
...

Jar-s. 19, 1983

ABEL SPECIFICATION

Advanced Boolean Expression Language <ABEL) is a tool
the design engineer will use to develoo logic systems with
orogrammable logic.

MAJOR OBJECTIVES

Convert an inaut description into a logic device fuse
oatter-'r-1.

Support all existing logic devices.
devices.

Expandable to new

Oaerate on computer systems available to Data I/O's
customeJ·~s.

BACKGROUND

Prooramable Logic Array was developed as an alternative
to enormous effort required to design a random logic IC.
The logical organization of PLA's consists of an ~and'' array
arsd an "or~" .:n··t··ay. (Figtrr~e 1a) The desigrH?·r·· customizes the
PLA to his needs by connecting the desired nodes of the
"a-rsd" C:H'"•d "C•"r-." at··t~ays. This may be done wherr the device is
manufactured or in the field. <Similar to a mask
programmable ROM and a fuse-link ROM.)

Field orogrammable logic consists of three types of
devices: PROMS, PALs, and FPLAs. Both arrays are
programmable in the FPLA while the PAL has a programmable
"or" at~l· ... ay arsd the PROM has a progt"'amrnable "and" at"'r"'ay.
<Figure 1) The FPLA is a larger part and can hold more
functions while the PAL is simple and fast. Many tasks can
use either part. The simplicity of the PAL plus its
development tools <PALASM> make it a very attractive part
for the first time user.

EXISTING LOGIC DEVELOPMENT LANGUAGES

There are many different logic development programs:
PALASM, H & L, in-house programs , and third party software.

PALASM is the most widely used language for
orogrammable logic. It was developed by Monolithic Memories
Il'rc fol" ... llSe orr their"' PALs. PALASM has become ars "il'rdustY·y
s·b:n':dal""'d" developmer.t tool and is bei·ng expa-rsded to ha-rrdle
additional devices such as PROMS. The boolean equation

--

-

JaYs. :l.9, 1983

input is translated into a fuse pattern that is transfered
to the PAL orogrammer (Data I/O's LogicPak). This
translation is a simole one to one mapping of the boolean
eauation to the fuse numbers. No logic reduction or design
automation is performed. PALASM does simplify the engineers
task and is a maJor part of the PAL's success. Figure 2
shows an example of PALASM input and output.

H & L is a program developed by Data I/0 to simplify
pl·-·o!;;p·~ammirsg the Sigrsetics Irttegt··ated Fuse Logic <IFL). It
is a simple text editor with data entry error checking. The
input is in the form of a high (H) or low (L) or don't care
(X). The created fuse map is then programmed in the device
(see example in Figure 3).

Comouter companies and univers1t1es have developed
in-house languages which aid the programming of digital
logic devices. The "irs-house" laYsguages of IBM, DEC, etc
will remain proprietary but some of the languages developed
by universities are in the public domain. The active
research programs are directed toward automated VLSI logic
design, however the orogrammable logic is a subset of this
wot~k.

Couple, expected to be released soon by Assisted
Technology, Inc., is a universal logic development language
similar to PALASM. This language has many additional
features, such as macros, and supports FLPA's and FPLS's as
well as PAL's. Couole will run on personal computers such
as the IBM PC and CP/M systems.

COMPARISON OF ABEL

PALASM is a widely used language that will be used for
comoarison to the oroposed ABEL language. PALASM was best
suited for this comparison because of its industry wide
acceptance and the similarities in the targeted marketplace.

Both PALASM and ABEL are languages which translate
boolean equations into a fuse map pattern. ABEL however,
takes into consideration the behavior of the input. ABEL
has a more advanced structure internally and externally.
Included in the language is the ability to handle all logic
families and handle macro definitions or library functions.
ABEL is to be designed in itself more like a high level
language Csee examole in Figure 4).

2

FPLA
4 ln•4 0Ut•16 Products .,

~ 7, 7~ 7 ~ 7 rv rv i'J ivA

•s

.

. .. AND ARRAY
(PROGRAMMABLE)

PROM
16 Words X4 Bits

~

K
~
~
~
F=<.
K
F=<.
F=<
F=<.
F=<.
F=<
F=<
F=<
F=<.
F<
1.....1

"'R" ARRAY
OGR CPR AM MABLE)

yyyy

"'R" ARRAY ., lo
(PROGRAMMABLE)

~ 7 1 7~ 7 ~ 7 rv rv iV ~

. AND" ARMY
(fiXED)

r""""-

F<
=<
F<
=<
=<
~
F<
F<
=<
~.
=<
=<
=<
=<
F=(
I....J

yyyy

13

~

IV

PAL
41n•4 Out-16 Products .,

, 7 1i 7 "' rv ['J

. " AND ARRAY
(PROGRAMMABLE)

v

FIG-

I'"""'\.

~
F<
F<
F=<
==<'
~
=<
=<
F=<
~
F<
K
I=<
K
I=<
1.....1

"'R" ARRAY
(FillED I

YY?Y

PAL20L10
VIDLOG
VIDEO LOGIC
MMI ENGLAND
CB2 CB3 CB4 CBS CB6 CB7 BLitO BLJtl Gl Bl 82 GND
84 ENl R G B X LOADl LOADO 80 Bl BLit VCC

IF (VC:C) /LOADO • /80* 81* 82'\ 84

IF (VCC) /LOADl • 81* 82* 84*/Bl
~ 81* 82* 84* Bl* 80

IF (VCC) /ENl • Bl* BO

IF (VCC) /R • CB4* BLitl
+ CB2* BLitO

IF (VCC) /G • CBS* BLitl
+ CB3* BLitO

IF (VCC) /B • CB6* BLitl
+ /CB2*/CB3* BLJtO

IF (VC:C) /X • CB7* BLJtl

IF (VCC) /BUt • /Gl*/BLll*/BLKO
+ /Gl*/BLKO*/CB4*/CBS*/CB6*/CB7

VIDEO LOGIC •

PAL DESIGN SPECIFICATION
BARRY HUGHES 02/18/81

11 1111 1111 2222 2222 2233 3333 3333
0123 4567 8901 2345 6789 0123 4567 8901 2345 6789

0-------------------
1 -- -- - -- -- -x- -x- -x- - -- /Gl*/BLK1*/BLKO
2- -x- -x- -x- -x- -x- -- -x- -- -- /G1*/BLKO*/CB4*/CB5*/CB-

24-------------------
25-- --x -- --- --- --- x- x-x- /10*81*82*84

32--------------
33 - -x -- -- --- -- -- - x- x-x- 81*82*84*/11
34 - -x- -x- -- -- --- -- -- x-- x-x- B1*B2*84*Bl*BO

40--------------
41 -- - -- -- x-- - x-- - -- - CB7*BIJt1 .. -----------------
49 - - - x- - - x- - --- - CB6*BL1t1
50 -x-x --- -- - - x- -- - - - /CB2*/CB3*BLK~

56--------------
57 - - x- -- - - x- -- -- - CB5*BLK1
58 x- - -- -- - x- - - - - CBl*BLltO

64--------------
65 - x- -- -- -- - x- -- -- - CB4*BLK1
66 -x- --- - -- -- x- - - -- - CB2*BLitO

72 - -- --- -- -- - -- --- --- ---
73- -x- -x- --------- B1*BO

LIGBND: X 1 POD IIDT BLOMN (L,li,O) - 1 PUSB BLOIIll (B,P,1)

MUMBBR 01' PUSBS BLOW • 801

---------------~~~--~---~--~~~~-- ---------------

*A HHHHHHHH
~ *P 1210 *I H---H-H·-HH·--··--LLL.L. *F f:.!.A.A •• A

*p rZl1 *I H·--H-1-1·-LH-·---L.L.LL.. *F A. A .. AA.
-Jt:·P 02 *I H--·····H-H-HL ----LLU_ *F A •• 1~A. A.
*P tZI3 *I H---H--H-LL -·--LLLL *F • AA. A •• A
*P 0Lt *I L. ------·-------LL.LL *F A •• AA •• A
*P 05 *I H--HH-------LLLL *F A •• A.A.A
*P 06 *I H--H-----------H *F • AA •• A. r~
*P 07 *I --·-·--L -·-------·-·LLLH -IE·F A.A. A.A.
*P 08 *I ------H-----LLLH -11!-F A. A •• A. A
*P 09 *I -----L------LLHL *F A.A. A.A.
*P 10 *I ----·------H---··-··-·LLHL *F A.A •• A.A
*p i1 *I --·---L -----··-LHLL iii-F A. A. A. A.
*P 1 ·::· *I -H----------LHLL *F • A. AA. A •
*P 1 "?, *·I ------L ·--·-----HLLL -M-F A. A. A. A •
*P l4 *I -H--·---·------HLLL *F • A. AA. A.
*P 1""' ... • J *I H--H-H-HL-L-LLHH *F A •• AA. A •
*P 16 *I H--H-H-LL-L-LLHH *F .AA.A.A.
*P 17 *I H--HH-----L-LLHH *F A •• A.A.A
*P lB *I H--H------LHLLHH *F • AA •• A. A
*P 19 -~I ----------H-LLHH *F • AA •• A. A
*P 20 *I H--H-H-HH--0HHLL *F A.A.A •• A
*P 21 ·IE-I H--H-H-LH---HHLL *F A. A •• AA.
*P 22 *I H--HH----·---HHLL *F A.A •• A.A
*p f~3 *I H--H-------HHHLL *F • AA •• A. A
*P 24 *I H-----------LHLH *F A •• A. A. A
*P 25 *I -H----------LHHH *F • R. A. AA. ---- *P 26 *I --H-------·-·--HHHL *F A •• A. AA.
*p ;:::,;,7 *I H--H-H-LH---LHHL *F ?='~.A •• AA.
*P 28 *I H--H-H-HH---LHHL *F A. A •• A~l.
*P 29 *I H--H-H·-HL ---LHHL *F A •• AA. A.
*P 30 *I H--H-H-LL---LHHL *F • AA. A. f:'1.
*p ·:;- i

"'"'· *I H---H-.. --·----HLHHL *F • AA •• A. A
*P 32 *I -·H----------·LHHL -M·F • A. AA •• A
*P 33 *I ---------L--HHLH *F • AA. A •• A
*P 34 *I L-----------HLLH *F A.A. A.A.
*P ""J•C:

...J....! *I 0000000000000000 *F AAAAAAAA
*P 36 *I 0000000000000000 *F AAAAAAAA
*P 37 *I 0000000000000000 *F AAAAAAAA
*P 38 *I 0000000000000000 *F AAAAAAAA
*p 39 *I 0000000000000000 *F AAAAAAAA
*P 4tZI *I 0000000000000000 *F AAAAAAAA
*P 41 *I 0000000000000000 *F AAAAAAAA
*P 4·=· " ~ *I 0000000000000000 *F AAAAAAAA
*P 43 *I 0000000000000000 *F AAAAAAAA
-lri·P 't4 *I 0000000000000000 *F AAAA~lAAA
*P L~5 *I 0000000000000000 ·K-F AAAAAAAA
*P 46 *I 0000000000000000 *F AAAA~IAAA
*P 4"1 *I 0000000000000000 *F AAAAAAAA

·~----- ------------------------ -

-
!***!
I* A conceptual ABEL example *I
I* *I
I* 06 Dec 19S2 *I
!***!

HEADER
DEVICE WIMPSSR199;

PINS
MA0, MAl, MA2, A0, Ai, A2, AS, A9, A10,
ROW, HOLD, TOGGLE

END_PINS;
END_HEADER.

FUNCTION MUX(A, B, SELECT>;
MUX = A * SELECT + B * /SELECT;

END_FUNCTION MUX.

EQUATIONS
MA0 = MUX(A0, AS, ROW) ;
MAl = MUX< Al, A9, ROW>;
MA2 = MUX< A-=-... , Ail, ROW>;

END_EQUATIONS.

STATE_LIST I* A SIMPLE STATE MACHINE *I
FIRST;
SECOND;
THIRD;

END_STATE_LIST.

STATE_DIAGRAM
STATE FIRST;
IF /HOLD THEN SECOND
ELSE FIRST; I* LOOP UNTIL HOLD LOW *I

STATE SECOND;
ALWAYS { TOGGLE = TRUE THIRD; }

STATE THIRD;
ALWAYS { TOGGLE = FALSE ; FIRST; }

END_STATE_DIAGRAM.

FUNCTIONAL_ TEST

TEST_NODES
A0, Al, A2, AS, A9, A10, ROW, MA0, MAl, MA2;

END_TEST_NODES.

VECTORS
H H H L L L
H H H L L L

END_VECTORS.

L L L L ;
H H H H ;

END_FUNCTIONAL_TEST.

"'--------- --------- -· ---------- -·-- -- -----. -- -------~--- -------------·-·~---~-------··------ ·----.---

-

* * * BOOLEAN
* EQUATIONS
*

*
*
* *****************

* * * EQUATION *
* TRANSFORM *
* * *****************

* * * CONTROL
* DOCUMENTS

*
*
*
* *****************

* * * PROBLEM DEFINITION *
* *

* * * STATE
* MACHINE

*
*
*
* *****************

* * * EQUATION *
* CALCULATOR *
* * *****************

* * * EQUATION *
* REDUCER *
* *

* * * FUSE *
* TRANSLATOR *
* *

* * FUSE
* PATTERN
*

*
*
*
* *****************

* * * TRUTH TABLE *
* TEST VECTORS *
* * *****************

* * * SIMULATION *
* *
* *

*
*
*
*

TEST
VECTORS

*
*
*
* *****************

Logic Development flow for ABEL

DIGITAL DESIGN

R.C. Clare defined the three processes of logic design
as DEFINITION, DESCRIPTION, and SYNTHESIS. <Reference)
The DEFINITION phase is tne creative portion that the human
engineer must perform. The engineer expresses his solution
in the DESCRIPTION. The SYNTHESIS phase is a time consuming
chore to imolement the solution, a task well-suited for
automation. The ABEL program will take the engineers
description and synthesize the boolean equations and the
fuse mao for the programmable device.

The present versions of PALASM require the engineer to
desc~~ i be the p·rc•b lem i Y"• a rest r··i ct i ve "sum of ;:Yr~c.duct s"
format. This requires considerable effort to transform the
DEFINITION into the DESCRIPTION. The level of cain can be
reduced by adding MACRO processors and libraries of standard
functions but the restrictive equation entry will always
hinder the PALASM type of language.

All logic systems can be represented by a state
machine, the combinational logic is JUSt a special case (one
state looping on itself). The synthesis of the device
equations or patterns from a state machine is done in two
steps, an equation calculator, and an equation reducer. The
equation calculator produces a non-minimum every
non-minimum) set of equations that perform the desired
function. These eauations must be reduced before they will
fit into any device. In the past this reduction reouired a
mainframe computer, but improved algorithms will run on
deskt c•o comouter~s i Yr acceptable times. (A ·r~easc•Y"rabl e guess
would be 10 to 300 seconds on a 16 bit microorocessor for
oresent looic devices.}

DESCRIPTION

All logic designs can be described with boolean
eouations, state diagrams, and truth tables. The boolean
eouations are normally exoressed in sum of product form but
other forms should be allowed. The state diagrams could be
entered graphically but this would be very implementation
dependent. Most design languages use the IF THEN ELSE
construct to enter state diagrams. The truth table is an
effective method for describing the behavior of a system for
verfication and simulation.

The descriotion will be aided by predefined and user
defined macros and functions. If a logical construct was
used often, such as a shift register, the ABEL compiler
could pull a predefined set of equations from a library much
faster then it could synthesize and reduce the equations

7

--
ABEL will allow multiple sect1ons of equations and

state diagrams in a single file. This will allow the
designer to define the problem in several modules <blocks)
and then include as many as possible in each device.
(Figure) For example a oroblem can be defined in 5 blocks
but all 5 won't fit into any single logic device. The
engineer could partition blocks 1, 2, and 4 into a FPLS and
blocks 3 and 5 into a PAL. This partitioning would be
defined in the CONTROL block. The partitioning would be
done by trial and error.

EQUATION CACULATOR

Normal compiler technioues would be used to carse the
inout file into a intermediate form. If a sum of products
set of equations were to be used in a PAL, this form could
be mapped directly into fuse oattern. This is what PALASM
does today. A state diagram would require processing to
derive the flip-flop equations and the outout tables. This
is a straightfoward process. An existing program requires
100 o·r"' sr:• li\-... ,es of code. <Aopel'·,dix)

Truth tables or non sum of product equations could be
transformed at this stage.

EQUATION REDUCTION

One eouation calculator example produced 50 equations
for a 8 state machine that was to go in a PAL1GR6.
<Aooendix __) Some form of logic reduction is required.
Svoboda developed two programs, PRESTO and OPTIMA, that are
widely used for logic reduction. As their names imcly,
PRESTO will do a fair Job in a short time while OPTIMA finds
the absolute minimum set of equations. Douglas Brown of
Tektronics developed a State-Machine Synthesizer (SMS)
using PRESTO and he claims a microprocessor version is
practial. <Appendix)

ABEL would have the classical comp11er trade-off,
efficeincy vs convenience. Given enough time and skill an
engineer could fit more function into a given logic device
thal'1 ABLE cc;.uld.

8

,.,....-...

FUSE:: TRANSLATOR

The fuse translator would require a table of the
individual device fuse maps. The translator JUSt maps the
reduced equations to the corresponding fuses. This is
oresently done with PALASM and H&L so existing techniques
cal"t be used.

SI!'t1ULATION

The designer will describe, via truth table, the
correct operation of the programmed device(s}. ABEL will
comcare the operation of the simulated device against the
truth table. The internal nodes as well as the external
pins may be simulated. Other forms of description (besides
truth table) may be added in furture versions.

CONTROL DOCUMENTS

ABEL would provide the control documents for normal
configuration management. This includes a source listing,
printed fuse map, and diagram of the device pinout.

FUSE PATTERNS

The fuse pattern outout would conform to the JEDEC data
transfer standard (Appendix).

TEST VECTORS

The test vector output file would meet the JEDEC
standard for data transfer to logic programmers. The output
would only include the stimulus and output for external
r-todes (o i r1s) •

9

Ayr··es, Rc:.r.,
Co~·, fe·r~er,ce, i 5,

BIBLIOGRAPHY

IC Soecification Language, Design Automation
(1979)

Ayres, Ron, Silicon Compilation - A Hierarchical use of
PLAs, Design Automation Conference~ 15 (1979)

VanCleemput, W. M., Computer Hardware Description
Languages and Their Application, Design Automation
Conference, 15, (1979)

BeninQ, Lionel, Developments in computer Simulation of
Gate Level Physical Logic, Design Automation Conference, 15,
(1979)

Eva·ngelisti, C. T., Goettzel, G., Ofek., H., Desi~rrd·r,g
with LCD: Language for Computer Design, Design Automation
Conference, 14, (1977) VanCleemput, W. M., An Hierarchical
Language for the Structural Description of Digital Systems,
DesiQi'"l Automatior1 CoY"tfereY1ce, :!.'+, 0977)

Bechtolsheim~ Andreas, Interactive Specification of
Structured Designs, Design Automation Conference 15, (1978)

McWilliams T., Widdoes L. Jr., SCALD: Structured
Computer-Aided Logic Design, Design Automation Conference,
15, (i97B>

Brown, Douglas, A state-Machine Synthesizer-8MB, Design
Automatioy-, Co·r,fe·r~e·r,ce, 18, (1981)

Darringer,John, Joyner William Jr., Design Automation
Conference, (1980)

Northcutt, Duane, The Design and Implementation of
Fault Insertion Capabilities for ISPS, Design Automation
Cor,fer~ence, 17, (1980)

Cory, W. E., vanCleemout W. M., Developments in
Verification of Design Correctness, Design Automation
Confe·r~el'"tce, 17, (1 980)

Cory, W. E., Symbolic Simulation for Functional
Verification with ADLIB and SDL, Design Automation
CcmfereYtce, 1 B, (1981)

Shiva SaJJan, Combinational Logic Syntheses from an HDL
Description, Design Automation Conference, 17, (1980)

Hightower, David, Roberts, Martin, Automated Logic
Arrays and the Customer Interface, IEEE, (1981)

--··

Sic~etics IFL Developme~t System, Data I/0 Corporation,
(l 9,€;3;.~}

Miller, Warre~, The Philosophies of Fuse Programmable
Logic Advanced Micro Devices

Osa~~, Robert, A U~iversal La~guage for Programmable
Logic, Assisted Tech~ology I~c.

Smith, Bill, High Level Logic Desig~, Signetics
Cor~p•:·r··at i ort,

Schmookler, Marti~, Desig~ of Large ALUs Usi~g Multiple
PLA Macros, IBM Jour~al of Research a~d Developme~t, Volume
24, No. 1, (J arH.tar~y, 1981)

Eichelberger, E. B., li~dbloom, E., A Heuristic
Test-Patter~ Generator for Programmable Logic Arrays, IBM
Jour~r,al C•f Resear~ch and Developme:mt, (Jar,uary :!.981)

Golden, R. L., Latus, P. A., Lowy, P., Desig~

Automation a~d the Programmable Logic Array Macro, IBM
Jr:•ur~r-,al of Resear~ch artcl Developmertt, (Jarn.ta·r~y 1981)

Ka~g 9 S., va~Cleemput, W. M., Automatic PLA Synthesis
from a DDL-P Descriptio~, Design Automation Conference, 18,
(l9El:l.)

Gar~c:i.a,

f ol'~ Des i r:rn
i 982)

Sal, Sriram, K. S., A Survey of IC CAD Tools
Layout~ and Testi~g, VLSI Desig~ <Sept./Oct.

Goel, Prabhakar, Podem-X: An Automatic Test Ge~eration
System for VLSI Logic Structures, Desig~ Automation
Cortferencf'.:?, :1. 8, , (l981)

Holt, Dan, Sapiro, Steve, BOLT- A Block Oriented Design
Specification Language 1 Design Automation Conference, 18?
(t 981)

Goates, Gary, ABLE: A LISP-Based Layout Modeling
Language with User-Definable Pocedural Models for
Storage/Logic Array Design, Design Automation Conference,
18, (198 l)

Suwa~ I., Kubitz, W. J., A Cc•mouter~-Aided-Desicm
System for Segmented-Folded PLA Macro-Cells, Design
Au·tomatio·n Co·nfer~er,ce, 18, (19El1)

Johnson, William, Crowley, Jeri, Steger, Mark, Woosley,
Ellen, Mixed-Level Simulation from a Hierarchical Language,
JotJrYJal of Digital Systems, Vc•lume 5, Issue 3, (1980}

Hightower, David, Roberts, Martin, Automated Logic
Arrays and the Customer Interface, IEEE, (!981)

-·

APPENDIX

A. A State-Machine Synthesizer - SMS D.W. Brown

B. Comcuter Hardware Description Languages W.M. vanCleemout

Automatic PLA Synthesis from a DDL S. Kal'Hl

D. Programmable Array Logic Family IY!MI

~PLA Tape Controller

Universal Language for PLDs

