# 6845 Video Display Board By Data Systems 68

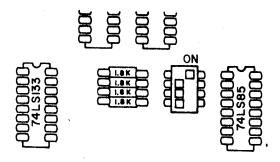
The 6845 video display board (VDS) provides your SS-50 based system with memory mapped video display. If you add a keyboard for data entry, You will have your terminal built into your computer and won't need a separate one. To simplify the installation into your system, software drivers are provided that are overlays to SBUG-E(tm). These drivers reside totally within the 2k SBUG-E(tm) space. To complete the installation, a simple patch to FLEX(tm) will vector to your new OUTCH routine.

The VDB is based on the Motorola MC6845 CRT controller chip, U26. A 2716 font EPROM, 2k of display RAM and a handful of TTL latches buffers gates and shift registers support the 6845 for use on the SS-50 bus. The display RAM resides entirely within the 65k address space so that a program can write characters directly to a displayed page.

## Description:

The address bus A1-A10, is multiplexed between the 6845 and the 2k display RAM (U15-18) by TTL switches U11-12, and 19. The 6845 puts out data which is latched by a pair of 74175 quad latches (U8-9). This data is input as address information to the font EPROM (U14). The lower 4 address bits for U14 are row addresses from the 6845 and the data that appears as output from the EPROM is the character row information for a given scan line. This parallel data from the EPROM is lorded into a 74166 shift register (U13) where it is clocked out on a scan line. This output is the video which when combined with sync and cursor information from the 6845 becomes the composite video output to the CRT monitor.

Scanned and edited by Michael Holley Nov 28, 2000 Data Systems 68 Document Circa 1982 A 4-position dip switch places the display RAM and the controller registers at a 4k boundary. For the moment, choose this boundary at \$E000. This places the 6845 controller registers at \$E7FE-E7FF and the display ram from \$E800-\$EFFF. These addresses are decoded basically by 74133, an 8-input NAND gate. Page decoding for the display ram is provided by the 74LS00 (U10) a demultiplexer. The \$E000 addressing boundary is decoded by a 7485 comparitor (U5) from the 4 contact dip switch and address lines A12-15.


Data from the SS-50 system bus can also write and read the display RAM through a pair of 8835 bus transceivers (U6-7). This allows direct use of the screen by such programs as the SCREDITOR(tm).

A local 12.56 MHz crystal oscillator (U20) is counted down by a 74163 binary counter (U21). This generates the scan rate timing for the 74166 shift register (U13) which clocks a row of character onto a given scan line. This same divided down clock is input to the 6845 where sync is generated. Horizontal and vertical sync and cursor position data are all ORed to generate the composite video. The actual sync timing cursor characteristics and character placement are determined from the initialization lookup table in the software drivers provided.

# Getting it running:

Once the board is built, check it carefully for solder shorts and proper chip placement. Pay particular attention to pin 1 on each IC. Leave out the 6845 chip for the initial checkout. Plug the board into the bus for power and check the output of the 5 volt regulator, U27. It should be 5 volts plus or minus 5%. If all is well, remove the board from the system with system power off and install the 6845 IC.

Now set the dip switch. The most significant bit of the address is the lower switch (closest to the edge connector). The upper 4 bits of the address determine the boundary that we are setting.



# 

Notice that an on switch is a binary zero.

| Address | #1 - A12 | #2 A13 | #3 A14 | #4 A14 |
|---------|----------|--------|--------|--------|
| 0000    | On       | On     | On     | On     |
| 1000    | Off      | On     | On     | On     |
| 2000    | On       | Off    | On     | On     |
| 3000    | Off      | Off    | On     | On     |
| 4000    | On       | On     | Off    | On     |
| 5000    | Off      | On     | Off    | On     |
| 6000    | On       | Off    | Off    | On     |
| 7000    | Off      | Off    | Off    | On     |
| 8000    | On       | On     | On     | Off    |
| 9000    | Off      | On     | On     | Off    |
| A000    | On       | Off    | On     | Off    |
| В000    | Off      | Off    | On     | Off    |
| C000    | On       | On     | Off    | Off    |
| D000    | Off      | On     | Off    | Off    |
| E000    | On       | Off    | Off    | Off    |
| F000    | Off      | Off    | Off    | Off    |

That's all there is to building up the board. All that remains is to include the software drivers into SBUG-E(tm) and make the small patch in FLEX(tm) to vector to the new OUTCH routine called decode. The enclosed assembly listings show the OUTCH replacement and the simple patch to FLEX(tm). The patch to SBUG-E (tm) deletes the DATRAM routines and the cassette load and punch routines to make room. Just burn a new EPROM with the modified SBUG-E(tm) and you're off and running.

### \*NOTE\*

U14 is a 2716 EPROM which is the character generator you may want to program your own custom prom or a 2716 with character set are available for Data Systems "68" or you can use the listing supplied and burn your own.

The patch to FLEX(tm) is a simple JSR to your decode in SBUG-E(tm). Use the FLEX(tm) utilities FIX or DISKEDIT to make the 7 byte change.

It should be noted that the listing supplied are to configure for a 80 by 24 display.

That's it, now go forth and enjoy the flexibility of your new video display board from data systems 68.

- \* This patch to the FLEX(tm) output routine links
- \* The new video display drivers to FLEX(tm).

|                      | FF35                      | DECODE | EQU                      | \$FF35 NEW OUTEE S/R                           |
|----------------------|---------------------------|--------|--------------------------|------------------------------------------------|
| D38B                 |                           |        | ORG                      | \$D38B FLEX (TM) OUTPUT S/R                    |
| D38B<br>D38D<br>D390 | 34 17<br>BD FF35<br>35 97 | OUTPUT | PSH<br>JSR<br>PUL<br>END | X, A, B, CC<br>DECODE<br>X, R, B, CC, PC (RTS) |

#### Output Connector +5V 1 14 +5V Composite In 2 13 Vert. Sync. Out Composite In 3 12 Horz. Sync. Out Composite In 4 Video out 11 120 Ohm 5 120 Ohm 10 6 9 Composite Video Ground 7 8 Ground

For composite video jumper 2 to 13, 3 to 12 and 4 to 11.

| QUANTITY                                                                          | PART                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>1<br>1<br>1<br>4                                                             | RESISTORS 330 Ohm 1/4w 220 Ohm 1/4w 120 Ohm 1/4w 180 Ohm 1/4w 47 Ohm 1/4w 1.8 K Ohm 1/4w 10 K Ohm 1/4w                                                                                                                                              |
| 7<br>1<br>1<br>1                                                                  | CAPACITORS 0.1 uF Ceramic 39 PF Silver Mica 47 uF Electrolytic 18 uF Electrolytic 0.47 uF Ceramic                                                                                                                                                   |
| 1<br>1<br>1<br>1<br>1<br>4<br>12<br>9<br>5<br>1<br>2                              | Miscellaneous 12.576 MHz Crystal 2N3904 Transistor 1N914 Diode 40-Pin Socket 24-Pin Socket 18-Pin Sockets 16-Pin Sockets 10-Pin Female Molex Connectors THM 6060 Heat Sink 6-32 Screws 6-32 Nuts                                                    |
| 1<br>1<br>2<br>1<br>1<br>3<br>3<br>4<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>2<br>1 | INTEGRATED CIRCIUTS LM309K (U27) 74166 (U13) 7404 (U20) (U1) 74163 (U21) 2716 (U14) 74LS18 (U2) (U3) (U22) 74LS175 (U8, U9, U25) 2114 (U15-18) 7401 (U23) 74LS88 (U10) 74LS133 (U4) 74157 (U11, 12, 19) 7486 (U24) 7485 (U5) 8835 (U6, 7) 6845 (26) |

## NAM 6845 TERMINAL DRIVER

```
* MODIFIED TO BE CORESIDENT WITH SBUG E (TM)
* DAT RAM, KC LOAD AND KC PUNCH ARE DELETED
* FROM SBUG 4/18/82
       OPT PAG
       ORG $FF00
* POWER ON ENTRY
      LDS #STKADD
RESET
       JSR
             CLEAR
CRTIZ
       LDX
            #CRTTAB
       CLRA
       STAA CRTTAB SET CRT CONTROLLER ADDRESS
CRT1
       LDAB 0,X
       STAB CRTCDR
       INX
                      READ CRT INITIALZATION
            A
                      TABLE INTO CONTROLLER
       INC
       CMPA #$10
       BNE CRT1
       LDX #0
       STX CURPOS
       STX STARAD
       STX LINEAD
       STX
             CCOUNT
       LDS
            #$DFC0
                     TURN ON ECHO, NON ZERO
       LDAB #$FF
       STAB $DFE2
       JMP ESCSET SETUP RETURN FOR ESCAPE
* CONTROL CHARACTER DECODE
DECODE BITA #$60
             DECOD1
       BEQ
* PUT CHARACTER IN DISPLAY
       LDAB CURPOS
       ANDB
            #$07
       ORAB #$E8
       STAB CUTEMP
       LDAB CURPOS+1
       STAB CUTEMP+1
       LDX CUTEMP
       STAA 0,X
       LDX CURPOS
       INX
       STX
           CURPOS
       INC
             CCOUNT
       LDAA CCOUNT
       CMPA CLINE
       BPL
             CRLF
       BRA UPDATE
DECOD1 LDX #DECTAB-1
       CLRB
NEXT1
       INCB
       INX
       CPX
             #DECEND
       BEO
             DECOD
       CMPA
             0,X
```

```
BNE
           NEXT1
       LDX
           #DECADD-2
NEXT2
       INX
       INX
       DECB
           NEXT2
       BNE
           0,X
       LDX
       JSR
             0,X
DECOD
       RTS
* UPDATE CRT CONTROLLER REGISTERS
UPDATE PSHB
       LDAB
             #$0C
       LDX
           #STARAD
UDATE1 LDAA 0,X
       STAB CRTCAR
       STAA CRTCDR
       INX
       INCB
       CMPB
            #$10
       BNE
             UDATE11
       PULB
       RTS
*CARRAGE RETURN
RTURN1 LDX LINEAD
       STX
            CURPOS
       CLR CCOUNT
       BRA
           UPDATE
*CARRAGE RETURN LINE FEED
CRLF
    BSR RTURN1
       JMP
            LFEED
       ORG $FC09
*LINE FEED
LFEED LDX #STARAD
       LDAA 3,X
       ADDA
            CLINE
             3,X
       STAA
       BCC
             LFEED1
       INC
            2,X
LFEED1 LDAA 7.X
      ADDA CLINE
       STAA
             7,X
       STAA CUTEMP+1
       LDAA
            6,X
       ADCA
            #$00
       STAA
           6,X
* CLEAR NEXT LINE
       ANDA #$07
       ORAA
            #$E8
       STAA CUTEMP
LFEED3 LDX CUTEMP
       LDAA #$20
       LDAB CLINE
LFEED4 STAA
             0,X
```

INX

```
CPX
             #MEMEND+1
       BNE
             LFEED5
       LDX
             #MEMSTR
LFEED5 DECB
       BNE
             LFEED4
* CHECK FOR LAST LINE ON SCREEN
       LDX
             #STARAD
       LDAA 5,X
       CMPA LSCREN
       BNE
             LFEED2
            5,X
       INC
       BRA
             SCROLU
             5,X
LFEED2 INC
           UPDATE
       JMP
*SCROLL UP
SCROLU LDX
           #STARAD
       DEC
             5,X
       LDAA
             1,X
       ADDA
            CLINE
       STAA
            1,X
             SCROL1
       BCC
       INC
             0,X
SCROL1 JMP
           UPDATE
* BACK SPACE
BACKSP CLRB
       DEC
           CCOUNT
       BPL
             BACK1
       LDAA CLINE
       STAA CCOUNT
       DECA
            CURPOS+1
       ADDA
       ADCB
            CURPOS
       STAB
            CURPOS
       STAA CURPOS+1
       JMP
             UPDATE
             CURPOS
BACK1
       LDX
       DEX
           CURPOS
       STX
       JMP
             UPDATE
* CLEAR SCREEN
CLEAR LDX
             #MEMSTR STARTING DISPLAY MEM.
                      SPACE
       LDAA
             #$20
CLEAR1 STAA
             0,X
       INX
       CPX
           #MEMEND+1
       BNE
           CLEAR1
       RTS
* HOME CURSOR TOP LEFT
HOMEUP LDX
             STARAD
       STX
             CURPOS
           LINEAD
       STX
       LDX
           #0
       STX
             CCOUNT
```

JMP

UPDATE

```
* CTR PARAMETERS
CLINE
       FCB
           80
                      COULMNS PER LINE
LSCREN FCB
              23
                      LINES PER PAGE ON CRT
DECTAB FCB
             $0A
       FCB
              $0D
       FCB
              $08
              $0В
       FCB
       FCB
              $0C
              $1B
       FCB
DECEND EQU
       ORG
              $FEDF
*CRT INITIALIZATION TABLE
CRTTAB FCB
              99,80,88,8
              25,2,24,24,00
       FCB
       FCB
              $9,$60,$8
              $0100,$0100
       FDB
*COMMAND TABLE
DECADD FDB
             LFEED
       FDB
             RTURN1
       FDB
             BACKSP
       FDB
             CLEAR
            HOMEUP
       FDB
       FDB CURSOR
MEMSTR EQU
           $E800
MEMEND EQU
              $EFFF
CRTCAR EQU
              $E7FE
            $E7FF
CRTCDR EQU
STKADD EQU
              $F7FF
CURSOR EQU
              $F610
*RAM LOCATIONS
       ORG
              $F600
STARAD
       RMB
              2
CURPOS RMB
              2
             1
CCOUNT RMB
LCOUNT RMB
             1
LINEAD RMB
CUTEMP RMB
              2
       ORG
              $FDE7
ESCSET LDAB
              #$39
                      SETUP DUMMY RTS FOR ESC
       STAB
              CURSOR
* REPLACE OUTCH S/R IN SBUGE
       ORG
             $FFDF
OUTCH
       PSH
            X,X,B,CC
           DECODE
       JSR
       PUL
           X,A,B,CC,PC (RTS)
```

END

9

```
FCB 18,18,18,18,18,18,18
FCB 18,18,00,00,00,00,00,00
FCB 00,00,00,00,FF,FF,00,00
FCB 00,00,00,00,00,00,00,00
FCB 18,18,18,18,FF,FF,18,18
FCB 18,18,00,00,00,00,00,00
FCB 00,00,00,00,F8,F8,18,18
FCB 18,18,00,00,00,00,00,00
FCB 18,18,18,18,F8,F8,00,00
FCB 00,00,00,00,00,00,00
FCB 18,18,18,18,1F,1F,00,00
FCB 00,00,00,00,00,00,00
FCB 00,00,00,00,1F,1F,18,18
FCB 18,18,00,00,00,00,00,00
FCB 00,08,08,3E,08,08,00,3E
FCB 00,00,00,00,00,00,00
FCB 00,00,08,04,3E,04,08,00
FCB 00,00,00,00,00,00,00
FCB AA, 55, AA, 55, AA, 55
FCB AA,55,00,00,00,00,00,00
FCB 00,00,08,00,3E,00,08,00
FCB 00,00,00,00,00,00,00,00
FCB 00,00,08,08,2A,1C,08,00
FCB 00,00,00,00,00,00,00,00
FCB 00,00,00,00,00,0F,0F,0F
FCB OF, OF, 00, 00, 00, 00, 00
FCB 00,00,00,00,F0,F0,F0
FCB F0, F0, 00, 00, 00, 00, 00, 00
FCB F0,F0,F0,F0,00,00,00
FCB 00,00,00,00,00,00,00
FCB OF, OF, OF, OF, OO, OO, OO
FCB 00,00,00,00,00,00,00,00
FCB FF, FF, FF, FF, O0, 00, 00
FCB 00,00,00,00,00,00,00
FCB OF, OF, OF, OF, OF, OF, OF
FCB OF, OF, 00, 00, 00, 00, 00
FCB FF, FE, FC, F8, F0, F0, E0, C0
FCB 80,80,00,00,00,00,00,00
FCB 00,00,00,00,FF,FF,18,18
FCB 18,18,00,00,00,00,00,00
FCB 18,18,18,18,F8,F8,18,18
FCB 18,18,00,00,00,00,00,00
FCB 18,18,18,18,FF,FF,00,00
FCB 00,00,00,00,00,00,00
FCB 18,18,18,18,1F,1F,18,18
FCB 18,18,00,00,00,00,00,00
FCB 81,C3,66,3C,18,18,3C,66
FCB C3,81,00,00,00,00,00,00
FCB 01,03,06,0C,18,18,30,60
FCB C0,80,00,00,00,00,00
FCB 80,C0,60,30,18,18,0C,06
FCB 03,01,00,00,00,00,00,00
FCB FF, FF, 00, 00, 00, 00, 00, 00
FCB 00,00,00,00,00,00,00
FCB 00,00,00,00,00,00,00
FCB FF, FF, 00, 00, 00, 00, 00, 00
FCB C0, C0, C0, C0, C0, C0, C0
FCB C0, C0, 00, 00, 00, 00, 00, 00
```

```
FCB 03,03,03,03,03,03,03,03
FCB 03,03,00,00,00,00,00,00
FCB 00,1E,3C,3C,1C,0C,0C,0C
FCB 00,00,00,00,00,00,00
FCB FF, 7F, 3F, 1F, 0F, 0F, 07, 03
FCB 01,01,00,00,00,00,00,00
FCB 00,00,00,00,00,00,00,00
FCB 00,00,00,00,00,00,00,00
FCB 00,08,08,08,08,08,00,08
FCB 00,00,00,00,00,00,00
FCB 00,14,14,14,00,00,00,00
FCB 00,00,00,00,00,00,00
FCB 00,14,14,3E,14,3E,14,14
FCB 00,00,00,00,00,00,00
FCB 00,08,1E,28,1C,0A,3C,08
FCB 00,00,00,00,00,00,00,00
FCB 00,30,32,04,08,10,26,06
FCB 00,00,00,00,00,00,00
FCB 00,08,14,14,18,2A,24,1A
FCB 00,00,00,00,00,00,00
FCB 00,08,08,10,00,00,00,00
FCB 00,00,00,00,00,00,00
FCB 00,04,08,10,10,10,08,04
FCB 00,00,00,00,00,00,00
FCB 00,10,08,04,04,04,08,10
FCB 00,00,00,00,00,00,00,00
FCB 00,00,08,2A,1C,2A,08,00
FCB 00,00,00,00,00,00,00
FCB 00,00,08,08,3E,08,08,00
FCB 00,00,00,00,00,00,00
FCB 00,00,00,00,00,00,18,18
FCB 08,10,00,00,00,00,00,00
FCB 00,00,00,00,3E,00,00,00
FCB 00,00,00,00,00,00,00,00
FCB 00,00,00,00,00,00,18,18
FCB 00,00,00,00,00,00,00
FCB 00,01,02,04,08,10,20,40
FCB 00,00,00,00,00,00,00
FCB 00,1C,22,26,2A,32,22,1C
FCB 00,00,00,00,00,00,00,00
FCB 00,08,18,08,08,08,08,1C
FCB 00,00,00,00,00,00,00
FCB 00,1C,22,02,04,08,10,3E
FCB 00,00,00,00,00,00,00,00
FCB 00,3E,04,08,04,02,22,1C
FCB 00,00,00,00,00,00,00
FCB 00,04,0C,14,24,3E,04,04
FCB 00,00,00,00,00,00,00
FCB 00,3E,20,3C,02,02,22,1C
FCB 00,00,00,00,00,00,00
FCB 00,0C,10,20,3C,22,22,1C
FCB 00,00,00,00,00,00,00
FCB 00,3E,02,04,08,10,10,10
FCB 00,00,00,00,00,00,00,00
FCB 00,1C,22,22,1C,22,22,1C
FCB 00,00,00,00,00,00,00
FCB 00,1C,22,22,1E,02,04,18
FCB 00,00,00,00,00,00,00
FCB 00,00,18,18,00,18,18,00
FCB 00,00,00,00,00,00,00
```

```
FCB 00,00,18,18,00,18,18,08
FCB 10,00,00,00,00,00,00,00
FCB 00,02,04,08,10,08,04,02
FCB 00,00,00,00,00,00,00
FCB 00,00,00,3E,00,3E,00,00
FCB 00,00,00,00,00,00,00,00
FCB 00,20,10,08,04,08,10,20
FCB 00,00,00,00,00,00,00,00
FCB 00,1C,22,02,04,08,00,08
FCB 00,00,00,00,00,00,00,00
END
```