APPENDICES

L SNy N

APPENDIX A

HOW TO LOAD BASIC

When the ALTAIR is first turned on, there is random garbage in its
memory. BASIC is supplied on a paper tape or audio cassette. Somehow
the information on the paper tape or cassette must be transfered into the
computer. Programs that perform this type of infermation transfer are
called loaders.

Since initially there is nothing of use in memory; you must toggle
in, using the switches on the front panel, a 20 instruction bootstrap
loader. This loader will then load BASIC.

To load BASIC follow these steps:
1) Turn the ALTAIR on.
2) Raise the STOP switch and RESET switch simultanecusly.
3) Turn your terminal (such as a Teletype) to LINE.

- Because the instructions must be toggled in via the switches on the
front panel, it is rather inconvenient to specify the positions of each
switch as "up'" or "down'". Therefore, the switches are arranged in groups
of 3 as indicated by the broken lines below switches 0 through 15. To
specify the positions of each switch, we use the numbers 0 through 7 as

shown below:

- 3 SWITCH GRQUP

CCTAL
LEFTMOST MIDDLE RIGHTMOST NUMBER
Down Down Down Q
Down Down Up 1
Down Up Down Z
Down Up Up 3
Up Down Down 4
Up Down Up 5
Up Up Down 6
Up Up Up 7

So, to put the octal number 315 in switches 0 through 7, the switches
would have the following positions:

7 6 5 4 3 2 1 0 -——SWITCH
UpP upP DOWN DOWN UupP up DOWN yp ~——POSITION
3 1 5 = CCTAL NO.,

45

Note that switches 8 through 15 were not used. Switches 0 through
7 correspond to the switches labeled DATA on the front panel. A memory
address would use all 16 switches.

The following program is the bootstrap loader for\users loading from
paper tape, and not using a REV 0 Serial I/0 Board.

OCTAL ADDRESS OCTAL DATA
oo ' 041
001 175
002 037 (for 8K; for 4K use 017)
003 061
004 022
Qa5 000
008 333
007 000
010 ' 017
011 330
012 333
013 001
014 275
015 310
016 055
017 167
020 300
021 351
Q22 003
023 000

The following 21 byte bootstrap loader is for users loading from a
paper tape and using a REV 0 Serial I/0 Board on which the update changing
the flag bits has not been made. If the update has been made, use the
above bootstrap loader.

OCTAL ADDRESS QCTAL DATA
000 041
001 175
002 037 (for 8K; for 4K use 017)
003 061
004 023
005 : 0Q0
006 333
607 ¢oo
010 346
011 040
012 310
013 333
014 001
015 275
0le6 310
017 055
020 167

47

CCTAL ADDRESS OCTAL DATA

(cont.)
021 300
022 351
023 003
024 000

The following bootstrap loader is for users with BASIC supplied on

an audio cassestte.

1
2)
3)
4)
5}
6)
7)
g)
8)

10)

OCTAL ADDRESS OCTAL DATA
000 041
001 175
002 037 (for 8K; for 4K use 017)
003 0é1l
004 g22
005 000
006 333
007 006
010 017
011 330
012 333
013 o7
014 275
015 310
016 055
017 167
020 300
021 351
022 03
023 000

To load a bootstrap loader:

Put switches 0 through 15 in the down position.

Raise EXAMINE.

Put 041 (data for address 000) in switches 0 through 7.
Raise DEPOSIT.

Put the data for the next address in switches 0 through 7.
Depress DEPOSIT NEXT.

Repeat steps 5 & 6 until the entire loader is toggled in.
Put switches 0 through 15 in the down position.

Raise EXAMINE.

Check that lights DO through D7 correspond with the data that should
48

11)
12)
13)

14)

15)

16)

20)

21)

be in address 000. A light on means the switch was up, a light off
means the switch was down. So for address 000, lights D1 through D4
and lights Dé § D7 should be off, and lights DO and D5 should be on.

If the correct value is there, go to step 13. If the value is wrong,
continue’with step 1l.

Put the correct value in switches 0 through 7.
Raise DEPOSIT.

Depress EXAMINE NEXT.

Repeat steps 10 through 13, checking to see that the correct data is

in each corresponding address for the entire loader.

If you encountered any mistakes while checking the loader, go back
now and re-check the whole program to be sure it is corrected.

Put the tape of BASIC into the tape reader. Be sure the tape is
positioned at the beginning of the leader. The leader is the section
of tape at the beginning with 6 out of the 8 holes punched.

If you are loading from audio cassette, put the cassette in the re-~
corder. Be sure the tape is fully rewound.

Put switches 0 through 15 in the down pesition.

Raise EXAMINE.

If you have connected to your terminal a REV 0 Serial I/C Board
on which the update changing the flag bits has not been made, raise

switch 14; if you are loading from an audio cassette, raise switch
15 also.

If yoﬁ have a REV 0 Serial I/OvBoard which has been updated, or have
a REV 1 I/0 Beoard, switch 14 should remain down and switch 15 should
be raised only if you are loading from audio cassette.

Turn on the tape reader and then depress RUN. Be sure RUN is depres-
sed while the reader is still on the leader. Do not depress run be-~

fore turning on the reader, since this may cause the tape to be read

incorrectly.

If you are loading from a cassette, turn the cassette recorder to
Play.' Wait 15 seconds and then depress RUV.

Wait for the tape to be read in. This should take about 12 minutes
for 8K BASIC and 6 minutes for 4K BASIC. It takes about 4 minutes
to load 8K BASIC from cassette, and about 2 minutes for 4K BASIC.

Do not move the switches while the tape is being read in.

4

22)

23)

24)

If a C or an 0 is printed on the terminal as the tape reads in, the
tape has been mis-read and you should start over at step 1 on page
46,

When the tape finishes reading, BASIC should start up and print
MEMORY SIZE?, See Appendix B for the initialization procedure.

If BASIC refuses to load from the Audic Cassette, the ACR Demodulator
may need alignment. The flip side of the cassette contains 90 seconds.
of 125's (octal) which were recorded at the same tape speed as BASIC.
Use the Input Test Program described omn pages 22 and 28 of the ACR
manual to perform the necessary alignment.

5(

APPENDIX B

“TINITIALIZATION DIALOG

- STARTING BASIC

Leave the sense switches as they were set for loading BASIC (Appen-
dix A). After the initialization dialog is complete, and BASIC types OK,
you are free to use the sense switches as an input device (I/0 port 255).

After you have loaded BASIC, it will respond:
MEMORY SIZE?

If you type a carriage return to MEMORY SIZE?, BASIC will use all
the contiguous memory upwards from location zero that it can find. BASIC
will stop searching when it finds one byte of ROM or non-existent memory.

If you wish to allocate only part of the ALTAIR's memory to BASIC,
type the number of bytes of memory you wish to allocate in decimal. This
might be done, for instance, if you were using part of the memory for a
machine language subroutine.

There are 4096 bytes of memory in a 4K system, and 8192 bytes in an
8K system.

BASIC will then ask:

TERMINAL WIDTH? This is to set the output line width for
PRINT statements only. Type in the number
of characters for the line width for the
particular terminal or other output device
you are using. This may be any number
from 1 to 255, depending on the terminal.
If no answer is given (i.e. a carriage
return is typed) the line width is set
to 72 characters.

Now ALTAIR BASIC will enter a dialog which will allow you to delete
some of the arithmetic functions. Deleting these functions will give
moTe MEmMOTy Space to store your programs and varisbles. However, you will
not be able to call the functions you delete. Attempting to do so will
result in an FC error. The only way to restore a function that has been
deleted is to reload BASIC.

The following is the dialog which will occur:

4K Version
WANT SIN? Answer " Y ' to retain SIN, SQR and RND.
If you answer " N ", asks next question.
WANT SQR? Answer " Y " to retain SQR and RND.

If you answer " N ", asks next question.

5T

WANT RND? Answer " Y " to retain RND.
Answer " N ' to delete RND.

. 8K Version

WANT SIN-COS~TAN-ATN?

Now BASIC will type out:
' - XXXX BYTES FREE

ALTAIR BASIC VERSION 3.0
[FOUR-K VERSION]

(or)
[EIGHT-K VERSION]

oK

A

Answer " Y " to retain all four of
the functions, " N " to delete all four,
or " A ' to delete ATN only.

"XXXX" is the number of bytes
available for program, variables,
matrix storage and the stack. It
does not include string space.

You will now be ready to begin using ALTAIR BASIC.

52

APPENDIX C

ERROR MESSAGES

After an error occurs, BASIC returns to command level and types OK.
Variable values and the program text remain intact, but the program can
not be continued and all GOSUB and FOR context is lost.

When an error occurs in a direct statement, no line number is printed.

Format of error messages:

Direct Statement 7XX ERROR
Indirect Statement PXX ERROR IN YYYYY
In both of the above examples, "XX" will be the error code. The
"YYYYY" will be the line number where the error occured for the indirect

statement.

The following are the possible error codes and their meanings:

ERROR CODE MEANING
4K VERSION
BS Bad Subscript. An attempt was made to reference a

matrix element which is outside the dimensions of the
matrix. In the 8K version, this error can occur if
the wrong number of dimensicns are used in a matrix
reference; for instance, LET A(l,1,1)=Z when A has
been dimensioned DIM A(2,2}.

DD Double Dimension. After a matrix was dimensioned,
another dimension statement for the same matrix was
encountered. This error often occurs if a matrix
has been given the default dimension 10 bzcause a
statement like A(I})=3 is encountered and then later
in the program a DIM A(100) is found.

FC Function Call error. The parameter passed to a math
or string function was out of range.
FC errors can occur due to:

a) a negative matrix subscript (LET A(-1)=0)

b) an unreasonably large matrix subscript
(>32767)

¢) LOG-negative or zero argument

d) SQR-negative argument

Ex

IR

NF

QD

on

oV

SN

RG

us

/0

8K

CN

e) A4B with A negative and B not an integer

£) a call to USR .before the address of the
machine language subroutine has been
patched in

g) calls to MID§, LEFT$, RIGHTS$, INP, QUT,:
WAIT, PEEK, POKE, TAB, SPC or ON...GOTO
with an improper argument.

Illegal Direct. You cannot use an INPUT or {im 8K Version)
DEFFN statement as a direct command.

NEXT without FOR, The variable in a NEXT statement
corresponds to no previously executed FOR statement.

Cut of Data. A READ statement was executed but all of
the DATA statements in the program have already been
read. The program tried to read too much data or insuf-
ficient data was included in the program.

Qut of Memory. Program too large, too many variables,
too many FOR loops, too many GOSUB's, too complicated
an expression or any ccmbination of the above. (see
Appendix D)

Overflow. The result of a calculation was too large to

be represented in BASIC's number format. If an underflow
occurs, zero is given as the result and execution continues
without any error message being printed.

Syntax error. Missing parenthesis in an expression,
illegal character in a line, incorrect punctuation, etc.

RETURN without GOSUB. A RETURN statement was encountered
without a previous GOSUB statement being executed.

Undefined Statement. An attempt was made to GOTO, GOSUB
or THEN to a statement which does not exist.

Division by Zero.

VERSION (Includes all of the previous codes in addition to the
Following.)

Continue error. Attempt to continue a program when
none exists, an error occured, or after a new line
was typed into the program.

L3

oS

ST

™

UF

Long String. Attempt was made by use of the concatenation
operator to create a string more than 255 characters long.

Qut of String Space. Save your program On paper tape oOr
cassette, reload BASIC and allocate more string space
or use smaller strings or less string variables.

String Temporaries. A string expression was too complex.
Break it into two or more shorter ones.

Type Mismatch. The left hand side of an assignment
statement was a numeric variable and the right hand
side was a string, or vice versa; or, a function which
expected a string argument was given a numeric one or
vice versa.

Undefined Function. Reference was made to a user defined
function which had never been defined.

55

APPENDIX D

SPACE HINTS

In order to make your program smaller and save space, the following
hints may be useful. ' '

1) Use multiple statements per line. There is a small amount of
gverhead (Sbytes) associated with each line in the program. Two of these
five bytes contain the line number of the line in binary. This means
that no matter how many digits you have in your line number (minimum line
number is 0, maximum is 65529}, it takes the same number of bytes. Put-
ting as many statements as possible on a line will cut down on the number
of bytes used by your program.

2) Delete all unnecessary spaces from your program. For instance:
10 PRINT X, Y, Z
uses three more bytes than
10 PRINTX,Y,Z-
Note: All spaces between the line number and the first non-
blank character are ignored.

3) Delete all REM statements. Each REM statement uses at least
one byte plus the number of bytes in the comment text. For instance,
the statement 130 REM THIS IS A COMMENT uses up 24 bytes of memory.

In the statement 140 X=X+Y: REM UPDATE SUM, the REM uses 14 bytes of
memory including the colon before the REM.

4} Use variables instead of constants. Suppose you use the constant
3.14159 ten times in your program. If you insert a statement
10 P=3.14159
in the program, and use P instead of 3.14159 each time it is needed, you
will save 40 bytes. This will also result in a speed improvement.

5) A program need not end with an END; 50, an END statement at
the end of a program may be deleted.

6) Reuse the same variables, If you have a variable T which is used
to hold a temporary result in one part of the program and you need a tem-
porary variable later in your program, use it again. Or, if you are asking
the terminal user to give a YES or NO answer to two different questions
at two different times during the execution of the program, use the same
temporary variable A§ to store the reply.

7) Use GOSUB's to execute sections of program statements that per-
form identical actions.

8) If you are using the 8K version and don't need the features of
the 8K version to run your program, c¢onsider using the 4K version in-
stead. This will give you approximately 4.7K to work with in an 8K machine,
as opposed to the 1.6K you have available in an 8X machine running the
8K version of BASIC.

55

9) Use the zero elements of matrices; for instance, A(0}, B(0,X).
STORAGE ALLOCATION INFORMATION

Simple (non-matrix) numeric variables like V use & bytes; 2 for the
variable name, and 4 for the value. Simple non-matrix string variables
also-use 6 bytes; 2 for the variable name, 2 for the length, and 2 for a
pointer.

Matrix variables use a minimum of 12 bytes. Two bytes are used for
the variable name, two for the size of the matrix, two for the number of
dimensions and two for each dimension along with four bytes for each of
the matrix elements.

String variables also use one byte of string space for each character
in the string. This is true whether the string variable is a simple string
variable like A$, or an element of a string matrix such as Ql$(5,2).

When a new function is defined by a DEF statement, & bytes are used
to store the definition.

Reserved words such as FOR, GOTQ or NOT, and the names or the
intrinsic functions such as COS, INT and STR$ take up only cne byte of
program storage. All other characters in programs use one byte of pro-
gram storage each.

When a program is being executed, space is dynamically allocated on
the stack as follows:

1) Each active FOR...NEXT loop uses 16 bytes.
2) Each active GOSUB (one that has not returned yet) uses 6 bytes.

3) Each parenthesis encountered in an expression uses 4 bytes and
each temporary result calculated in an expression uses 12 bytes.

A7

APPENDIX E

SPEED HINTS

The hints below should improve the execution time of your BASIC pro-
gram. Note that some of these hints are the same as those used to decrease
the space used by your programs. This means that in many cases you can
increase the efficiency of both the speed and size of your programs at
the same time.

1) Delete all unnecessary spaces and REM's from the program. This
may cause a small decrease in execution time because BASIC would otherwise
have to ignore or skip over spaces and REM statements.

2) THIS IS PROBABLY TEE MOST IMPORTANT SPEED HINT BY A FACTOR OF 14.
Use variables instead of constants. It takes more time to con-
vert a constant to its floating point representation than it does to fetch
the value of a simple or matrix variable. This is especially important
within FOR...NEXT loops or other code that is executed repeatedly.

3) Variables which are encountered first during the execution of
a BASIC program are allocated at the start of the variable table. This
means that a statement such as 5 A=0:B=A:C=A, will place A first, B second,
and, C third in the symbol table (assuming line 5 is the first statement
executed in the program). Later in the program, when BASIC finds a refer-
ence to the variable A, it will search only one entry in the symbol table
te find A, two entries to find B and thrse entries to find C, etc.

4) (8K Version} NEXT statements without the index variable. NEXT
is somewhat faster than NEXT I because no check is made to see if the
variable specified in the NEXT is the same as the variable in the most re-
cent FOR statement.

5) Use the 8K version instead of the 4K version. -The 8K version
is about 40% faster than the 4K due to improvements in the floating point
arithmetic routines.

6) The math functions in the 8K version are much faster than their
counterparts simulated in the 4K version. (see Appendix G)

APPENDIX F

DERIVED

FUNCTIONS

The following functions, while not intrinsic to ALTAIR BASIC, can be
calculated using the existing BASIC functions.

FUNCTION

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT
INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
CGSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBQLIC
COTANGENT

FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS

SEC(X)
CSC{X)
COT(X)
ARCSIN(X)
ARCCOS (X)
ARCSEC(X)
ARCCSC (X)
ARCCOT (X)
SINH(X)
COSH (X)
TANH (X)
SECH(X)
CSCH(X)
COTH(X)

Wit n RN

ARGS INH(X)
ARGCOSH (X)
ARGTANH (X)
ARGSECH (X)
ARGCSCH (X)

ARGCOTH (X)

1/C0S(X)
1/SIN(X)
1/TAN (X)

ATN (X/SQR (-X*X+1))

-ATN (X/SQR(-X*X+1)}+1.5708

ATN (SQR (X*X-1))+(SGN(X)-1)*1.5708
ATN(1/SQR(X*X-1))+(SGN(X)-1)*1.5708
-ATN(X)+1.5708

(EXP (X) -EXP (~X))/2

(EXP (X)+EXP(-X))/2

~EXP (-X) / (EXP (X)+EXP (-X)) *2+1

2/ (EXP (X} +EXP (-X))

2/ (EXP (X) -EXP(-X})

EXP (-X)/ (EXP (X} -EXP (-X)) *2+1

LOG (X+SQR (X*X+1))

LOG (X+SQR (X*X-1))

[

LOG{(1+X)/(1-X))/2

LOG{ (SQR(~-X*X+1)+1)/X)

LOG ((SGN (X) *SQR (X*X+1)+1) /X)

LOG((X+1}/(X-1))/2

5

APPENDIX G

SIMULATED MATH FUNCTIONS

The following subroutines are intended for 4X BASIC users who want
to use the transcendental functions not built intoe 4K BASIC. The cor-
responding routines for these functions in the 8K version are much faster
and more accurate. The REM statements in these subroutines are given for
documentation purposes only, and should not be typed in because they take
up a large amount of memory.

The following are the subroutine callis and their 8K equivalents:

8K EQUIVALENT . SUBROUTINE CALL
P9=X94Y9 GOSUB 60030
L9=L0G (X9) GOSUB 60090
E9=EXP(X9) . GOSUB 60160
C9=COS (X9) GOSUB 60240
T9=TAN {X9) GOSUB 60280
A9=ATN (X9) GOSUB 60310

The unneeded subroutines should not be typed in. Please note which
variables are used by each subroutine., Also note that TAN and COS require
that the SIN function be retained when BASIC is loaded and initiazlized.

&0000 REM EXPONENTIATION: PS=X3TY9

0010 REM NEED: EXPa LOG

L0020 REM VARIABLES USED: AT.89-C9+E%.L94P9.X49.Y9

0030 PS=Y : EN=0 : IF Y9=0 THEN RETURN

LOQ4A IF XG9<0Q THEN IF INT(Y9)=YS THEN PO=1-2*YT+U*INT(Y9/2) : X9=-X9
60050 IF X9<>0 THEN GOSUB LOCSO : X9=YS*LY : GOSUB LOLLO
L00LO PS=PS*EY @ RETURN

&0070 REM NATURAL L.OGARITHM: LA=LO0G(X%)

60080 REM VARIABLES USED: AT+B%.C%.E9.L34X1

&OOSO Ef=0 : IF X9<=0 THEN PRINT "LOG FC ERROR": : STOP

OGRS AS=Y : BA=2 : (8=.5 : REM THIS WILL SPEED UP THE FOLLOWING
&OLO0 IF X9>=A9 THEN XT9=C3*X9 : E9=£9+A7 : GOTO LOLOO

E0LI0 IF X3<C3 THEN XF=BF*X® : E9=£9-A5 : GOTO LOL1O

BO120 X9=(X9~.707107) / (X59+.707107) : L9=X9*X9

0130 L9=(((. 528979*L3+. GeiH7D) *L 3+ . 88537) *X+ET-. 5) * L5347
50135 RETURN :
EO0L40 REM EXPONENTIAL: ES=EXP(X%)

60150 REM VARIABLES USED: A9.E94L9.X9

0160 LA3=INT (1.4427*X9)+1 : IF L9<127 THEN E0LAQ

LOL70 IF X9>0 THEN PRINT "EXP OV ERROR": : STOP

&0L7?5 E9=0 ¢ RETURN

E01a0 Ef=.&93147*L9-XT : AS=1l.32988E-3-1-4131LE-4*ET

BOLF0 AT={ (AT*ES-d.30L3kE-3) *ET+4. LE574E-2) *£9

601485 Ef=(((AT-» 1hbbES) *EF9+. 5) *EF-L1) *E9+1 : AS=2

BOLT? IF LA<=0 THEN A9=.5 : LA=-L9 : IF L9=0 THEN RETURN

L))

BO200 FOR X9=1 TO LT = Ef=A9*ET : NEXT X3 : RETURN

L0220 REM COSINE: CH=COS(X9)

k0220 REM N.B. SIN MUST BE RETAINED AT LOAD-TIME

60230 REM VARIABLES USED: (9.X9

LOZH0 CF=SIN(X9+L.5708) : RETURN

E0230 REM TANGENT: T9=TAN(X9)

EO2E0 REM NEEDS COS. (SIN MUST BE RETAINED AT LOAD-TIME)

&0270 REM VARIABLES USED: C3.7%.X9 :

E0280 GOSUB kOZ40 3 TF=SIN(XT)/CT : RETURN

0290 REM ARCTANGENT: AS=ATN(XS)

&0300 REM VARIABLES USED: A9-B9.(T9.T9.X9

L0310 TS=SGN(XT): X9=ABS(XT): C9=0 : IF X9>1 THEN (8=l : X9=1/X%

&0320 Af=XT*XT : BR=((2.8LbI3E-3*A9~1.L1L57E-2) *AT+Y4.S90T6E~2) *AT
B0330 B=((((B-7.528%9E~2) *AT+. L0L5L3) *AT-. LU2089) *AT+. 15993%R) *A9
60340 Af=((B9~.333332) *A9+1)*Xq : IF (9=1 THEN A9=1.5708-A9

L0350 Af=T9*A® : RETURN

(7]

APPENDIX H

CONVERTING BASIC PROGRAMS NOT WRITTEN FOR THE ALTAIR

Though implementations of BASIC on different computers are in many
ways similar, there are some incompatibilites which you should watch for
if you are planning to convert some BASIC programs that were not written
for the ALTAIR.

1) Matrix subscripts. Some BASICs use " ["and "] " to denote
matrix subscripts. ALTAIR BASIC uses " (" and ") ™,

2) Strings. A number of BASICs force you to dimemsion (declare)

the length of strings before you use them. You should remove all
dimension statements of this type from the program. In some of

these BASICs, a declaration of the form DIM A$(I,J) declares a string
matrix of J elements each of which has a length I. Convert DIM
statements of this type to equivalent ones in ALTAIR BASIC: DIM A$(J).

ALTAIR BASIC uses " + " for string concatenation, not " , " or ' § ',

ALTAIR BASIC uses LEFTS, RIGHTS$ and MIDS to take substrings of
strings. Other BASICs use A$(I) to access the Ith character of
the string A§, and A${I,J) to take a substring of A$ from charac-
ter position I to character position J. Convert as follows:

OLD NEW
AS(D) MIDS (A$,I,1)
A$(1,T) MID$ (A$,I,J-1+1)

This assumes that the reference to a substring of A§ is in an expres-
sion or is on the right side of an assignment. If the reference to
AS is on the left hand side of an assignment, and X$ is the string
expression used to replace characters in A$, convert as follows:

oLD NEW
AS(I)=X$ A$=LEFT$(A$,I-1) +X$+MIDS (AS,I+1)
A$(I,J)=X$ A$=LEFT$(A$,I-l)+X$+MID$(A$,J+l]

3) Multiple assignments. Some BASICs allow statements of the
form: 500 LET B=C=0. This statement would set the variables B
& C to zero.

In 8K ALTAIR BASIC this has an entirely different effect. All the

" ='s " to the right of the first one would be interpreted as logical
comparison operators. This would set the variable B to -1 if C
equaled 0. If C did not equal 0, B would be set to 0. The easiest
way to convert statements like this one is to rewrite them as follows:

"8

500 C=0:B=C.

4) Some BASICs use "\ " instead of " : " to delimit multiple
- statements per line. Change the " \'s " to " :'s " in the program.

5} Paper tapes punched by other BASICs may have no nulls at the end
of each line, instead of the three per line recommended for use with
ALTAIR BASIC.

To get around this, try to use the tape feed control on the Telestype
to stop the tape from reading as soon as ALTAIR BASIC types a car-

riage return at the end of the line. Wait a second, and then continue
feeding in the tape,

When you have finished reading in the paper tape of the program, be
sure to punch a new tape in ALTAIR BASIC's format. This will save
you from having to repeat this process a second time.

6) Programs which use the MAT functions available in scme BASICs

will have to be re-written using FOR...NEXT loops to perform the
appropriate operations. :

63

APPENDIX I

USING THE ACR INTERFACE

NOTE: The cassette features, CLOAD and CSAVE, are only
present in 8K BASICs which are distributed on cassette.
8K BASIC on paper tape will give the user about 130 more
bytes of free memory, but it will not recognise the CLOAD
or CSAVE commands.

The CSAVE command saves a program on cassette tape. CSAVE takes one
argument which can be any printing character. CSAVE can be given directly
or in a program. Before giving the CSAVE command start your audio recorder
on Record, noting the position of the tape.

CSAVE writes data on channel 7 and expects the device status from
channel 6. Patches can easily be made to change these channel numbers.

When CSAVE is finished, execution will continue with the next state-
ment. What is written onto the tape is BASIC's internal representation
of the program in memory. The amount of data written onto the tape will
be equal to the size of the program in memory plus seven.

Variable values are not saved on the tape, nor are they affected by
the CSAVE command. The number of nulls being printed on your terminal
at the start of each line has no affect on the CSAVE or CLOAD commands.

CLOAD takes its one character argument just llke the CSAVE command
For example, CLOAD E.

The CLOAD command first executes a YNEW' command, erasing the cur-
rent program and all variable values. The CLOAD command should be given
before you put your cassette recorder on Play. ‘

BASIC will read a byte from channel 7 whenever the character ready
flag comes up on channel 6. When BASIC finds the program on the tape,
it will read all characters received from the tape into memory until it
finds three consecutive zeros which mark the end of the program. Then
BASIC will return to command level and type "OK".

Statements given on the same line as a CLOAD command are ignored.
The program on the cassette is not in a checksummed format, so the pro-
gram must be checked to make sure it read in properly.

If BASIC does not return to command level and type “OK", it means
that BASIC either never found a file with the right filename character,
or that BASIC found the file but the file never ended with three con-
secutive zeros. By carefully watching the front panel lights, you can
tell if BASIC ever finds a file with the right name.

Stopping the ALTAIR and restarting it at location 0 will prevent
BASIC from searching forever. However, it is likely that there will
either be no program in the machine, or a partial program that has errors.
Typing NEW will always clear out whatever program is in the machine,

Reading and writing data from the cassette is done with the INP, OUT
and WAIT statements. Any block of data written on the tape should have
its beginning marked with a character. The main thing to be careful of
is allowing your program to fall behind while data passes by unread.

Data read from the cassette should be stored in a matrix, since

64

there isn't time to process data as it is being read in. You will pro-
bably want to detect the end of data cn the tape with a special character.

85

At location 4050=7722 Base 8 put:

7722/333 IN 285 ; (255 Base 10=377 Base 8) Get
7723/377 ;the value of the switches in A
7724/107 MOV B,A ;B gets low part of answer
7725/257 XRA A ;A gets high part of answer
7726/052 LHLD 6 ;get address of routine
7727/006 -

77307000 : s;that floats [A,B]

7731/351 PCHL 380 to that routine which will

sreturn to BASIC
swith the answer

MORE ON PEEK AND POKE (8K VERSION ONLZY)

As mentioned before, POKE can be used to set up your machine language
routine in high memory. BASIC does not restrict which addresses you can
POKE. Modifying USRLCC can be accomplished using two successive calls to
POKE. Patches which a user wishes to include in his BASIC can also be
made using POKE.

Using the PEEK function and OUT statement of 8K BASIC, the user can
write a binary dump program in BASIC. Using INP and POKE it is possible
to write a binary loader. _

PEEK and PCKE can be used to. store byte oriented information. When
you initialize BASIC, answer the MEMORY SIZE? question with the amount of
memory in your ALTAIR minus the amount of memory you wish to use as stor-
age for byte formatted data.

You are now free to use the memory in the top of memory in your ALTAIR
as byte storage. See PEEK and POKE in the Reference Material for a further
description of their parameters.

58

APPENDIX K

ASC1I CHARACTER CODES

DECIMAL CHAR. - DECIMAL CHAR, DECIMAL

CHAR.
000 NUL 043 -+ 086 '8
001 SOH 044 ’ . 087 W
002 STX 045 - - 088 X .
003 ETX . 046 . 089 Y
004 EQT 047 /o - 090 yA
005 ENQ 048. © 0 091 [
006 ACK _ 049 1 092 A\
007 BEL 0s¢ 2 093 1
008 BS 051 3 094 .
009 . .. HT \ 052 4 095 -
010 . LF . 053 5 096 o~
011 - VT . | 054 6 097 a.
012 FF - 055 7 098 b -
013 CR 056 8 099 c
014 SO 057 9 100 !
015 SI 0s§ - ¢ 101 e
016 DLE 059 5 0102 £
017 DC1 060 < 103 g
018 ncz - 061 = 104 h
019 - DC3 o 062 > 105 . i
020 DCc4 063 ?- 106 e
021 NAK . 064 - @ CL07 0 ko
022 SYN 065 A 108 L1
023 ETB 066 B 108 .. w7’
024 CAN. 067 = - -C 110 ° . n
025 EM 068 D 111 o
026 SUB 069 E 112 p
027 ESCAPE 070 F 113 q
028 FS 071 G 114 T
029 -GS 072 H 115 s
030 RS _ 073 I 116 t
031 Us 074 J 117 u
032 SPACE 075 K 118 v
033 ! _ 076 L 119 w
034 1" 077 M 120 X
035 # 078 N 121 y
036 $ 079) 122 z
037 % 080 P 123 {
038 & 081 Q 124 |
039 o 082 R 125 ¥
040 (083 S 126 s
041) 084 T 127 DEL
042 * 085 u
LF=Line Feed FF=Form Feed =~ CR=Carriage Return DEL=Rubout

59

.

CHR$ is a string function which returns a one character string which
contains the ASCII equivalent of the argument, according to the conversion
table on, the preceeding page. ASC takes the first charac;er of a string
and converts it to its ASCII decimal value. :

-,,Ong\of the_most common uses of CHR§ is to send a special character
to the user's terminal. The most often used of these characters is the
BEL (ASCII 7). Printing this character will cause a bell to ring on some
terminals and a “beep' on many CRT's. This may be used as a preface to
~ dn error message, as a novelty, or Just to wake-up the usez if he has
fallen asleep. (Example: PRINT CHR$(7);)

A major use of special characters is on those CRT's that have cursor
positieoninig and other special functions (such as turnlng on a hard copy
prlnter)

As an exampié,'try sehding a form feed (CHR$(12}) to your CRT. On
most CRT's this will usually cause the screen to erase and the cursor to
""home'' or move to the upper left corner.

“Sdme'CRT's giﬁe the user the capability of drawing graphs and curves

in a special point-plotter mode. This feature may easily be taken advan-
tage of through use of ALTAIR BASIC's CHR$ function.

?ﬂ

APPENDIX L

~EXTENDED BASIC

When EXTENDED BASIC is sent out, the BASIC manual will be updated
to contain an extensive section about EXTENDED BASIC. Also, at this'time -
the part of the manual relating to the 4K and 8K versions will be revised
to correct any errors and explain more carefully the areas users are hav-
ing trouble with. = This sect;on is. here mainly to explaln what EXTENDED
BASIC will contaln.

D ke
w e

INTEGER VARIABLES These are stored ‘as. double byte 51gned quantitles
ranging from -32768 to +32767. They take up half as much space as‘normal *°-
variables and are about ten times as fast for arithmetic. They are denoted
by using a percent sign (%) after. the variable name. The user: doesn’t -)
have to worry about conversion. and can mix integers with other: varxable _j”"
types in expressions. The speed improvement caused by using integers for”
loop variables, matrix indices, and as arguments to functions such as
AND, OR or NOT will be substantial.. An integer matrix of the same dlmen— N
sions as a floatlng point matrix w1ll requ1re half as much memory s i';n

DOUBLE-PRECISION Double»Prec151on varlables are almost the, oppo- .
site of integer variables, requiring twice as much space (8bytes per value)h,
and taking 2 to 3 times as long to do arithmetic as 51ng1e-preci510n o
variables. Double-Precision varigbles are denoted by using a number sign
(#) after the variable name. They provide over 16 digits of accuracy.
Functions 1like SIN, ATN and EXP will convert their arguments to single-
precision, so the results of these functions will only be good to 6 digits.,
Negation, addition, subtraction, multiplication, division, comparision,
input, output and conversion are the only routines that deal with Double-
Precision values. Once again, formulas may freely mix Double-Precision
values with other numeric values and conversion of the other values to
Double-Precision will be done automatically.

PRINT USING Much like COBOL picture clauses or FORTRAN format
statements, PRINT USING provides a BASIC user with complete control over
his output format. The user can contrel how many digits of a2 number are
printed, whether the number is printed in scientific notation and the
Placement of text in output. All of this can be done in the 8K version
using string functions such as STR$ and MID§, but PRINT USING makes it
much easier.

DISK I/0 EXTENDED BASIC will come in two versions, disk and non-
disk, There will only be a copying charge to switch from one to the
other. With disk features, EXTENDED BASIC will allow the user to save and
recall programs and data files from the ALTAIR FLOPPY DISK. Random ac-
cess as well as sequential access will be provided. Simultaneous use of
multiple data files will be allowed. Utilities will format new disks,
delete files and print directories., These will be BASIC programs using
special BASIC functions to get access to disk information such as file
length, etc. User programs can also access these disk functions, enabling
the user to write his own file access method or other special purpose

n

disk routine. The file format can be changed to allow the use of ‘other
(non-floppy) disks. This type of modification will be done by MITS under
special arrangement.

OTHER FEATURES Other nice features which Qiii be added are:

_ Fancy Error Messages ,
An ELSE clause in IF statements-
LIST, DELETE commands with line rangé as arguments
Deleting Matrices in a program
TRACE ON/OFF commands to monitor pragram flow = . < °.-
' EXCHANGE statement to switch variable values (this-will speed
up string sorts by at least a factor of two).
Multi-Argument, user defiped functions with string arguments -
and values allowed.

Other features contemplated for future release are:

A multiple user BASIC
Explicit matrix manipulation
Virtual matrices

Statement modifiers

Record I/0

Paramaterized GOSUB
Compilation _ :
Multiple USR- functzons o
"Chaining'

EXTENDED BASIC will use about 11K of memory for its own code (10K
for the non-disk version) leaving 1K free on-a 12K machine. It will take
almost 20 minutes to load from paper tape, 7 minutes from cassette, and
less than 5 seconds to load from disk.

We welcome any sugcestlons concernlng current features or possible

additions of extra features Just send them to the ALTAIR SOFTWARE
DEPARTMENT.

12

BASIC.
1)
2)
3)

Below are a few of the many texts that may be helpful in learnlng

APPENDIX W

?;ABASIC.TEXT81

R

bl
T

BASIC PROGRAMMING John G. Kemeny, Thoﬂas E Kurtz, 1967 9145

wl:, e

BASIC, Alprecht, Finkel-and Brown, 1973 -'oj; j;*J;;

A GUIDED TQUR OF COMPYUTER: PROGRAMMING N BASIC Thomas ﬁ Dwyer

. ‘and Michae]-S. Kaufman, "Boston:, Houghton Mifflin Co s 1973

Books. numbered l & 2 may be ob*ained from-?

They also have other books of intéfeét, sucﬁoésf:“

People's Computer Company i

P.0. Bex. 310 S R

Menlo Park, Cal;fornla S
94025 = T

. .~ . ¢
et - - m

101 BASIC GAMES, £d. David Ahl, 1874 p2s0 . 0%

WHAT TO DO _AFTER YOU HIT RETURN or PCC's FIRST ;i;fﬁ;ii “

BOOK OF COMPUTER GAMES

CGMPUTER LIB & DREAM WACHINES Theodore H. Nelson, 1974 plﬁ6'ﬂ:;

PR

. s
e e

13

P

Mmn<sn

2450 Alamo SE
Albuquerque, NM 87106

