»..-....-l.....--..-.---.--.--..-

Computer Hardware Description Languages
and their Applications

W.M. vanCleemput

Computer Systems Laborastory
Stanford University
Stanford, California 94305,

1
INTRODUCTION
Although design lenguages have baen in existence
since the esarly 1960°'s, only in the last few years
has there been & concerted effort to bring them

into the design process as a useful tool.

Tha major applications of design languages are:

{. Description of the bahavior and/or
structure of & system as a means for
accurately communicating design details
between designers and users.

2. As the input to a system level simulator.

3. As the input to a automatic hardwere
compiler.

&. As the input to a formal verification
system.

Several attempts have been wmade to integrate

hardware and software design. Examplas are the
L0GOS system [Ro76] developed at Case Hestern
Reserve University and the SARA system developed at
tha University of California at Los Angeles [Es?7].

THE HARDWARE DESIGH PROCESS

2.1 INTRODUCTION
It is difficult to dascribe the hardware design
process formally since it depends to a large extent
ron the individual designer and on tha specific
design problem to be solved. Starting from a set of
somet imes vague and incomplete spacifications, the
designer applies] series of successive
transformations (itarative improvements) until the
system can be realized (built) within & given
technologicel environment or until it is clear that
the specifications are not feasible.
in the nature of the human intellect
but the most trivial designs, it is
create a final design at once.
designer tries to break down the
problem into a numbar of interconnected
subproblems. This process is them repsated until a
solution to all the subproblems is known or until a
wel l-known procadurs can be applied to selve these
subproblems.

It lies
that for all
impossibla to
Rather, a human

554

Although formal methods do exist for

solving
certain problems, such as the winimization of
combinational circuits or tha stats assignment for
sequential circuits, many designers base their

designs on & "library® of examples. These examples
may originate from previous design experience, from
the literature or from classroom exposure.

Hardware design bhas been greatly influenced by
the development technology. The advent of MSI and
LSI building blocks has magnified the tendancy of
doing harduare design ‘'by example'.

In many
instances, it is no longer cleer how

one should

optimize & circuit containing medium or large-scale
building blecks. For lerge systems the dasign is
usually partitioned along functional lines among
several designers. Since most designs are based on
intuitive concepts such as experience. some design
alternatives may be overlooked.

In the design of digital hardware seversl levels
of abstraction have become universally recognized
{see e.g. [BN71, La?¢]]. He will discuss sach of
these levels briefly:

2.2 ARCHITECTURAL LEVEL

At the architecturel 1level, the designer is
concerned with the overall structure of the system.
He is interested in componants such as processors.
mewmories, I/0 devices snd in their interconnections
in as far as such a configuration seems likely to
satisfy the specifications. Each of the components
has certain quantitative attributes. E.g. a wemory
hes its size, wordlength and access time as its
attributes. One asttempt to describe digital
systems on the system level is the PMS notation,
introduced by Bell and Nawell (BN70, BN71]. Most
designers resort to the use of gesneral purpose
languages such as Fortran, Algol, Pascal or PL/1 to
describe systems behavior at the architectural
level. More spescialized languages for simulation
are SIMSCRIPT, GPSS[Sc74] end SimulalBD74].

2.3 REGISTER LEVEL

At the REGISTER TRANSFER LEVEL,
concerned with realizing the functional
spacifications by sequences of operations. These
operations are usually spacified as transfers of
information Tbetween the differant facilities
established in the functional design step. If we
consider a digital system as a large finite state

‘machine; then the purpose of the register-transfer

the designer is

level design s to establish the various states as
well as the particular sctions to be taken when the
system is in @ given state. At this Jevel of the
design process., the designer can form himself a
reasonably adeaquate picture of the overall system
and its performance, without being sidetracked by
design details. The register level is the one at
which most computer hardware description languages
are usad. Some of the best-known languages are:
CDL [Ch65), DDL [DD68], ISP [BN70], AHPL [Hi7%) and
Cassandre [Bo71]).

2.4 LOGIC DESIGN LEVEL

At the LOGIC DESIGN LEVEL, one is concerned with
the mapping of the microoperations and the control
structure, defined in the previous step, into
physical harduare elements. This requires a
detailed knowledge of the technology in which the
design is to be implemented. The result of this
phase may be & set of logic diagrams or Boolsan
eguetions, with the primitives being those
available in the actual technology. At this level
a design description is often in the form of a
connectivity list (structural information).

2.5 INTENDED REHAVIOR YERSUS ACTUAL
IMPLEMENTATION

The initial specification of a design includes a
somat imes vague and incomplete ststement of hou the
actual system will behave. Such a specification is
often in the form of a natural language. Besides
specifying the intended behavior of a system. a
designer may also specify implementation details,
i.e. tww smaller units cen bs connected in order
to form a larger functional unit. Throughout the
design cycle, two essentially different kinds of
informat ion can be casptured: intended behavior of
a system and actual implementation details. The
former requires a behavior description language
whila the latter can bs best expressed by a
structure description languagas.

ldeally, behavior and structure ({(nformation
should be expressable using a singls language. In
principle, such a wunified representetion is
possible because & simple function call in @
behavior description, in which all the srguments
are signals, corresponds to a structure description
as well as to a functional description.
OUTPUTS = FUNCTION CINPUTS);
FURCTION (INPUTS, QUTPUTS);
In practice, however, such unified notation has
not been used.

3

BEHAVIOR DESCRIPTION LANGUAGES

3.1 INIRODUCTION

In the following sections, the major features of
some of the most widely available languages will be
illustrated. The major reason for selecting ISP,
2118 and CDL was tha availability of a
compiler/simulator to the author.

555

3.2 gpL

The CDL language was proposed by Chu [Ch65] and
subsets of the language were implemented by many
groups. CDL was slso used as an educational tool
in two text books [Ch70, Ch72).

The following example describes a simplified

12-bit architecture with a straight forward
instruction set. Note the emphsis on
implementation details such a clocks, decodars and

suitches,

J

C DECLARATION SECTION

C MDR = MEMORY DATA REGISTER

¢ = MEMORY ADDRESS REGISTER
C ACC = ACCUMULATOR
C PC = PROGRAM COUNTER
c

c

c

¢

[~

]
-
»
-

m
[

= STATE REGISTER
RUN FLIPFLOP
INITIAL STATE FLIPFLOP
DUMMY REGISTER (ARGUMENT

FOR OPERATORS)
REGISTER,MDRCO-11),ACC(0~11),MARC0-6),PCC0-6)
REGISTER, X(0-11),INIT,STATE(0-3),RUNFF
C THE SUBREGISTER DECLARATIONS ALLOW THE
C RENAMING OF PARTS OF ALREADY DECLARED
C REGISTERS.
SUBREGISTER,MDR(OP)=MDR(0~-3),MDRCI)=MDR(4)
SUBREGISTER, MDR(ADDR)=MDR(5-11)

[

x

-

-
wouou

Figure 1: Register Declarations in CDL

r—.——..——-———_——_—_——.——-——.—_-
e o v r — ——— - —— ———————— " ——— —

C THE MEMORY IS ADDRESSED BY MEANS OF THE

[MAR REGISTER.

MEMORY ,M(MAR) =M(0-63,0-11)

C THE DECODER HAS A SINGLE ACTIVE OUTPUT FOR
c EACH OF THE VALID STATES,

DECODER,K(0-9)=STATE

C THE SWITCHES ALLOW FOR EXTERNAL EVENTS
c TO BE MODELLED.
[
c

E.G. AN INTERRUPT CAN BE MODELLED THIS WAY.|
E.G. AN IRTERRUPT COULD BE MODELLED THIS WAY.
SWITCH,POWER(ON),STARTCON),STOP(ON) (
C IN GENERAL TERMINALS REPRESENT COMBINATIONAL
C NETWORKS. IN THIS EXAMPLE, THE CONSTRUCTY 1S|
C USED TO RENAME THE OQUTPUTS OF THE DECODER. |
TERMINAL,ADDK=K(0),SUBK=K(1),J0M=K(2),5T0=K(3)]
» JMP=K(4),SHR=K(5),CIL=K(6),CLA=K(7),STP=K(8) |
+FETCH=K(9)
C THE CLOCK NAS 3 PHASES: 0, 1 AND 2.
CLOCK,P(2)

Figure 2: Other Declarations in CDL

e e e

s e e e v ——

C THE FOLLOWING LINES DESCRIBE ACTIONS TAKEN
C WHEN AN EXTERNAL EVENT OCCURS.
/STOPC(ON)/ RUNFF=0
/POWERCON)/RUNFF=0,STATE=8
/START(ON)/INIT=1
C MACHINE INITIALIZATION
ZINIT®P(2)/STATE=9, INIT=0,RUNFF31}
C THE INSTRUCTION FETCH IS DESCRIBED HERE.
/FETCN®P(0)/MARSPC, IF(RUNFF.EQ.G) THEN
(STATE=8)
/FETCH®P(1)/ MDR=M(MAR), PC= PC.COUNT.
/FETCH®P(2)7 STATESMDR(OP),MAR=MDR(ADDR)

Figure 3: Instruction Set in COL, part 1

. — —— —————— — — — — — = ==

C ADD INSTRUCTION

/ADDK#P(1)/ MDR=M(MAR)

/ADDK®P(2)/ ACC=ACC .ADD. MDR, STATE=Y
C SUBTRACT INSTRUCTION.
/SUBK#P(1)/ MDR=M(MAR)

/SUBK®P(2)7 ACCZACC.SUB.MDR,STATE=Y
C STORE INSTRUCTION.

7STO#P(0)7 MDR=ACC

/STO®P(2)7 MC(MAR)=MDR,STATE=9

C CLEAR AND LOAD ACCUMULATOR.
/CLA®P(1)/ MDR=M(MAR),ACC=0
/CLA®P(2)/ ACC=ACC.ADD.MDR,STATE=9

Figure &é: Instruction Set in CDL, part 2

S ——————————

C STOP INSTRUCTION.

/STP#P(0)/ RUNFF=0

/STP®P(2)/ IF(RUNFF.EQ.0)THEN (MAR=0,PC=0)
ELSE (STATE=9)

C JUMP INSTRUCTION.

7JMPRP(2)7 PC=MDRCADDR).STATE=9

C JUMP ON MINUS IHSTRUCTION.

7JOM*P(2)7 IFCACC(0)) THEN (PC=MDRCADDR)),

STATE=Y

C SHIFT RIGNT.

/SHR#P(2)7 ACC= ACC.SHR.,STATE=9Y

C ROTATE LEFT.

/CIL#P(2)7 ACC=ACC.CIL.,STATE=Y

Figure 5:‘ Instruction Set in CDL, part 3

c TEST PROGRAM.
C LOCN OPCODE OPND
c [] CLA 10
c 1 SUB 1
c 2 JOM 4
[3 STP
c 4 ADD 12
c S SHR
[[CIL
[7 STP
c 10 =5
c 1 =18
C 12 =2

END

Figure é: Test Case for CDL

#OPERATOR, X(0-11).SHR.
/77 0-%(0-10), RETURN
END
®OPERATOR, X(0-11).CIL.
77 X(1=11)-X(0), RETURN
END
SSIMULATE
#OUTPUT LABEL(1)=ACC,MDR,MAR,PC,STATE, RUNFF
#LOAD

ACC=0,MAR=S,PCS0,RUNFF=1
MC0-)=:70A,:108,:2064,:800,:90C,:500,:600,:800
M(10-)=:003,:004,:002

#SWITCH 1., POWNER=0N

USWITCH 2,START=ON

SIM 100,10

Figure 7: Simulator Control Language for CDL
3.3 BDL

Dbt (Digital Design Language) was first
formulated by Duley and Dietwmeyer ([DD68]. A

Fortran-based implementation was done at the
University of Wisconsin (Di74]. An Algol-based
varsion was implemented by Duley at Hewlett
Packard. A Pascal version, based on the Algol
version. uas implementad at Stanford University
[CD79a, CD79bl. The sxample that follows is for
the latter version of DDL, which deviates to some
extent from the original version.

One of the wmajor characteristics of DDL is its
assumption that a sequential design is to be
considered as a finite state machine. Again, this
description emphasizes some degree of
implementation detail.

The exampls as shown here is similar to the ISP
example that follows in the next section.

OPERATION
INCRPC = {PC <~
GETINST = [IR <- MIPCI]],

DIRADD 1Z <~ IR[7:081},

INDADD [Z <- MUIR(7:81,7:0]]),

ANDOP = [ACC <= ACC ® M{Z]),

TADOP = [CARRY CON ACC <- ACC (+) MIZII,
INCMEM = (M(Z] <-
DCAOP = [M[Z]) <- ACCl,

PC (+) 1 TAIL 81,

MIZ]1 ¢+) 1 TAIL 121,

CLRACC = [ACC <- 12B01],
SETRET = [L <~ PC),
SETJMP = [PC <~ Z),

|

|

|

|

|

|

|

|

|

|

|

|

}

|

| I0TOP = {IOREG <- IR[7:01],
| COMPLA = [ACC <~ - ACC),
|
|
|
|
|
|
|
1
1
|
|
|
|
[1

INCACC =

SUBACC = [CARRY CON ACC <~ ACC (-) 12B1},
ACCSLY = [ACC <- ACC[10:0) CON 1BO] .,
ACCSR1 = [ACC <~ 1B CON ACCl11:11),

RETRN = [PC <- L],

JMPOP {PC <= ACC[7:011,

CLRRUN = [RUNFF <- 1BO),

SETRUN = [RUNFF <- 1B1]
END

Figure 9: Operation Declaration in DDL

13
i
|
1
l
1
|
|
|
|
|
1
|
l
1
|
[CARRY CON ACC <- ACC (+) 12B11, :
!
1
|
|

|

|

|

1
1
|

|
~

» SIMPLE MINICOMPUTER .. ™

REGISTER Z17:01, ACC[12:0}, IR[11:0], CARRY,
LE7:0), PCI7:01, IOREGI7:0], RUNFF,
M[0:31,11:0).

Figure 8: Register Declarations in poL

,_.._.______.-
IS

CONTROL
WAIT: IF (RUNFF (=) 0) THEN ~> WAIT ENDIF/
IFETCH: IF RUNFF THEN GETINST, INCRPC
ELSE -> WAITY ENDIF/
EFFADD: IF IRI8) TNEN INDADD ELSE DIRADD

ENDIF/
EXEC: CASE IR[11:9]
DO TADOP
DO INCMEM, IF (M{Z] (=) 0) THEN INCRPC
ENDIF

DO DCAOP, CLRACC
DD SETRET, SETJMP
DG SETJIMP
DO I0TOP
DO CASE IR[7]
DD IF IR16) THEN INCRPC ENDIF,
IF IR15) THEN RETRN ENDIF,
IF IR(%] THEN JMPOP ENDIF.
IF IRI3] THEN CLRRUMN ENDIF,
IF (IRI2}*ACCI11))
+ (IR{II#CACC (=) 0 D)
+ (IR[O)*-ACCI11])
THEN INCRPC ENDIF
DO IF IRI6] THEN INCRPC ENDIF,
IF IR[5]) THEN COMPLA ENDIF.
IF IR[4] THEN CLRACC ENDIF,
IF IR[3] THEN INCACC ENDIF.
IF IR{2] THEN SUBACC ENDIF,
IF IR(1) THEN ACCSR1 ENDIF,
IF IR(0) THEN ACCSL1 ENDIF
ENDCASE
DO ANDOP
ENDCASE,
=> IFETCH/
END

Figure 10: Control Section Declaration in
DOL

r——-——————_—_—-.—————-—..—_——-——_———-——-————-—.——-
e v e . . e et S S P D S - R S . D M MAR G S e SR . S G G AN G G v S e S o

7]
.
»

ISP

ISP was originally formulated by Bell and Hewell
[BN70) and used as a description tool in s taxt on
computer architecture [BN71]. A compiler and
simulator were implemented by Barbacci [(Ba77,
83§74}, ISP is now the basis for an extensive
register-transfer-level design automation aystem at
Carnegie Mellon University [BS75].

The example in this saction illustrates the ISPL
version of the ISP language and was adapted from
iBar7]}. This example dascribes the same 12-bit
machine as in the previous section. Note that a
lot of implementation detail {s no longer visible.
The intention of ISP is to be able to hide
implementation details, thereby concentrating on
the pure behavioral description.

MINI:=(DECLARE !MEMORY AND REGISTERS
M{0:8377])<11:0>; IMAIN MEMORY
2<7:0>; !EFFECTIVE ADDRESS REGISTER
CACC<12:0>; 13 BIT ACCUMULATOR + CARRY

ACCC11:0> := CACCCN1:0);

IRC11:0>; {INSTRUCTION REGISTER
L<7:0>; !RETURN REGISTER
PC<7:0>; TPROGRAM COUNTER
10.REGK7:0>; {INPUT-QUTPUT REGISTER
RUN<>: !RUN MODE

! PROCEDURE TO INCREMENT PROGRAM COUNTER

INCRPC:3(PCC-(PC+1)<7:0>)

ERALCED

Figure 11: Daclarations in ISP

e . e . —— A A —— S w— oy
L e s o e o e S — —— — . —— o —]

START:= (DECODE RUN =>
STOP; ! IF RUN=0
C(IRC-M[PC] NEXT INCRPC NEXT
(DECODE IR<8> => 2<~IR
Z<-MIIRKT:0>1<7:0>) NEXT
(DECODE OP => INSTRUCTION DECODING
ACC<-ACC AND M[2]; 'AND
CACC<-ACC ¢ M(Z1; 'TAD (SETS CARRY)
(MIZI<-C(MIZI+1)<11:0> NEXT
(IF MI[Z] EQL D => INCRPC)); !1S2
(MiZ]<-ACC NEXT ACC<-0); !DCA
(L<-PC NEXT PC<~2); !JSR
PC<~Z; !JUMP
10.REGLK-IRC7:0>; !IOT
C(DECODE IRC7> =>
(CIF IR<C6> => INCRPC) NEXT
(IF IRC5> => ACC<- NOT ACC) NEXTY
C(IF IR<4> => ACC<-0) NEXT
CIF IR<K3I> => CACCC-ACC+1) NEXT
(IF IR<K2> => CACC<-ACC~1) NEXT
C(IF IRCI> => ACC<~ ACC ¢SRO t) NEXT
(IF IR<O> => ACC<~ ACC ¢SL0 1));
tEND OF UCLASS=0
(CIF IR<6> => INCRPC) NEXT
(IF IR<C5> => PC<-L) NEXT
C(IF IRCS> 3> PCC-CACCC?:0>) NEXT
(IF IR<C3> => RUNC-0) NEXT
(IF (IR<2> AND CACC<H1>) OR
(IR<CI> AND (ACC EQL 0)) OR
CIRCO> AND (NOT CACCC11>))
=> INCRPC)

) YEND OF IR<7> DECODING
) YEND OF INSTRUCTION DECODING
) 1END OF RUN=t MODE
) NEXT !END OF INSTRUCTION CYCLE
START

Figure 12: Behavior Description in ISP

e . o —— - —— ——— —— ———— — " ——— — i — o ——— ————— o ——— . o
——— e — — o —— — a— —
e e e e v G . e D G . e T — T G e — — S — . wme — — — —

~

3
e

~

3.5 QTHER LANGUAGES

Among other languages that have been implemented
and used are: Cassandrs [Bo71), davelopad at the
University of Grenoble, France and used mainly in
Europe; AHPL, a derivative of APL [HP73, Hi74);
LCD, developed at IBM and RTS, developed at the
University of Darmstadt, Germany.

An aexcellent survey of all major computer
hardware description languages can be found in
{Su7?64). A bibliography on the subject can bs found
in [Va76, Va7, Va?8).

The proliferation of Computer Hardware Design
Languages hes been of concern to a larga number of
people in the field. A Conference on Computer
Hardware Dascription Languages. haaded by J.
Lipovski, bhas been active in finding a solution to
the problem of multiple languages. Recently, a

subcommittee, headed by R. Piloty, compiled a
preliminary version of a Consensus Language
{CONLAN].

4

STRUCTURE DESCRIPTION LANGUAGES

4.1 INTRODUCTION

As pointed out before, & structural description
of a digital system is useful in the early stages
of the design proceas (architectural design) and in
the later, physical implementation phases.

In this section we will illustrate these
concepts by describing a system in two ways: Mrst
using the PMS notation [BN70), and second, using

the SDL notation [VaZ7al. Another languegs for
representing atructural information is the SL/t
notation developed by Gardner [Ga74l. It must be
pointed out that tha best representation of
structural finformation is not in the form of a
ons-dimensional language but in the form of a

T.console

|
Mp<9>-~S===L-~Pc--L(10bus)~-§~-K-

i i

L |--L(Data L

| | Break) |
Mp<1>--5-| | |-5--K~-

| |

L L

| |
Mp<2>==5~| |-5-~K-

| |

Memory Bus I/0 Bus

Figure 13: PMS Diagram for a simpla DEC

PDP-8 System

Such a

two-dimensional
computer-generated graphic representastion was uzed

graphic representation.

in the SCALD system [MW78).
illustrates the use of

The following example
SDL for describing computer

systems at the high (erchitectural) level. Figure
13 shows the PMS diagram for a simple PDP-8
computer system. Figure 14 shows the schematic

diagram corrssponding to the PMS description of
Figure 13 and to the SDL description of Figure 15.

Feeon]

1

}

|

{

|

MEMBUS Pc 10BUS |
|

|

|

=] Mp<0> — TYINY“‘B |
i

DATABREAK _.-_ cARN!

o =
{

|

|

p<2) |

|

|

|

|

|

Figure 14: PDP~8 System Structure }
|

]

[——— — . ——— ——— ——— - ———— T — — o o

NAME: DEC_PDP_B8;
EXT:: IOBUS, DATABREAK;
TYPES: MEMGK (WL="12", TC="{,Sus™),
CPU8 (TYPE="PDP-8/S5"),
ASR33,
TM8 (® Tapedrive ®),
TNS (®* Tape Interface W),
KL8 (% TTY Interface ¥),
KK8 (% card reader interface #),
CR8 (% Card Reader #);
COMPSEGMENT;
Pc = CPUS (MEMBUS, CONSLINK, IOBUS, DATABREAK)

Mp<0> = MEM4K (MEMBUS);

Mp<i> = MEM4K (MEMBUS);

Mp<2> = MEM4K (MEMBUS);
Tconsole = ASR33 (CONSLINK);
TAPEINT = TN8 (DATABREAK, TB);
TAPE1 = TM8 (T3);

TTYINT = KL8 (IOBUS, TBUS);
CRINT = KK8 (IOBUS, 0BUS);
TTY = ASR33 (TBUS);

CARDREADER = CRZ (0BUS);
END;
Figure 15: SDL Description of the DEC PDP-8

System

558

e

APPLICATIONS. OF HARDWARE DESCRIPTION LANGUAGES
*$.)) DOCUMENTATION

A veary important application of hardwere
description languages is the description of a
system's behaviour and/or structure for the purpose
of accurate communication bstwean dasigners and
users, A prime axawpla of languages originally
intended for this purpose sra the PMS and ISP
notations proposed by Bell and Newell [BN70, BN71,
Si76¢ma, S$1764b). The PMS notstion waes intanded for
the description of +the physcial structure of
harduaras at the systewm level while ISP was intended
for dascribing the behaviour of &8 system at the
instruction set level. An interesting application
of a structural description language is ths PMSL
system [XKn?3}, in which & system is describad in
PMS notation end whare tools are provided for
snalyzing tha performance of this system. A
particular application of digital design languages
as = descriptive tool is in teaching harduware
design and computer architecture. Among tha
textbooks that use a digitel dasign language for
this purpose are Chu [Ch70, Ch721. Dietmeyer
[Di?1}, Hill and Patersen [HP?3] and Bell and
Newell [BN71}.

5.2 AUTOMATIC HARDWARE GENERATION

A potentially important epplication of harduare
description languages is as the input to a hardware
compiler that automatically translates the
high~level language description into a logic
design. This seems extremely useful since together
with @ registar-transfer-level simulator it would
allow rapid and accurate herduare design. However
several problems do exist with this spproach:

1. The inability of most of today's harduara
dasign languagaes to describe tha hardwara
sccurstaly enough in order to satisty a
designer.

2. Tha ever-changing charactaristics and
complexity of the hardware primitives in
which a design is to be mapped.

Examples of such automated harduare compilers are
the ALERY system (FY69), PDL (DD63) and the
Carnegie-Mellon RT-CAD system IBS75].

5.3 SINMULATION

Simulation is & widely used tool for partislly
velideting & design at slmost any level of the
design process. At the system and functional level,
the behaviour is frequently simulated wusing
ganeral~purpose simulation languages such as GPSS
{Sc74), SIMSCRIPT or SIMULA [BD7&).

550

Many bardware deacription languages cen be used
as an input language to a simulator, usually at the
ragister-transfer level. Examples of such languages
are CDL [Ch65, Ch7¢), DDL [DD&8, Di741, ISP [Ba77)
and Cassandre [Bo7!1]l. Thase simulstors can be used
to verify the flow of data end the {functional
behaviour of & system. The effectiveness of such &
simulation depends on the descriptive power and
accuracy of tha associated design language.

Once the logic design is completed, one cen make
use of a gete-level simulator to furthar verify the
system. Gasta-level simulation can also be used to
verify test sequencas and to study the influence of
faults on the system. For gate-level simulation all
components sre reduced to simple gates and possibly
delays. together uith their interconnactions
(structural description).

é

THE FUTURE

A large number of harduare designs
for & small-~scals production, often & single copy.
Furthermore. most systems do not require a
performance thet spprosches the limits that are the
state-of-the-art. In these cases tha design cost
far exceeds the cost of tha actual herduwara and
tharefore a less afficient hardusre implementation
could be tolerated it this would lead to a
reduction in design cost. In such an snvironment, a
design language with an sssociasted to wmulti~level
simulator and a hardware wmepping facility cen be
very useful. Since the choice of the technology ts
the task of ths designer. a good design system
would allow him to specify this wmapping if he
chooses to. This would certainly make the system
more independent from changes in hardware
technology (VaZ7al.

is intended

Although some afforts heve been make to prove
programs and hardware designs correct, for large
programs or systems this spproach is not likely to
ba succesful because of the inherent complexity of
proof of correctness procedures. A morae Jlikely
solution to the design validation problem in
general is the development of programming languages
and hardwere design techniques thet will allow
proving correctness of a design efficiently.

REFERENCES

[Ba?7} Berbacci,M. *The ISPL Language.” Carnegie-
Mellon Univ., Dept. of Computer Science, 1977.

I1B575) Barbacci.M. and Siewiorak,D.P. "The CMU RT~
CAD System: an Innovative Approach to Computer-
Alded Design,” Carnegie-Mellon University,
Computer Science Review, Sept. 1975, pp. 39-53.

[BN70} Bell,C.G. and Nawell,A. "Tha PMS and ISP
Descriptive Systems for Computer Structures,”
Proc. Spring Joint Computer Conference, 1970,
pp. 351-37¢.

[BN71] Bell,C.G. and Newell.A. “Computer
Structures: Readings and Exswmples,” New York:
McGraw Hill, 1971,

[8D74) Birtwistle,G.M.; Dahl,0.J.; Myhrhaug,B. and
Nygaard,X. "SIMULA Begin," New York: Petrocelli
Books, 1974.

{Bo71] Bogo.G et sl. "Cassandre snd the Cowputer-
Aided Logical Systewms Design,™ Preoc. IFIP
Congress, Ljubljana, Yugoslavia, Aug. 1971, pp.
1056-106S.

[(Br72a}] Breuer,M.A. "Recent Developments in the
Automated Design and Analysis of Digital
Systems,"” Proc. IEEE, Vol. 60, no. I, pp.
12-27, Jan. 1972.

{Br72b] Breuer,M.A. led.) 'Disign Automation of
Digital Systems. vol. 1: Theory and Techniques,®
Englesicod Cliffs,N.J. : Prentice Hall, 1972,

{Br73]1 Breuer,M.A. led.]) "Digital System Design
Automation: Languages, Simulation and Data
Base,” Woodland Hills, Cal.: Computer Science
Press, 1975.

[Ch63] Chu.C.Y. "An ALGOL-1ike Computer Design
Language,® Comm. ACM, vol. 8, no. 10, pp.
687-413, Oct. 1963

[Ch70) Chu,Y. "Introduction to Computer
Organization.” Englesicad Clitfs,N.J. : Prentice
Hall, t970.

{Ch72] Chu,Y. “Computer Orgenization and
Microprogresming.” Englescod Cliffs, N.J. :
Prentice Hell, 1972,

[Ch74] Chu,Y. "Introducing CDL,™ 1EEE Computer,
vol. 7, no. 12, pp. 42-44, Dec. §97¢.

(CD?%a) Cory,N; Duley,J. and vanCleemput.l. "DDL-P
Language Manual® Stanford Univ.,.Computer Systems
Lab.., Technical Report, 1979,

{CD7%b] Cory,W; Dulay.J). snd venCleemput,W. ="DDL-P
Command Language Manual® Stanford Univ.,Computer
Systems Lab., Technical Report, 1979.

{Di71] Dietmayer,D.L. "Logic Design of Digital
Systams.,™ Boston: Allyn and Bacon, 1971.

{Di74) Dietmeyer,D.L. "Introducing DDL,"™ IEEE
Computer, vol. 7, no. 12, pp. 34-38, Dec. 1974.

(DD§8]1 Duley,J.R. and Dietmeyer,D.L. “A Digital
System Design Language,” IEEE Trans. Computers,
vol. €C~17, no. 9, pp. 850-86%1, Sept. 1968.

[Es77) Estrin,0. "Modelling for Synthesis, the Gap
between Intent and Behavior,” Proec. Symp. on
Microprocessors and Dasign Automation, Palo
Alto, Cal., Feb. 1977, pp. 54-39.

[FY69] Friedman,T.D. and Yang,$.C. "Methods used in
an Automatic Logic Design Generator- |ALERT)],™
1EEE Trans. Computers, vol. C-18, no. 7, pp.
593-614, July 1969.

(Gu74) Gardner,R "," Univ. of Californie, Los
Angeles, Dept. of Computer Science, Ph.D.
Thesis, 197¢.

[HP73]1 Hill.F.J. and Peterson,8.R. "Digital
Systems: Hardware Organization and Design,™ New
York, Wiley, 1973,

[Ri7¢] Hill,.F.J. "Introducing AHPL," 1EEE Computer,
vol. 7, no. 12, pp. 28-30, Dac. 1974.

560

(Kn?3] Knudsen,M.J. "PMSL, An Interactive Language
for System Level Description and Analysis of
Computer Structures,” Carnegie-Mellon Univ.,
Ph.D. Thesis, April 1973.

(M2#70] Macdougall,M.H. "Computer System Simulation:
an Introduction.,™ Computing Surveys, vel. 2, no.
3, Sept. 1970.

(MN78) McHillisms,T. and Widdoes,L.C. "SCALD,
Structured Computer-Aided Logic Design,” Proe.
15th Design Automation Conf., Las Vegas, June
1978.

[Ro76) Rose.C.H. "Design Systems: a Five~Year
Viest,", Digest COMPCON 1976 Spring, PP. 190-193.

(Ru76] Russo,R.L. "Mathods ot Verification in
Design Automation,” IEEE Computer, vel. 9, no.
&, pp. 354=35, April 197¢.

[Se74) Schriber,T.J. “Simulation using GPSS,™ New
York: Wiley, 1974,

{Si76a) Siewliorek,D.P. “Introducing ISP,"™ IEEE
Computer, vol. 7, no. 12, pp. 39-41, Dec. 1974&.

[Si74b) Siewiorek,D.P. "Introducing PMS," IEEE
Computer; vol. 7, no. 12, pp. 4264, Dec. 1974.

{Su?6¢} Su,S$.Y.H. "A Survey of Computer Harduare
Description Lengueges in the U.S.A.,™ IEEE
Computer, vol. 7, no. 12, pp. 45-51, Dac. 1974,

[Va76] vanCleemput,W.M. "Computer~Aided Design of
Digital Systems: @& Bibliography.™ Woodland
Hills, Cel.: Computer Scienca Press, 1976.

{Va77) vanCleemput.W.M. "Computer-Aided Design
Digital Systems: » Bibliography, volume 2:
1975-76," Woodland Hills, Cal.: Computer
Science Press, 1977.

of

[VaZ7a) venCleewmput,W.M. "A Hierarchical Language
for the Structural Description of of Digital
Systems,” Proc. 14th Design Automation Cont.,
Hew Orleans, June 1977, pp. 378-385.

[Va78] vanCleemput,H.M. "Computer-Aided Design of
Digital Systems: & Bibliography, volums 3:
1976-1977." Hoodland Hills, Cal.: Computer
Science Press, 1978.

