
AUTOMATIC PLA SYNTHESIS FROM A DDL-P DESCRIPTION

S. Kang
W. M. vanClecmput

Center for Integrated Systems
Department or Elect.rical Engineering

Stanford University
Stanford, California 94305

Abstl'llct - This paper describes an automatic PLA 1fntheais
(APLAS) system which automatically generates a PLA for the
control function of a design from a DDL-P description of a
digital system. APLAS can also minimise and partition the
PLA to meet the design constraints.

These programs are relatively independent of each other
and each can be used separately. Figure 2 shows the titeps
required in detiigning a digital circuit using APLAS.

This is a very convenient tool for designing finite atate
machines. The control circuit of any digital system for which
a state diagram can be drawn can be designed easily using this
ayatem.

1. Introduction

Because or its regular structure, a programmable logic array
(PLA) eases many difficult problems associated with hardware
synthesis. This prompts more use of PLA's these days, espe
cially in VLSI. The tr.ain objective of our work was to develop a
practical PLA synthesis procedure including PLA opti-mization
techniques. The emphasis was put on VLSJ applications, rather
than on FPLA 'a.

Considering the fact that most data operators are more or
less standardized while the control circuitry varies from machine
to machine, we usc PLA's only for implementing the control,
not for data manipulation. Also by doing so, the machine
structure required by the design specification can be kept during
the design process.

Since a PLA is a two-level structure, it baa some inherent
redundancy from the classical point of view, which put some
c:onstraints on its usc. But by employing the design methodol
ogy of random logic, the PLA can be optimized, which can be
done in three ways: minimization, partitioning and folding. We
considered two or them, minimisation and partitioning.

Altho~Jgh we have developed many algorithms, we can
not properly present them in this paper due to limited apace.
Therefore the emphasis is placed on the results. For the algo
rithms, we advise the reader to refer to (1).

2. Overview or APLAS

Figure 1 shows the basic structure or APLAS. The
firsf program, SALT (Stanford Automatic Logic Translator),
translates the DDL-P dcacription of a digital syst.em into
Boolean equations, which the second program, SPAM (Stanford
Programmable Array Minimiscr), minimizes and converts into
PLA format. The third program, PAPA (Programmable Array
Partitioner), is uaed to partition a large PLA into smaller PLA'a
to meet the design constrainta.

In the next sections, DDL-P and the three subsystems will
be discuued.

Register Level

DDL-P description

Logic Translator
(SALT)

Boolean Equations

for Control Part

PLA Minimizer

(SPAM)

a PLA (Minimized)

PLA Panitioncr
(PAPA)

Several PLA 's

Figure 1. API..AS system

18th Design Autometion Conference Peper 19.1
391 0146-7123181J0000.0391$00.75 © 1981 IEEE

8
/ "'

CONTROL I I OPERATION

I
INTERPRETATION

I
STATE ASSIGNMENT

I
GENERATION OF OUTPUT and

FUP·FLOP EQUATIONS MANUAL DESIGN

I

I
MINIMIZATION

I
PARTITIONING

~

~------------~~
Figure 2. Design Steps of APLAS

S. DDL-P

DDL-P(9,10) ia a Stanford version or DDL (6-8) (Digital
Design Language), a register transfer language. In thia aection,
the philosophy or DDL-P will be diacuued.

S.l DDL-P Machine Model

The DDL-P machine consists of two main parts,
OPERATION and CONTROL (Figure 3). The OPERATION part
conaiats or registera, ALU, memory, etc. which basically atore
and/or change data according to the instruction• generated by
the CONTROL part.

The CONTROL part ia a aystem controller which coea
through certain atepa and iuuea command signals in each atep,
which control the actions in the OPERATION part. In tum,
the OPERATION aends aome information to the CONTROL,
which is uacd to determine what next step the machine should
take and/or what signals the CONTROL should generate in the
next step. The reader can consider the CONTROL part to be a
finite state machine. The DDL-P language also 1upporta a more
complicated machine structure (interpretively linked maehinea),
which is not 1upported by APLAS .

.....,,,_,
382

OPERATION
(Memory,

Registers.
ALU, etc.)

r
1

CONTROL
qualifiers control signals

FIN ATE ST A TI:: MACHINE

Figure 3. DOL ·P Machine Model

E:r.ample • BLACKJACK machine

BLACKJACK I(A C H I N E

REGISTER SCORE[5], CAROBUF[5], FF.
TERMINAL HIT. BROKE, STAND,

VALUE[1:5] = INPUT(1,VALUE),
YCRD = INPUT(1,YCRD),
YL17 = SCORE<17, YL22 = SCORE<22,
NACE = CARDBUF# 1 .

OPERATION
TPT = [CAROBUF <- 5010], TUT = [CARDBUf <- 5022),
TVC = [CARDBUf <-VALUE), !HIT= [HIT=1Bl),
ISTD = [STAND=1B1], IBRK = [BROKE=lBl],
CLS = [SCORE <- SDO) ,
ADD= [SCORE <-(SCORE(•)CARDBUf)TAIL 5],
Kf'f' = [FF<-100), Jff = [FF <- 101] .

CONTROL
A:
B:
C:
0:
E:
F:
G:
H:
J:
K:

CLS, KFF', -> 8/
IHIT,TVC, IF YCRD THEN -> C ELSE -> B ENDIF/

IF YCRD THEN -> C ELSE -> D ENDIF/
ADD, IF NACE•Ff' THEN -> F ELSE -> E ENDIF/
JFF, TPT, -> 0/

KFF, TUT.
IBRK,
!STD.

Ir YL17 THEN -> B ELSE -> G ENDIF/
IF YL22 THEN -> K ELSE -> II ENDIF/
IF FF THEN -> D ELSE -> J END!f/
IF YCRD THEN -> A ELSE -> J ENDir/
IF YCRD THEN-> A ELSE-> K ENDir/.$

In the above e:r.ample, the CONTROL section in the descrip
tion corresponds to the control unit in Figl.!re 4. The other parts
or the machine are described in TERMINAL and OPEnATION
which •how implicitly or explicitly how the components are in
terconnected and at what points the flow of data is control
led. For example, aome combinational networks are explicitly
described in TERMINAL (e.g. YL17, YL22, etc.) while the ADD
function described in OPERATION implicitly assumes the exis
tence of a combinational network (adder) and a control point.

How all these actions are controlled to make this circuit a
blackjack machine is described in the CONTHOL section. This
CONTROL section can be translated into Boolean equationa by
SALT, which can be directly mapped into physical hardware.

--~-------- -----~ -----~---

S QUAILIFERS
10 CONTROL SIGNALS

Figure 4. Blackjack Machine

S.2 Characteristics or DDL-P

If carefully used, a DDL-P description can contain all the
structural information as well aa functional behavior.' It ia
suitable for a digital system which is synchronized by one muter
clock. At the current stage, DDL-P does not aupport concur
rency of modular blocks, which limits its use to a simple machine
structure.

One of the most important and distinct characteristics of
DDL·P is that it has a clear boundary between data How and
control flow. This can be painful to a designer who wants to
describe a digital system in DDL-P. On the other hand, it is
a convenient feature for a designer who wants to synthesize
physical hardware from a DDL-P description.

4. SALT

The basic function of SALT is to translate the DDL-P
description of a digital machine into Boolean equations that
can be realized by physical hardware. The entire process is
interactive and consists of three major steps.

First SALT interprets the input and sets up various tables
for further processing. The next step is the state assignment. A
user can do this manually, or ask SALT to do it automatically.
Finally, SALT generates output equations for the control signals
and Hip-flop equations for the next state functions.

Currently SALT generates Boolean equations only ror the
control' circuitry. The operation part (data paths} should be
designed manually or by other design aids to make the design
complete.

U CONTROL Section Implementation

There are several ways of realizing CONTROL. One of
them, which is used in SALT, is shown in Figure 5. CONTROL
gets signals (qualifiers, e.g. YCRD, etc. in Figure 4) rrom
the outside world (OPERATION) and combines them with the
present state information which is internally stored in the atate
flip-flops. And then it generates control signals (instructions,
e.g. TPT, ADD, etc. in Figure 4) to the outside world and next
state function which will be stored in the state Hip-Oops.

Quallfie=:i=:::::.f Combinational

Network

l=::::;~ln~. ~ructions

Figure S. Control Realization

SALT generates Doo}~">an equations for the instructions and
next state functions in terms of the qualifiers and the present
state codes. The equations are used to build the hardware.
Random logic or PLA's can be used as building blocks depend
ing on the circumstances.

4.2 Dece~der in TERMINAL

Conceptually it is possible to put everything in the
CONTROL section of the DDL-P description, which should be
included in the control circuit. But for practical reasons, it is
not desirable.

For example, suppose we have 8 qualifiers which are not
disjoint. Then we have up to 256 different conditions and should
consider all or part of them in each state. If we use the 8
qualifiers directly in the CONTROL section of the description,
we have to generate all those conditions in every state, which is
quite inefficient. It is also difficult to read and understand that
type of description.

As a way of avoiding that difficulty, we decode the qualifiers
to generate the mutually exclusive signals, and consider them
separately in the CONTROL section. This decoding section may
be included in the TERMINAL section of the description.

Ir the designer wants the decoder in the real hardware, there
is no problem. Hut if he merely uses the decoder to enhance
the readability of the description, the description itself does not
reDect the real hardware exactly. Therefore we should have a
means to tell SALT that the decoder does not exist and should
be included in the control circuit. This is done as a comment in
the TEHMINAL section.

4.3 State Assignment

State a.ssigumcnt is one of the important step~ in SALT.
Even though many methods have been proposed for the state
assignment procl'ss (11-14], the practical method for finding the
optimum state assignment has not been found, yet.

In real design, reducing the gate complexity is only one
objective. In fact, for a proper circuit operation, race aad hazard
problems should be considered and they have to be climiu::~tcd
at any cost.

-- -- -------

Paper 19.1
393

SALT provide• two waya of ltate auignment: manual and
automatic. Automatic auignment is provided as a limple way
of doing the auignment without too much concern with timing
problema.

Manual atate auignment

The uaer muat aelect the number of flip-flops. After choo•
ing the radi:z lor ltate asaignment, the uaer can type in the ltate
codes for each atate. SALT doea not accept identical codea for
two diiTerent atates. During the proceaa, the uaer can see the
result up to the current position, change the previous code, or
drop everything and restart the whole proceas.

Aukmatie state auignment

SALT alwaya uaea the minimum number or FF'a. The uaer
can choose between two type~ or codes: binary and Gray. The
user may use these codes as a atarting point for his aearch for
better ltate state auignment. SALT usigns the selected code
to the states in the written order of the description.

It should be noted that for an odd number or atates, Gray
code cannot be formed, i.e., the atarting atate and the Jut atate
can not be unit distance apart. SALT does not overcome this
difficulty and is satisfied with distance two between the first and
last states in the description.

4.4 Selection of Flip-Flop t)'pea

Together with atate auignment, the selection of flip-Bops
affects the hardware cost. Since there are many kinds of flip
flops, it is not easy to choose any particular type of flip-flop for
a given job. At the moment, it seems that only the desig:~er'a
experience, intuition and/or preference can justify the choice or
the flip-flops.

Currently three types of flip-flopa are used in SALT: JK,
D and T. JK Dip-flops tend to result in leu hardware if used
with conventional combinational networks, but need twice the
number or next state functions compared to D or T flip-flops.
D flip-flops are preferable because of their limplicity if a PLA
ia used for the combinational network.

4.5 bample

The output of SALT ia a set of Boolean equations. Moat
identifiers used in the equations come from the description.
Some identifiers related to the ltate flip-flops are internally
created by SALT. The state flip-flops are implicitly numbered
by integers and their outputl and inputl are referenced as

Qn output of t.be n t.b FF
Da input. t.o t.be D t.b D F'F'
Tn input t.o t.be n t.b T FF
Jn,Kn 1nputa t.o the n t.h JK FF

When not all ltate codea are uaed, the unused codes can
be don't.-carea depending on the conditions. For that purpoae,
SALT puts out the number of flip-flops and the used codea for
state auignment if the pouible codes are not used up.

The following is an example output of the blackjack
machine of which the DDL-P deacription ia given in the previous
.c:tion.

,......,,,, ..

S INPUT F'ILE : BLACK.JAK
< OUTPUT EQUATIONS >

1. CLS = -Q4•-Q3•-Q2•-Q1
2. KFF = -Q4•-Q3•-Q2•-Q1 + Q4•-Q3•Q2•Q1
3. IHIT = -Q4•-Q3•-Q2•Ql
4. TVC = -Q4•-Q3•-Q2•Q1
5. ADD : -Q4•-Q3•Q2•-Ql
8. JF'F' = -Q4•Q3•Q2•-Q1
7. TPT = -Q4•Q3•Q2•-Ql
e. m = Q4•-Q3•Q2•Q1
8. IBRK = Q4•-Q3•-Q2•Ql
10. ISTD = Q4•-Q3•-Q2•-~1

< D FF EQUATIONS >
1. 01 = -Q4•-Q3•-Q2•-Ql + -Q4•-Q3•-Q2•Q1•-YCRD

+ -Q4•-Q3•!Q2•Q1•YCRD + -Q4•-Q3•Q2•Ql•YCRD
+ Q4•Q3oQ2•-Q1•YL17 + Q4•-Q3•Q2•-Ql•-YL22
+ Q4•-Q3•Q2•Q1•-F'F' + Q4•-Q3•-Q2•Ql•·YCRO

2. D?. = -Q4•-Q3o-Q2•Q1•YCRD • -Q4•-Q3•Q2•Ql•YCRD
+ -Q4•-Q3•Q2•Ql•-YCRD
+ -Q4•-Q3•Q2•-Q1•(NACE+F'F')
+ -Q4•-Q3•Q2•-Q1•-(NACE+FF) + -Q4•Q3•Q2•-Q1
+ Q4•Q3•Q2•-Q1•-YL17 + Q4•-Q3•Q2•-Q1•-YL22
+ Q4•-Q3•Q2•Q1•FF

3. 03 = -Q4•-Q3•Q2•-Ql•(NACE•FF)
+ -Q4•-Q3•Q2•-Ql•-(NACE+FF)

4. D4 = -Q4•-Q3•Q2•-Ql•(NACE+FF)
+ Q4•Q3•Q2•-Ql•-YL17 + Q4•-Q3•Q2•-Ql•YL22
+ Q4•-Q3•Q2•-Q1•-YL22 • Q4•-Q3•Q2•Ql•-FF
+ Q4•-Q3•-Q2•Q1•-YCRD

.& 4
0000
0001
0011
0010
0110
1110
1010
1011
1001
1000

••

+ Q4•-Q3•-Q2•-Q1•-YCRD

4.6 Reaulte

Some results or SALT are shown in Table 1.

Table 1. SALT Execution

Quali· Control #of State
DDL·P Input tiers Signals ~tatcs rodcs

Modulo 3/4 counter 1 2 4 Gray

Trame Ught Controller 3 s 4 Gray

S-Bit Shift Registers 0 0 s Binary

Decade counter 0 1 10 Binary

Blackjack Machine s 10 10 Gray

Prime Number Counter 3 I 19 Binary

Intel 8008 Microprocessor 26 41 18 Gray

Intel 8080 Microprocessor 60 61 19 Gray

PDPU 9S S4 112 Gray

FF Ex.
Time

K 1.0965

n 1.233 s

D l.S02 5

D 1.463 s

JK 1.984 s

D 2.643 s

D 4.425 s

D 6.112 s

D 61.201 s

'(.

5. SPAM

SPAM (Stanford Programmable Array Minimizer) ia a pro
gram to minimize a multiple output Boolean awitching function.
The switching function is auumed to be implemented on a PLA.
Since the number of ;,oducts is important in a PLA implemen
tation, the primary function of SPAM is to minimize the number
of products which cover the given switching function.

SPAM accepts inputs of three dill'erent formats: Boolean
equations, truth table, or SALT results. It then converts the
function to sum-of-products form, minimizes the number or
products and outputs the result in the PLA format.

After minimizing the number or products, SPAM tries to
reduce the connections in the AND and OR arrays. The
fewer connections in the AND and OR arrays, the smaller the
AND and OR gates become in a random logic implementation.
Therefore SPAM can be used to minimize two-level random logic
(AND-OR, NOR-NOR, NAND-NAND) as well as PLA'a.

SPAM does not guarantee an optimal aolution, but most
solutions are near optimal. Absolute minimality is often
achieved especially, for relatively small problema.

The current version of SPAM can handle 72 inputs, 144
outputs and several thousand products. These limits may be
changed easily as they are essentially a function of the available
address space for the program.

5.1 Example

SPAM recognizes the input format with the first charac·
ter. The truth table form must start with '#'. SALT result
starts with '$'. Anything else will be considered to be Doolcan
equations. The input is essentially free-format. Blanks may be
inserted at v.ill to improve readability, except the blanks should
not be embedded in identifiers of Boolean equations. Ce>mments
may also appear anywhere blanks are allowed.

The following output came from the SALT result of
Blackjack machine given in the previous section.

SOLUTION : 8 INPUTS 14 OUTPUTS 18 PRODUCTS

1.
2.
3.
4.
5.
6.
7.
8.
9.

1.
2.
3.
4.
5.

<INPUTS>. <OUTPUTS>

Q.4 1. CLS
Q3 2. JCf'F
Q2 3. IHIT
Q1 4. TVC
YCRD 5. ADD
Yl.17 6. JFF
Yl.22 7. TPT
F'F' 8. TilT
NACE D. IBRK

10. ISTO
11. D1
12. 02
13. D3
14. D4

000000000 00000000011111
123456789 12345678001234

01------- 11
o--11----•...• 11 ..
1-11---o- .1. 1. .1. .1
0-01----- ..11. •.... 1. ..
1-00----- 1

6. 0-00----- 11 1 .. .
7. 11---o--- 1.1
8. 1-11---1- .1 1 ... 1..
D. 11---1--- 1 .. .

10 .. 0-1------ 1 ..
11. 0010----- 1. 1.
12. 1-010---- 1. ..
13. 1-o-o----
14. 1-0l-----
15. 1010-----
16. 1010--0--
17. -010----1
18. -010---1-

5.2 Re1ult1

............. 1

........ 1.

............. 1

.......... 11 ..

............. 1

............. 1

Some results of SPAM are shown in Table 2.

Table 2. SPAM Execution

Input
In/Out

ofProducts
Source Type Initial• FinJl

Modulo 3/4 counter SAI.T 3/6 8/JO s

Traffic l.ight Controller S;\LT S/7 28/ 0 10

S·bit Shifi Register SALT SIS 5/11 5

11ccade counter SAI.T 4/S]6/ 2 9

lllackjack Machine SALT 9/]4 40/ 2 18

Prime Number Countcr SALT 8/6 . 77/ 3 37

lnt('l 8008 Microproccssor SAlT 31/46 148/ 3 68

lntc18080 Microprocessor SAI.T 65/66 181/ 3 129

PDP 11 SALT 102161 16511 I 348

4 x 4 ·bit Multiplier Tr. 8/8 225/ 0 129

~-bit Adder Tr. 8/5 255/ 0 75

4-bit Addcr(with carry·in) Tr. 915 511/ 0 135

Pl.A 1 Tr. 9115 33129 29

PLA 2 Tr. 8/14 33/28 32

PLA 3 Tr. 23/40 173/273 165

l'xecution
Time

OJls

0.51 s

0.45s

0.53 s

1.30 s

4.55 s

19.31 s

43.00 s

156.00 s

92.12 s

26.95 s

129.94 s

5.42 s

7.29 s

390.00 s

• Initial number of products = > normal prnducts/ don't care products

Tr. : Trulh table

Peper 19.1
395

.. r-

• -~

.. .
J.

I ,.

1. PAPA
ID a real circuit, a large PLA tend• to be quite wuterul or

not rut enough to IUpport the other part• or the l)'ltem. In
this case, we can split it into aeveral amaller PLA'a to reduce
the chip area and/or improve the apeed.

PAPA ia a program which does this job. It alao hu a redun
dancy removal routine which detects input and output redun·
dancy (1) from a given PLA. The chip area and the overhead
or uling the many PLA'a are the major factor• conlidered in
partitioning.

1.1 Example

PAPA can only accept the truth table input. The output
ia the partitioned truth table with aome information about the
result of partitioning such u the lize of each partitioned PLA
and the reduction ratio of chip area. The order or output linea
i1 changed by PAPA.

The following uample ia the result of Blackjack machine
whose truth table ia given in the previous section. The ordering
or outputs il omitted on purpoae for clarity.

SOLUTION : 2 PLA'a

PLA 1 8 INPUTS
PLA • 2 4 INPUTS

8 OUTPUTS 14 PRODUCTS
6 OUTPUTS 4 PRODUCTS

TOTAL AREA : INITIAL
FINAL

REDUCTION RATIO

576
420

:0.748

000000000 00000000011111
123456789 12345678901234

1. 1-010---- 1.
2. 11---1--- 1•..
3. 0-01----- 111
4. 1010--0-- 1 1.
s. o-oo----- 1 .. 11 .. .
8. 1-11---o- 1 ... 11.1
1. o--11---- 1 1.
8. 1-11---1- 111.
e. o-1------•. 1.

10. 11---o--- 11
11. -010---1-•. 1
12. -010--~-1• 1
13. 1010-----•.. 1
14. 1-o-o---- 1

15. 1-01 1
16. 1-00 .1. .. .
17. 0010 . . 11..
18. 01-- ..•. 11

1.2 Reaulta

Some rcaulta or PAPA are ahown in Table 3. All inputa
are the PLA'• minimi:led by SPAM. Overhead or uling many
PLA'a ia alao accounted for calculating the reduction ratio. The
partitioned PLA'a are not minimised by SPAM, which may be
pouible.

,.._,._,
318

Table 3. PAPA Execution

#of Area 1 • Execution INPUT (in/out/product) PLA"s Initial Final jR"cduction Time

Blackjack (9/18/17) 3 612 314 1.89 0.17 s

8080 A (65/66/129) 16 25284 4893 4.33 5.83 s

8080 8 (14/66/247) 8 23218 9354 2.23 4.32s

·4-bit MulL (8/8/129) 4 3096 2460 1.18 0.39 s

• !/Reduction = Initial area/(Final area + Overhead)

T. Conclusion•

We have presented an automatic PLA synthesis system
with aome results on its performance. We successfully used
this system to aynthesize the control circuitry of microprocessors
limilar to the Intel 8008 and the 8080.

The ayatem includes a PLA minimizer and a PLA par·
titioner for better use of PLA's. The PLA minimizer is powerful
enough to accept a awitehing function with 72 inputs, 144 out
puts and aeveral thousand products. The performance of the
partitioner largely depends on a PLA format. But it can reduce
the chip area drastically (aometimes more than 50 %) in many
caaea.

REFERENCES

1. S. Kang, Minimisation, Partitioning and Synthesis of
Programmable Logic Arrays, Ph.D. dissertation, Dept. of
EE, Stanford University, to be published.

2. S. Kang and W. M. vanCieemput, SALT user's lJUlnual,
Computer Systems Lab. Tech. Report No. 203, Stanford
University, Mar. 1981.

3. S. KANG and W. M. vanCieemput, SPAM user's manuAl,
Computer Systems Lab. Tech. Report No. 204, Stanford
University, Mar. 1981.

4. W. M. vanCleemput, Design automation at Stanford,
Computer Systems Lab. Tech. Report No. 178, Stanford
University, July 1979.

5. W. M. vanCleemput, Design automation at Stanford,
Computer Syatema Lab. Tech. Report No. 184, Stanford
University, Feb. 1980 .

6. J. R. Duley and D. L. Dietmeyer, "A digitalayatem design
language (DDL)," IEEE Trans. Comput., vol. C-17, pp.
850-861, Sept. 1968.

7. J. R. Duley and D. L. Dietmeyer, • Translation or a DDL
digital ayatem apeciflcation to Boolean equations," IEEE
Trans. Comput., vol. C-18, pp. 305-313, Apr. 1969.

8. R. L. Arndt and D. L. Dietmeyer, "DDLSIM - A digi
tal delign language aimulator," Proc. National Electronics
Coni., vol. 26, pp. 116-118, Dec. 1970 .

~'

9.

10.

11.

12.

13.

14.

15.

16.

17.

w. E. Cory, J. R. Duley and W. M. vanCleemput, An
introduction to the DDL-P language, Computer System•
I..ab. Tech. Report No. 163, Stanford University, Mar.
1979.
W. E. Cory,J. R. Duley and W. M. vanCleemput, DDL
p Command Language Manual, Computer Systems Lab.
Tech. Report No. 164, Stanford University, Mar. 1979.
D. B. Armstrong, "A programmed algorithm for assign
ing internal codes to aequential machines," IRE n-ans.
Electron. Comput., vol. EC-11, pp. 466-172, Aug. 1962.
D. B. Armstrong, •on the efficient assignment of inter
nal codes to aequential machines," IRE n-ans. Electron.
Comput., vol. EC-11, pp. 611-622, Oct. 1962.
T. A. Dolotta and E. J. McCluskey, •The coding of inter
nal states of aequential circuits," IEEE Trans. Electron.
Comput., vol. EC-13, pp. 549-563, Oct. 1964.
J. R. Story, H. J. Harrison, and E. A. Reinhard, •optimum
atate assignment for aynchronoua aequential circuits," IEEE
n-ans. Comput., vol. C-21, pp. 1365-1373, Dec. 1972.
P. Bricaud and J, Campbell, •Multiple output PLA
Minimization : EMIN," Weacon 78.
S. J. Hong, R. G. Cain and D. L. Ostapko, "MMNI : A
heuristic: approach for logic minimization," IBM J. Res.
Develop., vol. 18, pp. 443-458, Sept. 1974.
H. Langenbacher, "Boolean minimization for logic arrays,"
M. S. Thesis, Dept. of EE, San Diego State Univ. , Fall,
1979.

------ - ----------~-

Paper 19.1
397

