AUTOMATIC PLA SYNTHESIS FROM A DDL-P DESCRIPTION

S. Kang
W. M. vanClecmput

Center for Integrated Systems
Department of Electrical Engineering
Stanford University
Stanford, California 94305

Abstract - This paper describes an automatic PLA synthesis
(APLAS) system which automatically generates a PLA for the
centrol function of a design from a DDL-P description of a
digital system. ADPLAS can also minimise and partition the
PLA to meet the design constrainta.)

This is a very convenient tool for designing finite state
machines. The control circuit of any digital system for which
a state diagram can be drawn can be designed easily using this
system.

1. Introduction

Becausc of its regular structure, a programmable logic array
(PLA) eases many difficult problems associated with hardware
synthesis. This prompts more use of PLA's these days, espe-
cialty in VLSI. The main objective of our work was to develop a
practical PLA syvnthesis procedure including PLA optimization
techniques. The emphasis was put on V1.S] applications, rather
than on FPLA’s.

Considering the fact that most data operators are more or
less standardized while the control circuitry varies from machine
to machine, we use PLA’s only for implementing the control,
not for data manipulation. Also by doing so, the machine
structure required by the design specification can be kept during
the design process.

Since a PLA is a two-level structure, it has some inherent
redundancy from the classical point of view, which put some
constraints on its use. But by employing the design methodoi-
ogy of random logic, the PLA can be optimized, which can be
done in three ways: minimization, partitioning and folding. We
considered two of them, minimization and partitioning.

Althoygh we have developed many slgorithms, we can
not properly present them in this paper due to limited space.
Therefore the emphasis is placed on the results. For the algo-
rithms, we advise the reader to refer to [1).

2. Overview of APLAS

Figure 1 shows the basic structure of APLAS. The
first” program, SALT (Stanford Automatic Logic Translator),
translates the DDL-P description of a digital system into
Boolean equations, which the second program, SPAM (Stanford
Programmable Array Minimiser), minimizes and converts into
PLA format. The third program, PAPA (Programmable Array
Partitioner), is used to partition a large PLA into smallcr PLA’s
to meet the design constraints.

18th Design Automation Conference

0146-7123/81/0000-0391$00.75© 1981 IEEE

These programs are rclatively independent of each other
and each can be used separately. Figure 2 shows the steps
required in designing a digital circuit using APLAS.

In the next sections, DDL-P and the three subsystems will
be discussed.

Register Level
DDL-P description

|

Logic Translator
(SALT)

p————————-] Boolcan Equations

for Control Part

PLA Minimizer
(SPAM)

aPLA (Minimized)

Y

PLA Parntitioner
(PAPA)

Scveral PLAs

Figurc 1. APLAS system

Paper 19.1
391

/N

CONTROL

|
INTERPRETATION

OPERATION |—

STATE ASSIGNMENT

GENERATION OF OUTPUT and
FLIP-FLOP EQUATIONS MANUAL DESIGN
MINIMIZATION
PARTITIONING
\ 4
>

Figurc 2. Design Steps of APLAS

3. DDL-P

DDL-P[9,10] is a Stanford version of DDL [6-8] (Digital
Design Language), a register transfer language. In this section,
the philosophy of DDL-P will be discussed.

3.1 DDL-P Machine Model

The DDL-P machine consists of two main parts,
OPERATION and CONTROL (Figure 3). The OPERATION part
consists of registers, ALU, memory, etc. which basically store
and/or change data according to the instructions generated by
the CONTROL part.

The CONTROL part is a system controller which goes
through certain steps and issues command signals in each step,
which control the actions in the OPERATION part. In turn,
the OPERATION sends some information to the CONTROL,
which is used to determine what next step the machine should
take and/or what signals the CONTROL should generate In the
next step. The reader can consider the CONTROL part to-be a
finite state machine. The DDL-P language also supports a more
complicated machine structure (interpretively linked machines),
which is not supposted by APLAS.

Paper 18.1

OPERATION
(Memory,
Registers,
ALU, cic.)

~] CONTROL

qualifiers control signals

FINATE STATE MACHINE

Figure 3. DDL-P Machinc Modcl

Example - BLACKJACK machine

‘““BLACKJIACK MACHINE . -

REGISTER SCORE{S], CARDBUF[S], FF.
TERMINAL HIT, BROKE, STAND,
VALUE[1:5] = INPUT(1,VALUE),

YCRD = INPUT(1,YCRD),
YL17 = SCORE<17, YL22 = SCORE<22,
NACE = CARDBUF#1.

OPERATION

TPT = [CARDBUF <- 5D10], TMT = [CARDBUF <- 5D22],
TVC = [CARDBUF <- VALUE), IHIT = [HIT=1Bi},
ISTD = [STAND=1B1], IBRK = [BROKE=1Bi],
CLS = [SCORE <- SDO],
ADD = [SCORE <- (SCORE(+)CARDBUF)TAIL §),
KFF = [FF<-1D0), JFF = [FF <- 1Dt] .
CONTROL

CLS, KFF, -> B/
IHIT,TVC, IF YCRD THEN -> C ELSE -> B ENDIF/

IF YCRD THEN -> C ELSE -» D ENDIF/
ADD, IF NACE+FF THEN -»> F ELSE -> E ENDIF/
JFF, TPT, -> D/

IF YL17 THEN -> B ELSE -> G ENDIF/

IF YL22 THEN -» K ELSE -> H ENDIF/
KFF, TNT, IF FF THEN -> D ELSE -> J ENDIF/
IBRK, IF YCRD THEN ~> A ELSE -> J ENDIF/
: 1ISTD. IF YCRD THEN -> A ELSE -> K ENDIF/.$

In the above example, the CON'TROL section in the descrip-
tion corresponds to the control unit in Figure 4. The other parts
of the machine are described in TERMINAL and OPERATION
which show implicitly or explicitly how the components are in-
terconnected and at what points the flow of data is control-
led. For example, some combinational networks are explicitly
described in TERMINAL {e.g. YL17, YL22, etc.) while the ADD
function described in OPERATION implicitly assumes the exis-
tence of a combinational network (adder) and a control point.
How all these actions are controlled to make this circuit a

blackjack machine is described in the CONTROL section. This
CONTROL section can be translated into Boolean equations by
SALT, which can be directly mapped into physical hardware.

Ri-_..:f)"lﬂl?np>

CARD YCRD 1sTD_S) LiGHTS
HIT
__NACE ¢ KEE
TVC CONTROL JEE
1PL_ UNIT 2
3 N
ADDCLS| '|YLI7| Y122
A / y FLAG
CARD BUF SCORE r

$ QUAILIFERS
10 CONTROL SIGNALS

Figurc 4. Blackjack Machine

3.2 Characteristics of DDL-P

If carefully used, a DDL-P description can contain all the
structural information as well as functional behavior. It is
suitable for a digital system which is synchronized by one master
clock. At the current stage, DDL-P does not support concur-
rency of modular blocks, which limits its use to a simple machine
structure.

One of the most important and distinct characteristics of
DDL-P is that it has a clear boundary between data flow and
control flow. This can be painful to a designer who wants to
describe a digital system in DDL-P. On the other hand, it is
a convenient feature for a designer who wants to synthesize
physical hardware from a DDL-P description.

4. SALT

The basic function of SALT is to translate the DDL-P
description of a digital machine into Boolean equations that
can be realized by physical hardware. The entire process is
interactive and consists of three major steps.

First SALT interprets the input and sets up various tables
for further processing. The next step is the state assignment. A
user can do this manually, or ask SALT to do it automatically.
Finally, SALT generates output equations for the control signals
and flip-flop equations for the next state functions.

Currenlly SALT generates Boolean equations only for the
control circuitry. The operation part (data paths) should be
designed manually or by other design aids to make the design
complete.

4.1 CONTROL Section Implementation

There are several ways of realizing CONTROL. One of
them, which is used in SALT, is shown in Figure 5. CONTROL
gets signals (qualifiers, eg. YCRD, etc. in Figure 4) from
the outside world (OPERATION) and combines them with the
present state information which is internally stored in the state
flip-flops. And then it generates control signals (instructions,
e.g. TPT, ADD, etc. in Figure 4) to the outside world and next
state function which will be stored in the state flip-flops.

lifi
Qua m#: Combinational

Network
_—

. Iné. Eructions

FF's ~

Figure 5. Control Realization

SALT generates Boolean equations for the instructions and
next state funclions in terms of the qualifiers and the present
state ecodes. The equations are used to build the hardware.
Random logic or PLA's can be used as building blocks depend-
ing on the circumstances.

4.2 Decoder in TERMINAL

Conceptually it is possible to put everything in the
CONTROL section of the DDL-P description, which should be
included in the control circuit. But for practical reasons, it is
not desirable.

For example, suppose we have 8 qualifiers which are not
disjoint. Then we have up to 256 different conditions and should
consider all or part of them in each state. If we use the 8
qualifiers directly in the CONTROL section of the description,
we have to generate all those conditions in every state, which is
quite inefficient. It is also difficult to read and understand that
type of description.

As a way of avoiding that difficulty, we decode the qualifiers
to generate the mutually exclusive signals, and consider them
separately in the CONTROL section. This decoding section may
be included in the TERMINAL section of the description.

If the designer wants the decoder in the real hardware, there
is no problem. But if he merely uses the decoder to enhance
the readability of the deseription, the description itsell does not
reflect the real hardware exactly. Therefore we should have a
means to tell SALT that the decoder does not exist and should
be included in the control circuit. This is done as a comment in
the TEItMINAL section.

4.3 State Assignment

State assignment is one of the important steps in SALT.
Even though many methods have been proposed for the state
assignment process [11-14], the practical method for finding the
optimum state assignment has not been found, yet.

In real design, reducing the gate complexity is only onc
objective. In fact, for a proper circuil operatiou, race and hazard
problems should be considered and they have to be eiiminated
at any cost.

Paper 18.1
393

SALT provides two ways of state assignment: manual and $ INPUT FILE : BLACK.JAK

automatic. Automatic assignment is provided as a simple way < OUTPUT EQUATIONS >
of doing the assignment without too much concern with timing 1. CLS = -@4+-Q3+-Q2+-Q1
problems. . 2. KFF = -Q4#-Q3+-Q2¢-Q1 + Q4+-Q3+Q2+Q1
3. IHIT = -Qé*-Q3+-Q2+Q1
4. TVC = -Q4=-Q3+-Q2+Q1
Manual state assignment 5. ADD = -Q4#-Q3sQ2+-Q1
The user must select the number of flip-flops. After choos- €. JFF = -Q4+Q3+Q2+-Q1
ing the radix for state assignment, the user can type in the state 7. TPT = -Q4#Q3+Q2+-Q1
codes for each state. SALT does not accept identical codes for 8. TMT = Q4s-@3+Q2+Q1
9. IBRK = Q4#-Q3+-Q2+Q1

two different states. Dunng' f.he process, the user can see the ISTD = Qes-Qas-Q2e-Q1
result up to the current position, change the previous code, or <D FF EQUATIONS »
drop everything and restart the whole process. y

-
o

1. D1 = ~Q4#-Q3+-Q2+-Q1 + -Q4»-Q3+-Q2+Q1*-YCRD
+ -Q4*-Q3+-Q2+QI4YCRD + -Qd=-Q3#Q2+Q14YCRD
Automatic state assignment + QasQ3%Q2+-Q1*YL17 + Q4+-Q3+Q2+-Q1+-YL22
SALT always uses the minimum numper of FF’s. The user s Dp s :Qﬁ:qgi’:gi::i :ygp’.qf;ﬁ:-’;afz;?é I.:ﬁﬁﬁ
can choose between two types of codes: binary and Gray. The * -Qqe-Q34Q2+Q1%-YCRD
user may use these codes as a starting point for his search for + ~Que-g3eQ2%-Q1* (NACE+FF)
better state state assignment. SALT assigns the selected code + -Qa+-Q3+Q2¢-Q1e- (NACEFF) + -Qd=Q3+Q2¢-Q1
to the states in the written order of the description. + Q4sQ3%Q2#-Q1e-YL17 + Q4e-Q3+Q2¢-Qi=-YL22
It should be noted that for an odd number of states, Gray + Q4+-Q3+Q2+Q1+FF
code cannot be formed, i.e., the starting state and the last state 3. D3 = -Q4+-Q32Q2¢-Q1« (NACE+FF)

can not be unit distance apart. SALT does not overcome this * ~Q4+-Q3+Q2+-Q1*- (NACE+FF)
4. D4 = -Q4r-Q3+Q2+-Q1+ (NACE+FF)

;i.nsﬂ:c':m:?: :;:a;.:f‘i:‘dp::: distance two between the first and * Q4sQI*QII-QUe-YLIT + QU*-QI=Q2e-QUeTL22
) + Q4v-Q32Q2+-Q1#-YL22 + Q4+-Q3+Q2+Q1+-FF
+ Q4*-Q3+-Q2+Q1#-YCRD
+ Q4+-Q3+-Q2+-Q1+-YCRD

4.4 Selection of Flip-Flop types éﬁ):
Together with state assignment, the selection of flip-flops 0001
affects the hardware cost. Since there are many kinds of flip- 0011
flops, it is not easy to choose any particular type of flip-flop for 0010
a given job. At the moment, it seems that only the designer's 0110
experience, intuition and/or preference can justify the choice of i11e
the flip-flops. 1010
Currently three types of flip-fiops are used in SALT: JK, :g;i
D and T. JK flip-flops tend to result in less hardware if used 1000
with conventional combinational networks, but need twice the .$
number of next state functions compared to D or T flip-flops.
D flip-flops are preferable because of their simplicity if a PLA 4.6 Results

is used for the combinational network. Some results of SALT are shown in Table 1.

4.5 Example Table 1. SALT Execution

The output of SALT is a set of Boolean equations. Most
identifiers used in the equations come from the description. Quali-|Control{# of |Statc [pp| Ex.
Some identifiers related to the state flip-flops are internally DDL-P Input fiers |Signals States|Codes Time

created by SALT. The state flip-fiops are implicitly numbered

by integers and their outputs and inputs are referenced as Modulo 3/4 counter 1 2 4 |Gray JK 1109

Traffic Light Controller 3 5 4 |Gray|D |1233s

Qn : output of the n th FF
Dn : ioput to th th D FF .
™ ‘:‘;“:t to the b b T FF 5-Bit Shift Registers 0| o |5 [Binan|D |Ls02s
Jn.Kn : ioputs to the n th JX FF .
B D [1.46
When not all state codes are used, the unused codes can Decade counter 0 ! 10 _[Binary 3s
be don't-cares depending on the conditions. For that purpose, Blackjack Machine 5 10 10 | Gray|JK[1984s
SALT puts out the number of flip-flops and the used codes for
state assignment if the possible codes are not used up. |Prime Number Counter 3 1 19 binary D |2643s
The following is an example output of the blackjack]
machine of which the DDL-P description is given in the previous Intel 8008 Microprocessor | 26 | 41 |18 | Gray |D 144255
section.
° Inte] 8080 Microprocessor | 60 | 61 |19 |Gray |D [6.1125
PDP 11 95 | s4 112 |[Gray|D |61.2015s
Paper 19.1
304

5. SPAM
SPAM (Stanford Programmable Array Minimizer) is a pro-

gram to minimize a multiple output Boolean switching function.

The switching function is assumed to be implemented on a PLA.
Since the number of products is important in a PLA implemen-
tation, the primary function of SPAM is to minimize the number
of products which cover the given switching function.

SPAM accepts inputs of three different formats: Boolean
equations, truth table, or SALT results. It then converts the
function to sum-of-products form, minimizes the number of
products and outputs the result in the PLA format.

After minimizing the number of products, SPAM tries to
reduce the connections in the AND and OR arrays. The
{ewer connections in the AND and OR arrays, the smaller the
AND and OR gates become in a random logic implementation.
Therefore SPAM can be used to minimize two-level random logic
{AND-OR, NOR-NOR, NAND-NAND) as well as PLA’s.

SPAM does not guarantce an optimal solution, but most
solutions are near optimal. Absolute minimality is often
achieved especially, for relatively small problems.

The current version of SPAM can handle 72 inputs, 144
outputs and several thousand products. These limits may be
changed easily as they are essentially a function of the available
address space for the program.)

5.1 Example

SPAM recognizes the input format with the first charac-
ter. The truth table form must start with '#’. SALT resuit
starts with '$’. Anything else will be considered to be Boolean
equations. The input is esscntially free-format. Blanks may be
inserted at will to improve readability, except the blanks should
not be embedded in identifiers of Boolean equations. Comments
may also appear anywhere blanks are allowed.

The following output came from the SALT result of
Blackjack machine given in the previous section.

SOLUTION : 8 INPUTS 14 OUTPUTS 18 PRODUCTS
<INPUTS>. <QUTPUTS>
1. QM4 1. CLS
2. Q@ 2. KFF
3. Q2 3. IHIT
4. Q1 4. TVC
5. YCRD 5. ADD
8. YL17 8. JFF
7. YL22 7. TPT
8. FF 8. TMT
9. NACE 9. IBRK
10. ISTD
11, D
12. D2
13. D3
14. D4

000000000 00000000011111
123456789 12345678901234

1. Ol-----—m ..., 1n.......
2. 0--11-=-= ... 11..
3. 1-11---0- .1.....1..1..1
4. 0-01--~-- 11...... 1...
§5. 1-00-~==- 1....

6. 0-00----- 11......., 1...
T. 11-=-0--- 141
8. 1-11---1- .1.....1...%1..
9. f1---1--—- 1...
10, - 0-1~—~—=— 1..
11. 0010----~ 1....... 1.
12, 1-010---- 1...
13, 1-0-0--~-c0.n.. 1
14, 1-01----- ... _... 1.....
15, 1010----~ 1
16. 1010--0-- 11..
17. =010----1 1
18. -010---1- 1

5.2 Results
Some results of SPAM are shown in Table 2.

Tablc 2. SPAM Exccution

Input # of Products {Fyccution
Sou . in/Out e
e I'ype Initial *|Final| Time
Modulo 3/4 countcr SALT} 376 | 8710 S 0.31s

Traffic Light Controller |SALTY §/7 |28/ 0 | 10 0.51s

S-bit Shift Register SALT} s/5 5/11 5 045s
Decadc counter SALT) 475 |16/ 2 9 0.53s
Blackjack Machine SALT| 971414072 | 18 1.30s

Prime Number Counter |SALT| 876 {77/ 3 | 37 455s

Intcl 8008 Microprocessor | SALTY 3174611487 3 | 68 19.31s

Intel 8080 Microprocessor | SALT] 657661181/ 3 129 | 43.00s

PDP 11 SALT[102/61 [1651/1 | 348 | 156,005
4 x 4 -bit Multiplicr . 8/8 1225/ 0 [129 { 92.12¢
4-bit Addcr Tr. 8/5 12585/ 0 75 26955
4-bit Adder{with carry-in)] 17.] 9/5 51170 | 135 | 129945
PLA L I'r. 9715} 33/29 29 542s
PLA2 Tr. 8/14 | 33728 32 7.29s
PLA 3 T 2374012737273 | 165 | 390.00s

* Initial number of products => normal products/ don't carc products
Tr.: Truth wable

Paper 19.1
95

JETYY P e x e

§. PAPA

In a real circuit, a large PLA tends to be quite wasteful or
not fast enough to support the other parts of the system. In

this case, we can split it into several smaller PLA’s to reduce .

the chip area and/or improve the speed.

PAPA is a program which does this job. It also has a redun-
dancy removal routine which detects input and output redun-
dancy [1] from a given PLA. The chip area and the overhead
of using the many PLA’s are the major factors considered in
partitioning.

6.1 Example

PAPA can only accept the truth table input. The output
is the partitioned truth table with some information about the
result of partitioning such as the size of each partitioned PLA
and the reduction ratio of chip area. The order of output lines
is changed by PAPA.

The following example is the result of Blackjack machine

whose truth table is given in the previous section. The ordering
of outputs is omitted on purpose for clarity.

SOLUTION : 2 PLA's
PLA 1 : 9 INPUTS 8 OUTPUTS 14 PRODUCTS
PLA .2 : 4 INPUTS 6 DUTPUTS 4 PRODUCTS
TOTAL AREA : INITIAL : ET8

FINAL 420
REDUCTION RATIO :0.748

000000000 00000000011311
123456789 12345678901234

)
'
1
1
1
t

1. 1-010----1.......

2. 11---1---1.......

3. 0-01---=-- 111.....

4. 1010--0-- 1..... 1

5. 0-00~~--- 1..11

6. 1-11---0- 1...11.1

7. 0--11----1..... 1.

8. 1-11---1-111,

9. 0O-1------ e 1.

10. 13---0--- 11

11, -010-~--1- 1

12. -010----1 1

13. 1010-===- ,...... 1
14. 1-0-0--=- 1

1. 1-01 1.....
18. 1-00 d....
17. 0010 RS § PUN
18. 01-- S b §
6.2 Results

Some results of PAPA are shown in Table 3. All inputs
are the PLA’s minimized by SPAM. Overhcad of using many
PLA's is also accounted for calculating the reduction ratio. The
partitioned PLA's are not minimised by SPAM, which may be
possible.

Paper 19.1

Table 3. PAPA Execution

. # of Arca 1 * [Execution
INPUT (in/out/product) PLA'S}1itial | Final Reduction] Time

Blackjack (9/18/17) 3 612) 314] 189 017s
8080 A
8080 B
4-bit Mult. (8/8/129) 4 |3096] 2460} 1.18 0.39s

(65/66/129) | 16 [25284 | 4893 | 4.33 583s
(14/667247) § 8 [23218] 9354 | 223 432s

* 1/Reduction = Initial area/(Final arca + Overhcad)

7. Conclusions

We have presented an automatic PLA synthesis system
with some results on its performance. We successfully used
this system to synthesize the control circuitry of microprocessors
similar to the Intel 8008 and the 8080.

The system includes a PLA minimizer and a PLA par-
titioner for better use of PLA’s. The PLA minimizer is powerful
enough to accept a switching function with 72 inputs, 144 out-
puts and several thousand products. The performance of the
partitioner largely depends on a PLA format. But it can reduce
the chip area drastically (scometimes more than 50 %) in many
cases.

REFERENCES

1. S. Kang, Minimization, Partitioning and Synthesis of
Programmable Logic Arrays, Ph.D. dissertation, Dept. of
EE, Stanford University, to be published.

2. S. Kang and W. M. vanCleemput, SALT user’s manual,
Computer Systems Lab. Tech. Report No. 203, Stanford
University, Mar. 1981.

3. S. KANG and W. M. vanCleemput, SPAM user’s manual,
Computer Systems Lab. Tech. Report No. 204, Stanford
University, Mar. 1981.

4. W. M. vanCleemput, Design automation at Stanford,
Computer Systems Lab. Tech. Report No. 178, Stanford
University, July 1979.

5. W. M. vanCleemput, Design automation at Stanford,
Computer Systems Lab. Tech. Report No. 184, Stanford
University, Feb. 1980,

6. J. R. Duley and D. L. Dietmeyer, “A digital system design
language (DDL)," IEEE Trans. Comput., vol. C-1T, pp.
850-861, Sept. 1968.

7. J. R. Duley and D. L. Dietmeyer, * Transiation of a DDL

digital system specification to Boolean equations,® IEEE

Trans. Comput., vol. C-18, pp. 305-313, Apr. 1969.

8. R. L. Arndt and D. L. Dietmeyer, “DDLSIM - A digi-
tal design language simulator,” Proc. National Electronics
Conf., vol. 26, pp. 116-118, Dec. 1970.

10.

11

12

13.

14,

15.

16.

17.

W. E. Cory, 1. R. Duley and W. M. vanCleemput, An
introduction to the DDL-P language, Computer Systems
1.ab. Tech. Report No. 163, Stanford University, Mar.
1979.

W. E. Cory,J. R. Duley and W. M. vanCleemput, DDL~
P Command Language Manual, Computer Systems Lab.
Tech. Report No. 164, Stanford University, Mar. 1979.

D. B. Armstrong, “A programmed algorithm for assign-
ing internal codes to sequential machincs,” IRE Trans.
Electron. Comput., vol. EC-11, pp. 466-472, Aug. 1962.
D. B. Armstrong, “On the efficient assignment of inter-
nal codes to sequential machines,” IRE Trans. Electron.
Comput., vol. EC-11, pp. 611-622, Oct. 1962.

T. A. Dolotta and E. J. McCluskey, “The coding of inter-
nal states of sequential circuits,” JEEE Trans. Electron.
Comput., vol. EC-13, pp. 549-563, Oct. 1964.

J. R. Story, H. J. Harrison, and E. A. Reinhard, “Optimum
state assignment for synchronous sequential circuits,” IJEEE
Trans. Comput., vol. C-21, pp. 1365-1373, Dec. 1972.

P. Bricaud and J. Campbell, “Multiple output PLA
Minimization : EMIN,” Wescon 78.

S. J. Hong, R. G. Cain and D. L. Ostapko, “MINI : A
heuristic approach for logic minimization,” IBM J. Res.
Develop., vol. 18, pp. 443-458, Sept. 1974.

H. Langenbacher, “Boolean minimisation for logic arrays,”
M. S. Thesis, Dept. of EE, San Diego State Univ. , Fall,
1979.

Paper 19.1

