
THE MISSING LINK

The missing link in the Programmable Logic
Revolution has finally arrived. CUPL™ (pronounced
" couple") is a compiler which converts logic
equations for a Programmable Logic Device
(PLD) into the fuse pattern required to implement
the desired function.
CUPL will provide the engineer with the tools to
increase productivity and ease of design while
making logic specifications virtually self ­
documenting. As Programmable Logic emerges
as the first major innovation to sweep the elec­
tronics industry since the microprocessor, CUPL
will grow in capability to support the increasing
needs of the logic designer. Consequently, CUPL
was conceived as a Universal Compiler, capable
of supporting PLDs from all manufacturers as
well as a large variety of PLD programmers
(PROM programmers), development computers
and operating systems.

UNIVERSAL/DEVICE INDEPENDENT

Using CUPL, the engineer may write a logic
specification for a PLD without having to first
determine the exact type of target device. For in­
stance, a logic specification might be compiled
for either a PAL 16L8 or an 82S153 just by specify­
ing the target device type at compile time. This
allows a great deal of flexibility in both design
and production. For the first time, the designer
may use A SINGLE LANGUAGE to implement all
PLD designs. As we move into the integrated and
automated engineering environment of the future,
this aspect of the CUPL language will prove to be
invaluable.

EASVTC USE

To improve readability as well as reduce
keystrokes, a number of shorthand features have
been incorporated. These include a list notation
for strings of similar variable names as well as
the ability to parenthetically group often-used
portions of equations (the distributive property).
Designs are also simplified by utilizing default
options to eliminate needless typing of expres­
sions.

The Universal Language
For Programmable Logic

DESCRIPTIVE/SELF-DOCUMENTING

CUPL allows the creation of a logic specification
that closely resembles the thoughts and inten­
tions of the designer. MACRO SUBSTITUTION
allows the definition of intermediate variables
that do not appear in the pin declarations. These
variables help " break-up" an equation or expres­
sion into smaller, more meaningful pieces.
Another CUPL feature allows operations to be
performed on groups or "fields" of bits like those
commonly found in address and data buses. This
" bit-field " capability is especially self­
documenting when used to decode address
ranges or refer to specific states of a sequential
machine.
In add ition, the free-form comment structure en­
courages good documentation habits, especially
for pin declarations where proper descriptions of
variables are essential in linking logic specifica­
tion files with system schematics. Good
documentation practice is also encouraged by
header information statements which identify
each logic specification file.

FLEXIBLE/EXPANDABLE

As Programmable Logic grows so must the tools
which support this explosive technology. Within
CUPL, the data structures and design rules have
been established which will support all families
of PLDs as more sophisiticated tools evolve.
Key words and operators have also been con­
sidered in planning for the future. Words such as
" if" and " else" have been reserved for the
preprocessor and a future sequential machine
modeling language, while the set of logical
operators has been borrowed from high-level
languages. Accordingly, arithmetic operators are
reserved for arithmetic elements which will be
"programmed" into PLDs with increasing fre­
quency.
A unive:rsal tool such as CUPL should be flexible
enough to fulfill the needs of the more
sophisticated logic designer. The CUPL pre­
processor provides capabilities such as string
substitution, file inclusion and conditional

Assisted Technology, Inc. • 2381 Zanker Road, Suite 150 • San Jose, CA 95131 • (408) 942-8787

compilation . Additionally, CUPL can perform
deMorgan's theorem which, followed by logic
reduction , removes " duplicate", " contained"
and " zero" product terms.

SIMULATION/TEST
CUPL includes CSIM, a simulator for programming
logic. In addition to verifying logic specification
files written in CUPL, CSIM allows the creation
of test vectors which may be down-loaded to a
PLD programmer/tester.
LANGUAGE TRANSLATOR
A PALASM-to-CUPL translator is included to
allow easy conversion of ex isting logic spec ifica­
tion files written in PALASM.

PORTABLE
In order to be readily accessible to the engineer­
ing community, CUPL will be made available on a
wide variety of computers and operating systems.
CUPL is written entirely in C and was developed
under UNIX. Accordingly, Assisted Technology
welcomes Development System manufacturers
and computer OEMs to support or remarket
CUPL.

INITIAL AVAILABILITY /PRICING
CUPL will be initially offered for the IBM
Personal Computer under PC-DOS. The introduc­
tory price on the IBM-PC will be $500.00 with dis­
counts for multiple copy purchases. This price
will be in effect until the availability of CUPL1.1
(9/1/83). The price for CUPL1.1 will be $750.00.
Purchasers of CUPL1.0 will receive CUPL1.1 per
the warranty. Also included with the IBM-PC ver­
sion of CUPL is a fast, easy to use, full-screen
editor. The manual is available separately for
$35.00.

WARRANTY /MAINTENANCE

For a 6 month period from the date of purchase,
Assisted Technology will fix any reported errors
in the compiler. Also, any updates which are
published during this period will be supplied to
the purchaser.

ORDER FROM

ASSISTED TECHNOLOGY, INC.
2381 Zanker Road, Suite 150
San Jose, CA 95131
(408) 942-8787

THE SYNTAX

HEADER INFORMATION

PART NO, NAME, REVISION , DATE,
DESIGNER, COMPANY

OPERATORS

& logical AND
logical OR
! logical negation

EXTENSIONS

VARIABLE.D D of aD-type Flip-Flop
VARIABLE.J J of a JK-type Flip-Flop
VARIABLE.K K of a JK-type Flip-Flop
VARIABLE.OE Programmable three-state enable

COMMENTS

I* begins comment
* I ends comment

PREPROCESSOR

$DEFINE string substitution
$INCLUDE file inclusion
$1FDEF conditional compilation

PIN DECLARATION

PIN number = variable name

DISTRIBUTIVE PROPERTY
A & (B # C) = A & B # A & C

LIST NOTATION
[ADR 15 .. 10] = ADR15, ADR14, ADR13, ADR12,
ADR11 , ADR10

SYMBOLIC BIT FIELDS
MEMADR = [ADR15 .. 10]
STATE = [STATEBIT3 .. 0]
EQUALITY OPERATION

STATEBITO = !RESET & (STATE:2 # STATE:4);

RANGE OPERATION

RAMSEL = M EMADDR:[0000 .. 3FFF];

ALTERNATE NUMBER BASES
EQUALITY and RANGE operations support Hex­
adecimal , Octal and Binary. The default base is
Hexadecimal.

ASSISTED TECHNOLOGY

	CUPL_Spec_Sheet_1983_pg1
	CUPL_Spec_Sheet_1983_pg2

