins of a par-
ticular device. These pin names are then equated by the ABEL processor to
certain points in the master device array and are used in the definition
of the device logic structure. Pin list specification syntax is shown
below.

-3-

<pin list> .. = <PIN-LIST:><line skip>[<space><pin identifier>20
<line skip> ..= <carriage return><line feed><
<pin identifier>::= <letter><alphanumeric>1:3

5.5 Register Specification
Register specifications are made to define which device outputs are the
outputs of a sequential logic structure. Only one device so far (82S104/5)
has an internal set of registers. The 20 pin FPLS (82S154-9) has registered
outputs which can be dynamically programmed to be Jk, 0, or T type flip
flops. The ABEL processor will require the user to specify one type of
flip flop and will not allow dynamically programmable register types.
The default flip flop type is D. In the case of the 82S104/5, a register
specification must be made since the register type for that device is RS.
The register names are declared in the pin list, and are typed as registered
outputs in the register specification.
The syntax of a register specification is shown below:

<register specification>
<register list><delimiter><register type>

<register list> {register name<>delimiter>0:1}1:8
<register name> - <letter><alphanumeric>0:3
<register type> ..= JK) RSI 0/ T
<del imiter> I : I r, I .

6. EQUATION DEFINITION SECTION
The Boolean Equations processed by the ABEL processor fall into two categories:
assignment equations and conditional equations.
Assignment equations usually will cause a device output or register to change
its state. Conditional statements will change the device outputs if a specific
condition is met.
The syntax for assignment equations follows:

-4-

<assignment stmt> . -= <expression>
<express ion><operator><express ion> I<i dent i fi er>
<letter><alphanumeric>O:3

<expression> . -=

<identifier>
<operator> . -= * I + I / I :+: I =

operator list
* AND
+ OR (inclusive)
:+: exclusive OR
/ NOT

The operator precedence structure is as follows:

\
*
+, :+:

=

The syntax for conditional statements is as follows:
<conditional stmt> :: = IF <condition> THEN <assignment stmt>
<condit ion> ""= «expression»

-5-

