T

DMAF1
DISK OPERATING SYSTEM

FLEX VER. 1.0

USER'S GUIDE

Southwest Technical Prods. Corp.

219 W. Rhapsody
San Antonio, Texas 78216

S 4" AT Mk 4 e e e o A S i T PRSI — g et i






DMAF1 Important Notes

Afterscompleting assembly of the DMAF1 disk controller board, there is one modification
which must be made to insure proper operation of the system. Use the light gauge wire supplied
with the kit to make the following changes:

() Connect IC22 pin 29 to IC19 pin 12
() Connect IC19 pin 13 to IC19 pin 14

() Connect IC19 pin 11 to pin number 8 of the ribbon cable connector. The location of pin 8
is shown in the figure below.

— °
AhAARAS
laaaaaa/

DMAF1
BOTTOM

Jot:down the above changes on the bottom of page 3 of the instruction set for possible future

Also, change the value of capacitor C1 on the FD-M motor control board to a 0.047 @250 V
capacitor. This new value should be written in on page 11 of the instruction set.

Before installing the drives in the chassis check the programming of the JPR1-JPR4 option on
both drives. On drive 1 the only thing that should be installed on any of these pins is the two-wire
cable that goes back to the motor control board as described in the instructions. On drive @ no

programming jumper should be installed on any position of JPR1, JPR2, JPR3 or JPR4. If one is
installed, remove it.

The hardware and software documentation for this kit are being shipped separately. Therefore,
if you have received one but not }hgiorther,ﬂbe patient. The rest of the kit should arrive shortly.

There is an addition to the list of modifications to the MP-A (not MP-A2) for compatibility
with the DMAF1. It should be noted on page 23 of your instruction set under the Modifying the
MP-A Processor Board heading.

Carefully cut and lift away pin 6 of integrated circuit IC12 on the MP-A board from the top
side of the board. Cut the pin as near the top surface of the board as you can. Now using a short

piece of light gauge wire, connect together pins 12 and 13 of IC12 on the MP-A board by soldering
the wire to the bottom side of the board.







Assembly Instructions — DMAF1 Floppy Disk System

Introduction

The Southwest Technical Products Corporation DMAF1 is a dual drive, single density, double
sided 8" floppy disk system. The hardware consists of a SS-50 bus (SWTPC 6800) compatible DMA
(direct memory access) controller capable of handling up to four drives, two CalComp 143M double
density rated disk drives, 5 3/8"° H x 17 1/8" W x 20 1/2"" D aluminum chassis, regulated power
supply, drive motor control board, cooling fan, diskette and interfacing cables.

The DMA controller board for the disk system is a 5%'' x 9" circuit board that plugs onto one
of the unused 50-pin connector rows on the SWTPC 6800 computer system. The board contains
all of the circuitry required to interface up to four disk drives. Connections between the controller
and the drives are made thru a daisy chained 50 conductor flat ribbon cable with the terminating
connector along the top edge of the controller board. The controller board contains a 1771 disk
controller chip, 6844 DMA controller, programmable address decoding, full address/data line buf-
fering and on board regulation. The board usilizes low power Schottky technology and has a
current consumption of approximately 600 ma.

Although the board features selectable address decoding in 1K byte blocks from 32K thru 40K
and 48K thru 56K, the supplied software assumes positioning at 36K (9000 hex). The SWTPC MP-B
Mother Board requires a minor patch to allow this. The newer MP-B2 Mother Board requires no
modifications. The controller board requires this memory allocation since the disk controller chip,
DMA controller chip and drive select latch are addressed and accessed just like computer memory
and, hence, require memory addresses.

The DOS (disk operating system) and BASIC Interpreter require a minimum of 20K of RAM
memory on the computer svstem. The first 16K bytes must be located in the lower 12K bytes of
addressable memory. The remaining 8K bytes must be located at 40K thru 48K (AQQ@ thru BFFF
hex). Since this is the address range allocated to the scratchpad RAM on the SWTPC MP-A and MP-
A2 processor boards, the scratchpad must be switch disabled on the MP-A2 board and patch dis-
abled on the earlier MP-A processor board for proper opgration. The DOS itself and most utility
programs either reside or are loaded into this 8K segment. This frees the entire 0 thru 32K byte
address range for user programs, interpreters, and compilers. That small area of memory assigned
for scratchpad RAM (A@@Q thru A@7F) is not over written by the DOS, therefore, the ROM moni-
tor is not affected.

The DMAF1 disk system is being made available in kit and assembled form. Although this in-
struction set has been written for the kit version, it is being supplied with both the kit and assem-
bled versions of the system. The assembled system owner should skip over those sections of the
manual that involve system assembly.

When assembling the DMAF 1 disk system, work on only one assembly at a time. Start with the
large disk controller board, followed by the drive configuration, small motor control board, power

-supply, and then system checkout. This instruction set has been written in this order.

The MOS integrated circuits supplied with this kit are susceptible to static electricity damage
and for this reason have been packed with their leads impressed onto a special conductive foam or
possibly wrapped in a conductive foil. In either case, do not remove the protective material until
told to do so later in the instructions.

DMAF1 Controller PC Board Assembly

NOTE: Since all of the holes on the PC board have been plated thru, it is only necessary to
solder the components from the bottom side of the board. The plating provides the electrical con-
nection from the “BOTTOM" to the “TOP’’ foil of each hole. Unless otherwise noted, it is impor-
tant that none of the connections be soldered until all of the components of each group have been
installed on the board. This makes it much easier to interchange components if a mistake is made
during assembly. Be sure to use a low wattage iron (not a gun) with a small tip. Do not use acid core
solder or any type of paste flux. We will not guarantee or repair any kit on which either product has
peen used. Use only the solder supplied with the kit or a 60/40 alloy resin core equivalent. Remem.-
ber all of the connections are soldered on the bottom side of the board only. The plated-thru holes
provide the electrical connection to the top foil.

-1




()

()

()

()

Before installing any parts on the circuit board, check both sides of the board over carefully
for incomplete etching and foil “’bridges’’ or “‘breaks’’. It is unlikely that you will find any, but
should there be, especially on the ““TOP” side of the board, it will be very hard to locate and
correct after all of the components have been installed on the board.

Attach all of the resistors to the board. As with all other components unless noted, use the
parts list and component layout drawing to locate each part and install from the “TOP"’ side of
the board bending the leads along the “BOTTOM" side of the board and trimming so that
1/16"" to 1/8'' of wire remains. Solder.

Install all of the capacitors on the board. Be sure to install the electrolytic capacitor oriented
exactly as shown on the component layout drawing. Solder.

Install the transistors and diodes on the board. The diodes must be turned so the banded end
corresponds with that shown on the component layout drawing, and the transistors must be
turned to match the outline on the component layout drawing as well. Solder.

Starting from one end of the circuit board install each of the five , 10-pin Molex female edge
connectors along the lower edge of the board. These connectors must be inserted from the
“TOP" side of the board and must be pressed down firmly against the board. Makes sure the
body of the connector seats firmly against the board and that each pin extends completely
into the holes on the circuit board. Not being careful here will cause the board to either
wobble and/or be crooked when plugged onto the mother board. It is suggested that you
solder only the two end pins of each of the five connectors until all have been installed; at
which time, if everything looks straight and rigid you should solder the as yet unsoldered pins.

Insert the small nylon indexing plug into the lower edge connector pin indicated by the small
triangle on the “BOTTOM" side of the circuit board. This prevents the board from being
accidently plugged on incorrectly.

Install the three programming headers on the board. There is one sixteen pin and two three
pin headers. These must be installed from the “TOP” side of the board with the shorter pin
side going into the board. Using the component layout drawing, install one three-pin header
in the NOR/MR position, the other three-pin in the 32K/48K position and the sixteen-pin
header in the @1234567 position. The three small shorting blocks are used for programming
the board and will be detailed later in this instruction set. Until then, temporarily plug one
shorting block between the center pin and NOR terminal on the NOR/MR header. Plug an-
other between the center pin and the 32K terminal on the 32K/48K header. Plug the remain-
ing shorting block between the 4 and the pin immediately below it on the 91234567 header.

The 50-pin ribbon cable connector should now be attached to the board. Install the connector
from the “TOP” side of the board and orient the connector such that the pins face the top
edge of the board. Solder.. The connector supplied may have locking ears either attached to
or detached from the connector. The locking ears may be inserted and/or removed from the
connector even after it is soldered in place. If you will be operating the 6800 Computer Sys-
tem with the cover off you should install the locking ears. If you will be operating the 6800
Computer System with the cover on you will have to remove the locking ears because the
cover will not go on with the ears in place. The locking ears lock the flatribbon cable connec-
tor in place when installed and when folded back, eject the mating connector for easy removal.
If you are not using the locking ears, you will have to use a small bladed screwdriver to unplug
the mating connector whenever removal is necessary. Do not attempt to remove the mating
connector by pulling on the flat ribbon cable.

The crystal should now be installed on the board. Bend the crystal’s leads at a 90° angle
approximately 1/8" from its body and mount from the top side of the board. After soldering,
fasten the crystal to the board using a short piece of stripped wire by passing the wire through
the two holes next to the crystal.

Install all integrated circuits, except IC6, 1C9, 1C22, IC26 and 1C29. As each one is installed,
make sure it is down firmly against the board and solder only two of the leads to hold the pack
in place while the other IC’s are being inserted. Do not bend the leads on the back side.of the
board. Doing so makes it very difficult to remove the integrated circuits should replacement

-2




()
()

()

()

()

()
()

ever be necessary. The semicircle notch, dot or bar on the end of the package is used for
orientation purposes and must match with the outlines shown on the component layout draw-
ing for each of the IC’s. After inserting all of the integrated circuits, go back and solder each of
the as yet unsoldered pins.

Install the integrated circuit sockets for I§6 and 1C22. The sockets have a pin 1 index mark on
them, so orient them so they match with the component layout drawing. Solder.

Install integrated circuit 1C29 and its heatsink on the circuit board. This component must be
oriented so its metal face is facing the circuit board and is secured to the circuit board with a
#4-40 x 1/4"" screw and nut. The three leads of the integrated circuit must be bent down into
each of their respective holes. The hole on the heatsink should be positioned to allow maxi-
mum contact area between the regulator and the heatsink. Solder.

NOTE: READ THE FOLLOWING BEFORE REMOVING MOS INTEGRATED CIRCUITS
FROM CONDUCTIVE FOAM.

MOS devices are susceptible to damage by relatively low DC voltages applied across the leads
of the device. It is easy to acquire a potential difference of many hundreds of volts between
your body and ground by walking on dry carpet in tennis shoes. The same sort of potential
differences may be present on your workbench.

Although it is not necessary to ground yourself, your tools, and the components to an
Earth ground, it is necessary to bring yourself, your tools and the components to the same
potential before handling and installing the MOS devices. Your skin is a conductor and can be
used to equalize potentials between everything involved.

Remove and install integrated circuits IC9 and 1C26 ONE AT A TIME. Handle the foam

with both hands as you remove the IC. Hold the IC between thumb and forefinger touching
all the pins. With the other hand, touch the printed cicuit foil pattern where the IC is to be
installed. Press the IC into place, simultaneously making a double check of correct position
and orientation. The semicircular notch or dot on the end of the IC package must match with
the outlines printed on the circuit board. Never cut or bend leads of the IC packages. While
still holding the component in the board, handle your solder and soldering iron with the other
hand. Several seconds of handling is long enough in humid climates. Handle the parts and tools
longer if you work in a dry climate. Even with the devices in the circuit, it is still possible to
damage them with stray voltage. Avoid touching the conductors or devices in the circuit any
more than necessary. Use this procedure for installing each MOS device. Press the IC’s firmly
onto the board before soldering. Most soldering irons with 3 wire line cords have grounded
tips. If you do not use a soldering iron with a grounded tip, you should assure yourself that
the iron you use does not carry an AC or DC voltage on the tip. When you feel confident
that you have done everything possible to avoid damaging the integrated circuit with stray
high voltage, solder all connections and repeat the procedure for each of the MOS devices.
Install MOS integrated circuits IC6 and 1C22 into the sockets provided following the pre-
cautions given in the preceding step. Bt sure to orient them as shown in the component
layout drawing. Make sure that none of the IC pins fold under the IC instead of going into the
socket pins.
Working from the “TOP" side of the circuit board, fill in all of the feed-thru’s with molten
solder. The feed-thru’s are those unused holes on the board whose internal plating connects the
“TOP” and “BOTTOM” circuit connections. Filling these feed-thru’s with molten solder
guarantees the integrity of the connections and increases the current handling capability.

Now that all of the components have been installed on the board, double check to make sure
all have been installed correctly in their proper location.
Check very carefully to make sure that all connections have been soldered. It is very easy to
miss some connections when soldering which can really cause some hard to find problems
later during checkout. Also look for solder ‘‘bridges’” and ‘‘cold” solder joints which are
another common problem.

This completes the DMAF1 Controller Board assembly. Since the circuit board now

contains MOS devices, it is susceptible to damage from severe static electrical sources. One should
avoid handling the board any more than necessary and when you must, avoid touching or allowing
anything to come into contact with any of the conductors on the board.

-3




mozﬂ/
N
o140 ¢
nm_M 0-62-0 |
¥a 62-0 |0
] ]9 r oK, e] o[ FoO-1Z40 wec [e 8 0] wer Wu o.oE.OIwm
ol e Q22w ol Y osino N : iy
Q0 [F000ZY¥ 0 9121 SLI1 #121 €121 €80
o-#1)-0 6
; 0-£)-0
: o t
Sese [ 3 [ | i prkey patestte
0-ScH-0 : 0zl h 6121 o 8121 2191 oou
oyEY-0 200000600 €1y eq
O£EY-0 00000000 0 ) o 1~0
oZEY0 L96vECLO czy €10 - o-vii-o 0-53-00-6Y4-0
ol£4-0 % w + _ (XA w - -
o0cy-0 1Z21
s 92l ! A4 (
vy 0-8Y4-0
0-4J-0
Tu :
pa') 22l |
Ita o&m <
A4 _.ouz ) 0-£3-0
6060 0-2J-00=£4-0
08740 i, § MhA DA ? o-zy-0
22 2 o ¢ | s | o1 821 m_u : W_HWM
_ﬁ:x_ 3 : iR B 4*% = \ 108 :
81O X 22 €| 9z ¢
[ ZATL ) <Hz oo.% 570l oq 0-914-0 o-Zl4-0
[ I . ) (] 0_.1
11 1 ( oLl o
ekl Amw o i zey (7 | U g
o9Z40

il



* Parts List — DMAF1 Disk Controller
. Resistors

R1 47K ohm % watt resistor R20 100 ohm % watt resistor

—— R2° 100K ohm " " " —— R21 680ohm " " "
—— R3 470Kohm " " " —  R22 10Kohm'" " "
—— R4 10K ohm " ” " —— R23 10Kohm ” ” "
——— R5 10K ohm " " " —— R24 150 ohm " " "
—— R6 10K ohm " " " —— R25 10K ohm "
—— R7 10K ohm " " " —— R26 10K ohm " "
—— R8 75K ohm " " " —— R27 10Kohm "~ " "
—— R9 10K ohm " " " —— R28 10Mohm " " "
—— R10 22K ohm " " " —— R29 1K ohm " " "
—— R11 47K ohm " " " —— R30 10K ohm "™ " "
—— R12 150 ohm " " " —— R31 10Kohm " ” 1
—— R13 10K ohm " ” " —— R32 10Kohm " "
—— R14 10K ohm " " " ——— R33 10Kohm " " "
—— R15 470 ohm " " " —— R34 10Kohm " " "
—— R16 150 ohm " " " —— R35 10Kohm " " "
—— R17 150 ohm " " " —— R36 10Kohm "™ " "
—— R18 330 ohm " " —— R37 10Kohm " ” "

R19 150 ohm " " " R38 10K ohm integrated resistor op-

tionally used in place of R30-R37

Capacitors

C1 .022 mfd capacitor *C13 220 mfd @ 10 VDC electrolytic cap.

—— C2 470 pfd " ——— C14 0.1 mfd film capacitor
—— €3 0.22 mfd " —— €15 0.1 mfd film capacitor
—— C4 100 pfd " —— C16 0.1 mfd capacitor
—— Cb 470 pfd " —— C17 0.1 mfd "

—— C6 0.1 mfd " —— C18 470pfd "

—— C7 100 pfd " — C19 0.1 mfd "

—— €8 0.1 mfd " —— C20 0.1 mfd "

— C9 20 pfd " —— C21 60 pfd "

—— C10 0.1 mfd " —— (€22 20 pfd "

—— C11 100 pfd " —— €23 0.1 mfd "

—— C12 470 pfd " —— €24 0.1 mfd "

Transistors and Diodes

—— *D1  1N4148 silicon diode

—— *D2 1N4148 " "

—— *D3 1N4742 12.0 volt 1W zener diode
—— *D4 1N4733 5.1 volt 1W zener diode
—— *Q1 2N5210 NPN transistor

—— *Q2 2N5210 NPN transistor




Integrated Circuits ’

*|C1 74LS245 octal non-inverting bi-directional transceiver ’
*|C2 74LS244 octal non-inverting buffer
*|C3 74LS245 octal non-inverting bi-directional transceiver
*|C4 74LS139 dual 1 of 4 decoder

*|C5 74LS138 1 of 8 decoder

*|C6 6844 DMA controller (MOS)

*IC7  74LS00 quad NAND gate

*|C8 74LS74 dual D flip-flop

*|C9 4049B or 14049B hex inverter (MOS)
*{C10 74LS175 quad D flip-flop

*{C11 74LS08 quad AND gate

*1C12 74LS163 4-bit counter

*IC13 74121 one shot

*1C14 74125 quad tri-state buffer

*|C15 74LS00 quad NAND gate

*1C16 74LS32 quad OR gate

*1C17 74LS00 quad NAND gate

*]JC18 74LS04 hex inverter

*|C19 74LS86 quad exclusive OR gate
*1C20 74LS00 quad NAND gate

*1C21 74LS32 quad OR gate

*|C22 1771 disk controller (MQOS)

*|C23 74LS74 dual D flip-flop

*|C24 74LS123 dual one shot

*1C25 7415273 octal D flip-flop

*|C26 14541 or 40541 timer (MOS)

*1C27 74LS240 octal inverting buffer
*1C28 74LS240 octal inverting buffer
*1C29 7805 5 volt regulator

|

HRRRRRRR

Miscellaneous

*  Note: All components flagged with a * must be oriented as shown on the component layout
drawing.

XTAL 4.0000 MHz crystal




Drive Programming

In order to use the supplied disk drives they must first be programmed to enable the functions

required by the system. The following description should be used in conjunction with the DRIVE
PROGRAMMING PICTORIAL to program the CalComp 143M disk drives.

()

()

()

()

Carefully remove one of the drives from the chassis. It is attached to the bottom of the chassis
with #6 screws. Be careful not to pick up the drive by its door or front panel. Remove the two
plastic bags taped to the back containing the power connectors.

Turn the drive upside down so that the door is toward you and so that you are looking at the
component side of the circuit board. Jumper selections are made on these drives by small
shorting blocks which look like connectors without any wires attached. Notice that at each
jumper location has a ‘‘center’’ pin which is unmarked. The shorting block always goes be-
tween this center pin and an adjacent labeled pin. In most cases, the desired jumpers will be in
the correct position as supplied.

Install the JPR-7 jumper. This jumper will cause the LED on the front panel to activate when
the drive is selected. Use the attached pictorial for reference.

Install the JPR-11 jumper. This jumper selects this drive as drive #0.

The JPR-14, JPR-15 and JPR-16 jumper is for selecting a hard sectored drive and is not used in
this system. If any jumper is installed at these locations, it should be removed.

Install the JPR-13 jumper. This will cause the heads to load when the drive is selected.

Switch S1 should now be programmed by flipping the switch to the desired OPEN (off) or
CLOSED (on) positions. The OPEN or CLOSED position will be noted on the switch. The
switch section A, B, C or D is marked along side the switch on the circuit board. The next
four steps describe how to program this switch.

Flip switch section A to the CLOSED (on) postion.
Flip switch section B to the OPEN (off) position.

Flip switch section C to the OPEN (off) position.
Flip switch section D to the CLOSED (on) position.

This drive is now programmed as drive #0. Using a pencil or felt pen, write @ on the back of
the drive for future reference.

The above procedure should now be followed for the second drive except that the JPR-9
jumper should be installed instead of the JPR-11 jumper. This jumper selects this drive as drive
#1. Using a pencil or felt pen, write 1 on the back of the drive for future reference.

Included with the kit is what appears to be a 14-pin integrated circuit, but it is separate and
probably blue. This is not an IC but is a network of resistors. This resistor network should be
installed in the “‘resistor block socket’’ on drive #1. Be sure to install the block so that pin 1 as
marked agrees with the DRIVE PROGRAMMING PICTORIAL.

This completes the disk drive programming. Set the drives aside until they are called for later
during assembly.




TO MOTOR CONTROL BOARD POINT S
(FOR DRIVE 1 ONLY) POINTT

JPR 9 JPR 6 JPR3 | o #]JUPR2
]

] [ ]
spre m[e ®w]upr11  JPR7[m_e]m RS JPR 4
. .

JPR 10

J2

JPR 11 = DRIVE ®
JPR 9 = DRIVE1 PULL UP
JPR 8 = DRIVE 2 " RESISTOR
JPR 10 = DRIVE 3 BLOCK

(shown above for drive @) DO NOT ADJUST

[a]
w
JPR 16 ]
2 P
JFR14m © = A | mm | CLOSED (ON)
. B | = ]| OPEN (OFF)
JPR15 £
= c | mm | OPEN (OFF)
2 p | mm | cLOSED (ON)
< JPR 12
[ ]
JPR 13

COMPONENT SIDE VIEW
CORRECT JUMPERS SHOWN FOR DRIVE @

JPR 9

JPR 8 IBI JPR 11

]
FOR DRIVE 1 JPR 10

DRIVE PROGRAMMING PICTORIAL




Assembly Instructions — FD-M Motor Control Board

The FD-M motor control board is used to turn the AC disk drive motors off when disk data is
not being continually accessed. This technique reduces noise and minimizes drive and diskette wear.
The actual ON/OFF and timing circuitry is on the DMAF controller board. The FD-M board con-
tains the optical isolation and noise suppression circuitry required to isolate the system’s logic cir-
cuitry from the AC power line.

The board itself is a 3 5/8"” x 2" single sided circuit board and, once assembled, is installed in
the right rear corner of the disk system chassis. Anytime the disk system is plugged into the AC line
various points on the FD-M board carry AC line voltage regardless of whether or not the unit is
turned on or running. So be careful! Never touch any components on the FD-M circuit board while
the disk system’s AC plug is attached to an AC power receptacle.

PC Board Assembly

( ) Clean the copper side of the circuit board with a piece of Scotchbrite® to remove all oxidation.

( ) Attach all of the resistors to the board. As with all other components unless noted, use the
parts list and component layout drawing to locate each part and install from the “TOP’ side
of the board bending the leads along the “BOTTOM’ side of the board and trimming so that
1/16" to 1/8'' of wire remains. Solder.

( ) Install all of the capacitors on the board. Solder.

( ) Install integrated circuit, IC1. As it is installed, make sure it is down firmly against the board.
Do not bend the leads on the back side of the board. Doing so makes it very difficult to
remove the integrated circuit should replacement ever be necessary. The semicircular notch,
dot or bar on the end of the package is used for orientation purpose and must match with
the outline shown on the component layout drawing. Solder.

() Install triac Q1 and its heatsink on the circuit board. This component must be oriented so its
metal face is facing the circuit board and is secured to the circuit board with a #4-40 x 1/4"'
screw, lockwasher and nut. The three leads of the triac must be bent down into each of their
respective holes. The hole on the heatsink should be positioned to allow maximum contact
area between the regulator and heatsink. Solder.

( ) Twist together two 16’ lengths of the heavy gauge wire supplied with the kit to form a twisted
pair. Attach and solder one end of the pair, with one wire to point Y and the other to point Z
on the FD-M board.

( ) Attach and solder the female pins supplied with the three-pin connector shell packed with one
of the disk drives, to the as yet unattached ends of these wires.

() Snap one of the pins (with wire attached) into pin 1 of the shell. Snap the other into pin 3.
Polarity is not important. Nothing is connected to pin 2.

() Twist together two 9%" lengths of the heavy gauge wire supplied with the kit to form a second
twisted pair. Attach and solder one end of the pair, with one wire to point Y and the other
to point Z on the FD-M board.

( ) Attach and solder the male pins supplied with the three-pin connector shell packed with the
remaining disk drive to the as yet unattached ends of these wires.

( ) Snap one of the pins (with wire attached) into pin 1 of the shell. Snap the other into pin 3.
Polarity is not important. Nothing is connected to pin 2.

() Twist together two 9’ different colored lengths of the light gauge supplied with the kit to
form a third twisted pair. Attach and solder one end of the pair with one wire to point S and
the other to point T.

() Attach and solder the small connector pins supplied with the miniature three-pin connector
shell to the as yet unattached ends of these wires.

-9




()

()

()
()

()

()

Carefully snap one of the connector pins with a wire attached into one of the outer positions
on the miniature connector shell. Bend the ears of the connector pin tight against the wire if

necessary. Insert the pin completely into the shell until it snaps into place.
Carefully snap the remaining connector pin with a wire attached into the remaining outer posi-
ion on the miniature connector shell. Follow the procedure given in the previous step. Nothing

is installed in the center pin position.
Attach and solder a 8%’ piece of the heavy gauge wire supplied with the kit to point B.

Attach and solder a separate 7%’ piece of the heavy gauge wire to point W.

Now that all of the components have been installed on the board, double check to make sure
all have been installed correctly in their proper location.

Check very carefully to make sure that all .connections have been soldered. It is very easy to
miss some connections when soldering which can really cause some hard to find problems later
during checkout. Also look for solder ““bridges” and “‘cold” solder joints which are another

common problem.
This completes the FD-M motor control board assembly.

 WHITE

ow

TO +5 v Y
DRIVE @ DRIVE 1
MOTOR MOTOR

R1 zo-roz

$ O———0— —o——V\VVV —V\V\- =
o
2 -I_ R2 Receptacle
Qa1

T OO Ic1 —O N.C. ci R3
4
N.C. O— ’-c

c2
MOTOR CONTROL o8
DRIVER ON ) ~ BLACK
CONTROLLER
BOARD

-10 -




Parts List FD-M Motor Control Board

R1
R2
R3

C1
C2

Q1
IC1

Resistors

180 ohm 7% watt resistor
220chm ' Y 7
4.7 K ohm % watt resistor

Capacitors

0.01 mfd @ 400 V capacitor
0.1 mfd @ 400 V capacitor

Semiconductors

TIC206D or TIC216D 400 V triac
MOC3011 optically coupled driver

Note: All voltage specifications are minimums.

g




’ 3
.
. -
; &
N
. .
3




P-200 DF Power Supply

The P-200 Power Supply is a fixed voltage power supply designed to be used with several
SWTPC kits. The P-200 DF version is supplied with those parts required to power the DMAF1
Dual Floppy Disk System. The P-200 DF provides the following outputs:

+24 VDC +5% @ 1.5 amps.
+ 5VDC +5% @ 3.0 amps

The power supply consists of the 3 1/8"" W x 3 3/8" L x 3 3/4" H power transformer, two
large diameter filter capacitors, 3 1/4"" W x 4’’ L circuit board and two regulator transistors. The de-
sign utilizes integrated regulators for adjustment free outputs and built-in overload protection. The
power supply itself may be operated from 120 or 240 VAC, 50 to 60 Hz power systems; however,
the disk drives themselves are manufactured to operate at only one voltage and line frequency.

PC Board Construction

() Clean the copper foil side of the circuit board with a piece of Scotchbrite® (available at most
hardware stores) to remove any oxidation. Scotchbrite® is a registered trademark of 3M Corp.

() Attach all of the resistors to the circuit board. Use the parts list and the component layout
drawing to locate the proper position for each part. As with all components unless otherwise
noted, mount each flush with the top of the board, bend the leads parallel to the board on the
foil side and trim so that 1/16’' to 1/8'' of wire remains, Solder.

{ ) Attach all of the diodes to the circuit board. Be sure the banded end of each diode matches
with the outline shown in the component layout drawing. Solder.

() Using some #18 gauge bus wire, install a jumper in the location indicated with the number
24", Solder. Make sure NO jumper is installed in the ““12'’ positions. Use the component
layout drawing. Solder.

( ) Attach the twelve pin Wafercon connector to the circuit board. Be sure to orient the connector
as shown in the component layout drawing. Solder.

() Complete the first half of steps 1 thru 10 of the wiring table. Cut each wire to the specified
length and attach and solder it to the specified point on the circuit board from the top side.
Do not connect the other ends of the wires to their destination terminations yet.

( ) This completes the circuit board assembly. Check to make sure that all connections have been
soldered and that there are no cold solder joints. Also make sure that all components have
been installed correctly as called for in the instructions. Take note that there are many power
supply components not used in the P-200 DF version of the kit. Install only those components
listed in the parts list.

Attaching the Connector to the Power Transformer

Leave all of the power transformer secondary leads full length and trim the ends of the wires
so that only 1/8" protrudes beyond the insulation. Attach and solder the specified connector pins
to each of the leads using the table below for reference. Use the connector reference sheet contain-
ed within this instruction set if you have any problem distinguishing between the connector pins.
Do NOT insert the connector pins into the connector shell until told to do so later in the instruc-
tions.

Transformer Secondary Wire Connector pin Gender  Connector Pin #
yellow female 1
green-white female 2
green-yellow male 3
green female 4
blue-white male 7
brown female 9
blue female 10
blue female 11
brown male 12

= 13-




Take note that the backside of the male connector shell is numbered. Using the previous
table, carefully insert each of the specified connector pins into the correct numerical position
of the connector shell. Insert the pins from the back or numbered side of the connector and
be careful not to make a mistake. The pins cannot be removed without destroying them once
they have been pressed into place. This completes the transformer connector assembly.

Power Supply onto Chassis Assembly

Attach the rear panel of the chassis to the base plate using three #6-32 x 3/8" screws, lock-
washers, and nuts. Slip a ground lug under the mounting screw indicated in the chasses pic-

torial.

Attach the four stick on rubber feet to the bottom of chassis base plate. Inset each about 1%"
from each corner.

Attach the clamps for electrolytic capacitors C3 and C4 to the chassis using #6-32 x 3/8"’
screws, lockwashers and nuts. Orient the clamps as shown in the chassis pictorial. Leave the
mounting screws loose until the capacitors have been installed as called for later in the instruc-
tions. Attach a ground lug under the C4 capacitor clamp screw nearest the front of the chassis.

Place the fan guard on the outside of the chassis and attach the cooling fan to the chassis using
four #8-32 screws, flatwashers and nuts. Orient the fan as shown in the chassis pictorial.

Attach fuseholder F1 to the chassis. Sandwich the rubber washer if supplied between the fuse-
holder and the outside of the chassis. Orient the fuseholder as shown in the chassis pictorial.

Snap power switch S1 into the chassis oriented so its contacts are oriented as shown in the
chassis pictorial.
Strip off about 4%2"" of outer insulation from the end of the line cord.

Using a pair of pliers, crimp the strain relief onto the line cord at a point about 5%" from the
end of the line cord and insert the compressed strain relief and line cord assembly into the
5/8"" hole provided on the rear of the chassis from the outside of the chassis, then release.

Loosely install the #6-32 x %'’ capacitor hold down screws in the C3 and C4 capacitor clamps.
Secure with #6 lockwashers and nuts.

Now insert electrolytic capacitors C3 and C4 into their clamps. Use the parts list and chassis
pictorial to determine position and orientation. Install them exactly as shown in the pictorial.
These capacitors are polarized so the + terminal must be positioned as shown in the drawings.
Secure the capacitors with the #6-32 x %"’ screws, lockwashers and nuts.

Tighten all of the capacitor clamp mounting screws.

Using #10-32 x %" screws attach two terminal lugs to the (+) terminal and five terminal lugs
to the (-) terminal of capacitor C4. Use the chassis pictorial to show proper orientation.

Put a loop in each of capacitor C3’s terminals so that connecting wires can easily be attached
and soldered.

Orient the power transformer so the nine wire secondary side is nearer the left side of the
chassis and secure with four #8-32 x 3/8'’ screws, flatwashers and nuts.

Remove the precoated insulators from their packages and place over the pins on the bottom
of regulator transistors Q3 and Q4.

Install transistors Q3 and Q4 onto the chassis in the appropriate set of holes from the outside
of the chassis. Be sure you have put the right transistor in the right set of holes. Secure each
transistor with #6-32 x 3/8" screws, insulated shoulder washers, ground lugs and nuts. NOTE:
The case of each power transistor is electrically a transistor junction and hence must be electri-
cally isolated from all other electrical junctions including the chassis. The mounting screws are
electrically connected to each transistor case and you must be sure the screws do not contact
the chassis as they pass through. Keep in mind also that the wire leads of each power transistor

—14 ~




()

()

()

()

()

must be centered in the large holes through which they pass. The mounting screws must be
tightened evenly and with enough pressure to slightly compress the transistor insulators. The
entire bottom of the transistor case must be in solid contact with the insulator for good heat
transfer.

Orient the P-200 power supply printed circuit board as shown in the chassis pictorial and
secure it to the chassis using four #6-32 x 5/8'' screws, %"’ spacers, lockwashers and nuts..

Orient the FD-M motor control board as shown in the chassis pictorial and secure it to the
chassis using four #4-40 x 5/8'' screws, 1/4'' spacers, lockwashers and nuts.

For American standard 120 VAC line operation complete steps 11 thru 14 of the wiring
table. For European standard 240 VAC operation complete steps 15 thru 17 of the wiring
table.

NOTE: Although it is a simple matter to change the power supply for 120/240 VAC, 50/60 Hz
operation, it is not so easy with the disk drives themselves. Since their AC motor uses the AC
line voltage, the drive motor and/or pulley must be changed in some instances. Those systems
supplied directly by SWTPC and its U.S. dealers will probably be configured for 120 VAC 60Hz
operation. Those systems supplied by SWTPC overseas dealers will vary depending upon the
locality. If you are not sure of the disk drive's AC electrical requirements, remove the cover
plate on the top of the drive near the back. The motor’s specifications will be stamped on the
motor housing. Changing from 120 to 240 VAC or vise versa requires a new motor. Changing
from 60 Hz to 50 Hz or vise versa requires a new pulley. Be sure to reinstall the cover plate.

Now go back and complete the second half of wiring steps 1 thru 10. When attaching the wires
to the regulator transistors Q3 and Q4, slip a 1" piece of heat shrinkable tubing over each of
the wires to be attached first. Solder the wire directly to the transistor pin, slip the heat shrink-
able tubing over the exposed connection and shrink the tubing with the heat from your solder-
ing iron. The female pins specified in steps 9 and 10 are those for the four pin connectors J2-0
and J2-1 which attach to the disk drives. These connectors and their pins are individually pack-
ed in small plastic bags. Use a 1’’ piece of heat shrinkable tubing over all of the terminals on
power switch S1. This means that you must run each wire thru the tubing and after all wires
have been attached and soldered, the tubing is slipped over the terminal and shrunk with the
heat from the tip of your soldering iron. This is done later during assembly.

Complete wiring steps 18 thru 35 of the wiring table. Use a 1" piece of heat shrinkable tubing
over all of the terminals on power switch S1. This means that you must run each wire thru the
tubing and after all wires have been attached and soldered, slip the tubing over the terminal
and shrink with the heat from the tip of your soldering iron. Connector J2 is the four-pin con-
nector supplied with the disk drives. The @ or 1 suffix specifies the drive number.

Go back and double check all wiring steps and solder connections for correctness and comple-
tion. Even a simple mistake can cause costly damage to your power supply and or disk drives.
Plug the twelve-pin male connector attached to the power transformer’s secondary leads onto
the twelve-pin receptacle on the power supply printed circuit board. Be sure to orient the con-
nector correctly. It will fit only one way.

Install fuse F1 into the fuseholder.

Without having anything plugged onto power connectors J@-@, J8-1, J2-@ or J2-1 and after
making sure these connectors are not inadvertantly touching anything they shouldn’t,

plug the line cord into a wall outlet and turn the power switch ON. When ON the fan should
run.

Using one of the (—) terminals on capacitor C3 or C4 as a ground reference, measure the fol-
lowing voltages on the two DC power connectors J2-0 and J2-1 listed below. If you find that
any of the voltages do not measure as specified, immediately remove power and recheck all
wiring and solder connections.

—15—




Connnectors J2-@ and J2-1

Voltage Tolerance
+24 VDC +5%
0vDC +5%
+5 VDC +5%
0vDC +5%

() DO NOT make any voltage checks on connectors J@-@ or JO-1 on the FD-M motor control

board.
( )} If everything checks out as ca

lled for then remove power and unplug the unit. Once you are

convinced that the power supply is working as it should be, use the wire ties supplied with the

kit to bundle the wires where

necessary. |f the power supply voltages do not measure as speci-

fied, unplug the unit and recheck all previous assembly steps.

( ) Double check to make sure the unit is unplugged.

This completes the power supply assembly.

Parts List P-200 MF Power Supply

Resistors

R1 243 ohm 1% resistor D1* 1N5402 high current diode
_— R2 4320 ohm 1% resistor '

— c3*
— ca*

—_— Q3*
e Q4*

_— T1*

—  F1

Diodes

r

D2* " " !
D3* " " " ”
D4* " " ” "
D5* 1N4003 diode

D7* 1N5402 high current diode
D8* " " " "
D9* " " " "
D10* " " " ”
D11* 1N4003 diode

ARRRENRRE

Capacitors

4,000 mfd @ 50 VDC electrolytic capacitor
29,000 mfd @ 15 VDC " "

Regulators

LM323 +5 VDC regulator
LM317 adjustable regulator

Miscellaneous

Power transformer 50-60 Hz
Primary: 120/240 VAC
Secondaries: 12 VAC @ 1.6 amp
12 VAC @ 1.5 amp
7VAC@3 amp
24 VAC @ 200 ma
2 % amp slo-blo fuse

All components flagged with a (*) must be oriented as shown in the component layout drawing and

pictorials.

—16-—






POWER SWITCH

D6

5 -
D1 - D4
+12 OR +24 OUT +12 OR +24 OUT
CONNECTOR NI ===n ~
PIN NUMBERS ) as .ﬂ .
i
a N |
To_
D7 - D10 ? .
9 F
G3 ' \ i [
Q2 —— Q3 —
12 \ ' 1 1
10 i -
+5
7 C mw
c4
n
G5 L
G4
D12 D14
- g '
o3 F "
lﬁ Cl C2 .
o' o
12 VAC
80 HZ REFERENCE.
SCHEMATIC P - 200 POWER SUPPLY




WIRE

FROM

10

LENGTH
63/4"

PC board

TERMINAL

SOLDER

yes

TERMINAL

SOLDER

8 n

PC board

yes

Q4

71/2"

PC board

yes

Q4

15%"

PC board

yes

C4 lug

6“/4"

PC board

yes

C3 lug

6%"

PC board

yes

C3 lug

14"

PC board

yes

C4 lug

9'!

PC board

yes

Q3

ol vNjojoa] &~ WIN]-

9%"

PC board

yes

female pin

320 pin 3

-
o

17!'

PC board

yes

female pin

J2-1 pin 3

120 VAC OPERATION

black

white

blk-wht

blk-red

240 VAC OPERATION

T

black

A

T1

white

blk-red

T

blk-wht

A

line cord

black

line cord

white

line cord

green

full

fan

A

full

fan

81/4"

FD-M

71/2"

FD-M

81/2"

C3 lug

gll

C4 lug

91/2"

C4 lug

Q3

10%"

C4 lug

Q3

12"

C3 lug

Q4

22'4"

C4 lug

female pin

J2-@ pin 4

28%"

C4 lug

female pin

J2-1 pin 4

P-200 DF Wiring Table — Continued on next page




WIRE

FROM

TO

LENGTH
20%"

TERMINAL

SOLDER

female pin

TERMINAL

J2-@ pin 2

SOLDER

29%"

female pin

J2-1 pin 2

16"

female pin

.J2-9 pin 1

24"

female pin

J2-1 pin 1




ot

Lnwiede ot coConfiguring the DMAFY Disk for'the ' o
SR SW‘T PC 6800 Compumr System and Vlce-Ve}'sa

RS When usirrg the DMAH D|sk COntroMer Board wrth the SWTPC 6800 Computer System pro-
gram the DMAF1 €ontroller Board:as follows: T
"4~ Plug oné shorting bto\:k between the cen‘ter pmand NOR termmal oﬁ the NO R/MR head-
er. Y FRR O SHERRES ISR
2.) Plug another shorting bIock between the center pm and 32K terminal on the 32K/48K
header.

-3(3.')5;;; Plug: the remaining shomng block between the 4 and the.pin |mmed1ately ‘below it on
=+ 32 :the, ¢123A567 header.. . ot : [ iy s ey

rf you“dre using-the. DMAF] D:sk Camroller Beard mth a SWTPC 6800 Computer Syﬁtem
'wuh a MP-B2 mother bdard and :MP-A2:processor board, no modifications ta the.computer gystem
-other: than.with: oné of:the“memory-board{s) are necessary. Check to:see: which boards:are being
used in your-computer. The nomenclature -for:each board is printed on:the TOP" side -of the
board.
| = Modifyifig the MP-B Mothar Board *

cige0 s M your.computer system, has-a-MP:B. (not MP-B2) mather board, pewer down the system, un-
.glug the gonngctor.:gaing to. the, poyyer supp|y board and ‘remove. the board. Make the followmg
-modifications..;..... ... 1,0 -
4 1) Gui the foil conductor connectmg .pm 10 to pm 12 of IC4 'ghe 7400 NAND gate, on the
. . "BOTTOM! side of themother board. - . - s

) ‘Attach and solder an: msutaﬁed jumper: between pin- 1‘1 of IC4‘(7400 NANDv gate) to: pm
{ ; = 8of ICB (748138 decoder) on the "BOTTOM side of the board. " S

i) Artach and solderia separate insulated: jumper:between pin: 1201‘ I C4 (7400 NAND gate)
i «and-address line A12 on ‘the. “BOTTOM*side:of-the board.. 503 VG

Tape the two jumr)er Wirds tb the ”BOTTOM" side of the béardSo they d'o not bt‘e?ak off
or get plnched

5.) Reinstall the' mOt‘hét‘,Boar" T
FeAiEhA “Bbard

R

e hdx)dtfymg the MP-A Processor Board

1 *ymn computer system hasa MP-A (not MP-A2) processor‘ board, power down the sy§tem
carefiiify: femove the MP-A processér board and make the followmg modifications:

1. ) First, check to see that mtegrated circuit 1C15 (second IC from the left on the bottom

“".~Fow as viewed from the TOP” side) is a DM8098 or 74368 If it has a DM8096 or 74366
“gubstituted the IC wnl h’a\fe to be replaced replaced W|th ‘a DM8098 or 74368.

_{
2) ’\Carefully cut pin 15 g I,C1 5 from the “TOP" side of the board very close to the surface

‘of the board. Bend theJIC pin 15 up and away from the foil trace.
3.) Attach and solder an;insulated jumper. from: now uricennegted pin 15 to pin 8 of IC15 on

&g the ! TOP" side of the'board. This: ef*fectiveiv@'ounds pin 15. + %
*74.) Now cut the féil trace cdmnectm‘g in 10 to pin 13 drr Ic16 from the ”TOP"%fde Bfthe

Pt

ek boardf. 1C16 i the third IC from the left on the bottorm row as viewed ‘from tHE“TOP”
’;“1\' \, slge-' lt l$a7420 T et R .-.r'> '_'-r-*. 1*2*:»» , ! o B RS l)

SO A o Bt T & EX I P : [l
crib.) A‘!(&Eh and isolder an ‘In§ulated jumper from: :the now uhconnectedt pin: 1*3 pn IC16 to pm
3 of IC7 on the “BOTTOM" side of the board. IC7 is the third IC from the right on the
bottom row:as viewed tfro?n the “T@P" side. IC? is.a 'EMSI!T or-74367:;
6.) ' “""OT"OM"sﬂde\\of the board. 1C3
b n'a juripe rbm pln 130flCSto pin 12

of 1C3. This effeét]vely-kgrdunds b-n A'*

LT ‘.;.-‘.;,E, L A




7.) Reinstall the modified MP-A processor board on the computer system. NOTE: The pre-
vious modifications have disabled the 6810 scratchpad RAM memory on the processor
board. This was necessary so that an external 8K byte contiguous block of memory from
AQOO thru BFFF (40K thru 48K) may be installed in the computer system for the DOS.
The processor board will not now function at all without this extra memory installed.
The ROM monitor will not work without RAM memory at memory locations AG@® thru
AQ7F. The DOS is loaded into locations A@8Q thru BFFF.

Memory Board Modification

Regardless of which processor or mother board your system uses, one of the MP-8M 8K or two
of the MP-M 4K memory boards will have to be modified for operation from A@@® thru BFFF (40K
thru 48K) where the scratchpad and disk operating system (DOS) reside. The MP-A processor
board should have already been modified for external memory from A@@@ thru BFFF. If you are
using the MP-A2 processor board, it will be necessary to switch OFF the RAM dip switch on the
processor board once the modified memory boards are plugged onto the computer system.

Modifying the 4K MP-M Memory Board

To modify the MP-M memory board for operation above 32K break the conductor foil between
pin 6 of integrated circuit 1C22 and pin 1 of 1C24 as well as the conductor foil between pin 4 of
IC22 and connector pin A15. Break the conductors near 1C22 using a small screwdriver or knife to
scribe a small line across the trace deep enough to break the conductive path. Using a piece of
light gauge hookup wire connect pin 6 of 1C22 to connector pin A15. Using a separate piece of
hookup wire connect pin 4 of 1C22 to pin 2 of 1C24. Check your modifications and wiring for
accuracy. This completes the modification. Use the table below to determine the proper position
for the address select programming jumper which must be installed on the memory board. One 4K
board must be modified and jumper programmed for #2. Another 4K board must be modified and
programmed for #3. This will provide RAM memory from A@@@ thru BFFF.

TABLE 1
MP-M Memory Address Assignment Table (Hex above 32K)
Programming Memory Quandrant (K of memory) Starting Address Ending Address
Jumper # 1 AQOQ A3FF
2 A400 A7FF
2 3 A800 ABFF
4 ACO0 AFFF
1 BOGO B3FF
2 B400 B7FF
3 3 B8O BBFF
4 BCOQ BFFF
MP-M/MP-MX Memory IC Assignment Map
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit @
Quadrant 1 (1K) IC15 IC13 IC11 IC9 IC7 IC5 IC3 1C1
Quadrant 2 (2K) IC16 1C14 IC12 IC10 1C8 1C6 iIC4 1C2

Quadrant 3 (3K) 1C40 IC38 IC36 IC34 1C32 IC30 1C28 1C26
Quadrant 4 (4K) 1C25 IC39 IC37 IC35 1C33 IC31 1C29 1C27

00 hex = 0000 OOOO binary 08 hex = 0000 1000 binary
01 hex = 0000 00D1 binary 10 hex = 0001 000D binary
02 hex = 0000 0010 binary 20 hex = 0010 000D binary
04 hex = 0000 @100 binary 40 hex = 0100 0000 binary

80 hex = 1000 @000 binary

—24 -




Modifying the 8K MP-8M Memory Board

To modify the MP-8M memory board for operation above 32K first flip all of the address
select slide switches on the memory board to their OFF position. For operation from 40K to 48K
(8000 to 9FFF) solder a piece of light gauge hookup wire from pin 1 of 1C22 to pin 10 of IC18.
Check your wiring for accuracy. This completes the modification. Table I gives the new memory
assignments for each of the memory integrated circuits. All of the switches must be left “OFF"".
The board is now configured for operation for AG@® thru BFFF.

TABLE 11
MP-8M Memory Address Assignment Table (Hex) above 32K
Half of Memory Starting Address Ending Address
lower ADDD AFFF
upper B0OOO BFFF

MP-8M Memory IC Assignment Table
Bit 7 Bit 6 Bitb5 Bit4 Bit 3 Bit 2 Bit 1 Bit @

Lower 4K IC7 IC6 ICH IC4 IC3 1C2 IC1 1C0Q
Upper 4K IC15 1IC14 IC13 1IC12 1C11 1IC10 IC9 1C8
Hex to Binary Conversion
00 hex = 0000 00OO binary 08 hex = 0P0D 1000 binary
01 hex = 0000 OPO1 binary 10 hex = 0001 OO binary
02 hex = 000D BD10 binary 20 hex = 0010 000D binary
04 hex = 0000 0100 binary 40 hex = 0100 000D binary

80 hex = 1000 0000 binary




s




9l
0

Y]

o

£l
Jl

(4

st] ¢ e 0z 1z A4 X7 vz
af o I ) Il Jl Jl
J & 1 ! . A 7 /)

7.

©

0Ji

0-Z4-0
121 (4] €2l ¥l —mu_— _ou_ LI
P P ° [ @ ° L ° >
) Yo
o .
St
62l |

z o
9 .
2]
Ol it Tl €l rt
Al bo | al Il A
@ o ; o L o :







Getting It All Together

Before attempting to check out the DMAF1 Disk System, let’s go thru the hardware just to
make sure everything required is plugged in and configured properly. First of all the computer sys-
tem must have a minimum of 20K of RAM memory installed (24K recommended) with 8K posi-
tioned from AQ@Q thru BFFF (40K thru 48K). The remaining 12K thru 32K of RAM must be the
contiguous memory starting at memory location 0000.

If your system has a MP-B (not MP-B2) mother board, it must be modified as per the instruc-
tions in the preceding section of this manual. If your system has a MP-B2 mother board, no mother
board modifications are necessary.

If your system has a MP-A (not MP-A2) processor board, it must also be modified as per the
instructions in the preceding section of this manual. If your system has a MP-A2 processor board,
it will be necessary to switch the DIP switch marked RAM on the MP-A2 board to the OFF posi-
tion.

Before attaching the disk and its controller board to the system, it is suggested that you run
memory diagnostics on all areas of RAM memory in the system. If there are any signs of problems
especially on more than one of the memory boards, make sure you are not drawing too much power
from the computer system’s power supply. It is suggested that your memory boards not draw a
total of more than 7.5 amps from the power supply. Each MP-M 4K and MP-8M 8K memory board
consumes approximately 1.5 amps. The advantage of the 8K board is, of course, that you may have
twice as much memory for the same amount of power. The 16K/32K dynamic memory boards now
available consume approximately 1.5 amps.

Most of the SWTPC memory diagnostics are loaded into the scratchpad RAM memory from
AGO0 thru A@7F so when you run the memory diagnostics on the 40K thru 48K memory board(s)
start the diagnostic at AG80 rather than A@P® otherwise the diagnostic will destroy itself.

At the time of this writing three monitor ROMs are available for the SWTPC 6800 Computer
System.

The newest monitor and the one suggested for those DMAF1 owners with an MP-A2 proces-
sor board is DISKBUG® . DISKBUG®is presently the only monitor containing a boot for the
DMAF1 disk system. The SWTBUG® and MIKBUG® monitors require that this bootstrap program
be entered by hand. The bootstrap, for those confused, is a short program that configures the disk
controller and initiates the loading of the disk operating system (DOS) into computer memory.
DISKBUG®may be installed only on a MP-A2 processor board. It is a preprogrammed 2716 PROM

“and is installed in one of the PROM sockets. It sells for $60.00 ppd. in the continental U.S. #DISK-
BUG—-2716.

Although the SWTBUG®ROM contains a disk boot, it is for the SWTPC MF-68 Mini-Floppy
Disk System and is not compatible with the DMAF 1 disk system.

Unlike SWTBUG® and MIKBUG® , DISKBUG® has been written to operate with a MP-S serial
interface only and will not work with a MP-C control interface.

For those who do not have the DISKBUG monitor, the eighty-byte program may be entered
by hand using the monitor’s memory examine and change function. Once entered it may be saved
to cassette tape (if available) or blown in a 2716 EPROM by the user with a MP-A2 and MP-R
EPROM programmer, for future convenience. The code for the boot is listed in the appendix of the
DOS User's Guide.

Once you are sure that the computer system’s memory is good, remove power. Check over the
DMAF1 controller board once more for proper soldering and correct installation of the shorting
blocks as detailed earlier in this manual. Carefully install the controller board onto one of the
unused 50-pin board positions on the computer mainframe. Make sure the board is seated properly.
With nothing plugged onto the connector along the top edge of the controller board, apply power
to the computer system. The terminal should respond with the monitor’s prompt. Use the monitor’s
memory examine/change function to write a 55 into hex location 900P. Using the same function,
go back and read hex 90@@. it should still contain a 55. If it does not, then datais not being written
to and/or read from the DMA chip on the disk controller board. Now try writing a 55 into hex
location 9022. Using the memory examine and change function, go back and read hex 9022. It

— 29 —




should still contain a 55. If it does not, then data is either not being written to and/or read from the
disk controller chip on the disk controlier board.

If you have a voltmeter handy, measure the DC voltage of the rightmost lead of the voltage
regulator, IC using the center lead as a ground. It should measure +5 VDC +5%. Do not continue
assembly if you have difficulty with any of these three tests. Instead, remove power, remove the
controller board and recheck component installation and orientation. Check carefully for missed
solder connections, solder and foil bridges or breaks. If you cannot find the problem, carefully
pack up just the controller board and return it to SWTPC attn: ‘‘Repair Dept.” with a description
of the problem.

If the board successfully performs the previous tests, continue with assembly. Power down
the computer system. Set the disk chassis base plate within four feet of the computer system main-
frame Set each of the two disk drives vertically onto the base plate so the circuit boards attached
to the drives face to the right. Place the drive programmed for @ on the left and the one program-
med for 1 on the right. This is important. Do not get them reversed. Make absolutely sure the line
cord for the disk system is not attached to an AC receptacle. Attach the three-pin AC power
connectors JB-@ and J@-1 to the rear of each of the disk drives. The three-pinned connectors are
interchangable and their length should dictate which cable connects to which drive. Attach the four-
pinned DC power connectors J2-@ and J2-1 to the rear of each of the disk drives. The four-pinned
connectors are interchangable and their length should dictate which cable connects to which drive.

AC CONNECTOR JO

VDE AC
CONNECTOR
L (opTION

DC POWER

A
CONNECTOR J2 =
\ /
\@
N
\
\

SIGNAL CONNECTOR J1

Connector Locations

Run the three-pinned miniature connector from the FD-M motor control board thru the %'’ x
4" opening on the rear to the right hand drive (1) from the outside. This connector must be orien-
ted as shown in the drive programming pictorial earlier in this manual and plugged onto the JPR 3
and JPR 2 posts. It is important that the JPR 3 terminal connect to point S and the JPR 2 terminal
connect to point T on the FD-M motor control board. Getting these reversed will not damage any-
thing but will prevent the drive motors from functioning, so be careful.

Now attach the terminating PC connector of the flat ribbon cable to the drive 1 (the rightmost
drive). The connector may be keyed and if so will go on only one way. If not, orient the connector
so the tracer on the flat ribbon cable is nearer the side of the PC connector with the cutout. Attach
the adjacent PC connector of the flat ribbon cable to drive @ (the leftmost drive) using the same
orientation procedures. Now plug the remaining flat ribbon connector onto the controller board
connector along the top edge of the board. The connector may be keyed and thus will plug on only
one way. If not, orient the connector so the tracer on the flat ribbon cable is nearer the left edge
of the controller board as viewed from the front of the computer system. Double check all wiring

for accuracy. . .
The following information should be read to familiarize you with diskettes and their use in the

system. Read it carefully before proceeding with the diagnostics.
Final Checkout
Using the Disk System

The DMAF1 Floppy Disk System is designed to be as straightforward and easy to use as
possible. There are certain things that the user must be aware of, however, for correct operation.

- 30—




All RAM memory in the system must be operational for the disk to operate properly. |f any
doubt exists, run the memory diagnostics to verify correct operation.

Loading Flexible Disks

To load a flexible disk, simply depress the pushbutton located on the center of the loading
handle. The loading handle is spring loaded and will then expose the load aperture.

Insert the flexible disk in the load aperture with the label toward the operator and facing the
loading handle (see figure). Ensure that the flexible disk is inserted fully within the drive.

Grasp the bar on the loading handle and close it firmly; it will lock shut.

~N

A. FLOPPY DISK IN LOAD POSITION B. FLOPPY DISK LOADED

Flexible Disk Loading

Having the write protect notch on a diskette closed with a piece of tape will allow the diskette
to be written on. Leaving the notch open will disable write privileges.

(]

o

©)

WRITE-ENABLE
/ STICKER
[~
l/ ﬂ )

Write-Protect Option

The LED'’s on the drives are drive select/head load lights and are activated only when the head
for a particular drive is loaded on a diskette. They are not power indicators.

The disk controller has been designed to load the head and turn on the drive motors only when
necessary. When the computer requests data from the disk both motors will activate and the correct
head will load. After the information has been retrieved the head will unload, and after approxi-.
mately 60 seconds, both motors will turn off.

Just like cassette tapes, diskettes are made of magnetic materials and can be erased by stray
magnetic fields. Also, it is an excellent idea to back-up all important disks on a spare diskette.
The following precautions should be followed concerning diskettes.

1. Return the diskette to its storage envelope whenever it is removed from a drive.

2. Keep diskettes away from magnetic fields and from ferromagnetic materials which might
become magnetized. Strong magnetic fields can distort recorded data on the disk.

3. Replace storage envelopes when they become worn, cracked or distorted. Envelopes are
designed to protect the disk.

—-31—




No o s

Do not write on the plastic jacket with a lead pencil or ball-point pen. Use a felt tip pen.
Heat and contamination from a carelessly dropped ash can damage the diskette.
Do not expose diskettes to heat or sunlight.

Do not touch or attempt to clean the disk surface. Abrasions may cause loss of stored
data.
Flexible disks must be in the same temperature and humidity environment as the disk
drive for a minimum of 5 minutes before installing the diskette in the disk drive. These
environmental requirements are as follows:
Temperature 500F (100C) to 125°9F (51.6°C);

maximum gradient of 20°9F (11.19C) per hour
Relative 8% to 80%, maximum wet bulb
Humidity 850F (29.4°C)

Diagnostics

It is recommended that you try running the two following diagnostics before attempting to
boot the disk system. Power up the computer system and the DMAF 1 disk system. The disk system
is on when the cooling fan runs. If you do run into a problem, try to pin it down to the DMAF1
controller board, motor control board, power supply or one of the disk drives. If you appear to be
having a problem with a particular drive, reprogram them both so that drive @ is drive 1 and vise
versa. If it is a drive problem, this should confirm it. If you do run into some kind of problem(s)
check the following:

1.)

2.)

3.)
4))

5.)

6.)

7.)

8.)

9.)

10.)

11.)

12.)

13.)

14.)
15.)

Make sure you have at least 12K of continguous RAM memory from 0000 thru 2FFF
(0-12K).

Check to see that you also have 8K of contiguous RAM memory from A080 thru BFFF
(40K-48K).

Run the memory diagnostics and verify this memory to be good.

Make sure the DMAF1 disk controller board is properly programmed with the shorting
blocks.

Make sure there are no cold solder joints or foil bridges on the controller board. Also
make sure all components are installed and oriented correctly.

Make sure the DMAF1 disk controller board is plugged onto the computer system and is
properly seated.

Make sure the flat ribbon cable is plugged on the disk controller board and is oriented
correctly.

Make sure the flat ribbon cable is plugged onto both disk drives and is oriented correctly.
Check the orientation very carefully.

Make sure the J2-0, J2-1, JO-0 and JO-1 power connectors are plugged into their mates on
the back of both drives.

Make sure the miniature connector going to the FD-M motor control board is oriented
properly and plugged onto disk drive connector pins specified in the instruction set.
Confirm that the cooling fan on the disk system is running. It should run whenever the
disk system is turned on.

Make sure you have modified your computer’s MP-A processor and MP-B mother boards
if applicable and have flipped the RAM switch OFF on the MP-A2 processor board if
applicable.

Run the REGTEST diagnostic (details follow).
Run the STEPTEST diagnostic (details follow).
Try booting the system (details follow) if the diagnostics run correctly.

- 32 -




REGTEST

The REGTEST diagnostic can be used to verify that the various registers on a DMAF1 disk
controller board are being accessed properly. REGTEST assumes that the disk drives are connected
to the controller and power is applied as described in the checkout instructions.

To use the REGTEST diagnostic, the code must be entered into the computer instruction by
instruction using the memory examine and change function of the computer’s monitor. Program
execution should then be started at hex location @100 by either setting AG48 and AQ49 to 0100
and typing G or by typing J 0100 depending on your monitor. REGTEST will then check each
register and will alternately select drive @ and then drive 1. Correct drive selection is indicated if the
LED on the front of drive @ lights briefly and if the LED on drive 1 lights briefly when the one on
drive @ goes out. Both LEDs should never be on at the same time. Both drive motors should be run-
ning. If any register errors are seen an X will be displayed. If no errors are seen a + will be displayed.
The diagnostic should be allowed to run until 256 +'s have been displayed.

REGTEST may be exited by depressing the RESET switch on the computer. A diskette need

not be installed in the drive. ‘

NAM REGTE=T
0100 CE 90 00  =TART LOx #£7000
0102 Fé& 01 &1 LA E EYTE
010& E7 OO ZTA B O, X STORE IN ALL LOCATIONS
0102 E7 01 =TA B 1, X
010A E7 GZ =TA B 2, X
010C E7 0= ZzTA B 2, X
Q10E E7 21 STA B 321, X
M110EY 22 TR B 822X
Ol 13 E792E =TA B $22, X
0114 E& OO Lo B O, X ZTART READING DATA
011a 20 27 E=R TEST
G118 E&6:01 Lo B 1,X -
O11A 2D 23 EzR TECT
O11C Eé QO LA B &, X
QilE 8LI ZF EzR TE=T
0120 E6 O3 LA B 3,
0122 20 2B EzZR TEST
Q124 Eéa 21 LA B %21, X
O12é 80 27 EzR TEZT
D1Ze &6 22 LobA B 322, X
012A 20 23 ESR TEST =
O12C Eé& 23 LA B 323, X
OiZE 8D 1F E=R TEST
0130-7C 01 &1 INC "EYTE
0123 26 CE ENE SZTART
01325 84 FE LOA A #S$FE SELECT DRIVE O
0127 B7 70 Z4 =TA A DRVREG
G1zA 2D 1E ESR DELAY
01320 24 FO LDA A  #$FL SELECT DRIVE 1
O1ZE E7 90 Z4 ZTA A DRVREG
0141 =D 17 EER DELAY
014= =24 ZE LhA A #7+
0145 BD E1 D1 JER OUTEEE

—Continued on next page—

- 38 <




014z =24 FF LDR A #FFF

O14A B7 70 24 STA A DRVREG

014D 20 E1 ERA START STORE NEW DATA
- O14F F1 O1 &1 TEST CMF E EBEYTE

OESZ: 27405 EER o

0154 s S5 LDA A‘ #°X ERROR FOLND

0154 ED E1 [ JER DUTEEE

G157 =9 (] 04 RT=

O15SA CE FF FF DELAY LOX #EFFFF

015D 09 LEC DEX

QO15E 2Z& FD ENE DELC

0140 =7 RTS

0l&s1 00 EYTE FCE 00

STEPTEST

The STEPTEST diagnostic can be used to verify that the track selection circuitry of the system
drive and the controller is working properly. If desired, a blank diskette may be used in place of
the supplied system diskette.

To use the STEPTEST diagnostic, it should first be entered into the computer instruction by
instruction using the memory examine and change function of the computer’s monitor. A diskette
(perferably blank or at least write protected) should then be installed in drive @ and the door closed.
Program execution should then be started at hex location @100 by setting A@48 and AG49 to 0100
and typing G or by typing JO100 depending on the computer’s monitor. STEPTEST will then select
drive #0 and check to see if the index hole sensing and motor control circuitry is working properly.
If so, the disk drive heads will be moved back and forth between track @0 and track 76. STEPTEST
ouputs no information to the user—if the heads move back and forth across the diskette proper
operation is assumed.

NAI ZTEFTEST

0100 CE 90 20 START LDX #ODOMREG

0102 C& FE LDA B #S$FE SELECT DRIVE O
Q105 E7 049 STAE 4,X

Q107 E& OO0 LA B O, X WAIT LINTIL READY
Q107 S 20 EIT B #3220

G10E Z& F2 ENE START ,

Q100 Ce OF LIZioF LOA E #0052 REZTORE

Q10F E7 QO STAE O, X

0111 =D 12 ESR - WAIT WAIT UNTIL THRU
01132 Cé& 4C LDA E #74 TRALCZE 7&

0115 E7 O3 STA B =X '

0117 =20 132 ESR DEL 2= LELAY
01197 CA LE : LDA B #%1:= ZEE}

Ol11E E7 00 STAE O, X

Gl11D =20 Oé& BZR WAIT

O11F 20 EC ERA LOOF

0121 E7 0O EXELC STAE 0O, X

012z 20 07 ESR DELZS

0125 E& GO WAIT LDA E 0, X LOOF UNTIL 1771 THRU
0127 CS 01 EIT E #1

0127 246 FA ENE WAIT

Q12ZE =29 RTS

0120 20 OO0 DELZE ESR DEL14

O1ZE =20 OG DEL14 BSR DEL

0130 =29 DEL. RTS

el g




Booting the System

If you do not have an MP-A2 processor board with the DISKBUG® monitor installed, it will be
necessary to enter the code for the bootstrap program by hand using the memory examine and
change function of the monitor. The instructions and listing for the bootstrap program are contain-
ed in the DOS User’s Manual. The boot will load the disk operating system from a system diskette
installed in drive @ (the left drive) only. Make sure the door on the disk drive is closed after inserting
the diskette.

- 35—




How It Works

The DMAF1 disk system can be broken down into four major parts: disk controller board,
motor control board, power supply and the disk drives.

Disk Controller Board

The purpose of the disk controller board is to interface the disk drives to the computer system.
Most of the control logic for the drives is handled by 1C22, the 1771 disk controller chip. Since the
data exchange rate between the computer system and the disk controller chip is a little too fast for
a byte by byte transfer, a 6844 direct memory access (DMA) chip IC6 is used for disk data transfers
between the 6800 Computer System and the 1771 disk controller chip. Much of the logic on the
disk controller board is provided for interfacing these two chips together and to the rest of the
system. Eight bit latch IC25 is used for drive and side select. It is a write only register and may be
accessed at hex 9024. Timer 1C24 is responsible for feeding the motor control board which turns
the disk drive motors off if they have not been accessed for ' sixty seconds or so. This reduces
drive and media wear and cuts down noise. Integrated circuits 1C7, 1C8, IC9, IC10, IC11 and IC12
are part of the clocked data separator that is external to the 1771 controller chip. The advantage
here is that there are no adjustments to be made as with some data separators. The data separator
internal _to the 1771 is not reliable at the 2.0 MHz clock rate. Address decoding for the board is
provided by integrated circuits IC4 and IC5. The board uses a 1K block of memory addresses any-
where from 32K thru 40K or 48K thru 54K jumper programmable. Bidirectional transceiver |C1
and buffer 1C2 buffer the address lines to and from the board. Voltage regulator 1C29 supplies +5
VDC power for the board while zener diodes D3 and D4 provide the +12 and -5 voltages required
by the 1771 disk controller chip.

FD-M Motor Control Board

The motor control board turns AC power to the disk drives motors on and off as determined
by the timer on the controller board..Integrated circuit IC1 on the board is an optically coupled triac
which in turn drives Q1, a larger triac. The optical coupling is required to isolate the disk system’s
ground from the AC power line. NOTE: The motor control signal from the disk controller board is
fed to two unused pins on both of the disk drives thru the flat ribbon cable. The miniature three-pin
connector on the motor control board must be plugged onto these unused pins on one of the two
drives otherwise the drive motors will not turn on. The orientation of the connector is important.
Check the instruction set for complete details. Some of the components on this motor control
board are connected to one side of the AC power line whenever the disk system’s line cord is plug-
ged into an AC receptacle regardless of whether or not it is turned on or running. Therefore, exer-
cise extreme caution and never put your hands or tools near the board while the disk system is
plugged into an AC receptacle.

P-200DF Power Supply

The power supply on the disk system is just about as simple as you can make it. The secon-
daries of the transformer are wired to provide 7 VAC and 24VAC outputs. These in turn are recti-
fied by separate full wave bridge rectifier circuits providing +9 VDC and +30 VDC outputs. These
outputs are then run thru separate integrated regulators Q3 and Q4 to yield the +5 VDC and +24
VDC outputs required by the disk drives. Power for the disk controller board is supplied by the
6800 Computer System.

— 36—




Final Assembly

If everything seems to be working properly, you may now fasten down the disk drives and in-
stall the cover. Turn the power off and unplug the line cord on the disk system. Carefully turn each
of the disk drives so they set flat on the chassis baseplate with the LED indicators nearer the bot-
tom of the chassis. Let the plastic front panel of the disk drives overhang the front of the chassis.
Make sure that none of the inter-connecting cables are twisted or sandwiched between the disk
drives and chassis base plate. Charefully lift up the front of the chassis and secure the disk drives
with #6-32 x "' screws. Six are used to hold each drive in place. Install all of the screws finger
tight until all twelve have been installed then tighten the screws being careful not to overtighten.
The disk drive castings are aluminum and strip easily.

Before installing the cover, snap the two tinnerman nuts into the 3/16'’ holes on the sides of
the chassis back panel. Carefully check once more to make sure that all of the interconnection
cables are routed properly and that none are crimped. Route the flat ribbon cable so it lies neatly
in the slot provided in the back panel. Carefully install the cover so that the center mounting hole
on each side aligns with the one in the disk drive. Secure the cover using six black 3/8" screws.
Here again be careful not to overtighten the screws.

IN CASE OF PROBLEMS

If your DMAF1 Disk System fails to operate properly we suggest that you first go back and
double check all component installation and orientation. Be sure that they are turned as shown on
the drawings and that each is the correct part number. The majority of problems turn out to be in-
correct assembly. Using the printed pattern as a guide look over the board for solder bridges. Acci-
dental solder bridges are the second most common problem in kits that are returned for repair. Be

~sure that all programming jumpers called for are in place and that all connections have been sol-

dered.
If you suspect that one of the CalComp 143M disk drive units is not working properly, you

may reprogram the drives and interchange the two. If your suspicions are correct remove the drive
and return it to us for testing. Do not attempt to adjust, or repair the drive unit. Special equipment
and tools are required and considerable damage can be done by attempting to work on these units
without proper training.

If you have difficulty getting the disk system to work, repair services are available, however, it
is advisable to try to determine which element of the system is not working and return only that
portion rather than the entire assembly. The power supply circuitry is very straightforward and may
be checked with a DC voltmeter. If it has a problem and you cannot repair it yourself, remove the
power transformer and disk drives and return the entire chassis base plate. Do not return just the
power supply board itself. |If the disk drive motors do not turn on it is more than likely a problem
with the disk controller board rather than the motor control board. If you have to return any part
of your system, it would be a good idea to include your supplied system diskette containing the
FDOS. Repairs are performed for a flat labor charge per item plus parts and postage.

item Labor Charge
Controllerboard and cable .. ... . ittt i i e e e e e $35.00
POWEE SUPDIY. o vttt ettt et e e e e e e $15.00
Disk Arives. . ..t i e e e e e depends on individual drive

If we find that the controller board, drive or power supply is functional as received and does

not require service, the Checkout Charge is $15.00 )
A confirmation sheet will be sent upon receipt of the kit. Please do not ask for a detailed re-

port on exactly what was done in repairing your unit as we cannot provide this service.
It is not necessary to enclose any funds with the kit, you will be billed for authorized repairs.

-37-—



SHIPPING INSTRUCTIONS

Pack in a large carton with at least 3 inches of padding on all sides. We will not service a kit if
there is any postal damage until the claim is settled.

Include all relevant correspondence and a brief description of the difficulty.

Ship prepaid by UPS or insured Parcel Post. We cannot pick up repairs sent by bus.
Ship to:

Southwest Technical Products Corp.

Repair Department - Digital Group

219 W. Rhapsody
San Antonio, Texas 78216

— 38—




TO+5

TO 45
RIS
= ” 13 |5 |9 TO POINT “S” ON MOTOR CONTROL BOARD
- ——— 1 1 A B AR 0/0
ops 1, __ 1z lisl- IC4 10 T
T[4 ] 1 6 8 2 18
3 MR 1c26 Q TO POINT “T"ON MOTOR CONTROL BOARD
B IC5 %
c 5 Mode Rs C R#c
] _Eo < i ) +5
4 = | ouT : Ic29 10 +8
:H SAL :L | |2 R2QCIS ORI 2 co| Jod oo Jed [ l+c13 UNR
‘ IC20 - 7 e o] T «GND
10 9
R19 3
7 = +5
3 Ic TO+5 READY il
415
FAs——— LT ;
1c20 8 e n 10
B ;
4 ci Ic20 = gm X
32K-40K o W e [ 4
i ‘ RI6, RI7 2 4
R o > 10 12 6
4BK-456K ) g ol [ Lo
| Ic10 |o 8 110 2|q pl4 Q pl5 S pl}
5 Clk Ic7 |9 Ic10 IC10 ics READ
3 t 3l ¢ 6l cik 8|~ Clk
i[9 S n DATA
3 32 ——1]36 18 2 3 7 1 Q c =1a
TxRO2 | |- WPRT e WERT Tl T
13
ro1 P
12 9
PR 4@ Ny bk P
4 5
|34 6 _~14 5 15 — S
RIW 3w TRQO TROO
FD DATA 2:
FDCLK}2 = 5 1
1 icn [ 12_~In 9
i 2| 11 18 31 I 14 R
AA(‘)L 1 YT 1 1 13 YA - _L i
g ] I : 11 1 4 61 1 | cn 13
Mee YTy 5 511 0 = B 7 s N ien
s [ (R 1 [ 1 6 41 1 e —= WG \ L TO+5
o ] O v 77 N e Icé c4 RS
i Sl ST B 8 2" Seae ‘ !
:gﬁ ‘ R & - - = 1(5) pr2/DIRC i c23>0” DIRC _4_] =
GG T WE g s 2
DIR 4 -I-1-1-1-1-1-|= |c22_ S 'C‘s e
1 T 5]A PH1/STEP > : 12 e TO+5 > Rl
C A 51 a0 Q
3 1 : b1y 6 A2 [ 1 1 ) " 6 Al R3 c3 C
BA Vo 2 : ! : : : : ;Aa Z el b"é R/IC7 2 READY |32 - I
1&19 | TE s o]A4 TxRQ2 30 -=]- A = - WE DY
- L s B 4 Ic24 Q12 i o o
5y = 1 AG S 29_ TO B Clear 19| —
s 18 2 i1 (R 12 A7 = + 7 & i s 28 1 10 L
A9 1 R [ [ 1 3 7 = ST 3]A8 28 ‘ n r y HLD IC1 | —3 ‘»'iR/Cca4
AlOe— 1 T g ] 11 116 4 B 111 4A9 D°:7 R REE 3@ 1/ cs IC24
o R T [ 1 1 5 15 1 BT e e T} TR Ha
Al2e- : e, ! st 114 6 11 EEE 16]A11 o R A R S - Clear
Ao R WS 1 7 13 1 AW e ok | PR NS AR W e L HUTE ! 73
Al i 2 ) 112 8 2] B ST lﬁ::i 3423 R R | d || I
Al5e d 1 19 1c2 LL A a1 191 a15 D: R R N e L 13 D5 Clk 24
1 e ) L 3417578 0721 E N RN R [ 14g_g 512 28
35 R R TR 9 EIEDXTDS
TxAKA 3% IN- w S
4 6 211 |_4 {"ﬂoﬁ %E ;I; 1
& o a8l - 9 TO45 =
o M= ™ C
5 4 o e TO +5 { ;
3 Ré6
5 ey i » c9 8 R10 Ic7 2 =C23
12 +
AALT - n * c7 MR NOR B3| |12 :
ic21 | —g-o
L L 2l | > 9 +—Pp}————-T045
RESET e l | |1 o e P 10 ¥ ,
.'R/C Ca Q1 _]_ R4
5 4 g R 2313 RN €2
_]TO +5 P LYY
Ic16 3 g = RS
. Ic7 R26
s ' 1 |
& 5 6 —e TxRQ1 INPUT
Q2 - IC1 5 I e - s ]
ol l —1-1-1-|-I-1-1- ; - : TERM DMA INPUT
MEM RDYS - s LERERL _ !
] —_— +12
(@1 BUS) msé 2RI === =1- - TxAK1 OUTPUT
VN 13 ¥
— R4 @/ DR SEL 0 R20
12 3 P 13 —1 c18 S
15 5 g s 10 1 6 14
a2 s || 1o A :jT +5 @» DR SEL 1 A
el Bt Bt Bl Bl B 4
I BEE R RS 7 Rl koW
= . 5 o o L 'sl@*i = DR SEL 2 —cu4
L Icn Ic21
8
)
Ic1s . / 4@3 > DR SEL 3
’ 19 1 1 n ~C15
¥ E DIR LS - SIDE SEL
B, 9 -u g s 2 I v 13 bo ao 12
D1 e— 8 2 5 12 U B S 8157 ey K2
B2 7 3 RN | 5n Q35
D3e g 5 o 7103 a3 %
s a 16 Sl ‘I i e
o D4
D5 - D5
b 3 s 3{08 &2
b7
Ic3 o

Schematic - DMAF1 Disk Controller Board



TO DMAF1 CONTROLLER BOARD

o4

TRACERON CABLE —»

®) GND
LUG

© ©

© rpmmoTor ©

s CONTROL BOARD

¥ DANGER!
HIGH
VOLTAGE
B
X
Z
® X,
T e
7 |
@l.: GND LUG \
\
\
\
|
\
Co \
e NNECTQR 3.PINNED MINATURE . -
i j ] / oo CONNECTOR f-— - ] \
o / / / / ? L 1hl : L JL
| - s s ’ z 7 | /
b X
PIN 1 o £ L
® © & o ® © o o
HER T |
J2-0 J2-1
1234 ¥ 2.3 4
DRIVE @ DRIVE 1
(REAR VIEW) (REAR VIEW)

°
W
L]

DMAF-1 DISK SYSTEM CHASSIS PICTORIAL



FLEX USER'S RANUAL

Copyright® 1978 by
Technical Systems Consultants, Inc.
P. O. Box 2574
West Lafayette, Indiana 47906
All Rights Reserved

COPYRIGHT NOTICE

This entire manual and documentation and the supplied software is provided for personal use and
enjoyment by the purchaser. The entire contents have been copyrighted by Technical Systems Con-
sultants, Inc., and reproduction by any means is prohibited. Use of this manual, or any part thereof,
for any purpose other than single end use is strictly prohibited.

IMPORTANT NOTE

Although every effort has been made to make the supplied software and its documentation as
accurate and functional as possible. Southwest Technical Products Corporation and Technical
Systems Consultants assumes no responsiblity for any damages incurred or generated by such
material. Southwest Technical Products Corporation and Technical Systems Consultants also
reserve the right to make changes in such material at anytime.

PREFACE

The purpose of this User’s Guide is to provide the user of the FLEX Operating System with the in-
formation required to make effective use of the available system commands and utilities. The user
should keep this manual close at hand while becoming familiar with the system. It is organized to
make it convenient as a quick reference guide, as well as a thorough reference manual.

DMAF1







Notice to FLEX Users

After reading the User’s Guide but before experimenting with the FLEX operating system, it is a
good idea to follow the steps given below to make a duplicate diskette in case you accidentally
‘ enter a command which would erase the supplied system diskette.

1.)

2.)

3.)

4.)

5.

7.)

8.)

9.)

10.)

Power up the computer system and disk system. Be sure that all memory is good and be
sure that you have memory installed from hex @000 - 2FFF (12K) and from hex AQQQ -
BEFE:

If possible write protect your supplied diskette by removing the small piece of tape that
covers the small rectangular hole on the edge of the diskette. Some diskettes do not have
this notch and can not be write protected.

WRITE PROTECT
NOTCH

Install the supplied system diskette in drive @ (the Iéft hand drive) as described in the disk
manual and close the door.

Install a blank diskette in drive #1 and close the door. The write protect notch on this
diskette (if it has one) should be covered.

Boot up the FDOS system as described in the manual by either entering the boot by hand

or by typing D depending on your monitor. The D command on the SWTBUG® monitor
will not boot a DMAF 1 system.

The system should respond with FLEX and ask for the current date. Enter the date such
as 5, 4, 78. If the system will not respond, try to boot again as described in the manual. If
after several trys the system cannot be booted, the system diskette should be removed
and all hardware checked.

When the system is booted, type NEWDISK 1 followed by a carriage return. Follow the
instructions given in the NEWDISK command to answer any prompts.

The system will then take several minutes to intialize the diskette. When finished, type
COPY 0,1 followed by a carriage return.

Flex will copy the system disk in about 5 minutes. When finished type LINK 1.DOS fol-
lowed by a carriage return.

The supplied system diskette should now be removed and set aside. The copy can be
tested and used as desired.

Advanced Programmer’s Manual

Throughout this manual you will find references to the DOS Advanced Programmer’s Guide.
This manual contains detailed information on the operation of the Disk Operating System at the
machine language level. It is written for the individual who wishes to write his own utilities, inter-
face to the DOS thru machine language programs, or just understand how it all works. It has been
written for the individual who understands programming at the machine language level and it is not
. recommended for the novice. It is not being supplied with the DMAF 1 kit but is sold separately for
$20.00 ppd. in the continental U.S. It should be available sometime in July, 1978. When ordering
please designate as the DMAF1 Advanced Programmer’s Guide.

DMAF1




Blank Diskettes

For those of you who are having trouble purchasing double sided diskettes locally, you can
order them from SWTPC. The order number for a blank double sided 8-inch diskette is FD-DS.
Diskettes are $9.95 each ppd. in the continental U.S. Remember that single sided diskettes which
are commonly available will also work with the DMAF1 system.

MP-T Interrupt Timer

For those of you wishing to implement the printer spooling function of FLEX, an MP-T Inter-
rupt Timer board is needed. SWTPC offers the MP-T (in kit form only) for $39.95 ppd in the con-
tinental U.S.

Notice to Owners of the MP-C Control Interface and MIKBUG

FLEX will not work with an MP-C control interface, therefore systems containing the earlier
MIKBUG® monitor will have to update the system to a monitor ROM which will support an MP-S
serial interface. For serious disk users we suggest using the DISKBUG® monitor with an MP-A2
processor board. If you wish to use the earlier MP-A processor board, the SWTBUG® monitor will
work but does not contain a DMAF 1 boot command.

DISKBUG®
Serious disk users may be interested in purchasing the new monitor ROM DISKBUG® for their
system. DISKBUG® contains a boot compatible with the DMAF1 disk system. DISKBUG® is cur-
rently available only in a 2716 EPROM for use in a MP-A2 processor board and is sold for $50.00
ppd in continental U.S. DISKBUG® requires an MP-S serial interface available for $35.00 (in kit
form only) ppd in the continental U.S. DISKBUG® is not compatible with the earlier MP-A pro-
cessor board since there is no provision for a EPROM on the board.

IMPORTANT NOTE

Although every effort has been made to make the supplied software and its documentation as
accurate and functional as possible. Southwest Technical Products Corporation and Technical Sys-
tems Consultants will not assume responsibility for any damages incurred or generated by such
material. Also, Southwest Technical Products Corporation and Technical System Consultants
reserve the right to make changes in such material at any time.

The hardware and software documentation for this kit are being shipped separately. Therefore,
if you have received one but not the other, be patient. The rest of the kit should arrive shortly.

MIKBUG® is a registered trademark of Motorola, Inc.
swTBUG® and DISKBUG® are registered trademarks of Southwest Technical Products Corp.

DMAF1




CHAPTER 1
l.
1.
HI.
V.
V.
V1.
CHAPTER 2
1.

CHAPTER 3

l.

.
1.
V.
V.
VI.
VILI.
VIII.
IX.
X.

CHAPTER 4
I

TABLE OF CONTENTS

INtrodUCTION . .. vttt i e e e e e e 1.1
Systemn Requirements . ... ...t it it ittt i e, 1.1
Gettingthe System Started . . .. ...... ..t i i it e e 1.1
Disk Filesand Their Names. . . ... .. ottt it ittt 1.2
EnteringCommands . .........ci ittt i i i e e 1.3
Command DesCriptions. . . ...ttt i ittt e e 1.4
Utility Command Set . ........ it i i i i 2.1
APPEN D . . . i e e e e A.1.1
ASN L e e e et e A.2.1
BACKUP. . .ttt e e e e e B.1.1
BUILD .ottt i ettt e et e e B.2.1
CAT L e e e et e e e C.1.1
010 = 2 c.2.1
DATE . ittt e e e e e e e D.1.1
DELETE . .ot i i e e e e e D.2.1
EXE C .t ittt e e e e e e E.1.1
b et e e e 1.1.1
JUMP e e e e e e J.1.1
10 AN« L.1.1
0 53 L.2.1
MEMTES Tl .« ittt e i e e e e ettt eaa et M.1.1
NEWDISK .ot ottt i e ettt e et e e N.1.1
e 0.1.1
P e e e e e e e e P.1.1
PRINT . oottt e ettt it ettt e e s P.2.1
PROT .ot e e i e P.3.1
[0 0 1 =X 0« Q.1.1
RENAME ..o ettt et e e e e e R.1.1
SAVE Lo e e e e e e e S.1.1
SAVE. LOW. . .o ittt i e e e e e e e e S.2.1
ST ARTUP . e i i it ittt e s i e e S.3.1
B I 1) =3 T.1.1
VERIFY oo e e e e et e e e e e V.1.1
RV =3 2 151 10 11t V.2.1
0 1 6 e X.1.1
[T 07T Y- Vot 1 oY 3.1
Write ProteCt. . o vt it i e it e e e e e e e 3.1
The ‘RESET BUttON. .o o ittt vt i it ittt e et ettt e i eaa e aeeens 3.1
Notesonthe P Command . .. .....c. ittt ittt it e i enenns 3.1
Accesing Drives Not ContainingaDiskette .. .. ........ ... ..o it 3.1
System Error Numbers . .. ... ..ttt e e 3.2
SystemMemory Map. .. .. ..ottt e e e 3.2
FLEX Operating System Input/Qutput Subroutines....................... 3.3
Bootingthe Flex System. . .. .. ... i i e 3.4
Requirements for the PRINT.SYS Printer Driver ... .......... ... ..ot 3.5
ComMaANd SUMIMIAIY . . v v vttt et e ettt e e te et e 4.1




A S T e




FLEX USER’'S MANUAL

I.  INTRODUCTION

The FLEX® Operating System is a very versatile and flexible operating system. It provides the user
with a powerful set of system commands to control all disk operations directly from the user’s
terminal. The systems programmer will be delighted with the wide variety of disk access and file
management routines available for personal use. Overall, FLEX is one of the most powerful opera-
ting systems available today.

The FLEX Operating System is comprised of three parts, the File Management System (FMS),
the Disk Operating System (DOS), and the Utility Command Set (UCS). Part of the power of the
overall system lies in the fact that the system can be greatly expanded by simply adding additional
utility commands. The user should expect to see many more utilities available for FLEX in the
future. Some of the other important features include: fully dynamic file space allocation, the auto-
matic ‘‘removal’’ of defective sectors from the disk, automatic space compression and expansion on
all text files, complete user environment control using the TTYSET utility command, and uniform
disk wear due to the high performance dynamic space allocator.

The UCS currently contains many very useful commands. These programs reside on the system
disk and are only loaded into memory when needed. This means that the set of commands can be
easily extended at any time, without the necessity of replacing the entire operating system. The
utilities provided with FLEX perform such tasks as the saving, loading, copying, renaming, deleting,
appending, and listing of disk files. There is an extensive CATalog command for examining the
disk’s file directory. Several environment control commands are also provided. Overall, FLEX pro-
vides all of the necessary tools for the user’s interaction with the disk.

II. SYSTEM REQUIREMENTS

The minifloppy version of FLEX requires random access memory from location @@@@ through
location 2FFF hex (12K). Memory is also required from A@@® (40K) through BFFF hex (48K),
where the actual operating system resides. The system also assumes at least 2 disk drives are connec-
ted to the controller and that they are configured as drives #0 and #1. You should consult the disk
drive instructions for this information. FLEX®will work only with Southwest Technical Product’s
SWTBUG® or DISKBUG® monitor ROMs and a MP-S Serial Interface.

I1l. GETTING THE SYSTEM STARTED :

Each FLEX system diskette contains a binary loader for loading the operating system into RAM.
There needs to be some way of getting the loader off of the disk so it can do its work. This can be
done by either hand entering the bootstrap loader provided with the disk system, or if DISKBUG®
is installed in the system, simply type ‘D"’ to call the disk boot loader from ROM.

As a specific example, suppose the system we are using has DISKBUG® installed and we wish
to run FLEX. The first step is to power on all equipment and make sure the DISKBUG prompt is
present ($). Next insert the system diskette into drive O (the boot must be performed with the disk
in drive @) and close the door on the drive. Type ‘D"’ on the terminal. The disk motors should start,
and after about 2 seconds, the following should be displayed on the terminai:

FLEX X.X
DATE (MM, DD, YY) ?

The name FLEX identifies the operating system and the X.X will be the version number of the
operating system. At this time the current date should be entered, such as 1@, 03, 78. The FLEX
prompt is the three plus signs (+++), and will always be present when the system is ready to accept an
operator command. The ‘+++’ should become a familiar sight and signifies that FLEX is ready to

work for you!
FLEX® is a registered trademark of Technical Systems Consultants, Inc.
SWTBUG® is a registered trademark of Southwest Technical Products Corp.

-1.1-
DMAF1




IV. DISK FILES AND THEIR NAMES

All disk files are stored in the form of ‘sectors’ on the disk and in this version each sector contains
256 ‘bytes’ of information. Each byte can contain one character of text or one byte of binary
machine information. A maximum of 2280 sectors may be used on any one diskette, but the
user need not keep count, for the system does this automatically. A file will always be at least one
sector long and can have a maximum length of 2280 sectors. If single sided diskettes are beingused a
maximum of 1140 sectors are available. The user should not be concerned with the actual placement
of the files on the disk since this is done by the operating system. File deletion is also supported and
all previously used sectors become immediately available again after a file has been deleted.

All files on the disk have a name. Names such as the following are typical:
PAYROLL
INVENTRY
TEST1234
APRIL-78
WKLY-PAY

Anytime a file is created, referenced, or deleted, its name must be used. Names can be most
anything but must begin with a letter (not numbers or symbols) and be followed by at most 7 addi-
tional characters, called ‘name characters’. These ‘name characters’ can be any combination of the
letters ‘A’ through ‘Z’ or ‘a’ through ‘z’, any digit ‘0’ through '9’, or one of the two special charac-
ters, the hyphen (=) or the underscore _ (a left arrow on some terminals).

File names must also contain an ‘extension’. The file extension further defines the file and
usually indicates the type of information contained therein. Examples of extensions are: TXT for
text type files, BIN for machine readable binary encoded files, CMD for utility command files, and
BAS for BASIC source programs. Extensions may contain up to 3 ‘name characters’ with the first
character being a letter. Most of the FLEX commands assume a default extension on the file name
and the user need not be concerned with the actual extension of the file. The user may at anytime
assign new extensions, overiding the default value, and treat the extension as just part of the file
name. Some examples of file names with their extension follow:

APPEND.CMD
LEDGER.BAS
TEST.BIN

Note that the extension is always separated from the name by a period ‘.. The period is the
name ‘field separator’. It tells FLEX to treat the characters following the period as a new field in
the name specification.

A file name can be further refined. The name and extension uniquely define a file on a particu-
lar drive, but the same name may exist on several drives simultaneously. To designate a particular
drive,a ‘drive number’ is added to the file specification. It consists of a single digit (0-3) and is sep-
arated from the name by the field separator ‘.. The drive number may appear either before the
name or after it (after the extension if it is given). If the drive number is not specified, the system
will default to either the ‘system’ drive or the ‘working’ drive. These terms will be described a little
later. Some examples of file specifications with drive numbers follow:

0.BASIC

MONDAY.2

1.TEST.BIN

LIST.CMD 1
In summary, a file specification may contain up to three fields separated by the field separator.
These fields are: ‘name’, ‘extension’ and ‘drive’. The rules for the file specification can be stated
quite concisely using the following notation:

{{drive). Xname) {. (extension) }

(name) {. (extension) } {. (drive) }

The ‘()’ enclose a field and do not actually appear in the specification, and the ‘{} surround
optional items of the specification. The following are all syntactically correct:

-1.2-
DMAF1




0. NAME.EXT

NAME.EXT. 0

NAME.EXT

0. NAME

NAME. O

NAME

Note that the only required field is the actual ‘name’ itself and the other values will usually de-

fault to predetermined values. Studying the above examples will clarify the notation used. The same
notation will occur regularly throughout the manual.

V. ENTERING COMMANDS
When FLEX is displaying ‘+++', the system is ready to accept a command line. A command line is
usually a name followed by certain parameters depending on the command being executed. There is
no ‘RUN’ command in FLEX. The first file name on a command line is always loaded into memory
and execution is attempted. If no extension is given with the file name, ‘CMD’ is the default. If an
extension is specified, the one entered is the one used. Some examples of commands and how they
would look on the terminal follow:

+++TTYSET

+++TTYSET.CMD

+++LOOKUP.BIN

The first two lines are identical to FLEX since the first would default to an extension of CMD.
The third line would load the binary file ‘LOOKUP.BIN’ into memory and, assuming the file con-
tained a transfer address, the program would be executed. A transfer address tells the program load-
er where to start the program executing after it has been loaded. If you try to load and execute a
program in the above manner and no transfer address is present, the message, ‘NO LINK" will be
output to the terminal, where ‘link’ refers to the transfer address. Some other error messages which
can occur are ‘WHAT?’ if an illegal file specification has been typed as the first part of a command
line, and ‘NOT THERE' if the file typed does not exist on the disk.

During the typing of a command line, the system simply accepts all characters until a ‘RE-
TURN'’ key is typed. Any time before typing the RETURN key, the user may use one of two spe-
cial characters to correct any mistyped characters. One of these characters is the ‘back space’ and
allows deletion of the previously typed character. Typing two back spaces will delete the previous
two characters. The back space is initially defined to be a ‘control H’ but may be redefined by the
user using the TTYSET utility command. The second special character is the line ‘delete’ character.
Typing this character will effectively delete all of the characters which have been typed on the cur-
rent line. A new prompt will be output to the terminal, but instead of the usual ‘+++' prompt, to
show the action of the delete character, the prompt will be ‘???’. Any time the delete character is
used, the new prompt will be 2??’, which signifies that the last line typed did not get entered into the
computer. The delete character is initially a ‘control X’ but may also be redefined using TTYSET.

As mentioned earlier, the first name on a command line is always interpreted as a command.
Following the command is an optional list of names and parameters, depending on the particular
command being entered. The fields of a command line must be separated by either a space or a
comma. The general format of a command line is:

(command) {, (list of names and parameters) }

A comma is shown, but a space may be used. FLEX also allows several commands to be en-
tered on one command line by use of the ‘end of line’ character. This character is initially a colon
(“:'), but may be user defined with the TTYSET utility. By ending a command with the end of line
character, it is possible to follow it immediately with another command. FLEX will execute all
commands on the line before returning with the ‘+++' prompt. An error in any of the command
entries will cause the system to terminate operation of that command line and return with the
prompt. Some examples of valid command lines follow:

-13-
DMAF1




+++CAT 1
+++CAT 1: ASN S=1
+++LIST LIBRARY:CAT 1:CAT 0

As many commands may be typed in one command line as desired, but the total number of
characters typed must not exceed 128. Any excess characters will be ignored by FLEX.

One last system feature to be described is the idea of ‘system’ and ‘working’ drives. As stated
earlier, if a file specification does not specifically designate a drive number, it will assume a default
value. This default value will either be the current ‘system’ drive assignment or the current ‘working’
drive assignment. The system drive is the default for all command names, or in other words, all file
names which are typed first on a command line. Any other file name on the command line will
default to the working drive. This version of FLEX also supports automatic drive searching. When in
the auto search mode if no drive numbers are specified, the operating system will first search drive @
for the file. If the file is not found, drive 1 will be searched and so on. When the system is first ini-
tialized the auto drive searching mode will be selected. It is sometimes convenient to assign drive 1
as the working drive in which case all file references, except commands, will automatically look on
drive 1. It is then convenient to have a diskette in drive § with all the system utility commands on
it (the ‘system drive’), and a disk with the files being worked on in drive 1 (the ‘working drive’). If
the system is @ and the working drive is 1, and the command line was:

+++LIST TEXTFILE

FLEX would go to drive @ for the command LIST and to drive 1 for the file TEXTFILE. The

actual assignment of drives is performed by the ASN utility. See its description for details.

VI. COMMAND DESCRIPTIONS

There are two types of commands in FLEX, memory resident (those which actually are part of the
operating system) and disk utility commands (those commands which reside on the disk and are
part of the UCS). There are only two resident commands, GET and MON. They will be described
here while the UCS (utility command set) is described in the following sections.

GET
The GET command is used to load a binary file into memory. It is a special purpose command and
is not often used. It has the following syntax:

GET {, (file name list) }

where (file name list) is: (file spec) {,(file spec) }etc.

Again the ‘{ }’ surround optional items. ‘File spec’ denotes a file name as described earlier.

The action of the GET command is to load the file or files specified in the list into memory for later
use. If no extension is provided in the file spec, BIN is assumed. In other words, BIN is the default
extension. Examples:

GET, TEST

GET,1. TEST, TEST2.0
Where the first example will load the file named ‘TEST.BIN’ from the assigned working drive, and
the second example will load TEST.BIN from drive 1 and TEST2.BIN from drive .

MON
MON is used to exit FLEX and return to the hardware monitor system such as SWTBUG®. The syn-
tax for this command is simply MON followed by the ‘RETURN' key.

NOTE: to re-enter FLEX after using the MON command, you should enter the program at
location AD@3 hex. If using SWTBUG® or DISKBUG® simply typing ‘G’ will return you to the
FLEX operating system.

—14-
DMAF1




UTILITY COMMAND SET

The following pages describe all of the utility commands currently included in the UCS.You should
note that the page numbers denote the first letter of the command name, as well as the number of
the page for a particular command. For example, ‘B. 1. 2" is the 2nd page of the description for the
1st utility name starting with the letter ‘B’.

COMMON ERROR MESSAGES

Several error messages are common to many of the FLEX utility commands. These error messages
and their meanings include the following:

NO SUCH FILE. This message indicates that a file referenced in a particular com-
mand was not found on the disk specified. Usually the wrong drive was specified (or defaulted),
or a misspelling of the name was made.

ILLEGAL FILE NAME. This can happen if the name or extension did not start with
a letter, or the name or extension field was too long (limited to 8 and 3 respectively). This message
may also mean that the command being executed expected a file name to follow and one was not
provided..

FILE EXISTS. This message will be output if you try to create a file with a name
the same as one which currently exists on the same disk.Two files with the same name are not allow-
ed to exist on the same disk.

SYNTAX ERROR. This means that the command line just typed does not follow
the rules stated for the particular command used. Refer to the individual command descriptions for

syntax rules.

GENERAL SYSTEM FEATURES

Any time one of the utility commands is sending output to the terminal, it may be temporarily hal-
ted by typing the ‘escape’ character (see TTYSET for the definition of this character). Once the
output is stopped, the user has two choices: typing the ‘escape’ character again or typing ‘RE-
TURN'. If the ‘escape’ character is typed again, the output will resume. 1f the ‘/RETURN’ is typed,
control will return to FLEX and the command will be terminated. All other characters are ignored
while output is stopped.

-21-
DMAF1







APPEND

The APPEND command is used to append or concatenate two or more files, creating a new file as
the result. Any type of file may be appended but it only makes sense to append files of the same
type in most cases. |f appending binary files which have transfer addresses associated with them, the
transfer address of the last file of the list will be the effective transfer address of the resultant file.
All of the original files will be left intact.

DESCRIPTION
The general syntax for the APPEND command is as follows:

APPEND. (file spec) {.(file list) }, (file spec)
Where (file list) can be an optional list of the specifications. The last file name specified should
not exist on the disk since this will be the name of the resultant file. If the last file name given
does exist on the disk, the question “MAY THE EXISTING FILE BE DELETED?"” will be dis-
played. A Y response will delete the current file and cause the APPEND operation to be com-
pleted. A N response will terminate the APPEND operation. All other files specified must exist since
they are the ones to be appended together. If only 2 file names are given, the first file will be copied
to the second file. The extension default is TXT unless a different extension is used on the FIRST
FILE SPECIFIED, in which case that extension becomes the default for the rest of the command
line. Some examples will show its use:

APPEND, CHAPTER1,CHAPTER2,CHAPTER3,BO0OK
APPEND,FILE1,1.FILE2.BAK,GOODFILE
The first line would create a file on the working drive called ‘BOOK .TXT’ which would con-
tain the files ‘"CHAPTER1.TXT’, CHAPTER2.TXT’, and ‘CHAPTER3.TXT’ in that order. The
second example would append ‘FILE2.BAK’ from drive 1 to FILE1.TXT from the working drive
and put the result in a file called ‘GOODFILE.TXT' on the working drive. The file GOODFILE de-
faults to the extension of TXT since it is the default extension. Again, after the use of the APPEND
command, all of the original files will be intact, exactly as they were before the APPEND operation.

-A11-




ASN

The ASN command is used for assigning the ‘system’ drive and the ‘working’ drive or to select auto-
matic drive searching. The system drive is used by FLEX as the default for command names or, in
general, the first name on a command line. The working drive is used by FLEX as the default on all
other file specifications within a command line. As the system is initialized the automatic drive
searching mode will be selected. An example will show how the system defaults to these values:
APPEND,FILE1,FILE2,FILE3

Upon receiving the above command line the operating system will try to execute the APPEND
utility stored on drive 0. If a file APPEND.CMD is not found on drive @, drive 1 would be searched,
and if not there, drive 2, etc. The referencing of FILE1 and FILE2 would be done in the same way.
The created file, FILE3, will be saved on the lowest drive number, drive @. When using the auto
searching mode the lowest drive number in the system is always accessed first.

If the system drive is assigned to be @ and the working drive is assigned to drive 1, then the
above example will perform the following operation: get the APPEND command from drive @ (the
system drive), then append FILE2 from drive 1 (the working drive) to FILE 1 from drive 1 and put
the result in FILE3 on drive 1. As can be seen, the system drive was the default for APPEND where
the working drive was the default for all other file specs listed.

DESCRIPTION
The general syntax for the ASN command is as follows:
ASN {, W=(drive }{, S=(drive) }
where (drive) is a single digit drive number or the letter A. If just ASN is typed followed by a ‘RE-
TURN’, no values will be changed, but the system will output a message which tells the current as-
signments of the system and working drives, for example:
+++ASN
THE SYSTEM DRIVE IS #0
THE WORKING DRIVE IS #0
Some examples of using the ASN command are:
ASN W=1
ASN,S=1,W=0
Where the first line would set the working drive to 1 and leave the system drive assigned to its pre-
vious value. The second example sets the system drive to 1 and the working drive to @. Careful use
of drive assignments will allow the operator to avoid the use of drive numbers on file specifications
most of the time!
If auto drive searching is desired, then the letter A, for automatic, should be used in place of the
drive number.
Example:
ASN W=A
ASN S=A, W=
ASN S=A, W

—A21-
DMAF1




BACKUP

The BACKUP command allows for the making of copies of entire FLEX disks. These copies are
different from those produced by the COPY command in that BACKUP makes a ‘‘mirror image’’
copy of the input disk, where COPY always reorganizes a disk so that a file’s sectors are all group-
ed together. There are trade-offs involved when deciding whether to use the BACKUP command
or the COPY command. Reorganization will speed up file accesses which have become slow due
to the sectors of a file not being grouped together. Generally, COPY should be used if there are
only a few files on the disk, or if the disk is very slow in access times. COPY will also allow single
files to be copied as well as copying files to partially used sides. The BACKUP command, which in
most cases will run faster than the COPY routine, will only copy entire disks, and the output disk
will be entirely overwritten. Experience will help determine which command to use and when.

DESCRIPTION
The general syntax for the BACKUP command is:

BACKUP, (input drive), (output drive)
where the drives are specified with single digits. The input drive contains the disk we wish to copy
the information from, and the output drive contains the disk on which we wish the data to be pla-
ced. As an example, to BACKUP drive @to drive 1, the following should be typed:

+++BACKUP,0,1

There are several situations which can exist at the start of a BACKUP operation. Since the

BACKUP command copies every sector from the input drive to the output drive, not caring if there
is actually information on those sectors, it requires that the output disk be formatted (initiaiized)
and have no bad sectors.

If an attempt is made to back up to a diskette that has not be formatted, the message DISK
FILE WRITE ERROR will be displayed. An error message will aiso be displayed if a bad sector is
encountered on the destination disk or on the source disk.

One final note will be of interest. If the input disk had DOS.SYS on it, and it had been pre-
viously linked to the boot (see LINK command), then the new disk will also have DOS.SYS and it
will be linked to the boot as well.

-B.1.1 -
DMAF1




BUILD

The BUILD command is provided for those desiring to create small text files quickly (such as
STARTUP files, see STARTUP) or not wishing to use the optionally available FLEX Text Editing
System. The main purpose for BUILD is to generate short text files for use by either the EXEC
command or the STARTUP facility provided in FLEX.

DESCRIPTION
The general syntax of the BUILD command is:

BUILD,(file spec)
where (file spec) is the name of the file you wish to be created. The default extension for the spec is
TXT and the drive defaults to the working drive. If the output file already exists the question
“MAY THE EXISTING FILE BE DELETED?" will be displayed. A Y response will delete the exis-
ting file and build a new file while a N response will terminate the BUILD operation.

After you are in the ‘BUILD’ mode, the terminal will respond with the equals sign (‘=’) as the
prompt character. This is similar to the Text Editing Systems’s prompt for text input. To enter your
text, simply type on the terminal the desired characters, keeping in mind that once the ‘RETURN'
is typed, the line is in the file and can not be changed. Any time before the ‘RETURN"’ is typed, the
backspace character may be used as well as the line delete character. If the delete character is used,
the prompt will be ???’ instead of the equals sign to show that the last line was deleted and not en-
tered into the file. It should be noted that only printable characters (not control characters) may be
entered into text files using the BUILD command.

To exit the BUILD mode, it is necessary to type a pound sign (‘#') immediately following the
prompt, then type ‘RETURN’. The file will be finished and control returned back to FLEX where
the three plus signs should again be output to the terminal. This exiting is similar to that of the
Text Editing System.

-B.2.1 -
DMAF1




CAT

The CATalog command is used to display the FLEX disk file names in the directory on each disk.
The user may display selected files on one or multiple drives if desired.

DESCRIPTION
The general syntax of the CAT command is:

CAT {,(drive list) } { ,{match list} }
where (drive list) can be one or more drive numbers separated by commas, and (match list) is a set
of name and extension characters to be matched against names in the directory. For example, if
only file names which started with the characters '"VE’ were to be cataloged, then VE would be in
the match list. If only files whose extensions were ‘TXT’ were to be cataloged, then TXT should
appear in the match list. A few specific examples will help clarify the syntax:

+++CAT

+++CAT, 1, A.T,.DR

+++CAT,PR

+++CAT,0,1

+++CAT,0,1,.CMD,.SYS

The first example will catalog all file names on the working drive or on all drives if auto drive
searching is selected. The second example will catalog only those files on drive 1 whose names
begin with ‘A’ and whose extensions begin with ‘T’, and also all files on drive 1 whose names start
with ‘DR’. The next example will catalog all files on the working drive (or on all drives if auto
drive searching is selected) whose names start with ‘PR’. The next line causes all files on both drive
@ and drive 1 to be cataloged. Finally, the last example will catalog the files on drive @ and 1 whose
extensions are CMD or SYS.

During the catalog operation, before each drive’s files are displayed, a header message stating
the drive number is output to the terminal. The name of the diskette as entered during the NEW-
DISK operation will also be displayed. The actual directory entries are listed in the following form:

NAME.EXTENSION SIZE PROTECTION CODE :
where size is the number of sectors that file occupies on the disk. If more than one set of matching
characters was specified on the command line, each set of names will be grouped according to the
characters they match. For example, if all .TXT and .CMD files were cataloged, the TXT types
would be listed together, followed by the CMD types.

In summary, if the CAT command is not parameterized, then all files on the assigned working
drive will be displayed. If a working drive is not assigned (auto drive searching mode) the CAT com-
mand will display files on all on line drives. If it is parameterized by only a drive number, then all
files on that drive will be displayed. If the CAT command is parameterized by only an extension,
then only files with that extension will be displayed. If only the name is used, then only files which
start with that name will be displayed. If the CAT command is parameterized by only name and ex-
tension, then only files of that root name and root extension (on the working drive) will be display-
ed. Learn to use the CAT command and all of its features and your work with the disk will become
a little easier.

The current protection code options that can be displayed are as follows:

D This file is delete protected (delete or rename prohibited)
W  This file is write protected (delete, rename and write prohibited)
(blank) No special protection

-C.1.1-
DMAF1




COPY

The COPY command is used for making copies of files on a disk. Individual files, groups of name—
similar files, or entire disks may be copied. The COPY command is a very versatile utility. The
COPY command also re-groups the sectors of a file in case they were spread all over the old disk.
This regrouping can make file access times much faster. When copying entire disks it is sometimes
more desirable to use the BACKUP command. Refer to its description for details of the tradeoffs
involved between the two methods of copying disks. It should be noted that before copying files to
a new disk, the disk must be formatted first. Refer to NEWDISK for instructions on this procedure.

DESCRIPTION
The general syntax of the COPY command has three forms:

a. COPY,(file spec),(file spec)

b. COPY,(file spec),(drive)

c. COPY,(drive),(drive){,(match list) }
where (match list) is the same as that described in the CAT command and all rules apply to match-
ing names and extensions. When copying files, if the destination disk already contains a file with the
same name as the one being copied, the file name and the message: FILE EXISTS DELETE ORI-
GINAL ? will be output on the terminal. Typing Y will cause the file on the destination disk to be
deleted and the file from the source disk will be copied to the destination disk. Typing N will direct
FLEX not to copy the file in question.

The first type of COPY allows copying a single file into another. The output file may be on a
different drive but if on the same drive, the file names must be different. It is always necessary to
specify the extension of the input file but the output file’s extension will default to that of the in-
put’s if none is specified. An example of this form of COPY is:

+++COPY 0. TEST.TXT,1.TEXT25

This command line would cause the file TEST.TXT on drive @ to be copied into a file called
TEST25.TXT on drive 1. Note how the second file’s extension defaulted to TXT, the extension of
the input file.

The second type of COPY allows copying a file from one drive to another drive with the file
keeping its original name. An example of this is:

+++COPY,0.LIST.CMD,1

Here the file named LIST.CMD on drive @ would be copied to drive 1. It is again necessary to
specify the file’s extension in the file specification. This form of the command is more convenient
than the previous form if the file is to retain its original name after the copying process.

The final form of COPY is the most versatile and the most powerful. It is possible to copy all
files from one drive to another, or to copy only those files which match the match list characters
given. Some examples will clarify its use:

+++COPY,0,1
+++COPY,1,0,.CMD,.SYS
+++COPY,0,1,A,B,CA.T

The first example will copy all files from drive @ to drive 1 keeping the same names in the pro-
cess. The second example will copy only those files on drive 1 whose extensions are CMD and SYS
to drive @. No other files will be copied. The last example will copy the files from drive @ whose
names start with ‘A’ or ‘B’ regardless of extension, and those files whose names start with the letters
‘CA’ and whose extensions start with ‘T’, to the ouput drive which is drive 1. The last form of copy
is the most versatile because it will allow putting just the command (CMD) files on a new disk, or
just the SYS files, etc., with a single command entry. During the COPY process, the name of the file
which is currently being copied will be ouput to the terminal, as well as the drive to which it is
being copied.

-C.21-
DMAF1




DATE

The DATE command is used to display or change an internal FLEX date register. This date regis-
ter may be used by future programs and FLEX utilities.

DESCRIPTION

The general syntax of the DATE-command is:
DATE (mo., day, year)

where mo. is the numerical month, day is the date and year is the last two digits of the year.
+++ DATE 5,2,78 Sets the date register to May 2, 1978

Typing DATE followed by a carriage return will return the last entered date.

Example:

+++ DATE
May 2, 1978

-D.11-
DMAF1




DELETE

The DELETE command is used to delete a file from the disk. Its name will be removed from the
directory and its sector space will be returned to the free space on the disk.

DESCRIPTION
The general syntax of the DELETE command is:
DELETE,(file spec) {,(file list) }
where (file list) can be an optional list of file specifications. It is necessary to include the extension
on each file specified. As the DELETE command is executing it will prompt you with:
DELETE “FILE NAME'"?

The entire file specification will be displayed, including the drive number. If you decide the
file should be deleted, type ‘Y’, otherwise, any other response will cause that file to remain on the
disk. If a ‘Y’ was typed, the message ‘ARE YOU SURE?’ will be displayed on the terminal. If you
are absolutely sure you want the file deleted from the disk, type another ‘Y’ and it will be gone.
Any other character will leave the file intact. ONCE A FILE HAS BEEN DELETED, THERE IS NO
WAY TO GET IT BACK! Be absolutely sure you have the right file before answering the prompt
questions with Y'’s. Once the file is deleted, the space it had occupied on the disk is returned back
to the list of free space for future use by other files. A few examples follow:

+++DELETE MATHPACK.BIN
+++DELETE,1.TEST.TXT,0.AUGUST.TXT

The first example will DELETE the file named MATHPACK.BIN from the working drive. If
auto drive searching is selected, the file will be deleted from the first drive it is found on. The
second line will DELETE the file TEST.TXT from drive 1, and AUGUST.TXT from drive 0.

There are several restrictions on the DELETE command. First, a file that is delete or write pro-
tected may not be deleted without first removing the protection. Also a file which is curréntly in
the print queue (see the PRINT command) can not be deleted using the DELETE command.

-D.2.1 -
DMAF1




EXEC

The EXECute command is used to process a text file as a list of commands, just as if they had been
typed from the keyboard. This is a very powerful feature of FLEX for it allows very complex pro-
dedures to be huilt up as a command file. When it is desirable to run this procedure, it is only
necessary to type EXEC followed by the name of the command file. Essentially all EXEC does is to
replace the FLEX keyboard entry routine with a routine which reads a line from the command file
each time the keyboard routine would have been called. The FLEX utilities have no idea that the
line of input is coming from a file instead of the terminal.

DESCRIPTION
The general syntax of the EXEC command is:
EXEC,(file spec)
where (file spec) is the name of the command file. The default extension is TXT. An example will
give some ideas on how EXEC can be used. One set of commands which might be performed quite
often is the set to make a new system diskette on drive 1 (see NEWDISK). Normally it is necessary
to use NEWDISK and then copy all .CMD and all .SYS files to the new disk. Finally the LINK must
he performed. Rather than having to type this set of commands each time it was desired to produce
a new system diskette, we could create a command file called MAKEDISK.TXT which contained
the necessary commands. The BUILD utility should be used to create this file. The creation of this
file might go as follows:
+++BUILD ,MAKEDISK
=NEWDISK,1
=COPY,0,1,.CMD,.0OV,.LOW,.SYS
=LINK,1.DOS
=4
+++
The first line of the example tells FLEX we wish to BUILD a file called MAKEDISK (with
the default extension of. TXT). Next, the three necessary command lines are typed in just as they
would be typed into FLEX. The COPY command will copy all files with CMD, OV, LOW, and SYS
extensions from drive @ to drive 1. Finally the LINK will be performed. Now when we want to
create a system disk in drive 1 we only need to type the following:
+++EXEC,MAKEDISK
We are assuming here that MAKEDISK resides on the same disk which contains the system
commands. EXEC can also be used to execute the STARTUP file (see STARTUP).
There are many applications for the EXEC command. The one shown is certainly useful but
experience and imagination will lead you to other useful applications.

IMPORTANT NOTE: The EXEC utility is loaded into memory beginning at hex location
7C00. Do not attempt to use EXEC if your system does not have memory at this address.

- E1.1-
DMAF1







The | command can be used to force characters to all operator input requests (questions) in FLEX
utilities.

DESCRIPTION
The general syntax of the | command is:

I, (file spec.),(command)
where (file spec.) is the name of the file containing the characters to be used as input and (com-
mand) is the FLEX utility command that will be executed and that will receive the input from
(file spec.). The default extension on (file spec) is .TXT.

For example, say that on a startup you always wanted the file DATA.DAT deleted from the
disk without having to answer the “ARE YOU SURE?'’ questions. This could be done in the follow-
ing manner:

+++BUILD, YES

=YY The first Y will answer the “DELETE @.DATA.DAT?" question.
and the second Y will answer the “ARE YOU SURE?"' question

=#

+++BUILD STARTUP

=1,YES,DELETE,DATA.DAT

=#

Upon booting the disk, FLEX will execute the STARTUP file and perform the following op-
eration: delete the file DATA.DAT receiving all answers from any questions from the input file
YES.TXT rather than from the terminal.

See the description of the STARTUP command for more information on STARTUP.

-1L1.1-
DMAF1




- b
s
\ 3
. R

X ]

-5

-

- g 5

. e




JUMP

The JUMP command is provided for convenience. It is used to start execution of a program already
stored in computer RAM memory.

DESCRIPTION
The general syntax of the JUMP command is:
JUMP, (hex address)
where (hex address) is a 1 to 4 digit hex number representing the address where program execution
should begin. The primary reason for using JUMP is if there is a long program already in memory
and you do not wish to load it off of the disk again. Some time can be saved but you must be sure
the program really exists before JUMPing to it!
As an example, suppose we had a BASIC interpreter in memory and it had a ‘warm start’
address of 103 hex. To start its execution from FLEX, type the following:
+++JUMP,103
The BASIC interpreter would then be executed. Again, remember that you must be absolutely
sure the program you are JUMPing to is actually present in memory.

—-J.1.1 -
-DMAF1







LINK

The LINK command is used to tell the bootstrap loader where the DOS.SYS file resides on the disk.
This is necessary each time a system disk is created using NEWDISK. The NEWDISK utility should
be consulted for complete details on the use of LINK.

DESCRIPTION
The general syntax of the LINK command is:
LINK,(file spec)
where (file spec) is usually DOS. The default extension is SYS. Some examples of the use of LINK
follow:
+++LINK,DOS
_+++LINK,1.DOS
The first line will LINK DOS.SYS on the working drive, while the second example will LINK
DOS.SYS on drive 1. For more advanced details of the LINK utility, consult the ““Advanced Pro-
grammers Guide'’.

-L11-
DMAF1




LIST

The LIST command is used to LIST the contents of text or BASIC files on the terminal. It is often
desirable to examine a file without having to use an editor or other such program. The LIST utility
allows examining entire files, or selected lines of the file. Line numbers may also be optionally
printed with each line. )

DESCRIPTION
The general syntax of the LIST command is:

LIST,(file spec) {,(line range) } {,+{options) }
where the (file spec)designates the file to be LISTed (with a default extension of TXT) and (line
range) is the first and last line number of the file which you wish to be displayed. All lines are out-
put if no range specification is given. The LIST command supports two additional options. If a +N
option is given, line numbers will be displayed with the listed file. If a +P option is given, the output
will be formatted in pages and LIST will prompt for “TITLE' at which time a title for the output
may be entered. The TITLE may be up to 40 characters long. This feature is useful for obtaining
output on a printer for documentation purposes (see P command). Each page will consist of the
title, date, page number, 54 lines of output and a hex @C formfeed character. Entering a +NP will
select both options. A few examples will clarify the syntax used:

+++LIST,RECEIPTS,

+++LIST,CHAPTER1,30,200,+NP

+++LIST,LETTER,100

The first example will list the file named ‘RECEIPTS.TXT' without line numbers. All lines will

be output unless the ‘escape character’ is used as described in the Utility Command Set introduc-
tion. The second example will LIST the 3@th line through the 2@@th line of the file named ‘CHAP-
TER1.TXT' on the terminal. The hyphen (') is required as the range number separator. Line num-
bering and page formatting will be selected because of the ,+NP option. The last example shows a
special feature of the range specification. If only one number is stated, it will be interpreted as the
first line to be displayed. All lines following that line will also be LISTed. The last example will
LIST the lines from line 100 to the end of the file. No line numbers will be output since the ‘N’
was omitted.

-L21-
DMAF1




MEMTEST1

The MEMTEST1 utility can be used to verify the integrity of the computer’s memory. MEMTEST1
should be run periodically on your computer to alert you of any memory failures.

DESCRIPTION
The general syntax of the MEMTEST1 utility is:
MEMTEST1
MEMTEST1 does not have any arguments or file specifications associated with it. MEMTEST1
will then prompt you for the beginning and ending memory addresses. A four digit hexadecimal
number should be entered in each case. In the case of a 32K system, the response would be as

follows:
+++MEMTEST1
ENTER THE STARTING MEMORY ADDRESS (0200 min) 9200
ENTER THE ENDING MEMORY ADDRESS (7FFF max) 7FFF

If no errors are found in the memory being checked a & will be displayed on the screen. To
completely test an area of memory, MEMTEST1 must be allowed to run until 256 &’s have been
displayed on the screen. Each time a & is displayed on the screen MEMTEST has successfully cycled
through memory storing and reading a different pattern.

After the selected region of memory has been tested (256 &'’s displayed) MEMTEST 1 will then
cycle thru the RAM memory that FLEX uses (AQ@® - BFFF). Each + displayed on the screen de-
notes one successful cycle thru the memory. The diagnostic should run until 256 +’s have been dis-
played. MEMTEST1 will then exit to the computer system’s monitor.

If an error is detected the output will be similar to the following:

$06 20 16A0
(PATTERN #) (ERRANT BITS) (ADDRESS)

An error message such as this says that MEMTEST1 cycled thru memory five times without
error, but on the sixth try a pattern was used that detected an error. The @6 tells what pattern
number MEMTEST1 was working on when the error was detected. The 20 (hexadecimal) tells
‘which bit(s) were in error. 20 converted to binary is 0010000@—the location of the 1 is the bit(s)
that were in error, in this case bit 5. Bit numbers start from @ as shown.

76543210 BIT #
2016=00100000

The 16A0 is the address where the error was detected. This address may not store a particular
number or possibly writing into another address, such as 16B@, changed the contents of 16A0.

The IC assignments table supplied with the memory board should be used to help locate the
problem. In the above case on an MP-8M 8K memory board the bit # 5 IC in the upper 4K of
memory should be suspected.

After running MEMTEST1, FLEX may be re-entered only by re-booting the system.

-M.1.1 -
DMAF1







NEWDISK

NEWDISK is used to format a new diskette. Diskettes as purchased will not work with FLEX until
certain system information has been put on them. The NEWDISK utility puts this information on

‘ the diskette, as well as checking the diskette for defective sectors (bad spots on the surface of the
disk which may cause data errors).

DESCRIPTION
The general syntax of the NEWDISK command is:

NEWDISK,(drive)
where (drive) represents a single digit drive number and specifies the drive to be formatted. After
typing the command, the system will ask if you are sure you want a NEWDISK, and if the disk to
be initialized is a scratch disk. Type ‘Y’ as the response to these questions if you are sure the NEW-
DISK command should continue. NEWDISK will also ask you if you have a double sided disk in-
stalled. If so, type ‘Y'. If you are using single sided diskettes, type ‘N’. SWTPC supplies only double
sided diskettes with the DMAF1. NEWDISK then prompts for a volume name and number. This
gives you the ability to ““name’’ the diskette for future reference.

The NEWDISK process takes approximately five minutes to initialize a disk, assuming there are
no bad spots on it. Defective sectors wiil make NEWDISK run even slower, depending on the num-
ber of bad sectors found. As bad sectors are detected, a message will be output to the terminal such
as:

BAD SECTOR AT xxyy
where ‘‘xx’’ is the disk track number (in hex) and ‘‘yy’’ is the sector number, also in hex. NEWDISK
automatically removes bad sectors from the list of available sectors, so even if a disk has several bad
sectors on it, it is still usable. When NEWDISK finishes, FLEX will report the number of available
sectors remaining on the disk. If no defective sectors were detected, the total should be 2280 for
double sided disks and 1140 for single sided. '

Sometimes during the NEWDISK process, a sector will be found defective in an area on the

. disk which is required by the operating system. In such a case, NEWDISK will report:
FATAL ERROR—FORMATTING ABORTED
and FLEX will regain control. You should not immediately assume the disk to be useless if this
occurs, but instead, remove the disk from the drive, re-insert it, and try NEWDISK again. If after
several attempts the formatting is still aborted, you should assume the disk is unusable. You may
not BACKUP onto a diskette with bad sectors on it. See the BACKUP documentation for more
information.

CREATING SYSTEM DISKETTES

A system disk is one from which the disk operating system can be loaded. Normally the system disk
will also contain the Utility Command Set (UCS). The following procedure should be used when
preparing system disks.

1. Initialize the diskette using NEWDISK as described above.
2. COPY all .CMD files desired to the new disk. ,
3. COPY all .SYS files to the new disk. It should be noted that steps 2 and 3 can be

done with one command; ‘COPY,0,1,.CMD,.0OV,.LOW,.SYS’, assuming you are copying from @
to 1 and all command files and their overlays are desired. (the .OV copies overlay files and
.LOW copies the utility ‘SAVE.LOW’).

4, Last it is necessary to LINK the file DOS.SYS to the system using the LINK com-
mand.

A very convenient way to get the above process performed without having to type all of the
commands each time is to create a command file and use the EXEC command. Consult the EXEC
documentation for details.

‘ It is not necessary to make every disk a system diskette. It is also possible to create ‘working’
diskettes, disks which do not have the operating system on them, for use with text files or BASIC

—N.1.1 -
DMAF1




files. Remember that a diskette can not be used for booting the system unless the operating system
is contained on it. To create a working disk, simply run NEWDISK on a diskette. It will now have
all of the required information to enable FLEX to make use of it. This disk, however, does not con-
tain the disk operating system and is not capable of booting the system.

-N.1.2 -
DMAF1




NEWDISK

NEWDISK is used to format a new diskette. Diskettes as purchased will not work with FLEX until
certain system information has been put on them. The NEWDISK utility puts this information on

. the diskette, as well as checking the diskette for defective sectors (bad spots on the surface of the
disk which may cause data errors).

DESCRIPTION
The general syntax of the NEWDISK command is:

NEWDISK, (drive)
where (drive) represents a single digit drive number and specifies the drive to be formatted. After
typing the command, the system will ask if you are sure you want a NEWDISK, and if the disk to
be initialized is a scratch disk. Type ‘Y’ as the response to these questions if you are sure the NEW-
DISK command should continue. NEWDISK will also ask you if you have a double sided disk in-
stalled. If so, type ‘Y'. If you are using single sided diskettes, type ‘N’. SWTPC supplies only double
sided diskettes with the DMAF1. NEWDISK then prompts for a volume name and number. This
gives you the ability to “name’’ the diskette for future reference.

The NEWDISK process takes approximately five minutes to initialize a disk, assuming there are
no bad spots on it. Defective sectors wiil make NEWDISK run even slower, depending on the num-
ber of bad sectors found. As bad sectors are detected, a message will be output to the terminal such
as:

BAD SECTOR AT xxyy
where “’xx’’ is the disk track number (in hex) and ‘“yy’’ is the sector number, also in hex. NEWDISK
automatically removes bad sectors from the list of available sectors, so even if a disk has several bad
sectors on it, it is still usable. When NEWDISK finishes, FLEX will report the number of available
sectors remaining on the disk. If no defective sectors were detected, the total should be 2280 for
double sided disks and 1140 for single sided. '

Sometimes during the NEWDISK process, a sector will be found defective in an area on the

. disk which is required by the operating system. In such a case, NEWDISK will report:
FATAL ERROR—FORMATTING ABORTED
and FLEX will regain control. You should not immediately assume the disk to be useless if this
occurs, but instead, remove the disk from the drive, re-insert it, and try NEWDISK again. If after
several attempts the formatting is still aborted, you should assume the disk is unusable. You may
not BACKUP onto a diskette with bad sectors on it. See the BACKUP documentation for more
information.

CREATING SYSTEM DISKETTES

A system disk is one from which the disk operating system can be loaded. Normally the system disk
will also contain the Utility Command Set (UCS). The following procedure should be used when
preparing system disks.

1. Initialize the diskette using NEWDISK as described above.
2. COPY all .CMD files desired to the new disk. ‘
3. COPY all .SYS files to the new disk. It should be noted that steps 2 and 3 can be

done with one command; ‘COPY,8,1,.CMD,.0V,.LOW,.SYS’, assuming you are copying from 0
to 1 and all command files and their overlays are desired. (the .OV copies overlay files and
.LOW copies the utility ‘SAVE.LOW’).

4. Last it is necessary to LINK the file DOS.SYS to the system using the LINK com-
mand.

A very convenient way to get the above process performed without having to type all of the
commands each time is to create a command file and use the EXEC command. Consult the EXEC
documentation for details.

. It is not necessary to make every disk a system diskette. It is also possible to create ‘working’
diskettes, disks which do not have the operating system on them, for use with text files or BASIC

—N.1.1 -
DMAF1




(o)

The O (not zero) command can be used to route all displayed output from a utility to an output file
instead of to the terminal. The function of O is similar to P (the printer commend) except that out-
put is stored in a file rather than being printed on the terminal or printer. Other SWTPC and TSC
software may support this utility. Check the supplied software instruction for more details.

DESCRIPTION
The general syntax of the O command is:
0, (file spec),(command)
where (command) can be any standard utility command line and (file spec) is the name of the de-
sired output file. The default extension on (file spec) is .OUT. If O is used with multiple commands
per line (using the ‘end of line’ character :) it will only have affect on the command it immediately
precedes. Some examples will clarify its use.
+++0,CAT,CAT  writes a listing of the current disk directory into a file called
CAT.OUT
+++0,BAS,ASMB,BASIC.TXT writes the assembled source listing of the text
source file BASIC.TXT into a file called BAS.OUT
when using the assembler.

-0.1.1-
DMAF1







P

The P command is very special and unlike any others currently in the UCS. P is the system print
routine and will allow the output of any command to be routed to the printer. This is very useful
for getting printed copies of the CATalog or when used with the LIST command will allow the
printing of FLEX text files.

DESCRIPTION
The general syntax of the P command is:

P,(command)

where (command) can be any standard utility command line. If P is used with multi-
ple commands per line (using the ‘end of line’ character ,:), it will only have affect on the command
it immediately precedes. Some examples will clarify its use:

+++P,CAT

+++P,LIST MONDAY:CAT,1

The first example would print a CATalog of the directory of the working drive on the printer.
The second example will print a LISTing of the text file MONDAY.TXT and then display on the
terminal a CATalog of drive 1 (this assumes the ‘end of line’ character is a ‘:’). Note how the P did
not cause the ‘CAT,1’ to go to the printer. Consult the ‘Advanced Programmer’s Guide’ for details
concerning adaption of the P command to various printers.

The P command tries to load a file named PRINT.SYS from the same disk which P itself was
retrieved. The PRINT.SYS file which 'is supplied with the system diskette contains the necessary
routines to operate a SWTPC PR 40 printer connected through a parallel interface on PORT 7 of
the computer. If you wish to use a different printer configuration, consult the ‘Advanced Program-
mer’s Guide’ for details on writing your own printer driver routines to replace the PRINT.SYS file.
The PR 40 drivers, however, are compatible with many other parallel interfaced printers presently
on the market. '

-P.1.1-
DMAF1




PRINT

FLEX has the ability to output file stored data to a printer at the same time that it is performing
other tasks. This feature is especially useful when it is necessary to print a long listing without tying
up the computer. This method of printing is called PRINTER SPOOLING. In order for the printer
spooling function to work, a SWTPC MP-T interrupt timer board must be installed in 1/0 position
#4 on the computer’s mother board.

DESCRIPTION
The general syntax of the PRINT command is as follows:
PRINT (file spec), {repeat #}
where (file spec) is the name of the file to be printed. The default extension on (file spec) is .OUT.
{Repeat # }is the number of additional copies of the file you wish to be printed.

For example, say that your disk had a very large number of files on it and a printed catalog
listing was desired. A file containing the output information shoul'd first be created by using the
O command such as:

+++0,CAT.OUT,CAT.CMD or +++O,CAT,CAT (see the description of the O

command.)

when printer output is desired the command

+++PRINT,CAT.OUT or +++PRINT,CAT
should be entered.
At this time the file CAT.OUT is stored in a buffer called a print queue (waiting list). If another
PRINT command is issued before the first has finished, the second file will be put in the next
available location in the print queue.

After the file name to be printed has been stored in the print queue, control will return to the
FLEX operating system. At this time you may perform any disk operation you want, such as dele-
ting files, copying disks, etc. While you are using FLEX, PRINT will be outputting the desired file
to the printer. PRINT will automatically wait for the printer to become ready (power up) even after
the file has been entered into the print queue.

After printing the first file, the second file in the queue will be printed (if there is one), etc.
The print queue may be examined or modified at any time by using the QCHECK utility.

NOTE: There are several things that the user should be aware of when using printer spooling:

1.) Any file that is in the print queue may not be deleted, renamed, or changed in any way
until it has been printed or removed by the QCH ECK print queue manager untility.

2.) Disks which contain the files in the print queve should not be removed while the files are
still in the queue.

3.) The P command should not be used while files are waiting in the print queue.

4.) Any paper or cassette tape load or any other operation which requires that the computer
accept data at precise time intervals should not be executed during a printer spooling
operation.

-P.21. -
DMAF1




CREATE OUTPUT FILE EXACTLY
AS YOU WANT IT PRINTED

J

ISSUE PRINT (file) COMMAND

J

PRINT QUEUE

(file) entered in PRINT queue

J

FLEX CONTROL RESUMED

i

PERFORM OTHER DISK OPERATIONS
(CAT, RENAME, etc.)

PRINTER SPOOLING FLOWCHART

FILE #2
FILE #3

FILE #N

SEND OUTPUT FROM

FILE IN QUEUE TO PRINTER

YES

#

DELETE (file) FROM QUEUE
WHEN PRINTED

ANY MORE FILES

-P.22 -
DMAF1

IN QUEUE?

WAIT FOR ANOTHER
FILE TO BE ENTERED
INTO PRINT QUEUE

— FILE #1 ~——




PROT

The PROT command is used to change a protection code associated with each file. When a file is
first saved, it has no protection associated with it thereby allowing the user to write to,rename,
or delete the file. Delete or write protection can be added to a file by using the PROT command.

DESCRIPTION
The general syntax of the PROT command is:
PROT, (file spec), {option list}
where the (file spec) designates the file to be protected and {option list }is any combination of the
following options.

D —A D will delete protect a file. A delete protected file cannot be affected by using the DE-
LETE or RENAME commands, or by the delete functions of SAVE, APPEND, etc.

W —A W will write protect a file. A write protected file can not be deleted, renamed or have any
additional information written to it. Therefore a write protected file is automatically delete
protected as well.

C —A C will Catalog protect a file. Any files with a C protection code will function as before
but will not be displayed when a CAT command is issued.
X  —An X will remove all protection options on a specific file.
Examples:

+++PROT CAT.CMD,XW Remove any previous protection on the CAT.CMD
utility and write protect it.

+++PROT CAT.CMD,X Remove all protection from the CAT.CMD utility.

+++PROT INFO.SYS,C Prohibit INFO.SYS from being displayed in a catalog
listing.

—-P.3.1-
DMAF1




QCHECK

The QCHECK utility can be used to examine the contents of the print queue and to modify its con-
tents. QCHECK has no additional arguments with it. Simply type QCHECK. QCHECK will stop any
printing that is taking place and then display the current contents of the print queue as follows:

+++ QCHECK
POS NAME TYPE RPT
1 TEST. .OuUT 2
2 CHPTR. .OuUT ]
3 CHPTR2. TIXT 0
COMMAND?

This output says that TEST.OUT is the next file to be printed (or that it is in the process of being
printed) and that 3 copies (1 plus a repeat of 2) of this file will be printed. After these three copies
have been printed, CHPTR.OUT will be printed and then CHPTR2.TXT. The COMMAND? prompt
means QCHECK is awaiting for one of the following commands:

COMMAND
(carriage return)
Q
R,#N,X

D,#N

FUNCTION

Re-start printing, return to the FLEX command mode

A Q command will print the queue contents again

An R command will repeat the file at position #N X times. If X is omitted
the repeat count will be cleared.

Example: R, #3,6

A D command will delete the file at queve position #N. If N=1, the cur-
rent print job will be terminated.

Example: D,#3

A T command will terminate the current print job. This will cause the job
currently printing to quit and printing of the next job to start. If the cur-
rent files RPT count was not zero, it will print again until the repeat count
is 0. To completely terminate the current job use the D,#1 command.

A N command will make the file at position #N the next one to be printed
after the current print job is finished. Typing Q after this command will
show the new queue order.

Example: N,#3

An S command will cause printing to stop. After the current job is finish-
ed printing, printing will halt until a G command is issued.

A G command will re-start printing after an S command has been used to
stop it.

A K command will kill the current print process. All printing and queued
jobs will be deleted. No files are actually deleted, however.

-Q1.1 -
DMAF1







RENAME

The RENAME command is used to give an existing file a new name in the directory. It is useful
for changing the actual name as well as changing the extension type.

DESCRIPTION
The general syntax of the RENAME command is:

RENAME, (file spec 1),(file spec 2)
where (file spec 1) is the name of the file you wish to RENAME and (file spec 2) is the new name
you are assigning to it. The default extension for file spec 1 is TXT and the default drive is the
working drive. If no extension is given on (file spec 2), it defaults to that of (file spec 1). No drive
is required on the second file name, and if one is given it is ignored. Some examples follow:

+++RENAME, TEST1.BIN,TEST2

+++RENAME,1.LETTER,REPLY

+++RENAME,D.FIND.BIN,FIND.CMD

The first example will RENAME TEST1.BIN to TEST2.BIN. The next example RENAMEs

the file LETTER.TXT on drive 1 to REPLY.TXT. The last line would cause the file FIND.BIN on
drive @ to be renamed FIND.CMD. This is useful for making binary files created by an assembler
into command files (changing the extension from BIN to CMD). If you try to give a file a name
which already exists in the directory, the message:

FILE EXISTS
will be displayed on the terminal. Keep in mind that RENAME only changes the file’s name and in
no way changes the actual file’s contents.

One last note of interest. Since utility commands are just like any other file, it is possible to

rename them also. |If you would prefer some of the command names to be shorter, or different all
together, simply use RENAME and assign them the names you desire.

—R.1.1 -
DMAF1







SAVE

The SAVE command is used for saving a section of memory on the disk. Its primary use is for sav-
ing programs which have been loaded into memory from tape or by hand.

DESCRIPTION
The general syntax of the SAVE command is:

SAVE, (file spec),(begin adr),(end adr) {,(transfer adr) }
where (file spec) is the name to be assigned to the file. The default extension is BIN and the default
drive is the working drive. The address fields define the beginning and ending addresses of the sec-
tion of memory to be written on the disk. The addresses should be expressed as hex numbers. The
optional (transfer address)would be included if the program is to be loaded and executed by FLEX
This address tells FLEX where execution should begin. Some examples will clarify the use of
SAVE:

+++SAVE,DATA, 100,1FF

+++SAVE,1.GAME,0,1680,100

The first line would SAVE the memory locations 100 to 1FF hex on the disk in a file called
DATA.BIN. The file would be put on the working drive and no transfer address would be assigned.
The second example would cause the contents of memory locations @ through 1680 to be SAVEd
on the disk in file GAME.BIN on drive 1. Since a transfer address of 100 was specified as a para-
meter, typing ‘GAME.BIN’ in response to the FLEX prompt after saving would cause the file to be
loaded back into memory and execution started at location 100.

If an attempt is made to save a program under a file name that already exists, the prompt
“MAY THE EXISTING FILE BE DELETED?"" will be displayed. A Y response will replace the file
with the new data to be saved while a N response will terminate the save operation.

Sometimes it is desirable to save noncontiguous segments of memory. To do this it would be
necessary to first SAVE each segment as a separate file and then use the APPEND command to
combine them into one file. If the final file is to have a transfer address, you should assign it to one
of the segments as it is being SAVEd. After the APPEND operation, the final file will retain that
transfer address.

-S.1.1-




SAVE.LOW

There is another form of the SAVE command resident in the UCS. It is called SAVE.LOW and loads
in a lower section of memory than the standard SAVE command. Its use is for saving programs in ,
the Utility Command Space where SAVE.CMD is loaded. Those interested in creating their own .
utility commands should consult the ‘Advanced Programmer’s Guide’ for further details.

—-8.2.1.—
DMAF1




STARTUP

STARTUP is not a utility command but is a feature of FLEX. It is often desirable to have the oper-
ating system do some special action or actions upon initialization of the system (during the boot-
strap loading process). As an example, the user may always want to use BASIC immediately follow-
ing the boot process. STARTUP will allow for this without the necessity of calling the BASIC
interpreter each time.

DESCRIPTION
FLEX always checks the disk’s directory immediately following the system initialization for a file
called STARTUP.TXT. If none is found, the three plus sign prompt is output and the system is
ready to accept user commands. If a STARTUP file is present, it is read and interpreted as a single
command line and the appropriate actions are performed. As an example, suppose we wanted
FLEX to execute BASIC each time the system was booted. First it is necssary to create the START-
UP file:
+++BUILD,STARTUP
=BASIC
=#
+++

The above procedure using the BUILD command will create the desired file. Note that the file
consisted of one line (which is all FLEX reads from the STARTUP file anyway). This line will tell
FLEX to load and execute BASIC. Now each time this disk is used to boot the operating system,
BASIC will also be loaded and run. Note that this example assumes two things. First, the disk must
contain DOS.SYS and must have been LINKed in order for the boot to work properly. Second, it is
assumed that a file called BASIC.CMD actually exists on the disk.

Another example of the use of STARTUP is to set system environment parameters such as
TTYSET parameters or the assigning of a system and working drive. If the STARTUP command
consisted of the following line:

TTYSET,DP=16,WD=60:ASN W=1:ASN:CAT,0
each time the system was booted the following actions would occur. First, TTYSET would set the
‘depth’ to 16 and the ‘width’ to 6@. Next, assuming the ‘end of line’ character is the ":’, the ASN
command would assign the working drive to drive 1. Next ASN would display the assigned system
and working drives on the terminal. Finally, a CATalog of the files on drive @ would be displayed.
For details of the actions of the individual commands, refer to their descriptions elsewhere in this
manual.

As it stands, it looks as if the STARTUP feature is limited to the execution of a single com-
mand line. This is true but there is a way around the restriction, the EXEC command. If a longer
list of operations is desired than will fit on one line, simply create a command file containing all of
the commands desired. Then create the STARTUP file using the single line.’

EXEC,(file name)
where (file name) would be replaced by the name assigned to the command file created. A little
imagination and experience will show may uses for the STARTUP feature.

By directing STARTUP to a file that does not have a return to DOS command it is possible to
lockout access to DOS. You can correct the problem by hitting the RESET button, setting the pro-
gram counter addresses AP48 and AP49 to AD@3and typing G for go. The STARTUP file may then
be deleted and if desired, modified. Directing execution to AD@3, the DOS warm start address, by-
passes the DOS STARTUP function. ‘

—-8.3.1~-







TTYSET

The TTYSET utility command is provided so the user may control the characteristics of the ter-

minal. With this command, the action of the terminal on input and the display format on output
may be controlled.

DESCRIPTION
The general syntax of the TTYSET command is:

TTYSET{ ,(parameter list) }
where (parameter list) is a list of 2 letter parameter names, each followed by an equals sign (=),
and then by the value being assigned. Each parameter should be separated by a comma or a space. |f
no parameters are given, the values of all of the TTYSET parameters will be displayed on the
terminal.

The default number base for numerical values is the base most appropriate to the parameter. In
the descriptions that follow, ‘hh’ is used for parameters whose default base is hex; ‘dd’ is used for
those whose default base is decimal. Values which should be expressed in hex are displayed in the
TTYSET parameter listing preceded by a ‘$’. Some examples follow:

+++TTYSET
+++TTYSET ,DP=16,WD=63
+++TTYSET,BS=8,ES=3.

The first example simply lists the current values of all TTYSET parameters on the terminal.
The next line sets the depth ‘DP’ to 16 lines and the terminal width, ‘WD’ to 63 columns. The last
example sets the backspace character to the value of hex 8 and the escape character to hex 3.

The following fully describes all of the TTYSET parameters available to the user. Their initial
values are defined, as well as any special characteristics they may possess.

BS=hh BackSpace character

This sets the ‘backspace’ character to the character having the ASCII hex value of hh. This character
“is initially a ‘control H’ (hex @8), but may be defined to any ASCII character. The action of the

backspace character is to delete the last character typed from the terminal. If two backspace

characters are typed, the last two characters will be deleted, etc. Setting BS=0 will disable the back-

space feature.

BE=hh Backspace Echo character ' ‘ _ _

This defines the character to be sent to the terminal after a ‘backspace _character is received. The
character printed will have the ASCII hex value of hh. This character is initially set to a null but can
be set to any ASCII character.

The BE command also has a very special use that will be of interest to some terminal owners, such
as the SWTPC CT-64.

If a hex @8 is specified as the echo character, FLEX will output a space (20) then a'nother 08.
This feature is very useful for terminals which decode a hex @8 as a cursor left but which do not
erase characters as the cursor is moved.

Example: Say that you mis-typed the word cat as shown below:

+++CAY

typing in one ctrl. H (hex @8) would position the cursor on top of the Y and delete the Y from the
DOS input buffer. FLEX would then send out a space (20) to erase the Y and another @8 (cursor
left) to re-position the cursor.

DL=hh Delete character

This sets the ‘delete current line’ character to the hex value hh. This character is initially_a_’control
X’ (hex 16). The action of the delete character is to ‘erase’ the current input line before it is accep-
ted into the computer for execution. Setting DL=0@ will disable the line delete feature.

~T.11-
DMAF1




EL=hh End of Line character

This character is the one used by FLEX to separate multiple commands on one input line. It is ini-
tially set to a colon (*:’), a hex value of 3A. Setting this character to @ will disable the multiple com-
mand per line capability of FLEX. The parameter ‘EL=hh’ will set the end of line character to the

character having the ASCI| hex value of hh. This character must be set to a printable character {(con-
trol characters not allowed).

DP=dd DePth count

This parameter specifies that a page consists of dd (decimal) physical lines of output. A page may be
considered to be the number of lines between the fold if using fan folded paper on a hard copy ter-
minal, or a page may be defined to be the number of lines which can be displayed at any one time

on a CRT type terminal. Setting DP=0 will disable the paging (this is the initial value). See EJ and
PS beiow for more details of depth.

WD=dd WiDth
The WD parameter specifies the (decimal) number of characters to be displayed on a physical line at

the terminal (the number of columns). Lines of text longer than the value of width will be ‘folded’
at every multiple of WD characters. For example, if WD is 50 and a line of 125 characters is to be
displayed, the first 5@ characters are displayed on a physical line at the terminal, the next 5@ charac-
ters are displayed on the next physical line, and the last 25 characters are displayed on the first phy-

sical line. If WD is set to @, the width feature will be disabled, and any number of characters will be
permitted on a physical line.

NL=dd NuLl count

This parameter sets the (decimal) number of non-printing (Null) ‘pad’ characters to be sent to the
terminal at the end of each line. These pad characters are used so the terminal carriage has enough
time to return to the left margin before the next printable characters are sent. The intial value is 4.

Users using CRT type terminals may want to set NL=0 since no pad characters are usually required
on this type of terminal.

TB=hh TaB character
The tab character is not used by FLEX but some of the utilities may require one (such as the Text

Editing System). This parameter will set the tab character to the character having the ASCII hex
value hh. This character should be a printable character.

EJ=dd EJect count

This parameter is used to specify the (decimal) number of ‘eject lines’ to be sent to the terminal
at the bottom of each page. |f Pause is ‘on’, the ‘eject sequence’ is sent to the terminal after the
pause is terminated. If the value dd is zero (which it is by default), no ‘eject lines” are issued. An
eject line is simply a blank line (line feed) sent to the terminal. This feature is especially useful for
terminals or printers with fan fold paper so as to skip over the fold (see Depth). It may also be use-
ful for certain CRT terminals to be able to erase the previous screen contents at the end of each
page.

PS=Y or PS=N PauSe control

This parameter enables (PS=Y) or disables (PS=N) the end-of-page pause feature. |f Pause is on and
depth is set to some nonzero value, the output display is automatically suspended at the end of each
page. The output may be restarted by typing the ‘escape’ character (see ES description). If pause is
disabled, there will be no end-of-page pausing. This feature is useful for those using high-speed CRT
terminals to suspend output long enough to read the page of text.

-T1.2-
DMAF1




ES=hh EScape character

The character whose ASCII hex value is hh is defined to be the ‘escape character’. Its intial value is
$1B, the ASCIl ESC character. The escape character is used to stop output from being displayed,
and once it is stopped, restart it again. It is also used to restart output after Pause has stopped it. As
an example, suppose you are LISTing a long text file on the terminal and you wish to tempor-
arily halt the output. Typing the ‘escape character’ will do this. At this time (output halted), typing
another ‘escape character’ will resume output, while typing the RETURN key will cause control to
return to FLEX and the three plus sign prompt will be output to the terminal. It should be noted
that line output termination always happens at the end of a line.

~TA3-
DMAF1







VERIFY

The VERIFY command is used to set the File Maﬁagement System'’s write verify mode. If VERIFY
is on, every sector which is written to the disk is read back from the disk for verification (to make
sure there are no errors in any sectors). With VERIFY off, no verification is performed.

DESCRIPTION
The general syntax of the VERIFY command is:

VERIFY {,ON}

or

VERIFY {,OFF}
where ON or OFF sets the VERIFY mode accordingly. If VERIFY is typed without any para-
meters, the current status of VERIFY will be displayed on the terminal. Example:

+++VERIFY, ON

+++VERIFY

The first example sets the VERIFY mode to ON. The second line would display the current

status (ON or OFF) of the VERIFY mode. VERIFY causes slower write times, but it is recom-
mended that it be left on for your protection.

-V.1.1 -
DMAF1




VERSION

The VERSION utility is used to display the version number of a utility command. If problems or
updates ever occur in any of the utilities, they may be replaced with updated versions. The VER-
SION command will allow you to determine which version of a particular utility you have.

DESCRIPTION
The general syntax of the VERSION command is:
VERSION,(file spec)
where (file spec) is the name of the utility you wish to check. The default extension is CMD and
the drive defaults to the working drive. As an example:
+++VERSION,0.CAT
would display the version number of the CAT command (from drive @) on the terminal.




X ouT
XOUT is a special form of the delete command which deletes all files having the extension .OUT.

‘ DESCRIPTION
The general syntax of XOUT is:
XOUT (drive spec)
where drive spec is the desired drive number. If no drive is specified all .OUT files on the working
drive will be deleted and, if auto drive searching is enabled, all .OUT files on all on line drives
will be deleted. XOUT will not delete any files which are delete protected or which are currently
in the print queue.
Example:
+++X0OUT
+++XO0UT 1

- X.1.1-
DMAF1







GENERAL SYSTEM INFORMATION

1. DISK CAPACITY

Each double sided diskette when used with FLEX is capable of holding 2280 sectors. Each sector
can contian a maximum of 252 characters (4 bytes in each sector are used by the system). The
total capacity of the diskette is then 574,560 characters or bytes of information. When using single
sided diskettes with FLEX exactly one-half the amount of space is available.

II. WRITE PROTECT
It is possible to write on some diskettes only by placing a piece of opaque tape over the small rec-
tangular cutout on the edge of the diskette. Any attempts to write files or delete files on a pro-
tected disk (no tape, hole exposed) will cause an error message to be issued. It is good practice to
write protect disks which have important files on them. Some diskettes, however, do not contain
this write protect notch.

Il. THE ‘RESET'BUTTON

The RESET button on the front panel of your computer should NEVER BE PRESSED DURING
A DISK OPERATION. There should never be a need to ‘reset’ the machine while in FLEX. If the
machine is ‘reset’ and the system is writing data on the disk, it is possible that the entire disk will
become damaged. Again, never press ‘reset’ while the disk is operating! Refer to the ‘escape’ cha-
racter in TTYSET for ways of stopping FLEX.

IV. NOTES ON THE P COMMAND

The P command tries to load a file named PRINT.SYS from the same disk which P itself was re-
trieved. The PRINT.SYS file which was supplied with the system diskette contains the necessary
routines to operate a SWTPC PR40 printer connected through a parallel interface on PORT 7 of the
computer. If you wish to use a different printer configuration, consult the ‘Advanced Programmer’s
Guide’ for details on writing your own printer driver routines to replace the PRINT.SYS file.

V. ACCESSING DRIVES NOT CONTAINING A DISKETTE
If an attempt is made to access a drive not containing a diskette, a DRIVES NOT READY message
will be output on the terminal.

- 3.1 -
DMAF1




VI. SYSTEM ERROR NUMBERS

Any time that FLEX detects an error during an operation, an appropriate error message will be dis-

played on the terminal. FLEX internally translates a derived error number into a plain language

statement using a look-up table called ERRORS.SYS. If you have forgotten to copy this .SYS file

onto a disk that you are using. FLEX will report a corresponding error number as shown below:
DISK ERROR #xx

where ‘xx’ is a decimal error number. The table below is a list of these numbers and what error they

represent.

ERROR # MEANING

1 ILLEGAL FMAS FUNCTION CODE ENCOUNTERED
2 THE REQUESTED FILE IS IN USE
3 THE FILE SPECIFIED ALREADY EXISTS
4 THE SPECIFIED FILE COULD NOT BE FOUND
5 SYSTEM DIRECTOR ERROR—REBOOT SYSTEM
6 THE SYSTEM DIRECTORY SPACE IS FULL
7 ALL AVAILABLE DISK SPACE HAS BEEN USED
8 READ PAST END OF FILE
9 DISK FILE READ ERROR
10 DISK FILE WRITE ERROR
1 THE FILE OR DISK ISWRITE PROTECTED
12 THE FILE ISPROTECTED—FILE NOT DELETED
13 ILLEGAL FILE CONTROL BLOCK SPECIFIED
14 ILLEGAL DISK ADDRESS ENCOUNTERED
15 AN ILLEGAL DRIVE NUMBER WAS SPECIFIED
16 DRIVES NOT READY
17 THE FILE ISPROTECTED—ACCESS DENIED
18 SYSTEM FILE STATUS ERROR
19 FMS DATA INDEX RANGE ERROR
20 FMS INACTIVE—REBOOT SYSTEM
21 ILLEGAL FILE SPECIFICATION
22 SYSTEM FILE CLOSE ERROR
23 SECTOR MAP OVERFLOW-DISK TOO SEGMENTED
24 NON-EXISTENT RECORD NUMBER SPECIFIED
25 RECORD NUMBER MATCH ERROR—FILE DAMAGED
26 COMMAND SYNTAX ERROR—RE-TYPE COMMAND
27 THAT COMMAND IS NOT ALLOWED WHILE PRINTING
28 WRONG HARDWARE CONFIGURATION

For more details concerning the meanings of these error messages, consult the ‘Advanced
Programmer’s Guide'.

VIl. SYSTEM MEMORY MAP
The following is a brief list of the RAM memory space required by the FLEX Operating System.
All address are in hex.
0000 - 7FFF User RAM
*Note: Some of this space is ued by NEWDISK, BACKUP and other utilities.

AQQQ - BFFF Disk Operating System
ADOO FLEX cold start entry address
ADO3 FLEX warm start entry address
A100 - AG6FF Utility command space
AD4A - AQ7F System stack

For a more detailed memory map, consult the ‘Advanced Programmer’s Guide'.

-3.2-
DMAF1




VIIL.FLEX OPERATING SYSTEM INPUT/OUTPUT SUBROUTINES

In order for the FLEX 1/0 functions to operate properly, all user program character input/output
subroutines should be vectored thru the FLEX operating system rather than the computer’s moni-
tor. Below is a list of FLEX's I/O jumps and a brief description of each. All given addresses are in

hexadecimal.

AD15
This subroutine is functionally equivalent to SWTBUG®'s or DISKBUG®’s character input routine
EIAC. This routine will look for one character from the control terminal (1/0 #1) and store it in the
A accumulator. Once called, the input routine will loop within itself until a character has been in-
put. Anytime input is desired, the call JSR $ AD15 should be used.
AD15 automatically sets the 8th bit to @ and does not check for parity. When using the sub-

routine the processor’s registers are affected as follows:

ACC A loaded with the character input from the terminal

ACCB not affected

IXR not affected

AD18
This subroutine is used to output one character from the computer to the control port (1/0 #1).
To use AD18 the character to be output should be placed in the A accumulator in its ASCII
form. To output the letter A on the control terminal, the following program could be used:
LDA A#$41
JSR $AD18
The processor’s registers are affected as follows:
ACCA changed internally
ACCB not affected
IXR not affected
This routine is functionally equivalent to EIDI in SWTBUG® and DISKBUG®monitors.

ADIE
ADIE is the entry point of the subroutine used to output a string of text on the control terminal.
When address ADIE is called, a carriage return and line feed will automatically be generated and data
output will begin at the location pointed to by the index register. Output will continue until a 04 is
seen. The same rules for using the ESCAPE and RETURN keys for stopping output apply as des-
cribed earlier.
The accumulator and register status after using ADIE are as follows:
ACCA Changed during the operation
ACCB UNCHANGED .
IXR Contains the memory location of the last character read from the string
(usually the @4 unless stopped by the ESC key)
NOTE: The ability of using backspace and line delete characters is a function of your user
program and not of the FLEX 1/O routines described above.
For additional information consult the ‘Advanced Programmer’s Manual’.

-3.3~
DMAF1




IX. BOOTING THE FLEX SYSTEM

Below is a short bootstrap program which will load the FLEX operating system from the system
diskette. This boot is not necessary for user’s having a DISKBUG® monitor—DISKBUG®already con-
tains this boot.

To bring up the FLEX operating system, enter the bootstrap program below instruction by in-
struction using the memory examine and change function of your monitor. As shown, the bootstrap
loads from hex address @100 to P15A. After entering the bootstrap, set the computer’s program
counter AP48 and AD49 to B100. After a system diskette is installed in drive @, a G may be entered
to execute the bootstrap.

If the system will not boot properly, re-position the system diskette in the drive and re-execute
the bootstrap. The diskette to be booted must be initialized and must also contain the disk opera-
ting system software.

0100 C& O1 DIZHE LA B #1 LOAD DRIVE NUMEER

0102 F7 70 22 ETA B SECRES SET SECTOR TO i

0105 5= comM b GENERATE INVERTED DATA
Q104 F7 90 24 LDIsksC =TA B DRVRESG

0107 20 4A ESR OIZHET TEST SELECTED DRIVE STATUS
O10E 27 OA EBE®: DIskRC GO ISSUE A RESTORE

Q100 on LISKND  SEC

010E 5% ROL E

O10F C5 10 EIT B #%10 TEST DRIVE ZELECT EIT

0111 2& F= ENE DIzkESC SCAN IF =0

0112 C& FE LA B #$FF-1 SET EACE TO DRIVE 1

0115 20 EF ERA DIzk=C

0117 &84 Oz LDIZERC LDA A #3502 LOAD THE RESTORE COMMAND
01iv EB7 906 20 ETA A COMREG

011C 2D ZF ESR DISHWT WAIT FOR COMMAND TO FINISH
O11E CE FE FF Lox #FFFFF-EYTES LOAD DMA EYTE COUNT
0121 FF 70 QZ =5TX CNTREG ETORE IN COUNT REGISTER .
0124 CE SE FF LoX #EFFFF-$A100 SET THE LOAD ADDRESS
0127 FF 70 Q0O =5TX ADDREG

012A 846 FD LDA A #$FF-2 LOAD THE CHANNEL REGIZTER
0122 B7 Y0 10 STA A CCREG

O12F 3& FE LA A H$FF-1 SET THANNEL O

01z1 B7 70 14 ZTA A FRIREG

G134 =24 BC LDA A #3200 SET SINGLE SECTOR READ
0134 E7 70 20 =TA A COMREG

01Zv FE 90 0Z DIZHEDW LDX CNTREG GET THE EYTE COUNT

0130 22 FE FF ZFX #$FFFF-EYTES

O1zF 27 F& EER DISKDW LOOF AGAIN

0141 &84 FF LA A #$FF SET THE PRI REGISTER TO ©
014= E7 70 14 5TA A FRIREG

G144 20 05 EsR DISEWT WAIT FOR COMMAND TO FINISH
0145 ED A1 OO JER $A100 JUMF TO SECTOR LOADED OFF OF DISK
014E 20 CO ERA DISEND IF RTE, USE NEXT DRIVE
0140 20 O& DISEWT ESR DIISEET CHECE READY ESTATUZ

Q14F 246 FC ENE DISEWT LooF

0151 47 ASR A TEST EBUsY EBIT

0152 25 F92 BCE DIZEWT WAIT FOR NOT EUSY

0154 =9 RTZ

0155 B& 70 20 DISEST LOA A COMREG

0152 85 20 EIT A& #3520 TEST DRIVE READY EIT

01SA =29 RTS

— 3.4 —
DMAF1




X Requirements for the PRINT.SYS Printer Driver

FLEX, as supplied, includes a printer driver that will work with most parallel type printers, such as

the SWTPC PR-40. If desired, the printer driver may be changed to accommodate other types of
' printers. Included is the source listing for the supplied driver. Additional information on the re-

quirements for the PRINT.SYS driver can be found in the ‘Advanced Programmer’s Guide'.

1.) The driver must be in a file called PRINT.SYS
2.) Hex location @010 must contain the starting address of the port initialization routine.

3.) Hex location @012 and location 710D must contain the address of the character output
routine.

4.) When the printer character output routine is called by FLEX, the character to be output
will be in the A accumulator. The output routine must not destroy the index register or
the B accumulator.

5.) Both the initialization and output routine may reside anywhere in memory, but must not
conflict with any utilities or programs which will use P.

6.) Both the initialization and the output routine must end with a return from subroutine

RTS.

1 NAM FRINT

Z OFT FAG

i #GENERATES THE FRINT 2¥YZ FILE FOR UESE
4 #WITH THE F AND FRINT UTILITIEZ

bl #VERSION 1

7 201 FIA EGi S2G1C FORT #7

. V7 #FRINTER INITIALIZATION (MUJST EBE AT $ACLCO)

10 ACCO ORG SACZ0

i1l ACCO 24 FF FINIT LOA A #%FF

2 ACCZ BT 20 10 ZTA A FIA ALL QUTFUTES
12 ACCS 526 3 LDAa A #SZE

id ACC7 E7 =20 1D ZTAa A FIA+] SET UF HANLDZHAKE TYFE
15 ACCA =9 RTZ

17 #CHECKE IF PRINTER READY ROUTINE

13 #MUUST BE LOCATED AT $ACLOE

17 AChE ORIG sACDE
20 ACDE 70 20 1D PICHE T=T FIAa+1
21  ACLDE 39 RTZ
22 ACDC B7 20 10 FOHESE STA A FIA+1
I3 ACDF Zv ’ RTZ
25 #OJITFUT THARACTER ROUTINE
2é& #MUST BE LOCATED AT SACE4S
Z7  ALCE4S ORG SACESL
23 ACE4 2D FZ2 FOUT EsR FiHE
27  ACEA ZA FC EFL FoUT
20 ACE=R 70 20 1 TST FIA
Z1 ACEER B7 20 1icC ZTA A FIA
22 ACEE 24 24 LOA A #3324
3 ACFO B7 20 10 STA A FIA+1

‘ 24 ACFZ =24 ZE LDA A #3ZE
2D ACFS 20 ES ERA FCHES
Tk END
CONTINUED
~35-—

DMAF1







COMMAND SUMMARY

APPEND, (file spec) {,(file list) },(file spec)

Default extension: .TXT

Description page: A.1.1
ASN { , W=(drive) }{,S=(drive) }

Description page: A.2.1

BACKUP, (input drive), (output drive)

Description page: B.1.1
BUILD,(file spec)
Default extension: .TXT
Description page: B.2.1
CAT {,(drive list) }{,(match list) }
Description page: C.1.1
COPY, (file spec),(file spec)
COPY, (file spec),(drive)
COPY, (drive),(drive) { ,(match list) }
Descriptior page: C.2.1

DATE (mm,dd,yy)
Description page: D.2.1

DELETE,(file spec) {,(file list) }
Description page: D.1.1
EXEC, (file spec)
Default extension: .TXT
Description page: E.1.1
GET, (file spec) {,(file list) }
Description page: 1.4

| (file spec),(command)
Default extension: .TXT
Description page: 1.1.1

JUMP, (hex address)
Description page: J.1.1
LINK,(file spec)
Default extension: .SYS
Description page: L.1.1

LIST,(file spec) {,(line range) }{,N }
Default extension: .TXT
Description page: L.2.1

MEMTEST1

Description page: M.1.1
MON

Description page: 1.4
NEWDISK, (drive)

Description page: N.1.1

O (file spec),(command)
Default extension: . OUT
Description page: 0.1.1

PRINT (file spec)
Default extension: .OQUT
Description page: P.2.1
PROT, (file spec),(option list)
Description page: P.3.1
P, (command)
Description page: P.1.1

RENAME,(file spec 1),(file spec 2)
Default extension: .TXT
Description page: R.1.1

SAVE,(file spec),(begin adr),(end adr) { ,(transfer adr) }
Default extension: .BIN
Description page: S.1.1
SAVE.LOW
Description page: S.2.1
STARTUP
Description page: S.3.1
TTYSET { ,(parameter list) }
Description page: T.1.1

VERIFY {,ON}
VERIFY {,OFF}
Description page: V.1.1

VERSION, (file spec)
Default extension: .CMD
Description page: V.2.1

XOUT (file spec)
Description page: X.1.1

—41-
DMAF1







TANT NOTE

-y & Tech lcal System‘i Corpultants wullﬁuot aisume responsibility
for any damages mcur d or generat d by; ‘such materi Alsc?, Southwest Technl

piniy: suCosposstion and Techmcal stems Consultantm ientherights
make changes in such material at any time

\ stems Consult ints

T [

219 W, RHAPSODY SAN ANTONIO, TEXA 78216.







‘ CONTENTS

. L, INErOUCHION « o v e v sve s enesraeneenenennns Ceeieeneens e e te e 1
1. Disk OperatingSystem ... ...ovvvvvvrvotcanvarsnnas ceeseenanns e reerte et 1
DOSMemoryMap. ......ovvvvuenn C e e vetetennaeres ettt re st s a e 2

. User Callable Routines .......... Crretenaenreen C et raeesreere e ae e 5
User Written Commands . . .. cvcovvernnn o T F R R R R R 10

Disk Resident Commands. .. ....ccvveevessnee e s ena et ereser i e 10

Comments About Commands.......... et e e tr et eaas et ettt e e an e 11

Examples 0f DOS Calls . v vve e ieroennrnanronssnnstnsisstseonansans 11

111, File Management SYStemM. .. ...t v rierunroorasansoosaesasoassassassonosnnses 11

File CONtrol BlOCKS . o« v v vttt eerseseoseoaneesossassssasssssasssscassannns 12

. FMS Entry POiNtS . .o ivieensnennnenorneasoasosssassoansasassasnsannss 15
FMS Global Variables . ... ccvvveeeternennses et e s aee e ae e s e e 15

‘ FEMS FUNCLION COUBS. .+ vttt v e tv s s aseneeaesscontosssssossssseasnssanasssus 16
RaNdOMm Files + v v vt v ettt et enseesonsnessossassassasssosessstsassnessas 22

Error NUMDEIS &+ oo vt ettt s enenseseneneesasssassassssasassstsssnnnnssnss 22

) V. DiSK DIIVEIS. « v v v v et et es e e s senneesenasnnnenesasnnsnnsssessonsannnnaoss 24
V. Disk Structures . . ....cvovvveenesens et e seee et e 25

Diskette INitialization . « v oo v ve st e toeeetenecosssrsossstosssssasstssossanasos 25

DireCtory SECTOMS . v\ vttt vv vt sssosenanosanassasssosassssasasosntaons .25

Data SeCtOrS « v v v vttt ce ittt e et e rrarsar e 26

Binary Files. .. .ovvviiererunserennionannronnneenns e nene e 26

@ B a1 T R R R R R R R RRRRE 27
VI. Writing Utility Commands. . ..o ovv et vevtnenrnonsrsrasestotossrorastecnsnsaos 27

EXaMPle Program ... vvvv i ene s erntosattsnasaaaraenst sttt essaasens 29

Vil. The DOS LINK Utility . .vvvvvevans e rereaereenes e Cer e 31

VHLELPrinter ROULINGS . c v v v veveneeesetonnoossrassososnnnas e e rere et 31

The P ULItY c oo vt ee et en e innrntsensenonssenssasnssassstoanansassssassns 32







Preface

The purpose of the Advanced Programmer’s Manual is to providéfthe assembler language program-
mer with the information required to make effective use of the available system routines and func-
tions. This manual applies to the eight inch version of FLEX. The programmer should keep this
manual close at hand while learning the system. It is organized to make it convenient as a quick
reference guide as well as a thorough reference manual. The manual is not written for the novice
programmer and assumes the user to have a thorough understanding of assembler language pro-
gramming techniques.

Copyright Notice -

The FLEX Operating System and all of its associated documentation are provided for personal use
and enjoyment by the purchaser. The entire program and all documentation, including this manual,
are copyrighted by Technical Systems Consultants, Inc., and reproduction by any means is strictly
prohibited. Use of the FLEX Operating System and/or its documentation, or any part thereof,
for any purpose other than single end use is strictly prohibited.

"FLEX is a trademark of Technical Systems Consultants, Inc.

Introduction

The FLEX Operating System consists of three main parts: the Disk Operating System (DOS) which
processes commands, the File Management System (FMS) which manages files on a diskette, and
the Utility Command Set, which are the user-callable commands. The_ Utility Command Set is des-
cribed in the FLEX User's Guide. Details of the Disk Operating System and File Management
System portions of FLEX are described in this manual, which is intended for the programmer who
wishes to write his own commands or process disk files from his own program.

When debugging programs which use disk files and the File Management System, the user
should take the following precautions:

1.  Write-protect the system diskette by exposing the write-enable cutout on the diskette. This
will prevent destruction of the system disk in case the program starts running wild.

2. Use an empty scratch diskette as the working diskette to which your program will write
any data files. If something goes wrong and the diskette is destroyed, no valuable data will
have been lost.

3. Test your program repeatedly, especially with “’special cases” of data input which may not be
what the program is expecting. Well-written programs abort gracefully when detecting errors,
not dramatically.

A careful programmer, using the information in this manual, should be able to make the fullest
use of his floppy disk system.

DISCLAIMER

This product is intended for use only as described in this document and the FLEX User’s Guide.
Technical Systems Consultants and Southwest Technical Products Corporation will not be respon-
sible for the proper functioning of features or parameters. The user is urged to abide by the
warnings and cautions issued in this document lest valuable data or diskettes be destroyed.

PATCHING “FLEX"”

It is not possible to patch FLEX. Technical Systems Consultants cannot be responsible for any des-
tructive side-effects which may result from attempts to patch FLEX.

The Disk Operating System
The Disk Operating System (DOS) forms the communciation link between the user (via a computer
terminal) and the File Management System. All commands are accepted through DOS. Functions
such as file specification parsing, command argument parsing, terminal 1/O, and error reporting
are all handled by DOS. The following sections describe the DOS global variable storage locations
(Memory Map), the DOS user callable subroutines, and give examples of some possible uses.

-_f - .







Memory Map

The following is a description of those memory locations within the DOS portion of FLEX which
contain information of interest to the programmer. The user is cautioned against utilizing for his
own purposes any locations documented as being either “reserved’’ or ‘‘system scratch”, as this
action may cause destruction of data.

$A080 - SADFF — Line Buffer
The line buffer is a 128 byte area into which characters typed at the keyboard are placed by
the routine INBUF. All characters entered from the keyboard are placed in this buffer with the
exception of control characters. Characters which have been deleted by entering the backspace
character do not appear in the buffer, nor does the backspace character itself appear. The
carriage return signaling the end of the keyboard input is, however, put in the buffer. This
buffer is also used to hold the STARTUP file during a coldstart (boot) operation.

$ACO0 — TTYSET Backspace Character
This is the character which the routine INBUF will interpret as the Backspace character. It
user definable through the TTYSET DOS utility. Default = $@8, a Control—H (ASCII BS).

$ACO1 — TTYSET Delete Character
This is the character which the routine INBUF will interpret as the line cancel or delete
character. It is user definable through the TTYSET DOS Utility. Default = $18, a control—X
(ASCII CAN).

$ACO2 — TTYSET End of Line Character .
This is the character DOS recognizes as the multiple command per line separator. It is user
definable through the TTYSET Utility. Default = $3A, a colon (:).

$ACO3 — TTYSET Depth Count _ 4
This byte determines how many lines DOS will print on a page before Pausing or issuing Ejects.
It may be set by the user with the TTYSET command. Default = 0.

$ACO4 — TTYSET Width Count
This byte tells DOS how many characters to output on each line. I1f zero, there is not limit
to the number output. This count may be set by the user using TTYSET. Default = Q.

$ACO5 — TTYSET Null Count
This byte informs DOS of the number of null or pad characters to be output after each car-
riage return, line feed pair. This count may be set using TTYSET. Default = 4,

$ACO6 — TTYSET Tab Character
This byte defines a tab character which may be used by other programs, such as the Editor.
DOS itself does not make use of the Tab character. Default = @, no tab character defined.

$ACO7 — TTYSET Backspace Echo Character
This is the character the routine INBUF will echo upon the receipt of a backspace character.
If the backspace echo character is set to a $08, and the backspace character is also a $08,
FLEX will output a space ($20) prior to the outputting of the backspace echo character. De-
fault = 0.

$ACO8 — TTYSET Eject Count
The Eject Count instructs DOS as to the number of blank lines to be output after each page.
(A page is a set of lines equal in number to the Depth Count.) If this byte is zero, no Eject
lines are output. Default = 0.

$AC09 — TTYSET Pause Control
The Pause byte instructs DOS what action to take after each page is output. A zero value indi-
cates that the pause feature is enabled; a non-zero value, pause is disabled. Default = $FF,
pause disabled.

-2







$ACOA — TTYSET Escape Character
The Escape character causes DOS to pause after an output line. Default = $18, ASCI!I ESC.

$ACOB — System Drive Number
This is the number of the disk drive from which commands are loaded. If this byte is $FF,
all ready drives will be searched. Default = $FF, all drives enabled.

$ACOC — Working Drive Number
This is the number of the default disk drive referenced for non-command files. If this byte is
$FF, all ready drives will be searched. Default = $FF, all drives enabled.

$ACOD — System Scratch

$ACOE - SAC10 — System Date Registers
These three bytes are used to store the system date. It is stored in binary form with the month
in the first byte, followed by the day, then the year. The year byte contains only the tens and
ones digits.

$AC11 — Last Terminator
This location contains the most recent non-alphanumeric character encountered in processing
the line buffer. See commentary on the routines NXTCH and CLASS in the section “‘User-
Callable System Routines”.

$AC12 - $AC13 — User Command Table Address
The programmer may store into these locations the address of a command table of his own
construction. See the section called ““User-Written Commands’* for details. Default = 0000,
no user command table is defined. :

$AC14 - $AC15 — Line Buffer Pointer ‘
These locations contain the address of the next character in the Line Buffer to be processed.
See documentation of the routines INBUFF, NXTCH, GETFIL, GETCHR, and DOCMND in
the section ‘‘User-Callable System Routines’ for instances of its use.

$AC16 - SAC17 — Escape Return Register
These locations contain the address to which to jump if a RETURN is typed while output
has been stopped by an Escape Character. See the FLEX User’s Guide, TTYSET, for informa-
tion on Escape processing. See also the documentation for the routine PCRLF in the section
called "User-Callable System Routines'’.

$AC18 — Current Character
This location contains the most recent character taken from the Line Buffer by the NXTCH
routine. See documentation of the NXTCH routine for additional details.

$AC19 — Previous Character
This location contains the previous character taken from the Line Buffer by the NXTCH
routine. See documentation of the NXTCH routine for additional details.

$AC1A — Current Line Number
This location contains a count of the number of lines currently on the page. This value is com-
pared to the Line Count value to determine if a full page has been printed.

$AC1B - SAC1C — Loader Address Offset
These locations contain the 16-bit bias to be added to the load address of a routine being
loaded from the disk. See documentation of the System Routine LOAD for details. These
locations are also used as scratch by some system routines.

$AC1D — Transfer Flag
After a program has been loaded from the disk (see LOAD documentation), this location is
non-zero if a transfer address was found during the loading process. This location is also used
as scratch by some system routines.

-3







$ACI1E - SAC1F — Transfer Address
If the Transfer Flag was set non-zero by a load from the disk (see LOAD documentation),
these locations contain the last transfer address encountered. If the Transfer Flag was set zero
by the disk load, the content of these locations is indeterminate.

$AC20 — Error Type
This location contains the error number returned by several of the File Management System
functions. See the ““Error Numbers’’ section of this document for an interpretation of the error
numbers.

$AC21 — Special I/0O Flag
If this byte is non-zero, the PUTCHR routine will ignore the TTYSET Width feature and also
ignore the Escape Character. The routine RSTRIO clears this byte. Default = 0.

$AC22 — Output Switch
If zero, output performed by the PUTCHR routine is through the routine OUTCH. If non-
zero, the routine OUTCH2 is used. See documentation of these routines for details.

$AC23 — Input Switch
If zero, input performed by GETCHR is through the routine INCH. If it is non-zero, the rou-
tine INCH2 is used. See documentation of these routines for details.

$AC24 - SAC25 — File Qutput Address
These bytes contain the address of the File Control Block bemg used for file output. If the
bytes are zero, no file output is performed. See PUTCHR description for details. These loca-
tions are set to zero by RSTRIO.

$AC26 - $AC27 — File Input Address
These bytes contain the address of the File Control Block being used for file input. If the bytes
are zero, no file input is performed. The routine RSTRIO clears these bytes. See GETCHR
for details.

$AC28 — Command Flag
This location is non-zero if DOS was called from a user program via the DOCMND entry
point. See documentation of DOCMND for details.

$AC29 — Current Output Column
This location contains a count of the number of characters currently in the line being output
to the terminal. This is compared to the TTYSET Width Count to determine when to start a
new line. The output of a control character resets this count to zero.

$AC2A — System Scratch

$AC2B - $AC2C — Memory End
These two bytes contain the end of user memory. |If 32K of memory exists in the machine,
the DOS reserves a portion of the upper memory for future utility use. This location is set
during system boot and may be read by programs requiring this information.

$AC2D - SAC2E — Error Name Vector
If these bytes are zero, the routine RPTERR will use the file ERRORS.SYS as the error file.
If they are non-zero, they are assumed to be the address of an ASCII string of characters
(in directory format) of the name of the file to be used as the error file. See the description
of RPTERR for more details.

$AC2F — File Input Echo Flag
If this byte is non-zero (default) and input is being done through a file, the character input will
be echoed by the output channel. If this byte is zero, the character retrieved will not be
echoed.

$AC30 - $AC4D — System Scratch







$AC4E - SACBF — System Constants

$ACCO - SACD7 — Printer Initialize
This area is reserved for the overlay of the system printer initialization subroutine.

$ACDS8 - $ACE3 — Printer Ready Check
This area is reserved for the overlay of the system “‘check for printer ready’’ subroutine.

$ACE4 - SACF7 — Printer Output
This area is reserved for the overlay of the system printer output character routine. See Printer
Routine descriptions for details.

$ACF8 - $ACFF — System Scratch

User-Callable System Routines

Unless specifically documented otherwise, the content of all registers should be presumed destroyed
by calls to these routines. All routines, unless otherwise indicated, should be called with a JSR
instruction.

$ADODP (COLDS) Coldstart Entry Point

The BOOT program loaded from the disk jumps to this address to initialize the F LEX system.
Both the Disk Operating System (DOS) portion and the File Management System portion
(FMS) of FLEX are initialized. After initialization, the FLEX title line is printed and the
STARTUP file, if one exists, is loaded and executed. This entry point is only for use by the
BOOT program, not by user programs. Indiscriminate use of the Coldstart Entry Point by user
programs could result in the destruction of the diskette. Documentation of this routine is in-
cluded here only for completeness.

$ADO3 (WARMS) Warmstart Entry Point

This is the main re-entry point into DOS from user programs. A JMP instruction should be
used to enter the Warmstart Entry Point. Here, the system stack is reset, the monitor (SWT-
BUG/DISKBUG) program counter (3A048) is reset, as well.as the Escape Return Register. At
this point, the main loop of DOS is entered. The main loop of DOS checks the Last Termina-
tor location for a TTYSET end-of-line character. If one is found, it is assumed that there is
another command on the line, and DOS attempts to process it. If no end-of-line is in the Last
Terminator location DOS assumes that the current command line is finished, and looks for a
new line to be input from the keyboard. If, however, DO” was called from a user program
through the DOCMND entry point, control will be returned (o the user program when the end
of a command line is reached.

$ADO6 (RENTER) DOS Main Loop Re-entry Point
This is a direct entry point into the DOS main loop. None of the Warmstart initialization is
performed. This entry point must be entered by a JMP instruction. Normally, this entry point
is used internally by DOS and user-written programs should not have need to use it. For an
example of use, see ‘‘Printer Driver’’ section for details.

$AD@9 (INCH) Input Character

$ADOC (INCH2) Input Character
Each of these routines inputs one character from the keyboard, returning it to the calling pro-
gram in the A-register. The address portion of these entry points is set to the SWTBUG/DISK-
BUG Input Character routine. It is not possible to patch this address to refer to some other
routine. The GETCHR routine normally uses INCH but may be instructed to use INCH2 by
setting the “‘Input Switch’’ non-zero (see Memory Map). The user’s program may change the
jump vector at the INCH address to refer to some other input routine such as a routine to get
a character from paper tape. The QUTCH2 address should never be altered. The Warmstart







Entry Point resets the INCH jump vector to the same routine as INCH2 and sets the Input
Switch to zero. RSTRIO also resets these bytes. User programs shouiti use the GETCHR rou-
tine, documented below, rather than calling INCH, because INCH does not check the TTYSET
parameters. The B and X registers are preserved.

. $ADOF (OUTCH) Output Character
$AD12 (OUTCH2) Output Character
On entry to each of these routines, the A-register should contain the character being output.
. Both of these routines output the character in the A-register to an output device. The OUTCH
routine usually does the same as OUTCH2; however, OUTCH may be changed by programs to
refer to some other output routine. For example, OUTCH may be changed to drive a line prin-
ter. OUTCH2 is never changed, and always points to the SWTBUG/DISKBUG Output Charac-
ter routine. This address may not be patched to refer to some other output routine. The rou- .
tine PUTCHR, documented below, calls one of these two routines, depending on the content
of the location ‘Output Switch” (see Memory Map). The Warmstart Entry Point resets the
OUTCH jump vector to the same routine as OUTCH2, and sets the Output Switch to zero.
. RSTRIO also resets these locations. User routines should use PUTCHR rather than calling
OUTCH or OUTCH2 directly since these latter two do not check the TTYSET parameters. The
B and X registers are preserved.

$AD15 (GETCHR) Get Character
This routine gets a single character from the keyboard. The character is returned to the calling
program in the A-register. The Current Line Number location is cleared by.a call to GETCHR.
Because this routine honors the TTYSET parameters, its use is preferred to that of INCH.
If the location ““Input Switch’’ is non-zero, the routine INCH2 will be used for input. If zero,
the byte at “’File Input Address” is checked. If it is non-zero, the address at this location is
used as a File Control Block of a previously opened input file and a character is retrieved from
the file. If zero, a character is retrieved via the INCH routine. The X and B registers are pre-

. served.

$AD18 (PUTCHR) Put Character
This routine outputs a character to a device, honoring all of the TTYSET parameters. On
entry, the character should be in the A-register. If the ““Special /O Flag'' (see Memory Map) is
zero, the column count is checked, and a new line is started if the current line is full. If an
ACIA is being used to control the monitor terminal, it is checked for a TTYSET Escape
Character having been typed. If so, output will pause at the end of the current line. If the loca-
tion ““Output Switch’’ is non-zero, the routine OUTCH?2 is used to send the character. If zero,
the location File Output Address is checked. If it is non-zero the contents of this location is
used as a address of a File Control Block of a previously opened for write file, and the charac-
ter is written to the file. If zero, the routine OUTCH is called to process the character. Nor-
. mally, OUTCH sends the character to the terminal. The user program may, however, change
the address portion of the OUTCH entry point to go to another character output routine.
The X and B registers are preserved.

$AD1B (INBUFF) Inputinto Line Buffer
This routine inputs a line from the keyboard into the Line Buffer. The TTYSET Backspace
and Delete characters are checked and processed if encountered. All other control characters
except RETURN and LINE FEED, are ignored. The RETURN is placed in the buffer at the
. end of the line. A LINE FEED is entered into the buffer as a space character but is echoed
back to the terminal as a Carriage Return and Line Feed pair for continuation of the text on a
new line. At most, 128 characters may be entered on the line, including the final RETURN. If
more are entered, only the first 127 are kept, the RETURN being the 128th. On exit, the Line
. Buffer Pointer is pointing to the first character in the Line Buffer. Caution: The command
line entered from the keyboard is kept in the Line Buffer. Calling INBUF from a user program
will destroy the command line, including all unprocessed commands on the same line. Using
INBUF and the Line Buffer for other than DOS commands may result in unpredictable side-
effects. :







$AD1E (PSTRNG) Print String
This routine is similar to the PDATA routine in SWTBUG and DISKBUG On entry, the X-
register should contain the address of the first character of the string to be printed. The string
must end with an ASCII EOT character ($04). This routine honors all of the TTYSET conven-
. tions when printing the string. A carriage return and line feed are output before the string.
The B register is preserved.

$AD21 (CLASS) Classify Character
. This routine is used for testing if a character is alphanumeric (i.e. a letter or a number). On
entry, the character should be in the A-register. |f the character is alphanumeric, the routine

returns with the carry flag cleared. If the character is not alphanumeric, the carry flag is set
and the character is stored in the Last Terminator location. All registers are preserved by this
routine.

$AD24 (PCRLF) Print Carriage Return and Line Feed
In addition to printing a carriage return and line feed, this routine checks and honors several
‘ TTYSET conditions. On entry, this routine checks for a TTYSET Escape Character having
been entered while the previous line was being printed. If so, the routine waits for another
TTYSET Escape Character or a RETURN to be typed. If a RETURN was entered, the routine
clears the Last Terminator location so as to ignore any commands remaining in the command
line, and then jumps to the address contained in the Escape Return Register locations. Unless
changed by the user’s program, this address is that of the Warmstart Entry Point. If, instead
of a RETURN, another TTYSET Escape Character was typed, or it wasn’t necessary to wait
for one, the Current Line Number and the TTYSET Pause feature is enabled, the routine waits
for a RETURN or a TTYSET Escape Character, as above. Note that all pausing is done before
the carriage return and line feed are printed. The carriage return and line feed are now printed,
followed by the number of nulls specified by the TTYSET Null Count. If the end of the page
was encountered on entry to this routine, an ‘‘eject’’ is performed by issuing additional car-
. riage return, line feeds, and nulls until the total number of blank lines is that specified in the
TTYSET Eject Count. The X register is preserved.

$AD27 (NXTCH) Get Next Buffer Character
The character in location Current Caaracter is placed in location Previous Character. The
character to which the Line Buffer Pointer points is taken from the Line Buffer and saved in
the Current Character location. Multiple spaces are skipped so that a string of spaces looks no
different than a single space. The line Buffer Pointer is advanced to point to the next charac-
ter unless the character just fetched was a RETURN or TTYSET End-of-Line character. Thus,
once an end-of-line character or RETURN is encountered, additional calls to NXTCH will con-
tinue to return the same end-of-line character or RETURN. NXTCH cannot be used to cross
into the next command in the buffer. NXTCH exits through the routine CLASS, automatically
. classifying the character. On exit, the character is in the A-register, the carry is clear if the
character is alphanumeric, and the B-register and X-register are preserved.

$AD2A (RSTRIO) Restore 1/0 Vectors
This routine forces the OUTCH jump vector to point to the same routine as does the OUT-
CH2 vector. The Output Swtich location and the Input Switch location are set to zero. The
INCH jump vector is reset to point to the same address as the INCH2 vector. Both the File
Input Address and the File Output Address are set to zero. The A-register and B-register are
. preserved by this routine.

$AD2D (GETFIL) Get File Specification
On entry to this routine, the X-register must contain the address of a File Control Block (FCB)
and the Line Buffer Pointer must be pointing to the first character of a file specification in the
. Line Buffer. This routine will parse the file specification, storing the various components in
the FCB to which the X-register points. If a drive number was not specified in the file specifi-
cation, the working drive number will be used. On exit, the carry bit will be clear if no error
was detected in processing the file specification. The carry bit will be set if there was a format
error in the file specification. If no extension was specified in the file specification, none is

-7~







stored. The calling program should set the default extension desired after GETFIL has been

called by using the SETEXT routine. The Line Buffer Pointer is left pointing to the character

immediately beyond the separator, unless the separator is a carriage return or End of Line

character. If an error was detected, error number 21 is stored in the error status byte of the
. FCB. The X-register is preserved with a call to this routine.

$AD30 (LOAD) File Loader ,
On entry, the X-register must contain the address of a File Control Block which has been
. opened for binary reading of the desired file. This routine is used to load binary files only, not
text files. The file is read from the disk and stored in memory, normally at the load addresses
specified in the binary file itself. It is possible to load a binary file into a different memory
area by using the Loader Address Offset locations. The 16-bit value in the Loader Address Off-
set locations is added to the addresses read from the binary file. Any carry generated out of
the most significant bit of the address is lost. The transfer address, if any is encountered, is not
modified by the Loader Address Offset. Note that the setting of a value in the Loader Address
Offset does not modify any part of the content of the binary file. It does not act as a program
. relocator in that it does not change any addresses in the program itself, merely the location
of the program in memory. On exit, the Transfer Address Flag is zero if no transfer address
was found. This flag is non-zero if a transfer address record was encountered in the binary
file, and the Transfer Address locations contain the last transfer address encountered. The disk
file is closed on exit. |f a disk error is encountered, an error message is issued and control is
returned to DOS at the Warmstart Entry Point.

$AD33 (SETEXT) Set Extension
On entry, the X-register should contain the address of the FCB into which the default exten-
sion is to be stored if there is not an extension already in the FCB. The A-register, on entry,
should contain a numeric code indicating what the default extension is to be. The numeric
codes are described below. If there is already an extension in the FCB (possibly stored there by
. a call to GETFIL), this routine returns to the calling program immediately. |f there is no ex-
tension in the FCB, the extension indicated by the numeric code in the A-register is placed in
the FCB File Extension area. The legal codes are: '
— BIN
-  TXT
- CMD
— BAS
— SYS
BAK
— SCR
- DAT
— BAC
— DIR
10 - PRT
11 - OouT
Any values other than those above are ignored, the routine returning without storing any ex-
tension. The X-register is preserved in this routine.

$AD36 (ADDBX) Add B-register to X-register
. The content of the B-register is added to the content of the X-register. The content of the B-
register is destroyed on exit.

$AD39 (OUTDEC) Output Decimal Number
On entry, the X-register contains the address of the most significant byte of a 16-bit (2 byte),
. unsigned, binary number. The B-register, on entry, should contain a space suppression flag.
The number will be printed as a decimal number with leading zeroes suppressed. If the B-
register was non-zero on entry, spaces will be substituted for the leading zeroes. If the B-
register is zero on entry, printing of the number will start with the first non-zero digit.

OCONOOMAWN=-S
!







$AD3C (OUTHEX) Output Hexadecimal Number _
On entry, the X-register contains the address of a single binary byte. The byte to which the
X-register points is printed as 2 hexadecimal digits. The B and X registers are preserved across
this routine.

’ $AD3F (RPTERR) Report Error
On entry to this routine, the X-register contains the address of a File Control Block in which
the Error Status Byte is non-zero. The error code in the FCB is stored by this routine in the
. Error Type location. A call to the routine RSTRIO is made and location Error Vector is
checked. If this location is zero, the file ERRORS.SYS is opened for random read. If this loca-
tion is non-zero, it is assumed to be an address pointing to an ASCI| string {containing any
necessary null pad characters) of a legal file name plus extension (string should be 11 charac-
ters long). This user provided file is then opened for random read. The error number is used in
a calculation to determine the record number and offset of the appropriate error string mes-
age in the file. Each error message string is 63 characters in length, thus allowing 4 messages
per sector. If the string is found, it is printed on the terminal. If the string is not found (due to
. too large of error number being encountered) or if the error file itself was not located on the
disk, the error number is reported to the monitor terminal as part of the message:
DISK ERROR #nnn
Where ‘‘nnn” is the error number being reported. A description of the error numbers is given
elsewhere in this document. :

$AD42 (GETHEX) Get Hexadecimal Number
This routine gets a hexadecimal number from the Line Buffer. On entry, the Line Buffer
Pointer must point to the first character of the number in the Line Buffer. On exit, the carry
bit is cleared if a valid number was found, the B-register is set non-zero, and the X-régister
contains the value of the number. The Line Buffer Pointer is left pointing to the character im-
mediately following the separator character, unless that character is a carriage return or End of
. Line. If the first character examined in the Line Buffer is a separator character {such as a com-
ma), the carry bit is still cleared, but the B-register is set to zero indicating that no actual
number was found. In this case, the value returned in the X-register is zero. If a non-hexadeci-
mal character is found while processing the number, characters in the Line Buffer are skipped
until a separator character is found, then the routine returns to the caller with the carry bit
set. The number in the Line Buffer may be of any length, but the value is truncated to be-
tween 0 and $FFFF, inclusive.

$AD45 (OUTADR) Output Hexadecimal Address
On entry, the X-register contains the address of the most significant byte of a 2-byte hex
value. The bytes to which the X-register points are printed » 1 hexadecimal digits.

. $AD48 (INDEC) Input Decimal Number
This routine gets an unsigned decimal number from the Line Buffer. On entry, the Line Buf-
fer Pointer must point to the first character of the number in the Line Buffer. On exit, the
carry bit is cleared if a valid number was found, the B-register is set non-zero, and the X-
register contains the binary value of the number. The Line Buffer Pointer is left pointing as
described in the routine GETHEX. If the first character examined in the buffer is a separator
character (such as a comma), the carry bit is still cleared, but the B-register is set to zero indi-
cating that no actual number was found. In this case, the number returned in X is zero. The
. number in the Line Buffer may be of any length but the result is truncated to 16 bit precision.

$AD4B (DOCMND) Call DOS as a Subroutine
This entry point allows a user-written program to pass a command string to DOS for proces-
sing, and have DOS return control to the user program on completion of the commands. The
. command string must be placed in the Line Buffer by the user program, and the Line Buffer
Pointer must be pointing to the first character of the command string. Note that this will des-
troy any as yet unprocessed parameters and commands in the Line Buffer. The command

—9—







string must terminate with a RETURN character ($D hex). After the commands have been
processed, DOS will return control to the user’s program with the B-register containing any
error code received from the File Management System. The B-register will be zero if no errors
were detected. Caution: do not use this feature to load programs which may destroy the user
program in memory. An example of a use of this feature of DOS is that of a program wanting
to save a portion of memory as a binary file on the disk. The program could build a SAVE
command in the Line Buffer with the desired file name and parameters, and call the DOCMND
entry point. On return, the memory will have been saved on the disk.

User-Written Commands

The programmer may write his own commands for DOS. These commands may be either disk-resi-
dent as disk files with a CMD extension., or they may be memory-resident in either RAM or ROM.

Memory-Resident Commands

A memory-resident command is a program, already in memory, to which DOS will transfer when
the proper command is entered from the keyboard. The command which invokes the program, and
the entry-point of the program, are stored in a User Command Table created by the programmer in
memory. Each entry in the User Command Table has the following format:

FCC ‘command’ (Name that will invoke the program)

FCB 0

FDB entry address (This is the entry address of the program)

The entire table is ended by a zero byte. For example, the following table contains the commands
DEBUG (entry at $3000) and PUNT (entry at $3200).

FCC ‘DEBUG’ Command Name

FCB 0 :
FDB $3000 Entry address for DEBUG
FCC ‘PUNT’ Command Name

FCB 0

FDB $3200 Entry address for PUNT
FCB 0 End of command table

The address of the User Command Table is made known to DOS by storing it in the User Command
Table Address locations (see Memory Map).

The User Command Table is searched before the disk directory, but after DOS’s own com-
mand table is searched. The DOS command table contains only the GET and MON commands.
Therefore, the user may not define this own GET and MON commands.

Since the User Command Table is searched before the disk directory, the programmer may
have commands with the same name as those on the disk. However, in this case, the commands on
the disk will never be executed while the User Command Table is known to DOS. The User Com-
mand Table may be deactivated by clearing the User Command Table Address locations.

Disk-Resident Command

A disk-resident command is an assembled program, with a transfer address, which has been saved on
the disk with a CMD extension. The ASMB section of the FLEX User’s Guide describes the way
to assign a transfer address to a program being assembled.

Disk commands, when loaded into memory, may reside anywhere in the User RAM Area; the
address is determined at assembly time by using an ORG statement. Most commands may be assem-
bled to run in the Utility Command Space (see Memory Map). Most of the commands supplied with
FLEX run in the Utility Command Space. For this reason, the SAVE command cannot be used to
save information which is in the Utility Command Space or System FCB space as this information
would be destroyed when the SAVE command is loaded.The SAVE.LOW command is to be used in
this case. The SAVE.LOW command loads into memory at location $100 and allows the saving pro-
grams in the $A100 region.

-10-







The System FCB area is used to load all commands from the disk. Commands written to run
in the Utility Command Space must not overflow into the Systen¥ FCB area. Once loaded, the com-
mand itself may use the System FCB area for scratch or as an FCB for its own disk 1/0. See the
example in the FMS section.

General Comments About Commands

User-written commands are entered by a JMP instruction. On completion, they should return con-
trol to DOS by jumping (JMP instruction) to the Warmstart Entry Point (see Memory Map).

Processing Arguments

User-written commands are required to process any arguments entered from the keyboard. The
command name and the arguments typed are in the Line Buffer area (see Memory Map). The Line
Buffer Pointer, on entry to the command, is pointing to the first character of the first argument, if
one exists. If there are no arguments, the Line Buffer Pointer is pointing to either an end-of-line
-character or a carriage return. The DOS routines NXTCH, GETFIL, and GETHEX should be used
by the command for processing the arguments.

Processing Errors

If the command, while executing, receives an error status from either DOS or FMS of such a nature
that the command must be aborted, the program should jump to the Warmstart Entry Point of DOS
after issuing an appropriate error message. Similarly, if the command “should detect an error on its
own, it should issue a message and return to DOS through the Warmstart Entry Point.

Examples of Using DOS Routines

1. Setting up a file spec in the FCB can be done in the following manner. This example assumes
the Line Buffer Pointer is pointing to the first character of a file specification, and the desired
resulting file spec should default to a TXT extension.

LDX #FCB Point to FCB

JSR GETFIL Get file spec into FCB
BCS ERROR Report error if one
LDAA #1 Set extension code (TXT)

JSR SETEXT Set the default extension
The user may now open the file for the desired action, since the file spec is correctly set up in
the FCB. Refer to the FMS examples for opening files.

2. The following examples demonstrate some simple uses of the basic I/O functions provided by
DOS. '
LDAA #A Setup an ASCII A
JSR PUTCHR Call DOS out character

LDX #STRING Point to string

JSR PSTRNG Print CR & LF + string
The above simple examples are to show the basic mechanism for calling and using DOS 1/0
routines.

The File Management System

The File Management System (FMS), forms the communication link between the DOS and the
actual disk hardware. The FMS performs all file allocation and removal on the disk. All file space
is allocated dynamically, and the space used by files is immedately reusable upon that file's dele-
tion. The user of the FMS need not be concerned with the actual location of a file on the disk, or
how many sectors it requires.







Communication with the FMS is done through File Control Blocks. These blocks contain the
information about a file, such as its name and what drive it exists on. All disk I/O performed
through FMS is ““one character at a time’’ 1/0. This means that programs need only send or request
a single character at a time while doing file data transfers. In effect, the disk looks no different than
a computer terminal. Files may be opened for either reading or writing. Any number of files may be
opened at any one time, as long as each one is assigned its own File Control Block.

The FMS is a command language whose commands are represented by various numbers called
Function Codes. Each Function Code tells FMS to perform a specific function such as open a file
for read, or delete a file. In general, making use of the various functions which the FMS offers is
quite simple. The index register is made to point to the File Control Block which is to be used, the
Function Code is stored in the first byte of the File Control Block, and FMS is called as a subrou-
tine (JSR). At no time does the user ever have to be concerned with where its directory entry is
located. The FMS does all of this automatically.

Since the file structure of FLEX is a linked structure, and the disk space is allocated dynami-
cally, it is possible for a file to exist on the disk in a set of non-contiguous sectors. Normally, if a
disk has just been formatted, a file will use consecutive sectors on the disk. As files are created and
deleted, however, the disk may become ‘‘fragmented’’. Fragmentation results in the sectors on the
disk becoming out of order physically, even though logically they are still all sequential. This is a
characteristic of “linked list” structures and dynamic file allocation methods. The user need not be
concerned with this fragmentation, but should be aware of the fact that files may exist whose sec-
tors seem to be spattered all over the disk. The only result of fragmentation is the slowing down of
file read times, because of the increased number of head seeks necessary while reading the file.

The File Control Block (FCB)

The FCB is the heart of the FLEX File Management System (FMS). An FCB is a 320 byte long
block of RAM, in the user’s program area, which is used by programs to communicate with FMS. A
separate FCB is needed for each open file. After a file has been closed, the FCB may be re-used to
open another file or to perform some other disk function such as Delete or Rename. An FCB may
be placed anywhere in the user’s program area (except page zero) that the programmer wishes.
The memory reserved for use as an FCB need not be preset or initialized in any way. Only the para-
meters necessary to perform the function need be stored in the FCB; the File Management System
will initialize those areas of the FCB needed for its use.

In the following description of an FCB, the byte numbers are relative to the beginning of
the FCB; i.e. byte @ is the first byte of the FCB.

Description of an FCB

Byte® Function Code
The desired function code must be stored in this byte by the user before calling FMS to pro-
cess the FCB. See the section describing FMS Function Codes.

Byte 1 Error Status Byte .
If an error was detected during the processing of a function, FMS stores the error number in
this byte and returns to the user with the CPU Z-Condition Code bit clear, i.e. a non-zero
condition exists. This may be tested by the BEQ or BNE instruction.

Byte 2  Activity Status
This byte is set by FMS to a ‘1" if the file is open for read, or ‘2" if the file is open for wri-
ting. This byte is checked by several FMS function processors to determine if the requested
operation is legal. A Status Error is returned for illegal operations.

The next 12 bytes (3-14) comprise the ‘‘File Specification’’ of the file being referenced by the FCB.
A “’File Specification’’ consists of a drive number, file name, and file extension. Some of the FMS
functions do not require the file name or extension. See the documentation of the individual func-
tion codes for details.

—-12 -







Byte3  Drive Number
This is the hardware drive number whose diskette contains the file being referenced. It should

be binary @ to 3.

The next 24 bytes (4-27) comprise the ‘‘Directory Information’’ portion of the FCB. This is the
exact same information which is contained in the diskette directory entry for the file being referen-
ced.

Bytes 4-11 File Name
This is the name of the file being referenced. The name must start with a letter and contain
only letters, digits, hyphens, and/or underscores. If the name is less than 8 characters long,
the remaining bytes must be zero. The name should be left adjusted in its field.

Bytes 12-14  Extension
This is the extension of the file name for the file being referenced. It must start with a letter
and contain only letters, digits, hyphens, and/or underscroes. |f the extension is less than 3
characters long, the remaining bytes must be zero. The extension should be left adjusted. Files
with null extensions should not be created.

Byte 15 File Attributes
At present, only the most significant 4 bits are defined in this byte. These bits are used for the
protection status bits and are assigned as follows:
BIT 7 = Write Protect
BIT 6 = Delete Protect
BIT 5 = Read Protect
BIT 4 = Catalog Protect

Setting these bits to 1 will activate the appropriate protection status. All undefined bits of this
byte should remain Q. ' ‘

Byte 16 Reserved for future system use

Bytes 17-18  Starting disk address of the file
These two bytes contain the hardware track and sector numbers, respectively, of the first
sector of the file.

Bytes 19-20  Ending disk address of the file
These two bytes contain the hardware track and sector numbers, respectively, of the last sector
of the file.

Bytes 21-22  File Size
This is a 16-bit number indicating the number of sectors in 1. 2 file.

Byte 23 File Sector Map Indicator
If this byte is non-zero (usually $02), the file has been created as a random access file and con-
tains a File Sector Map. See the description of Random Files for details.

Byte 24 Reserved for future system use

Bytes 25-27  File Creation Date
These three bytes contain the binary date of the files creation. The first byte is the month,
the second is the day, and the third is the year (only the tens and ones digits).

Bytes 28-29 FCB List Pointer
All FCBs which are open for reading or writing are chained together. These two bytes con-
tain the memory address of the FCB List Pointer bytes of the next FCB in the chain. These
bytes are zero if this FCB is the last FCB in the chain. The first FCB in the chain is pointed to
by the FCB Base Pointer. {See Global Variablcs.)

-13 -







Bytes 30-31  Current Position
These bytes contain the hardware track and sector numbers, respectively, of the sector current-
ly in the sector buffer portion of the FCB. If the file is being written, the sector to which these
bytes point has not yet been written to the diskette; it is still in the buffer.

. Bytes 32-33  Current Record Number
These bytes contain the current logical Record Number of the sector in the FCB buffer.

Byte 34 Data Index
. This byte contains the address of the next data byte to be fetched from (if reading) or stored
into (if writing) the sector buffer. This address is relative to the beginning of the sector, and is
advanced automatically by the Read/Write Next Byte function. The user program has no need
to manipulate this byte.

Byte 35 Random Index
This byte is used in conjunction with the Get Random Byte From Sector function to read a
specific byte from the sector buffer without having to sequentially skip over any intervening
‘ bytes. The address of the desired byte, relative to the beginning of the sector, is stored in Ran-
dom Index by the user, and the Get Random Byte From Sector function is issued to FMS. The
specified data byte will be returned in the A-register. A value less than 4 will access one of the
linkage bytes in the sector. User data starts at an index value of 4.

Bytes 36-46  Name Work Buffer
These bytes are used internally by FMS as temporary storage for a file name. These locations
are not for use by a user program.

Bytes 47-49  Current Directory Address
If the FCB is being used to process directory information with the Get/Put Information Re-
cord functions, these three bytes contain the track number, sector number, and starting data
indexof the directory entry whose content is in the Directory Information portion of the FCB.
. The values in these three bytes are updated automatically by the Get Information Record
function.

Bytes 50-52  First Deleted Directory Pointer . .
These bytes are used internally by FMS when looking for a free entry in the directory to which

to assign the name of a new file.

Bytes 53-63  Scratch Bytes . ' '
These are the bytes into which the user stores the new name and extension of a file being

renamed. The new name is formatted the same as described above under File Name and File
Extension.

. Byte 59 Space Compression Flag
If a file is open for read or write, this byte indicates if space compression is being performed.
A value of zero indicates that space compression is to be done when reading or writing the
data. This is the value that is stored by the Open for Read and Open for Write functions. A
value of $FF indicates that no space compression is to be done. This value is what the user
must store in this byte, after opening the file, if space compression is not desired. (Such as for
binary files.) A positive non-zero value in this byte indicates that space compression is cur-

‘ rently in progress; the value being a count of the numb_er of spaces processed thus fa.r. (Note
that although this byte overlaps the Scratch Bytes described above, there is no conflict since
the Space Compression Flag is used only when a file is open, and the Scratch Bytes are used
only by Rename, which requires that the file be closed.) In general, this byte should be

© while working with text type files, and $FF for binary files.

‘ Bytes 64-319 Sector Buffer
These bytes contain the data contained in the sector being read or written. The first four bytes
of the sector are used by the system. The remaining 252 are used for data storage.

—18 -







File Management System — Entry Points

$8400 — FMS Initialization
This entry point is used by the DOS portion of FLEX to initialize the File Management Sys-
tem after a coldstart. There should be no need for a user-written program to use this entry
point. Executing an FMS Initialization at the wrong time may result in the destruction of data
files, necessitating a re-initialization of the diskette.

$B403 — FMS Close

This entry point is used by the DOS portion of FLEX at the end of each command line to
close any files left open by the command processor. User-written programs may also use this
entry point to close all open files; however, if an error is detected in trying to close a file, any
remaining files will not be closed. Thus the programmer is cautioned against using this routine
as a substitute for the good programming practice of closing files individually. There are no
arguments to this routine. It is entered by a JSR instruction as though it were a subroutine. On
exit, the CPU Z-Condition code is set if no error was detected (i.e. a ‘‘zero’’ condition exists).
If an error was detected, the CPU Z-Condition code bit is clear and the X-register contains the
address of the FCB causing the error. '

$B406 — FMS Call

This entry point is used for all other calls to the File Management System. A function code is
stored in the Function Code byte of the FCB, the address of the FCB is put in the X-register,
and this entry point is called by a JSR instruction. The function codes are documented else-
where in this document. On exit from this entry point, the CPU Z-Condition code bit is set if
no error was detected in processing the function. This bit may be tested with a BEQ or BNE
instruction. If an error was detected, the CPU Z-Condition code bit is cleared and the Error
Status byte in the FCB contains the error number. Under all circumstances, the address of the
FCB is still in the X-register on exit from this entry point. Some of the functions require addi-
tional parameters in the A and/or B-registers. See the documentation of the Function codes
for details. The X and B registers are always preserved with a call to FMS.

Global Variables

This section describes those variables within the File Management System which may be of interest
to the programmer. Any other locations in the FMS area should not be used for data storage by user
programs.

$B409 - $B40A FCB Base Pointer

These locations contain the address of the FCB List Pointer bytes of the first FCB in the chain
of open files. The address in these locations is managed by FMS and the programmer should
not store any values in these locations. A user program may, however, want to chain through
the FCBs of the open files for some reason,and the address stored in these locations is the pro-
per starting point. Remember that the address is that of the FCB List Pointer locations in the
FCB, not the first word of the FCB. A value of zero in these locations indicates that there are
no open files.

$B408B - $B40C Current FCB Address
These locations contain the address of the last FCB processed by the File Management System.
The address is that of the first word of the FCB.

$B8435 Verify Flag
A non-zero value in this location indicates that FMS will check each sector written for errors
immediately after writing it. A zero value indicates that no error checking on writes is to be
performed. The default value is “‘non;zero’’.

—-16—




[ . . : s
\ - y
t i ‘ o
, R . )
e, 0
N
N i
ol




FMS Function Codes

The FLEX File Management System is utilized by the user through function codes. The proper
function code number is placed, by the user, in the Function Code byte of the File Control Block
(FCB) before calling FMS (Byte @). FMS should be called by a JSR to the “FMS Call” entry. On

. entry to FMS, the X-register should contain the address of the FCB. On exit from FMS, the CPU
Z-Condition code bit will be clear if an error was detected while processing the function. This bit
may be tested by the BNE and BEQ instructions. Note: In the following examples, the line “JSR
FMS’’ is referencing the FMS Call entry at $8406.

. Function ® — Read/Write Next Byte/Character
If the file is open for reading, the next byte is fetched from the file and returned to the calling
program in the A-register. |f the file is open for writing, the content of the A-register on entry
is placed in the buffer as the next byte to be written to the file. The Compression Mode Flag
must contain the proper value for automatic space compression to take place, if desired (see
description of the FCB Compression Mode Flag for details). On exit, this function code re-
mains unchanged in the Function Code byte of the FCB; thus, consecutive read/writes may be

' performed without having to repeatedly store the function code. When reading, an End-of-
File error is returned when all data in the file has been read. When the current sector being
read is empty, the next sector in the file is prepared for processing automatically, without any
action being required of the user. Similarly, when writing, full sectors are automatically writ-
ten to the disk without user intervention.

Example:
If reading—
LDX #FCB Point to the FCB
JSR FMS Call FMS
BNE ERROR Check for error
The character read is now in A.

. If writing—

LDAA CHAR  Get the character
LDX #FCB Point to the FCB
JSR FMS Call FMS

BNE ERROR Check for errors
The character in A has been written.

Function 1 — Open for Read
The file specified in the FCB is opened for read-only access. If the file cannot be found, an
error is returned. The only parts of the FCB which must be preset by the programmer before
issuing this function are the file specification parts (drive number file name, and file exten-
sion) and the function code. The remaining parts of the FCB will e initialized by the Open
. process. The Open process sets the File Compression Mode Flag to zero, indicating a text file.
If the file is binary, the programmer should set the File Compression Mode Flag to $FF,
after opening the file, to disable the space compression feature. On exit from FMS, after open-
ing a file, the function code in the FCB is automatically set to zero (Read/Write Next Byte
Function) in anticipation of Input/Output on the file.

Example:
. LDX #FCB Point to the FCB
[ Set up file spec in FCB ]
LDAA #1 Set open function code

STAA 00X Store in FCB
JSR FMS Call FMS

. BNE ERROR Check for errors
The file is now open for text reading

To set for binary—continue with the following

LDAA  #$FF Set FF for sup. flag

STAA 59X Store in suppression flag
- 16 —







Function 2 — Open for Write

This is the same as Function 1, Open for Read, except that the file must not already exist in

the diskette directory, and it is opened for write-only access. A file opened for write may not

be read unless it is first closed and then re-opened for read-only. The space compression flag

should be treated the same as described in ““Open for Read’’. A file is normally opened as
. a sequential file but may be created as a random file by setting the FCB location File Sector

Map byte non-zero immediately following an open for write operation.Refer to the section on

Random Files for more details. The file will be created on the drive specified unless the drive
. spec of $FF in which case the file will be created on the first drive found to be ready.

Example:

LDX #FCB Point to FCB
[ Setup file spec in FCB ]
LDAA #2 Setup open for write code
STAA 0,X Store in FCB
JSR FMS Call FMS
. BNE ERROR Check for errors
File is now open for text write

For binary, follow example in Read open.

Function 3 — Open for Update ‘
This function opens the file for both read and write. The file must not be open and must exist
on the specified drive. If the drive spec is $FF, all drives will be searched. Once the file has
been opened for update, four operations may be performed on it: 1. sequential read, 2. ran-
dom read, 3. random write, and 4. close file. Note that it is not possible to do sequential writes
to a file open for update. This implies that it is not possible to increase the size of a file which
is open for update.

Function 4 — Close File
. If the file was opened for reading, a close merely removes the FCB from the chain of open
files. If the file was opened for writing, any data remaining in the buffer is first written to the
disk, padding with zeroes if necessary, to fill out the sector. If a file was opened for writing
but never written upon, the name of the file is removed from the diskette directory since the
file contains no data.

Example:
LDX #FCB Point to FCB
LDAA #4 Setup close code
STAA 0, X Store in FCB
JSR FMS Call FMS
. BNE ERROR Check for errors

File has now been closed.

Function 5 — Rewind File
Only files which have been opened for read may be rewound. On exit from FMS, the function
code in the FCB is set to zero, anticipating a read operation on the file. If the programmer
wishes to rewind a file which is open for writing so that it may now be read, the file must
first be closed, then re-opened for reading.

. Example:

Assuming the file is open for read:
LDX #FCB Point to FCB
LDAA #5 Setup rewind code
. STAA 0,X Store in FCB
JSR FMS Call FMS
- BNE ERROR Check for errors
File is now rewound and ready for read

-17 -







Function 6 — Open Directory
This function opens the directory on the diskette for access by a program. The FCB used for
this function must not already be open for use by a file. On entry, the only infotmation which
must be preset in the FCB is the drive number, no file name is required. The directory entries
are read by using the Get Information Record function. The Put Information Record function
. is used to write a directory entry. The normal Read/Write Next Byte function will not func-
tion correctly on an FCB which is opened for directory access. It is not necessary to close an
FCB which has been opened for directory access after the directory manipulation is finished.
The user should normally not need to access the directory.

Function 7 — Get Information Record :
This function should only be issued on an FCB which has been opened with the Open Direc-
tory function. Each time the Get information Record function is issued, the next directory
entry will be loaded into the Directory Information area of the FCB (see Description of the
FCB for details of the format of a directory entry). All directory entries, including deleted and
unused entries are read when using this function. After an entry has been read, the FCB is
. said to ‘‘point” to the directory entry just read; the Current Directory Address bytes in the
FCB refer to the entry just read. An End-of-File error is returned when the end of the direc-
tory is reached.

Example:

To get the 3rd directory entry—
LDX #FCB Point to FCB
LDAA DRIVE Get the drive number

STAA 3,X Store in the FCB
LDAA #6 Setup open directory code
STAA 0, X Store in FCB
JSR FMS Call FMS
BNE ERROR Check for errors
. LDAB #3 Set counter to 3
LOOP LDAA  #7 Setup get rec code

STAA 0,X Store in FCB

JSR FMS Call FMS

BNE ERROR Check for errors

DECB Decrement the counter
BNE LOOP Repeat til finished

The 3rd entry is now in the FCB

Function 8 — Put Information Record

This function should only be issued on an FCB which has been opened with the Open Direc-
‘ tory function. The directory information is copied from the Directory Information portion of

the FCB into the directory entry to which the FCB currently points. The directory sector just

updated is then re-written automatically on the diskette to ensure that the directory is up-to-

date. A user program should normally never have to write into a directory. Careless use of the

Put Information Record function can lead to the destruction of data files, necessitating a re-

initialization of the diskette.

Function 9 — Read Single Sector

. This function is a low-level interface directly to the disk driver which permits the reading of
a single sector, to which the Current Position bytes of the FCB point, into the Sector Buffer

" area of the FCB. This function is normally used internally within FLEX and a user program

should never need to use it. The Read/Write Next Byte function should be used instead, when-

ever possible. On return from FMS, the B-register is zero if no error was detected. If the B-

. register is non-zero on exit, a non-recoverable error was detected and the B-register contains
the hardware status returned by the disk driver, not a FLEX error number. The error code

- 18—




.;fdr

LT YRS I TR e

sy

y A5V

-

G




is not stored in the Error Status byte by this function, nor are any of the pointers in the FCB
updated. Extreeme care should be taken when using this fungtion since, it does not conform to
the usual conventions to which most of the other F LEX functions adhere.

Example:

LDX #FCB Point ot FCB

LDAA TRACK Get track number
STAA 30,X Set current track
LDAA SECTOR Get sector number
STAA 31,X Set current sector
LDAA #9 Setup function code
STAA 0.,X Store in FCB

JSR FMS Call FMS

BNE ERROR Check for errors
The sector is now in the FCB

Function 10 ($0A hex) — Write Single Sector

This function, like the Read Single Sector function, is a low-level interface directly to the disk
driver which permits the writing of a single sector. As such, it requires extreme care in its use.
This function is normally used internally by FLEX and a user program should never need to
use it. The Read/Write Next Byte function should be used whenever possible. Careless use of
the Write Single Sector Function may result in the destruction of data, necessitating the re-
initialization of the diskette. The disk address being written is taken from the Current Position
bytes of the FCB; the data is taken from the FCB Sector Buffer. On return, the B-register is
zero if no error was detected. This function honors the Verify Flag (see Global Variables
section for a description of the Verify Flag), and will check the sector after writing it if
directed to do so by the Verify Flag. If the B-register is non-zero on exit, an unrecoverable
error was detected, and the B-register contains the hardware status returned by the driver, not
A FLEX error number. The error status is not stored in the Error Status byte of the FCB, nor
are any of the pointers in the FCB updated.

Function 11 ($0B hex) — Reserved for future system use

Function 12 ($0C hex) — Delete File
This function deletes the file whose specification is in the FCB (drive numbers, file name, and
extension). The sectors used by the file are released to the system for re-use. The file should
not be open when this function is issued. The file specification in the FCB is altered during the
delete process.

Example:

LDX #FCB Point to FCB

[ setup file spec in FCB ]

LDAA #12 Setup function code
STAA 0,X Store in FCB

JSR FMS Call FMS

BNE ERROR Check errors

File has now been deleted.

Function 13 ($0D hex) — Rename File
On entry, the file must not be open, the old name must be in the File Specification area
of the FCB, and the new name and extension must be in the Scratch Bytes area of the FCB.
The file whose specification is in the FCB is renamed to the name and extension stored in the
FCB Scratch Bytes area. Both the new name and the new extension must be specified; neither
the name nor the extension can be defaulted.

-19 - .




~
¥

ot Bagn 0

3




Example:

LDX #FCB Point to FCB < .
[ setup both file specs in FCB ]
LDAA  #13 Setup funciten code
. STAA 0, X Store in FCB
JSR FMS Call FMS

BNE ERROR Check for errors
File has been renamed

' Function 14 ($0E hex) — Reserved for future system use.

Function 15 ($0F hex) — Next Sequential Sector
On entry the file should be open for either reading or writing (not update). If the file is open
for reading, this function code will cause all of the remaining (yet unread) data bytes in the
current sector to be skipped, and the data pointer will be positioned at the first data byte of
the next sequential sector of the file. If the file is open for write, this operation will cause the
. remainder of the current sector to be zero filled and written out to the disk. The next charac-
ter written to that file will be placed in the first available data location in the next sequential
sector. It should be noted that all calls to this function code will be ignored unless at least
one byte of data has either been written or read from the current sector.

Function 16 ($10 hex) — Open System Information Record
On entry, only the drive number need be specified in the FCB, there is no file name associa-
ted with this function. The FCB must not be open for use by a file. This function accesses
the System Information Record for the diskette whose drive number is in the FCB. There
are no separate functions for reading or changing this sector. All references to the data con-
tained in the System Infomation Record must be made by manipulating the Sector Buffer
directly. This function is used internally within FLEX, there should be no need for a user-
: written program to change the System Information Record. Doing so may result in the des-
‘ truction of data, necessitating the re-initialization of the diskette. There is no need to close
the FCB when finished.

Function 17 ($11 hex) — Get Random Byte From Sector
On entry, the file should be open for reading or update. Also, the desired byte’'s number
should be stored in the Random Index byte of the FCB. This byte number is relative to the
beginning of the sector buffer. On exit, the byte whose number is stored in the Random
Index is returned to the calling program in the A-register. The Random Index should not be
less than 4 since there is no user data in the first four bytes of the sector.

Example:

To read the 54th data byte of the current sector—
() LDX  #FCB  Point to the FCB

LDAA  #54+4 Settoitem+4

STAA 35,X Put it in random index

JSR FMS Call FMS

BNE "ERROR Check for errors

Character is now in acc. A

Funciton 18 ($12 hex) — Put Random Byte in Sector
. The file must be open for update. This function is similar to Get Random Byte except the
character in the A accumulator is written into the sector at the data location specified by
Random Index of the FCB. The Random Index should not be less than 4 since only system
data resides in the first 4 bytes of the sector., .

' ‘

-20 -




. A&
JINEIEE W GIEstI0E Bl :
S onmoosR nsTwl o )
00 noroat aidl pnies sno¥sd cigng v laE S . -
sriy af bissy liw D bro2st of pare : 5
ostern Jenid arlt oiTers o
07 1Qmesis nA Lbinosr batiosge witi To v B
esz ealit rnobosy Ae SOt SIGIT T
: i
i Do
B .
¢ 23y . o B
T AT
v U/ breosA eyl ey P YRR T S PR EA o s e
9y 267 2T LeamoIIeG 2 D081 e 8Tl T e T f SR ;
ong BT N R IS BT AT - RO .
e 4l : : G "
Dagl o LT DT ’f_ N I8 3




Example:

To write into the 54th data byte of the current sectdr— .
- LDX #FCB Point to the FCB
LDAA  #54+4 Settoitem+4
. STAA 35,X Put it in Random Index
LDAA  #18 Setup Function Code
STAA 0.X Store in FCB
LDAA CHAR Getcharacter to be written
C ) JSR FMS  Call FMS
BNE ERROR Check for errors
Character has been written

Function 19 ($13 hex) — Reserved for future system use

Function 20 ($14 hex) — Find Next Ready Drive
This function is used to find the next online drive which is in the “‘ready’’ state. If the Drive
. , Number in the FCB is hex FF, the search for drives will start with drive @. |f the Drive Number
is @, 1, or 2, the search will start with drive 1, 2, or 3 respectively. |f a ready drive is found,
its drive number will be returned in the Drive Number of the FCB and the carry bit will be
cleared. |f no ready drive is found, the carry bit will be set and error #16 (Drives Not Ready)
will be set.
Function 21 ($15 hex) — Position to Record N .
This is one of the 2 function codes provided for random file accessing by sector. The desired
record number to be accessed should be stored in the FCB location Current Record Number (a
16-bit bianary value). The file must be open for read or update before using this function code.
The first data record of a file is record number one. Positioning to record @ will read in the
first sector of the File Sector Map. After a successful Position operation, the first character
. read with a sequential read will be the first data byte of the specified record. An attempt to
position to a nonexistent record will cause an error. For more information on random files, see
the section titled ‘Random Files'.

Example:

To position to record #6—

LDX #FCB Point to the FCB
LDAA #6 Set position
STAA 33X Putin FCB

CLR 32,X SetM.S.Bto @

LDAA  #21 Setup Function Code
STAA 0,X Store in FCB
. JSR FMS Call FMS

BNE ERROR Check for errors
Record ready to be read.

Function 22 ($16 hex) — Backup One Record
This is also used for random file accessing. This function takes the Current Record Number
in the FCB and decrements it by one. A Position to the new record is performed. This has the
effect of back spacing one full record. For example, if the Current Record Number is 16 and
. the Backup One Record function is performed, the file would be positioned to read the first
byte of record #15. The file must be open for read or update before this function may be used.
See ‘Random Files’ section for more details.




e , 4 .
S Ta I HY oY a0 O
Aiow zaiziir X333 hagho o
SasY e esr X203 gl gV e e
(obrey 6 ek DaTEEId nond ton Suino
-8uUD8: Be3Y 34 \ I =1 R
bluore vy, 130 4
~aldovoron :
£ -
L , » 4
T @9INENOIG MONIET v o e -y L . ‘
. 4 N
8gYst aGT 2ew I8 0 9 Yo oa,yd wial R
vhegy'e s ol noirss SARTEE T beuent e
g0 sz SRR f . G
Lo ot
e . B
o gh»ajw OSSR i il . g "~
[RE I -Luz)..}. b4 A BRI 4 dEpie i . 3 i Lo
SCICTOSTD 3338 KR a0 s v e, : IRIRET
o " [ doT
4l :
¥ ¥ . M;
PO P X , | i )
I . s . BOK weyl vy, by R e e 4
¥ el . RS T . ) . .
]




Random Files

o

The 8 inch version of FLEX supports random files. The random access technique allows access by
record number of a file and can reach any specified sector in a file, no matter how large it is, ina
maximum of two disk reads. With a small calculation using the number of data bytes in a sector
(252), the user may also easily reach the Nth character of a file using the same mechanism.

Not all files may be accessed in a random manner. It is necessary to create the file as a random
file. The default creation mode is sequential and is what all of the standard FLEX Utilities work

. with. The only random file in a standard FLEX system is the ERROR.SYS file. FLEX uses a ran-
dom access technique when reporting error messages. A file which has been created as a random
access file may read either randomly or sequentially. A sequential file may only be read sequen-
tially.

To create a random file, the normal procedure for opening a file for write should be used. Im-
mediately following a successful open, set the File Sector Map location of the FCB to any non-
zero value and proceed with the file’s creation. It only makes sense to create text type files in the
random mode. As the file is built, the system creates a File Sector Map. This File Sector Map (FSM)

. is a map or directory which tells the system where each record (sector) of the file is located on the
disk. The FSM is always two sectors in length and is assigned record number @ in the file. This im-
plies that a data file requiring 5 sectors for the data will actually be 7 sectors in length. The user has
no need for the FSM sectors and they are automatically skipped when opening a file for read.
The FMS uses them for the Position and Backup function code operations.

The directory information of a file states whether or not a file is a random file. If the File Sec-
tor Map byte is non-zero, the file is random, otherwise it is sequential only. It should be noted that
random files can be copied from one disk to another without losing its random properties, but’it
can not be appended to another file. '

FLEX Error Numbers

.1 — Illegal FMS Function Code Encountered
FMS was called with a function code in the Function Code byte of the FCB that was too large
or illegal.

2 — The Requested File is in Use
An Open for Read, Update, or Write function was issued on an FCB that is aiready open.

3 — The File Specified Already Exists
a. An Open for Write was issued on an FCB containing the specification for a file already
existing in the diskette directory.
b. A Rename function was issued specifying a new name that was the same as the name of a
file already existing in the diskette directory.

4 — The Specified File Could Not Be Found
An Open for Read or Update, a Rename, or a Delete function was requested on an FCB con-
taining the file specification for a file which does not exist in the diskette directory.

5 — System Directory Error—Reboot System
Reserved for future system use.

6 — The System Directory Space is Full .
This error should never occur since the directory space is self expanding, and can never be
filled. Only disk space can be filled (error #7).

7 — All Available Disk Space Has Been Used
. All of the available space on the diskette has been used up by files. If this error is returned
by FMS, the last character sent to be written to a file did not actually get written.

-22—




SRTM T
[REED B ' <t

esd 200G 30 pairgnisiin o
Di: OGY cooue tuentiw Barmie 8

]
:

aft oG phed e322510bE 1WITeR hne

t

duozed 200 101382 T SHIW OF G TGS O
307 SingaY s3079d 1019%2 vhiiier o :
-
arll pripgnxs va he1oatoragtine S
*ag f”:& AR
netalen od ton nen b 2 il 1y

SRV I AT TeTo Tt RN - PIRYE
LIR006 Deyo 10t PaGT W N
MobNeR 3 rdla D kE

393Ta & TN LY TRUM BN Nite

.29 NS -

-

s
T

[ C
KERHI

A6

STl B

SRS
AR R TR v v
GEr e
P I N
SN " o -
RIS e T N i
. S
B N N . ER ]
I LI
)
L3
R
g
A
[ARRRNIS S 4
B

-
o

oot




] R e A C. 3

8 — Read Past End of Flle ST e e

' A read operation on a file encountered an end-of-file. 'All of the data in the file has been pro-
cessed. This error will also be returned when reading a directory with the Get Information
Record function when the end of the directory is reached.

9 — Disk File Read Error
A checksum error was encountered by the hardware in attempting to read a sector. DOS has
already attempted to re-read the failing sector several times, without success, before reporting
the error. This error may also result from illegal track and sector addresses being put in the
FCB.

10 — Disk File Write Error
A checksum error was detected by the hardware in attempting to write a sector. DOS has al-
ready tried several times, without success, to re-write the failing sector before reporting the
error. This error may also result from illegal track and sector numbers being put in the FCB. A
write-error status may also be returned if a read error was detected by DOS in attempting to
update the diskette directory.

11 — The File or Disk is Write Protected
An attempt was made to write on a diskette which has been write-protected by exposing the
write-enable cut in the diskette or to a file which has the write protect bit set.

12 — The File is Protected—File Not Deleted :
The file attempted to be deleted has its delete protect bit set and can not be deleted.

13 — lllegal File Control Block Specified
An attempt was made to access an FCB from the open FCB chain, but it was not in the chain.

14 — lllegal Disk Address Encountered
Reserved for future system use

15 — An lllegal Drive Number Was Specified
Reserved for future system use.

16 — Drives Not Ready
The drive does not have a diskette in it or the door is open.

17 — The File is Protected—Access Denied
Reserved for Future system use.

18 — System File Status Error
a. A Read or Rewind was attempted on a file which was closed, or open for write access.
b. A write was attempted on a file which was closed, or open for read access.

19 — FMS Data Index Range Error
The Get Random: Byte from Sector function was issued with a Random Byte number greater
than 255.

20 — FMS Inactive—-Reboot System
Reserved for future system use.

21 — lllegal File Specification '
A format error was detected in a file name specification. The name must begin with a letter
and contain only letters, digits, hyphens, and/or underscores. Stmllarly with file extensions.
File names are limited to 8 characters, extensions to 3.

22 — System File Close Error
Reserved for future system use.




ST TRTS TS SR AR Lo P X U HEF ST Lo e oo

FCRN
videdoige: siit wilT b0y 10003 a0t e L o g e s T e T e
oAl ’ ’
oy [ REATENEEEN i
TR RN o TR N1V TSNS TR SR -
P vt b LCERE PR . B
DFrssent Bhasd ey a0 ar T s e O L T

S2ETOIT OF 218V AiD mws Yotr ol o DL o o L sl HEE I
sonrioe T son 1obasy sy veayshd gooney o a0 D sy
100 828t ob on cnoizeyap 0o e ot e o G s e g e

2T cagtivastese Teee 2D T e i T

voaoit orty paivinh svewbies et has AF0 5 I PR RN R CHE A A PERURR

ariv ritiw ssetisini of Fenpiesh s mesevt L L o : SRR
(SIS 3 ‘ 1 i v, i

LRy IS 2aRitunuT e A LA HES oo L g g : &
210178 10 3z 0l eanen sthasd jos ] : Vi
ok sih ol rithe Nixg Bleo s ceny L 00 ; T ‘
sy bt BOTET e eusl ) wnes o L T .
PRNT leripe DD e oo oer owd besuthiong on o0 L udele BiotLwL Lo T
Hluogve 2vevitbh A pseu 2t ebioiann oo betalumie ed szle

LOIOUYTR0 Lo 7 bavie s o sy A Josposi

wiies onel
T

2005 18:1ud 101992 anld 010t RISy GC GY 2 2IRGITLTT 0L Y T LT 2 =

-uv e85z arit oY nettovw 9g 63 o BOR

210179 U e s T

Ty RO




23 — Sector Map Overflow—Disk Too Segmented _
An attempt was made to create a very large random access file on a disk which is very seg-
mented. All record information could not fit in the 2 sectors of thelFile Sector Map. Recrea-
ting the file on a new diskette will solve the problem.

24 — Non-Existent Record Number Specified
A record number larger than the last record number of the file was specified in a random
position access.

25 — Record Number Match Error—File Damaged
The record located by the FSM random search is not the correct record. The file is probably
damaged. '

26 — Command Syntax Error—Retype Command
The command line just typed has a syntax error contained in it.

27 — That Command is Not Allowed While Printing
The command just entered is not allowed to operate while the system printer spooler is acti-
vated.

28 — Wrong Hardware Configuration
This error usually implies insufficient memory installed in the computer for a particular
function or trying to use the printer spooler without the hardware timer board installed.

Disk Drivers

The following information is for those users who wish to write their own disk drivers to interface
with some other disk configuration than is supplied by the vendor. Nether the vendor nor Technical
Systems Consultants is in a position to write disk drivers for other configurations, no do these com-
panies guarantee the proper functioning of FLEX with user-written drivers.

The disk drivers are the interface routines between F LEX and the hardware driving the floppy
disks themselves. The drivers released with the FLEX System are designed to interface with the
Western Digital 1771 Floppy Disk Formatter/Controller chip. ‘

The disk drivers are located in RAM at addresses $BE8@ - $BFFF. All disk functions are vec-
tored jumps at the beginning of this area. The disk drivers need not handle retries in case of errors;
FLEX will call them as needed. If an error is detected, the routines should exit with the disk hard-
ware status in the B-register and the CPU Z-Condition code bit clear (issue a TST B before return-
ing to accomplish this). FLEX expects status responses as produced by the Western Digital 1771
Controller. These statuses must be simulated if some other controller is used. All drivers should
return with the X-register unchanged. All routines are entered with a JSR instruction.

$BESD — Read
Entry - (X) = FCB Sector Buffer Address
(A) = Track Number
(B) = Sector Number
The sector referenced by the track and sector numbers is to be read into the Sector Buffer area
of the indicated FCB.

$BES83 — Write
Entry - (X) = FCB Sector Buffer Address
(A) = Track Number
(B) = Sector Number
The content of the Sector Buffer area of the indicated FCB is to be written to the sector re-
ferenced by the track and sector numbers.

. $BEB6 — Verify

Entry - (No parameters)
The sector just written is to be verified to determine if there are CRC errors.

-24 —

[y




. .
apariw gvicn i o e trcieg ad of B vt e o7 LA R
- s 8 L9
CEA ey e : ' ;
; - y
4 e
genk sAr oninelas @t pusie et v LT waTene L T
Cennnag §ORG e DESGE 2D L I T T -
T .
NEISUAL of R . . . ~ PN . '
28T aneh ton-et velab bricos: ;S YR G A v :
it : T T .

ronasinat < et

Aos pnitersal XA 571 v siiu i0d
s 10 e101d%e 9l nivastzanhbs 10t 0
TR0 2 A e2sa01g Noiesisint oib

oldshs s 0 L0817 An 20Tse S
"":)od“ & isinod awuisaz o et @l
S7e MW g rood sdT Sotinem DuUdrzil se
.,\,.qumu' pnalzyd 3 O

I NG 10153E

2037 o1tbng bng g":-**-r*qu 2047 T0 pnges e i or D
- ~ -, ~ . ) -~ b
: sz 107 peew e Q Aneir Yo gesn At ' s i RN S
zagved Ow tevd edT Jgemnet ro Ting CERPIEH P
Qvol THET 3icT ..r:ir;‘ri-’r et oraes txen adi oo foriauR GOl Al DRt 0Ll e .
. Y : . M pn - . ko H
FISAVISIN areen 3T el ar B A st 0F Duvn 216 BEIVA
a

wadmun Sonss o sial Lnes e

9rif 300 sge fass by io oy

3
- I ooyt . i amps By ta PREISIEN - AR
29.’\{(. ‘.‘.«ef_a)i”.;" vE COtR W aleY g T o )
T
Rt bistasie 971 ol remto? bishest 1
wiame ad vHaripol 918 vor ze ot 81 RS
-~ o ey

s Ce RV SN 9 2iGlose ANt B2

givyy 2 soedit

G cied n04n6e TX8n 8Y Tesnsen G FIEh 807 2280070 07 101352 LA FwdT T S
TR SITHT BAEZ29DCTC 8N _ SHG 918 21010we st Y L L
Yo erarorarg 50T cigh st onigsancag w0t smil oom awoils 2307192 i To g Eon

u.l~~
08 © Ditind

VIov 2T b TenoiTUioveY prza it LUHAS 21 283 pRIZesdo: | T 10 gk
2ufls enchuioves bageimn {0 sedimun il essober ssomot X343 s

Fus s",\}"la‘

101082 vio129%10 6 Yo noitqineal

ey Y323 5 To pooang viotnard erdd ool

Y15 (063 6102 vicsnl 07 eririnoo 4

3

i 9EEANI 103092 ST NIETA0D 22t 0 Tul 0N 0l aiDee NUES MU 2lEnc T R 1O 81T 8730 o)




$BES89 — Restore
Entry - (X) = FCB Address
Exit - CC, NE, & B=$B if write protected
CS, NE, & B=%F if no drive
A Restore Operation (also known as a Seek to Track @9) is to be performed on the drive whose
number is in the FCB.

$BESC — Drive Select
Entry - (X)= FCB Address
The drive whose number is in the FCB is to be selected.

$BESF — Check Drive Ready
Entry - (X) = FCB Address
Exit - NE & CS if drive not ready
EQ & CC if drive ready
The drive whose number is in the FCB is checked for a ready status after selecting that drive
and delaying long enough for the drive motor to come up to speed (approx. 2 seconds).

$BE92 — Quick Check Drive Ready
This routine is the same as Drive Check Ready except the 2 second delay is not done. This
assumes the drive motor is already to speed.

Diskette Initialization

The NEWDISK command is used to “initialize’ a ‘diskette for use by the FLEX Operating System.
The initialization process writes the necessary track and sector addresses in the sectors of a “soft-
sectored’’ diskette such as is used by FLEX. In addition, the initialization process links together
all of the sectors on the diskette into a chain of available sectors. '

The first track on the diskette, track 0, is special. None of the sectors on track @ are available
for data files, they are reserved for use by the FLEX system. The first two sectors contain a “boot"’
program which is loaded by the “D’* command of the DISKBUG monitor. The boot program, once
loaded, then loads FLEX from the diskette. Another sector on track @ is the System Information
Record. This sector contains the track and sector addresses of the beginning and ending sectors of
the chain of free sectors and those available for data files. The rest of track @ is used for the direc-

_tory of file names.

After initialization, the free tracks on the diskette have a common format. The first two bytes
of each sector contain the track and sector number of the next sector in the chain. The next two
bytes are used to store the logical record number of the sector in the file. The remaining 252 bytes
are zero. Initially, all record number bytes are zero. When data is stored in a file, the two' linkage
bytes at the beginning of each sector are modified to point to .ie next sector in the file, not. the
next sector in the free chain. The sectors in the diskette director on track @ also have linkage bytes
similar to those in the free chain and data files.

A FLEX diskette is not initialized in the strict IBM standard format. In the standard format,
the sectors on the diskette should be physically in the same order as they are logically, i.e. sector
2 should follow sector 1, 3 follow 2, etc. On a FLEX diskette, the sectors are interleaved so that
there is time, after having read one sector, to process the data and request the next sector before it
has passed under the head. If the sectors are physically adjacent, the processing time must be very
short. The interleaving of the sectors allows more time for processing the data. The phenomena of
missing a sector because of long processing times is called ‘‘missing revolutions”, and results in very
slow running time for programs. The FLEX format reduces the number of missed revolutions, thus
speeding up programs.

Description of a Directory Sector

Each sector in the directory portion of a FLEX diskette contains 10 directory entries. Each entry
refers to one file on the diskette. In each sector, the first four bytes contain the sector linkage in-

- 25 —




SRRV LSOV o[22 VAL

i oL B0 tRMIOTUE £ o .
E0% olr o0 2 2 terdr caidoe . o
shigdal swom w0 R E
e Te ey s st e T e TRl rmven et T Gy e

A0 Jo 81ve v’ g’y s s ermen oot e Pl anit eart har g el g

ol 8350 s Yo noltoinee O

", :.\* priwotiobr arl sue olone TO08 0w v

i

altd i 6 Yo rovoimead

LY ., g 23 A o~ o -~ R AN R LT - - K
ST ViR d G087 DawonE 838 eTesI6ens HOGA L B0 g prutiyrs nel 00 v 97 y

819Nz ¢ \

SETOETEY Y0 300G

FUG TGO Sy ) e G 2 B AL Pragey v

srit 1o (70031 80 To stz 3t of ¢

P

emenr s LV ’&9 XE05 e e B

28t 5. 0 v oY ERS18 y"*’\»"?r‘f" o gz ortt oyt o0 Hiw o sew
DE ot ee s b reas s 2 SN 1ENCIIC (E NIETT GO OEls yeat @it el A
20 Consenaw visnid B 0 1oieg Y e o e e v e Gt zeand

lewe 0N en

ziierans gl & 1i

e nintnes dninw

Dswene T g et 5ol fsau

07 182l 1 ot sz dnarregrne M ol ariy dpuoids olit viead & pnitiiw Yo pribeey s (W
¥ 3.3 ey 29229700s b0l bns 2o1ve 10ie0ibni 1098 9RT czennny Tiuia MIBTEOIG piti leD Gl

1920 9l 10T HOITBMIICT i eiily £29507Q 10 YyICgUE 100 0l

]

el vasaid pr
c- ]Drﬁ a1C . 9r:

ey

- BC -




formation and the next 12 bytes are not used. When reading information from the directory using
the FMS Get Information Record function, these 16 bytes are skipped automatically as each sector
is read; the user need not be concerned with them.

Each entry in the directory contains the exact same information that is stored in the FCB
bytes 4-27. See the description of the File Control Block (FCB) for more details.

A directory entry which has never been used has a zero in the first byte of the file name. A
directory entry which has been deleted has the leftmost bit of the name set (i.e. the first byte of the
name is negative).

Description of a Data Sector

Every sector on a FLEX diskette (except the two BOOT sectors) has the following format:

Bytes 0-1 Link to the next sector

Bytes 2-3 File Logical Record Number

Bytes 4-255 Data

If a file occupies more than one sector, the “link to the next sector’ portion contains the track

and sector numbers, respectively, of the next sector in the file. These bytes are zero in the last sec-
tor of a file, indicating that no more data follows (an ‘‘end-of-file”” condition). The user should
never manually change the linkage bytes of a sector. These bytes are automatically managed by
FMS. In fact, the user need not be concerned at all with sector linkage information.

Description of a Binary File

A FLEX binary file may contain anything as data; all ASCII characters are allowed. Each binary file
is composed of one or more binary records. There may be more than one binary record in a single
sector.

A binary record looks as follows: (byte numbers are relative to the start of the record, not the
beginning of a sector)

Byte ® Start of record indicator ($02, the ASCII STX)
Byte 1  Most significant byte of the load address

Byte 2  Least significant byte of the load address

Byte 3  Number of data bytes in the record

Byte 4-n The binary data in the record

The load address portion of a binary record contains the address where the data resided when
it was written to the file with the FLEX SAVE command. When the file is loaded for execution or
use, it will be put in the same memory areas from which it was SAVED.

A binary file may also contain an optional transfer address record. This record gives the ad:
dress in memory of the entry point of a binary program. The format of a transfer address record is
as follows:

Byte® Transfer Address Indicator ($16, ASCII ACK)
Byte 1  Most significant byte of the transfer address
Byte 2  Least significant byte of the transfer address

If a file contains more than one transfer address record (caused by appending binary files
which contain transfer addresses), the last one encountered by the load process is the one that is
used, the others are ignored.

When reading or writing a binary file through the File Management System from a user pro-
gram, the calling program must process the record indicator bytes and load addresses itself; FLEX
does not supply or process this information for the user.

- 26—




ot A
&t e
2IATILNE L e SHATRVI FTVIRIARE : ! ;i\'J(»‘ AE N e 7Y D

X373 5 Aipne caiginoes resaiine DGl B mm OIS BeG T - B L. WET

protoeopi Jobitw roporg ey to yrhideeo e FETEe IDRRIE IR B et RCEIET I T TR M T

Dl ginit pfBU 3t oy 00 sat s it

LT

@1n st 1xest KA 8 oo eareeaasy o v oo o o2 b aiy e dn B dne0 ing @

Gl el 01008 w30 B GO Dl el

RIS RO oA
. P b 3o av, psl
e aotfleny o of ber v AT AT P Py e o
PN Somg
ot ot by a0 han ot do L sl sl i ha aroc e T D e
‘. . ARSN T.,r‘\‘. LR ! vEOU

et aiir et Devorney cesd enn 24052 f-n;*‘f' Coiaidendsnte aiow oon s peibe oot
REISTRMVIETRME Folh PRSI
TGGT ~::>‘7 I AAIOLTE rir::»
SViZesOILL I8 T
R UMY BT ToTXa LIRS 153 IR TR .n SRR 1= T DUERNE TR 2 ta T LA A 'x‘a'» “b‘-‘q rp o L e gt

SATRAT PR i g0l vt St e D VT i e BT B G

2 57 o tisn i S Coalisn .1_'{3“

IRIRT:FIVINTLS Seh BERCCTRNNAS L8 BEGRENIF TGN IO 1o Ml O ARE PR ACT U RT- SE I

H -~ r B 4 IR S e g ~oam s L - Lz S L

a0 At feTaye INgMEns el i gl oorosdi pionme s .\mﬂ 9E. 904 A 0h Sl L BQITRTD
; . : ; - atapy an T oyt N L
iios ard of Dn2sgrosit SICte19nt a neieasya s 8Ish an T oot g il redsant

ot e M 2ncirereng 1xaT w0t rage 2 shif ety G R TR

P et .
aliY i3 M1 EBGAL ¢ 28 VLS Decre Ty op iaen b 98l e

Besrned vl oW

oy s Yo Ao B 2saees X3 0 bl nszes an b0 220 93 v Dot or w0 J2ad T, 0o Bmind il
20rer e B0E W AZ A0NEDCT X980 TE NI LWL ety YBT3t £ o oy
L ORIt e G ORSeD norieser T HOE G iav2 i RIS N
z wosez §23 Sn2 &0 1suins 7 eV RIgIOT T 80 SRR R TP

I

aesititit ?—'"""" St Soad Yoopribast et e e b 1

ré;‘?ri'w eSTar AT bas 20u ré"lr-m ardy Yo armoe wrnronomeh of revy 9a v sigiuinxa oA

23ps0 poihvet 2 sy e Buot adonsn dabrie slams e an aﬁi* Fiu gaitioa 9 or ez ad slucde
CNROMBITTNVE e

-3
A

- P L]
fatias s, X3

. peiten o Bl SiImi &
HORRE 2t
26T el an neoerte 40 ":’.,,.-3b atT

LA a0, s R s g en @it ket

Lootioue v ne 1ol 5o nanod oloon

ety A et R FE
conitve oo VAN DT Te s e poi2n kiR

2
ghing om0 e m(a\ sn‘» LTER LE : ¢
ey@ SO alueMaT 182U 0T tgunutn 2 s g L :fuhwt,ds 9l §AeEIIgET CET s 320001 oI
: : y : ' 7fgn;;r;09-rvwsi

-g1 L 5l b .am’o,q‘ vitng ZN3 ey o1 et orlt 2siBUpPS C2!s S1c 2001T16E D L. AE@n an’
“ONG 2int i nemeiste ORD el 0T s chwre vhienit mewporq isutos 20T G0 sneiive 9r1t eamic st
01+t IR0 st swisnedly DOTAZ 15 He. ool 39608 brsmmod vinisy snt to s wdara hiw sw ey
AR AR

2 eysw s of 2i 29itilit, 2CT pririvw nathw baveszdo ed bluar fo roittve .rotRavion sl G0 amd
Asdy T 823 WV 5 ad bivore nodousent 2t oniwollod neitoutizer A7 8 6 onfiw (eNeoT v

=

18y {5030 9t 19veIsNW C3 19z 9C 621800 0 bluode T adT (yrilitn o0 3¢ mdreu naienay erly 2amisi:

A3V X303 o ewolle noitnevnod 2intT L 2 radmiun noivev el 3iqingse 2ids nd 2l ssdonbn o
bremmne & 1o wdmun noizey eilt yinass e o ol yidis U nCin




Description of a Text File

A text file (also called an "*ASCII file”’ or ‘‘coded file’’) contains only printable ASCII characters
plus a few special-purpose control characters. There is no ““load address” associated with a FLEX
text file as there is with FLEX binary files. It is the responsibility of the program which is reading
the text file to put the data where it belongs.

The only control character which FLEX recognizes and processes in a FLEX text file are:

$0D (ASCH CR or RETURN)
This character is used to mark the end of a line or record in the file;

$00 (ASCII NULL)
Ignored by FLEX; if encountered in the file, it is not returned to the calling program.

$18 (ASCII CANCEL)
Ignored by FLEX; if encountered in the file, it is not returned to the callingi‘program.

$09 (ASCIHI HT or HORIZONTAL TAB)

This is a flag character which indicates that a string of spaces has been removed from the file
as a space-saving measure. The next byte following the flag character is a count of the number -
of spaces removed (2-127). The calling program sees neither the flag character nor the count
character. The proper number of spaces are returned to the user program as successive charac-
ters are requested by the Read Next Byte function. When writing a file, the spaces are auto-
matically deleted as the user program sends them to the File Management System using the
Write Next Byte function. The data compression is, therefore, transparent to the calling
program. (The above discussion is only valid if the file is open for Text operations. |f open for
Binary, the compression flag and count get passed exactly as they appear in the file.)

Writing Utility Commands

Utility commands are best prepared by the use of an assembler. FLEX reserves a bock of memory in
which medium size utilities may be placed. This memory starts at hex location $A100 and extends
through location $ABFF. The system FCB at location $A840 may also be used in user written utili-
ties for either FCB space or temporary storage. No actual code should reside in this FCB space since
it would interfere with the loading of the utility (FLEX is using that FCB while loading utilities).

An example will be given to demonstrate some of the conventions and techniques which
should be used when writing utilities. The example, which can be found on the followmg pages is
a simple text file listing utility. It syntax is: - o ow

LIST, [(FILE SPEC)]

The default extension on the file spec is TXT. The utlllty will snmply dlsplay the contents of a
text file on the terminal, line for line. :

The following is a section by section description of the LIST utility. The fll’St section of the
source listing is a set of EQUATES which tell the assembler where the various DOS routines reside
in memory. These equates represent the addresses given in this manual for- “User Callable DOS Sys-
tem Routines". .

The next two sections are also equates, the first to the FMS entry points, and the second re-
ferences the system FCB. The actual program finally starts with the ORG statement. In this pro-
gram, we will make use of the Utility Command space located at $A100, therefore, the ORG is to
$A100. \
One of the conventions which should be observed when writing DOS utilities is to always start
the program with a BRA instruction. Following this instruction should be a ‘VN FCB 1" 'which
defines the version number of the utility. The 1 should of course be set to whatever the actual ver-
sion number is. In this example, the version number is 1. This convention allows the FLEX VER
SION Utility to correctly identify the version number of a command.

-27-—




aht Lty auaivm 0f 2hon MET coenet sy Ov L ooty W WOL B
i ST iy o gl sanac o otnaS 82T anr ar roran s O

Y o . " LTI Y [ )
e ETONYR YT e S - Coovisader s of TaTTTEAD weiss o

AW IR 1SS ul o - CUAD A Hgw gace Ty PMTIG0
JDerela TOnar tat T oy o D503y sy U8 ans bpg 2onz gl o

B T fue 1m . -y . N~ i NOYTD R
IEIRRIEE R et Lo s s e L Fse 2P YTTE 51530 3G 2 Pl Q-' AN RIA LT

ol inew ew VST AD chentavidiey Sonctaemu s ol ;)«i;v .333"«"(;3 PRI 1-Te I IR
Yitzswh o TYITHE muorer gur o T oadT UTRT P i

o1 abven X U bhoo editioiniomivus, 4 sat o TXT vl i"'f)’dﬁ BT TG OF yth v 2l i
(INEEIRGO NEHE SR "‘" SRIacy 0OF ont my ruc oeie 2t a2l i

2

O Ft Hedt BT o o o 1ee Y0203 WO L ginsT el * :
TX T Ao
bryyeg e b
[ ORI N P :
ywan s Al o S !
sreovave 1o Py : :
: Ty ceras ey eno.s € E
A gnituo: 2TT o s 2l ob o s e zove b e i N
g3t 2ib ﬁ—sm‘“; H’,- ey gLt NIRRT 30T 06 wIR8IN 1L VAL o ’
RN Wy ben 8 ¢dl LenRIQMIoLTR yit s a4
M e s 08 preanigl v a2
adr riti 30 9nr of beoten s
AT T TR oY, IR NS IRRaLs § MNCE S VI SN S SRERL AR
sud zanil 1o nog it S 26i'T ?xej:hi Fay ' .
S TUGTUe 300 G il 59 H0R
h"as, anti g Dhg nTute 4,,‘}-‘:30; ey
2 Ausote yerrie gy yab stt ans noil -
oo ‘3 NE “i03F T 290G SR [T RS b PO B D
sl T Yo bl et ya 2 el reingrioe o srovendt et
AR FINMS AT o ‘Jr:e'i 3 : puy
Yo bhn e g o tons el o nonv
& prireein e abn oo "'J..:.'-. Rt SO Vel TR
o? ."qmq;:b Haw 20T pr 5

ar Ao0ad borostensy 2 loanes

¢ Beo 2borrem ads o Es sl BlOMGA g
, a0 37 To-sebi pizsd 20T DR $IOW INTUOT oM
Ve O "m g0yt 2UCveY B3y LrniiLs To elarees snT CONE st s

=00 sfi: Yo v N zeritit

b

faw 2o . Dats e ies 319 DTz
- 1

2 g!"!- JhuiS motaostae e st

Ak bie ehesniros weil e ¢ oy prutry adem Hiw o Bno ooy ‘s'iil‘”C‘-C**? TP R el
1 VEBS I8 TABIRON DE]




Moving down the program to the label called ‘LIST2’, the program needs to retrieve the file
specification and get it into the FCB. Pointing X to the FCB, we can make use of the DOS resident
subroutine called ‘GETFIL’ to automatically parse the file spec, check for errors, and set the name
in the FCB correctly. If all goes well in GETFIL, the carry should be clear, otherwise there were
errors in the file spec and this fact needs reporting. If the carry is set, control is passed to the line
with the label ‘LIST9’. At this point, the error message is reported and control is returned to FLEX.

If the file spec was correct, and the carry was clear after the return from GETFIL, we want to
set a default file name extension of TXT. The DOS subroutine named SETEXT will do exactly
that. First it is necessary to put the code for TXT in the A accumu lator (the code is 1). X needs to
be pointing to the FCB which it still is. The ‘1’ is also put in the FCB for the future open aperation.
The call is made to SETEXT and the file name is now correctly set up in the FCB. Note that no
errors can be generated by a call to SETEXT.

Now that we have the file spec, it is necessary to open the requested file for read. X is still
pointing to the FCB so it is not necessary to reset. The FMS Function Code for ‘open a file for read’
is 1 which was previously put in the FCB location @. A call to FMS is now made in an attempt to
open the file. Upon return, if the Z-condition code is set, there were no errors. If there was an
error, the ‘BNE LIST9’ will take us to the code to report the error. This section of code is the de-
sired way to handle most FMS caused disk errors. The first thing to do is call the DOS routine RP-
TERR which will pint the disk error message on the monitor terminal. Next, all open disk files
should be closed. This can be easily accomplished by a call to the FMS close entry (FMSCLS).
Finally, return control back to DOS by jumping to the WARM START entry. If the file opened suc-
cessfully, control will be transfered to the line with the label ‘LIST4". At this time is desirable to
fetch characters one at a time from the file, printing them on the monitor terminal as they are
received. Since line feeds are not stored in text files (carriage returns mark the end of lines, but the
next line will follow immediately), each carriage return received from the file is not output as is,
but instead a call to the DOS routine ‘PCRLF’ is made-to print a carriage return and a line feed. As
each character is received from the file (by a call to FMS at label LIST4), the error status is check-
ed. If an error does occur, control is transferred to ‘LIST6’. Since FLEX does not store an End of
File character with a file, the only mechanism for determining the end of a file is by the End of File
error generated by FMS. At ‘LIST6’, the error status is checked to see if it is 8 (end of file status). If
it is not an 8, control is transferred to the error handling routine described above. If it is an End of
File, we are finished listing the file so it must now be closed. The FMS Function Code for closing a
file is 4. This is loaded into accumulator A and stored in the FCB. Calling FMS will attempt to
close the file. Upon return, errors are checked, and if none found, control is transferred back to
DOS by the jump to ‘WARMS".

This example illustrates many of the methods used when writing utilities. Many of the DOS
and FMS routines were used. The basic idea of file opening and closing were demonstrated, as well
as file 1/0. The methods of dealing with various types of errors were also presented. Studying this
example until it is thoroughly understood will make writing your own disk commands and disk
oriented programs an easy task.

R 4




abld 2Tova a4 04 Lanre

WTTAIT TELL TN st neal®

TS RS

ML LRTWRT JUNWOT PRETEYE LI

R4
R
>

-4
u

FAYMI TRATE SHask 207
VOITRATAIONGAS 34T 03
CEMITLO% SITIARART TJ0

I

LRI
3
L]
.

J

Capd v 1Y
R PETRC N ST I REFLE A
Te I OMARMOT N33 0 ?3? THRTIE
'“”93 AZITQ THOEEA AT 39
ST OAIVER SMT e
&3 a3 T4 St
Ry Y b7 723 TR

TEl
-
—
1
LA
-4
i
.‘:
1"‘_5

3

-
¥
i
™

s |
Ll
9

1

i

-
-t
=

{
)

ol
vy
o
e
BT
-t
-«
-3
-
-
b4
4
Dis
4
l'\
%

2RMAT BIIGER T30 RN 139 T SRS
ISAMU DIy z 507 e SROFELR

203 AT Th1AR

3

3
4o
193]
-4
w
%
“3 0
Voo
L N3

TRAOFIAZ M, PTET E :
3a00 9. TIe T LRGBS 8wy
3D GREIH- 203 IVAS L8R & 6

T =D L) 00

gLl W b
D
B
o &
B
X

3 REEA
GE AL
O3 TLER
3% SEiA.
g HETA
ESCRN N -
8. [LrA
a3 PSEA
A8 T2rA
85 A%
‘ﬁﬂ‘aﬁiﬁ
s

WOIBWETRE T#T T3% T43758
U290 DA -~ 2MI 1R
ADHAZ 997 4IIHD

933 0T TUIOY 30

AART TIT - anT Len ems
R TZA0ART HT2I 3ansg
AT B OARHD 2T ‘% A 9MD

H 9D Dw G

AE L L)
=
[1y]
i
ot
(33} o
[ T332 VY I
}

YY)
faiil
L
et
1.
bed
it

::‘;
L.
t
4
.= ".:
-
[
v}
e b
L
o (]

a W

CTUATUG 21929 At
THIGIA FT2I AA3

HT TLAaTUC AHITS AZL CRNEI S Br
1932 T332 +TEL AA8, '

J1
.
e
A

¥

T¢

Y
A qi ;
WTidi Do G oM

o a0
m




FLEX Advanced Programmer’s Guide

*

. 'SIMPLE TEXT FILE LIST UTILITY

COPYRIGHT <> 1978 BY
* S
* TECHNICAL SYSTEMS CONSULTANTS, INC.

*

* DOS EQUATES

ADB3 WARMS QU  $ADB3I ‘Dbé HARMS START -ENTRY

AD2D GETFIL EQU $AD2D GET FILE. “PECIFICRTIOH

. AD18 'PUTCHR EQU $AC18 PUT CHHRHCTEP ROUTINE
Ab24 PCRLF  EQU $Ab24 PRINT CR. & LF. - - -~
AD33 SETEXT EGU $AD33 SET, EF'EFFIULT NAME. EXT
AD3F RFTERR EQU $AD3F REPORT DISK ERROR

* FMS EOQUATES

B426 FMS  EGU  $B4ms
B483 FMSCLS EQU  $B4@3

* SYSTEM EQUATES

Ag4o FCB EQU  $A240 SYSTEM FCB

. * LIST UTILITY STARTS HERE
R100 , ORG $A1LB0
A180 29 B1 LIST BRA LIST2 BET AROUND TEMPS
fA182 01 VN FCB 1 VERSION HUNBER
AL93 CE AS 46 LIST2 LD¥X #FCB 'POINT To FLB
‘ALB6 BOD AD 2D ISR GETFIL GET FILE. sper
‘A109 25 34 ‘BCS LISTS ANY. ERRDRS?-

‘ ‘ALBR 86 B1 LDR A #1 SET UP CODE - -
‘ALeD A7 B8 STR' A @, X . SAVE ‘FOR REHD OPEN
‘A18F BD AD 33 JOR, SETEXT SET TXT EXTENSION
‘ALLE BD B4 96 "JSR - FMS.. CALL FMS - DO OPEN
A115 26 28 . BNE. LISTS THECK. FOR ERROR
f147 CE AS 49 LIST4 LDX  #FCB. ~ POINT TO FCB
‘A14A BD B4 06 JSR  FMS .. CALL . FHS - GET CHAR
11D 26 BE BNE.  LISTs ERRORS?- -
ALLF 81 8D CMP A #8D . IS CHAR A cnv

o Ri2d 26 @5 ENE  LISTS Bt
A123 BD AD_ .24 ISR PCRLF OUTPUT R & LF
A126 28 EF . BRRA LIST4 .  REPEAT
A128 BD AD 18 LISTS  JSR PUTCHR ©  OUTPUT THE CHRRﬂCTER

. fd12B ‘20 EA BRA LIST4 REPEAT SEQUENCE




I ORCRTI L
3

i3413

ACERAT TRl
: .'."p' : "

N AV

R )

Lot

£330

“FH0
33
e
ATE-
@I

T3

AT

A b

S

WO TG e uptabe®

LU Y

—
]

10N
R A

o
A
- ¥




FLEX ﬁdbanced,Prognammer’s.ﬁuide

A12D
A12F
A131
A133
A13S
A137
A13A
A13C

A13F
R142
A145

A&
g1
=)

86 .

A7

BD -
26 .

7E

ep
BD
7E

‘a1

e

1P

a4
g
B4
83
AD

AD
B4
AD

a5

3F
23

83

LISTE LoA.
P

~BNE

LDA -

“8TA
JSR
. BNE
IMP

LISTS JSR

JSR
JMF

END

u ¢l ¢

DD

‘!” .
1, ¥ GET: ERPOR STATUS
#8 IS IT EOF ERROR?
A.ISTS
#4 CLOSE FILE CnDE
. ¥ ,°TBRE’IH ‘FCEB
FMS CﬁLL FMS - CLOSE. FILE
HLISTO ‘ERRORS?
“WARMS RETURM TO: FLEx

RPTERR  REPORT ERROR
“FMSCLS  CLOSE ‘ALL FILES
“WARMS RETURN ' TO ‘FLEX

LIST




CHITL ALY SO0 eAT

tew sbev e oL 20T LT

motn, of =i nodoaut yvine an {)ﬂﬁ»"n""t}“ﬁ u‘enmuq e
»0 Mg e 2 sdondwe, ol AT s

. LA i
aitt npivon mnuof Eeaiy 4 Crcie) cabib ey cionn w90

Vi el 200 :ur 2 a)*q 200 i sgraing ond o o AL o¥ 0ismgd nod
LA 3 2ok b :"mi 84 Yo :ez:‘_x'zi.»m: ‘2“" COUINRET st S Y MIEE-) 18 A N 30K

‘ fﬁ,nf"\f;’ R TePITICINoTo So Nk FANSY 43.‘;(1'0(}
Croiae it y”-v‘»(j‘»!,‘ ;»’; L0l o 2e9'h
a1 iagahs sl s (o ;q:‘iz}-fju&l“
1ba

X6 aeih ©.413 -2aET 'y‘lq'm"s? HENE ‘,.Jt.,wwj' °F
Fot0 h3iRGICYS) 2i eenootg bso. 9.7 ;
bued ;?L:{ ms ﬂpo*'ﬁ air{7’ 01 by~ V‘“'uc .
TGO 2l 'v‘e'pmq hadAnil st Y e Ez“.'ﬂ‘i'l‘i}””’

2eabhbe deilb anr gry 2uwon s rond 3
1540 MOTAUD 70 LN9MGOILvaL arty o -'nO 2 ".“,f"i') in 4 ? v i A
vf?ab‘as«hqau pas Jood :ﬂ‘ oF niie! el poln oo e ._,‘,:.:.: w: E":‘:.']S"Vc‘. iz
PeENNY ilsc £z Yo pf g TR ' '

i

€3 "
crdf antab ~9

_:v..r £ 1(!? 1ot
LRGN reod

x gz 205C addy izninu

hAl

o f‘!umsm RHB LS 'r?:j, e d

€0 & w30 el \HIIU G ery #
Lierneasis soario bin vafh.inj aciigitin!
VIOTBRSIaXS Tiwe ad Bl Vit PENTN AN

1 b-‘b:vmq 2i pii t*ep wgng i helﬁ 3

4R E

318 ) B0 29MI 00T Y9I 2I2R0 2310
BrITLy a0 9 el su
Ssiniig st ariw gissinu o of
Potisew MILIRY gnioa bss JiC":E

160 thiw g lgumghd
w3t betell eve 2Inemuitpns 1ar Dol n

pu

OG0 70C @ ealE i choedt o

0818710 Y60 L n00os 180 181, @
X578 8 A avines oA

05 AH09 pailled 1atis A oni - wLenery onr toatun bioce e ey AT G A L5 DAZ) TUos

"-sn Icn,., TED VRO STy 9N

1qunesn T-3V D9TWE ns o moirsieion

‘ EHE LI sene nun A2
Gl JuQtue 8t arivy migiav: pod st-itium o

} s :” *3 AL smw__ ,sz‘r:xw,s 3 i\‘t';i)'i»' \hths
03 Aesd 310G air seuss Hivw W‘inaa Mo u:‘f';.;,r;"‘ev val tgs ‘Yu x: .xc;; LU IO o 2out gIntg.
<ihs ei 10309V U YWE 9T 230 baton ad Shuodde g &y NYsa ¢ si‘e:b,;‘,(;h':m Mg .»ymmuqnvﬁ-z
A0 s fo Azidy .‘mcqc 5 i* GISIICE GJ DSEL & wwmmoo TMIP~5 mi f;&}i .{{:‘Ei‘rdi, Seei w0 beg,
ot sh c.il“"f INN I8 NCIILINGS p»riim £5D 106%3, i3y 1o HY ralits agh
’ 1 e npieodaug

i

~ rgi’.




The DOS LINK Utility

The LINK Utility provrded with FLEX is a special purpose command. Its only function is to mform
the “‘disk boot’’, which is on track @, where the program resides which is to be loaded dunng the
boot operation. Normally, LINK is used to set the pointer to the DOS program Since DOS may
reside anywhere on the disk, LINK takes the starting disk address of the file and stores it in a
pointer in the boot sector. When the boot program is later exectued, it srmply takes this disk ad-
dress, and loads the binary file which resides at that location. The load process is termmated upon
the receipt of a‘transfer address record. At this time, control is transferred to the program just load-
ed by jumping to the address specified in the transfer address record. If the ‘linked’ program is ever
‘moved on the disk, then it must be re-linked so the boot knows the new disk address.

LINK ‘'may be used in some specrallzed applications. One is the development of custom opera-
ting systems. The user may write his own operating system, link it to the boot, and use it exactly
as FLEX is used now. It may also be desirable for special disks to boot in specrahzed programs
rather than the operating system. If this is done, remember that unless the DOS is loaded during the
boot process, there will not-be any disk drivers or Fnle Management System resident in memory.

Printer Routines
There are two printer related programs provided with FLEX. One is the P Utlllty, the other is the
PRINT.SYS file which is the actual set of printer drivers (lmtlahze printer and output character).
The P command source listing is provided on the followmg pages and should be self explanatory.

Below you will find the requirements of the PRINT.SYS file. No source listing is provided here
since one is given in the ‘‘FLEX User’s Manual.”’

PRINT.SYS File Requirements

The PRINT.SYS file needs to provide the system with three basic printer routines, one for printer
port initialization, one for printer status, and one for output character to printer routine. The P
routine and the system printer spooler use these routines to communicate with the printer. A source
listing of the provided routines are included in the ‘“FLEX User's Manual” and will not be dupli-
cated here. The three routines and their requirements are listed here.

PINIT  ($ACCO-ACD7) This routine should initialize the printer port. No registérs need to be
preserved.

PCHK ($ACDB8-ACE3) This routine should check to see |f the pnnter can accept another charac-
ter. Return Negative CC status if can accept, Plus if can not. Preserve A ‘B, and X.

POUT ($ACE4-ACF7) This routine should output the character in A after callmg PCHK to
verify the printer can accept the character. Preserve B and X.

The System Printer Spooler

FLEX contains a printer spooler module. It redtiires the ineta‘llation of an SWTPC MP-T interrupt
timer board for operation. Essentially, the spooler is a multi- taskmg system, with the output to
printer function being a low priority task. Any requtred disk service will cause the printer task to
temporarily halt until the disk has been used. It should be noted that the SWI CPU vector is: adjus-
ted in this task scheduler. The PRINT command i is’ used to activate the spooler which.in turn prints
- the- files (rf any)'in the print queue. Exact deatail$ of the spoolmg operation are not available for
.publication at-this time.




v
I
=

)

IR

-

eI

I

‘v’ b

i

a

A

]

e

k}u
U

ey

1

2]

-

pus

Tl

d

g

-
-

: 7}(’? -

-
i

nt

ok

i

=

C

‘é}», <

¢
¥

Lr
YRS
Ly

"
e

e

]
3
3
qQ

o 0o

UR

3z

it
5

~33TIARARN
2

I

bhaun s




FLEX Advanced Programmer s Guide

“P" UTILITY COMMAND

THE P COMMAND INITIALIZES A PORT AND
+ CHAMGES THE -QUTCH JUMF “ECTOR IN FLEX

E2E IR 3R 38 2K 2

%

COPYRIGHT <L) 197¢3 BY

* %

_TECHNICAL S?STENS,CDHSULTHNTS; INC.

* EQURTES
0810 INDEX  EQU $8010
@ -nseo FCB EQU  $AB40
ADZ0 LOAD EQU $AC30
B406 FMS ‘EQU ‘$B4BE
B403 FMSCLS ' EQU $B407
ADBE 'RENTER -E&WU $ADOE
oo84 CNFER  EQU %4 -
ACO9 JPRAUSE  ERU "~ $ACE9 .
AD1E PSTRNG EQU $ADLE
RD3F " RPTERR ' ERQU “$AD3F
ADB3 WARMS  EQU $ADAZ
AC11 “LSTTRM EQU $AC11
ACcB2 EOL EQU $ACH2
ACCo _PINIT EQU $ACCO
. ACE4 “POUT  (EQU - $ACE4
ADBF ‘DUTCH ~ "EQU $RDOF
ACFC PR1 CEQU $ACFC
A100 ORG $A109
A102 20 91 P - BRA Pl - BRANCH . ARDUND TEMPS
A182 81 VM FCB 1 VYERSIOMN MUMBER
A183 BE AC FC P1 LDA A PR1 CHECK SYSTEM PROCESS REG
A106 27 B89 "BEQR P12 ~IS IT EJSY?
. A182 CE RE 40 . LD¥ #FCB POINT TO FCB
A16B C6 1B - _LDRA B #27 SET BUSY ERROR
A100 E7? B1 - 8TR B 41,X . STUFF IN FCB
AL10F 29 43 " BRA . P3 - GO REPORT ERROR
A111 B6 AC 11 P12 LDA A LSTTRM ~~GET LAST TERMINATOR
.A114 81 @D a CMP A - #3%D ~I8$ IT A CR?
L A116° 27 .45 BE®Q P8 =
'A118. B1 AC @2 CMP A EOL ~IS -IT EOL CHARACTER?
. A11B 27 40 ‘BEQ PS8 R
A11D ?F AC @9 CLR . PAUSE DISABLE THE PRAUSE FEATURE

- continued -




SCLd 2 enna ol Denneabh
3TA8Z 30 3TVA TaL T2

Hta

1)

[ 2o

d34AP0 11EYT - T 3T
SUR G TR

JRIH I T UTII H3ISC

2m 51RD

PANYST AR HSEHD
GR3S YARUIT 457 Y3S
GRSE WOITI2A%MG Y

T

(YU T]
e

-
-d
;o
-~

ki

i

)

LR Rt

Y
O e T

ro
0

Fl

R
3
3
@
%

O
r

k

[

Mok
A1

a3

SWTATE 0T TWToR

A R
boRMa
EIuEY

R
f‘} LT

XIS Tes |
A ATE

mEL

343

A2L
ot
Azt
ML

(A%
Y

FS
v s,
A IS
P

“._;, W
fle @R 3
IRA
g %
FUT: B
T i
A
EER

&

SRR LF G
s |
F

i E
T

R

=

4

A
[T I ClE e

-

ef

PR Y]

KN F2 R SRS

3l

Q4% 2R
E5R
25 A
o

RELR
LA

GRS o
Sl

oo
T e
m

oy
g
Bkl ¢

I3 T
ot
i
b Ly O




FLEX Advanced Programmer’s Guide
:?n s
A120 BS6 AC E4 LDA A  POUT GET 1ST BYTE OF SPACE
A123 81 39 CMP A #$39 IS IT RTS?
. A125 26 13 BNE P15 IF NOT - THEN LOADED
A127 CE RS 40 LDX  #FCB POINT TO FCB
A12A 86 B1 LDA A #1 OPEN FILE FOR READ
A12C A7 08 STA A @, %
() A12E BD B4 96 JSR  FMS CALL FMS
A131 26 13 BNE P2 CHECK FOR ERRORS
A133 86 FF LDA A #$FF SET FOR BINARY READ
A135 A7 3B STA'A  $3B, X SET COMPRESSION FLAG )
A137 BD AD 30 JSR LORD CALL FLEX’S LORDER
A13A BD AC CO P15 JSR PINIT GO INITIALIZE PORT
A13D CE AC E4 LD¥ #POUT GET OUTPUT ADDRESS
A140 FF AD 10 STX OUTCH+1  STUFF IN FLEX
o A143 7E AD 96 IMP RENTER RETURN TO FLEX
Al146 A6 B4 P2 LDA A 1,X GET ERROR CODE
A148 81 94 CMP A #NFER IS IT "NO SUCH FILE"?
A14A 26 93 BNE P3 .
A14C CE A1 62 LD¥ #NOPST POINT TO MESSAGE
AL14F BD AD 1E P25 JSR PSTRNG 30 PRINT IT
A152 20 83 BRA P4
A154 BD AD 3F P3 JSR RPTERR REFORT ERROR
ALE7 BD B4 93 P4 JSR  FMSCLS CLOSE ALL FILES
A1SA 7E AD B3 P WARMS RETURN TO FLEX
. A1SD CE AL 78 P8 LDX #ERSTR  POINT TO STRING
A160 28 ED BRA P2s GO PRINT IT
ALE2 22 NOPST  FCC +wpRINT SYS" NOT FOUND’
AL?77 94 i FCB' 4
AL78 22 ERSTR  FCC sup MUST BE FOLLOWED BY A COMMAND”
A199 @4 FCB 4
* THE FOLLOWIMG CODE IS LORDED INTO
* THE SYSTEM FCB WMHEN THE P COMMAND IS
* LOADED INTO MEMORY. |
1" * IT PRESETS THE FILE MAME IN THE FCE.
AB43 ORG $A243
AB43 FF FCB $FF
AS44 50 FCC “PRINT’
AS4S @0 FCB 8, 9.0
AS4C S3 FCC FSYs”
'., END P
-33—




SRR TTART:S fa

%
@

e i)

v ore i

i o
4 f

B qurina
:J

gicH

oy T

PPN

1
e

Celd BNERY L e NET

I At
B . F R
LAt AT

O s gead ghoosenition B0 ne sy cuvsini Ll Lt i Tonetgains
Hue) TWILRY o perdy on N S RN ¢ SRS B T¢3 (05: LUNNRERIN LN I Aoenarnd iy
bz ozhg 2 noetoons N LR S RTQLTIELAN 00 Las BTe Fuaz or s T psanae s 2
of A3 wd 18z 2f MAF bagegesas GUENDIC odl mivasnes EAEEE R NE
simrwg fon Liw neeewenc, A0 edv gpn 43R o NG Sy b zue creor PWE i s drnog

gy TINS5 S g e gt Ll WA s
OY¢ eiderqumeta By ave L0 AHE EECelod b VPR ) IR TR Ry o YT SIS TID S I O
Frive el oo rellll Lantintg i Rl 20 0t B NG T CEp
N2 =0 O ol Bigods aand oo 1L ol & [NERFEITUEN 10
Praen sy bo 0y pnitnen sliove .

Tars -

e B e




Al120

A123

A12S5
Ai127
AL12A
A12C
A12E
R131
A133
A13S

AL37
AL3A

A13D
R140
A143

Al14&
A14E
A14A

A14C

Al4F
A152

A154
AL1S7
ALSA

~AL5D
R169

R1é2
AL??

A178

A199

Ag43

AS43
AS44
AZ49
Ag4C

B6
81

26

CE
86
A7
BD
26
86
A?
BD
BD
CE
FF
7E

A&

81
26
CE
BD
=4

BD-

BD
’E

CE
29

ee
o4

2e
24

FF

‘58

a9
53

AC
39
13
Ag
o1
00
B4
132
FF
3B
AD
AC
AC

AD

AD

81

84
a8
Al
AD
a3

AD
B4
AD

A1
ED

E4

40

6

30
co
E4
10
96

62
1E

3F
B3

n3

P1i

Pe

Pe

P3
P4

]

NO

ER

* % ¥ ¥

FLEX Advanced Programmer’s Guide

Slrls i

!!n [ ‘
GET 4ST BYTE OF SPACE
IS IT RTS?

IF NOT - THEN LOADED
POINT TO FCB
OPEN FILE FOR READ

CALL FMS

CHECK FOR ERRORS

SET FOR BINARY READ
SET COMPRESSION FLARG
CALL FLEX’S LOARDER
GO INITIALIZE PORT
GET QUTPUT RADDRESS
STUFF IN FLEX

RETURN TO FLEX

GET ERROR COCE
IS IT “"NO SUCH FILE"“?

POINT TO MESSAGE

50 PRINT IT

REFPORT ERROR
CLOSE ALL FILES
RETURN TO FLEX

POINT TO STRING
GO PRINT IT

NOT FOUND-

cup" MUST BE FOLLOWED BY R COMMAND”

THE SYSTEM FCB MHEN THE P COMMAND IS

LDA A POUT
CMP A #$39
BNE P15
LDX = #FCB
LDA A  #1
STA A 8,X
JSR FMS
BNE P2
LDR A #$FF
STA A $3B, X
, JER LOAD -
5 JSR PINIT
LD¥X #POUT
ST OUTCH+1
JIMP REMNTER
LOAR A 1, X
CMP R #NFER
BNE P3
LD¥ #NOPST
S JSR PSTRNG
BRA P4
JSR RPTERR
JSR FMSCLS
Jnp WARMS
LDX #ERSTR
ERA PES
PST FCC < “PRINT
FcB' 4
STR FCC
FCB 4
THE FOLLOWING CODE IS LOADED INTO
LOADED INTO MEMORY,

IT PRESETS THE FILE MAME IN THE FCB

ORG

FCB
FCC
FCE
FCC

END

$A243

$FF
*PRINT’
8.9.8
-1 1%

P

-33-




s

L TRt i)
r
\,

d

b ool O o TAMD ol o
38! s ge=dT zheoasnitim
Hur) T AN o

beev Qelg 2 nodoe

5
or X3.0Y d
e lis T

Jirmwg fon linw new

“—

e n

O fidssgunstad By ovg L0

i el o
W2 o O
PRS0 g boay

ariy

53

a1 91Tl Ml A

T 12 AGLANCCYSS I

yaz 2t MAR bhagenseas UE X0
ST Tet's L

LN Ei
h;uf‘h's"' ?‘3{”’." e
gt

P I R LT RT3 9]

T ERP AT FTC) SR PRI S

Doe Lt
T et
ToeTart iy
2

we e

ool eaes e e ek e unisiag 1o
Rt wy TYGRY o Ly Yo s

‘Y. s L B
(A RY 5 PRI AN LS,

TV PLQING LT Ll

L5 gy s

R RN SR OIS IS 143 F5 8

vt

SBOLY AR ATQLTIEIN o0
whgergl wo &

ETA VI S TR D Y D HEN
B - G P N Y Ll Y
R TR WS S SR AL =S N aare PWE 2ii s oy

Pyl g o 1. . e PP
RS e o i e gt iy




A120
A123
A125
p12?
A12A
A12Cc
A12E
A131
A133
A135S
A137
A13A
A13D
A140
A143

A14&
A142
A14A
A14C
A14F
A1S2

A154
R1S57
A1SA

-AL5D
R169

Al1e2
ok rard

A178

A199

Ae43

AS43
AS44
A249
Ag4C

B6
81

26

CE
86
A7
BD
26
86
A7
BD
BD
CE
FF
7E

A&

81
26
CE
BD
2o

BD-

B
’E

CE
20

ee
a4

22

a4

FF

59

= 1)

53

AC
39

13

Ag
01
00
B4
13
FF
3B
RD
AC
AC

RD

RD

21
24

s
Al
AD
e3

AD
B4
RD

A1
ED

E4

40

p6

30
co
E4
190
B6

62
1E

3F

B3

B3

Pi

Pe

pa

P3
P4

P&

NO

ER

* ¥ ¥ ¥

FLEX Advanced Programmer’s Guide

SIT‘S n

"” .

GET 1ST BYTE OF SPACE
IS IT RTS?

IF NOT - THEN LOADED
POINT TO FCB

OPEN FILE FOR RERD

CALL FMS

CHECK FOR ERRORS

SET FOR BINARY READ
SET COMPRESSION FLAG
CALL FLEX’'S LORDER
GO INITIALIZE PORT
GET QUTPUT ADDRESS
STUFF IN FLEX

RETURM TO FLEX

GET ERROR COCE
IS IT "NO SUCH FILE"?

POINT TD MESSAGE

530 PRINT IT

REFORT ERROR
CLOSE ALL FILES
RETURN TO FLEX

POINT TO STRING
GO PRINMNT IT

NOT FOUND”

supv MUST BE FOLLOWED BY A COMMAND”

THE SYSTEM FCB MHEN THE P COMMAND IS

LbA A POUT
CMP A #$39
BNE P4S
LDX  #FCB
LDA A #1
STAR A @,¥%
JSR  FMS
BNE P2
LDA R #$FF
STA A $3B, X

, JER LORD

5 JSR PINIT
LDX #POUT
STX OUTCH+1
JMP RENTER
LOR A 1, ¥
CMP A #NFER
BNE P3
LD¥ #NOPST

5 JSR PSTRNG
BRA P4
JSR RPTERR
JSR FMSCLS
JHP WARMS
LDX #ERSTR
EeRrRRA P2s

PST FCC 7U“PRINT
FCB" 4

STR FCC
FCB 4

THE FOLLOWIMG CODE IS LOADED INTO

LOADED INTO MEMORY.

IT PRESETS THE FILE MAME IN THE FCB.

ORG

FCB
FCC
FCB
FCC

END

$A243

$FF
“PRINT”
9.9.8
111

P

-33 -




¢ P S LR AL Eat3 131}

od! ni zod? aw swdly nawt.nd T ARARTE > £ i W AR RS R S ST ROV
b ol v ni TAM! ol wmiT g L

wa TVHRY o oy o

OB s geadV ghoosenilion F0os v arowvedni ru@ine o0 LLGHAn s neod T Retging
Ly T A

bzt o2fs 2 T

I S e HCTE RS b 1o 3 18- NSNS I SN B DT SRRt ChS 10 AN S
TnoLy et 2TQUTRECME o Lo e pudz 2 asemy 2

RN i H

¥ SN

[SEEPNE eI Y1
sernsn WA afe e W ey e

Y- T2 LUt EAVES TS

sortigne Wi oW 2

VA0 VA
N

P

o X35Y wd 38z 2f MAF bagoe

+ it oelginerogy o e

apr . .
catuee PWE uie o Jonoy
o

N . [ Y F g o T
KT IELE T IRt RS JELY s NG G BT

o1 gidsrguretodl Pe ove DA o tezem™ G

AR TR -Tol BE PN 8

st mimeeo AR A

SO ORGSR

ST Rk a9RL m 0t s g T

y . T COVREL- TR SRS [
P2 o 07 orly Blugods asaed oo 1L o

OB BN PR A &

LR Poolnes

ST 1

RN sigowy boop SR paitne sliewe o ot ol ) TSI Y RECE (o3
Ay el 2 e iy G003




Interrupts-in FLEX 4

FLEX makes extensive use of interrupts during printer spooling. Anytime there are files in the
PRINT Queue (as a result of using the PRINT command) the Timer board (MP-T in 1/O slot 4}
is activated. This board is initialized to output interrupts every 10 milliseconds. These are IRQ
type interrypts and FLEX sets the I1RQ vector to point to its 1RQ routine. When the PRINT Queue
is empty, the timer is shut off and no interrupts are generated. The SWI instruction is also used
quite extensively in FLEX. The SWI vector in the DISKBUG scratchpad RAM is set by FLEX to
point to its SW! routine. Because of the SW! and IRQ use, the MON command will not permit
leaving FLEX while there is a file in the PRINT Queue:

All FLEX utilities, the Editor, the Assembler, Text Processor, and BASIC are all interruptable pro-
grams. When writing your own programs, if they are to be used while printing (files in the print
queue), they should be written to be interruptable as well. At no time should the IRQ or SWI
vectors be changed in a utility which is to be run while printing. In general, good programming
practice will yield interruptable programs!




SAVITUORILE X313

YIS Pl
Oy RO PERRR NG, L .
EAS-ET G BT .
Proeiesin g N

i
i

EEUR L

[ S VERVE (V]

S

it
By

(Y RN RV

R TR P ) Te It

N
b
ey .t N o Ty B ‘
7t i LTt SRR S Es { BAvE) [ SRR 1 - .
, frir U -
- S TEN i 4 ot
)

FR O il T

O T T R T

O T

WRETINU3

3.1?-’ W“'.'} .
&4 . -
FAS T -2A
SR .o
FAMaP
fﬂ W:)ulu\ L e v




FLEX REFERENCE SHEET

FLEX MEMORY LOCATIONS
SA080 - SADFF Line Buffer

SACOD. . .... TTYSET Backspace Character
SACOT1 ...... TTYSET Delete Character
SACO2 ...... * TTYSET End of Line Character
$ACO3....... - TTYSET Depth Count

$ACD4 ... ... TTYSET Width Count
SACO5....... TTYSET Null Count

$SACO6 ...... TTYSET Tab Character

$ACO7 ...... TTYSET Backspace Echo Character
SACO8 .. ..... TTYSET Eject Count

$AC09 ...... TTYSET Pause Cantrol

SACOA ...... TTYSET Escape Character
SACOB ...... System Drive Number

$ACOC . ..... Working Drive Number

SACOD ...... System Scratch; future use
$ACOE - SAC10 System Date Registers

$AC11 .. .... Last Terminator

$AC12-SAC13
SAC14 - $AC15
$AC16 - SAC17

User Command Table Address
Line Buffer Pointer
Escape Return Register

$ACI8 ...... Current Character
$AC19 ...... Previous Character
SACIA ... ... Current Line Number
$ACIBSACIC  Loader Address Offset
SACID ...... Transfer Flag
S$ACI1E-SACIF  Transfer Address
SAC20 ...... Error Type

SAC21 ...... Special 1/0 Flag
SAC22 ...... Output Switch
SAC23 ...... Input Switch
$AC24-SAC25  File Output Address
SAC2B8SAC27  File Input Address
$AC28....... Command Flag
SAC29 ...... Current Output Column
SAC2A ... ... System Scratch
SAC2BSAC2C Memory End
SAC2D-SAC2E  Error Name Vector
$AC2F . ... .. File Input Echo Flag
SAC30-8AC4D  System Scratch
SAC4E-SACBF  System Constants
SACCO-SACD7  Printer Initialize
SACD8-SACE3  Printer Ready Check
SACE4-SACF7  Printer Qutput
SACFB8SACFF  System Scratch
$B409-8B40A  FCB Base Pointer
$B84DBSBAOC  Current FCB Address

Verify Flag

FMS COMMANDS

FUNCTION
(HEX) FUNCTION
01 ....... . OPEN FOR READ
02 ......... OPEN FOR WRITE
03 ......... OPEN FOR UPDATE
04 ......... CLOSE FILE
@ ......... REWIND FILE
06 ..... ....OPEN DIRECTORY
07 ......... GET INFORMATION RECORD
‘ P8 ......... PUT INFORMATION RECORD
9 ......... READ SINGLE SECTOR
OA . ....... WRITE SINGLE SECTOR
B ......... reserved/future use
oC ......... DELETE FILE
8D ......... JRENAME FILE
QE . .......: reserved/future use
. @F .........NEXTSEQUENTIAL SECTOR
) WL OPEN SYSTEM INFORMATION RECORD
L S GET RANDOM BYTE FROM SECTOR
12 ... . PUT RANDOM BYTE tN SECTOR
| 1 S reserved/future use
14 ........ FIND NEXT READY DRIVE
1% ......... POSITION TO RECORD N
16 ...... . . .BACKUP ONE RECORD

FLEX SUBROUTINES
$ADOD . COLDS....... {coldstart entry)
“$ADP3 . WARMS ...... {warm start entry)
$ADO6 . .RENTER...... {main loop re-entry)
SADO9 . INCH ........ (input character}
SADOC . INCH2
SADOF . OUTCH....... {output character)
$AD12 . . OUTCH2
$AD15 . GETCHR. ... .. (preferred get character)
$AD18 . PUTCHR...... {preferred output character)
$AD1IB . .INBUFF ...... {input to line buffer)
$AD1E . PSTRNG ...... {print string)
$AD21 . CLASS ....... {classify character)
$AD24 . PCRLF....... {print C/R, L/F)
$AD27 . NXTCH....... (next character)
$AD2A . .RSTRIO ... ... {restore 1/0 vectors)
$AD2D . .GETFIL ...... {parse file spec.)
SAD30 . .LOAD........ (file loader)
$AD33 . SETEXT ...... {set extension)
$AD36 . ADDBX. ...... {add ACC-B to X)
$AD39 . OUTDEC. ..... (output decimal number}
SAD3C . OUTHEX...... (output hex number)
$SAD3F . .RPTERR... ... (report error)
SAD42 . GETHEX...... (get hex number)
SAD45 . OUTADR . .... {output hexadecimal address)
SAD48 . INDEC ....... {input decimal number)
$AD4B . DOCMND ..... (call DOS)
$B4pY. . .FMS Initialization
$B403. . .FMS Close
$B4P6. . .FMS Call

FILE CONTROL BLOCK SPECIFICATION

BYTE
(DeCiMAL) FUNCTION
0...... FMS COMMAND (function code)
1...... ERROR STATUS
2...... ACTIVITY STATUS
3...... DRIVE NUMBER
4-11 . .FILE NAME
12-14 . . EXTENSION
15 ..... FILE ATTRIBUTES
16 ..... reserved/future use
17-18 . . STARTING DISK ADDRESS
19-20 . . .ENDING DISK ADDRESS
2122 .. FILE SIZE
23 ..... FILE SECTOR MAP INDICATOR
24 . ... .reserved/future use
2527 .. .FILECREATION DATE

28-29 .. .FCB LIST POINTER

30-31 . . .CURRENTPOSITION

32-33 .. .CURRENT RECORD NUMBER

A ..... DATA INDEX

3B ..... RANDOM INDEX

3646 . . NAME WORK BUFFER (internal)

47-49 .. CURRENT DIRECTORY ADDRESS

5052 . . .FIRST DELETED DIRECTORY '
POINTER

5363 . . .SCRATCH BYTES (for RENAME)

89 .....SPACE COMPRESSION FLAG

64-319 ., SECTOR BUFFER




g -

-

o

4




ST [

DISK BASIC VER. 3.5

USER'S GUIDE

IMPORTANT NOTE

Although every effort has been made to make the supplied software and its
documentation as accurate and functional as possible, Southwest Technical Pro-
ducts Corporation and Technical Systems Consultants will not assume responsi-
bility for any,dyar’nages‘ incurred or generated by such material. Also, Southwest
Technical Products Corporation and Technical Systems Consultants reserve
the right to make changes in such material at any time.

Copyright© 1978 Southwest Technical Products Corporation
| All Rights Reserved

rTF SOUTHWEST TECHNICAL PRODUCTS CORPORATION
m 219 W. RHAPSODY SAN ANTONIO, TEXAS 78216







SWTPC Disk BASIC

SWTPC Disk BASIC is a complete BASIC interpreter for use in both home and business appli-
cations. Features of SWTPC Disk BASIC include nine significant digit binary coded decimal addi-
tion, subtraction, multiplication and division, seven digit trigonometric functions and numerous
string operations. Disk data files are also supported for manipulating or storing data.

This manual is designed to acquaint the user with the various features of SWTPC Disk BASIC—
It is not designed to be a complete course on the BASIC language. This manual also assumes that
the user is familiar with the supplied disk operating system (DOS) and its respective user’s guide.

Definitions

Before actually describing each BASIC function, several terms need to be defined and manual
notation described.

A command is a BASIC operation that generally has an immediate effect on the operation of
BASIC.

A statement is a word or group of words that directs the execution of a BASIC program.

A function is a BASIC operation that usually results in a numerical operation or string pro-
cessing.

A variable is a letter, or a letter and a number, that is used to represent a numeric or string
value. Variables may be named by any single alphabetic character (A-Z) or any single alphabetic
character followed by a number (0-9). Variables of this type represents a numerical value.

Example: A can be equated to 3.44
B1 can be equated to -7.2315 + SIN(3)

A string variable is a single letter followed by a $ that is used to represent literal (alphanumeric
or text) data.

Example: A$ can be equated to “1234"’ but not to 1234. (the quotation
marks make 1234 a string).
Note: a string may not be represented by a letter and a number
such as A3$.

When BASIC initializes, the string variable length is set equal to a maximum of 32 characters.

This manual uses the following notation conventions:

/line N/ denotes a BASIC line number such as 0090

/var/ denotes a variable name such as A3

/exp/ denotes a mathematical expression such as 3+5-2

/rel.exp./ denotes a relational expression such as A=5

/string/ denotes a collection of literal alphanumeric characters enclosed
bv quotation marks such as “TEST1"’

X denotes a variable or expression that has a numerical result

X$ denotes a string variable

Restrictions on Program Lines

The following restrictions are placed on all BASIC program lines:

1.) Every line must have a line number ranging between 1 and 9999. Do not use line # 0.

2.) Line numbers are used by BASIC to order program statements sequentially.

3.) In any program, a line number can be used only once.

4.) A previously entered line may be changed by entering the same line number along with
the desired statement(s). Typing a line number followed immediately by a carriage return
deletes that line and line number.

5.) Lines need not be entered in numerical order since BASIC will automatically order them
in ascending order.

6.) A line may contain no more than 72 characters including blanks.

— 1 —-—
DMAF1




7.) Blanks, unless within a character string and enclosed by quotation marks, are not pro-
cessed by BASIC and their use is optional. Numbers can contain no imbedded blanks.
Example:

110 LET A=B + (3.5*6E2)
is equivalent to
110 LETA= B+(3.5*5E2) .
8.) Multiple statement lines are accepted with a colon (:) used as the separator. BASIC will
process the line from left to right. :
Example:
10 A=3:B=5:C=A*B
Data Format
The range of numbers that can be represented in this version of BASIC is 1.0E-99 to 9.999999-
99E99. E99 represents 1099 while E-99 represents10'99. The E stands for exponent.
There are nine digits of significance in this version of BASIC. Numbers are internally truncated
(last digits dropped) to fit this precision.
Numbers may be displayed and entered in three formats: integer, decimal and exponential.
Example: 153 34.52 136 E-2
Transcendental functions (SIN, COS, TAN, ATAN, SQR, LOG and +) are all evaluated by a
limited infinite series. For these functions accuracy is limited to seven significant digits.

Mathematical Operators

The mathematical operators used in BASIC are as follows:

4 Exponentiation (raises to a power)
— (unary) Negate (used for denoting negative numbers
+ Addition and string concatenation

- Subtraction

* Multiplication

/ Division

No two mathematical operators may appear in sequence, and no operator is ever assumed.
(A++B and (A+2)(B-3) are not valid). Exception: 5+-3 is allowed.

Examples:
A=B+C A is evaluated to B raised to the C power
A=B+5 A is evaluated to B plus a negative 5
A=3/2 A is evaluated to 3 divided by 2

Priority of Operations

BASIC recognizes the priority of operation in the following order:
1. Exponentiation (+)

2. Negation (-)
3. Multiplication ( *) and division {/)
4. Addition (+) and subtraction (-)

A BASIC expression is evaluated from left to right in the above priority sequence unless paren-
thesis are encountered. The operators within the parenthesis are evaluated first utilizing the above

priority structure.
Examples: LET A=2

LET B=3

LEC C=4

B+2+C/A+2 gives a result of 10
C+2-C/A gives a result of 14
A * (A+B*2)-22 gives a result of 0
A+A+B gives a result of 64

-2
DMAF1




String Concatenation

Although any one string variable may be a maximum of 32 characters (or whatever the length
is set equal to using the STRING= command), strings may be joined up to a maximum of 126 cha-
racters for printing. The concatenation symbol is +.

. Example: A$= (32 char. string)
B$= (32 char. string)
PRINT A$+B$ (prints a 64 character string)
also: A$= “HELLO"”
B$= “JOHN"
C$= A$+B$ (C$still limited to 32 char.)

Arrays

Sometimes it is convenient for a variable to represent several values at one time. A variable
such as this type can be considered as an array and each element can be accessed independently. In
referencing an array variable, the element number in the array must be specified along with the vari-
able name. For example, say we wanted the variable A to represent 4 values. The following program
would assign a different value to each element of A.

10 DIM A{(4) Dimension A to hold four elements
20 A(1)=1 : A(2)=2 : A(3)=3 : A(4)=4
As seen above, a particular element is referenced by a subscript N, such as A(N), where 1 is the
first element in the array.
Two dimensional arrays are also accepted by BASIC. Two dimensional arrays are useful when
working with data which is easily represented as a matrix.
Example: 10 DIMA(33)
20 A(1,1)=1:A(1,2)=2: A(1,3)=3
30 A(2,1)=4:A(2,2)=5: A(2,3)=6
40 A(3,1)=7:A(3,2)=8: A(3,3)=9

. gives the following matrix: 1 2 3
4 5 6
7 8 9

String variables may also be dimensioned as arrays. (A$(5,2))
If no DIM statement is used to specifically dimension an array, a dimension of either 10 or 10
by 10 is assumed.

Program Preparation and System Operation

At the time that BASIC is executed, BASIC will automatically determine the range of working
storage. If you wish to limit the amount of memory BASIC uses, refer to Appendix D of this
manual. This is normally not necessary unless external machine language subroutines are being used.

The system is then ready to accept commands or lines of statements. For example the user
might enter the following program:

150 REM DEMONSTRATION

160 PRINT “ENTER A NUMBER";

170 INPUT A

180 LETP=A*A*3.1415926

185 PRINT

190 PRINT “THE AREA OF A CIRCLE WITH";
200 PRINT “RADIUS"”; A; “IS”; P

210 STOP

If the user wishes to insert a statement between two others, he need only type a statement
number that falls between the other two. For example:

‘ 183 REM THIS IS INSERTED BETWEEN 180 and 185.




If it is desired to replace a statement, a new statement is typed that has the same number as
the one to be replaced. For example:
180 P=(A*A)*3.1415926 replaces the previous LET statement.
Each line entered is terminated by a Carriage Return and is not processed by BASIC until this
key is depressed. BASIC then positions the print unit to the correct position on the next line.
If a mistake is made during type in before typing the Carriage Return, a BACKSPACE may be
used to delete erroneous characters. The backspace character for BASIC is a hexadecimal ASCI| 08
(Control H). BASIC assumes that the terminal automatically generates a ‘“‘cursor left”” when a
control H is entered.
Example:
30 REM THIS IS A TESZ (CTL.H)T
The CTL.H moves the cursor back over the Z so that the result is
TEST
If it is desired to remove a complete line that was typed in before typing the Carriage Return,
the CANCEL key (hex ASCII 18, control X) may be depressed. This will delete all information that
was typed in on the current command or statement line. BASIC will respond with DE LETED.
Example:
10 FOR 1to 10 (CTL.X)
DELETED

PATCH (CTL. X)
DELETED
If the user wishes to execute a program at this point, the RUN command , as described in the

command section, should be entered.

Program Abort

If, at any time, it is desired to abort a looping or otherwise malfunctioning program, BASIC
has a provision for exiting the program and returning to the command (READY) mode. The abort
(break) character for BASIC is a control C, hex ASCIl @3. Entering one control C will immedi-
ately halt the execution of the current BASIC program and will return BASIC to the command
mode. During a printout sequence, such as listing'a program, typing one ESC (escape) character will
cause the current printout to halt. Typing another ESC will cause printout to resume while typing
a RETURN will force BASIC back to the command mode.

NOTE:When in the middle of a machine code USERroutine, control C will have no effect. If
necessary, the computer’s RESET button can be depressed. Resetting the computer’s program
counter to 0103 before re-entering BASIC will keep the current BASIC program intact.

Commands

It is possible to communicate in BASIC by typing direct commands at the terminal device.
Also, certain other statements can be directly executed when they are entered without statement
numbers.

Commands have the effect of causing BASIC to take immediate action. A typical BASIC
language program, by contrast, is first entered statement by statement into the memory and then
executed only when the RUN command is given.

When BASIC is ready to receive commands, the word READY is displayed on the terminal
device. After each entry, the system will prompt with a “#"".

Commands are typed without statement numbers. After a command has been executed,
READY will again be displayed indicating that BASIC is ready for more input—either another
command or program statements.

DMAF1




APPEND

The APPEND command causes a program on tape to be loaded into memory. The APPEND
command operates the same as the LOAD command except that the current BASIC program is not
cleared from memory.

CONT
A CONT (continue) command can be entered after a program has halted from a STOP com-

mand or after a program has been aborted with a control C. Between the time that the program has
stopped and the time that CONT is entered no changes should be made in the program. The pro-
gram will then continue with the next statement after the STOP command or wherever the program

was when control C was pressed.

DIGITS=X

The DIGITS= command sets the number of digits that will be printed to the right of the deci-
mal point when displaying numeric variables. This will truncate (not round) any digits greater than
the number printed, and will force “0”'s if there aren’t enough significant digits to fill the number of
positions specified in the “DIGITS =" command.

A DIGITS=0 command resets BASIC to the floating point mode.

The DIGITS= command may also be used as a program statement.

DOS .
The DOS command causes computer control to be returned to the DOS operating system.

LINE=X

The LINE= command is used to specify the number of print positions in a line (line length)
where X is the desired number of print positions.

Example: LINE=65, LINE=80, LINE=40
Note: Each line is broken up into 16 character “zones”. If the print position is with-

in the last 25 percent of the ‘‘line’’ length and a “‘space’’ is printed, a C/R L/F will be output. This
is so that a number or word will not be split up at the end of a print line. If it is desired to inhibit
this feature (for precise print control) just set the line length equal to greater than 125% of the de-
sired total print line length. This can be very important when using the TAB command.

The LINE= command can also be used as a program statement.

LIST
LIST (line #)
LIST (line #m)-(line #n)

The LIST command causes the desired lines of the current program to be displayed .on the
control terminal. The lines are listed in increasing numerical order by line number. A LIST com-
mand causes all lines of the current program to be displayed, a LIST (line #) command lists only
the line specified and a LIST (line #m)-(line #n) command causes all lines from m to n to be listed.

The LIST command can also be used to output lines to a terminal or printer on another port
by entering #N, after LIST (such as LIST #7, 110-130) where N is the desired port number.
Examples: LIST
LIST 30
LIST #3, 30-70
The LIST command can also be used as a program statement.

LOAD (file name)*

The LOAD command is used to load, from disk, a previously saved program. LOAD will clear
the memory of the current program and load in the desired program. The same rules apply for file
names and drive specifications as in DOS.

-5-—
DMAF1




Example: LOAD COMPUTE
If no extension is given, .BAS is assumed. Also, if you forget to type in the file name and simply
type LOAD, BASIC will prompt you for the file name.

MON
The MON command causes computer control to be returned to the computer’s monitor.

NEW

The NEW command causes the working storage and all variables and pointers to be reset. The
effect of this command is to erase all traces of the previous program from memory. This command
also sets LINE equal to 48 and DIGITS equal to @ (floating point mode).

PORT=X

The PORT=X command defines the computer 1/0 Port which will serve as the ‘Control Port'.

X" can be a constant, variable, or expression. ‘
Example: PORT=3

Warning—If you define a port without a terminal as the control port, all messages (including
the ‘“Ready’’) will be inputed and outputed from that port. . .therefore, you will lose control of
your program.

NOTE: PIA ports require handshaking. If handshaking is not available, then you must use
the PEEK command to examine the PIA registers. Also, BASIC will always accept a break from port
1, therefore never leave port 1 without a terminal connected. Appendix G defines the correct hand-
shaking procedure. Each port # is configured by BASIC for the specified type of interface:

PORT TYPE OF PORT
ACIA
MODIFIED PIA (CONTROL PORT) or ACIA
ACIA
ACIA
PIA
PIA
PIA
PIA (LINE PRINTER, BY CONVENTION, such as
SWTPC PR-40)
The PORT command can also be used as a program statement.

NOObhbWN-—,ES

RUN

The RUN command causes the current program resident in memory to begin execution at the
first statement number. RUN always begins at the lowest statement number. RUN resets all pro-
gram parameters and initializes all variables to zero.

SAVE (file name)

The SAVE command causes the current BASIC program in memory to be saved on disk. The
same rules apply for file names and drive specifications as in DOS. If no extension is specified, .BAS
is assumed. If a file already exists with the chosen name, an error message will be output.

Example: SAVE COMPUTE
If you forget to type in the file name and enter only SAVE, BASIC will prompt for the file name.

STRING=X

The STRING= command sets the maximum allowable length of string variables. The STRING=
command may be used as part of a program and must be used before any strings are referenced in a
program. X may be any number between 1 and 126. STRING is initially set to 32 characters. The
NEW command will not reset the string length to 32.




TAPPEND
The TAPPEND command works the same as the TLOAD command except that the current
BASIC buffer area is not cleared before the load starts.

TLOAD

The TLOAD command is used for loading BASIC programs previously saved on cassette and
paper tapes. All input/output regarding the TLOAD command will be thru the control or defined
port. Appropriate reader on/off commands are automatically generated.

Example: TLOAD

If desired, the input from TLOAD can be channeled thru a port other than the control port
by using the TLOAD #N command where N is the desired port number. The same rules apply for
port types and handshaking as described in the PORT= command.

NOTE: Both the TLOAD and TSAVE commands assume that the punch/read device is set
up to decode automatic reader/punch on/off commands. If your particular unit is not automatic,
the reader or punch should be turned on manually before the carriage return is entered after typing
the respective TSAVE or TLOAD command.

TRACE ON
The TRACE ON command will cause BASIC to display the line number of the current state-
ment being executed for every line. This can be an important debugging tool.

TRACE OFF
The TRACE OFF command turns off the trace function.

TSAVE

The TSAVE command is used for saving BASIC programs onto cassette or paper tape. All out-
put from the TSAVE command will be thru the control or designated port. Appropriate punch on/
off commands are automatically generated for use by the tape storage device.

Example: TSAVE

If desired, the output from TSAVE can be directed to another port by using the TSAVE #N
command where N is the desired port number. The same rules apply for port types and handshaking
as described in the PORT= command.

NOTE: TSAVE will dump the entire BASIC program to tape—line numbers such as TSAVE
10 - 20 can not be entered to transfer only a portion of the program to tape.

-7-
DMAF1




STATEMENTS

A statement, in BASIC, is a word or a group of words that directs the execution of a BASIC
program. Statements differ from commands in that they generally do not cause the computer to
immediately take action by themselves. Some statements, in fact, must be used with other state-
ments for proper operation.

DATA N1,N2, N3, ...
READ V1,V2,V3,...
RESTORE

The DATA, READ and RESTORE statements are used in conjunction with each other as one
of the methods to assign values to variables. Every time a DATA statement is encountered, the
values in the argument field are assigned sequentially to the next available position of a data buf-
fer. All DATA statements, no matter where they occur in a program, cause DATA to be combined
into one list.

READ statements cause values in the data buffer to be accessed sequentially and assigned to
the variables named in the READ statement. They start with the first data element from the first
data statement, then the second element, to the end of the first data statement, then to the first
element of the second data statement, etc., each time a READ command is encountered. If a
READ is executed, and the DATA statements are out of data, an error is generated.

Numeric and string data may be intermixed, however it must be called in the appropriate
order.

Note: String data need not be enclosed within quotes (‘) as the comma (,) acts as the deli-
miter. However, if the string contains a (,), then it must be delimited by quotes ('').
Example:
10 DATA 10,20,30,56.7,"“TEST,ONE"’,1.67E30,8, HELLO
20 READ AB,C,D,E$,F,G5,F$
Note: DATA STATEMENTS may be placed anywhere within the program.
Example: 110 DATA 1,235
120 DATA 45,7,70
130 DATA 80,81
140 READ B,C,D,E

is the equivalent of:

10 LET B=1
20 LET C=2
30 LET D=3.5
40 LET E=45
The RESTORE statement causes the data buffer pointer, which is advanced by the execution
of READ statements, to be reset to point to the first position in the data buffer.
Example: 110 DATA 1,2,3.5
120 DATA 45,7,70
130 DATA 80,81
140 READ B,C
150 RESTORE
160 READ D,E
In this example, the variables would be assigned values equal to:
100 LET B=1
101 LET C=2
102 LET D=1
103 LET E=2
There are also versions of READ and RESTORE which are used for the manipulation of disk
data files. These statements are discussed in the Disk Data Files section.




DIM/var/ (exp) or /var/ (exp), /var/(exp) or /var/(exp,exp)

The DIM statement allocates memory space for an array. In this version of BASIC, one or
two dimension arrays are allowed and the maximum array size is 2565 x 255 elements. All array
elements are set to zero by the DIM statement.

If an array is not explicitly defined by a DIM statement, it is assumed to be defined as an ar-
ray of 10 elements (or 10 x 10 if two elements are used) upon first reference to it in a program.
Caution: The dimension of an array can be detemined only once in a program, implicitly and

explicitly. Also only the variables A thru Z (followed by $) may be dimensioned

for strings.

Example: DIM A(10), C(R5+8), D(30,A*3), A7(20), C$(30), Z$(5)
but not A6$(5)

The DIM statement can also be used in the direct execution mode.

END

The END statement causes the current BASIC program to stop executing. When an END
statement is seen, BASIC will return to the command mode. In this version of BASIC, END may
appear more than once and need not appear at all.

FOR /var/ = /exp 1/ TO /exp 2/ STEP /exp/
NEXT /var/

The FOR and NEXT statements are used together for setting up program loops. A loop
causes the execution of one or more statements for a specified number of times. The variable in
the FOR...TO statement is initially set to the value of the first expression (exp1). Subsequently
the statements following the FOR are executed. When the NEXT statement is encountered, the
values of the named variable is added to the value specified by the STEP expression in the FOR. ..
TO statement, and execution is resumed at the statement following the FOR. . .TO. If the addition
of the STEP value develops a sum that is greater than the TO expression (exp2) or, if STEP is nega-
tive, a sum less than the TO expression (exp2), the next instruction executed will be the one
following the NEXT statement. If no STEP is specified, a value of one is assumed. If the TO value
is initially less than the initial value, the FOR. . .NEXT loop will still be executed once.

Example: TMOFOR I=5TO 10
120 INPUT X
130 PRINT 1,X,X/5.6

140 NEXT |
Although expressions are permitted for the initial, final, and STEP values in the FOR state-

ment, they will be evaluated only the first time the loop is entered. They are not re-evaluated.

It is not possible to use the same indexed variable in two loops if they are nested.

When the statement after the NEXT statement is executed, the variable is equal to the value
that caused the loop to terminate, not the TO value itself. In the above example, | would be equal
to 9.5 when the loop terminates.

GOSUB /line #/

A subroutine is a sequence of instructions which perform some task that would have utility in
more than one place in a BASIC program. To use such a sequence in more than one place, BASIC
provides subroutines and functions.

A subroutine is a program unit that receives control upon execution of a GOSUB statement.
Upon completion of the subroutine, control is returned to the statement following the GOSUB by
execution of a RETURN statement in the subroutine.

Example: 10 A=3
20 GOSUB 100
30 PRINT B
40 END
100 LET B= SIN(A)
110 RETURN

-9




GOTO /line #/
The GOTO statement directs BASIC to execute the statements on the specified line uncon-
ditionally. Program flow continues from the line specified by /line/.
Example: 150 GOTO 270
This statement may be used in the direct execution mode.

IF /relational exp/ THEN /statement n/
IF /relational exp/ THEN /BASIC statement/ (Direct)

The |F statement is used to control the sequence of program statements to be executed,
depending on specific conditions. If the /relational expression/ given in the IF is “‘true”’, then con-
trol is given to the line number declared after the THEN. If the relational expression is ‘‘false’’,
program execution continues at the line following the IF statement.

Example: 10 IF 5>2 THEN 100
It is also possible to provide a BASIC statement after the THEN in the IF statement. If this is
done and the relational expression is true, the BASIC statement will be executed and the program
will continue at the statement or line following the IF statement.
Example: 10 IF 5>2 THEN LET B=7
When evaluating relational expressions, arithmetic operations take precedence in their usual
order, and the relational operators are given equal weight and are evaluated last.
Example: 5+6*5>15*2 evaluates to be true
The Relational Operators
= Equal
<> Not Equal
< Less Than
>  Greater Than
= Less Than or Equal
>= Greater Than or Equal

Examples: 110 IF A<B+3 THEN 160
180 IF A=B+3 THEN PRINT “VALUE A", A
190 IF A=B THEN T1=B
NOTE: If an IF test fails on a multiple statement line, the remainder of the line will not be

executed.
Example: 10 IF 5<2 THEN 100 : PRINT 3

20 END
Control will go to line 20 and ‘3" will not be printed

The relational operators = (equal) and <> (not equal) may also be used on strings.
Example: 110 IF Y$=""YES” THEN 100
The < (less than) and > (greater than) comparisons may also be used on strings, but only when
the number of characters in each of the strings being compared is the same. The > and < operators
compare strings by evaluating the ASCII value of the characters starting from the first (leftmost)
character. When a character in one string is found to be not equal to its respective character in the
other string, the greater than or less than operation is made either true or false depending on the
ASCII values of these two characters.
Example: IF “AAABA"” > “AAAAB" THEN 100
The first non-equal character in the comparison is the B in “AAABA". The > operator then
compares this B to the respective character in the other string (an A). Since the ASCI| value of B is
greater than that of A, the operation evaluates to ““yes, greater than’".
Example: “A'" > B” FALSE
“B” >"A'"  TRUE
“ABCDE" <ABCDF"”" TRUE
“ABC"” > “ABCD" ILLEGAL, LENGTHS NOT EQUAL
“B2Z" > "'CZ2Z" FALSE

—10-




INPUT /var/
INPUT /var/, Ivar/, /var/,. . .
INPUT #N, var
INPUT “/PROMPT/" /var/
The INPUT statement allows users to enter data from the terminal during program execution.
Example: INPUT X - Inputs one numeric value
INPUT X$ - Inputs one string value
INPUT X,Y,Z,B$ - Multiple inputs may be entered, separated by
", If the expected number of values are not en-
tered, another ““?’’ will be generated.
INPUT “ENTER VALUE",X - Prints the message in quotes, then a
?', and waits for input. It stores the inputed
value in X.

When the program comes to an INPUT statement, a question mark is displayed on the ter-
minal device. The user then types in the requested data separated by commas and followed by a
carriage return. If insufficient data is given, the system prompts the user with ‘?’. If no data is en-
tered, or if a non-numeric character is entered, the system prompts ‘“RE-ENTER". However, for
string variables a null return will be considered as valid data. Caution: for input A$,B$,C$—a null
response would create three null variables. Only constants can be given in response to an INPUT
statement.

The INPUT can also be used to issue a prompting message before the question mark appears.

Example: 10 INPUT “INPUT AS$”, A$
20 PRINT A$
would give the following results
INPUT A$ ? 66 (user types this 66 in)
66

INPUT may also be used with the #N, directive for input from ports other than the control
port.

LET /var/=/exp/
The LET statement is used to assign a value to a variable. The use of the word LET is option-
al unless you are in the direct mode.
Example: 100 LET B=827
110 LET C=87E2
120 R=(X*Y)/2*A
130 C$=""THIS IS TEXT"

The equal sign does not mean equivalence as in ordinary mathematics. It is the replacement
operator. It says: replace the value of the variable named on the left with the value of the expres-
sion on the right. The expression on the right can be a simple numerical value or an expression
composed of numerical values, variables, mathematical operators, and functions.

ON /exp/ GOTO /line (s)/
ON /exp/ GOSUB /line(s)/
This statement transfers control to the line or subroutine as defined by the value of /exp/.
The expression will be evaluated, truncated (chopped off after the decimal point) and control then
transferred to the nth statement number (where n is the integer value of the expression).
Example: ON N GOTO 110, 300, 500, 900
Means: If N <1You will get an error
If N=1 GOTO 110
If N=2 GOTO 300
If N=3 GOTO 500
If N=4 GOTO 900
1f N>4 You will get an error
Example: ON (N+7)*2 GOSUB 1000,2000
(see GOTO and GOSUB for a further description of these statements)

- 1=




PRINT /var/
PRINT /string/
PRINT /exp/

The PRINT statement directs BASIC to print the value of an expression, a literal value, a sim-
ple variable, or a text string on the user’s terminal device. The various forms may be combined in
the print list by separating them with commas or semicolons. Commas will give zone spacing of
print elements, while semicolons will give a single space between elements. If the list is terminated
with a semicolon, the line feed/carriage return at the end will be suppressed.

1.  PRINT — Skips a line.

2. PRINT A,B,C — Prints the values of A, B, and C, separated into 16 space zones. Use of a

' in place of the **,”" would print A, B, and C separated by one space.
(No space is generated if a string variable.) A C/R, L/F is generated at
~ the end of the line.

3. PRINT “LITERAL STRING" — Prints the characters contained within the quotes.

4, PRINT A,B;”LITERAL"”—Prints variable A & B and the word LITERAL.

PRINT may also be used with the #N directive to specify output to another port.

Example: 10 PRINT #7, “TEST"
Prints TEST on the parallel device (printer, etc.) on port #7.

PRINT may also be used in the direct mode.

REM

The REM, or remark statement, is a non-executable statement which has been provided for
the purpose of making program listings more readable. By generous use of REM statements, a com-
plex program may be more easily understood. REM statements are merely reproduced on the pro-
gram listing, they are not executed. If control is given to a REM statement, it will perform no
operation. (It does, however take a finite amount of time to process the REM statement.)

Example: 120 REM THE FOLLOWING SUB. CONVERTS
121 REM DECIMAL VALUES TO HEX VALUES

RETURN
The GOSUB statement causes control to be passed to the given line number. It is assumed
that the given line number is an entry point of a subroutine. The subroutine returns control to the
statement following the GOSUB statement with a RETURN statement.
Example: 100 X=1
110 GOSUB 200
120 PRINT X
1256 X=b.1
130 GOSUB 200
140 PRINT X
150 STOP
200 X=(X+3)*5.32E3
210 RETURN
211 END
Subroutines may be nested; that is one subroutine may use GOSUB to call another subrou-
tine which in turn can call another. Subroutine nesting is limited to eight levels.

STOP
A STOP statement can be used within a program to halt execution at a particular place for
debugging purposes. A CONT command will then cause the computer to begin execution on the
line following the STOP statement.
Example: 10 PRINT 5
20 STOP
30 PRINT 6
gives the following output:
RUN

—12—-




5

STOP AT 20
CONT

6

FUNCTIONS

Functions are similar to BASIC statements except that they usually relate to mathematical
or string processing operations.

ABS (X)
The ABS (X) function returns the ‘’Absolute Value” of X.
Example: ABS (3.44)=3.44
ABS (-3.44)=3.44
ATAN (X)

The ATAN (X) function returns the angle, in radians, whose tangent is X.

ASC (string or string var)

The ASC (string or string variable) function returns the decimal ASCII numeric value of the
first ASCI| character within the string. Literals must be enclosed by quotes while string variables
are not.

Example: ASC(?") gives 63
ASC(”A") gives 65
ASC("“B") gives 66
ASC("”Z") gives 90
ASC("5") gives 53
LET B$='5"" > >ASC(B$) gives 53

CHR$ (X)
The CHR$ (X) function returns a single character string equivalent to the decimal ASCII
numeric value of X. This is the inverse of the ASC function.
Example: CHR$(63) givesa?
CHR$(65) gives a A
CHR$(66) givesa B
CHR$(53) givesa b

COS(X)
The COS(X) function returns the cosine of the angle X. X must be in radians.

DEF FN/letter/(/variable/)=/exp/

This function allows the user to create his very own functions. The /letter/ is any alphabetic
character. This names the function (i.e., you could have, say, three functions named FNA, FNB,
and FNC). The /variable/ is a non-subscripted numeric variable. This is essentially a ‘‘dummy’’ vari-
able (or place holder). . .This will be apparent shortly. The “‘Expression’’ is any valid expression.
Note that the “‘variable’’ must be enclosed within parenthesis.

For example, study the following sample program:

10 DEF FNA(X)=3.14*X+ 2
20DATA 56,70

30 READ X

40 IF X=0 THEN END

50 PRINT FNA(X)

60 GOTO 30

RUN

—13 -




785
113.04
153.86

READY
As you can see, the dummy variables were replaced with the variables you actually wished to
use at the time the function was used.
Note: You may not define the same function greater than once per program, and a function
must be defined before it is called.

EXP(X)
The EXP(X) function returns the base of natural logarithms raised to the Xth power (this is
the inverse of LOG(X)) and is the equivalent of 2.718282 raised to the Xth power.

INT(X)
The INT(X) function returns the greatest integer less than X.
Example: INT(4.354)=4
Now note this one: INT(-4.354)=-5
LEFT$(X$,N)
The LEFT$(X$,N) function returns a string of characters from the leftmost to the Nth cha-
racter in X$. Example: X$=""ONE, TWO, THREE"
LET A$=LEFT$(X$,6)
A$ NOW EQUALS ““ONE, TW"”
LEN(X$)
The LEN(X$) function returns the number of characters contained in string X$.

Example: LEN(“TESTING"')=7
LEN(“TEST ONE")=8
Note: The space does count.
Hint: LEN(STR$(X)) = The number of print positions required to print the number X.

LOG(X)
The LOG(X) function returns the natural logarithm of the number X.

MIDS$(X$,X,Y)

The MID$(X$,X,Y) function returns a string of characters from X$ beginning with the Xth
character from the left, and continuing for Y characters from that point. Y is optional. If Y is not
specified, then the string returned is from the Xth character of the string through the end of the
string.

Example: X$=""ONE,TWO,THREE"
A$=MID$(X$,3,10)
A$ NOW EQUALS “E,TWO,THRE"”

PEEK(X)
The PEEK(X) function returns, in decimal, the value contained in decimal, not octal, memory
location X.
Example: LET A=PEEK(255)
A will now contain the decimal value contained in memory location 25510.

POKE(LJ)

The POKE(I,J) function takes the decimal, not octal, value of Jand places itin decimal, not
octal, location |. For example, POKE (255, 10) will store a decimal 10 in decimal memory location
255.

Warning: This function can cause system program failure if improperly used.

—14 —




POS
The POS function returns in decimal, not octal, the current position of the print head or
cursor. The first postion (left margin) is position #1.

RIGHT$(X$,N)
The RIGHT$(X$,N) function returns a string of characters from the Nth position to the left
of the rightmost character through the rightmost character.
Example: X$=""ONE, TWO, THREE"'
A$=RIGHTS$(X$,9)
AS NOW EQUALS “TWO,THREE"”

RND AND RND(X)

The RND(X) function produces a set of uniformly distributed pseudo-random numbers. If
X (the seed) is @, then each time RND(X) is accessed, a different number between @ and 1 will be
returned. If X <> @ then a specific random number will be returned each time (the same number
each time). RND can be called without an argument, in which case it works as if one had used an
argument of 0.

Example: 10 LET A=RND
20 LED B=RND(5)
If you require random numbers other than between 0 and 1, then:
PRINT INT ( (B-A+1}*RND(0)+A)
will yield random numbers ranging between A & B.

SGN(X)
The SGN(X) function returns the “sign’ (+,-, or 0) of X. The SGN of a negative number will
yield a -1, the SGN of a positive number will yield 1 and the SGN of 0 gives 0.
Example: SGN(4.5)=1
SGN(-4.5)=-1
SGN(0)=0
SGN(-0)=0

SIN(X)
The SIN(X) function returns the sine of the angle X. X must be in radians.

SQR(X)

The SQR(X) function returns the square root of X. X must be greater than or equal to 0 (X
must be positive).

STR$(X)
The STR$(X) function returns the string value of a numeric value. This is the inverse of the
VAL function.
Example: A=34567
LET A$=STR$(A)
A$ NOW EQUALS “34567"

— 15—




TAB(X)

The TAB(X) function will move the print position to the “*Xth’’ position to the right of the
left margin. If the print position is already to the right of the position specified in the TAB com-
mand, no spaces will be left and printing (if any) will commence. The first print position (left mar-
gin) is position #1.

The TAB function can be used with the PRINT statement to cause data to be printed in
exact locations. The argument of TAB may be an expression.

Example:
5 X=3
10  PRINT TAB(2); X; TAB( );X*X; TAB( ); X*X*S
will print
3 9 27

TAN(X)

The TAN(X) function returns the tangent of the angle X. X must be in radians. (360 degrees=
2r radians 1 =3.141592654

USER(X)

The USER (X) function is a BASIC function that enables a user to call a special machine
language subroutine. The syntax of the USER function is of the form LET /var/=USER (/var.1/)
such as LET A = USER(X). The use of the USER function assumes that the programmer is familiar
with assembler level programming.

When the USER function is executed in a program, the numeric value of the variable X is
stored in a special BCD (binary coded decimal) format in a seven byte series somewhere in the
computer’s memory. BASIC then keeps track of where this series is stored so that the machine
language routine can access it. After storing this series, BASIC then looks at hex memory locations
0067 and 0068. The computer is then instructed to execute a “Jump to Subroutine”” to the hex
address stored in hex memory locations 0067 and 0068. To avoid accidental misuse of the USER
function, 0067 and 0068 will initialize to a location which contains a hex 39, a return from sub-
routine. Locations 0067 and 0068 can be changed using the POKE function prior to using USER.

After the computer jumps to the location pointed to by 0067 and 0068 it is up to the ma-
chine language program to perform its special function or to manipulate the data previously stored
in the seven byte BCD series. To find out where this series is located, hex memory locations 005D
and 005E should be checked by the machine program. 005D and O05E contain a pointer to the
location of the seven byte series. They do not contain the actual location of the series.

For example, say that locations 005D, O05E contain the address IDB1 This means that
locations IDB1 and IDB2 contain the address of the seven byte series. |f the series was stored be-
ginning at 242B, then the locations would be set up as follows:

005D 1D
005E B1
IDB1 24
IDB2 2B

2428 Start of seven byte series.
The actual number that was stored in the seven byte series is stored in a special BCD format
as follows:

for + numbers for - numbers
BYTE 1 (sign) (Do) (sign) (Dg)
BYTE2 (D8) (D7) (D8) (D7)
BYTE 3 (D6) (D5) (D6) (Db)
BYTE4 (D4) (D3) (D4) (D3)
BYTES5 (D2) (D1) (D2) (D1)
BYTE 6 (Exponentin hex) (Exponent in hex)

BYTE?7 00 - 16 — 00




Where D’s are digits and D's are the digits complemented.
The sign half-byte denotes whether or not the number is positive or negative. A sign of O de-
notes + while a 9 denotes -. The actual number digits are located in half-bytes D1 - Dg. The ex-

. ponent byte tells BASIC where to put the decimal point. Notice that this number is hexadecimal
and not BCD.
For example, the number 1234.5678 would be stored as follows:
Byte1 01
Byte2 23
Byte3 45
Byte4 67
Byte5 80
Byte6 04
Byte7 00

The number is stored as .12345678 with an exponent of 4 which moves the decimal point 4
places to the right giving 1234.5678. The 0 half-byte in byte 1 denotes a positive number.

Now look at the number -1234.5678. Negative numbers are more complicated and must be
handled with great care.

Byte1 98
Byte2 76
Byte3 54
Byte4 32
Byte5 20
Byte6 04
Byte7 00

Notice that the first 9 in byte 1 denotes a negative number and that all digits D1 - Dg are
complemented. The complement of a digit is defined a 9- (the digit) with the complement of O still
being 0. In the above example, the digits that were stored were not 12345678 but rather (9-1)
. (9-2) (9-3) (9-4) (9-5) (9-6) (9-7) and (1+9-8). The last significant digit not including any trailing
0’s must have 1 added to its complement before storing in the BCD series. In the example -1234.
5678 (the same as -1234.56780) the last significant digit is 8; therefore, 1 must be added to its
complement.
The number -7.20008000 would be stored as:

Byte1 92
Byte2 79
Byte3 99
Byte4 20 (the last significant digit is 8)
Byte5 00
Byte6 01
Byte7 00

The end of the machine language program should contain a hex 39, a RTS. This will transfer
control back to BASIC. BASIC will then assign the numeric value of the number in the seven
byte string to the variable A in the example A=USER(X).

VAL(XS)

The VAL(X$) function returns the numeric constant equivalent to the value in X$. This is
the inverse of the STR$ function.
Example: VAL(12.3")=12.3
VAL("“5E4'')=5000
VAL(“TWO'")=GENERATES AN ERROR. “TWO” cannot be
. equaled to a numeric constant.
VAL(”-12.3")=-12.3

-17 —




Special Disk Commands and Disk Data Files

Below is a description of several commands which allow the user to interface with the various
files stored on a disk.

CAT (drive number)

The CAT command can be used to display all of the files on a particular drive. All files are list-
ed, not just BASIC files. Only the names are displayed—additional information on a file's length and
other disk information may be obtained by using the CAT command of DOS.

Examples: CAT
CAT 1

CHAIN (file name), (optional line number)
CHAIN AS, (option line number)

The CHAIN command can be used to call one BASIC program from another program. CHAIN
will force the extension .BAS on the file name, even if another is given. If no line number is speci-
fied, program execution of the program called will begin on the first line of the program. If speci-
fied, execution will begin on the given line.

Example: 25 CHAIN MONEY 110
In the above example, the current BASIC program would be deleted from memory and the program
MONEY.BAS loaded. Execution on line 110 of MONEY would then begin.
String variables may also be used in the file specification:
Example: 10 A$="MONEY"”
20 CHAIN AS, 110

KILL (file name)
KILL A$
The KILL command is used to delete a file from a disk. Care must be executed when using the
KILL command since it does not prompt with an ‘‘Are you sure’’ question. The same rules apply
for file names and drive specifications as in DOS. The default extension for KILL is .DAT.
Example: KiILL COMPUTE.BAS
If desired, KILL may be used as a program statement and the file name may be specified as a
string variable.
Example: 10 A$= “COMPUTE.BAS”
20 KILL A$

RENAME (file 1), (file 2)
RENAME A$, B$
The RENAME command may be used to rename the various files on a disk. The default exten-
sion is .DAT.
Example: RENAME TEST, JUNK
The above example would rename the file TEST.DAT to the name JUNK.DAT. RENAME may also
be used as a program statement and may be used with string variables.
Example: 10 A$= "TEST"”
20 B$= “JUNK"
30 RENAME A$,B $
The same rules apply for file names and drive specifications as in DOS.

— 18-




Disk Data Files

SWTPC Disk BASIC contains the necessary statements to manipulate sequential disk data
files. Data files give the user the ability to access large amounts of data on disk whenever neces-
sary. These data files are very useful when working with things such as inventory and payrol! data.

Working with disk data files is similar to using the DATA and READ statements described
earlier. When beginning a new file, the file must be ““opened’’. This ‘““opening’’ essentially equates a
file number that BASIC can understand to a file name that the file management system of DOS
can understand. After a file is opened, the desired data can then be “‘written”” on this file. If no
more manipulation is desired, the file is “‘closed’’ (line designated file number is disassociated with
the file). The file may later be re-opened and the data read from it by a BASIC program.

Below is a description of each of the file commands in BASIC and a sample program showing
their use.

OPEN #/file no./, /file name/

The OPEN command prepares a file on disk to be used for either input or output. No actual
disk operation takes place when executing the OPEN statement.

BASIC programs essentially refer to files by file number rather than file name. The function
of the OPEN statement is to equate a recognizable file number to a given file name. When using
the OPEN statement, the /file no./ must be the number assigned to the file and must be from O to
9. What you choose for a file number is completely arbitrary, but each file that is open at any one
given time must have a unique file number. The /file namé/ specification is the name of the file as
it appears on the disk. The same rules apply for /file name/ as do in DOS.

Example: 10 OPEN #1, DATA.DAT
OPEN #1, DATA.DAT, #2, JUNK

If no extension is given on the file name, the extension .TXT is assumed.

Note: Each file number that is opened requires 198 bytes. Re-using the same file number,
after closing a file, in subsequent OPEN statements will save the allocation of new
memory space.

CLOSE #/file no./,#/file no./. ..

The CLOSE statement is used to ‘‘close’’ an open file. The file number that is closed must
have previously been opened by the OPEN statement. The CLOSE statement, in effect, disassoci-
ates the previously assigned file number with the file name. Files should always be closed when file
manipulation is finished.

Example: 10 CLOSE #1, #2

READ #/file no./,/variable list/

The READ #/file no./ statement is similar to the READ statement described earlier and is
used to retrieve data off of a disk file to be used in a BASIC program. For example, a READ #1,
A,B will transfer the first entry of file number 1 into variable A and the second entry into variable
B. Each time a read is done from a file an internal pointer is incremented so that the next read will
access the next value in the file. String and numeric variables may be intermixed in /variable list/
and their format must match with that of the file being read.

Example: Suppose the file PYRL.DAT contains data in the following format:
(lEMPLOYEE ;ﬁ) (LNAME.) (LHOURLY SALARYI) (lHOURS WORKEDJ)
[ [ ! [
numeric string numeric numeric
Such as 1 ADAMS 3.25 40
BROWN 6.00 40
3 JONES 4.87 40
etc.

—19—




The following program could be used to work on the file:
10 OPEN #, PYRL.DAT

20 READ #1,N,N$,S, T READS DATA ON EMPLOYEE 1
30 PRINTN,NS$,$,T,S*T

40 READ #1,N,N$,S, T READS DATA ON EMPLOYEE 2
50 PRINTN,NS$,S, T,S*T

etc.
The ouput on the screen would be as follows:
1 ADAMS 3.25 40 130
2 BROWN 6.00 40 240
etc.

Notice that the READ operation starts at the beginning of a file and increments its way through
as data is read.
Note: If the receiving element is a string variable, it will receive the data from the file up
to a maximum string length. The line input buffer for a single item from a file is 72
characters. If an attempt is made to read a string variable from the file that is
longer than the string length limit of the receiving string variable, the item will be
truncated at the receiver’s limit. If the input string variable length is greater than
the 72 character buffer limit, the buffer input processing will be terminated after
72 characters.

Both the READ and WRITE commands are “/line’’ oriented. For example, say that data was
written to a file with the following command:
10 WRITE #1,A,B,A$
This imaginary “line’’ then consists of the amount of space that A, B and A$ take up. When read-
ing from a file, a READ statement can not read more than one “’line’’ at a time.
Example: 20 READ #1, A, B, A$
would read the entire “/line’’ and enter the correct values for A, B, and A$. A statement such as:
20 READ #1,A,B, AS$,C$,C
would assign the correct values to A, B and A$ but would assign the value of @ to C and set C$ to a
null since these variables attempted to read past the ‘“line’’ length defined by the WRITE com-
mand. Also a statement such as:
20 READ #1,A,B
would corectly read the values of A and B with the remainder of the data on this ““line’’ (A$) not
being used. The next READ such as 26 READ #1, A, B, A$ would start reading on the next
“line’’.
SAMPLE FILE STRUCTURE

A1 B1 A$q
A2 B2 A$2
A3 B3 A$3

L_defined line length— T Any reads attempted from this area
would set the desired numeric vari-
ables to @ and string variables to a
null.

If the receiving element is a numeric variable, the input is scanned for a ‘break’’ character (a
comma or a null) and that portion of the input, up to the break character, is then processed by
a validation routine which verifies the number as being a valid numeric variable. If the number is
invalid, an ERROR 3 message will result.

RESTORE #/file no./, #/fileno./,...

The RESTORE statement causes the “where to read from’’ pointer for the file number speci-
fied to be set to the location of the first element of the file. The file number may be that of a file
that is open for either reading or writing—the restore statement will first close the file and then re-
open it for reading.

-20-




SCRATCH #/file no./,#/file no./,. ..

The SCRATCH statement is used to remove an existing file from the current disk directory
and then re-enter it into the directory. The file will then be re-opened for output (write). The
SCRATCH statement performs the functions of delete and open for write. The old file is lost from
the disk and a new file with the same name is prepared to receive data. Care should be exercised in
using this statement since it will destroy the designated data file.

Example: 356 SCRATCH #5

WRITE #/file no./ , /variable list/

The WRITE statement is essentially the same as a READ statement allowing data to be writ-
ten on a disk file. The file must have been previously opened for writing by either the OPEN or
SCRATCH statements.

Example: 10 LET A=b

20 LETC=6

30 LET5$="TEST"”

40 OPEN #1, TEST.DAT

50 WRITE #1, A, C, S$

60 CLOSE #1
In the above program a file will be created by the name TEST.DAT (WRITE will create a file on
disk if none exists) and the values 5 6 and TEST will be entered in the file. If the file specified cur-
rently exists on the disk, an error will result on the first execution of the WRITE statement. To
insure availability of file write access, the SCRATCH statement should be used.

Note: WRITE must be followed by a list of variables only.

10 WRITE #1,5,6, “TEST" is not valid.

EOF (X) X= file number
The EOF(X) command can be used to determine if the end of a file has been reached. X is
the desired file number. EOF will return a @ if not at the end and a 1 if the end has been reached.
Example: 25 IF EOF (3)=1 PRINT “END OF FILE"”

Random Access Data Arrays

In addtion to sequential disk data files described earlier, this version of disk BASIC also sup-
ports what can be called random access data arrays. Random access data arrays gives the program-
mer the ability to individually and selectively access any element in a given array on disk in almost
exactly the same manner as is done in memory, like in the following example:

10 DIM A$(5,5) Create a 5 x b string matrix

20 LET AS$(1,2)="THISIS 1,2"” Selectively reference a particular location.
A 5 x 5 reference like the one above will easily fit in the computer’s memory, but a 100 by 100
array will not. Disk random access data arrays allow these large arrays to be stored and accessed on
disk rather than in memory.

Using Random Access Arrays

In order to use a random access array (RAA) a name and number must be associated with the
array. The file management system of the DOS will treat the RAA just like a file; therefore, the
OPEN statement described earlier can be used.

Example: 10 OPEN #1, DATA.RAN
This associates the file DATA.RAN with the file #1 which is subsequently recognized by BASIC.
By opening the file you are essentially specifying the area of “‘virtual memory’’ (disk addressed) to
be used. If the specified file does not exist on the disk, the OPEN statement will automatically
create it.




Once a file has been opened on disk, it must be dimensioned with a special form of the
DIM statement. The general form of this special dimension statement is:
DIM #/file no./ /var/(exp) or
DIM #/file no./,/var/(exp,exp)
where /var/ is a numeric or string variable name and exp is an expression defining the size of the
array.

For example, a 100 x 100 numeric array could be dimensioned as DIM #1,A(100,100) and
a string array could be dimensioned as DIM #1,A$(100,100). Any dimension of up to 65535 can
be specified, however, keep the size as small as possible to conserve disk space. The DIM statement
essentially formats the required disk space and can take several minutes to finish the first time de-
pending on the size of the array.

Nothing special is required to access an element in a RAA once the file is opened and dimen-
sioned—referencing an element in the disk array is exactly the same as accessing an element in a
memory stored array.

Example: 10 OPEN #1, DATA.RAN
20 DIM #1, A$(100,100)
30 LET A$(5,35)=""ELEM5.35"

Once access to the RAA is finished, the file should be closed by using the CLOSE statement
described earlier.

The Format of Random Access Arrays

Knowing how the actual data is stored on disk in a RAA can help in writing programs which
* are optimized for both disk space usage and speed.

All information that is stored on disk is stored in the form of “‘sectors”. Each sector contains
252 usable bytes of storage. In this version of BASIC each floating point number requires 6 bytes of
disk storage; therefore, 42 numbers can be stored in one sector. The number of sectors required to
store a 100 by 100 numeric array would be:

100 x 100 = 238.1 - 239 sectors.
42

The amount of space required for a string variable depends on the string length which is set
to using the STRING=L command. If STRING=32, then each string variable will hold 32 characters
and will require 32 bytes. The number of string variables stored per sector can be expressed as
252: L where L is the string length. For example, using a string length of 32, 252 : L gives 7.875
string variables per sector. A fraction of variable cannot be stored in a sector so only 7 variables/
sector are allowed and 252—(7)(32)=28 bytes per sector are wasted. Careful selection of string
length will help conserve disk use.

When addressing two dimensional random access arrays, it is very important that the dimen-
sions be accessed in the correct “‘order’’ for speed optimization. Take, for example, the 3 x 3 array
A. A would be stored on disk in the following manner:

A(1,1) row 1 col 1
A(1,2) row 1 col 2
A(1,3) row 1 col 3
A(2,1) etc.
A(2,2)

etc.

Obviously it is much faster to do searches by first referencing a row than incrementing by
columns. Example:

CORRECT REFERENCE ORDER INCORRECT ORDER
A(1,1) A(1,1)
A(1,2) A(2,1)
A(1,3) A(3,1)
A(2,1) . A(1,2)
A(2,2) A(2,2)
A(2,3) A(3,2)
- 22 —

DMAF1




Two example program parts and the required times for each show the importance:

CORRECT WAY INCORRECT WAY
10 FOR I=1to 100 10 FOR J=1 to 100
20 FOR J=11t0 100 20 FOR I=1t0 100
‘ 30 X= All,J) 30 X= A(l,J)
40 IF | x J=10000 THEN END 40 |F 1 x J=1000 THEN END
50 NEXT J 50 NEXT I
60 NEXT | 60 NEXT J
Time reqd = 50 sec. Time reqd = 3 minutes
Other Notes

There are several other notes worth mentioning concerning random access arrays:

1.) All references to array elements are located relative to the start of file address. No des-
cription (name, dimension, type, etc.) is stored within the file. After originally creating
an array care should be execised not to later reference it with a dimension larger than the

original one.
Example: DIM #1, A$(10) original

DIM #1, B$(5) ok
DIM #1, C$(30) DON'T DO!

2.) The same file name should never be opened under two different file numbers. Don’t, for

example:
10 OPEN #1, DATA.RAN

60 OPEN #2, DATA.RAN

3.) The sequential file commands READ, RESTORE, SCRATCH, WRITE and EOF have
no use with random access arrays.

4.) The same random access array reference should not be used on both sides of an “equate’’
expression.
Example: 10 DIM #1, A(100)
20 LET A(95)=A(13) DON'T DO!

do this instead:

10 DIM #1, A(100)
20 LET B= A(13)
30 LET A(95)=B

—23—
DMAF1




APPENDIX A

ERROR MESSAGES
If, during the operation of BASIC, a mistake was made by the programmer, BASIC will out-
put one of the following error messages:
ERROR # DEFINITION

1. Oversize variable (over 255) in TAB, CHR, subscript or ““ON"’
Input error
3 Illegal character or variable
4 No ending ** in print literal
5. Dimensioning error
6. Illegal arithmetic
7 Line number not found
8 Divide by zero attempted
9. Excessive subroutine nesting (max is 8)
10 RETURN W/O prior GOSUB
11. lllegal variable
12. Unrecognizable statement
13. Parenthesis error
14. Memory full
15. Subscript error
16. Excessive FOR loops active (max is 8)
17. NEXT X" W/O FOR Loop defining X"
18. Misnested FOR-NEXT
19. READ statement error
20. Error in ON statement
21. Input Overflow (more than 72 characters on INput line)
22. Syntax error in DEF statement
23. Syntax error in FN error, or FN called on Function not defined ‘
24. Error in STRING Usage, or mixing of numeric and string variables
25. String Buffer Overflow, or String Extract (in MID$,LEFTS$, or RIGHT$) too
long
26. 1/0 operation requested to a port that does not have an /O card installed.
27. VAL function error—string starts with a non-numeric value.
28. LOG error—an attempt was made to determine the log of a negative number.
29. . File not open
30. lllegal file number—must by -9
31. lllegal file name
32. File number in use
33. Attempt to write to a file not open for write
34, Attempt to read from a file not open for read
36. The same virtual array reference not allowed on both sides of the = sign
36. Can’t exit while printing

—24—
DMAF1




APPENDIX B
Disk Error Messages

During any disk operation, there are several possible disk error messages:

ERROR # DEFINITION ERROR # DEFINITION

0 NO ERROR 12 DELETE PROTECTED

1 ILLEGAL FUNCTION CODE 13 ILLEGAL FCB

2 FILE BUSY 14 ILLEGAL DISK ADDRESS
3 FILE EXISTS 15 DRIVE NUMBER ERROR
4 NO SUCH FILE 16 NOT READY

5 DIRECTORY ERROR 17 ACCESS DENIED

6 TOO MANY FILES 18 STATUS ERROR

7 DISK FULL 19 INDEX RANGE ERROR
8 END OF FILE 20 FMS INACTIVE

9 READ ERROR (CRC) 21 ILLEGAL FILE NAME
10 WRITE ERROR (CRC) 22 CLOSE ERROR
1 WRITE PROTECTED

When a disk error is encountered, the output will be similar to the form “DISK ERROR #11".
An additional error message may also be output at this time and will be of the form:
ERROR #F (file #) IN LINE # line no.)
If, for example, the following program was attempted with a write protected disk, the error
message would be shown:
10 OPEN #1,DATA.DAT
20 WRITE #1,A, B
30 GOTO3
would give
DISK ERROR #11
ERROR #F1 IN LINE #20
If an error #FF in line # (line no) message is encountered then an attempt was made to KILL
or RENAME a non-existent file or a special file control block error was detected.

- 25—
DMAF1




APPENDIX C
ASCI| Hexadecimal to Decimal Conversion Table

| -1 -

= = £ = 3

o g 5 8 4 5 B8 g

= 2 = s 9 Z = 9 =

< g 3} « X Q < g Q

T & w £ w u 3 ] w

Q I [=) o T [=] o T (=)
NUL 00 000 + 2B 043 V 56 086
SOH 01 001 ., 2C 044 W 57 087
STX 0z 002 - 2D 045 X 58 088
ETX 03 003 . 2E 046 Y 59 089
EOT 04 004 /  2F 047 Z 5A 090
END 05 005 0 30 048 ( 5B 091
ACK 06 006 1 31 049 \ 5C 092
BEL 07 007 2 32 050 ) 6D 093
BS 08 008 3 33 051 5E 094
HT 09 009 4 34 052 5F 095
LF 0A 010 5 35 053 S 60 096
VT 0B 011 6 36 054 a 61 097
FF oc 012 7 37 055 b 62 098
CR oD 013 8 38 056 ¢ 63 099
SO OE 014 9 39 057 d 64 100
SI OF 015 . 3A 058 e 65 101
DLE 10 016 ;3B 059 f 66 102
DC1 11 017 < 3C 060 g 67 103
DC2 12 018 = 3D 061 h 68 104
DC3 13 019 > 3E 062 i 69 105 .
DC4 14 020 ? 3F 063 i 6A 106
NAK 15 021 @ 40 064 k 6B 107
SYN 16 022 A 41 065 | 6C 108
ETB 17 023 B 42 066 m 6D 109
CAN 18 024 C 43 067 n 6E 110
EM 19 025 D 44 068 o 6F 111
SUB 1A 026 E 45 069 p 70 112
ESC 1B 027 F 46 070 q 71 113
FS 1C 028 G 47 o7 r 72 114
GS 1D 029 H 48 072 s 73 115
RS 1E 030 | 49 073 t 74 116
us 1F 031 J 4A 074 u 75 117
SP 20 032 K 4B 075 v 76 118
! 21 033 L 4C 076 w 77 119
“ 22 034 M 4D 077 x 78 120
# 23 035 N 4E 078 y 79 121
$ 24 036 O 4F 079 z 7A 122
% 25 037 P 50 080 { 7B 123
& 26 038 Q 51 081 / 7C 124
’ 27 039 R 52 082 } 7D 125
( 28 040 S 53 083 ~ 7E 126
) 29 041 T 54 084 DEL7F 127
* 2A 042 U

556 085 ‘




Appendix D

Memory Map
. 0000 - POFF  Input buffer and temporary variable storage
0100 - 2698 BASIC interpreter (may vary slightly—check contents of @14E for your version)
0100 Cold start address
0103 Warm start address

002A-002B Contains the next available memory after the current BASIC souce program.

002E-@O2F  Contains the starting address of the BASIC source program.

005D-PO5E  Contains the address of the current arithmetic value in use during a USER call.

0067 - P68 Contains the pointer for USER

014E-014F This location tells BASIC where to start allocating memory for program storage.
This address may be changed by the user if desired to allow space for USER rou-

tines.

0150 Contains the number of the port which BASIC will initialize to, currently 01.

0153 Contains the ASCII value of what is output to the terminal when a BACKSPACE is
entered. Currently a null for terminals generating an automatic cursor left on back-
space.

0154 Contains the ASCII value of what BASIC interprets as a BREAK character, cur-

rently a @3 (CTL. C.).

Below is a list of the 1/O jumps in BASIC for the various ports. For each port the first is the
“output character in accumulator A"’ jump, the second receives input and places it in accumulator
A and the third is the initialization routine for a particular type port (ACIA or PIA). This /O can
be changed at the discretion of the user if desired.

#FORT O

01G6 TE 08 &0 JMFTAE  JMF OUTACT

0105 FE 04 SO JMF INACIA

. 0100 FE O3 B2 AMF ACTINZ
#FORT 1

G1OF TE AD 12 MF COUTEEE

0112 7E AD 1S AMF INEEE

0115 7E 19 ED IMF DLMRT S
#FORT Z

0118 TE 04 &0 JMF QUTACT

O11E 7E 04 SO IMF INACIA

O11E 7E OF EZ P ACTINZ
$FORT 3

0171 7E 04 AC F QUTACT

G1Z4 7E 04 SO JMF INACIA

0127 7E O B2 JME ACTINZ
#FORT 4

0126 7E 04 =2 JMF QUTFIA

0120 7E 04 77 JMF INFIA

0130 7E O3 ED JMF FIAINZ
#FORT 5

0133 7E 04 =2 JMF OUTFIA

013& 7E 04 77 JMF INFIA

013y 7E OF ED JMF FIAINZ
#FORT &

0130 7E 04 52 MF OUTFIA

O13F 7E 04 77 IMF INFIA

0142 7E O3 ED JMP FIAINZ
#FORT 7

‘ 0145 7€ 04 =2 JMF QUTFIA

0145 7E 04 77 JMF INFIA

014E 7E 03 ED JMF FIAINZ
—27 —

DMAF1




N =

oo o’

APPENDIX E
Notes for Speeding up BASIC
Subscripted variables take considerable time; whenever possible use non-subscripted
variables.

Transcendental functions (SIN, COS, TAN, ATAN, EXP, LOG) are slow because of
the number of calculations involved, so use them only when necessary. Also, the +
operator uses both the LOG and the EXP functions, so use the format A*A to square
a number.

BASIC searches for functions and subroutines in the source file, so place often called
routines at the start of the program.

BASIC searches the symbol table for a referenced variable, and variables are inserted
into the symbol table as they are referenced; therefore, reference a frequently called
variable early in the program so that it comes early in the symbol table.

Numeric constants are converted each time they are encountered, so if you use a con-
stant often, assign it to a variable and use the variable instead.

APPENDIX F

Notes on Memory Usage in BASIC
REM statements use space, so use them sparingly.
Each non-subscripted numeric variable takes 8 bytes.
Each non-subscripted string variable takes 34 bytes.
Each numeric array takes 6 bytes plus 6 bytes for each element.
Each string array takes 6 bytes plus 32 bytes for each element.
An implicitly dimensioned variable creates 10 elements (or 10 by 10). If you do not
intend to use all 10 elements, save memory by explicitly dimensioning the variable.
Each BASIC line takes 2 bytes for the line number, 2 bytes for the encoded key
word, 1 byte for the end of line terminator, 1 byte for the line length, plus one byte
for each character following the key word. Memory can be saved by using as few
spaces as possible.
BASIC reserves the uppermost 256 bytes of memory for stack and buffer use.

—28—
DMAF1




APPENDIX G

Parallel Interface Handshaking
The parallel interface drivers are written for a conventional handshaking scheme used
by many printer manufacturers and is the same as that on a SWTPC PR-40 printer. Hand-
‘ shaking timing is set up as follows:

“DATA READY"”
ON MP-L
INTERFACE
(CA2)

VALID DATA ON DATA VALID
MP-L DATA LINES
(PAO-PA7)

“BUSY"’

OUTPUT FROM
PERIPHERAL DEVICE
(Input to CA1)

,T\

peripheral should generate this level change
when it has accepted the previous data and
is ready for more.

—29 —
DMAF1




Instruction Set Summary

Commands Statements Functions
APPEND CHAIN ABS(X)
CAT CLOSE CHR $(X)
CONT DATA COS(X)
DIGITS=& READ DEF FN(X)
DOS & RESTORE EOF(X)
KILL & FOR /exp/ to /exp/ EXP(X)
LINE= & NEXT INT(X)
LIST & GOSuUB LEFT $(X$,N)
LOAD DIM * LEN(X$)
MON END MIDS$(X$,S.Y)
NEW GOTO * PEEK(X)
PORT= & IF /rel. exp./ THEN /line/ POKE (I,J)
RENAME & INPUT * POS
RUN ON /exp/ GOT /line(s)/ RIGHT(XS$,N)
SAVE ON /exp/ GOSUB /line(s)/ RND(X)
STRING= & PRINT * SGN(X)
TAPPEND REM SIN(X)
TLOAD RETURN SQR(X)
TRACE ON & STOP STR$(X)
TRACE OFF & WRITE TAB(X)
TSAVE ) TAN(X)

* Denotes statements that may be used in the DIRECT mode USER(X)

& Denotes commands that may be used as program statement VAL(XS$)

MATH OPERATORS
4+ Exponentiate =
— {unary) Negate
* Multiplication <
/ Division >

Less Than
Greater Than

RELATIONAL OPERATORS
Equal (numeric and string)
<> Not Equal (numeric and string)

+ Addition, string concatenation <= Less Than or Equal

— Subtraction >

Greater Than or Equal

LINE NUMBERS

—May be from 1 thru 9999

VARIABLES —May be single character alphabetic or single character alphabetic fol-
lowed by one integer O thru 9 or $

BACKSPACE —Is a Control H

LINE CANCEL —Is a Control X (CANCEL)

PROGRAM ABORT—Typing a Control C should bring BASIC back to the READY mode

LINES

regardless of what the BASIC program is doing (except USER pro-
grams).

—Each line may contain multiple statements. Each statement is separa-
ted from the other witha : .

—-30-
DMAF1




INDEX

Page Page

‘ ABS. ... 13 MIDS. .ottt e 14
APPEND . ..ottt 5 MON ..t e e 6
ASC. . oot 13 NEW .o e e e 6
ATAN . oo e e 13 NEXT oottt et e 9
CAT e 18 ON &ttt e e 1
CHAIN . .ot e 18 OPEN ..ottt et e e 19
CHRS ..ot 13 (=] 14
CLOSE .\ ot et e 19 POKE & ottt 14
COMMAND. . ..o et 1 PORT « ittt e e e 6
CONCATENATION . ... 3 POS. oot 15
CONT ot e 5 PRINT . o et ettt et et i 12
COS. .ot 13 PRIORITY & oteee e i 2
DATA . ot 8 RANDOM ACCESS FILES........... 21
DEF oottt 13 READ . ..ottt 8,19
DIGITS e et et e e et 5 RELATIONAL OPERATORS. ........ 10
DIM. ot ottt e e 9 REM .« ot e e e e e e e e 12
DISKERRORS. ......covvunnn... ...25 RENAME .. ...ttt 18
DOS vt 5 RESTORE. .....cvviinnnnnnn. 8,20
END « oottt e 9 RETURN ..ot 12
EOF . 21 RIGHTS ..ot e e 15
ERRORS. ...t 24 (=111 5 15
EXP. et 14 RUN & ot et et e e e 6
FILES. . ... i 19 SAVE ... . e 6
FOR .o e 9 SCRATCH. .. v ot 21
‘ FUNCTION. . ..ot 1 SGN o oo 15
(¢1015] U] - 2NN 9 SIN .ot 15
GOTO . ot ot 10 SOR oo 15
HANDSHAKING .......uvueenn.. 29 STATEMENT . ...t 1
IF-THEN. © o e e 10 STOP. . et ettt 12
INPUT. © et 1 STRING=S o o oot 6
N 14 STRS. ..ottt 15
[ ] 18 TAB oo 16
LEFTS .ot e e 14 TAN e 16
1= 14 TAPPEND. ...ttt e 7
LET . et 1 TLOAD . . oottt e e e 7
LINE . .ottt e e e e e 5 TRACEON. . oo e e 7
LINE RESTRICTIONS. ........o..... 1 TRACEOFF. . oo oe e 7
LIST et e e e e e 5 TSAVE « ottt 7
LOAD . .ottt 5 USER .\ttt et 16
[ ¢ 14 VAL © ottt 17
MATHEMATICAL OPERATORS. ...... 2 VARIABLE. . ..ottt 1
MEMORY MAP. . ..ottt 27 WRITE oottt 21

DMAF1













3
3 A
AR L e ¥
s Snpat el s wice -
= oS F Agas
i i
' e
i ¥
B = t 2%t .
v,
s
L S As
3 B t ..o
O "R G B S
29 i g
* . { v Yy
! i U A
y o
5
.
‘
o 0 ~3%
« =
ol : T .
' k]
- 3
:
s
T
' §
% 213 ¥
: e i %
s vl o woas e 5 i
' - TS| - i A
21 RRLY: )
i ’ :
y ; i 3 ¥
N s f Feaxy ol ™ R i
s - L ¥ St | L5 ¥
-~ - crime o g i o e e e !
r St sk ke 3
oy %% = e
v :
- .







	2023-01-26-13-42-16-01
	2023-01-26-13-43-27-01
	2023-01-26-16-31-29-01
	2023-01-26-16-31-51-01
	DMAF-1 Assembly Guide.pdf
	2023-01-26-13-46-58-01
	2023-01-26-13-47-18-01
	2023-01-26-13-48-9-01
	2023-01-26-13-48-48-01
	2023-01-26-13-49-20-01
	2023-01-26-13-49-46-01
	2023-01-26-13-50-39-01
	2023-01-26-13-51-41-01
	2023-01-26-13-52-22-01
	2023-01-26-13-53-23-01
	2023-01-26-13-53-52-01
	2023-01-26-13-54-19-01
	2023-01-26-13-54-44-01
	2023-01-26-13-55-32-01
	2023-01-26-13-56-53-01
	2023-01-26-13-58-15-01
	2023-01-26-13-58-53-01
	2023-01-26-13-59-15-01
	2023-01-26-13-59-41-01
	2023-01-26-14-0-2-01
	2023-01-26-14-0-47-01
	2023-01-26-14-1-18-01
	2023-01-26-14-1-40-01
	2023-01-26-14-1-58-01
	2023-01-26-14-2-21-01
	2023-01-26-14-2-42-01
	2023-01-26-14-3-9-01
	2023-01-26-14-3-27-01
	2023-01-26-14-4-22-01
	2023-01-26-14-5-0-01
	2023-01-26-14-5-27-01
	2023-01-26-14-5-49-01
	2023-01-26-14-6-17-01
	2023-01-26-14-6-42-01
	2023-01-26-14-7-17-01
	2023-01-26-14-7-58-01
	2023-01-26-14-8-39-01
	2023-01-26-14-9-1-01
	2023-01-26-14-9-24-01
	2023-01-26-14-9-47-01
	2023-01-26-14-10-13-01
	2023-01-26-14-10-34-01

	FLEX 1.0 for DMAF-1 Guide.pdf
	2023-01-26-14-10-13-01
	2023-01-26-14-10-34-01
	2023-01-26-14-11-9-01
	2023-01-26-14-11-28-01
	2023-01-26-14-11-59-01
	2023-01-26-14-12-17-01
	2023-01-26-14-12-40-01
	2023-01-26-14-12-57-01
	2023-01-26-14-13-21-01
	2023-01-26-14-13-39-01
	2023-01-26-14-14-11-01
	2023-01-26-14-14-34-01
	2023-01-26-14-15-9-01
	2023-01-26-14-15-27-01
	2023-01-26-14-15-57-01
	2023-01-26-14-16-15-01
	2023-01-26-14-16-44-01
	2023-01-26-14-17-2-01
	2023-01-26-14-17-23-01
	2023-01-26-14-17-46-01
	2023-01-26-14-18-7-01
	2023-01-26-14-18-41-01
	2023-01-26-14-19-2-01
	2023-01-26-14-19-24-01
	2023-01-26-14-19-47-01
	2023-01-26-14-20-9-01
	2023-01-26-14-20-30-01
	2023-01-26-14-20-50-01
	2023-01-26-14-21-13-01
	2023-01-26-14-21-32-01
	2023-01-26-14-21-54-01
	2023-01-26-14-22-14-01
	2023-01-26-14-22-33-01
	2023-01-26-14-22-54-01
	2023-01-26-14-23-15-01
	2023-01-26-14-23-36-01
	2023-01-26-14-23-57-01
	2023-01-26-14-24-23-01
	2023-01-26-14-24-49-01
	2023-01-26-14-25-11-01
	2023-01-26-14-25-31-01
	2023-01-26-14-25-51-01
	2023-01-26-14-26-10-01
	2023-01-26-14-26-30-01
	2023-01-26-14-26-49-01
	2023-01-26-14-27-10-01
	2023-01-26-14-27-34-01
	2023-01-26-14-28-3-01
	2023-01-26-14-28-22-01
	2023-01-26-14-28-52-01
	2023-01-26-14-29-10-01
	2023-01-26-14-29-32-01
	2023-01-26-14-29-53-01
	2023-01-26-14-30-13-01
	2023-01-26-14-30-32-01
	2023-01-26-14-30-53-01
	2023-01-26-14-31-13-01
	2023-01-26-14-31-36-01
	2023-01-26-14-31-55-01
	2023-01-26-14-32-15-01
	2023-01-26-14-32-36-01
	2023-01-26-14-32-59-01
	2023-01-26-14-33-17-01

	FLEX ver 1.0 Advanced programmer's guide for DMAF-1.pdf
	2023-01-26-14-47-26-01
	2023-01-26-14-47-44-01
	2023-01-26-14-48-10-01
	2023-01-26-14-48-35-01
	2023-01-26-14-49-0-01
	2023-01-26-14-49-19-01
	2023-01-26-14-49-39-01
	2023-01-26-14-50-2-01
	2023-01-26-14-50-23-01
	2023-01-26-14-50-41-01
	2023-01-26-14-51-1-01
	2023-01-26-14-51-21-01
	2023-01-26-14-51-41-01
	2023-01-26-14-52-3-01
	2023-01-26-14-52-27-01
	2023-01-26-14-52-45-01
	2023-01-26-14-53-7-01
	2023-01-26-14-53-26-01
	2023-01-26-14-53-46-01
	2023-01-26-14-54-3-01
	2023-01-26-14-54-24-01
	2023-01-26-14-54-43-01
	2023-01-26-14-55-10-01
	2023-01-26-14-55-29-01
	2023-01-26-14-55-50-01
	2023-01-26-14-56-10-01
	2023-01-26-14-56-30-01
	2023-01-26-14-56-48-01
	2023-01-26-14-57-8-01
	2023-01-26-14-57-27-01
	2023-01-26-14-57-54-01
	2023-01-26-14-58-16-01
	2023-01-26-14-58-37-01
	2023-01-26-14-58-55-01
	2023-01-26-14-59-15-01
	2023-01-26-14-59-32-01
	2023-01-26-14-59-52-01
	2023-01-26-15-0-9-01
	2023-01-26-15-0-34-01
	2023-01-26-15-0-53-01
	2023-01-26-15-1-14-01
	2023-01-26-15-1-35-01
	2023-01-26-15-1-55-01
	2023-01-26-15-2-15-01
	2023-01-26-15-2-35-01
	2023-01-26-15-2-53-01
	2023-01-26-15-3-13-01
	2023-01-26-15-3-31-01
	2023-01-26-15-3-51-01
	2023-01-26-15-4-10-01
	2023-01-26-15-4-31-01
	2023-01-26-15-4-48-01
	2023-01-26-15-5-28-01
	2023-01-26-15-5-53-01
	2023-01-26-15-6-14-01
	2023-01-26-15-6-38-01
	2023-01-26-15-6-58-01
	2023-01-26-15-7-15-01
	2023-01-26-15-7-35-01
	2023-01-26-15-7-59-01
	2023-01-26-15-8-18-01
	2023-01-26-15-8-36-01
	2023-01-26-15-8-57-01
	2023-01-26-15-9-15-01
	2023-01-26-15-9-33-01
	2023-01-26-15-9-51-01
	2023-01-26-15-10-11-01
	2023-01-26-15-10-28-01
	2023-01-26-15-10-49-01
	2023-01-26-15-11-6-01
	2023-01-26-15-11-23-01
	2023-01-26-15-11-40-01
	2023-01-26-15-11-58-01
	2023-01-26-15-12-17-01
	2023-01-26-15-12-38-01
	2023-01-26-15-12-56-01
	2023-01-26-15-13-17-01
	2023-01-26-15-13-39-01
	2023-01-26-15-16-10-01
	2023-01-26-15-17-8-01
	2023-01-26-15-18-5-01

	Disk BASIC ver 3.5 User's Guide DMAF-1.pdf
	2023-01-26-14-33-59-01
	2023-01-26-14-34-21-01
	2023-01-26-14-34-57-01
	2023-01-26-14-35-18-01
	2023-01-26-14-35-46-01
	2023-01-26-14-36-5-01
	2023-01-26-14-36-27-01
	2023-01-26-14-36-48-01
	2023-01-26-14-37-9-01
	2023-01-26-14-37-27-01
	2023-01-26-14-37-49-01
	2023-01-26-14-38-8-01
	2023-01-26-14-38-34-01
	2023-01-26-14-38-52-01
	2023-01-26-14-39-16-01
	2023-01-26-14-39-34-01
	2023-01-26-14-39-56-01
	2023-01-26-14-40-16-01
	2023-01-26-14-40-38-01
	2023-01-26-14-40-57-01
	2023-01-26-14-41-18-01
	2023-01-26-14-41-39-01
	2023-01-26-14-42-3-01
	2023-01-26-14-42-41-01
	2023-01-26-14-43-3-01
	2023-01-26-14-43-24-01
	2023-01-26-14-43-46-01
	2023-01-26-14-44-4-01
	2023-01-26-14-44-24-01
	2023-01-26-14-44-43-01
	2023-01-26-14-45-4-01
	2023-01-26-14-45-23-01
	2023-01-26-14-45-44-01
	2023-01-26-14-46-4-01
	2023-01-26-14-46-34-01
	2023-01-26-14-46-53-01

	DMAF-1 Schematic.pdf
	DMAF-1 Schematic




