
Professional Program Session Record 21
New Developments in

Programmable Logic

<D ~~~:~~~~=-eptembe•1~16
Convention Center
Marriott Hotel
Hilton Inn at the Park
Anaheim, California

A URIVERSAL LARGUAGE
FOR

PROGRAJIIMABLE LOGIC

Robert Osann
Assisted Technology, Inc.

2381 Zanker Road, Suite 150
San Jose, CA 95131

INTRODUCTION

During this year we have seen
Programmable Logic Devices (PIDs) enter
a very significant growth phase. A num
ber of major semiconductor companies
have entered this rapidly expanding
marketplace in order to second-source
existing products and provide proprie
tary designs. Competition has greatly
increased causing a corresponding de
crease in prices. This era bears many
similarities to that of the micro
processor around 1975. It took years,
however, before the need for high level
languages (by definition, universal) and
universal microprocessor development
systems became painfully apparent.
These lessons must be applied if PLDs
are to fulfill their potential and
emerge as the most significant advance
in Systems Design of the early 80's.

In recent years, different families
of PLD's (PALs, FPLAs, etc.) have been
supported by different languages. A
universal language for PLDs eliminates
confusion, while increasing design
flexibility and providing an upward
growth path to even higher level design
languages. These higher level tools
will support entire sub-systems where
PLDs from different families are
intermixed to provide the best overall
design solution. Such a growth path
will be necessary if the industry is to
ever reach the goal of an integrated and
efficient computer-aided engineering
environment. The CUPL language
(pronounced "couple") is a hardware
compiler specifically designed for
programmable logic, As the first
universal language of it~kind it will
provide the most-important first step
toward the higher-level design tools of
the future.

1

MAJOR CONSIDERATIONS

Device Independence

Device independence is the most im
portant aspect of a •universal" language
and implies that a PLD source specifica
tion should not be tied to a particular
PLD type or family. In practice,
however, some dependent consideration
must be given to pin assignment at this
point in time. This is due to some
devices having more product terms
associated with some pins than with
others, The actual specification,
however, bears no mention of device type
as this is only required upon invoking
the compiler to create a fuse pattern
for a particular device type.

Device independence is also en
hanced by a pin declaration format which
allows a pin to be defined as active
high with the corresponding equation
written in positive logic, even though
the target device may have an inverting
output structure, This is accomplished
by the compiler's ability to perform
deMorgan's Theorem and subsequently
minimize the result by removing dupli
cate, zero, and contained product terms.
Such an operation does, however, tend to
use a lot of product terms. If a
product term limitation arises, an
appropriate error message is given.

Flexibility/Ease of use

In order to accomplish universal
support, a language must first gain
acceptance among the engineering commun
ity. This is best accomplished by
incorporating features which make the
hardware engineer more productive while
making his or her task less difficult.
A variety of shorthand notations and
macro-type features have therefore been
incorporated into the language. These
features reduce the amount of source
code which must be written, in turn re
~ucing the possibilities of errors. The

21/3

language is also relatively free-form
and relies no more than necessary on
position dependence. Another potential
restriction has been removed by allowing
names up to 31 significant characters in
length.

Shorthand notations are provided
for use in representing groups of
variables, the most useful being that
for a list such as:

[al9 •• 121

which is used in place of:

al9,al8,al7,al6,al5,al4,al3,al2

The above list may also be
represented by a single variable name
when the field function is utilized as
in:

field addr = [al9 •• 12)J

Subsequently, .•addr" can be used to
represent the list of address bit names.

Since one of the most common
applications for PLDs at this time is
address decoding, a simple range func
tion has been provided which will work
for even binary boundaries as long as
the target PLD contains a sufficient
number of product terms. If the range
of E4~Jg thru E7FFF hexadecimal were to
be decoded from the field •addr" shown
previously, the function would be
written:

addr: [E4~gJ •• E7FFF)

where the boundaries are E4~Jg (lower)
and E7FFF (upper), inclusively.

A variation on, and subset of, the
range function is the equality function
which is expressed in general as:

variable_field:constant_field

This function is especially usefull in
specifications for state machines as in:

state_bitg=(ST:, I ST:2 t ST:4 t ST:6)&
advance & ! reset

where ST had been previously defined as
follows: ·

field ST= [state_bi t~ •• 2)

21/3 2

For both the range and equality
functions, constants are understood to
be in hexadecimal unless it is otherwise
st.ated that they are in octal or binary.

Probably contributing the most to
ease of use are the following properties
of the language: parenthetical
operations and expression substitu
tion. The distributive property
A&BtA&C•A&(BtC) greatly reduces the num
ber of names which must be typed when
entering a PLD source specification if
there are common subsets among groups of
product terms. Expression substitution
also reduces the size of equations while
enhancing readability. This is
accomplished by allowing a symbolic name
to be used in one expression, that same
symbolic name being elsewhere defined as
equal to a different expression. As an
example:
chip select • inrange & strobe & !inh
where,
inrange = !alS & !al3 & al2
and,
strobe = memr t memw

Another feature which makes the
language easier to use concerns the
handling of outputs with programmable
tri-state enables. If an output is to
be always enabled, as is most often the
case, no declaration is written. Other
wise, the enable function is used and
takes the form of:

variable.oe • expression
or

[list).oe =expression;

Using this function, a PLD whose
output is connected to a data bus might
use the following enable format:

[D7,D6,DS,D4,D3,D2,Dl,D~].oe = out_en~

or, better yet:

(D7 •• ,).oe c out_en;

where out_en is elsewhere defined using
the expression substitution feature.

Another important feature of the
CUPL language is the manner in which
flip-flop related functions are handled.
This is somewhat similar to the output
enable function in that an extension is
added to the variable name associated
with the •o• output of the flip-flop.
The following is a list of the various
extensions:

-

Extension Function

.d d-type, "d"input

.j jk-type,"j"input

.k jk-type,•k•input

.s set input
• r reset input
.p preset inpu~

An example of the equation for the •o•
output of a o-type flip-lop would be as
follows:

out.d = inl & (in2 t in3)

These and other features of the
language will become more apparent in
the application examples to be presented
later.

Documentation

Good documentation is always impor
tant when a product enters production,
but in today's fast moving engineering
community with its high employee
turnover rate, documentation is more im
portant than ever. The CUPL language
includes a free-form provision for
comments, borrowed from high level
programming languages, which takes the
form:

!* Comment *I

and may be placed anywhere within the
PLD source specification. Although this
feature is important, engineers are not
well known for their willingness to
document their work. It's therefore im
portant for a PLD language to be
self-documenting wherever possible.
Most of the capabilities mentioned thus
far, in particular expression substitut
ion and the range and equality
functions, enhance the self-documenting
aspect of the language.

Finally, the engineering environ
ment of the future will rely on a
common, integrated data base. Having a
different language for each family of
PLDs would make it difficult to reach
this goal. A better choice is CUPL, a
universal language.

Expand abil.i ty

As the technology of digital
electronics never stands still, neither
should the tools of the designer who
uses that technology. Eventually,
support tools for PLDs will grow to the
point where multiple PLDs will be

a

programmed as the result of a single
source specification. Establishing the
data structures which properly support
the device characteristics and design
rules for all families of PLDs provides
an easier growth path toward such higher
level capabilities •

Key words and operators must also
be considered when planning for the
future. words such as "if", •else", and
•goto• are reserved for higher level
languages supporting sequential ma
chines. Operators such as •+•, •••, and
•j• will be eventually supported in
higher level languages in their true
arithmetic sense. Other operators are
therefore required to support the basic
logical operations. The language
utilizes a set of operators which borrow
mostly from high-level software
programming languages. A portion of the
list is shown below:

And & Add +
OR t Subtract
Exclusive-OR XOR Multiply *
Assignment - Divide I
NOT

The CUPL pre-processor will also
allow a personal choice of operators
without compromising the effectiveness
of having a standardized set.

Testing Considerations

As larger quantities of PLDs are
used in specific designs, testing
becomes an issue of ever increasing
importance. Simu ati apability will
also be included to allow the designer
to further test the accuracy of a source
specification before a device is
actually progral.'lllled. Later versions of
this universal language will support
testing of non-registered parts by
automatically generating test vectors
using variations on standard
semiconductor test patterns. Registered
PLDs will initially be handled by
allowing the designer to create a func
tion table of states and transitions
which the compiler will convert into
test vector format.

In the future, higher level ver
sions of the language will provide a
state-machine modelling capability
allowing the compiler to automatically
generate test vectors for registered
PLDs.

21/3

-

1
~

21/3

258K

Dynamic RAM

rdbuff

Serial
Port

4-1

Serial
Port
4-2

P•ane
Port

Real
Time

Clock

.- --, Data Bus ~----~-~:~~ ~;~------------._ ________ ._ ________________ ~
I I BLOCK DIAGRAM :

L_ -~ MULTI-FUNCTION CARD

lODE CODE

• • • l..-port1
• RH153 l..-port2 • • or ~
• lrtcll • PAL 12L8 lwJ1)uff

!low lloace

} ~ 110 De
Clllp

to Tr..c:

FIGURE 1

CONCLUSION

The CUPL language, just described,
does more than provide the engineer with
a unified approach to PLD-based designs
upon which future products may build.
It also includes numerous features which
make logic design easier and less error
prone with results that are more
understandable and therefore easier to
maintain.

AN ADDRESS DECODING EXAMPLE

I (loacc_Jn) As this type of application is pro
bably the most common for PLDs at this
time, a reasonable choice for an example
is the sub-system shown in Figure 1.
This block diagram depicts a multi-func
tion board similar to that found in many
bus-oriented microcomputer systems. The
256K memory consists of four banks of
64K dynamic RAMS, the entire grouping
being mappable to either the first or
second 256K block of addressable space
according to a jumper called "altloc".
This memory resides on the same B-bit
bus as four I/0 devices.

I
J r::,

a111
lc~

117 825153 lraaO
Ill

tr•1 ·- or ·- lr•2
II.V- PAL lr•3 !ret eve 18LI rdbuft'

toTr..ce~Y•

altl"""'
iiEiiicooe

ADDRESS DECODE CIACliT:
FIGURE2 MUL 11-FUNCTION CARD

4

The two PLDs shown in Figure 2
provide the RAS control signals for the
RAMs, the chip select signals for the
I/0 devices and the enable signals for
both paths through the data bus trans
ceiver. These devices could either be
two 82Sl53s or a PAL16LB and a PAL12L6
with no changes required of the source
specifications.

,.--·.

partno
name
rev
date
desiqner
company

pll000153
mdecode ;
01 ' 5/12/82 ~
Osann/Kahl ,
Assisted Technology

!***/
I* This device generates the memory RAS signals and */
I* initiates the generation of CAS. It also enables */
I* the data bus transceiver for both the memory and */
I* I/0 read cycles. */
I*** I

pin 1
pin [2 .• 51
pin 6
pin 7

• lioacc ;
• tal 9 •• 161 1
• altloc ; /* map RAM to 40000 thru 7FFFF */
• !refcyc : /* memory refresch cycle */
• ![memw,memrl ;
'"' lior ;
= raminh ; I* system RAM inhibit signal */

pin [8,91
pin 11
pin 14
pin 13
pin 12

= Imemacc ; /* on-board memory being accessed */
m !casacc ; I* output to CAS circuitry */

pin [15 •• 181
pin 19

• ![ras0 •• 3J ; /*RAM RAS signals*/
• rdbuff ; I* transceiver enable for reads */

field memaddr • [al9 •• 16l

• memw t memr ; memreq
memacc_eqn !raminh & !refcyc & <memaddr:[00000 •• 3FFFFJ &

Ialtloc t memaddr:[40000 •• 4FFFFJ & altloc)

casacc • memreq & memacc_eqn ;
rdbuff = memacc & memr t ioacc & ior ; /* note memacc feeds-back

internally */
memacc = memacc_eqn ;

ras3 = lraminh & memreq & lrefcyc & <memaddr:[30000 •• 3FFFFJ &
laltloc t memaddr:[70000 •• 7FFFF1 & altloc) I refcyc ;

ras2 lraminh & memreq & Jrefcyc & (memaddr:[20000 •• 2FFFFJ ' laltloc • memaddr:[60000 •• 6FFFF1 & altlocl t refcyc ;

rasl • Iraminh ' memreq & lrefcyc & (memaddr:[lOOOO •• lFFFFJ &
Jaltloc • memaddr:[SOOOO •• SFFFFJ & altloc) t refcyc ;

raso = lraminh ' memreq & lrefcyc & <memaddr:tooooo •• OFFFFJ &
laltloc t memaddr: (40000. ·• 4FFFFl & altloc> I refcyc ;

Figure 3

21/3

Partno
Name
Rev
Date
Designer
Company

PL00000154
IODECODE 1
01 I
5112/82 I
Osann1Kah1 ;
Assisted technology

1***1
I* This device generates the chip select signals for the IIO *I
I* functions. It also enables the data bus transceiver for *I
I* both memory and IIO write cycles. *I
1***1

pin [1.. 81 £a9 •• 21 ;
pin 9 = lmemw . ,
pin 11 liow ;
pin 12 I ioacc_in . I* same signal as ioacc *I ,
pin 19 .. lmemacc ; I* on-board memory being accessed *I
pin 17 .. lserportl ; I* serial port fl chip select *I
pin 16 lserport2 ; I* serial port 12 chip select *I
pin 15 lrtclk ; I* real-time clock cbip select *I
pin 14 .. lparport ; I* parallel port chip select *I
pin 18 • lwrbuff ; l*xceiver enable for write cycles *I
pin 13 = lioacc . I* on-board IIO being accessed *I ,

field ioaddr = £a9 •• 21 ;

serportl_eqn
serport2_eqn
rtclk_eqn
parport_eqn

wrbuff
ioacc

serportl
serport2
rtclk
parport

= ioaddr:£2F8 •• 2FFJ
ioaddr:£3F8 •• 3FFJ

= ioaddr:[lOO •• llFJ
= ioaddr:£1F4 •. 1F71

I******************** I
I* IIO Address *I
I* Ranges *I
I******************** I

= memacc & memw f ioacc_in & iow ;
serportl_eqn f serport2_eqn f rtclk_eqn t
parport_eqn ;

• serportl_eqn ;
= serport2_eqn 1
.. rtclk_eqn ;
= parport_eqn ;

Figure 4

Figure 3 is the source specifica
tion for the PLD named "MEMDECODE" which
creates the four RAS signals according
to the CPU's address range and the
"altloc" jumper. This device also gen
erates "casacc• which signals the CAS
circuitry that the appropriate CAS
signals should be generated. The
•memacc• signal includes no control
strobes and is used by both devices for
generating the buffer enables. It
should be noted the "rdbuff", the trans
ceiver enable for reads, is defined as
"true" even though the pin list also
defines it as true. If a PAL16L8 were
used, the compiler would generate the
equivalent of:

lrdbuff • lmemacc & lioacc f
I memacc & I ior t
lmemr & !ioacc t
lmemr & lior;

Also note that the field function
has been used to define •memaddr" which
is subsequently operated on by the range
function.

Expression substitution is used in
that •memreq• is created and then used
i~ many of the equations. In most cases
this reduces the equation size by
approximately a factor of two. The
expression for •memacc• is initially
defined in a similar way as the
intermediate variable •memacc_eqn".

21/3 8

FIGURE 5- VIDEO SUBSYSTEM
This expression comprises almost all of
the equation for "casacc" and is
therefore used in the •casacc"
expression. The variable •memacc_eqn"
is then equated to •memacc", the output
pin, which in turn is fed back
internally to be combined with the
"memr" signal in the expression for
"rdbuff".

Figure 4 is the source specifica
tion for the PLD •roOECODE" which gener
ates chip selects for the I/O functions
as well as the transceiver enable for
CPU write cycles. Note that the
equations defining the I/0 chip selects
are first defined as intermediate
variables (as in •serportl_eqn = ").
This allows *ioacc• to be defined in
terms of these variables thereby
reducing the size of that expression
while also making more apparent the
intent of the designer. In fact, both
Figures 3 and 4 utilize no comments,
except in the pin list, in order to
emphasize the self-documenting nature of
the language.

A SEQUENTIAL MACHINE EXAMPLE

A common application for a simple
state machine exists in CRT display
circuits where the video timing gener
ator also arbitrates access to the
screen RAM between the CPU and the CRT
controller chip. The circuit of Figure
S represents such an application. In
this example the screen RAM is fast
enough that two accesses may be made
during one complete cycle of the charac
ter c 1 o c k (" c c 1 k") • T h is is more
obvious from the timing diagram of
Figure 6. CRT controller read cycles
from the screen RAM are always made
during the period where "cclk" in Figure
6 is low. CPU accesses are made only
while •cclk" is high.

VIdeo Dot I 5 I e I 7 I 8 I 9 I 1 I 2 I a I 4 I
t-state 11 I 2 I a I 4 I 5 I e 17 I 8 I 9 I

dot clock

cclk 1~.. ______ .,..~

ahlft load

qO

q1

cpu cycle

aramael 77711111717111
aramoe

aramwe

xack

L

• I L-----------....1

FIGURE 6- VIDEO GENERATOR TIMING DIAGRAM

7 21/3

Partno
Name
Date
Revision
Designer
Company

PL0000257;
VIDTIM1
41201 82;
03;
R. Osann;
Assisted Technology, Inc.;

I** I
I* This device is clocked by the video dot clock and generates the */
I* character clock and screen Shift/Load signals as well as arbi- */
I* tration between the CPU and CRTC for the screen RAM. */
I** I

pin 2
pin 4
pin 5
pin [18,191
pin 17

pin 16
pin 15
pin 14
pin 13
pin 12

tl
t2
t3
t4
t5
t6
t7
t8
t9

qO.d
ql.d
shift_load.d
cclk.d
cpu_cycle.d

sramoe.d
sramwe.d
xack.d

21/3

= !reset ~ I* system reset signal*/
• 1sramsel 1 I* CPU access to screen RAM */
= 1memw 1
• l[ql,qOl ; I* state variable bits *I
• 1cpu_cycle ; I* CPU cycle where VIDTIM

performs arbitration *I
• shift_load ; I* Shift/Load signal to video SIR *I

cclk ; I* CRTC character clock */
= lsramoe ; I* screen RAM output enable *I
• lsramwe ; I* screen RAM write enable *I
• lxack ; I* transfer acknowledge signal, used for

driving system ready signal active */

• 1q0 & lql & !cclk & shift_load
= qO & lql & lcclk & shift_load
• lqO & ql & 1cclk & shift_load
-= qO & ql Iii 1cclk & shift_load
= qO & ql Iii 1cclk & 1 shift_load
= !qO & lql & cclk & shift_load

qO & !ql & cclk & shift_load
"' IqO & ql & cclk & shift_load
= qO & ql Iii cclk Iii shift_load

• l~eset Iii Ctl I t3 I t4 I t6 I t8)
• lreset Iii Ct2 I t3 I t4 I t7 I t8l
.. 1Clreset Iii t4) ;
• l(!reset & (t9 I tl I t2 I t3 f t4}) 1
• lreset & (t4 & sramsel & !xack I cpu_cycle &

Ct5 f t6 I t7 t t8)) 1

• tl I t2 I t3 f t4 I t9 f cpu_cycle & lmemw
• cpu_cycle & memw & (t6 I t7) ;
• cpu_cycle & t9 I xack & sramsel 1

Figure 7

8

The basic operation of the circuit
is based around a character block that
would be nine dots wide whe~ displayed
on the CRT screen. The character font
normally displayed in such a block would
be seven dots wide leaving two dots
between characters. The timing diagram
of Figure 6 shows "cclk" diviqed into
nine states labeled "tl" thru •t9". The
"shift_load" signal occurs during state
t5 and subsequently causes the shift
register of Figure 5 reload during t6.
The nine states (tl •• 9) are defined as
intermediate variables in the source
specification of Figure 7. This greatly
reduces the overall size of the specifi
cation while making it a simple task to
write equations for the generated
signals directly from the timing
diagram. Registered PLDs such as the
PAL16R8 and 825159 may be used here. A
"d" type flip-flop structure is chosen
as both types of PLDs have this
capability. Remembering that for a •q•
output to be active in a given t-state
the corresponding "d" input must be
active during the previous t-state, the
timing diagram of Figure 6 provides
sufficient information to write the
source specification of Figure 7.

Signals •qg• and •ql" are state
variable bits used in conjunction with
"shift_load" and •cclk" to create nine
unique states without using any more
outputs than necessary. The "sramsel"
signal indicates that the CPU is at
tempting to access the screen RAM and,
if present at the end of t4, will cause
•cp~cycle" to become active during the
second half of •cclk" as shown in Figure
6. Also, when •sramsel" is active, the
buffer driving the CPU ready signal in
Figure 5 is enabled allowing •xack",
currently inactive, to place the CPU in
a wait state. The CPU access then
occurs during the time "cclk" is high
with •xack" becoming active at the
completion of "cpu_cycle" thereby remov
ing the wait state. The "xack" signal
then remains active until ("sramsel")
becomes inactive. The output enable
("sramoe") and write enable ("sramwe")
signals for the screen RAM occur as
shown in Figure 6. Here a read is
always performed by the CRT controller
while •cclk" is low and either a read or
write cycle is performed while "cclk" is
high depending on the type of CPU
access.

List File

Assisted Technology, Inc. Copyright (c) 1982

Partno
Name
Rev
Date
Company

PL00000154 ;
IODECODE ;
01 ;
5112182 ;
Assisted technology ;

I*** I
I* This device generates the chip select signals for the IIO *I
I* functions. It also enables the data bus transceiver for *I
I* both memory and IIO write cycles. *I
1***1

pin [1 •• 81 = [a9 •• 21 . ,
pin 9 = !memw . ,
pin 11 = !iow . ,
pin 12 = lioacc_in . , I* same signal as ioacc *I
pin 19 = !memacc ; I* on-board memory being accessed *I
pin 17 = lserportl ; I* serial port 11 chip select *I
pin 16 = lserport2 • I* serial port 12 chip select *I ,
pin 15 = lrtclk . , I* real-time clock chip select *I
pin 14 = !parport ; I* parallel port chip select *I
pin 18 = lwrbuff . , l*xceiver enable for write cycles *I
pin 13 = !ioacc ; I* on-board IIO being accessed *I

field ioaddr = [a9 •• 21 . ,

serportl_eqn
serport2_eqn
rtclk_eqn
parport_eqn

=
=
=
=

ioaddr: [2F8 •• 2FFJ
ioaddr:[3F8 •• 3FF]
ioaddr:[lOO •• llFl
ioaddr: [1F4 •• 1F7J

; . , . , . ,

I******************** I
I* IIO Address *I
I* Ranges *I
I******************** I

Cupl 1.0

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
$003 5$
0036
0037
$003 8$

wrbuff
ioacc

= memacc & memw t ioacc_in & iow ;
= serportl_eqn I serport2_eqn # rtclk_eqn #

serportl
serport2
rtclk
parport

parport_eqn ;
= serportl_eqn ;
= serport2_eqn ;
= rtclk_eqn ;
= parport_eqn ;

~
Fuse Plot for

partno PL00000154
name IODECODE PAL12L6 rev 01
date 5/12/82
designer
company Assisted technology

column 11 1111 1111 2222 2222 2233
0123 4567 8901 2345 6789 0123 4567 8901

row 8 ---- ---x ---x ioacc_in&iow
row 9 ---x -x-- memacc&memw

row 16 -xx- x--- x- x- x- x- ta8&a9&a7&a6&a5&a4&a3

row 24 x-x- x--- x- x- x- x- a8&a9&a7&a6&a5&a4&a3

row 32 x--- -x-- -x -x a8&Ia7&Ia6&1a5

row 40 x--x x--- x- x- x- -x x--- a8&Ia9&a7&a6&a5&a4&1a3&a2

row 48 x--x x--- x- x- x- -x x--- a8&la9&a7&a6&a5&a4&!a3&a2
row 49 x--- -x-- -x -x a8&!a7&!a6&Ia5
row 50 x-x- x--- x- x- x- x- a8&a9&a7&a6&a5&a4&a3

.,....... row 51 -xx- x--- x- x- x- x- la8&a9&a7&a6&a5&a4&a3

pins 11 11 11
2211 3399 4400 5500 6600 7700 8822 9911

polarity HLHL HLHL HLHH HLHH HLHH HLHH HLHL HLHL

pin: 1 a9
pin: 2 a8
pin: 3 a7
pin: 4 a6
pin: 5 as
pin: 6 a4
pin: 7 a3
pin: 8 a2
pin: 9 memw
pin: 11 ! iow
pin: 12 1 ioacc_in
pin: 13 ioacc
pin: 14 parport
pin: 15 I rtclk
pin: 16 1 serport2
pin: 17 serportl
pin: 18 wrbuff
pin: 19 memacc

/""""'

-----~----·~·-···

H&L Plot for
*POLLLLLLLLLLL

"y-..._ *P 00 *I *BI -------LL- *BO AA ••••• AAA -------- 82S153 *P 01 *I -------- *BI L--------L *BO AA ••••• AAA
*P 02 *I -BHHHHLB *BI ---------- *BO A.A ••• AAAA
*P 03 *I -BHHHHHB *BI ---------- *BO A •• A •• AAAA
*P 04 *I ---LLLH- *BI ---------- *BO A ••• A.AAAA
*P OS *I HLBBBHBL *BI ---------- *BO A •••• AAAAA
*P 06 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 07 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 08 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 09 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 10 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 11 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 12 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 13 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 14 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 1S *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 16 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 17 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 18 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 19 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 20 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 21 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 22 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 23 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 24 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA

~ *P 2S *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 26 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 27 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 28 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 29 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 30 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 31 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 09 *I 00000000 *BI 0000000000
*P 08 *I -------- *BI ----------
*P 07 *I -------- *BI ----------
*P 06 *I -------- *BI ----------
*P OS *I -------- *BI ----------
*P 04 *I -------- *BI ----------
*P 03 *I -------- *BI ----------
*P 02 *I 00000000 *BI 0000000000
*P Dl *I 00000000 *BI 0000000000
*P DO *I 00000000 *BI 0000000000

Cup1 1.0

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
$002 8$
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050

List File
Assisted Technology, Inc. Copyright (c) 1982

partno
name
rev
date
designer
company

pll000153 ;
mdecode ;
01 f
5/12/82 ;
Osann/Kahl ;
Assisted Technology ;

/***/
I* This device generates the memory RAS signals and */
I* initiates the generation of CAS. It also enables */
I* the data bus transceiver for both the memory and */
I* I/0 read cycles. */
I*** I

pin 1 = lioacc • I

pin [2 •• 51 = [al9 •• 161 . ,
pin 6 = altloc ; I* map RAM to 40000 thru 7FFFF
pin 7 = lrefcyc • I* memory refresch cycle */ ,
pin [8, 9] = l[memw,memrl . ,
pin 11 = lior . I

pin 14 = raminh • I* system RAM inhibit signal *I ,

*I

pin 13 = lmemacc ; I* on-board memory being accessed
pin 12
pin [15 •• 18]
pin 19

field memaddr

memreq
memacc_eqn

= lcasacc ; I* output to CAS circuitry */
= l[ras0 •• 31 : /*RAM RAS signals*/
= rdbuff . , I* transceiver enable for reads *I

= [al9 •• 161 .
I

= memw t memr ;
= !raminh & !refcyc & (memaddr: [00000 •• 3FFFF1 &

!altloc t memaddr: £40000 •• 4FFFF1 & altloc>

casacc = memreq & memacc_eqn ;

*I

.
I

rdbuff = memacc & memr t ioacc & ior ; I* note memacc feeds-back
internally */

memacc = memacc_eqn ;

ras3 =

ras2 =

rasl =

raso =

1 raminh
laltloc

lraminh
lalt1oc

!raminh
lalt1oc

!raminh
laltloc

&
t

&
t

&
t

&
t

memreq & lrefcyc & (memaddr:£30000 •• 3FFFF1 &
memaddr:[70000 •• 7FFFF1 & altloc) t refcyc;

memreq & lrefcyc & Cmemaddr:f20000 •• 2FFFFl &
memaddr:[60000 •• 6FFFF1 & altloc) t refcyc;

memreq & lrefcyc & Cmemaddr:[l0000 •• 1FFFF1 &
memaddr:[50000 •• 5FFFF1 & altloc) t refcyc;

memreq & lrefcyc & Cmemaddr:[OOOOO •• OFFFF] &
memaddr: [40000 •• 4FFFF1 & alt1oc) i refcyc ;

row 48
row 49 -x-- -x-- -x-- x--x 1 a19& !alB&! al t1oc

~ &1refcyc&1raminh
row 50 -x-- x--- -x-- -x-- x--- x--x lal9&al8&la17&1al6&a1tloc

&lrefcyc&!raminh

row 56
row 57 -x-- x--- -x-- -x-- x--- x--x -x-- 1a19&a18&1a17&!a16&altloc

&!refcyc&1raminh&memw
row 58 -x-- x--- -x-- -x-- x--- x--x -x-- lal9&al8&lal7&!a16&a1t1oc

&lrefcyc&lraminh&memr
row 59 -x-- -x-- -x-- x--x -x-- 1 al9& ! alB& 1 al t1 oc

&lrefcyc&lraminh&memw
row 60 -x-- -x-- -x-- x--x -x-- lal9&!a18&!altloc

&!refcyc&lraminh&memr

pins 11 11 11 11 11 11 11
2211 33 88 4477 5566 6655 7744 8833 9911

polarity HLHL HLHL HLHL HLHL HLHL HLHL HLHL HLHL

pin: 1 1 ioacc
pin: 2 al9
pin: 3 alB
pin: 4 al7
pin: 5 al6
pin: 6 altloc ,....._ pin: 7 1 ref eye
pin: 8 memw
pin: 9 1 memr
pin: 11 1 ior
pin: 12 1 casacc
pin: 13 1 memacc
pin: 14 raminh
pin: 15 rasO
pin: 16 ras1
pin: 17 1 ras2
pin: 18 1 ras3
pin: 19 rdbuff

H&L Plot for
*POLHLLLLHLLLL

828153 *P 00 *I -------L *BI --------L- *BO A •••• A •• AA
*P 01 *I -------- *BI ------L--L *BO A •••• A •• AA
*P 02 *I -L------ *BI ---------- *BO .AAAAA •• AA
*P 03 *I LHLHHLL- *BI -----L---- *BO .A ••• A •• AA
*P 04 *I -HLHHLL- *BI -----L---L *BO .A ••• A •• AA
*P OS *I LHHHHHL- *BI -----L---- *BO .A ••• A •• AA
*P 06 *I -HHHHHL- *BI -----L---L *BO .A ••• A •• AA
*P 07 *I LHLLHLL- *BI -----L---- *BO •• A •• A •• AA
*P 08 *I -BLLHLL- *BI -----L---L *BO •• A •• A •• AA
*P 09 *I LHBLHHL- *BI -----L---- *BO •• A •• A •• AA
*P 10 *I -HHLBBL- *BI -----L---L *BO •• A •• A •• AA
*P 11 *I LBLHLLL- *BI -----L---- *BO ••• A.A •• AA
*P 12 *I -BLHLLL- *BI -----L---L *BO ••• A.A •• AA
*P 13 *I LBHHLBL- *BI -----L---- *BO ••• A.A •• AA
*P 14 *I -HBHLHL- *BI -----L---L *BO ••• A.A •• AA
*P 15 *I LHLLLLL- *BI -----L---- *BO •••• AA •• AA
*P 16 *I -HLLLLL- *BI -----L---L *BO •••• AA •• AA
*P 17 *I LBHLLBL- *BI -----L---- *BO •••• AA.AAA
*P 18 *I -HHLLBL- *BI -----L---L *BO •••• AA.AAA
*P 19 *I -BL--LL- *BI -----L---- *BO ••••• AA.AA
*P 20 *I -HBLLHL- *BI -----L---- *BO ••••• AA.AA
*P 21 *I LBL--LL- *BI -----L---- *BO •••• • A.AAA
*P 22 *I -BL--LL- *BI -----L---L *BO •••• • A.AAA

!""""' *P 23 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 24 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 25 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 26 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 27 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 28 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 29 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 30 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 31 *I 00000000 *BI 0000000000 *BO AAAAAAAAAA
*P 09 *I -------- *BI ----------*P 08 *I -------- *BI ----------
*P 07 *I -------- *BI ----------
*P 06 *I -------- *BI ----------*P DS *I -------- *BI ----------
*P 04 *I 00000000 *BI 0000000000
*P 03 *I -------- *BI ----------
*P 02 *I -------- *BI ----------
*P 01 *I 00000000 *BI 0000000000
*P DO *I 00000000 *BI 0000000000

-···-----··--- --· --

Cupl 1.0

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
$003 4$
$003 5$
0036
0037
$003 8$
$003 9$
0040
0041
0042
0043
0044
0045
0046
0047

List File
Assisted Technology, Inc. Copyright (c) 1982

Partno
Name
Date
Revision
Designer
Company

PL0000257;
VIDTIM;
4/20/ 82;
03;
R. Osann;
Assisted Technology, Inc.;

/**/
I* This device is clocked by the video dot clock and generates the */
I* character clock and screen Shift/Load signals as well as arbi- */
I* tration between the CPU and CRTC for the screen RAM. */
/**/

pin 2 =
pin 4 =
pin 5 =
pin [18,19) =
pin 17 =

pin 16 =
pin 15 =
pin 14 =
pin 13 =
pin 12 =

tl
t2
t3
t4
t5
t6
t7
t8
t9

qOod
ql.d
shift_loadod
cclkod
cpu_cycleod

sramoeod
sramwe.d
xack.d

=
=
=
=
=
=
=
=
=

=
=
=

!reset ; I* system reset signal*/
lsramsel ; /* CPU access to screen RAM */
lmemw ;
![ql,qOJ ; I* state variable bits*/
!cpu_cycle ; I* CPU cycle where VIDTIM

performs arbitration */
shift_load ; I* Shift/Load signal to video S/R */
cclk ; /* CRTC character clock */
lsramoe ; I* screen RAM output enable */
!sramwe ; I* screen RAM write enable */
!xack ; I* transfer acknowledge signal, used for

driving system ready signal active */

!qO & !ql & !cclk & shift_load ;
qO & !ql & !cclk & shift_load ;

!qO & ql & !cclk & shift_load
qO & ql & !cclk & shift_load
qO & ql & !cclk & !shift_load ;

!qO & !ql & cclk & shift_load ;
qO & !ql & cclk & shift_load

!qO & ql & cclk & shift_load
qO & ql & cclk & shift_load .

I

!reset & (tl t t3 t t4 I t6 # t8) ;
!reset & (t2 t t3 I t4 I t7 I t8) ;
! (!reset & t4) 0

I

=!(!reset & (t9 I tl I t2 I t3 i t4)) ;
= !reset & Ct4 & sramsel & lxack t cpu_cycle &

Ct5 I t6 I t7 I t8) > 0
I

= tl I t2 I t3 I t4 I t9 i cpu_cycle & !memw ;
= cpu_cycle & memw & (t6 I t7) ;
= cpu_cycle & t9 t xack & sramsel ;

partno PL0000257
Fuse Plot for r-' name VIDTIM

rev 03
date 4/20/82 PAL 16R8 designer R. Osann
company Assisted Technology, Inc.

column 11 1111 1111 2222 2222 2233
0123 4567 8901 2345 6789 0123 4567 8901

row 0 x-x- --x- --x- ---x !reset&!qO&!ql&shift_load
&!cclk

row 1 x-x- ---x --x- ---x !reset&lqO&ql&shift_load
&!cclk

row 2 x--x ---x --x- ---x !reset&qO&ql&shift_load
&!cclk

row 3 x-x- --x- --x- --x- !reset&!qO&!ql&shift_load
&cclk

row 4 x-x- ---x --x- --x- !reset&!qO&ql&shift_load
&cclk

row 8 x--x --x- --x- ---x !reset&qO&lql&shift_load
&!cclk

row 9 x-x- ---x --x- ---x !reset&!qO&ql&shift_load
&!cclk

row 10 x--x ---x --x- ---x !reset&qO&ql&shift_load
&!cclk

row 11 x--x --x- --x- --x- !reset&qO&!ql&shift_load
&cclk

row 12 x-x- ---x --x- --x- !reset&!qO&ql&shift_load
&cclk

row 16 x--x ---x -x-- --x- ---x --x- !reset&qO&ql&sramsel
&shift_load&!cclk&!xack

row 17 x-x- ---x ---x --x- --x- !reset&!qO&ql&cpu_cycle
&shift_load&cclk

row 18 x--x --x- ---x --x- --x- !reset&qO&!ql&cpu_cycle
&shift_load&cclk

row 19 x-x- --x- ---x --x- --x- !reset&!qO&!ql&cpu_cycle
&shift_load&cclk

row 20 x--x ---x ---x ---x ---x !reset&qO&ql&cpu_cycle
&!shift_load&lcclk

row 24 x--x ---x ---- --x- ---x ---- ---- ---- !reset&qO&ql&shift_load
&!cclk

row 32 x--x ---x --x- !reset&qO&ql&shift_load
row 33 x--- --x- ---x !reset&shift_load&!cclk

row 40 ---x x--- cpu_cycle&!memw
row 41 ---x ---x --x- --x- qO&ql&shift_load&cclk
row 42 ---x ---x --x- ---x qO&ql&shift_load&!cclk
row 43 --x- ---x --x- ---x !qO&ql&shift_load&!cclk
row 44 ---x --x- --x- ---x qO&!ql&shift_load&!cclk
row 45 --x- --x- --x- ---x !qO&lql&shift_load&!cclk

row 48 --x- --x- ---x -xx- --x- lqO&!ql&cpu_cycle&memw
/~

&shift_load&cclk
row 49 ---x --x- ---x -xx- --x- qO&Jql&cpu_cycle&memw

&shift_load&cclk

row 57 -x-- ---x sramsel&xack
row 58 ---x ---x ---x --x- --x- qO&ql&cpu_cycle&shift_loac

&cclk

pins 11 11 11 11 11 11 11 11
2299 3388 4477 5566 6655 7744 8833 9922

polarity BLHL HLHL HLBL BLHL BLHL BLHL BLHL HLHL

pin: 2 ! reset
pin: 4 sramsel
pin: 5 memw
pin: 12 ! xack
pin: 13 l sramwe
pin: 14 1 srarnoe
pin: 15 cclk
pin: 16 shift_load
pin: 17 ! cpu_cycle
pin: 18 ! ql
pin: 19 qO

