
6800 FLEXTM Adaptation Guide

COPYRIGHT © 1980 by
Technical Systems Consultants, Inc.

P.O. Box 2570
West Lafayette, Indiana 47906

All Rights Reserved

TM FLEX is a trademark of Technical Systems Consultants, Inc.

COPYRIGHT NOTICE

l — This file is created and distributed by the Flex User's Group,
and includes material which has already been distributed. It is
created with permission from the owner of the original material,
who owns and retains the rights to said material.

2 — It cannot be copied, transmitted, printed, sold, leased or
otherwise communicated in paper, optical, magnetic or electronic
form, in exchange for money or any monetary instrument.

3 — The contents of this file have not been checked for accuracy.
The Flex User's Group makes no statement regarding the contents of
this file, and disclaims any and all liabilities on the use of
such material. It is understood that this material contains
errors, some of which exist in the original material, some of
which do not exist in said original material.

4 — Any transmission, use, copying, display, printing, or reading
of this material implies full understanding and approval of the
above terms.

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enjoyment of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibited. Use of this program, or any part thereof, for
any purpose other than single end use by the purchaser is prohibited.

DISCLAIMER

The supplied software is intended for use only as described in this manual. Use of
undocumented features or parameters may cause unpredictable results for which
Technical Systems Consultants, Inc. cannot assume responsibility. Although every effort
has been made to make the supplied software and its documentation as accurate and
functional as possible, Technical Systems Consultants, Inc. will not assume responsibility
for any damages incurred or generated by such material. Technical Systems Consultants,
Inc. reserves the right to make changes in such material at any time without notice.

DISCLAIMER

PLEASE READ BEFORE OPENING THE DISKETTE ENVELOPE!

This version of FLEX is not for beginners. It is assumed that the
user has a good knowledge of assembly programming and of his
hardware. Technical Systems Consultants, Inc, cannot and will not
be held responsible for the adaptation of FLEX nor for the
operation of the resulting product. FLEX has been proven in the
field for over two years and the adaptation procedure has been
tested on numerous systems. For these reasons:

NO TECHNICAL ASSISTANCE FOR THE ADAPTATION OF FLEX WILL BE
PROVIDED BY TECHNICAL SYSTEMS CONSULTANTS, INC!

Knowing this, read the FLEX Adaptation Guide thoroughly and make a
decision as to whether or not you are capable of performing the
adaptation without assistance. If not, Technical Systems
Consultants, Inc, will refund your money (less shipping and damage
charges) if you return the manual and diskettes IN THEIR UNOPENED
ENVELOPE. Once the diskette envelope has been opened, no returns
will be accepted!

iii

COPYRIGHT INFORMATION

General Copyright Information

The entire contents of this manual and information stored on the
two supplied diskettes are copyrighted by Technical Systems
Consultants Inc, of West Lafayette, Indiana. It has been sold to
you on a "single end user" basis. This means that it is supplied
for a single computer installation. It is certainly permissible to
make copies of the disk data for that installation. If, however,
it becomes necessary to run the program on more than one computer
at a time, additional copies must be purchased from the supplier.
Honoring copyright laws will encourage continued software
development and support... software theft will not.

Important note to Manufacturers, Distributors, and Dealers

This package is to be redistributed or sold exactly as-is. In
particular it is strictly forbidden to distribute versions of FLEX
which have already been adapted for a particular system. To do
this legally would require a license. It is permissible to supply
a separate listing of the code required to perform the adaptation
so that anyone could accomplish it.

OPENING THE DISKETTE ENVELOPE SHALL SIGNIFY THE

 CUSTOMER'S AGREEMENT TO THESE COPYRIGHT NOTICES.

TABLE of CONTENTS

Section Page

1.0 Introduction . 1
1.1 Important Documents 1
1.2 What You Receive 1
1.3 System Requirements 1
1.4 How to Use the Adaptation Guide 2

2.0 The FLEX Disk Operating System 3
2.1 Disk Operating System Concepts 3
2.2 A Brief Overview of FLEX Adaptation 4
2.3 FLEX Disk Format 5

3.0 The Console I/O Driver Package 6
3.1 Console Driver Routine Descriptions 6
3.2 Implementing the Console I/O Drivers 8

4.0 The Disk Driver Package 9
4.1 The Disk Driver Routines 9
4.2 Disk Driver Routine Specifications 10
4.3 Developing the Disk Driver Routines 12
4.4 Overflowing the Disk Driver Area 14

5.0 Testing the Disk Driver Routines 15
5.1 Preparing a Disk 15
5.2 Tests Without Using a Supplied Disk 16
5.3 Testing the READ Routine 17
5.4 Testing the WRITE Routine 19
5.5 Testing the VERIFY Routine 21

6.0 Bringing Up the Initial Version of FLEX 22
6.1 Loading FLEX with QLOAD 22
6.2 Testing FLEX with Read-Only Commands 23
6.3 Testing FLEX with Write Commands 23
6.4 Using this Version of FLEX 24

7.0 Preparing a Bootable Version of FLEX 25

8.0 Bootstrap Loading of FLEX 26
8.1 The Concept of Bootstrap Loading 26
8.2 Writing a ROM Boot Program 27
8.3 Writing a FLEX Loader Program 28
8.4 Hints on a Two Sector FLEX Loader 29

9.0 The NEWDISK Routine 30
9.1 The General NEWDISK Procedure 30
9.2 A Western Digital NEWDISK Example 33
9.3 Hints on a Non-Western Digital NEWDISK 33
9.4 Sector Interleaving 34

vii

TABLE of CONTENTS (Continued)

Section Page

10.0 Printer Spooling and Interrupt Handling 36

10.1 Hardware Requirements 36
10.2 Firmware Requirements 36
10.3 Console I/O Drivers for Printer Spooling 37
10.4 Disk Driver Changes for Printer Spooling 38

11.0 Advanced Disk Adaptation 39
11.1 Double-Sided Disks 39
11.2 Double-Density Disks 40
11.3 Other Disk Configurations 42
11.4 NEWDISK Routines 42

12.0 Additional Customization 43
12.1 Setting a Default MEMEND 43
12.2 Altering the FLEX Date Prompt 43
12.3 Replacing Printer Spooler Code 44
12.4 Mapping Filenames to Upper Case 45

13.0 Miscellaneous Suggestions 46
13.1 Replacement Master FLEX Disks 46
13.2 Initialized Disks Available 46
13.3 The FLEX Newsletter 46
13.4 Single Drive Copy Program 47
13.5 Give Us Some Feedback 47

APPENDICES

Appendix A - 6800 FLEX Memory Map 48
Appendix B - Disk Formats 49
Appendix C - READ/WRITE Test Utility 51
Appendix D - Quick FLEX Loader Utility 55
Appendix E - Skeletal FLEX Loader 57
Appendix F - Skeletal NEWDISK Routine 59
Appendix G - Sample Adaptation for SWTPc MF-68 76

 l) Console I/O Driver Package 79
 2) Disk Driver Package 82
 3) ROM Boot Program 87
 4) FLEX Loader Program 88
 5) NEWDISK Program 91

viii

6800 FLEX Adaptation Guide

1.0 INTRODUCTION

1.1 Important Documents

There are two very important documents which ABSOLUTELY MUST be read
before continuing. The first is a yellow disclaimer document and the
second is a green copyright information sheet. They should be the first
two sheets of this manual. These two documents are perhaps the most
important reading in the entire set of FLEX documentation and it is
imperative that the user read and fully understand them before attempting
any adaptation of FLEX.

1.2 What You Received

The general version of FLEX should include the following items:

 l) FLEX Adaptation Guide
 2) FLEX User's Guide
 3) FLEX Advanced Programmer's Guide
 4) Text Editing System Manual
 5) Assembler Manual
 6) Two diskettes sealed in an envelope
 7) Yellow Disclaimer Sheet
 8) Green Copyright Information Sheet
 9) Loose-leaf binder

If you are missing any of these items, contact our order department
immediately.

1.3 System Requirements

In order to perform the adaptations and to run FLEX, there are certain
hardware and software or firmware requirements. Specifically they are:

 1) Computer system with 8K of RAM at $A000 and at least 12K of
 RAM beginning at location $0000.
 2) A system console or terminal such as a CRT terminal or printer
 terminal.
 3) A single 8 or 5 1/4 inch disk drive with controller capable of
 running soft-sectored format with 256 byte sectors.
 4) A monitor ROM or some program affording the ability to begin
 execution at any desired point and to enter code into the
 system. This coding may be done by hand, but some sort of
 storage method such as cassette or paper tape would be
 helpful. Additionally, since the user is required to write
 several routines, an editor/assembler package will make the
 adaptation much easier.

Page 1 - Section 1

6800 FLEX Adaptation Guide

1.4 How to use the Adaptation Guide

This manual contains all of the necessary instructions for the adaptation
of FLEX to any system meeting the requirements listed above. This
adaptation is not a simple step, however, and you may save some headaches
by beginning the process in the correct order as explained shortly.
Before attempting to install FLEX, the manuals should be read and
understood. A good order for reading the manuals is to read section 2 of
this Adaptation Guide titled 'The FLEX Disk Operating System', then read
the FLEX User's Guide (not necessarily reading all the command
descriptions therein), and then read the remainder of this Adaptation
Guide. After reading all this material, be sure to re-read the yellow
disclaimer sheet and decide whether you are capable of performing the
adaptations.

One suggestion that will be made often in this manual is to keep things
simple. Since you are starting from the ground up, it will be best to
keep all routines simple at first. Once things are running in the
simplest, lowest level form, it will be much easier, using the now
available FLEX facilities, to improve the routines and add new devices.

Page 2 - Section 1

6800 FLEX Adaptation Guide

2.0 The FLEX DISK OPERATING SYSTEM

2.1 Disk Operating System Concepts

For those users who are new to disk operating systems, it might be
appropriate to briefly discuss some basic concepts. There are two major
reasons to have an operating system. First is that it relieves the
programmer from the task of writing the low-level I/O and file management
routines each time a piece of software is written. That work has all been
done by the authors of the operating system allowing the user to
concentrate on his application software. The second major reason is that
it removes all hardware interfacing from the application program. This,
of course, makes application programs shorter and easier to write, and
has the added advantage of making the application program transportable
to any computer system running the same operating system. The advantages
of software transport-ability should be immediately obvious.

The FLEX Disk Operating System was originally designed to support a
single-user system with floppy disks. As we shall see however, it is not
restricted to floppy disks only. FLEX contains routines to handle all the
"low-level" tasks associated with maintaining data on disks. Rather than
having to write programs which must keep track of what data is where on
the disk, worry about how much space is available, control the selection
of drives, seek to tracks, load the head, etc., the programmer can let
FLEX take care of these duties and merely keep track of his data by named
files. A "file" is simply a collection of data which is stored on the
disk under a unique "filename". It can contain anything from a source
listing to a collection of data from a BASIC program to the text for a
letter. FLEX maintains a directory on track 0 (the outermost track) which
contains the name and starting address (track and sector number) of each
file stored on the disk. The user program can call on FLEX routines to
create such files, write data to them, read data from them, delete them,
load them into memory, rename them, etc. FLEX also has several user-
accessible “convenience" routines which have nothing to do with the disk,
but allow the user to do things like print a string, get a decimal number
from the input line, classify a character, etc. In general, FLEX is a
very powerful tool which saves application programs (and programmers)
from doing a lot of housekeeping chores.

Page 3 - Section 2

6800 FLEX Adaptation Guide

2.2 A Brief Overview of FLEX Adaptation

To make things more clear as you progress through the adaptation
procedure, let's go through a brief summary of the steps involved. The
whole idea of the adaptation process is to perform the necessary steps to
interface FLEX to your particular hardware. The main body or core of FLEX
does not care what kind of hardware it is running on. It communicates
with the actual hardware through two packages of routines which must be
user written and which are unique for various hardware configurations.
The core of FLEX doesn't change - only these two hardware interface
packages. These packages are a set of low-level disk driver routines and
a set of console or terminal I/O routines. Throughout the manual we will
refer to these packages as the DISK DRIVERS and the CONSOLE DRIVERS
respectively. As an example, when FLEX wants to read a sector of
information from the disk, the core of FLEX doesn't care what kind of
disk it is or where it is located. The core of FLEX simply asks the disk
driver package to read sector number 4 on track number 18 and expects it
to do whatever it must to read that sector. Thus the heart of the
adaptation process is writing the routines for the Console Driver and
Disk Driver packages.

(l) The first step is to write "Console I/O Driver" and "Disk Driver"
routines for interfacing to the system console or terminal and to the
disk controller. The development of these routines may be carried out in
a number of ways. If the user has access to another 6800 development
system with editor and assembler, he should by all means take advantage
of that power. Alternatively, it may be necessary to write the routines
on the system being adapted. This implies that either some sort of tape
editor and assembler must be used or the routines must be hand-assembled
into object code. In either case, it is convenient to have a mass storage
device on-line to save and load the drivers during development.

(2) Once the drivers are written, they must be fully tested. A program is
provided to aid in testing the Disk Drivers.

(3) After the drivers have been proven functional, a short program is
supplied which will allow FLEX to be loaded in from disk. The FLEX on
disk has no drivers, but when loaded into memory will make use of the
resident, user supplied drivers. Once this FLEX is in memory and running,
any of the features of FLEX can be utilized. For example the disk editor
and assembler can be used to develop the remaining software required for
a complete system.

(4) The user will now save his drivers on disk and append them onto the
core of FLEX to produce a complete version of FLEX on the disk.

(5) In order to load the full version of FLEX, a couple of bootstrap
loader routines are required. Once these are written and tested, the FLEX
system is basically complete and may be easily booted up at will.

(6) There is one further routine that must be user supplied which
communicates directly with the disk hardware. That is the "NEWDISK"
routine which initializes a blank disk to the format required by FLEX.

Page 4 - Section 2

6800 FLEX Adaptation Guide

When the NEWDISK routine is functional, the user has a complete, fully
interfaced version of FLEX! At this point the user may go back and
upgrade the initial driver packages to include advanced features such as
double-sided double-density disks, printer spooling, hard disks, etc.

Appendices E and F have listings of skeletal bootstrap loader and NEWDISK
routines. The source listings of these routines are also on the supplied
FLEX disks. Once FLEX is running, the user may wish to make use of these
source files as a starting point for his own loader and NEWDISK routines.

2.3 FLEX Disk Format

There is a defined format for FLEX disks which is essentially IBM floppy
disk compatible, but uses 256 bytes per sector. Track number 0 (the
outermost track) is reserved for system information and directory. The
remainder is available for user files. Each file may be thought of as a
chain of sectors which are linked together. This linking is accomplished
by placing the track and sector address of the next sector in the chain
into the first two bytes of a sector's data. The third and fourth bytes
of each sector are reserved for a value used in random file accessing
techniques. Thus each data sector on the disk is actually only capable of
holding 252 bytes of user data. The last sector in a file chain has a
forward link (track and sector address) of zero which marks it as the
last sector. All the sectors on the disk which are not part of a file are
linked together in the same fashion as a file, but are collectively
called the "free-chain" and are not treated as a normal file. The
directory, which starts with sector number 5 on track 0, is also just a
chain of sectors. This chain initially contains all the sectors from
number 5 up on track 0, but can grow out onto other tracks if necessary.
Track 0 sector 3 is called the "System Information Record" and maintains
certain data about the disk such as where the free-chain is located, the
number of sectors per track, the disk name, etc. Sectors 1 and 2 on track
O are reserved for a bootstrap loader. Further details about disk formats
for double-sided and double-density disks may be found in Appendix B.

Page 5 - Section 2

6800 FLEX Adaptation Guide

3.0 The CONSOLE I/O DRIVER PACKAGE

In order to operate FLEX, it is necessary to have a system console or
terminal connected to the computer. This unit can be a CRT terminal,
printing terminal, or most any keyboard/display device. Since this device
can differ from installation to installation, it is necessary that the
user adapt his particular console to FLEX. This adaptation is done
through the Console I/O Driver package or simply the Console Drivers.
Anytime FLEX must perform input or output to the system console, it does
so by using the routines provided in this package.

As we shall see later, FLEX has the ability to perform printer spooling.
Printer spooling requires the use of interrupts and a hardware interval
timer. This timer can vary from installation to installation as can the
interrupt routine handling procedure. Thus the interrupt handling and
timer control routines must be user supplied. These routines are also
included in what is called the Console I/O Driver package even though
they really are not associated with the console. In this section, we will
merely point out where these interrupt routines are located. Full
descriptions will be given in a later section. It is not necessary to
have them in order to bring up FLEX and in fact many users will not be
able or will not desire to implement the printer spooling feature.

3.1 Console Driver Routine Descriptions

A small portion of the 8K space where FLEX resides has been set aside for
the Console Drivers. This area begins at $B390 and runs through $B3E4. If
the user's driver routines do not fit in this space, the overflow will
have to be placed somewhere outside the 8K FLEX area. To inform FLEX
where each routine begins, there is a table of addresses located between
$B3E5 and $B3FC. This table has 12 two-byte entries, each entry being the
address of a particular routine in the Console I/O Driver package. It
should look something like this:

* CONSOLE I/O DRIVER VECTOR TABLE

 ORG $B3E5 TABLE STARTS AT $B3E5
INCHNE FDB XXXXX INPUT CHARACTER W/O ECHO
IHNDLR FDB XXXXX IRQ INTERRUPT HANDLER
SWIVEC FDB XXXXX SWI VECTOR LOCATION
IRQVEC FDB XXXXX IRQ VECTOR LOCATION
TMOFF FDB XXXXX TIMER OFF ROUTINE
TMON FDB XXXXX TIMER ON ROUTINE
TMINT FDB XXXXX TIMER INITIALIZATION
MONITR FDB XXXXX MONITOR ENTRY ADDRESS
TINIT FDB XXXXX TERMINAL INITIALIZATION
STAT FDB XXXXX CHECK TERMINAL STATUS
OUTCH FDB XXXXX OUTPUT CHARACTER
INCH FDB XXXXX INPUT CHARACTER W/ ECHO

The 'XXXXX's represent the address of the particular routine listed.

Page 6 - Section 3

6800 FLEX Adaptation Guide

The individual routines associated with actual console I/O are described
here. Those associated with the timer and interrupts are deferred to a
later section. They will simply be disabled for now.

INCH Address at $B3FB
This routine should get one ASCII input character from the
terminal and return it in the 'A' accumulator with the parity
bit (the highest order bit) cleared. If no character has been
typed when the routine is started, it must wait for the
character. The character should also be echoed to the output
device. Only 'A' and the condition codes may be modified.

INCHNE Address at $B3E5
This routine inputs a single character exactly like the INCH
routine described above with the one exception that it does
NOT echo the input character to the output device. As with
INCH, only 'A' and the condition codes may be modified.

OUTCH Address at $B3F9
This routine should output the character found in the 'A'
accumulator to the output device. If the output device
requires the parity bit to be cleared, that can be done here.
No registers should be modified except condition codes.

STAT Address at $B3F7
This routine checks the status of the input device. That is to
say, it checks to see if a character has been typed on the
keyboard. If so, a Not-Equal condition should be returned (a
subsequent BNE instruction would cause a branch). If no
character has been typed, an Equal to zero condition should be
returned. No registers may be modified except condition codes.

TINIT Address at $B3F5
This routine performs any necessary initialization for
terminal I/O to take place. All registers may be destroyed
except for the stack pointer.

MONITR Address at $B3F3
This is the address to which execution will transfer when FLEX
is exited via the MON command. It is generally the reentry
point of the system's monitor ROM. If no monitor is present,
this address could be set to FLEX's warm start ($AD03) which
effectively nullifies this command.

The remaining routines are all associated with interrupt handling and
timer control for printer spooling. For now these routines should simply
be disabled. The three timer control routine vectors (TMINT, TMON, TMOFF)
should point to an RTS instruction. The interrupt handler routine vector
(IHNDLR) should point to an RTI. The two interrupt vector addresses
(SWIVEC and IRQVEC) should point to some area in ROM or some unused
address space such that when FLEX tries to store values into those
points, nothing will happen. An example of these routines may be found in
Appendix G.

Page 7 - Section 3

6800 FLEX Adaptation Guide

3.2 Implementing the Console I/O Driver Routines

At this point, the user should develop the driver routines described
above. The code produced should be entered into the memory spaces named.

If using a terminal which is interfaced through an ACIA (which is the
preferred type), the code can be identical to that given in the sample
Console Drivers found in Appendix G. The only change that may be required
would be the address of the ACIA defined in the EQU statement near the
beginning.

Note that it may be possible to utilize I/O routines already contained in
your system's monitor ROM. If those routines fully meet the
specifications given above, you could simply place the address of each
applicable ROM routine into the vector table.

Once the routines have been entered, test them fully to ensure that they
are functioning properly.

Page 8 - Section 3

6800 FLEX Adaptation Guide

4.0 The DISK DRIVER PACKAGE

All communication between FLEX and the disk hardware controller(s) is
done through a set of 10 routines which comprise the Disk Driver Package.
The main body or core of FLEX is totally isolated from the disk
controller except via these driver routines. In other words, FLEX does
not care what the disk controller or drives look like. It simply calls on
these routines and expects them to do all interfacing with the disk
hardware. Since the disk hardware can vary from installation to
installation, the user must supply these disk driver routines for his
particular system. They control the very basic, low-level disk operations
associated with reading and writing physical disk sectors. All file
handling and character-at-a-time I/O which FLEX performs is built upon
these simple driver routines.

4.1 The Disk Driver Routines

There is memory set aside for the drivers from BE00 to BFFF hex. If
necessary, the routines can overflow into other portions of memory such
as the top of the user RAM area or on top of the printer spooling section
of FLEX if that function will not be used. There are hints later in the
manual for where and how to overflow the allotted driver routine space.
The individual routines can be placed anywhere, but in order for FLEX to
know where they are, a jump table must be defined in the area from $BE80
to $BE9D. It appears as follows.

*
* DISK DRIVER ROUTINE JUMP TABLE
*
BE80 ORG $BE80
BE80 7E XXXX READ JMP XXXXX Read a single sector
BE83 7E XXXX WRITE JMP XXXXX Write a single sector
BE86 7E XXXX VERIFY JMP XXXXX Verify last sector written
BE89 7E XXXX RESTORE JMP XXXXX Restore head to track #0
BE8C 7E XXXX DRIVE JMP XXXXX Select the specified drive
BE8F 7E XXXX CHKRDY JMP XXXXX Check for drive ready
BE92 7E XXXX QUICK JMP XXXXX Quick check for drive ready
BE95 7E XXXX INIT JMP XXXXX Driver initialize (cold start)
BE98 7E XXXX WARM JMP XXXXX Driver initialize (warm start)
BE9B 7E XXXX SEEK JMP XXXXX Seek to specified track

A full description of each of the above mentioned routines follows. Each
lists the necessary entry parameters and what exit conditions must exist.
Note that "(Z)" represents the Zero condition code bit and "(C)"
represents the Carry condition code bit. All other letters in parentheses
represent CPU registers. In most cases the B register is reserved for
"Error Conditions" upon return. If there is no error, the B register may
be destroyed. The "Error Condition" referred to is the status returned by
a Western Digital 1771 or 1791 floppy disk controller chip. Those
statuses are briefly described here. An error is indicated by a "1" in
the indicated bit position.

Page 9 - Section 4

6800 FLEX Adaptation Guide

BIT READ WRITE OTHER
 7 not ready not ready not ready
 6 0 write protect write protect
 5 0 0 0
 4 not found not found seek error
 3 CRC error CRC error CRC error
 2 lost data lost data 0
 l 0 0 0
 0 0 0 0

If the Western Digital chip is not used, these statuses must be
simulated by the user's routines.

4.2 Disk Driver Routine Specifications

READ This routine reads the specified sector into memory at the
specified address. This routine should perform a seek
operation if necessary. A sector is 256 bytes in length.
ENTRY - (X) = Address in memory where sector is to be placed.

(A) = Track Number
(B) = Sector Number

EXIT - (X) May be destroyed
(A) May be destroyed
(B) = Error condition
(Z) = 1 if no error

 = 0 if an error

WRITE This routine writes the information from the specified memory
buffer area to the disk sector specified. This routine should
perform a seek operation if necessary. A sector is 256 bytes
in length.
ENTRY - (X) = Address of 256 memory buffer containing data

to be written to disk
(A) = Track Number
(B) = Sector Number

EXIT - (X) May be destroyed
(A) May be destroyed
(B) = Error condition
(Z) = 1 if no error

= 0 if an error

VERIFY The sector just written to the disk is to be verified to
determine if there are CRC errors. No seek is required as this
routine will only be called immediately after a write single
sector operation.
ENTRY - No entry parameters
EXIT - (X) May be destroyed

(A) May be destroyed
(B) = Error condition
(Z) = 1 if no error
 = 0 if an error

Page l0 - Section 4

6800 FLEX Adaptation Guide

RESTORE A restore operation (also known as a "seek to track 00") is to
be performed on the specified drive. The drive is specified in
the FCB pointed to by the contents of the X register. Note
that the drive number is the 4th byte of the FCB. This routine
should select the drive before executing the restore
operation.
ENTRY - (X) = FCB address (3,X contains drive number)
EXIT - (X) May be destroyed

 (A) May be destroyed
 (B) = Error condition
 (Z) = 1 if no error
 = 0 if an error

DRIVE The specified drive is to be selected. The drive is specified
in the FCB pointed to by the contents of the X register. Note
that the drive number is the 4th byte of the FCB.
ENTRY - (X) = FCB address (3,X contains drive number)
EXIT - (X) May be destroyed

 (A) May be destroyed
 (B) = $F if non-existent drive
 = Error condition otherwise
 (Z) = 1 if no error
 = 0 if an error
 (C) = 0 if no error
 = 1 if an error

CHKRDY Check for a drive ready condition. The drive number is found
in the specified FCB (at 3,X). If the user's controller turns
the drive motors off after some time delay, this routine
should first check for a drive ready condition and if it is
not ready, should delay long enough for the motors to come up
to speed, then check again. This delay should be done ONLY if
not ready on the first try and ONLY if necessary for the
particular drives and controller! If the hardware always
leaves the drive motors on, this routine should perform a
single check for drive ready and immediately return the
resulting status. Systems which do not have the ability to
check for a drive ready condition should simply always return
a ready status if the drive number is valid.
ENTRY - (X) = FCB address (3,X contains drive number)
EXIT - (X) May be destroyed

 (A) May be destroyed
 (B) = Error condition
 (Z) = 1 if drive ready
 = 0 if not ready
 (C) = 0 if drive ready
 = 1 if not ready

QUICK This routine performs a "quick" drive ready check. Its
function is exactly like the CHKRDY routine above except that
no delay should be done. If the drive does not give a ready
condition on the first check, a not ready condition is
immediately returned. Entry and exit are as above.

Page 11 - Section 4

6800 FLEX Adaptation Guide

INIT This routine performs any necessary initialization of the
drivers during cold start (at boot time). Actually, any
operation which must be done when the system is first booted
can be done here.
ENTRY - No parameters
EXIT - X, A, and B may be destroyed

WARM Performs any necessary functions during FLEX warmstart. FLEX

calls this routine each time it goes through the warm start
procedure (after every command). As an example, some
controllers use PIA's for communication with the processor. If
FLEX is exited with a CPU reset, these PIA's may also be reset
such that the controller would not function properly upon a
jump to the FLEX warm start entry point. This routine could
re-initialize the PIA when the warm start was executed.
ENTRY - No parameters
EXIT - X, A, and B may be destroyed

SEEK Seeks to the track specified in the 'A' accumulator. In

double-sided systems, this routine should also select the
correct side depending on the sector number supplied in 'B'.
ENTRY - (A) = Track Number
 (B) = Sector Number
EXIT - (X) May be destroyed (See text)
 (A) May be destroyed (See text)
 (B) = Error condition
 (Z) = 1 if no error
 = 0 if an error

4.3 Developing the Disk Driver Routines

It should be reiterated that the best approach to use in writing these
disk driver routines is one of simplicity in the beginning. The first set
of drivers written should be for a single-sided, single-density floppy
disk. Once these drivers are fully functional and FLEX is up-and-running,
it will be much easier to upgrade them to double-sided or double-density
and to add hard disks or whatever.

The READ and WRITE single sector routines are the heart of the Disk
Driver Package. As mentioned, they must perform a seek operation to the
proper track. It will probably be easiest and most efficient to call on
the SEEK routine described above to perform this operation. If this is
the case, it is important that the user ensure that the exit conditions
of the SEEK routine are compatible with the READ and WRITE routines. For
example, it may be desirable for the SEEK routine to preserve the X
register so that READ and WRITE can assume the memory address for the
sector remains intact across a seek call.

Page 12 - Section 4

6800 FLEX Adaptation Guide

The READ and WRITE routines need not be concerned with retries when
errors are encountered. FLEX takes care of this operation automatically.

CHKRDY and QUICK are used by FLEX to determine if a disk is ready to
carry out some operation. If not, FLEX will report a "drive not ready"
error. Some systems (many minifloppy systems) do not provide the ability
to check for a drive being ready. If this is the case, the best solution
is to simply be sure the drive specified is a valid number and if so,
immediately signal the drive as ready. Thus if a drive is not actually
ready when accessed, it will most likely "hang up" waiting for a disk to
be inserted and the door closed.

In multi-drive systems, it is important that the drivers keep tabs on
which track each drive is left on. This is at least true in the case of
the Western Digital controller chips. On these chips, there is only one
track register and that is for the currently selected drive. If the user
selects another drive and seeks to some track on it, when he comes back
to the first drive he will not know which track he is on. To overcome
this, it will probably be necessary to keep a list of what track each
drive was last on. Whenever the current drive is changed, the current
track for that drive should be saved and the track which the new drive
was last on should be picked up and put in the controller's actual track
register.

The SEEK routine itself should not attempt any reading. Specifically, it
should not attempt to read the sector ID field to determine if it is
actually at the correct track. It simply seeks until it is positioned
over what it thinks is the correct track. If something is wrong and it is
not really on the correct track, the read or write routine will find out
about it and report such an error. Now if this is the case (the drivers
have lost track of what track they are actually on), all should
eventually be corrected by FLEX. When FLEX gets a read or write error
(which may be due to being on the wrong track), it retries several times
on the same track. If none of these tries are successful, FLEX performs a
restore operation and then re-seeks to the specified track. After re-
seeking, FLEX attempts several more reads or writes and if still
unsuccessful, the whole procedure of restoring and re-seeking is
repeated. A total of three such re-seeks and associated retries are
attempted before FLEX finally gives up and reports a read or write error.
It is the restoring and re-seeking that will get the drivers back on the
right track number if they were lost. When a restore operation is
performed, the controller knows exactly which track it is on (track 0)
and can start anew with this correct track number.

If there is enough room, the user may wish to put a check in the SEEK
routine to assure that an illegal track number is not specified. In such
a case, SEEK would have to know what the highest track number should be
and if a supplied track number is greater, an error should be returned.
This error would be a record not found type error.

Page 13 - Section 4

6800 FLEX Adaptation Guide

The RESTORE routine is the only one which must perform a drive select
before carrying out its function (except of course for DRIVE whose
function is to select a drive). All other routines can assume that the
drive has been selected before they were called.

Once the disk driver routines have been written, they should be entered
into memory in the space provided. Also, be sure the jump table is
entered into memory as shown. You should now have a set of Console I/O
Drivers and Disk Drivers in memory. At this point you are ready to test
the routines.

4.4 Overflowing the Disk Driver Area

If the user is unable to fit his disk driver routines in the space
allotted ($BE00 to $BFFF except for the jump table), it is possible to
overflow the routines into other areas. As long as the jump table points
to the beginning of each routine, they can be placed anywhere in memory.
Obviously, it would be best if the routines can be fit in the reserved
space. If not, they could overflow into one of three places: the upper
end of user memory, the printer spooler area (if printer spooling is not
implemented), or additional RAM memory placed above FLEX's $BFFF upper
limit. If the third case is possible, there is absolutely no problem as
that memory would not be used by FLEX or any of its support software.
Using the printer spooler area is a good solution if the printer spooling
feature will not be implemented, but there is one complication. FLEX has
assembled code in the printer spooler area and when FLEX is loaded, this
code is loaded. Thus if the user has placed driver routine code in this
area, loading FLEX will overwrite that code. In later versions of the
drivers, this is no real problem since the drivers will be appended onto
the end of the FLEX file. This means that the drivers would be loaded
over the top of any FLEX code if assembled to the same addresses. For
more information on using the printer spooler area, see Section 12.

At this stage of the development of FLEX, the best place to overflow the
drivers (assuming there is no RAM above FLEX) is at the top of user
memory. For example, if you have 32K of user memory (besides the 8K for
FLEX), you might reserve 256 bytes from 7F00 to 7FFF for drivers. Since
your initial drivers are stored in memory, this would put the overflow
out of the way such that no code in FLEX will load over your drivers. One
caution about this technique - it requires that a different MEMEND value
be set. For our example, the new MEMEND should be $7EFF. For more
information on changing the MEMEND value, consult the FLEX Advanced
Programmer's Guide or see Section 12.

These same overflow techniques can also be applied to the Console I/O
Driver Package if necessary.

Page 14 - Section 4

6800 FLEX Adaptation Guide

5.0 TESTING THE DISK DRIVER ROUTINES

Once the disk driver and console I/O driver routines have all been
written and entered into the computer, we are ready to test the driver
routines. Before doing so, however, it would be wise to save the code for
all the routines onto some mass storage device such as cassette or paper
tape if available. This will allow you to quickly reload the routines
should something go wrong which wipes out memory. The user should attempt
to test these driver routines as fully as possible. Some patience and
thoroughness in this step could save a lot of frustration and delay
later.

5.l Preparing a Disk

At this point we are finally ready to use one of the supplied disks. If
you have read the manual and the yellow disclaimer and feel confident
that you can handle the FLEX adaptation procedure, open the envelope
containing the two disks. The two disks are identical in terms of the
data which has been stored on them. Each contains all the standard FLEX
utility commands and, of course, the core of FLEX itself. Hopefully, you
will only need one of the disks - the second is provided only as a backup
should the first be destroyed. The intent is that only one of the two
disks be used for all testing and development unless it is hopelessly
destroyed. Note that Section 13 describes how you can purchase additional
General FLEX disks should you destroy both of the supplied ones.

Select one of the two disks and be certain that it is write-protected.
The first several steps of testing will not require writing anything to
the disk and keeping it write-protected will prevent your routines from
writing when they should not. 8" and 5 1/4" floppies are write-protected
in different ways. The 8 inch floppies are write-protected when a cutout
notch on the leading edge of the disk (as it is inserted into a drive) is
left exposed. If the cutout is covered with a piece of opaque tape, the
disk is "write-enabled" or NOT write-protected. 5 1/4 inch floppies are
just the opposite of the 8 inch. 5 1/4 inch disks are write-protected
when a cutout notch on the side of the disk is covered with opaque tape,
and they are write-enabled if the cutout is left exposed. Be sure the
disk you are using is write-protected. The disk is now ready for use in
the ensuing test procedure.

Page 15 - Section 5

6800 FLEX Adaptation Guide

5.2 Tests Without Using a Supplied Disk

Throughout this section, we will refer to the supplied FLEX disk as the
"FLEX Disk". You should obtain a blank or non-FLEX disk for use in the
testing and we will refer to it as the "Scratch Disk". Some of the driver
routines can be tested without inserting the FLEX Disk or by using a
Scratch Disk. In particular they are DRIVE, RESTORE, CHKRDY, QUICK, SEEK,
and probably INIT and WARM. Now let's go through the routines one at a
time.

INIT and WARM These routines are not specifically defined for the general
case. Their function depends entirely on what is required by
the particular controller and disks in use. Since the user
defined and developed these routines, it is assumed the
user will be able to determine how they might best be tested.
Indeed, these routines may not even be required for your
particular installation.

DRIVE The Drive Select routine can probably be tested with no disk
installed whatsoever. To be sure, however, it is suggested
that a scratch disk be installed during the test. This routine
is easy to test if the disk drives in use have LED's or lights
which indicate the drive is selected. If this is the case,
simply write a little routine which calls the DRIVE routine
with the proper entry parameters (see section 4.2) and then
returns to your monitor. If the routine functions properly, the
light should come on on the selected drive. Switch back and
forth from one drive to the other (if you have more than one
drive) to ensure you can select any connected drive. If
your drives do not have a drive selected indicator, this
routine will be much more difficult to test. You might just try
calling it and being sure it returns properly. If so, assume
it is working. If it is not, you will find that out as we
proceed.

RESTORE The Restore routine is a relatively easy routine to test. It
should be tested with a scratch disk installed in the drive and
the door closed. Before a restore operation can be
performed on a drive, the desired drive must be selected by the
DRIVE routine. Thus to test RESTORE, write a short routine
which first calls DRIVE to select the desired drive and then
calls RESTORE to restore the head to track zero. The proper
entry parameters must be setup for these calls as outlined in
section 4.2. If the RESTORE routine is functioning properly,
you should see the disk drive head move to the outside edge of
the disk (assuming you have removed the cover on your disk
system, of course). If the head is already at track zero
before testing the command, or to retry the RESTORE command
after one restore, it is possible to physically move the head
out from track zero. To do this, remove the disk, turn off the
power to the disk drive, remove the cover so that the head
assembly is exposed, and gently push the head assembly away
from track zero (toward the hub) with your fingers. The head

Page 16 - Section 5

6800 FLEX Adaptation Guide

itself is delicate, so be sure you are pushing on some solid
part of the head assembly (not the head itself) and do not
force it if it resists. Once the head is away from track zero,
power the drive back up and test the RESTORE routine.

CHKRDY and QUICK These routines simply return a status - either "ready"
or "not ready". They are quite simple to test. To test the
drive "not ready" case, open the door on the drive under test.
To test the drive "ready" case, insert a scratch disk and
close the door. Note that a drive select must be done before
checking the status.

SEEK The SEEK routine must be tested with a disk installed. The user
should be able to get positive feedback as to whether or not
the routine is functioning properly by watching the movement of
the disk drive head. Before testing seek, it may be necessary
to perform a RESTORE operation. This is to ensure that the
controller is not lost as to which track it is on. For example,
if the controller track register says it is on track #6 but the
head is actually positioned on track #32, there could be
problems if a seek to track #73 was attempted. By performing a
restore operation, the controller will be able to get back on
track (pun intended) such that the track register says #0 and
the head is actually on track #O. Once a single restore has
been performed, the controller and drivers should be able to
keep up-to-date as to which track they're on without subsequent
restores. So to test the SEEK routine, first perform a restore
operation, then write a routine to select the desired drive and
then call the SEEK routine with the proper entry parameters to
seek to some random track on the disk. Test this routine fully
to see that it seeks properly in both directions and visually
seems to go to the correct track position.

5.3 Testing the READ Routine

Now we've come to the real thing! Testing the READ routine is perhaps the
most important step in adapting FLEX to your hardware. As mentioned
before, the READ and WRITE single sector routines are the heart of the
whole Disk Driver Package. Your WRITE routine is probably very similar to
your READ routine, so most of the testing you do here will probably also
apply to the WRITE routine without having to actually perform dangerous
disk writes. The READ routine does rely on some other routines like SEEK,
so be certain that they are functioning properly before testing READ.

For the first time, you will be using a FLEX Disk. As stated earlier, be
certain it is write-protected and that you only use one of the two
supplied disks if possible.

Page 17 - Section 5

6800 FLEX Adaptation Guide

If desired, the READ routine can be tested by writing a short routine to
select the drive and then call the READ routine with the desired entry
parameters. As a convenience for testing, however, we have provided the
listing for a short single sector test utility appropriately called
"TEST". This assembled source listing is found in Appendix C. Using your
system's monitor ROM or whatever means you have, enter the code listed
for this program. TEST assumes that all the Disk Driver and Console I/O
routines are also installed in memory. Once this code is entered, begin
execution of TEST by jumping to location $0100. You should see a carriage
return and line feed output to the console, followed by this prompt:

F?

This is a prompt for the "Function" desired. The function may be a READ
single sector, a WRITE single sector, or a return to the system monitor.
To perform a READ, type an "R" (upper case); to perform a WRITE, type a
"W" (upper case); to return to the monitor, type any other character.

!!! FOR THE TIME BEING, DO NOT ATTEMPT A WRITE COMMAND (W) !!!

Enter an "R" to do a READ command and TEST should respond with:

D?

This is a prompt for the desired drive number (a single digit from 0 to
3). After entering a drive number you should be prompted with:

T?

This is a prompt for a two-digit, hexadecimal track number. You can
select any track you like, but be sure it is not a higher number than the
number of tracks on the disk. Next you will receive the prompt:

S?

which is a prompt for a two-digit, hexadecimal sector number. Any sector
number may be given since an error should be returned if the drivers
can't find the desired sector.

The sector number prompt is the last one, and once entered, the selected
function should be carried out. Under a READ command, if there was no
error, the data from the sector will be displayed on the console in
hexadecimal. There will be 16 rows of 16 bytes each. This display can be
examined to see if the data was read correctly. If an error occurs in the
READ operation, instead of displaying data TEST will print:

E=XX

This signifies an Error occurred and the "XX" represents the hexadecimal
value in the 'B' accumulator (the error condition) on return. In either
case, TEST will immediately start all over again with the function
prompt.

Page 18 - Section 5

6800 FLEX Adaptation Guide

With a FLEX Disk inserted, begin by reading sector #01 on track #00. This
is where a bootstrap loader program will reside in the final system, but
for testing purposes this sector has been setup with a special data
pattern. The first byte in the sector is $00, the second is $01, the
third is $02, and so on to the last byte which should be $FF. Once you
are able to read this sector, try other random sectors on the disk. You
can be certain you have read the correct sector in most cases by looking
at the first two bytes of the data. In most sectors these two bytes point
to the next sector in the chain of sectors (see section 2.3). Thus if not
the last sector on a track, the first byte should be the track number and
the second byte should be the sector number plus one. The last sector on
the track will have the first byte equal to the track number plus one and
the second byte equal to $01. The only exception to this is any sector
which is at the end of a file's chain of sectors, at the end of the
directory (the last sector on track #0 on the FLEX Disk), the System
Information Record (track #0 sector #3), or at the end of the free chain
(the last sector on a FLEX Disk). These sectors have zeroes in both bytes
one and two. On the FLEX Disk, any sector which does not have data stored
in it (a free sector) should have all zeroes past bytes one and two.

Test the READ routine thoroughly! Be sure you test the limiting cases
such as the first and last sectors on several tracks, especially on track
#0 and on the last track on the disk. Do not continue with the FLEX
adaptation until you have firmly convinced yourself that the READ routine
and all of the other supporting routines tested are functioning
perfectly!

5.4 Testing the WRITE Routine

Now we come to the most dangerous part of the FLEX adaptation process the
WRITE routine. If this routine runs wild, portions of data on a FLEX Disk
could be destroyed. For this reason, it is suggested that you thoroughly
examine your WRITE routine code to make certain there are no visible bugs
before running it. Where possible, make sure it does the same things as
the now functioning READ routine (such as seeking and possibly setting up
the controller chip or DMA device). If the WRITE routine does fail and
that failure causes indiscriminate writing to the disk, chances are that
only one track will be destroyed. Thus before switching to the supplied
backup FLEX Disk, continue testing the WRITE routine on the damaged disk
by attempting to write to different tracks.

As with the READ routine, the user can develop his own testing procedure
for the WRITE routine or the supplied TEST program can be entered and
used if desired. If the TEST program is used, it differs from the READ
command testing as follows. To perform a WRITE operation the "F?" prompt
should be answered with an upper case 'W'. The subsequent Drive, Track,
and Sector prompts are then answered as before. The data buffer which
should be written to the disk is assumed by TEST to be at $1000. Before
entering TEST to do the WRITE command, the user can go to the 256 bytes
found at $1000 and setup whatever data he would like written to the disk
sector. Another method of setting up this data buffer is by doing a READ
command in TEST. The data read from the specified disk sector is placed

Page 19 - Section 5

6800 FLEX Adaptation Guide

into memory at $1000. Thus, after a read operation, the data is all setup
for writing back to the disk. In order that you do not mess up the data
which is stored on the disk, the best method of testing would be to read
some sector with the 'R' function and then immediately write it back out
without changes via the 'W' command.

When the sector number has been given to TEST, it immediately attempts to
write the data to the disk. If the write procedure functions properly and
there are no errors, TEST will print an "OK" on the screen and start all
over by prompting for another command. If errors occur during the write,
the same error messages described under the READ command are given.

For the initial testing of the WRITE command place a scratch disk in a
drive and attempt a write of any data to it. Since your scratch disk is
not likely to be formatted in FLEX's 256 byte format, an error should
result from the attempted write. The point here is to see that the WRITE
routine does perform the seek, load the head, and try to write data. If
the routine is going to blow up it is best that it happen on a scratch
disk and not one of the FLEX disks. Ensure that the routine properly
returns with a valid error code.

Before attempting a write to the FLEX disk, it is important to note that
there is data stored on the disk (FLEX itself as well as several utility
commands) and that almost all the sectors are linked together by the
first two bytes of each sector. Thus when writing to this disk it is
important that you do not write over the data which is presently stored
in a sector or over the link bytes if the sector is empty. This can be
avoided as follows. There are three sectors on track zero which are
unused on the FLEX Disk. Sectors number one and two are reserved for a
bootstrap loader program and sector number four is reserved on all FLEX
disks for future expansion. These three sectors are not linked to any
other (or don't need to be); thus any desired data can be written to
these sectors. For example, you might read sector #1 on track #0 which
was setup with a special data pattern and attempt to write this data to
sector #4 on track #0. Be sure you do not alter any other sectors on
track zero.

All other sectors on the disk are part of a chain of sectors and their
first two bytes are a link address to the next sector in the chain. If
data is written to any of these sectors, it is imperative that the first
two bytes remain unchanged! You will always be safe to read a sector and
write it back out without changes (safe, that is, if your write routine
functions properly). If you wish to change some of the data to make sure
you actually are writing the sector, do so on a sector which is empty.
The FLEX Disk is not full, only the first several tracks have files
stored on them. If you write to sectors which are on the last few tracks
you will most likely be writing into free sectors. Initially, all the
free sectors will be filled with zeroes (except, of course, for the first
two link bytes). It will not hurt for you to change any of the zero bytes
in a free sector and they may be left non-zero after testing.

Page 20 - Section 5

6800 FLEX Adaptation Guide

Now you are ready to attempt writing to a supplied FLEX disk. Remove the
write-protection from the disk (cover the cutout on an 8 inch disk;
uncover the cutout on a 5 1/4 inch disk) and insert it in a drive.
Perform several write commands as outlined above. After writing a sector,
the data should always be read back to be certain that it was actually
written as desired. Firmly convince yourself that your WRITE single
sector routine is functioning exactly as it should.

5.5 Testing the VERIFY Routine

The VERIFY routine is a difficult one to test. VERIFY is only called by
FLEX directly after performing a WRITE single sector operation. If the
write operation functioned properly and didn't report an error, then
chances are the VERIFY routine will not find an error in the data. It is
used as a security measure to guarantee that all data is valid. Since
VERIFY won't likely find an error, it is difficult to test to see if it
really would report an error. It is recommended that you basically assume
VERIFY to be OK and skip thorough testing of it. Do try calling it
directly after doing a single sector WRITE operation to see that it
returns properly and reports no error. If it does that, simply assume it
to be functional. The VERIFY routine will probably be very similar to the
READ routine anyway, with the exception of what is done with the data.
READ places the 256 bytes into memory; VERIFY tests to be sure they can
be read and simply discards them if so. If your READ and VERIFY routines
are similar, this is more justification to assume the VERIFY routine is
good.

Page 21 - Section 5

6800 FLEX Adaptation Guide

6.0 BRING UP THE INITIAL VERSION OF FLEX

At this point, all the driver routines for the Console I/O Driver package
and the Disk Driver package should have been written, fully debugged, and
should be resident in memory. If possible, these routines should be saved
onto some mass storage device such as cassette or paper tape for quick
reloading should problems arise. We are now ready to load up FLEX and,
using these driver routines, test the operation of the entire operating
system.

6.1 Loading FLEX with QLOAD

A short program has been supplied to load the core of FLEX from the disk
into its place in memory. The program is called 'QLOAD' for Quick Loader
and is listed in Appendix D. The code for QLOAD should be entered into
memory at $A100 as given in the assembled listing. QLOAD is really a
complete FLEX file loader that directly calls upon the routines in the
Disk Driver Package. It differs from loaders that we will use later in
that it assumes that the file it is to load is stored on the disk
beginning with sector #1 on track #1. On the supplied FLEX disks, the
file which begins there is called "FLEX.COR". This file is the main body
or "core" of FLEX as the file name extension implies. It contains
everything FLEX needs to run in a system except for the Disk Drivers and
the Console I/O Drivers. Since we already have these drivers in memory,
we need only load FLEX.COR by using QLOAD in order to run our first
version of FLEX.

Once the code for QLOAD has been entered, write-protect a FLEX Disk,
insert it into drive #0, and jump to location $A100 which is the starting
address of QLOAD. If all works well, QLOAD should read the file from the
disk and jump to your system monitor. The FLEX.COR file is over twenty
sectors in length, so it will probably take a couple of seconds to read.
If QLOAD does not perform as described, reload your drivers, carefully
check the QLOAD program code in memory, and try again. If it still fails,
there may be something wrong in your drivers.

If the load does take place, and QLOAD returns control to your system
monitor, you are ready to begin execution of FLEX. This is done by
jumping to $AD00. At $AD00 there is a short initialization routine which
sets up several pointers for FLEX, checks to see how much memory is in
the system, and then prompts for the date. After the date has been
entered, the disk in drive #0 is scanned for a file called "STARTUP.TXT"
as explained in the FLEX User's Guide. There is no startup file on the
supplied disks, so the initialization routine will finally jump to FLEX's
warm start address and you will receive the three plus-sign prompt. If
FLEX does not come up for you, you either did not actually get a complete
load of FLEX or there still may be errors in your drivers. In either
case, you would have to go back and try again.

Page 22 - Section 6

6800 FLEX Adaptation Guide

6.2 Testing FLEX with Read-Only Commands

Assuming FLEX loaded OK and you received the three plus-sign prompt, you
are now ready to use FLEX. The first tests should only involve operations
which perform reads from the disk. Do not attempt any writing until you
are convinced the reads are functioning. You can be sure you are only
reading by leaving the disk write-protected. That way if you do
inadvertently attempt a write, the disk will be protected.

The best method of testing the read operations of FLEX is to simply sit
down and begin executing commands which perform reads. Some of these
commands are CAT, ASN, DATE, LIST, TTYSET, and VERSION. For proper syntax
and use of these commands, read the FLEX User's Guide. To use the LIST
command you might try the following:

+++LIST 0.ERRORS.SYS

This should list the system error file which contains all of FLEX's error
messages.

6.3 Testing FLEX with Write Commands

Now you are ready to use FLEX to write information on the disk. Remove
the write-protection from a supplied FLEX disk and insert it into drive
#0. A convenient method of writing some information into a sector is to
create a short text file using the BUILD command. Read over the
description of that command and when understood, type the following
command to FLEX:

+++BUILD JUNK

FLEX should perform some disk activity associated with loading the BUILD
command and preparing a file called 'JUNK.TXT' and then print BUILD's
prompt which is an equals sign ('='). When that prompt is received, type
a short line of text as follows:

=THIS IS A FILE CALLED JUNK.

When a carriage return is hit after typing the period, FLEX should load
the head and perform some disk activity. This is actually where FLEX is
opening the file called JUNK. If all goes well, you should receive
another equals sign prompt almost immediately. Type three more lines in
like this:

=THIS IS THE SECOND LINE.
=THIS IS THE THIRD AND FINAL LINE.
=#

When the last carriage return is hit (after the pound sign), FLEX will
attempt to write the three lines of data to the file and proceed to close
it. If everything works, you should see FLEX's prompt ('+++') after a
second or two. Do a CAT command on the disk to see if the file 'JUNK.TXT'

Page 23 - Section 6

6800 FLEX Adaptation Guide

was placed in the directory. Now view the contents of that file by
executing a list command like this:

+++LIST JUNK

You should see the three lines typed into JUNK displayed on the console.

If this test of BUILD all went as described, you are well on your way to
finishing the FLEX adaptation! If things did not work as described, you
will have to go back and look for bugs in your routines. Your FLEX disk
may be destroyed and it may be necessary to break out the second FLEX
disk supplied.

Assuming that all the functions of FLEX have been tested to the best of
your ability and that no problems have arisen, you may now wish to use
this version of FLEX in the remainder of the adaptation process. The
utilities included with FLEX include a disk editor and assembler. These
will save you much time if you have been assembling code by hand.

Page 24 - Section 6

6800 FLEX Adaptation Guide

7.0 PREPARING A BOOTABLE VERSION OF FLEX

The only version of FLEX itself on the supplied disks is the file,
FLEX.COR. This file is the core of FLEX and does not contain any disk or
console drivers. The final version of FLEX on a disk which may be
"bootstrap loaded" must also contain the disk and console driver
routines. In this section we will create a new file on the disk called
"FLEX.SYS" which contains the core of FLEX and all the driver routines.
Of course in order to do this, the FLEX setup in memory in section 6 must
be running properly. All we need do is save the two driver packages on
disk as two files and then append them onto the FLEX.COR file. These
steps can all be accomplished with simple FLEX commands.

The first step is to save the code for your Disk Driver routines as a
file called 'DISK.BIN'. This is done with the following FLEX command:

+++SAVE DISK,<SSSS>,<EEEE>

where <SSSS> and <EEEE> represent the Starting and Ending addresses of
your Disk Drivers code. After executing the command you might double
check that the file was really saved by doing a CAT command and making
sure there is a file called 'DISK.BIN'.

Next, save your Console I/O Driver routines in a file called
'CONSOLE.BIN' with the following command:

+++SAVE CONSOLE,<SSSS>,<EEEE>,AD00

where <SSSS> and <EEEE> represent the Starting and Ending addresses of
your Console I/O Drivers code. The 'AD00' is a "transfer address" for the
file. A transfer address is an address saved with a binary file to tell
it where to begin execution. The final version of FLEX is just a standard
binary file on the disk and as such must have a transfer address so the
bootstrap loader will know where to begin execution once FLEX has been
loaded. Since we are going to append the CONSOLE file (and DISK file)
onto the core of FLEX, this transfer address will eventually get into the
final, bootable version of FLEX. Perform a CAT command to be sure that
the CONSOLE.BIN file now exists on the disk.

The APPEND command in FLEX allows two or more files to be appended
together to create a new file. We can use it to prepare our final,
bootable version of FLEX with the following command:

+++APPEND FLEX.COR,DISK.BIN,CONSOLE.BIN,FLEX.SYS

If all goes well, you should now have a file called 'FLEX.SYS' on the
disk. It is a complete version of FLEX which you will be able to boot up
after completing the next section.

Page 25 - Section 7

6800 FLEX Adaptation Guide

8.0 BOOTSTRAP LOADING OF FLEX

At this point, the user should have a fully functional version of the
FLEX Disk Operating System stored on disk. Now you are faced with the
problem of loading that operating system into memory and beginning
execution of it. Generally, loading FLEX will be the first thing done
after powering the computer on, but short of loading all the Disk and
Console driver routines along with the QLOAD we have no way of performing
this load. That is where a "bootstrap loader" is needed. In this section
the user will be instructed to write a bootstrap loader for his system.

8.1 The Concept of Bootstrap Loading

The problem we face is obvious. When the computer is first powered on,
FLEX is not resident and there is no way of loading it. The solution is
to write a short program whose only purpose is to load FLEX and begin
execution of it. This type of program is referred to as a "bootstrap
loader" since the system is essentially "pulling itself up by its
bootstraps". Once this bootstrap loader has been developed, it can be
used to load FLEX. However, we still have the same problem - how do we
get the bootstrap loader into the computer after powering on?
Fortunately, this problem is not as great since the bootstrap program is
much smaller than FLEX. There are three obvious solutions.

1) The bootstrap program could be hand-entered each time the system
 was powered on.

2) The bootstrap program could be loaded from cassette or paper
 tape each time the system was powered on.

3) The bootstrap program could be entirely stored in ROM.

The first two are obviously very undesirable. The third is feasible, but
a typical bootstrap program will be close to 256 bytes and this might be
considered a waste of ROM space.

There is another solution which is not quite so obvious, but which is
perhaps the best and most used solution. That is to use a two-stage
booting process. The idea is to put the bootstrap loader which we have
been discussing on the disk and then write another dumb, very short
bootstrap program to read in the intelligent FLEX bootstrap loader. This
dumb bootstrap program should be very small since it will only have to
read in one sector which is defined to contain the intelligent FLEX
bootstrap loader (assuming that loader fits in 256 bytes or one sector).
On a FLEX disk, this defined boot program sector is sector #1 on track
#0. If absolutely necessary, the boot can overflow onto sector #2 which
has also been reserved. Since the dumb bootstrap program is so short it
is now feasible to place it in ROM.

Page 26 - Section 8

6800 FLEX Adaptation Guide

Before going any further, let's review some nomenclature. Throughout the
manual when "booting FLEX", "booting up", or simply "booting" is
mentioned, it refers to the entire procedure of loading FLEX which
involves the two stages of bootstrap loading. To avoid confusion in the
remainder of this section, we must come up with a way to differentiate
between the two bootstrap programs or operations. When we refer to the
intelligent bootstrap program which resides on disk and which loads FLEX,
we will use the term "FLEX loader" or simply "loader". The dumb bootstrap
program which resides in ROM we shall refer to as the "ROM boot".

8.2 Writing a "ROM Boot" Program

The ROM boot program can be written and debugged before writing the FLEX
loader. Assuming the FLEX loader will fit in one sector (256 bytes or
less), our ROM boot will only have to read sector #1 from track #0 into
memory and then jump to the beginning of the loader. One thing that makes
this ROM boot short and simple is that no seeking operation need be done.
Since the only sector to be read is on track #0, a restore operation can
be performed to get there. Thus the basic steps to be performed by the
ROM boot program are:

1) Select drive #0

2) Do a restore to track #0 operation

3) Read sector #1 into memory at $A100

4) Jump to $A100

As can be seen, the FLEX loader which we are reading is assumed to be
assembled for operation at $A100. That loader will assume that the ROM
boot has already selected drive #0, so don't deselect the drive before
jumping to $A100.

At this point the user should develop his ROM boot program. Note that the
FLEX editor and assembler can be used for this work. An example of a ROM
boot program may be seen in Appendix G. The ROM boot program can be
located anywhere outside the 8K reserved for FLEX. It may be advantageous
to initially assemble the boot somewhere in low memory (like $0100) for
testing purposes and when debugged, reassemble it to some high address
for burning into ROM. For testing purposes, it is suggested that step 4
in the instructions above should be changed to a jump to your monitor.
Thus you could execute the ROM boot which when finished would return to
your monitor. This would allow you to use your system monitor to examine
the 256 bytes at $A100 to be sure you are actually reading the correct
data in from the disk. In any event the data you read will not yet be a
valid FLEX loader program and you will therefore not want to attempt to
execute it.

Page 27 - Section 8

6800 FLEX Adaptation Guide

When you are convinced that the ROM boot is functioning properly, save
the code on tape or on disk using the SAVE command. It should not be
burned into ROM until actually tested with the FLEX loader on disk. We
will test this ROM boot further after the FLEX loader has been written.

8.3 Writing a "FLEX Loader" Program

The sole purpose of the FLEX Loader is to load FLEX from the disk and
begin its execution. This is actually a simple file loader since FLEX
resides on the disk just like any other file. The only major difference
in this FLEX loader and the standard file load routine used within FLEX
is that no filename is specified. Instead, it is assumed that the FLEX
loader already knows where FLEX resides on the disk when called.
Specifically, the FLEX loader (which resides at $A100) assumes that the
track and sector location of FLEX is at $A105 and $A106 respectively.
Since FLEX can reside anywhere on the disk, we need a way to tell the
FLEX loader just exactly where FLEX is on the particular disk in use.
That is the function of the LINK command found in FLEX. It looks up FLEX
in the directory to find the starting track and sector and writes this
information into the sixth and seventh bytes of track #0 sector #1. When
the FLEX loader is read in from that sector, those two bytes will be
placed at $A105 and $A106 and the loader thus knows exactly where to go
to get FLEX.

Now that you know how the FLEX loader works, it is time to write one.
Actually, most of the writing has already been done for you. The skeletal
FLEX Loader program listed in Appendix E has the entire loader with the
exception of a single sector read routine. The loader resides at $A100.
The user need only replace the READ routine found in that listing with
one of his own writing. This single sector read routine should be almost
exactly like the one developed for the Disk Driver Package. It is called
with the track and sector numbers in 'A' and 'B' and the address of where
to read the data into memory in 'X'. A NOT-EQUAL status should be
returned if an error occurred. Note that no error code need be returned
in the 'B' register. If there is an error, the FLEX loader will just
start all over with the loading process. If there was no error, the
routine should return an EQUAL status. Note that the read routine is
responsible for any necessary track seeking. There are around 128 bytes
of space for this read sector routine. If at all possible the user should
fit the read sector routine within this space so that the entire FLEX
loader will fit in one sector. If this is not possible see section 8.4.

Once the user has developed his FLEX loader routine and has the code
residing at $A100, it can be put onto the disk on track #0 sector #1 by
use of the PUTLDR command found on the FLEX Disk. The syntax for the
command is quite simply:

+++PUTLDR

Page 28 - Section 8

6800 FLEX Adaptation Guide

It assumes that there is a 256 byte (or less) loader program resident in
memory at $A100. PUTLDR simply writes this data out to sector #1 of track
#0. As described earlier, we must now tell the FLEX loader where FLEX
resides. This is done with the LINK command as follows:

+++LINK FLEX

This assumes your final version of FLEX (which includes all the drivers)
has been called FLEX.SYS. The LINK command will look up FLEX.SYS in the
directory, find its starting address, and write the starting track and
sector number into the sixth and seventh bytes of the FLEX loader in
track #0 sector #1.

Your FLEX disk is now ready for booting or at least for testing prior to
booting. Reload the ROM boot you prepared earlier and execute it with the
FLEX disk in drive #0. It should pull the FLEX loader into memory at
$A100 and jump to it. The FLEX loader should then in turn load and
execute FLEX. If this process does not take place, you probably have an
error in your FLEX loader and will have to redo your code.

Once you have the boot operation working properly such that you can bring
FLEX up having only the ROM boot program in memory, you should reassemble
the ROM boot to a convenient location and burn it into PROM. When this is
done, you will have a complete, bootable version of FLEX ready for normal
use!

8.4 Hints on a Two Sector FLEX Loader

If you were able to fit your FLEX loader program into 256 bytes or one
sector, you can skip this section completely. If not, you should attempt
to develop a FLEX loader that will fit in 512 bytes or 2 sectors. If you
can do this, the loader can be stored on track #0 sectors #1 and 2.
Sector #2 on track #0 has been reserved for just this purpose. You will
have to write your own routine to write the loader to these two sectors
however, since the supplied PUTLDR command only writes 256 bytes. The
other problem is that the ROM boot must now be able to read both sectors
from the disk. This can certainly be done, it just means that your ROM
boot will take up more space. If the ROM boot ends up being very large,
you may decide it is just as easy to put the entire FLEX loader in ROM
and execute it directly without having to load it from disk with a ROM
boot.

Page 29 - Section 8

6800 FLEX Adaptation Guide

9.0 THE NEWDISK ROUTINE

FLEX has its own defined format for diskettes. All disks must be prepared
with this format before they can be used by FLEX. One distinguishing
characteristic of the FLEX format is that FLEX uses 256 byte sectors.
This fact along with the necessity of setting up special information on
FLEX disks requires that all disks be formatted or initialized with the
FLEX format before use. This initialization procedure is done with the
"NEWDISK" command. Since the NEWDISK command deals directly with the disk
controller to write entire tracks of data, it must be user supplied. If
the disk controller in use is either a western Digital 1771 or 1791 based
floppy disk controller, the supplied skeletal NEWDISK routine in Appendix
F can be used with only minor modifications. If not, the skeletal NEWDISK
may be used as a guide, but the user's NEWDISK routine will have to
essentially be written from the ground up. The NEWDISK routine is not a
simple one and may take considerable effort to develop. It is, however,
essential to the use of FLEX.

9.1 The General NEWDISK Procedure

Let us begin by discussing the actual functions of a NEWDISK routine.
They are six in number:

1) Formatting a blank disk with 256 byte sectors linked together by
the first two bytes of data in each.

2) Testing all the sectors written and removing any bad sectors by
altering their links such that they are removed from the free
chain.

3) Establishing the end of the free chain by writing a forward link
of 0.

4) Initializing the directory on track #0.
5) Setting up the required information in the System Information

Record (sector #3 on track #0).
6) Storing the FLEX boot loader program on track #0 sector #1.

Now let's discuss each step in more detail.

9.1.1 Formatting the disk with 256 byte sectors.

This step is the most difficult part of the NEWDISK process. Each
track must be written so that there are a certain number of 256
byte sectors on each track. With most controllers it is necessary
for such a routine to do all the track setup including gaps, sector
ID fields, data fields, and CRC values. The actual data in each
sector is really not critical. IBM puts a hex E5 in each byte,
Technical Systems Consultants generally puts zeroes in each byte.
This step of the NEWDISK routine is also where all the sector
linking takes place. As discussed previously, all the sectors are
linked together by addresses stored in the first two bytes of the
data field of each sector. The first byte is the track on which the

Page 30 - Section 9

6800 FLEX Adaptation Guide

next sector in the chain is found, and the second byte is the
sector number of the next sector on that track. For example, the
first two data bytes of sector #1 on track #1 should be $01 and $02
which says the next sector in the chain is on track number $01 and
sector number $02. If a disk has 15 ($0F) sectors on each track,
the last sector on track #1 (sector #15) should have $02 and $01 as
its first two data bytes. This means the next sector in the chain
is on track number $02 and sector number $01. When this step is
complete, you should have a disk with one long chain of linked
sectors beginning with sector #1 on track #0 and ending with the
last sector on the last track. It may be desirable to implement
"sector interleaving" in this formatting step. See section 9.4 for
a description of this technique.

9.1.2 Testing and removing bad sectors.

This step is intended to verify that all the sectors written in the
first step can be properly read. This simply requires attempting to
read every sector on the disk and checking for errors. If there are
no errors, this step is complete. If there are bad sectors found on
track #0 and the sector number is #5 or less, a fatal error should
be reported and the NEWDISK routine aborted. If bad sectors are
found elsewhere, they should be linked out of the chain of sectors.
This means the forward link in the sector preceding the bad one
should be changed so that it points to the next sector after the
bad one. This is not a trivial task if the bad sector is the last
one on a track or if there are two bad sectors in a row. Before
starting this check for bad sectors, you should have a count of the
number of data sectors on the disk. Data sectors are all sectors
except those on track #0. As bad data sectors are found and
effectively removed by the re-linking process, this count of total
data sectors should be decremented. In the end, this count will be
placed in the System Information Record so that FLEX can know when
a disk is full.

9.1.3 Establishing the end of the free chain.

The end of the free chain of data sectors is easily established by
changing the forward link (first two data bytes) of the last good
sector on the disk to zeroes. The single sector read and write
routines from FLEX can be used for this purpose.

9.1.4 Initializing the directory.

The directory starts with sector #5 on track #0 and initially ends
with the last sector on track #0. This step should establish the
end of the chain of directory sectors by changing the forward link
of the last good sector on track #0 to zeroes. The 252 data bytes
in all directory sectors must also be zeroes. The single sector
read and write routines from FLEX can be used for these purposes.

Page 31 - Section 9

6800 FLEX Adaptation Guide

9.1.5 Setting up the System Information Record (SIR).

The SIR contains specific information about the disk which should
be setup by this step. Each item of information stored in the SIR
has a defined offset or location within the sector. The following
table gives the beginning and ending offset of each piece of
information in decimal. Note that the first byte of the SIR is an
offset of 0.

Begin End Information
 0 1 Two Bytes of zeroes (Clears forward link)
 16 26 Volume name in ASCII
 27 28 Volume number in binary
 29 30 Address of first data sector (Track-Sector)
 31 32 Address of last data sector (Track-Sector)
 33 34 Total number of data sectors in binary
 35 37 Current date (Month-Day-Year) in binary
 38 38 Highest track number on disk in binary
 39 39 Highest sector number on a track in binary

The volume name and number are arbitrary as supplied by the user.
If they weren't bad, the first and last data sectors will be sector
#1 on track #1 and the last sector on the last track. The total
number of available data sectors does not include any sectors from
track #0. The highest track number is the actual number of the last
track. For example, there are 77 tracks on a standard eight inch
disk but since the first one is numbered as #0, the highest track
number would be #76 or hex 4C.

9.1.6 Storing the FLEX boot loader on the disk.

So that any disk can be used for booting purposes, we must have the
FLEX loader program stored on track #0 sector #1. The NEWDISK
routine is a logical place to do this, although this step may be
omitted if the disk will not be used for booting. A convenient way
to store the loader on disk is to let NEWDISK assume that the
loader is in memory at $A100. Thus NEWDISK need only write a single
sector of data to sector #1 on track #0 beginning at $A100. The
actual FLEX loader program can then be simply appended onto the
NEWDISK program so that whenever NEWDISK is loaded, the FLEX loader
code is also loaded. Of course, if your FLEX loader is larger than
256 bytes, you would have to save two sectors on the disk.

Page 32 - Section 9

6800 FLEX Adaptation Guide

9.2 A Western Digital NEWDISK Example

If your disk controller hardware utilizes either a Western Digital 1771
or 1791 floppy disk controller chip, you should be able to use the
skeletal NEWDISK supplied in Appendix F and on the supplied FLEX disks.
The only part of this skeletal NEWDISK which must be added is the Write
Track routine near the end. A full specification of the write track
routine is given in the listing comments.

This NEWDISK will write 256 bytes of data found at $A100 onto the disk
after it is formatted. It is assuming that a FLEX loader program is
resident in that memory area when NEWDISK is executed. For testing
purposes, it is not necessary that any meaningful data be at location
$A100. NEWDISK will still write the data to disk, but since you are only
in a testing stage and will not be attempting to boot from the new disk,
it makes no difference what is on track #0 sector #1. When you finally
have NEWDISK working, you can add the FLEX loader routine to be saved on
disk. Assuming you have the FLEX loader code in a binary file on disk,
the easiest way to put it and NEWDISK together is with the APPEND
command. Thus when this appended version of NEWDISK is loaded, the FLEX
loader will also be loaded into the $Al00 area. The command to do this
appending should look something like this:

 +++APPEND NEWDISK.BIN,LOADER.BIN,NEWDISK.CMD

where the version of NEWDISK you have been working on is assumed to be
called NEWDISK.BIN and the FLEX loader file is called LOADER.BIN. The
resulting file is a completed NEWDISK ready for use and is called
NEWDISK.CMD.

9.3 Hints on a Non-Western Digital NEWDISK

If the user does not have a Western Digital based disk controller, he
will essentially have to write his NEWDISK from the ground up using the
description given in section 9.1. It may be helpful to use the Western
Digital NEWDISK found in Appendix F as a guide. There is a large section
of that sample which can be used in a non-Western Digital NEWDISK.

There are two major sections to the skeletal NEWDISK. The first actually
does the disk formatting as described in section 9.1.1. It calls on the
Write Track routine documented in the NEWDISK listing. This section can
probably not be used at all in a non-Western Digital NEWDISK. The second
section performs steps 2 through 6 as described in section 9.1. It can
probably be used as is in any NEWDISK the user may write. The only
changes will probably be the locations from where the values written into
the SIR are picked up.

Page 33 - Section 9

6800 FLEX Adaptation Guide

9.4 Sector Interleaving

Sector interleaving is a technique which can be applied to floppy disks
to maximize the speed with which sequential disk data can be read. For
the most part, files are stored in contiguous groups of sectors on a
disk. For example, a file may occupy six sectors on a single track with
numbers 3 through 8. If this file was read by FLEX, sector 3 would be
read first, followed by sector 4, then sector 5, etc. If these sectors
are physically sequential on the disk, we would see a phenomenon often
referred to as "missing revolutions". This is a consequence of FLEX not
being able to read all the sectors in one revolution of the disk. It
takes a certain amount of time for the data to be handled by FLEX and the
address of the next sector to be readied. In this time, the next physical
sector or sectors after the one just read will have already passed the
read head. In fact, our hypothetical 6 sector file would require 6
revolutions of the disk to read. Now with a disk spinning at 360 RPM this
may not sound like much, but it does add up and is very noticeable.

A simple solution to this problem is sector interleaving. This refers to
the technique of placing the sectors on a track in an order which is not
physically contiguous. In other words, while the first physical sector on
the track may be numbered as #1, the second physical sector would not be
#2. Sector number 2 (the second "logical" sector) will be placed a few
physical sectors away from the first logical sector so that FLEX has time
to do its processing before that sector comes under the read head. Thus
logical sector number 2 may be put in physical sector number 6. The
logical sectors are thus "interleaved".

The distance (number of physical sectors) between logical sectors for
maximum performance is dependent on several factors. These factors
include how fast the disk is rotating, how many sectors are on a track,
and most importantly whether the user wishes to optimize the system for
reading or writing and whether for binary or text files since it takes
different times for FLEX to process the data. The distance or
interleaving amount used is best found by experimentation. Technical
Systems Consultants usually formats disks with interleaving optimized for
reading text files. As an example, the following are interleaving schemes
used by Technical Systems Consultants for single-sided, single-density 8
and 5 1/4 inch disks.

Page 34 - Section 9

6800 FLEX Adaption Guide

Eight inch disk Five inch disk
physical logical physical logical
sector # sector # sector# sector #
 1 1 1 1
 2 6 2 3
 3 11 3 5
 4 3 4 7
 5 8 5 9
 6 13 6 2
 7 5 7 4
 8 10 8 6
 9 15 9 8
 10 2 10 10
 11 7
 12 12
 13 4
 14 9
 15 14

The user may want to experiment with different interleaving
configurations to determine the best setup for his needs.

Page 35 – Section 9

6800 FLEX Adaptation Guide

10.0 PRINTER SPOOLING and INTERRUPT HANDLING

Printer spooling is a term which refers to the process of sending a disk
file to the printer for output while other use is being made of the
system. In effect, this is a dedicated multi-tasking operation. There are
two dedicated tasks: the normal operation of FLEX and the spooling of a
disk file out to a printer. Normally only the first of these two tasks is
being executed, that being the normal running of FLEX. However, when a
PRINT command is executed under FLEX, the second task is started and both
tasks appear to be running at the same time. In actuality there must be a
hardware interval timer in the system capable of producing interrupts.
The PRINT command starts the printer spooling process and turns this
timer on. Basically what happens from there is that each time an
interrupt comes through, FLEX switches to the other task so that both
appear to be occurring simultaneously. This section covers the
implementation of this printer spooling feature and the interrupt
handling required.

10.1 Hardware Requirements

As mentioned, the system must have a hardware interval timer capable of
producing interrupts in order to implement printer spooling. The
interrupts produced must be IRQ type interrupts. This timer must be able
to be turned on or off by the system under software control (either
producing interrupts or not). The routines for controlling this timer
must be user supplied and are discussed in section 10.3.

The time interval between interrupts can vary considerably, but a
recommended value is 10 milliseconds. If the printer in use is a buffered
parallel type printer, this interval can be higher but should not go over
100 milliseconds.

10.2 Firmware Requirements

If printer spooling is to be implemented, FLEX must obviously have
control of the interrupts. Both the IRQ and the SWI interrupts are used,
the IRQ's coming from the hardware timer and the SWI's coming from FLEX
software and drivers. FLEX requires that there be a specific location in
RAM memory for each interrupt into which the address of an interrupt
handling routine can be stored. These locations could be the actual
interrupt vectors for the CPU, but generally the system's monitor ROM has
defined locations in lower RAM where the interrupt handling
routine vectors can be stored.

Page 36 - Section 10

6800 FLEX Adaptation Guide

10.3 Additional Console I/O Drivers for Printer Spooling

In order to implement the printer spooling feature, it is necessary to
complete the remaining routines in the Console I/O Driver Package. These
are the routines associated with controlling the timer and handling the
interrupts. There is an entry for the address of each of these routines
in the Console I/O Driver package's vector table as seen in Section 3.

TMINT Address at $B3F1
This routine performs any necessary initialization for the
interrupt timer used by the printer spooling process. Any
registers may be modified.

TMON Address at $B3EF
This routine "turns the timer on" or in other words starts the
interval IRQ interrupts. Any registers may be modified.

TMOFF Address at $B3ED
This routine "turns the timer off" or in other words stops the
interval IRQ interrupts. Any registers may be modified.

IRQVEC Address at $B3EB
The IRQ vector is the address of a two byte location in RAM
where FLEX can stuff the address of its IRQ interrupt handler
routine. In other words, when an IRQ interrupt occurs control
should be transferred to the address stored at the location
specified by the IRQ vector. This IRQ vector location
(address) should be placed in the Console I/0 Driver vector
table.

SWIVEC Address at $B3E9
The SWI vector is the address of a two byte location in RAM
where FLEX can stuff the address of its SWI interrupt handler
routine. In other words, when an SWI interrupt occurs control
should be transferred to the address stored at the location
specified by the SWI vector. This SWI vector location
(address) should be placed in the Console I/D Driver vector
table.

IHNDLR Address at $B3E7
The Interrupt Handler routine is the one which will be
executed when an IRQ interrupt occurs. If using printer
spooling, the routine should first clear the interrupt
condition and then jump to the 'change process' routine of the
printer spooler at $A700. If not using printer spooling, this
routine can be setup to do whatever the user desires. If it
is desirable to do both printer spooling and have IRQ's from
another device (besides the spooler timer), this routine would
have to determine which device had caused the interrupt and
handle it accordingly.

Page 37 - Section 10

6800 FLEX Adaptation Guide

10.4 Disk Driver Changes for Printer Spooling

There is one set of changes which should be added to your disk driver
routines if printer spooling is implemented. As described earlier, when
printer spooling is taking place, FLEX is essentially a two task system.
Now for the best possible performance and to ensure that FLEX does not
miss characters typed on the console while it is busy printing, the
printer task should have less priority than the task which is the running
of FLEX. One way to give the printer task less priority is to never wait
for disk operations to take place while executing the printer task. For
example, if we are currently running the printer task (the FLEX task is
inactive) and it is necessary to read a sector of data from the file to
be printed, we should not wait for the sector read operation to take
place. Instead we should initiate the sector read and then immediately
switch back to the FLEX task. This switch to the other task is performed
with a software interrupt (SWI). The drivers can tell if they are running
the printer task by checking a byte called PRCNT at $AC34. If non-zero,
the printer task is the one currently executing. Thus, the code which
must be added to the drivers should look something like this:

TST PRCNT EXECUTING PRINTER TASK?
BEQ CONTIN SKIP IF NOT PRINTING
SWI IF PRINTING, SWITCH TASKS

CONTIN ... CONTINUE WITH OPERATION

This test should be placed just before each point in your drivers which
could possibly take a long time to execute. The following points are
likely candidates for this test:

1) A sector read operation
2) A sector write operation
3) A seek operation
4) The delay in CHKRDY (if there is one)
5) Any waiting or delaying in the drivers

See the sample set of drivers in Appendix G for examples of the
implementation of this task switching.

Page 38 - Section 10

6800 FLEX Adaptation Guide

11.0 ADVANCED DISK ADAPTATIONS

Now that the user has a fully functional version of FLEX implemented for
a single-sided, single-density, soft-sectored floppy disk system, he may
wish to upgrade the system to include features such as double-sided
disks, double-density disks, hard disks, mixtures of disk types, etc.
This section is intended to give suggestions for implementing some of
these features.

11.1 Double-Sided Disks

FLEX should treat the double-sided disk just like a single-sided one with
twice as many sectors on each track. Thus a double-sided standard eight
inch disk will still have 77 total tracks. Instead of 15 sectors per
track, however, there will now be 30. All that must happen is that the
drivers must check to see which sector number they are preparing to read
or write. If less than or equal to the number of sectors per track on a
single-sided disk, the drivers should select side #0. If greater than the
number of sectors per track on a single-sided disk, the drivers should
select side #1. Side #0 is actually the bottom side of a disk or the side
opposite the label. This selection of side should be done in the seek
routine.

As an example, let's examine a portion of a seek routine for some
hypothetical system which is to be setup for double-sided eight inch
floppies. The code might look something like this:

SEEK STAB SECTOR SAVE SECTOR NUMBER
CLR SIDE ASSUME SIDE #0
CMPB #15 WHICH SIDE IS SECTOR ON?
BLS SEEK1 SKIP IF ON SIDE #0
LDAB #$FF ELSE, SELECT SIDE #1
STAB SIDE

SEEK1 ... CONTINUE WITH SEEK OPERATION

Of course the value of 15 would change depending on the actual disk
format desired. For example, Technical Systems Consultants formats
single-density, single-sided minifloppy disks with 10 sectors per track.
The actual side select mechanism for your controller may also be entirely
different than the example shows.

Page 39 - Section 11

6800 FLEX Adaptation Guide

11.2 Double-Density Disks

Double-density disks are usually not really different from single-density
disks with the exception of the fact that there are more sectors per
track. Technical Systems Consultants has altered this concept slightly.
In our specifications, a "double-density disk" actually has track #0
written in single-density while all other tracks are written in double-
density. This means a slight loss in the number of sectors which could be
put on the disk, but the advantage is that a disk system can now accept
either single or double density disks interchangeably without requiring
the operator to specify what type of disks are in use. This technique
does require software control of the density selection, but most double
density controllers permit this.

Anytime the drivers are accessing a sector on track #0, they
automatically select single density. This permits the ROM boot program to
be much simpler. On all other tracks the drivers make one attempt to read
or write a sector. If there is an error, the drivers should switch to the
other density and return. Since FLEX makes several attempts to read or
write a sector when errors are returned, if the error was due to
attempting to read under the wrong density, this will be taken care of on
the next retry. Best results will be achieved if the drivers keep track
of what density they think each drive is. This will result in correct
reading and writing most of the time. If, at some point, the operator
changes a disk to one of the opposite density, the first access of that
disk will cause an error (which should be transparent to the user since
FLEX will retry) but on future accesses the right density should be known
and used such that there are no more errors.

Let's examine another hypothetical disk system case and see how all this
fits together. Somewhere in the drivers will be a set of four bytes which
indicate the density which the drivers assume each drive to be. If a byte
is zero, the drivers will attempt a double-density access; if non-zero, a
single-density access will be attempted. These bytes might be setup as
follows:

DNSITY FCB 0,0,0,0 INITIALIZED TO DOUBLE-DENSITY

Now at the end of our read and write routines we must check for an error.
If there was no error, we can immediately exit. If there was an error, we
should switch to the opposite density by indicating this switch in the
bytes setup above. The code for this portion of one of these routines
might look something like this:

READ ... MAIN BODY OF READ ROUTINE
 ...
 ... ERROR CONDITION LEFT IN B
 ...
READ6 BITB #$1O SECTOR NOT FOUND ERROR?
BEQ READ8 SKIP IF OTHER ERROR
PSHB SAVE ERROR CONDITION
LDX #DNSITY POINT TO DENSITY TABLE
LDAB CURDRV GET CURRENT DRIVE NO.
JSR ADDBX B+X POINTS TO DENSITY

Page 40 - Section 11

6800 FLEX Adaptation Guide

COM 0,X SWITCH TO OPPOSITE DENSITY
PULB RESTORE ERROR CONDITION

READ8 BITB #$FC SHOW ANY ERRORS IN CC
RTS

As can be seen, if the sector could not be found (the only error using
the wrong density should give), the correct density flag byte for the
current drive is switched to the opposite density. This read routine need
not attempt to re-read the sector with this new density since FLEX will
do so when it performs a retry.

There is yet another consideration for the double density disk which is
also a double-sided disk. The maximum number of sectors per track on one
side is different for double-density than single-density. This must be
considered when the seek routine makes its decision as to which side to
select. For a double-sided, double-density eight inch disk system, the
portion of the seek routine given above might look like the following:

SEEK STAB SECTOR SAVE SECTOR NUMBER
CLR SIDE ASSUME SIDE #0
STX TEMP SAVE REGISTERS
PSHB
LDX #DNSITY POINT TO DENSITY TABLE
LDAB CURDRV GET CURRENT DRIVE NO.
JSR ADDBX B+X POINTS TO DENSITY
LDAB 0,X GET THE DENSITY FLAG
COMB 00 - SINGLE, FF - DOUBLE
LDX TEMP RESTORE X REGISTER
STAB DENSITY SET CONTROLLER DENSITY
PULB RESTORE B REGISTER
BEQ SINGLE SKIP IF SINGLE DENSITY

DOUBLE CMPB #26 WHICH SIDE IS SECTOR ON?
BLS SEEK1 SKIP IF ON SIDE #0
BRA SIDE1 ELSE, SELECT SIDE #1

SINGLE CMPB #15 WHICH SIDE IS SECTOR ON?
BLS SEEK1 SKIP IF ON SIDE #0

SIDE1 LDAB #$FF ELSE, SELECT SIDE #1
STAB SIDE

SEEK1 ... CONTINUE WITH SEEK OPERATION

First we have determined what density the drivers remember the disk as
being. The controller is then set to that density. In this example, we
assume that storing a $00 in DENSITY selects single density and storing
an $FF selects double density. Having done this we check which side the
desired sector should be found on. Note that there are two separate
checks: one for a single-sided disk and one for a double-sided disk. The
correct check is chosen depending on the density in use. In this example,
the numbers used for the maximum number of sectors per track on one side
are 15 for single-density and 26 for double-density. These are the
standard values used by Technical Systems Consultants for eight inch
disks.

Page 41 - Section 11

6800 FLEX Adaptation Guide

11.3 Other Disk Configurations

There is nothing restricting the FLEX Disk Operating System to operation
on floppy disks only. It is recommended that there be at least one soft-
sectored floppy disk drive on a system for software distribution
purposes, but there is nothing to keep FLEX from running on a hard-
sectored floppy, on a Winchester technology hard disk, or on most any
type of disk drive. FLEX can also support a mixture of up to four drives.
FLEX has, in fact, been operating for some time on systems using all
these configurations. Two areas which must be altered for such operations
are the disk driver routines and the NEWDISK routine.

Particular attention must be paid to the amount of storage available on a
hard disk. Since a sector address in FLEX consists of an 8-bit track
number and an 8-bit sector number, a maximum of 65,535 sectors can be
addressed by FLEX. With 256 bytes per sectors, this means one FLEX drive
can hold a maximum of 16 megabytes of formatted data. Larger hard disks
could be used, but it would require splitting the single hard disk drive
into two logical FLEX drives.

Connecting mixtures of drive types onto one system is relatively simple.
The driver routines must be written such that they check which drive is
specified before performing an operation. Then the appropriate routines
for the type of drive associated with that drive number should be called.
Thus there must essentially be a different set of routines for each type
drive. For example, suppose we have two eight inch floppys connected as
drive numbers 0 and 1, and have a Winchester technology hard disk
connected as drive number 2. The beginning of the single sector read
driver routine might look something like this:

READ PSHA SAVE THE TRACK NUMBER
LDAA CURDRV CHECK CURRENT DRIVE
CMPA #2 IS IT THE HARD DISK?
PULA RESTORE TRACK NUMBER
BEQ HDREAD DO HARD DISK READ
BRA FLREAD ELSE, DO FLOPPY READ

This does, of course, usurp more memory, but one could conceivably setup
a system with one soft-sectored 8 inch floppy, one soft-sectored 5 inch
floppy, one Winchester hard disk, and one hard-sectored 8 inch floppy. It
would also be conceivable to have four different types of hard disks on a
system, each with a different controller.

11.4 NEWDISK Routines

One requirement for each type of disk integrated into a system is the
NEWDISK routine. As you have seen, the NEWDISK routine must be peculiar
to each type disk drive. A Winchester hard disk, for example, will
require its own NEWDISK or formatting program capable of formatting the
disk into 256 byte sectors which are addressable through the FLEX
drivers. A system with mixed drive types must either have a different
NEWDISK command for each, or a single NEWDISK that is intelligent enough
to determine the drive type and format the disk accordingly.

Page 42 - Section 11

6800 FLEX Adaptation Guide

12.0 ADDITIONAL CUSTOMIZATION

There are a few features which can be further customized in FLEX that
have not been discussed thus far. This section is devoted to these
features.

12.1 Setting a Default MEMEND

During FLEX's initialization procedure (done only upon booting) the
amount of memory in the system is checked and the last valid memory
address saved in MEMEND at $AC2B. By default, the upper limit of this
memory check routine is $9FFF so that MEMEND will be below FLEX. It is
possible to change this upper limit such that a section of memory just
below FLEX is saved for some user required routines or to avoid some
peripheral device which may be addressed in that region. This is done by
simply overlaying the value stored at $AC2B (should be a $9FFF) with the
upper memory limit you desire. This overlaying must be done before the
initialization is performed. The easiest way to do this is to simply
append the code to overlay this address onto the end of the core of FLEX
when preparing a bootable version of FLEX. Thus even though the value
$9FFF will be loaded when the core part of FLEX is brought into memory,
when the sections of code which the user appended are brought in, the
user's upper limit will replace the $9FFF. A convenient method to append
a new MEMEND limit is to place the code in the Console I/O Driver
Package. For example, if we wanted to limit MEMEND to $7FFF, the
following code could be placed at the end of the Console Driver package:

ORG $AC2B ORIGIN AT MEMEND LOCATION
FDB $7FFF CODE TO STORE $7FFF AT MEMEND

That's all there is to it!

12.2 Altering the FLEX Date Prompt

Upon booting FLEX, the first thing the user sees after a FLEX banner
message is a prompt for the current date. This date is stored in the
appropriate locations in FLEX as detailed in the Advanced Programmer's
Guide. It may be desirable in certain applications to do away with this
date prompt or to obtain the date by some other means (such as reading a
time of day clock). This version of FLEX provides this ability. There is
a subroutine in the FLEX initialization code which displays the prompt,
obtains the response, and stores it in FLEX. A call to this subroutine
(JSR instruction) is located at $AA02. The user can overlay this call in
much the same way that MEMEND was overlayed in the previous section. If
some alternate method of obtaining the date is desired, the subroutine
call can be overlayed with a call (JSR) to a user supplied subroutine. If
the date prompt is to be eliminated, one may simply place a return
instruction (RTS) at $AA02. As an example, if we wished to disable the
date prompt we might place the following code at the end of the Console
I/O Driver package:

Page 43 — Section 12

6800 FLEX Adaptation Guide

ORG $AA02 CALL IS AT $AA02
RTS IMMEDIATELY RETURN

Note that if the date prompt is disabled, the system will have garbage in
the date locations and any use of the date by FLEX will reflect this.

12.3 Replacing Printer Spooler Code

There is an area of FLEX from $A700 through $A83F which has been defined
as the printer spooler code area. If the user does not intend to
implement printer spooling in his system, some of this space nay be used
for other purposes. In particular, the area from $A71C through $A83F may
be used. For example, the user may overflow his disk or console driver
routines into this area or may overflow his printer driver routines here.
If this space is to be used, however, there are two changes which must be
made. First is to disable the routines which are presently stored in this
area by altering the jump table. This jump table is at the beginning of
the printer spooler area and has 6 entries (3 bytes per entry). Each
routine to which this jump table points is terminated with a return
(RTS). Thus, it is possible for us to "disable" all six routines by
replacing the jumps in the jump table with returns. This is basically
protection to ensure nothing will attempt to use the jump table.

The second change to be made is to force the queue count (number of files
in the print queue) to zero. This is done by setting the byte at $A71B to
zero.

The overlay code to disable the printer spooler section code might look
something like this:

ORG $A700 JUMP TABLE STARTS AT $A700
PRSPL1 FCB $39,$39,$39 REPLACE THE FIRST BYTE
PRSPL2 FCB $39,$39,$39 OF EACH ENTRY WITH AN
PRSPL3 FCB $39,$39,$39 RTS ($39) AND THE SECOND
PRSPL4 FCB $39,$39,$39 TWO BYTES WITH ANYTHING
PRSPL5 FCB $39,$39,$39
PRSPL6 FCB $39,$39,$39

ORG $A71B QUEUE COUNT IS AT $A71B
QCNT FCB 0 FORCE QUEUE COUNT TO ZERO

Now the entire area from $A71C through $A83F can be used for any desired
purpose. Note that overlaying the printer spooler jump table is done just
as described for the overlay in section 12.1. It is NOT possible to place
this overlay code into memory before loading FLEX as in that case the
printer spooler code would overlay this code.

Page 44 - Section 12

6800 FLEX Adaptation Guide

12.4 Mapping Filenames to Upper Case

There is a mechanism built into this version of FLEX which automatically
maps all filenames and extensions which go through FLEX's GETFIL routine
into upper case. This mapping is often quite useful in that a file is
referenced by name only and that name can be specified in either upper or
lower case. When the GETFIL routine (see the FLEX Advanced Programmer's
Guide for a description of this routine) is used to build a filename in
an FCB, it checks a byte called MAPUP at location $AC49. If this byte is
set to $60 (which it is by default), the name will be mapped to upper
case letters when placed in the FCB. In this manner, a file can be
specified in either upper or lower case but will always be converted to
upper and placed in the directory in upper case. If desired, this mapping
can be turned off such that no mapping occurs and upper case names will
be different than lower case names. This is done by merely changing the
value stored in MAPUP at $AC49 to $FF. This change can be done at bootup
time by overlaying MAPUP in the same manner described in section 12.1.

Page 45 - Section 12

6800 FLEX Adaptation Guide

13.0 MISCELLANEOUS SUGGESTIONS

The following suggestions are not specifically related to the adaptation
of FLEX, but might be of use once FLEX is running.

13.1 Replacement Master FLEX Disks

Do not despair if you accidentally destroy both of the master FLEX disks
supplied in this package. Replacement disks can be obtained from
Technical Systems Consultants by sending proof of purchase of this
package along with $15.00 for each disk ordered. Be sure to specify
whether you require 8 or 5 1/4 inch disks and which version of FLEX you
have (6800 or 6809). Please do not return the originals for recopying; we
will only sell new master FLEX disks.

13.2 Initialized Disks Available

As a service to those who, for any reason, are unable to format their own
diskettes, Technical Systems Consultants is selling boxes of 10 brand new
disks which have been freshly initialized in the standard FLEX format.
These are available in either 8 or 5 1/4 inch single-sided, single-
density, soft-sectored formats and must be purchased by the box (10 per
box). Prices are as follows:

Box of 8“ disks $75.00
Box of 5 1/4" disks $75.00

This price is postage paid anywhere in the continental U.S.

13.3 The FLEX Newsletter

Technical Systems Consultants Inc. publishes a FLEX Newsletter which is
full of 6800 and 6809 related FLEX articles. This newsletter is published
on an irregular basis of about four per year and contains bug reports,
suggestions and tips for using FLEX and related support software, news of
new FLEX software packages, user comments, and occasionally includes a
free FLEX utility listing. The newsletter costs $4.00 ($8.00 outside U.S.
and Canada) for four issues. This is the best way to keep informed of
what's happening in the world of FLEX.

Page 46 - Section 13

6800 FLEX Adaptation Guide

13.4 Single Drive Copy Program

For practical use, it is recommended that FLEX (or any disk operating
system) be run on at least a two drive system. This allows a user to
easily back up his files and to easily create new disks for distribution.
There is nothing, however, to keep FLEX from being used on a single drive
system. In order to do so one will need a "single drive copy" program
which allows files to be copied from one disk to another with only one
drive on the system. This involves alternatively inserting two disks into
the drive until the entire file, which may not fit in memory, has been
copied. The user can certainly develop his own single drive copy routine
or can purchase one from Technical Systems Consultants for $15.00. This
includes a two page manual and object code disk. Be sure to specify 8 or
5 1/4 inch disk, 6800 or 6809, and include 3% for postage and handling
(10% outside U.S. and Canada).

13.5 Give Us Some Feedback

Technical Systems Consultants Inc. is always interested in how and where
its software packages are being installed. When you get FLEX up and
running, drop us a line and let us know about your hardware
configuration. If you would like to share the work you have done in
adapting FLEX to your hardware, let us know... there is probably someone
else with similar hardware who could benefit from your efforts.

Page 47 - Section 13

6800 FLEX Adaptation Guide

APPENDIX A
6800 FLEX Memory Map

A000 -------
 I System Stack

A080 -------
 I Input Buffer

A100 -------
 I
 I
 I Utility Area
 I
 I

A700 -------
 I
 I Printer Spooler
 I

A840 -------
 I
 I System/User FCB
 I

A980 -------
 I
 I System I/O FCB's
 I (FLEX Initialize at AA00)
 I

AC00 -------
 I System Variables

ACC0 -------
 I Printer Drivers

ACF8 -------
 I System Variables

AD00 -------
 I
 I
 I Disk Operating System
 I
 I

B390 -------
 I Console I/O Drivers

B400 -------
 I
 I
 I File Management System
 I
 I
 I

BE00 -------
 I
 I Disk Drivers
 I

C000 -------

Page 48 - Appendix A

6800 FLEX Adaptation Guide

APPENDIX B
Disk Formats

Almost any conceivable format of floppy disk can be supported by the FLEX
Disk Operating System. Technical Systems Consultants Inc. has, however,
defined two formats which should be a standard for all FLEX disks to be
distributed from installation to installation. Several other formats have
also been defined but are not necessarily fixed. All single-density
formats are essentially compatible with the 256 byte per sector IBM
format. With the exception of track #0 which is in single-density, the
defined double-density formats are also essentially compatible with the
256 byte per sector IBM format.

B.1 Defined Distribution Formats

Technical Systems Consultants has defined one 8 inch and one 5 1/4 inch
floppy disk format which should be a standard for any disk distributed
from one system to another. This standard allows the exchange of software
between any two FLEX systems with the same size disks. These formats are
as follows:

1) 8" SINGLE-SIDED, SINGLE-DENSITY, SOFT-SECTORED DISK
This disk should be comprised of 77 tracks (numbered 0 thru
76) with 15 sectors per track (numbered 1 thru 15).

2) 5 1/4" SINGLE-SIDED, SINGLE-DENSITY, SOFT-SECTORED DISK
This disk should be comprised of 35 tracks (numbered 0 thru
34) with 10 sectors per track (numbered 1 thru 10).

B.2 Other Defined Formats

Technical Systems Consultants has defined several other disk formats as
described below. These formats are in use in many installations, but
there is nothing to restrict the user to them. They are simply offered as
guidelines for writing NEWDISK routines. In the following table, SS and
DS refer to Single and Double Sided respectively, and SD and DD refer to
Single and Double Density respectively.

Sectors per Track Sectors per Track
 Other than #0 On Track #0

Disk Type # of Tracks One Side Total One Side Total

 8" DS,SD 77 15 30 15 30
 8" DS,DD 77 26 52 15 30
 8" SS,DD 77 26 26 15 15
5 1/4" SS,SD 40 10 10 10 10
5 1/4" DS,SD 35 or 40 10 20 10 20

Page 49 - Appendix B

6800 FLEX Adaptation Guide

NOTES:

 1) On double-density disks, track #0 is formatted in single-density
to facilitate automatic density selection.

 2) Side #0 is the bottom of the disk (opposite the label).
 3) Sector size is 256 bytes.
 4) Track numbers always begin with #0 and sector numbers always begin

with #1 (except as described below).
 5) Some systems have ROM monitors with boots which look for a sector

#0 on track #0. Disks for these systems may have a sector #0
instead of a sector #1 on track #0.

Page 50 - Appendix B

SECTOR READ/WRITE TEST 6800 FLEX Adaptation Guide

APPENDIX C
Single Sector READ/WRITE Test Utility

 * TEST UTILITY
 *
 * COPYRIGHT (C) 1980 BY
 * TECHNICAL SYSTEMS CONSULTANTS, INC.
 * BOX 2570; W. LAFAYETTE, IN 47906
 *
 * TESTS SINGLE SECTOR READ AND WRITE ROUTINES.
 * PROGRAM PROMPTS USER FOR FUNCTION (F?) TO WHICH THE
 * USER CAN RESPOND 'R' (READ) OR 'W' (WRITE). THEN IT
 * PROMPTS FOR SINGLE DIGIT DRIVE NUMBER (D?), TWO DIGIT
 * HEX TRACK NUMBER (T?) AND TWO DIGIT HEX SECTOR
 * NUMBER (S?). AFTER PERFORMING THE FUNCTION, TEST
 * REPEATS THE PROMPTING FOR ANOTHER FUNCTION.
 *
 * ASSUMES THE CONSOLE I/O PACKAGE DRIVERS ARE RESIDENT.
 * BEGIN EXECUTION BY JUMPING TO $0100.
 *
 * EQUATES
 *
 B3FB INCH EQU $B3FB
 B3F9 OUTCH EQU $B3F9
 B3F5 TINIT EQU $B3F5
 B3F3 MONITR EQU $B3F3
 A07F STACK EQU $A07F
 A840 FCB EQU $A840
 1000 BUFFER EQU $1000
 BE80 READ EQU $BE80
 BE83 WRITE EQU $BE83
 BE8C DRIVE EQU $BE8C

 * TEMPORARY STORAGE

 0020 ORG $0020
 0020 COMMND RMB 1
 0021 TRACK RMB 1
 0022 SECTOR RMB 1
 0023 BYTE RMB 1

 * START OF PROGRAM

 0100 ORG $0100

 0100 8E A0 7F TEST LDS #STACK SETUP STACK
 0103 FE B3 F5 LDX TINIT
 0106 AD 00 JSR 0,X INITIALIZE TERMINAL
 0108 FE B3 FB LDX INCH SETUP INPUT
 010B FF 01 80 STX INPUT+1
 010E FE B3 F9 LDX OUTCH SETUP OUTPUT
 0111 FF 01 85 STX OUTPUT+1

Page 51 - Appendix C

6800 FLEX Adaptation Guide SECTOR READ/WRITE TEST

 * GET COMMAND

 0114 8E A0 7F TEST1 LDS #STACK RESET STACK
 0117 8D 5B BSR PCRLF
 0119 86 46 LDA A #'F PROMPT FOR FUNCTION
 011B 8D 4D BSR PROMPT
 011D 8D 60 BSR INPUT GET RESPONSE
 011F 81 52 CMP A #'R READ COMMAND?
 0121 27 09 BEQ TEST2
 0123 81 57 CMP A #'W WRITE COMMAND?
 0125 27 05 BEQ TEST2
 0127 FE B3 F3 LDX MONITR
 012A 6E 00 JMP 0,X EXIT THE PROGRAM
 012C 97 20 TEST2 STA A COMMND SAVE COMMAND
 012E 86 44 LDA A #'D PROMPT FOR DRIVE
 0130 8D 38 BSR PROMPT
 0132 BD 01 D1 JSR INHEX GET RESPONSE
 0135 81 04 CMP A #4 ENSURE 0 TO 3
 0137 24 DB BHS TEST1
 0139 B7 A8 43 STA A FCB+3 SAVE IT
 013C 86 54 LDA A #'T PROMPT FOR TRACK
 013E 8D 30 BSR HPRMPT GET HEX PROMPT
 0140 97 21 STA A TRACK
 0142 86 53 LDA A #'S PROMPT FOR SECTOR
 0144 8D 2A BSR HPRMPT GET HEX RESPONSE
 0146 97 22 STA A SECTOR SAVE IT
 0148 8D 2A BSR PCRLF DO LINE FEED

 * GOT COMMAND, NOW DO IT

 014A 96 20 LDA A COMMND GET COMMAND
 014C 81 57 CMP A #'W A WRITE COMMAND?
 014E 26 4E BNE DOREAD IF NOT, ITS A READ
 0150 8D 35 BSR SELECT SELECT DRIVE
 0152 CE 10 00 LDX #BUFFER POINT TO BUFFER
 0155 96 21 LDA A TRACK POINT TO TRACK
 0157 D6 22 LDA B SECTOR POINT TO SECTOR
 0159 BD BE 83 JSR WRITE WRITE THE DATA
 015C 26 31 BNE ERROR
 015E 8D 14 BSR PCRLF
 0160 86 4F LDA A #'O PRINT OK
 0162 8D 20 BSR OUTPUT
 0164 86 4B LDA A #'K
 0166 8D 1C BSR OUTPUT
 0168 20 AA XX BRA TEST1 DO AGAIN

 * PROMPT ROUTINES

 016A 8D 08 PROMPT BSR PCRLF DO LINE FEED
 016C 8D 16 BSR OUTPUT OUTPUT PROMPT LETTER
 016E 20 12 BRA QUEST PRINT QUESTION MARK
 0170 8D F8 HPRMPT BSR PROMPT DO PROMPT
 0172 20 50 BRA INBYTE GET HEX BYTE

Page 52 - Appendix C

SECTOR READ/WRITE TEST 6800 FLEX Adaptation Guide

 * CARRIAGE RETURN LINE FEED ROUTINE

 0174 36 PCRLF PSH A SAVE A
 0175 86 0D LDA A #$0D RETURN
 0177 8D 0B BSR OUTPUT
 0179 86 0A LDA A #$0A LINE FEED
 017B 8D 07 BSR OUTPUT
 017D 32 PUL A RESTORE A
 017E 39 RET RTS

 * I/O ROUTINES

 017F 7E 01 7F INPUT JMP INPUT (WILL BE OVERLAYED)
 0182 86 3F QUEST LDA A #'?
 0184 7E 01 84 OUTPUT JMP OUTPUT (WILL BE OVERLAID)

 * DRIVE SELECT ROUTINE

 0187 CE A8 40 SELECT LDX #FCB
 018A BD BE 8C JSR DRIVE
 018D 27 EF BEQ RET RETURN IF NO ERROR

 * DRIVER ERROR

 018F 8D E3 ERROR BSR PCRLF
 0191 86 45 LDA A #'E
 0193 8D EF BSR OUTPUT
 0195 86 3D LDA A #'=
 0197 8D EB BSR OUTPUT
 0199 17 TBA GET ERROR CODE
 019A 8D 4B BSR OUTHEX
 019C 20 CA BRA XX START OVER

 * DO SINGLE SECTOR READ

 019E 8D E7 DOREAD BSR SELECT SELECT DRIVE
 01A0 CE 10 00 LDX #BUFFER POINT TO BUFFER
 01A3 96 21 LDA A TRACK POINT TO TRACK
 01A5 D6 22 LDA B SECTOR POINT TO SECTOR
 01A7 BD BE 80 JSR READ READ THE DATA
 01AA 26 E3 BNE ERROR

 * DUMP DATA TO CONSOLE

 01AC CE 10 00 DUMP LDX #BUFFER
 01AF 86 10 LDA A #16 NO OF LINES
 01B1 36 DUMP1 PSH A SAVE NO OF LINES
 01B2 8D C0 BSR PCRLF
 01B4 C6 10 LDA B #16 NO OF BYTES
 01B6 A6 00 DUMP2 LDA A 0,X GET A BYTE
 01B8 08 INX
 01B9 8D 2C BSR OUTHEX OUTPUT IT
 01BB 5A DEC B DONE WITH LINE?
 01BC 26 F8 BNE DUMP2

Page 53 - Appendix C

6800 FLEX Adaptation Guide SECTOR READ/WRITE TEST

 01BE 32 PUL A GET NO LINES
 01BF 4A DEC A DONE WITH DUMP?
 01C0 26 EF BNE DUMP1 LOOP IF NOT
 01C2 20 A4 BRA XX GET NEXT COMMAND

 * INPUT HEX BYTE ROUTINE

 01C4 8D 0B INBYTE BSR INHEX
 01C6 48 ASL A
 01C7 48 ASL A
 01C8 48 ASL A
 01C9 48 ASL A
 01CA 97 23 STA A BYTE
 01CC 8D 03 BSR INHEX
 01CE 9B 23 ADD A BYTE
 01D0 39 RETN RTS
 01D1 8D AC INHEX BSR INPUT
 01D3 80 47 SUB A #$47
 01D5 2A 0C BPL INERR
 01D7 8B 06 ADD A #6
 01D9 2A 04 BPL INH2
 01DB 8B 07 ADD A #7
 01DD 2A 04 BPL INERR
 01DF 8B 0A INH2 ADD A #10
 01E1 2A ED BPL RETN
 01E3 8D 9D INERR BSR QUEST PRINT A QUESTION MARK
 01E5 20 81 BRA XX GO START OVER

 * OUTPUT HEX BYTE (FOLLOWED BY SPACE)

 01E7 36 OUTHEX PSH A
 01E8 44 LSR A
 01E9 44 LSR A
 01EA 44 LSR A
 01EB 44 LSR A
 01EC 8D 07 BSR OUTHR
 01EE 32 PUL A
 01EF 8D 04 BSR OUTHR
 01F1 86 20 LDA A #$20
 01F3 20 8F BRA OUTPUT
 01F5 84 0F OUTHR AND A #$0F
 01F7 8B 90 ADD A #$90
 01F9 19 DAA
 01FA 89 40 ADC A #$40
 01FC 19 DAA
 01FD 20 85 BRA OUTPUT

 END

Page 54 - Appendix C

QLOAD UTILITY 6800 FLEX Adaptation Guide

APPENDIX D
Quick FLEX Loader Utility

 * QLOAD - QUICK LOADER
 *
 * COPYRIGHT (C) 1980 BY
 * TECHNICAL SYSTEMS CONSULTANTS, INC.
 * PO BOX 2570, W.LAFAYETTE, IN 47906
 *
 * LOADS FLEX FROM DISK ASSUMING THAT THE DISK I/O
 * ROUTINES ARE ALREADY IN MEMORY. ASSUMES FLEX
 * BEGINS ON TRACK #1 SECTOR #1. RETURNS TO
 * MONITOR ON COMPLETION. BEGIN EXECUTION BY
 * JUMPING TO LOCATION $A100.
 *

 * EQUATES

 A07F STACK EQU $A07F
 B3F3 MONITR EQU $B3F3
 BE80 READ EQU $BE80
 BE89 RESTORE EQU $BE89
 BE8C DRIVE EQU $BE8C
 A300 SCTBUF EQU $A300 DATA SECTOR BUFFER

 * START OF UTILITY

 A100 ORG $A100

 A100 8E A0 7F QLOAD LDS #STACK SETUP STACK
 A103 20 07 BRA LOAD0

 A105 01 TRK FCB 1 FILE START TRACK
 A106 01 SCT FCB 1 FILE START SECTOR
 A107 00 DNS FCB 0 DENSITY FLAG
 A108 00 00 LADR FDB 0 LOAD ADDRESS
 A10A 00 00 SBFPTR FDB 0 SECTOR BUFFER POINTER

 A10C CE A3 00 LOAD0 LDX #SCTBUF POINT TO FCB
 A10F 6F 03 CLR 3,X SET FOR DRIVE 0
 A111 BD BE 8C JSR DRIVE SELECT DRIVE 0
 A114 CE A3 00 LDX #SCTBUF
 A117 BD BE 89 JSR RESTORE NOW RESTORE TO TRACK 0
 A11A B6 A1 05 LDA A TRK SETUP STARTING TRK & SCT
 A11D B7 A3 00 STA A SCTBUF
 A120 B6 A1 06 LDA A SCT
 A123 B7 A3 01 STA A SCTBUF+1
 A126 CE A4 00 LDX #SCTBUF+256
 A129 FF A1 0A STX SBFPTR

Page 55 - Appendix D

6800 FLEX Adaptation Guide QLOAD UTILITY

 * PERFORM ACTUAL FILE LOAD

 A12C 8D 42 LOAD1 BSR GETCH GET A CHARACTER
 A12E 81 02 CMP A #$02 DATA RECORD HEADER?
 A130 27 0A BEQ LOAD2 SKIP IF SO
 A132 81 16 CMP A #$16 XFR ADDRESS HEADER?
 A134 26 F6 BNE LOAD1 LOOP IF NEITHER
 A136 8D 38 BSR GETCH GET TRANSFER ADDRESS
 A138 8D 36 BSR GETCH DISCARD IT
 A13A 20 F0 BRA LOAD1 CONTINUE LOAD
 A13C 8D 32 LOAD2 BSR GETCH GET LOAD ADDRESS
 A13E B7 A1 08 STA A LADR
 A141 8D 2D BSR GETCH
 A143 B7 A1 09 STA A LADR+1
 A146 8D 28 BSR GETCH GET BYTE COUNT
 A148 16 TAB PUT IN B
 A149 27 E1 BEQ LOAD1 LOOP IF COUNT=0
 A14B 37 LOAD3 PSH B
 A14C 8D 22 BSR GETCH GET A DATA CHARACTER
 A14E 33 PUL B
 A14F FE A1 08 LDX LADR GET LOAD ADDRESS
 A152 A7 00 STA A 0,X PUT CHARACTER
 A154 08 INX
 A155 FF A1 08 STX LADR
 A158 5A DEC B END OF DATA IN RECORD?
 A159 26 F0 BNE LOAD3 LOOP IF NOT
 A15B 20 CF BRA LOAD1 GET ANOTHER RECORD

 * GET CHARACTER ROUTINE - READS A SECTOR IF NECESSARY

 A15D CE A3 00 GETCH2 LDX #SCTBUF POINT TO BUFFER
 A160 A6 00 LDA A 0,X GET FORWARD LINK (TRACK)
 A162 27 1B BEQ GO IF ZERO, FILE IS LOADED
 A164 E6 01 LDA B 1,X ELSE, GET SECTOR
 A166 BD BE 80 JSR READ READ NEXT SECTOR
 A169 26 95 BNE QLOAD START OVER IF ERROR
 A16B CE A3 04 LDX #SCTBUF+4 POINT PAST LINK
 A16E 20 08 BRA GETCH1 GO GET A CHARACTER
 A170 FE A1 0A GETCH LDX SBFPTR CHECK SECTOR BUFFER POINTER
 A173 8C A4 00 CPX #SCTBUF+256 OUT OF DATA?
 A176 27 E5 BEQ GETCH2 GO READ SECTOR IF SO
 A178 A6 00 GETCH1 LDA A 0,X ELSE GET A CHARACTER
 A17A 08 INX
 A17B FF A1 0A STX SBFPTR UPDATE POINTER
 A17E 39 RTS

 * FILE IS LOADED, RETURN TO MONITOR

 A17F FE B3 F3 GO LDX MONITR GET MONITOR ENTRY ADDRESS
 A182 6E 00 JMP 0,X JUMP THERE

 END

Page 56 - Appendix D

SKELETAL FLEX LOADER 6800 FLEX Adaptation Guide

APPENDIX E
Skeletal FLEX Loader Routine

 * LOADER - FLEX LOADER ROUTINE
 *
 * COPYRIGHT (C) 1980 BY
 * TECHNICAL SYSTEMS CONSULTANTS, INC.
 * PO BOX 2570, W.LAFAYETTE, IN 47906
 *
 * LOADS FLEX FROM DISK. ASSUMES DRIVE IS ALREADY
 * SELECTED AND A RESTORE HAS BEEN PERFORMED BY THE
 * ROM BOOT AND THAT STARTING TRACK AND SECTOR OF
 * FLEX ARE AT $A105 AND $A106. BEGIN EXECUTION
 * BY JUMPING TO LOCATION $A100. JUMPS TO FLEX
 * STARTUP WHEN COMPLETE.

 * EQUATES

 A07F STACK EQU $A07F
 A300 SCTBUF EQU $A300 DATA SECTOR BUFFER

 * START OF UTILITY

 A100 ORG $A100
 A100 8E A0 7F LOAD LDS #STACK SETUP STACK
 A103 20 09 BRA LOAD0

 A105 00 TRK FCB 0 FILE START TRACK
 A106 00 SCT FCB 0 FILE START SECTOR
 A107 00 DNS FCB 0 DENSITY FLAG
 A108 A1 00 TADR FDB $A100 TRANSFER ADDRESS
 A10A 00 00 LADR FDB 0 LOAD ADDRESS
 A10C 00 00 SBFPTR FDB 0 SECTOR BUFFER POINTER

 A10E B6 A1 05 LOAD0 LDA A TRK SETUP STARTING TRK & SCT
 A111 B7 A3 00 STA A SCTBUF
 A114 B6 A1 06 LDA A SCT
 A117 B7 A3 01 STA A SCTBUF+1
 A11A CE A4 00 LDX #SCTBUF+256
 A11D FF A1 0C STX SBFPTR

 * PERFORM ACTUAL FILE LOAD

 A120 8D 35 LOAD1 BSR GETCH GET A CHARACTER
 A122 81 02 CMP A #$02 DATA RECORRD HEADER?
 A124 27 10 BEQ LOAD2 SKIP IF SO
 A126 81 16 CMP A #$16 XFR ADDRESS HEADER?
 A128 26 F6 BNE LOAD1 LOOP IF NEITHER
 A12A 8D 2B BSR GETCH GET TRANSFER ADDRESS
 A12C B7 A1 08 STA A TADR
 A12F 8D 26 BSR GETCH
 A131 B7 A1 09 STA A TADR+1
 A134 20 EA BRA LOAD1 CONTINUE LOAD

Page 57 - Appendix E

6800 FLEX Adaptation Guide SKELETAL FLEX LOADER

 A136 8D 1F LOAD2 BSR GETCH GET LOAD ADDRESS
 A138 B7 A1 0A STA A LADR
 A13B 8D 1A BSR GETCH
 A13D B7 A1 0B STA A LADR+1
 A140 8D 15 BSR GETCH GET BYTE COUNT
 A142 16 TAB PUT IN B
 A143 27 DB BEQ LOAD1 LOOP IF COUNT=0
 A145 37 LOAD3 PSH B
 A146 8D 0F BSR GETCH GET A DATA CHARACTER
 A148 33 PUL B
 A149 FE A1 0A LDX LADR GET LOAD ADDRESS
 A14C A7 00 STA A 0,X PUT CHARACTER
 A14E 08 INX
 A14F FF A1 0A STX LADR
 A152 5A DEC B END OF DATA IN RECORD?
 A153 26 F0 BNE LOAD3 LOOP IF NOT
 A155 20 C9 BRA LOAD1 GET ANOTHER RECORD

 * GET CHARACTER ROUTINE - READS A SECTOR IF NECESSARY

 A157 FE A1 0C GETCH LDX SBFPTR CHECK SECTOR BUFFER POINTER
 A15A 8C A4 00 CPX #SCTBUF+256 OUT OF DATA?
 A15D 27 07 BEQ GETCH2 GO READ SECTOR IF SO
 A15F A6 00 GETCH1 LDA A 0,X ELSE, GET A CHARACTER
 A161 08 INX
 A162 FF A1 0C STX SBFPTR UPDATE POINTER
 A165 39 RTS
 A166 CE A3 00 GETCH2 LDX #SCTBUF POINT TO BUFFER
 A169 A6 00 LDA A 0,X GET FORWARD LINK (TRACK)
 A16B 27 0B BEQ GO IF ZERO, FILE IS LOADED
 A16D E6 01 LDA B 1,X ELSE, GET SECTOR
 A16F 8D 0C BSR READ READ NEXT SECTOR
 A171 26 8D BNE LOAD START OVER IF ERROR
 A173 CE A3 04 LDX #SCTBUF+4 POINT PAST LINK
 A176 20 E7 BRA GETCH1 GO GET A CHARACTER

 * FILE IS LOADED, JUMP TO IT

 A178 FE A1 08 GO LDX TADR GET TRANSFER ADDRESS
 A17B 6E 00 JMP 0,X JUMP THERE

 * READ SINGLE SECTOR
 *
 * THIS ROUTINE MUST READ THE SECTOR WHOSE TRACK
 * AND SECTOR ADDRESS ARE IN A AND B ON ENTRY.
 * THE DATA FROM THE SECTOR IS TO BE PLACED AT
 * THE ADDRESS CONTAINED IN X ON ENTRY.
 * IF ERRORS, A NOT-EQUAL CONDITION SHOULD BE
 * RETURNED. THIS ROUTINE WILL HAVE TO DO SEEKS.

 A17D C6 FF READ LDA B #$FF MUST BE USER SUPPLIED!
 A17F 39 RTS THIS CODE DISABLES READ!

 END

Page 58 - Appendix E

SKELETAL NEWDISK ROUTINE 6800 FLEX Adaptation Guide

APPENDIX F
Skeletal NEWDISK Routine

 * NEWDISK
 *
 * COPYRIGHT (C) 1980 BY
 * TECHNICAL SYSTEMS CONSULTANTS, INC.
 * PO BOX 2570, W. LAFAYETTE, IN 47906
 *
 * DISK FORMATTING PROGRAM FOR 6800 FLEX.
 * GENERAL VERSION DESIGNED FOR WD 1771/1791.
 * THE NEWDISK PROGRAM INITIALIZES A NEW DISKETTE AND
 * THEN PROCEEDS TO VERIFY ALL SECTORS AND INITIALIZE
 * TABLES. THIS VERSION IS SETUP FOR AN 8 INCH DISK
 * SYSTEM WITH HINTS AT CERTAIN POINTS FOR ALTERING
 * FOR A SINGLE-DENSITY 5 INCH DISK SYSTEM. THIS
 * VERSION IS NOT INTENDED FOR 5 INCH DOUBLE-DENSITY.

 **
 * DISK SIZE PARAMETERS
 * **** **** **********
 * THE FOLLOWING CONSTANTS SETUP THE SIZE OF THE
 * DISK TO BE FORMATTED. THE VALUES SHOWN ARE FOR
 * 8 INCH DISKS. FOR 5 INCH DISKS, USE APPROPRIATE
 * VALUES. (IE. 35 TRACKS AND 10 SECTORS PER SIDE)
 **

 004D MAXTRK EQU 77 NUMBER OF TRACKS
 * SINGLE DENSITY:
 000F SMAXS0 EQU 15 SD MAX SIDE 0 SECTORS
 001E SMAXS1 EQU 30 SD MAX SIDE 1 SECTORS
 * DOUBLE DENSITY:
 001A DMAXS0 EQU 26 DD MAX SIDE 0 SECTORS
 0034 DMAXS1 EQU 52 DD MAX SIDE 1 SECTORS

 **
 * MORE DISK SIZE DEPENDENT PARAMETERS
 * **** **** **** ********* **********
 * THE FOLLOWING VALUES ARE ALSO DEPENDENT ON THE
 * SIZE OF DISK BEING FORMATTED. EACH VALUE SHOWN
 * IS FOR 8 INCH WITH PROPER 5 INCH VALUES IN
 * PARENTHESES.
 **

 * SIZE OF SINGLE DENSITY WORK BUFFER FOR ONE TRACK
 13EC TKSZ EQU 5100 (USE 3050 FOR 5 INCH)
 * TRACK START VALUE
 0028 TST EQU 40 (USE 0 FOR 5 INCH)
 * SECTOR START VALUE
 0049 SST EQU 73 (USE 7 FOR 5 INCH)
 * SECTOR GAP VALUE
 001B GAP EQU 27 (USE 14 FOR 5 INCH)

 **

Page 59 - Appendix F

6800 FLEX Adaptation Guide SKELETAL NEWDISK ROUTINE

 * WORK SPACE WHERE ONE TRACK OF DATA IS SETUP

 0800 WORK EQU $0800 WORK SPACE
 1BEC SWKEND EQU TKSZ+WORK SINGLE DENSITY
 2FD8 DWKEND EQU TKSZ*2+WORK DOUBLE DENSITY

 * GENERAL EQUATES

 0101 FIRST EQU $0101 FIRST USER SECTOR
 001E FCS EQU 30 FCB CURRENT SECTOR
 0040 FSB EQU 64 FCB SECTOR BUFFER
 0010 IRS EQU 16 INFO RECORD START
 005D AVLP EQU FSB+IRS+13
 0005 DIRSEC EQU 5 FIRST DIR. SECTOR
 0009 RDSS EQU 9 READ SS FMS CODE
 000A WTSS EQU 10 WRITE SS FMS CODE
 AC0E DATE EQU $AC0E DOS DATE

 * FLEX ROUTINES EQUATES

 AD1E PSTRNG EQU $AD1E
 AD18 PUTCHR EQU $AD18
 AD39 OUTDEC EQU $AD39
 AD42 GETHEX EQU $AD42
 AD15 GETCHR EQU $AD15
 AD24 PCRLF EQU $AD24
 AD1B INBUF EQU $AD1B
 AD2D GETFIL EQU $AD2D
 AD48 INDEC EQU $AD48
 AD36 ADDBX EQU $AD36
 B406 FMS EQU $B406
 B403 FMSCLS EQU $B403
 AD3C OUT2HS EQU $AD3C
 AD03 WARMS EQU $AD03

 * DISK DRIVER ROUTINES

 BE83 DWRITE EQU $BE83 WRITE A SINGLE SECTOR
 BE89 REST EQU $BE89 RESTORE HEAD
 BE9B DSEEK EQU $BE9B SEEK TO TRACK

 * TEMPORARY STORAGE

 0020 ORG $0020

 0020 TRACK RMB 1
 0021 SECTOR RMB 1
 0022 BADCNT RMB 1 BAD SECTOR COUNT
 0023 DRN RMB 1
 0024 SIDE RMB 1
 0025 DBSDF RMB 1
 0026 DENSE RMB 1

Page 60 - Appendix F

SKELETAL NEWDISK ROUTINE 6800 FLEX Adaptation Guide

 0027 DNSITY RMB 1
 0028 TEMP1 RMB 2
 002A TEMP2 RMB 2
 002C SECCNT RMB 2 SECTOR COUNTER
 002E FSTAVL RMB 2 FIRST AVAILABLE
 0030 LSTAVL RMB 2 LAST AVAILABLE
 0032 MAXS0 RMB 1 MAX SIDE 0 SECTOR
 0033 MAXS1 RMB 1 MAX SIDE 1 SECTOR
 0034 MAX RMB 1 MAX SECTOR
 0035 FKFCB RMB 4
 0039 VOLNAM RMB 11
 0044 VOLNUM RMB 2

Page 61 - Appendix F

6800 FLEX Adaptation Guide SKELETAL NEWDISK ROUTINE

 0100 ORG $0100

 **
 * MAIN PROGRAM STARTS HERE
 **

 0100 20 0F NEWDISK BRA FORM1

 0102 02 VN FCB 2 VERSION NUMBER

 0103 BD AD 1E OUTIN JSR PSTRNG OUTPUT STRING
 0106 BD AD 15 OUTIN2 JSR GETCHR GET RESPONSE
 0109 84 5F AND A #$5F MAKE IT UPPER CASE
 010B 81 59 CMP A #'Y SEE IF "YES"
 010D 39 RTS

 010E 7E 01 A5 LEXIT JMP EXIT

 0111 86 0F FORM1 LDA A #SMAXS0 INITIALIZE SECTOR MAX
 0113 97 32 STA A MAXS0
 0115 97 34 STA A MAX
 0117 86 1E LDA A #SMAXS1
 0119 97 33 STA A MAXS1
 011B BD AD 42 JSR GETHEX GET DRIVE NUMBER
 011E 25 EE BCS LEXIT
 0120 DF 28 STX TEMP1
 0122 96 29 LDA A TEMP1+1
 0124 81 03 CMP A #3 ENSURE 0 TO 3
 0126 22 E6 BHI LEXIT
 0128 CE 08 00 LDX #WORK
 012B A7 03 STA A 3,X
 012D 97 23 STA A DRN
 012F CE 05 0A LDX #SURES ASK IF HE'S SURE
 0132 8D CF BSR OUTIN PRINT & GET RESPONSE
 0134 26 D8 BNE LEXIT EXIT IF "NO"
 0136 CE 05 2C LDX #SCRDS CHECK SCRATCH DRIVE NO.
 0139 BD AD 1E JSR PSTRNG OUTPUT IT
 013C CE 08 02 LDX #WORK+2
 013F 6F 00 CLR 0,X
 0141 5F CLR B
 0142 BD AD 39 JSR OUTDEC
 0145 86 3F LDA A #'? PRINT QUESTION MARK
 0147 BD AD 18 JSR PUTCHR
 014A 86 20 LDA A #$20
 014C BD AD 18 JSR PUTCHR
 014F 8D B5 BSR OUTIN2 GET RESPONSE
 0151 26 BB BNE LEXIT EXIT IF "NO"
 0153 7F 00 25 CLR DBSDF CLEAR FLAG
 *** PLACE A "BRA FORM25" HERE IF CONTROLLER
 *** IS ONLY SINGLE SIDED.
 0156 CE 05 9A LDX #DBST ASK IF DOUBLE SIDED
 0159 8D A8 BSR OUTIN PRINT & GET RESPONSE
 015B 26 07 BNE FORM25 SKIP IF "NO"
 015D 7C 00 25 INC DBSDF SET FLAG

Page 62 - Appendix F

SKELETAL NEWDISK ROUTINE 6800 FLEX Adaptation Guide

 0160 86 1E LDA A #SMAXS1 SET MAX SECTOR
 0162 97 34 STA A MAX
 0164 7F 00 26 FORM25 CLR DENSE INITIALIZE SINGLE DENSITY
 0167 7F 00 27 CLR DNSITY
 *** PLACE A "BRA FORM26" HERE IF CONTROLLER
 *** IS ONLY SINGLE DENSITY.
 016A CE 05 AE LDX #DDSTR ASK IF DOUBLE DENSITY
 016D 8D 94 BSR OUTIN PRINT & GET RESPONSE
 016F 26 03 BNE FORM26 SKIP IF "NO"
 0171 7C 00 26 INC DENSE SET FLAG IF SO
 0174 CE 05 C4 FORM26 LDX #NMSTR ASK FOR VOLUME NAME
 0177 BD AD 1E JSR PSTRNG PRINT IT
 017A BD AD 1B JSR INBUF GET LINE
 017D CE 00 35 LDX #FKFCB POINT TO FAKE
 0180 BD AD 2D JSR GETFIL
 0183 CE 05 D2 FORM27 LDX #NUMSTR OUTPUT STRING
 0186 BD AD 1E JSR PSTRNG
 0189 BD AD 1B JSR INBUF GET LINE
 018C BD AD 48 JSR INDEC GET NUMBER
 018F 25 F2 BCS FORM27 ERROR?
 0191 DF 44 STX VOLNUM SAVE NUMBER
 0193 BD AD 24 JSR PCRLF PRINT CR & LF
 0196 CE 08 00 LDX #WORK
 0199 BD BE 89 JSR REST RESTORE HEAD
 019C 27 14 BEQ FORMAT SKIP IF NO ERROR
 019E CE 05 19 LDX #WPST
 01A1 C5 40 BIT B #$40 WRITE PROTECT ERROR?
 01A3 26 03 BNE EXIT2 SKIP IF SO

 * EXIT ROUTINES

 01A5 CE 05 53 EXIT LDX #ABORTS REPORT ABORTING
 01A8 BD AD 1E EXIT2 JSR PSTRNG OUTPUT STRING
 01AB BD B4 03 EXIT3 JSR FMSCLS
 01AE 0E CLI
 01AF 7E AD 03 JMP WARMS RETURN TO FLEX

Page 63 - Appendix F

6800 FLEX Adaptation Guide SKELETAL NEWDISK ROUTINE

 **
 *
 * ACTUAL FORMAT ROUTINE
 *
 * THIS CODE PERFORMS THE ACTUAL DISK FORMATTING BY PUTTING
 * ON ALL GAPS, HEADER INFORMATION, DATA AREAS, SECTOR LINKING,
 * ETC. THIS SECTION DOES NOT WORRY ABOUT SETTING UP THE
 * SYSTEM INFORMATION RECORD, BOOT SECTOR, OR DIRECTORY.
 * IT ALSO DOES NOT NEED BE CONCERNED WITH TESTING THE DISK FOR
 * ERRORS AND THE REMOVAL OF DEFECTIVE SECTORS ASSOCIATED WITH
 * SUCH TESTING. THESE OPERATIONS ARE CARRIED OUT BY THE
 * REMAINDER OF THE CODE IN "NEWDISK".
 * IF USING A WD1771 OR WD1791 CONTROLLER CHIP, THIS CODE SHOULD
 * NOT NEED CHANGING (SO LONG AS THE WRITE TRACK ROUTINE AS
 * FOUND LATER IS PROVIDED). IF USING A DIFFERENT TYPE OF
 * CONTROLLER, THIS CODE MUST BE REPLACED AND THE WRITE TRACK
 * ROUTINE (FOUND LATER) MAY BE REMOVED AS IT WILL HAVE TO BE
 * A PART OF THE CODE THAT REPLACES THIS FORMATTING CODE.
 * WHEN THIS ROUTINE IS COMPLETED, IT SHOULD JUMP TO 'SETUP'.
 *
 **

 * MAIN FORMATTING LOOP

 01B2 0F FORMAT SEI
 01B3 7F 00 20 CLR TRACK
 01B6 7F 00 24 FORM3 CLR SIDE SET SIDE 0
 01B9 7F 00 21 CLR SECTOR
 01BC 8D 44 BSR TRKHD SETUP TRACK HEADER
 01BE CE 08 49 FORM32 LDX #WORK+SST POINT TO SECTOR START
 01C1 D6 27 LDA B DNSITY DOUBLE DENSITY?
 01C3 27 03 BEQ FORM4 SKIP IF NOT
 01C5 CE 08 92 LDX #SST*2+WORK DD SECTOR START
 01C8 BD 02 3F FORM4 JSR DOSEC PROCESS RAM WITH INFO
 01CB 7C 00 21 INC SECTOR ADVANCE TO NEXT
 01CE 96 21 LDA A SECTOR CHECK VALUE
 01D0 D6 24 LDA B SIDE CHECK SIDE
 01D2 26 04 BNE FORM45
 01D4 91 32 CMP A MAXS0
 01D6 20 02 BRA FORM46
 01D8 91 33 FORM45 CMP A MAXS1
 01DA 26 EC FORM46 BNE FORM4 REPEAT?
 01DC 96 20 FORM47 LDA A TRACK GET TRACK NUMBER
 01DE D6 24 LDA B SIDE FAKE SECTOR FOR PROPER SIDE
 01E0 BD BE 9B JSR DSEEK SEEK TRACK AND SIDE
 01E3 BD 05 E2 JSR WRTTRK WRITE TRACK
 01E6 D6 25 FORM5 LDA B DBSDF ONE SIDE?
 01E8 27 09 BEQ FORM6
 01EA D6 24 LDA B SIDE
 01EC 26 05 BNE FORM6
 01EE 73 00 24 COM SIDE SET SIDE 1
 01F1 20 CB BRA FORM32
 01F3 7C 00 20 FORM6 INC TRACK BUMP TRACK

Page 64 - Appendix F

SKELETAL NEWDISK ROUTINE 6800 FLEX Adaptation Guide

 01F6 BD 03 40 JSR SWITCH SWITCH TO DD IF NCSSRY
 01F9 96 20 FORM7 LDA A TRACK CHECK VALUE
 01FB 81 4D CMP A #MAXTRK DONE LAST TRACK?
 01FD 26 B7 BNE FORM3 LOOP IF NOT
 01FF 7E 02 E1 JMP SETUP DONE...GO FINISH UP

 * SETUP TRACK HEADER INFORMATION

 0202 CE 08 00 TRKHD LDX #WORK POINT TO BUFFER
 0205 D6 27 LDA B DNSITY DOUBLE DENSITY?
 0207 26 12 BNE TRHDD SKIP IF SO
 0209 C6 FF LDA B #$FF
 020B E7 00 TRHDS1 STA B 0,X INITIALIZE TO $FF
 020D 08 INX
 020E 8C 1B EC CPX #SWKEND
 0211 26 F8 BNE TRHDS1
 0213 CE 08 28 LDX #WORK+TST
 0216 4F CLR A SET IN ZEROS
 0217 C6 06 LDA B #6
 0219 20 16 BRA TRHDD2
 021B C6 4E TRHDD LDA B #$4E
 021D E7 00 TRHDD1 STA B 0,X INITIALIZE TO $4E
 021F 08 INX
 0220 8C 2F D8 CPX #DWKEND
 0223 26 F8 BNE TRHDD1
 0225 CE 08 50 LDX #TST*2+WORK
 0228 4F CLR A SET IN ZEROS
 0229 C6 0C LDA B #12
 022B 8D 0B BSR SET
 022D 86 F6 LDA A #$F6 SET IN $F6'S
 022F C6 03 LDA B #3
 0231 8D 05 TRHDD2 BSR SET
 0233 86 FC LDA A #$FC SET INDEX MARK
 0235 A7 00 STA A 0,X
 0237 39 RTS

 * SET (B) BYTES OF MEMORY TO (A) STARTING AT (X)

 0238 A7 00 SET STA A 0,X
 023A 08 INX
 023B 5A DEC B
 023C 26 FA BNE SET
 023E 39 RTS

 * PROCESS SECTOR IN RAM

 023F 4F DOSEC CLR A
 0240 C6 06 LDA B #6 CLEAR BYTES
 0242 7D 00 27 TST DNSITY DOUBLE DENSITY?
 0245 27 08 BEQ DOSEC2 SKIP IF NOT
 0247 C6 0C DOSEC1 LDA B #12 CLEAR 12 BYTES
 0249 8D ED BSR SET
 024B 86 F5 LDA A #$F5 SET IN 3 $F5'S

Page 65 - Appendix F

6800 FLEX Adaptation Guide SKELETAL NEWDISK ROUTINE

 024D C6 03 LDA B #3
 024F 8D E7 DOSEC2 BSR SET
 0251 86 FE LDA A #$FE ID ADDRESS MARK
 0253 A7 00 STA A 0,X
 0255 08 INX
 0256 96 20 LDA A TRACK GET TRACK NO.
 0258 A7 00 STA A 0,X
 025A 08 INX
 025B D6 27 LDA B DNSITY DOUBLE DENSITY?
 025D 27 04 BEQ DOSEC3 SKIP IF NOT
 025F D6 24 LDA B SIDE GET SIDE INDICATOR
 0261 C4 01 AND B #$01 MAKE IT 0 OR 1
 0263 E7 00 DOSEC3 STA B 0,X
 0265 08 INX
 0266 DF 28 STX TEMP1 SAVE X REGISTER
 0268 CE 04 B8 LDX #SSCMAP POINT TO CORRECT MAP
 026B D6 27 LDA B DNSITY
 026D 27 03 BEQ DOSEC4
 026F CE 04 D6 LDX #DSCMAP
 0272 D6 21 DOSEC4 LDA B SECTOR GET SECTOR NO.
 0274 27 04 BEQ DOSC55
 0276 08 DOSEC5 INX GET ACTUAL SECTOR NUMBER
 0277 5A DEC B
 0278 26 FC BNE DOSEC5
 027A E6 00 DOSC55 LDA B 0,X
 027C DE 28 LDX TEMP1 RESTORE X REGISTER
 027E E7 00 STA B 0,X
 0280 08 INX
 0281 D1 34 CMP B MAX END OF TRACK?
 0283 26 09 DOSEC6 BNE DOSEC7 SKIP IF NOT
 0285 4C INC A BUMP TRACK NO.
 0286 5F CLR B RESET SECTOR NO.
 0287 81 4D CMP A #MAXTRK END OF DISK?
 0289 26 03 BNE DOSEC7 SKIP IF NOT
 028B 4F CLR A SET ZERO FORWARK LINK
 028C C6 FF LDA B #-1
 028E 5C DOSEC7 INC B BUMP SECTOR NO.
 028F 36 PSH A SAVE FORWARD LINK
 0290 37 PSH B
 0291 86 01 LDA A #1 SECTOR LENGTH = 256
 0293 A7 00 STA A 0,X
 0295 08 INX
 0296 86 F7 LDA A #$F7 SET CRC CODE
 0298 A7 00 STA A 0,X
 029A 08 INX
 029B D6 27 LDA B DNSITY DOUBLE DENSITY?
 029D 26 0A BNE DOSEC8 SKIP IF SO
 029F C6 0B LDA B #11 LEAVE $FF'S
 02A1 BD AD 36 JSR ADDBX
 02A4 4F CLR A PUT IN 6 ZEROS
 02A5 C6 06 LDA B #6
 02A7 20 0E BRA DOSEC9
 02A9 C6 16 DOSEC8 LDA B #22 LEAVE $4E'S
 02AB BD AD 36 JSR ADDBX

Page 66 - Appendix F

SKELETAL NEWDISK ROUTINE 6800 FLEX Adaptation Guide

 02AE 4F CLR A PUT IN 12 ZEROS
 02AF C6 0C LDA B #12
 02B1 8D 85 BSR SET
 02B3 86 F5 LDA A #$F5 PUT IN 3 $F5'S
 02B5 C6 03 LDA B #3
 02B7 BD 02 38 DOSEC9 JSR SET
 02BA 86 FB LDA A #$FB DATA ADDRESS MARK
 02BC A7 00 STA A 0,X
 02BE 08 INX
 02BF 33 PUL B RESTORE FORWARD LINK
 02C0 32 PUL A
 02C1 A7 00 STA A 0,X PUT IN SECTOR BUFFER
 02C3 E7 01 STA B 1,X
 02C5 08 INX
 02C6 08 INX
 02C7 4F CLR A CLEAR SECTOR BUFFER
 02C8 C6 FE LDA B #254
 02CA BD 02 38 JSR SET
 02CD 86 F7 LDA A #$F7 SET CRC CODE
 02CF A7 00 STA A 0,X
 02D1 08 INX
 02D2 C6 1B LDA B #GAP LEAVE GAP
 02D4 BD AD 36 JSR ADDBX
 02D7 D6 27 LDA B DNSITY DOUBLE DENSITY?
 02D9 27 05 BEQ DOSECA SKIP IF NOT
 02DB C6 1B LDA B #GAP DD NEEDS MORE GAP
 02DD BD AD 36 JSR ADDBX
 02E0 39 DOSECA RTS

Page 67 - Appendix F

6800 FLEX Adaptation Guide SKELETAL NEWDISK ROUTINE

 **
 * DISK TESTING AND TABLE SETUP
 *
 * THE FOLLOWING CODE TESTS EVERY SECTOR AND REMOVES ANY
 * DEFECTIVE SECTORS FROM THE FREE CHAIN. NEXT THE SYSTEM
 * INFORMATION RECORD IS SETUP, THE DIRECTORY IS INITIALIZED,
 * AND THE BOOT IS SAVED ON TRACK ZERO. ALL THIS CODE SHOULD
 * WORK AS IS FOR ANY FLOPPY DISK SYSTEM. ONE CHANGE THAT
 * MIGHT BE REQUIRED WOULD BE IN THE SAVING OF THE BOOTSTRAP
 * LOADER. SPECIAL BOOT LOADERS MIGHT REQUIRE CHANGES IN THE
 * WAY THE BOOT SAVE IS PERFORMED. FOR EXAMPLE, IT MAY BE
 * NECESSARY TO SAVE TWO SECTORS IF THE BOOT LOADER DOES NOT
 * FIT IN ONE. ALSO IT MAY BE NECESSARY, BY SOME MEANS, TO
 * INFORM THE BOOT LOADER WHETHER THE DISK IS SINGLE OR
 * DOUBLE DENSITY SO THAT IT MAY SELECT THE PROPER DENSITY
 * FOR LOADING FLEX.
 *
 **

 * READ ALL SECTORS FOR ERRORS

 02E1 96 34 SETUP LDA A MAX GET MAX SECTORS
 02E3 C6 4C LDA B #MAXTRK-1 GET NUMBER OF USER TRACKS
 02E5 D7 30 STA B LSTAVL SET LAST AVAIL.
 02E7 97 31 STA A LSTAVL+1
 02E9 CE 00 00 LDX #0
 02EC C6 4C SETUP0 LDA B #MAXTRK-1 FIND TOTAL SECTORS
 02EE BD AD 36 JSR ADDBX
 02F1 4A DEC A
 02F2 26 F8 BNE SETUP0
 02F4 DF 2C STX SECCNT SAVE TOTAL SECTOR COUNT
 02F6 CE 01 01 LDX #FIRST SET FIRST AVAIL
 02F9 DF 2E STX FSTAVL
 02FB 96 23 LDA A DRN
 02FD B7 08 03 STA A WORK+3
 0300 4F CLR A CLEAR COUNTER
 0301 97 22 STA A BADCNT
 0303 97 20 STA A TRACK SET TRACK
 0305 97 27 STA A DNSITY SNGL DNST FOR TRK 0
 0307 4C INC A
 0308 97 21 STA A SECTOR SET SECTOR
 030A 86 0F LDA A #SMAXS0 RESET MAXIMUM
 030C 97 32 STA A MAXS0 SECTOR COUNTS
 030E 86 1E LDA A #SMAXS1
 0310 97 33 STA A MAXS1
 0312 D6 25 LDA B DBSDF DOUBLE SIDED?
 0314 26 02 BNE SETUP1 SKIP IF SO
 0316 86 0F LDA A #SMAXS0
 0318 97 34 SETUP1 STA A MAX SET MAXIMUM SECTORS
 031A 8D 16 SETUP2 BSR CHKSEC GO CHECK SECTOR
 031C 26 46 BNE REMSEC ERROR?
 031E 7F 00 22 CLR BADCNT CLEAR COUNTER
 0321 96 20 SETUP4 LDA A TRACK GET TRACK & SECTOR

Page 68 - Appendix F

SKELETAL NEWDISK ROUTINE 6800 FLEX Adaptation Guide

 0323 D6 21 LDA B SECTOR
 0325 8D 31 BSR FIXSEC GET TO NEXT ADR
 0327 27 06 BEQ SETUP5 SKIP IF FINISHED
 0329 97 20 STA A TRACK SET TRACK & SECTOR
 032B D7 21 STA B SECTOR
 032D 20 EB BRA SETUP2 REPEAT
 032F 7E 03 F3 SETUP5 JMP DOTRK

 * CHECK IF SECTOR GOOD

 0332 CE 08 00 CHKSEC LDX #WORK POINT TO FCB
 0335 96 20 LDA A TRACK GET TRACK & SECTOR
 0337 D6 21 LDA B SECTOR
 0339 A7 1E STA A FCS,X SET CURRENT TRK & SCT
 033B E7 1F STA B FCS+1,X
 033D 7E 03 DC JMP READSS GO DO READ

 * SWITCH TO DOUBLE DENSITY IF NECESSARY

 0340 D6 26 SWITCH LDA B DENSE DOUBLE DENSITY DISK?
 0342 27 13 BEQ SWTCH2 SKIP IF NOT
 0344 D7 27 STA B DNSITY SET FLAG
 0346 C6 1A LDA B #DMAXS0 RESET SECTOR COUNTS
 0348 D7 32 STA B MAXS0
 034A C6 34 LDA B #DMAXS1
 034C D7 33 STA B MAXS1
 034E 7D 00 25 TST DBSDF DOUBLE SIDED?
 0351 26 02 BNE SWTCH1 SKIP IF SO
 0353 C6 1A LDA B #DMAXS0
 0355 D7 34 SWTCH1 STA B MAX SET MAX SECTOR
 0357 39 SWTCH2 RTS

 * SET TRK & SEC TO NEXT

 0358 D1 34 FIXSEC CMP B MAX END OF TRACK?
 035A 26 04 BNE FIXSE4 SKIP IF NOT
 035C 4C INC A BUMP TRACK
 035D 8D E1 BSR SWITCH SWITCH TO DD IF NCSSRY
 035F 5F CLR B RESET SECTOR NO.
 0360 5C FIXSE4 INC B BUMP SECTOR NO.
 0361 81 4D CMP A #MAXTRK END OF DISK?
 0363 39 RTS

 * REMOVE BAD SECTOR FROM FREE SECTOR CHAIN

 0364 7C 00 22 REMSEC INC BADCNT UPDATE COUNTER
 0367 27 0A BEQ REMSE1 COUNT OVERFLOW?
 0369 96 20 LDA A TRACK GET TRACK
 036B 26 0C BNE REMSE2 TRACK 0?
 036D D6 21 LDA B SECTOR GET SECTOR
 036F C1 05 CMP B #DIRSEC PAST DIRECTORY?
 0371 22 06 BHI REMSE2
 0373 CE 05 43 REMSE1 LDX #FATERS REPORT FATAL ERROR
 0376 7E 01 A8 JMP EXIT2 REPORT IT

Page 69 - Appendix F

6800 FLEX Adaptation Guide SKELETAL NEWDISK ROUTINE

 0379 CE 08 00 REMSE2 LDX #WORK POINT TO FCB
 037C 96 2E LDA A FSTAVL GET 1ST TRACK & SECTOR
 037E D6 2F LDA B FSTAVL+1
 0380 91 20 CMP A TRACK CHECK TRACK
 0382 26 0C BNE REMSE3
 0384 D1 21 CMP B SECTOR CHECK SECTOR
 0386 26 08 BNE REMSE3
 0388 8D CE BSR FIXSEC SET TO NEXT
 038A 97 2E STA A FSTAVL SET NEW ADR
 038C D7 2F STA B FSTAVL+1
 038E 20 2F BRA REMSE8 GO DO NEXT
 0390 96 20 REMSE3 LDA A TRACK GET TRACK & SECTOR
 0392 D6 21 LDA B SECTOR
 0394 D0 22 SUB B BADCNT
 0396 27 02 BEQ REMS35 UNDERFLOW?
 0398 2A 03 BPL REMSE4
 039A 4A REMS35 DEC A DEC TRACK
 039B D6 34 LDA B MAX RESET SECTOR
 039D A7 1E REMSE4 STA A FCS,X SET CURRENT ADR
 039F E7 1F STA B FCS+1,X
 03A1 8D 39 BSR READSS GO DO READ
 03A3 26 CE BNE REMSE1 ERROR?
 03A5 A6 40 LDA A FSB,X GET LINK ADR
 03A7 E6 41 LDA B FSB+1,X
 03A9 8D AD BSR FIXSEC POINT TO NEXT
 03AB 26 0A BNE REMSE6 OVERFLOW?
 03AD A6 1E LDA A FCS,X GET CURRENT ADR
 03AF E6 1F LDA B FCS+1,X
 03B1 97 30 STA A LSTAVL SET NEW LAST AVAIL
 03B3 D7 31 STA B LSTAVL+1
 03B5 4F CLR A SET END LINK
 03B6 5F CLR B
 03B7 A7 40 REMSE6 STA A FSB,X SET NEW LINK
 03B9 E7 41 STA B FSB+1,X
 03BB 8D 29 BSR WRITSS GO DO WRITE
 03BD 26 B4 BNE REMSE1 ERROR?
 03BF DE 2C REMSE8 LDX SECCNT GET SEC COUNT
 03C1 09 DEX DEC IT ONCE
 03C2 DF 2C STX SECCNT SAVE NEW COUNT
 03C4 CE 05 66 LDX #BADSS REPORT BAD SECTOR
 03C7 BD AD 1E JSR PSTRNG OUTPUT IT
 03CA CE 00 20 LDX #TRACK POINT TO ADDRESS
 03CD BD AD 3C JSR OUT2HS OUTPUT IT
 03D0 86 20 LDA A #$20
 03D2 BD AD 18 JSR PUTCHR
 03D5 08 INX BUMP TO NEXT
 03D6 BD AD 3C JSR OUT2HS
 03D9 7E 03 21 JMP SETUP4 CONTINUE

 * READ A SECTOR

 03DC CE 08 00 READSS LDX #WORK POINT TO FCB
 03DF 86 09 LDA A #RDSS SET UP COMMAND
 03E1 A7 00 STA A 0,X

Page 70 - Appendix F

SKELETAL NEWDISK ROUTINE 6800 FLEX Adaptation Guide

 03E3 7E B4 06 JMP FMS GO DO IT

 * WRITE A SECTOR

 03E6 CE 08 00 WRITSS LDX #WORK POINT TO FCB
 03E9 86 0A LDA A #WTSS SETUP COMMAND
 03EB A7 00 STA A 0,X
 03ED BD B4 06 JSR FMS GO DO IT
 03F0 27 EA BEQ READSS ERRORS?
 03F2 39 RTS ERROR RETURN

 * SETUP SYSTEM INFORMATION RECORD

 03F3 7F 00 27 DOTRK CLR DNSITY BACK TO SINGLE DENSITY
 03F6 CE 08 00 LDX #WORK POINT TO SPACE
 03F9 6F 1E CLR FCS,X SET TO DIS
 03FB 86 03 LDA A #3 SECTOR 3
 03FD A7 1F STA A FCS+1,X
 03FF 8D DB BSR READSS READ IN SIR SECTOR
 0401 26 5D BNE DOTRK4 ERROR?
 0403 CE 08 00 LDX #WORK FIX POINTER
 0406 6F 40 CLR FSB,X CLEAR FORWARD LINK
 0408 6F 41 CLR FSB+1,X
 040A 96 2E LDA A FSTAVL ADDR. OF 1ST FREE SCTR.
 040C D6 2F LDA B FSTAVL+1
 040E A7 5D STA A AVLP,X SET IN SIR
 0410 E7 5E STA B AVLP+1,X
 0412 96 30 LDA A LSTAVL ADDR. OF LAST FREE SCTR.
 0414 D6 31 LDA B LSTAVL+1
 0416 A7 5F STA A AVLP+2,X PUT IN SIR
 0418 E7 60 STA B AVLP+3,X
 041A 96 2C LDA A SECCNT GET TOTAL SECTOR COUNT
 041C D6 2D LDA B SECCNT+1
 041E A7 61 STA A AVLP+4,X PUT IN SIR
 0420 E7 62 STA B AVLP+5,X
 0422 86 4C LDA A #MAXTRK-1 SET MAX TRACK NO.
 0424 A7 66 STA A AVLP+9,X PUT IN SIR
 0426 96 32 LDA A MAXS0 SET MAX SECTORS/TRACK
 0428 D6 25 LDA B DBSDF DOUBLE SIDED?
 042A 27 02 BEQ DOTRK2
 042C 96 33 LDA A MAXS1 CHANGE FOR DOUBLE SIDED
 042E A7 67 DOTRK2 STA A AVLP+10,X SAVE IN SIR
 0430 B6 AC 0E LDA A DATE SET DATE INTO SIR
 0433 A7 63 STA A AVLP+6,X
 0435 B6 AC 0F LDA A DATE+1
 0438 A7 64 STA A AVLP+7,X
 043A B6 AC 10 LDA A DATE+2
 043D A7 65 STA A AVLP+8,X
 043F C6 0D LDA B #13
 0441 CE 00 39 LDX #VOLNAM POINT TO VOLUME NAME
 0444 DF 28 STX TEMP1
 0446 CE 08 00 LDX #WORK
 0449 DF 2A STX TEMP2
 044B DE 28 DOTR33 LDX TEMP1 COPY NAME TO SIR

Page 71 - Appendix F

6800 FLEX Adaptation Guide SKELETAL NEWDISK ROUTINE

 044D A6 00 LDA A 0,X
 044F 08 INX
 0450 DF 28 STX TEMP1
 0452 DE 2A LDX TEMP2
 0454 A7 50 STA A FSB+IRS,X
 0456 08 INX
 0457 DF 2A STX TEMP2
 0459 5A DEC B DEC THE COUNT
 045A 26 EF BNE DOTR33
 045C 8D 88 BSR WRITSS WRITE SIR BACK OUT
 045E 27 03 BEQ DIRINT SKIP IF NO ERROR
 0460 7E 03 73 DOTRK4 JMP REMSE1 GO REPORT ERROR

 * INITIALIZE DIRECTORY

 0463 CE 08 00 DIRINT LDX #WORK SET POINTER
 0466 86 0F LDA A #SMAXS0 GET MAX FOR TRK 0
 0468 7D 00 25 TST DBSDF SINGLE SIDE?
 046B 27 02 BEQ DIRIN1 SKIP IF SO
 046D 86 1E LDA A #SMAXS1 SET MAX FOR DS
 046F A7 1F DIRIN1 STA A FCS+1,X SET UP
 0471 BD 03 DC JSR READSS READ IN SECTOR
 0474 26 EA BNE DOTRK4 ERROR?
 0476 CE 08 00 LDX #WORK RESTORE POINTER
 0479 6F 40 CLR FSB,X CLEAR LINK
 047B 6F 41 CLR FSB+1,X
 047D BD 03 E6 JSR WRITSS WRITE BACK OUT
 0480 26 DE BNE DOTRK4 ERRORS?

 * SAVE BOOT ON TRACK 0 SECTOR 1
 * (MAY REQUIRE CHANGES - SEE TEXT ABOVE)

 0482 CE A1 00 DOBOOT LDX #BOOT POINT TO LOADER CODE
 0485 4F CLR A TRACK #0
 0486 C6 01 LDA B #1 SECTOR #1
 0488 BD BE 83 JSR DWRITE WRITE THE SECTOR
 048B 26 D3 BNE DOTRK4

 * REPORT TOTAL SECTORS AND EXIT

 048D CE 08 00 LDX #WORK SETUP AN FCB
 0490 86 10 LDA A #16 OPEN SIR FUNCTION
 0492 A7 00 STA A 0,X
 0494 BD B4 06 JSR FMS OPEN THE SIR
 0497 26 C7 BNE DOTRK4
 0499 86 07 LDA A #7 GET INFO RECORD FUNCTION
 049B A7 00 STA A 0,X
 049D BD B4 06 JSR FMS GET 1ST INFO RECORD
 04A0 26 BE BNE DOTRK4
 04A2 CE 05 75 LDX #CMPLTE REPORT FORMATTING COMPLETE
 04A5 BD AD 1E JSR PSTRNG
 04A8 CE 05 89 LDX #SECST PRINT TOTAL SECTORS STRING
 04AB BD AD 1E JSR PSTRNG
 04AE CE 08 15 LDX #WORK+21 TOTAL IS IN INFO RECORD

Page 72 - Appendix F

SKELETAL NEWDISK ROUTINE 6800 FLEX Adaptation Guide

 04B1 5F CLR B
 04B2 BD AD 39 JSR OUTDEC PRINT NUMBER
 04B5 7E 01 AB JMP EXIT3 ALL FINISHED!

 **
 * SECTOR MAPS
 * ****** ****
 * THE MAPS SHOWN BELOW CONTAIN THE CORRECT
 * INTERLEAVING FOR AN 8 INCH DISK. IF USING 5
 * INCH DISKS (SINGLE DENSITY) YOU SHOULD USE
 * SOMETHING LIKE '1,3,5,7,9,2,4,6,8,10' FOR
 * SSCMAP FOR A SINGLE SIDED DISK.
 **

 04B8 01 SSCMAP FCB 1,6,11,3,8,13,5,10
 04C0 0F FCB 15,2,7,12,4,9,14
 04C7 10 FCB 16,21,26,18,23,28,20,25
 04CF 1E FCB 30,17,22,27,19,24,29

 04D6 01 DSCMAP FCB 1,14,3,16,5,18,7
 04DD 14 FCB 20,9,22,11,24,13
 04E3 1A FCB 26,2,15,4,17,6,19
 04EA 08 FCB 8,21,10,23,12,25
 04F0 1B FCB 27,40,29,42,31,44,33
 04F7 2E FCB 46,35,48,37,50,39
 04FD 34 FCB 52,28,41,30,43,32,45
 0504 22 FCB 34,47,36,49,38,51

 * STRINGS

 050A 41 SURES FCC 'ARE YOU SURE? '
 0518 04 FCB 4
 0519 44 WPST FCC 'DISK IS PROTECTED!'
 052B 04 FCB 4
 052C 53 SCRDS FCC 'SCRATCH DISK IN DRIVE '
 0542 04 FCB 4
 0543 46 FATERS FCC 'FATAL ERROR --- '
 0553 46 ABORTS FCC 'FORMATTING ABORTED'
 0565 04 FCB 4
 0566 42 BADSS FCC 'BAD SECTOR AT '
 0574 04 FCB 4
 0575 46 CMPLTE FCC 'FORMATTING COMPLETE'
 0588 04 FCB 4
 0589 54 SECST FCC 'TOTAL SECTORS = '
 0599 04 FCB 4
 059A 44 DBST FCC 'DOUBLE SIDED DISK? '
 05AD 04 FCB 4
 05AE 44 DDSTR FCC 'DOUBLE DENSITY DISK? '
 05C3 04 FCB 4
 05C4 56 NMSTR FCC 'VOLUME NAME? '
 05D1 04 FCB 4
 05D2 56 NUMSTR FCC 'VOLUME NUMBER? '
 05E1 04 FCB 4

Page 73 - Appendix F

6800 FLEX Adaptation Guide SKELETAL NEWDISK ROUTINE

 * WRITE TRACK ROUTINE *

 * THIS SUBROUTINE MUST BE USER SUPPLIED. *
 * IT SIMPLY WRITES THE DATA FOUND AT "WORK" ($0800) TO THE *
 * CURRENT TRACK ON THE DISK. NOTE THAT THE SEEK TO TRACK *
 * OPERATION HAS ALREADY BEEN PERFORMED. IF SINGLE DENSITY, *
 * "TKSZ" BYTES SHOULD BE WRITTEN. IF DOUBLE, "TKSZ*2" *
 * BYTES SHOULD BE WRITTEN. THIS ROUTINE SHOULD PERFORM *
 * ANY NECESSARY DENSITY SELECTION BEFORE WRITING. DOUBLE *
 * DENSITY IS INDICATED BY THE BYTE "DNSITY" BEING NON-ZERO. *
 * THERE ARE NO ENTRY PARAMETERS AND ALL REGISTERS MAY BE *
 * DESTROYED ON EXIT. THE CODE FOR THIS ROUTINE MUST NOT *
 * EXTEND PAST $0800 SINCE THE TRACK DATA IS STORED THERE. *

 * WESTERN DIGITAL PARAMTERS
 * ******* ******* *********
 * REGISTERS:
 0000 COMREG EQU $0000 COMMAND REGISTER
 0000 TRKREG EQU $0000 TRACK REGISTER
 0000 SECREG EQU $0000 SECTOR REGISTER
 0000 DATREG EQU $0000 DATA REGISTER
 * COMMANDS:
 00F4 WTCMD EQU $F4 WRITE TRACK COMMAND

 * CONTROLLER DEPENDENT PARAMETERS
 * ********** ********* **********

 0000 DRVREG EQU $0000 DRIVE SELECT REGISTER

 05E2 01 WRTTRK NOP ROUTINE GOES HERE
 05E3 39 RTS

Page 74 - Appendix F

SKELETAL NEWDISK ROUTINE 6800 FLEX Adaptation Guide

 **
 *
 * BOOTSTRAP FLEX LOADER
 *
 * THE CODE FOR THE BOOTSTRAP FLEX LOADER MUST BE IN MEMORY
 * AT $A100 WHEN NEWDISK IS RUN. THERE ARE TWO WAYS IT CAN
 * BE PLACED THERE. ONE IS TO ASSEMBLE THE LOADER AS A
 * SEPARATE FILE AND APPEND IT ONTO THE END OF THE NEWDISK
 * FILE. THE SECOND IS TO SIMPLY PUT THE SOURCE FOR THE
 * LOADER IN-LINE HERE WITH AN ORG TO $A100. THE FIRST FEW
 * LINES OF CODE FOR THE LATTER METHOD ARE GIVEN HERE TO
 * GIVE THE USER AN IDEA OF HOW TO SETUP THE LOADER SOURCE.
 *
 * IT IS NOT NECESSARY TO HAVE THE LOADER AT $A100 IN ORDER
 * FOR THE NEWDISK TO RUN. IT SIMPLY MEANS THAT WHATEVER
 * HAPPENS TO BE IN MEMORY AT $A100 WHEN NEWDISK IS RUN
 * WOULD BE WRITTEN OUT AS A BOOT. AS LONG AS THE CREATED
 * DISK WAS FOR USE AS A DATA DISK ONLY AND WOULD NOT BE
 * BOOTED FROM, THERE WOULD BE NO PROBLEM.
 *
 **

 * 6800 BOOTSTRAP FLEX LOADER

 A100 ORG $A100

 A100 20 07 BOOT BRA BOOT1

 A102 00 FCB 0,0,0
 A105 00 TRK FCB 0 STARTING TRACK (AT $A105)
 A106 00 SCTR FCB 0 STARTING SECTOR (AT $A106)
 A107 00 00 TEMP FDB 0

 A300 FCB EQU $A300

 A109 7E A1 09 BOOT1 JMP BOOT1 ROUTINE GOES HERE

 **

 END NEWDISK

Page 75 - Appendix F

6800 FLEX Adaptation Guide SAMPLE ADAPTATION

APPENDIX G
Sample Adaptation for SWTPc MF-68

In this appendix we shall give source listings of the code for a sample
adaptation of FLEX. This sample is the adaptation of FLEX to a Southwest
Technical Products (SWTPc) 6800 computer system using their SWTBUG
monitor and MF-68 minifloppy disk system. SWTBUG is a simple ROM monitor
which assumes a console or terminal is connected to the system via an
ACIA located at $8004. SWTBUG also redirects all interrupts through its
own RAM vectors in the area of $A000.

The MF-68 disk system to which these adaptions apply is a single-sided,
single-density, dual drive minifloppy system. The controller board
(SWTPc's part number DC-1) employs a Western Digital 1771 floppy disk
controller chip as its main logic. Besides the four standard registers
for the Western Digital chip, there is one 8-bit, write-only register on
the controller called the drive select register. The 2 low-order bits of
this register select the drive as follows:

bit 1 bit 0 Selected Drive
 0 0 #0
 0 1 #1
 1 0 #2
 1 1 #3

All other bits in the drive select register are ignored.

The Procedure

The source listings of all the code necessary to adapt FLEX to the
described system follows. These listings include:

l) The Console I/O Driver Package
2) The Disk Driver Package
3) A ROM Boot Program
4) A FLEX Loader Program
5) A NEWDISK Program

A few comments about each program or package are in order.

1) The Console I/O Driver Package

The most important part of the Console Driver package is the set of
routines which perform the character I/O to the system terminal or
console. As can be seen, these are written for an ACIA at location $8004.
The interrupt vectors (IRQVEC and SWIVEC) are simply those setup by
SWTBUG. The interrupt timer routines for printer spooling assume a SWTPc
MP-T timer board installed in I/O slot #4 (PIA at $8012). Note that an
upper limit of $7FFF has been set for the end of memory (MEMEND). This is
because the SWTPc 6800 system has decoded its I/0 at $8000.

Page 76 - Appendix G

SAMPLE ADAPTATION 6800 FLEX Adaptation Guide

2) The Disk Driver Package

This package contains all the routines for driving the disks. It should
be noted that these routines will probably not work for an 8 inch disk
system running at 1 MHz. The data transfer rate required by the 8 inch
disk system is faster than the READ and WRITE routines can handle. The
only solution is to increase the clock speed or use a DMA or buffered
controller. The INIT routine clears all the temporary storage values such
that the system starts at track O on all drives. There is no need for a
WARM start routine in this system, so WARM points directly to a return.
With this minifloppy system there is no way for the cpu to determine
whether or not the drives are in a "ready" state. As a result, we must
assume the drives are always ready. Since the response will be the same
for CHKRDY and QUICK (there is no need for a CHKDRDY delay), the jump
vectors for the two point to the same routine. This routine always
returns a ready condition if the specified drive number is 0 or 1. Any
other drive number receives a not-ready condition. This technique has two
side effects. First, since drives 0 and 1 are always assumed ready, if
either is not ready (no disk inserted or door not closed), the system
will "hang" until the drive is put into a ready state or the cpu reset.
Second, if there are more than two drives on line, only the first two
will be searched by commands which should search all drives. If a user
wishes, he can certainly make the check for a valid drive number in
CHKRDY include drives 2 and 3.

3) A ROM Boot Program

Nothing fancy about this one. The emphasis here was to keep things short
and simple. For the lack of a better place, this sample was orged at
$7000. The user will probably wish to reassemble the code into ROM at
some high address. If the user has more room in his ROM it might be
desirable to perform more complete error checking and recovery.

4) A FLEX Loader Program

This program is an exact copy of the skeletal FLEX Loader given in
Appendix E with the exception of the added routine to read a single
sector. It may be noted that the "read single sector" routine used is
almost identical to that prepared for the Disk Driver package. If the
user has enough room left over (the program should not be over 256 bytes)
it might be desirable to add a check to see if the disk has actually been
linked. This check would examine the two bytes at $A105 and $A106 to be
sure that were changed to some non-zero value (which would imply a LINK
command had been performed). If the two bytes were still zero, an
appropriate message should be printed and the loading operation aborted.

Page 77 - Appendix G

6800 FLEX Adaptation Guide SAMPLE ADAPTATION

5) A NEWDISK Program

For this system we need only a single-sided, single-density NEWDISK
routine. It is easiest, however, to use the full NEWDISK routine as
supplied and default to single-sided, single-density by inserting the two
branch instructions as pointed out in the listing ("BRA FORM25" and "BRA
FORM26"). All the values given in the skeletal NEWDISK for minifloppys
have been used for this version. For this example we have used 35 as the
number of tracks on the disk, but it could certainly be changed to 40 if
the drives were capable of writing 40 tracks. The sector maps have been
altered to reflect the number of sectors and proper interleaving for a
single-sided, single-density minifloppy. The only code really added to
the skeletal NEWDISK is the Write Track routine and the Bootstrap Loader
routine. You will note that the Bootstrap Loader is exactly the same as
what we have already listed. Only the added code or changed code has been
printed in this NEWDISK sample. The remainder of the routine is identical
to that of the skeletal NEWDISK listed in Appendix F.

Page 78 - Appendix G

Sample Console I/O Drivers 6800 FLEX Adaption Guide

 * CONSOLE I/O DRIVER PACKAGE
 *
 * COPYRIGHT (C) 1980 BY
 * TECHNICAL SYSTEMS CONSULTANTS, INC.
 * PO BOX 2570, W. LAFAYETTE, IN 47906
 *
 * CONTAINS ALL TERMINAL I/O DRIVERS & INTERRUPT HANDLING
 * INFORMATION. THIS VERSION IS FOR A SWTPC SYSTEM USING
 * A SWTBUG MONITOR AND THE MF-68 MINIFLOPPY SYSTEM. THE
 * INTERRUPT TIMER ROUTINES ARE FOR A SWTPC MP-T TIMER
 * CARD ADDRESSED AT $8012.
 *

 * SYSTEM EQUATES

 A700 CHPR EQU $A700 CHANGE PROCESS ROUTINE
 8012 TMPIA EQU $8012 TIMER PIA ADDRESS
 8004 ACIA EQU $8004 ACIA ADDRESS

* *
* I/O ROUTINE VECTOR TABLE *

 * *
 B3E5 ORG $B3E5 TABLE STARTS AT $B3E5 *
 * *
 B3E5 B3 9B INCHNE FDB INNECH INPUT CHAR - NO ECHO *
 B3E7 B3 DF IHNDLR FDB IHND IRQ INTERRUPT HANDLER *
 B3E9 A0 12 SWIVEC FDB $A012 SWI VECTOR LOCATION *
 B3EB A0 00 IRQVEC FDB $A000 IRQ VECTOR LOCATION *
 B3ED B3 D9 TMOFF FDB TOFF TIMER OFF ROUTINE *
 B3EF B3 D5 TMON FDB TON TIMER ON ROUTINE *
 B3F1 B3 BF TMINT FDB TINT TIMER INITIALIZE ROUTINE *
 B3F3 E0 D0 MONITR FDB $E0D0 MONITOR RETURN ADDRESS *
 B3F5 B3 90 TINIT FDB INIT TERMINAL INITIALIZATION *
 B3F7 B3 B7 STAT FDB STATUS CHECK TERMINAL STATUS *
 B3F9 B3 AA OUTCH FDB OUTPUT TERMINAL CHAR OUTPUT *
 B3FB B3 A8 INCH FDB INPUT TERMINAL CHAR INPUT *
 * *

 * ACTUAL ROUTINES START HERE

 B390 ORG $B390

 * TERMINAL INITIALIZE ROUTINE

 B390 86 13 INIT LDA A #$13 RESET ACIA
 B392 B7 80 04 STA A ACIA
 B395 86 11 LDA A #$11 CONFIGURE ACIA

Page 79 - Appendix G

6800 FLEX Adaption Guide Sample Console I/O Drivers

 B397 B7 80 04 STA A ACIA
 B39A 39 RTS

 * TERMINAL INPUT CHAR. ROUTINE - NO ECHO

 B39B B6 80 04 INNECH LDA A ACIA GET ACIA STATUS
 B39E 84 01 AND A #$01 A CHARACTER PRESENT?
 B3A0 27 F9 BEQ INNECH LOOP IF NOT
 B3A2 B6 80 05 LDA A ACIA+1 GET THE CHARACTER
 B3A5 84 7F AND A #$7F STRIP PARITY
 B3A7 39 RTS

 * TERMINAL INPUT CHAR. ROUTINE - W/ ECHO

 B3A8 8D F1 INPUT BSR INNECH

 * TERMINAL OUTPUT CHARACTER ROUTINE

 B3AA 36 OUTPUT PSH A SAVE CHARACTER
 B3AB B6 80 04 OUTPU2 LDA A ACIA TRANSMIT BUFFER EMPTY?
 B3AE 84 02 AND A #$02
 B3B0 27 F9 BEQ OUTPU2 WAIT IF NOT
 B3B2 32 PUL A RESTORE CHARACTER
 B3B3 B7 80 05 STA A ACIA+1 OUTPUT IT
 B3B6 39 RTS

 * TERMINAL STATUS CHECK (CHECK FOR CHARACTER HIT)

 B3B7 36 STATUS PSH A SAVE A REG.
 B3B8 B6 80 04 LDA A ACIA GET STATUS
 B3BB 84 01 AND A #$01 CHECK FOR CHARACTER
 B3BD 32 PUL A RESTORE A REG.
 B3BE 39 RTS

 * TIMER INITIALIZE ROUTINE

 B3BF CE 80 12 TINT LDX #TMPIA GET PIA ADDRESS
 B3C2 86 FF LDA A #$FF SET SIDE B AS OUTPUTS
 B3C4 A7 00 STA A 0,X
 B3C6 86 3C LDA A #$3C CONFIGURE PIA CONTROL
 B3C8 A7 01 STA A 1,X
 B3CA 86 8F LDA A #$8F TURN OFF TIMER
 B3CC A7 00 STA A 0,X
 B3CE A6 00 LDA A 0,X CLR ANY PENDING INTRRPTS
 B3D0 86 3D LDA A #$3D RECONFIGURE PIA
 B3D2 A7 01 STA A 1,X
 B3D4 39 RTS

 * TIMER ON ROUTINE

 B3D5 86 04 TON LDA A #$04 TURN ON TIMER (10ms)
 B3D7 20 02 BRA TOFF2

Page 80 - Appendix G

Sample Console I/O Drivers 6800 FLEX Adaption Guide

 * TIMER OFF ROUTINE

 B3D9 86 8F TOFF LDA A #$8F TURN OFF TIMER
 B3DB B7 80 12 TOFF2 STA A TMPIA
 B3DE 39 RTS

 * IRQ INTERRUPT HANDLER ROUTINE

 B3DF B6 80 12 IHND LDA A TMPIA CLR ANY PENDING INTRRPTS
 B3E2 7E A7 00 JMP CHPR SWITCH PROCESSES

 * CHANGE MEMEND UPPER LIMIT

 AC2B ORG $AC2B
 AC2B 7F FF FDB $7FFF LIMIT MEMEND TO 7FFF

 * END STATEMENT HAS FLEX TRANSFER ADDRESS!

 END $AD00

Page 81 - Appendix G

6800 FLEX Adaption Guide Sample Disk Drivers

 * DRIVER ROUTINES FOR SWTPC MF-68
 *
 * COPYRIGHT (C) 1980 BY
 * TECHNICAL SYSTEMS CONSULTANTS, INC.
 * PO BOX 2570, W. LAFAYETTE, IN 47906
 *
 * THESE DRIVERS ARE FOR A SINGLE-SIDED, SINGLE-
 * DENSITY SWTPC MF-68 MINIFLOPPY DISK SYSTEM.
 *
 * THE DRIVER ROUTINES PERFORM THE FOLLOWING
 * 1. READ SINGLE SECTOR - DREAD
 * 2. WRITE SINGLE SECTOR - DWRITE
 * 3. VERIFY WRITE OPERATION - VERIFY
 * 4. RESTORE HEAD TO TRACK 00 - RESTOR
 * 5. DRIVE SELECTION - DRIVE
 * 6. CHECK READY - DCHECK
 * 7. QUICK CHECK READY - DQUICK
 * 8. DRIVER INITIALIZATION - DINIT
 * 9. WARM START ROUTINE - DWARM
 * 10. SEEK ROUTINE - DSEEK

 * EQUATES

 0002 DRQ EQU 2 DRQ BIT MASK
 0001 BUSY EQU 1 BUSY MASK
 001C RDMSK EQU $1C READ ERROR MASK
 0018 VERMSK EQU $18 VERIFY ERROR MASK
 005C WTMSK EQU $5C WRITE ERROR MASK
 8014 DRVREG EQU $8014 DRIVE REGISTER
 8018 COMREG EQU $8018 COMMAND REGISTER
 8019 TRKREG EQU $8019 TRACK REGISTER
 801A SECREG EQU $801A SECTOR REGISTER
 801B DATREG EQU $801B DATA REGISTER
 008C RDCMND EQU $8C READ COMMAND
 00AC WTCMND EQU $AC WRITE COMMAND
 000B RSCMND EQU $0B RESTORE COMMAND
 001B SKCMND EQU $1B SEEK COMMAND
 AC34 PRCNT EQU $AC34

 * DISK DRIVER JUMP TABLE

 BE80 ORG $BE80
 BE80 7E BE B1 DREAD JMP READ
 BE83 7E BF 0D DWRITE JMP WRITE
 BE86 7E BF 3E DVERFY JMP VERIFY
 BE89 7E BF 55 RESTOR JMP RST
 BE8C 7E BF 6A DRIVE JMP DRV
 BE8F 7E BF 8C DCHECK JMP CHKRDY
 BE92 7E BF 8C DQUICK JMP CHKRDY
 BE95 7E BE A5 DINIT JMP INIT
 BE98 7E BE B0 DWARM JMP WARM
 BE9B 7E BE F0 DSEEK JMP SEEK

Page 82 - Appendix G

Sample Disk Drivers 6800 FLEX Adaption Guide

 * GLOBAL VARIABLE STORAGE

 BE9E 00 CURDRV FCB 0 CURRENT DRIVE
 BE9F 00 00 DRVTRK FDB 0,0 CURRENT TRACK PER DRIVE
 BEA3 00 00 INDEX FDB 0 TEMPORARY STORAGE

 * INIT AND WARM
 *
 * DRIVER INITIALIZATION

 BEA5 CE BE 9E INIT LDX #CURDRV POINT TO VARIABLES
 BEA8 C6 05 LDA B #5 NO. OF BYTES TO CLEAR
 BEAA 6F 00 INIT2 CLR 0,X CLEAR THE STORAGE
 BEAC 08 INX
 BEAD 5A DEC B
 BEAE 26 FA BNE INIT2 LOOP TIL DONE
 BEB0 39 WARM RTS WARM START NOT NEEDED

 * READ
 *
 * READ ONE SECTOR

 BEB1 8D 3D READ BSR SEEK SEEK TO TRACK
 BEB3 86 8C LDA A #RDCMND SETUP READ SECTOR COMMAND
 BEB5 7D AC 34 TST PRCNT ARE WE SPOOLING?
 BEB8 27 01 BEQ READ2 SKIP IF NOT
 BEBA 3F SWI ELSE, SWITCH TASKS
 BEBB 01 READ2 NOP
 BEBC 0F SEI DISABLE INTERRUPTS
 BEBD B7 80 18 STA A COMREG ISSUE READ COMMAND
 BEC0 BD BF A6 JSR DEL28 DELAY
 BEC3 5F CLR B GET SECTOR LENGTH (=256)
 BEC4 B6 80 18 READ3 LDA A COMREG GET WD STATUS
 BEC7 85 02 BIT A #DRQ CHECK FOR DATA
 BEC9 26 07 BNE READ5 BRANCH IF DATA PRESENT
 BECB 85 01 BIT A #BUSY CHECK IF BUSY
 BECD 26 F5 BNE READ3 LOOP IF SO
 BECF 16 TAB ERROR IF NOT
 BED0 20 0B BRA READ6
 BED2 B6 80 1B READ5 LDA A DATREG GET DATA BYTE
 BED5 A7 00 STA A 0,X PUT IN MEMORY
 BED7 08 INX BUMP THE POINTER
 BED8 5A DEC B DEC THE COUNTER
 BED9 26 E9 BNE READ3 LOOP TIL DONE
 BEDB 8D 05 BSR WAIT WAIT TIL WD IS FINISHED
 BEDD C5 1C READ6 BIT B #RDMSK MASK ERRORS
 BEDF 01 NOP
 BEE0 0E CLI ENABLE INTERRUPTS
 BEE1 39 RTS RETURN

Page 83 - Appendix G

6800 FLEX Adaption Guide Sample Disk Drivers

 * WAIT
 *
 * WAIT FOR 1771 TO FINISH COMMAND

 BEE2 7D AC 34 WAIT TST PRCNT ARE WE SPOOLING?
 BEE5 27 01 BEQ WAIT1 SKIP IF NOT
 BEE7 3F SWI SWITCH TASKS IF SO
 BEE8 F6 80 18 WAIT1 LDA B COMREG GET WD STATUS
 BEEB C5 01 BIT B #BUSY CHECK IF BUSY
 BEED 26 F3 BNE WAIT LOOP TIL NOT BUSY
 BEEF 39 RTS RETURN

 * SEEK
 *
 * SEEK THE SPECIFIED TRACK

 BEF0 F7 80 1A SEEK STA B SECREG SET SECTOR
 BEF3 B1 80 19 CMP A TRKREG DIF THAN LAST?
 BEF6 27 12 BEQ SEEK4 EXIT IF NOT
 BEF8 B7 80 1B STA A DATREG SET NEW WD TRACK
 BEFB BD BF A6 JSR DEL28 GO DELAY
 BEFE 86 1B LDA A #SKCMND SETUP SEEK COMMAND
 BF00 B7 80 18 STA A COMREG ISSUE SEEK COMMAND
 BF03 BD BF A6 JSR DEL28 GO DELAY
 BF06 8D DA BSR WAIT WAIT TIL DONE
 BF08 C5 10 BIT B #$10 CHECK FOR SEEK ERROR
 BF0A 7E BF A6 SEEK4 JMP DEL28 DELAY

 * WRITE
 *
 * WRITE ONE SECTOR

 BF0D 8D E1 WRITE BSR SEEK SEEK TO TRACK
 BF0F 86 AC LDA A #WTCMND SETUP WRITE SCTR COMMAND
 BF11 7D AC 34 TST PRCNT ARE WE SPOOLING?
 BF14 27 01 BEQ WRITE2 SKIP IF NOT
 BF16 3F SWI CHANGE TASKS IF SO
 BF17 01 WRITE2 NOP
 BF18 0F SEI DISABLE INTERRUPTS
 BF19 B7 80 18 STA A COMREG ISSUE WRITE COMMAND
 BF1C BD BF A6 JSR DEL28 DELAY
 BF1F 5F CLR B SET SECTOR LENGTH (=256)
 BF20 B6 80 18 WRITE3 LDA A COMREG CHECK WD STATUS
 BF23 85 02 BIT A #DRQ READY FOR DATA?
 BF25 26 07 BNE WRITE5 SKIP IF READY
 BF27 85 01 BIT A #BUSY STILL BUSY?
 BF29 26 F5 BNE WRITE3 LOOP IF SO
 BF2B 16 TAB ERROR IF NOT
 BF2C 20 0B BRA WRITE6
 BF2E A6 00 WRITE5 LDA A 0,X GET A DATA BYTE
 BF30 B7 80 1B STA A DATREG SEND TO DISK
 BF33 08 INX BUMP POINTER
 BF34 5A DEC B DEC THE COUNT
 BF35 26 E9 BNE WRITE3 FINISHED?

Page 84 - Appendix G

Sample Disk Drivers 6800 FLEX Adaption Guide

 BF37 8D A9 BSR WAIT WAIT TIL WD FINISHED
 BF39 C5 5C WRITE6 BIT B #WTMSK MASK ERRORS
 BF3B 01 NOP
 BF3C 0E CLI ENABLE INTERRUPTS
 BF3D 39 RTS RETURN

 * VERIFY
 *
 * VERIFY LAST SECTOR WRITTEN

 BF3E 86 8C VERIFY LDA A #RDCMND SETUP VERIFY COMMAND
 BF40 7D AC 34 TST PRCNT ARE WE SPOOLING?
 BF43 27 01 BEQ VERIF2 SKIP IF NOT
 BF45 3F SWI CHANGE TASKS IF SO
 BF46 01 VERIF2 NOP
 BF47 0F SEI DISABLE INTERRUPTS
 BF48 B7 80 18 STA A COMREG ISSUE VERIFY COMMAND
 BF4B BD BF A6 JSR DEL28 GO DELAY
 BF4E 8D 92 BSR WAIT WAIT TIL WD IS DONE
 BF50 01 NOP
 BF51 0E CLI ENABLE INTERRUPTS
 BF52 C5 18 BIT B #VERMSK MASK ERRORS
 BF54 39 RTS RETURN

 * RST
 * RST RESTORES THE HEAD TO 00

 BF55 FF BE A3 RST STX INDEX SAVE INDEX
 BF58 8D 10 BSR DRV DO SELECT
 BF5A 86 0B LDA A #RSCMND SETUP RESTORE COMMAND
 BF5C B7 80 18 STA A COMREG ISSUE RESTORE COMMAND
 BF5F 8D 45 BSR DEL28 DELAY
 BF61 BD BE E2 JSR WAIT WAIT TIL WD IS FINISHED
 BF64 FE BE A3 LDX INDEX RESTORE POINTER
 BF67 C5 D8 BIT B #$D8 CHECK FOR ERROR
 BF69 39 RTS RETURN

 * DRV
 *
 * SELECT THE SPECIFIED DRIVE

 BF6A A6 03 DRV LDA A 3,X GET DRIVE NUMBER
 BF6C 81 03 CMP A #3 ENSURE IT'S < 4
 BF6E 23 04 BLS DRV2 BRANCH IF OK
 BF70 C6 0F LDA B #$0F ELSE SET ERROR VALUE
 BF72 0D SEC
 BF73 39 RTS
 BF74 8D 23 DRV2 BSR FNDTRK FIND TRACK
 BF76 F6 80 19 LDA B TRKREG GET CURRENT TRACK
 BF79 E7 00 STA B 0,X SAVE IT
 BF7B B7 80 14 STA A DRVREG SET NEW DRIVE
 BF7E B7 BE 9E STA A CURDRV
 BF81 8D 16 BSR FNDTRK FIND NEW TRACK

Page 85 - Appendix G

6800 FLEX Adaption Guide Sample Disk Drivers

 BF83 A6 00 LDA A 0,X
 BF85 B7 80 19 STA A TRKREG PUT NEW TRACK IN WD
 BF88 8D 1C BSR DEL28 DELAY
 BF8A 20 0A BRA OK

 * CHKRDY
 *
 * CHECK DRIVE READY ROUTINE

 BF8C A6 03 CHKRDY LDA A 3,X GET DRIVE NUMBER
 BF8E 81 01 CMP A #1 BE SURE IT'S 0 OR 1
 BF90 23 04 BLS OK BRANCH IF OK
 BF92 C6 80 LDA B #$80 ELSE, SHOW NOT READY
 BF94 0D SEC
 BF95 39 RTS RETURN
 BF96 5F OK CLR B SHOW NO ERROR
 BF97 0C CLC
 BF98 39 RTS

 * FIND THE TRACK FOR CURRENT DRIVE

 BF99 CE BE 9F FNDTRK LDX #DRVTRK POINT TO TRACK STORE
 BF9C F6 BE 9E LDA B CURDRV GET CURRENT DRIVE
 BF9F 27 04 BEQ FNDTR4
 BFA1 08 FNDTR2 INX POINT TO DRIVE'S TRACK
 BFA2 5A DEC B
 BFA3 26 FC BNE FNDTR2
 BFA5 39 FNDTR4 RTS RETURN

 * DELAY

 BFA6 BD BF A9 DEL28 JSR DEL14
 BFA9 BD BF AC DEL14 JSR DEL
 BFAC 39 DEL RTS

 END

Page 86 - Appendix G

Sample ROM Boot 6800 FLEX Adaption Guide

 * ROM BOOT FOR SWTPC 6800 MF-68
 *
 * COPYRIGHT (C) 1980 BY
 * TECHNICAL SYSTEMS CONSULTANTS, INC.
 * PO BOX 2570, W. LAFAYETTE, IN 47906
 *

 * EQUATES

 8014 DRVREG EQU $8014
 8018 COMREG EQU $8018
 801A SECREG EQU $801A
 801B DATREG EQU $801B
 A100 LOADER EQU $A100

 7000 ORG $7000

 7000 B6 80 18 START LDA A COMREG TURN MOTOR ON
 7003 7F 80 14 CLR DRVREG SELECT DRIVE #0
 7006 CE 00 00 LDX #0000
 7009 08 OVR INX DELAY FOR MOTOR SPEEDUP
 700A 09 DEX
 700B 09 DEX
 700C 26 FB BNE OVR
 700E C6 0F LDA B #$0F DO RESTORE COMMAND
 7010 F7 80 18 STA B COMREG
 7013 8D 2C BSR DELAY
 7015 F6 80 18 LOOP1 LDA B COMREG CHECK WD STATUS
 7018 C5 01 BIT B #1 WAIT TIL NOT BUSY
 701A 26 F9 BNE LOOP1
 701C 86 01 LDA A #1 SETUP FOR SECTOR #1
 701E B7 80 1A STA A SECREG
 7021 8D 1E BSR DELAY
 7023 C6 8C LDA B #$8C SETUP READ COMMAND
 7025 F7 80 18 STA B COMREG
 7028 8D 17 BSR DELAY
 702A CE A1 00 LDX #LOADER ADDRESS OF LOADER
 702D C5 02 LOOP2 BIT B #2 DATA PRESENT?
 702F 27 06 BEQ LOOP3 SKIP IF NOT
 7031 B6 80 1B LDA A DATREG GET A BYTE
 7034 A7 00 STA A 0,X PUT IN MEMORY
 7036 08 INX BUMP POINTER
 7037 F6 80 18 LOOP3 LDA B COMREG CHECK WD STATUS
 703A C5 01 BIT B #1 IS WD BUSY?
 703C 26 EF BNE LOOP2 LOOP IF SO
 703E 7E A1 00 JMP LOADER JUMP TO FLEX LOADER

 7041 8D 00 DELAY BSR RTN
 7043 39 RTN RTS

 END START

Page 87 - Appendix G

6800 FLEX Adaption Guide Sample FLEX Loader

 * LOADER - FLEX LOADER ROUTINE
 *
 * COPYRIGHT (C) 1980 BY
 * TECHNICAL SYSTEMS CONSULTANTS, INC.
 * PO BOX 2570, W.LAFAYETTE, IN 47906
 *
 * LOADS FLEX FROM DISK. ASSUMES DRIVE IS ALREADY
 * SELECTED AND A RESTORE HAS BEEN PERFORMED BY THE
 * ROM BOOT AND THAT STARTING TRACK AND SECTOR OF
 * FLEX ARE AT $A105 AND $A106. BEGIN EXECUTION
 * BY JUMPING TO LOCATION $A100. JUMPS TO FLEX
 * STARTUP WHEN COMPLETE.

 * EQUATES

 A07F STACK EQU $A07F
 A300 SCTBUF EQU $A300 DATA SECTOR BUFFER

 * START OF UTILITY

 A100 ORG $A100

 A100 8E A0 7F LOAD LDS #STACK SETUP STACK
 A103 20 09 BRA LOAD0

 A105 00 TRK FCB 0 FILE START TRACK
 A106 00 SCT FCB 0 FILE START SECTOR
 A107 00 DNS FCB 0 DENSITY FLAG
 A108 A1 00 TADR FDB $A100 TRANSFER ADDRESS
 A10A 00 00 LADR FDB 0 LOAD ADDRESS
 A10C 00 00 SBFPTR FDB 0 SECTOR BUFFER POINTER

 A10E B6 A1 05 LOAD0 LDA A TRK SETUP STARTING TRK & SCT
 A111 B7 A3 00 STA A SCTBUF
 A114 B6 A1 06 LDA A SCT
 A117 B7 A3 01 STA A SCTBUF+1
 A11A CE A4 00 LDX #SCTBUF+256
 A11D FF A1 0C STX SBFPTR

 * PERFORM ACTUAL FILE LOAD

 A120 8D 35 LOAD1 BSR GETCH GET A CHARACTER
 A122 81 02 CMP A #$02 DATA RECORD HEADER?
 A124 27 10 BEQ LOAD2 SKIP IF SO
 A126 81 16 CMP A #$16 XFR ADDRESS HEADER?
 A128 26 F6 BNE LOAD1 LOOP IF NEITHER
 A12A 8D 2B BSR GETCH GET TRANSFER ADDRESS
 A12C B7 A1 08 STA A TADR
 A12F 8D 26 BSR GETCH
 A131 B7 A1 09 STA A TADR+1
 A134 20 EA BRA LOAD1 CONTINUE LOAD
 A136 8D 1F LOAD2 BSR GETCH GET LOAD ADDRESS
 A138 B7 A1 0A STA A LADR
 A13B 8D 1A BSR GETCH

Page 88 - Appendix G

Sample FLEX Loader 6800 FLEX Adaption Guide

 A13D B7 A1 0B STA A LADR+1
 A140 8D 15 BSR GETCH GET BYTE COUNT
 A142 16 TAB PUT IN B
 A143 27 DB BEQ LOAD1 LOOP IF COUNT=0
 A145 37 LOAD3 PSH B
 A146 8D 0F BSR GETCH GET A DATA CHARACTER
 A148 33 PUL B
 A149 FE A1 0A LDX LADR GET LOAD ADDRESS
 A14C A7 00 STA A 0,X PUT CHARACTER
 A14E 08 INX
 A14F FF A1 0A STX LADR
 A152 5A DEC B END OF DATA IN RECORD?
 A153 26 F0 BNE LOAD3 LOOP IF NOT
 A155 20 C9 BRA LOAD1 GET ANOTHER RECORD

 * GET CHARACTER ROUTINE - READS A SECTOR IF NECESSARY

 A157 FE A1 0C GETCH LDX SBFPTR CHECK SECTOR BUFFER POINTER
 A15A 8C A4 00 CPX #SCTBUF+256 OUT OF DATA?
 A15D 27 07 BEQ GETCH2 GO READ SECTOR IF SO
 A15F A6 00 GETCH1 LDA A 0,X ELSE, GET A CHARACTER
 A161 08 INX
 A162 FF A1 0C STX SBFPTR UPDATE POINTER
 A165 39 RTS
 A166 CE A3 00 GETCH2 LDX #SCTBUF POINT TO BUFFER
 A169 A6 00 LDA A 0,X GET FORWARD LINK (TRACK)
 A16B 27 0B BEQ GO IF ZERO, FILE IS LOADED
 A16D E6 01 LDA B 1,X ELSE, GET SECTOR
 A16F 8D 0C BSR READ READ NEXT SECTOR
 A171 26 8D BNE LOAD START OVER IF ERROR
 A173 CE A3 04 LDX #SCTBUF+4 POINT PAST LINK
 A176 20 E7 BRA GETCH1 GO GET A CHARACTER

 * FILE IS LOADED, JUMP TO IT

 A178 FE A1 08 GO LDX TADR GET TRANSFER ADDRESS
 A17B 6E 00 JMP 0,X JUMP THERE

 * READ SINGLE SECTOR

 * THIS ROUTINE MUST READ THE SECTOR WHOSE TRACK
 * AND SECTOR ADDRESS ARE IN A ANB B ON ENTRY.
 * THE DATA FROM THE SECTOR IS TO BE PLACED AT
 * THE ADDRESS CONTAINED IN X ON ENTRY.
 * IF ERRORS, A NOT-EQUAL CONDITION SHOULD BE
 * RETURNED. THIS ROUTINE WILL HAVE TO DO SEEKS.

 * WESTERN DIGITAL EQUATES

 0002 DRQ EQU 2 DRQ BIT MASK
 0001 BUSY EQU 1 BUSY MASK
 001C RDMSK EQU $1C READ ERROR MASK
 8018 COMREG EQU $8018 COMMAND REGISTER
 8019 TRKREG EQU $8019 TRACK REGISTER

Page 89 - Appendix G

6800 FLEX Adaption Guide Sample FLEX Loader

 801A SECREG EQU $801A SECTOR REGISTER
 801B DATREG EQU $801B DATA REGISTER
 008C RDCMND EQU $8C READ COMMAND
 001B SKCMND EQU $1B SEEK COMMAND

 * READ ONE SECTOR

 A17D 8D 2F READ BSR SEEK SEEK TO TRACK
 A17F 86 8C LDA A #RDCMND SETUP READ SECTOR COMMAND
 A181 B7 80 18 STA A COMREG ISSUE READ COMMAND
 A184 8D 3E BSR DEL28 DELAY
 A186 5F CLR B GET SECTOR LENGTH (=256)
 A187 CE A3 00 LDX #SCTBUF POINT TO SECTOR BUFFER
 A18A B6 80 18 READ3 LDA A COMREG GET WD STATUS
 A18D 85 02 BIT A #DRQ CHECK FOR DATA
 A18F 26 07 BNE READ5 BRANCH IF DATA PRESENT
 A191 85 01 BIT A #BUSY CHECK IF BUSY
 A193 26 F5 BNE READ3 LOOP IF SO
 A195 16 TAB SAVE ERROR CONDITION
 A196 20 0B BRA READ6
 A198 B6 80 1B READ5 LDA A DATREG GET DATA BYTE
 A19B A7 00 STA A 0,X PUT IN MEMORY
 A19D 08 INX BUMP THE POINTER
 A19E 5A DEC B DEC THE COUNTER
 A19F 26 E9 BNE READ3 LOOP TIL DONE
 A1A1 8D 03 BSR WAIT WAIT TIL WD IS FINISHED
 A1A3 C5 1C READ6 BIT B #RDMSK MASK ERRORS
 A1A5 39 RTS RETURN

 * WAIT FOR 1771 TO FINISH COMMAND

 A1A6 F6 80 18 WAIT LDA B COMREG GET WD STATUS
 A1A9 C5 01 BIT B #BUSY CHECK IF BUSY
 A1AB 26 F9 BNE WAIT LOOP TIL NOT BUSY
 A1AD 39 RTS RETURN

 * SEEK THE SPECIFIED TRACK

 A1AE F7 80 1A SEEK STA B SECREG SET SECTOR
 A1B1 B1 80 19 CMP A TRKREG DIF THAN LAST?
 A1B4 27 0E BEQ DEL28 EXIT IF NOT
 A1B6 B7 80 1B STA A DATREG SET NEW WD TRACK
 A1B9 8D 09 BSR DEL28 GO DELAY
 A1BB 86 1B LDA A #SKCMND SETUP SEEK COMMAND
 A1BD B7 80 18 STA A COMREG ISSUE SEEK COMMAND
 A1C0 8D 02 BSR DEL28 GO DELAY
 A1C2 8D E2 BSR WAIT WAIT TIL DONE

 * DELAY
 A1C4 BD A1 C7 DEL28 JSR DEL14
 A1C7 BD A1 CA DEL14 JSR DEL
 A1CA 39 DEL RTS

 END

Page 90 - Appendix G

Sample NEWDISK 6800 FLEX Adaption Guide

 * NEWDISK
 *
 * COPYRIGHT (C) 1980 BY
 * TECHNICAL SYSTEMS CONSULTANTS, INC.
 * PO BOX 2570, W. LAFAYETTE, IN 47906
 *
 * DISK FORMATTING PROGRAM FOR 6800 FLEX
 * GENERAL VERSION DESIGNED FOR WD 1771/1791
 * THE NEWDISK PROGRAM INITIALIZES A NEW DISKETTE AND
 * THEN PROCEEDS TO VERIFY ALL SECTORS AND INITIALIZE
 * TABLES. THIS VERSION IS SETUP FOR AN 8 INCH DISK
 * SYSTEM WITH HINTS AT CERTAIN POINTS FOR ALTERING
 * FOR A SINGLE-DENSITY 5 INCH DISK SYSTEM. THIS
 * VERSION IS NOT INTENDED FOR 5 INCH DOUBLE-DENSITY.

 **
 * DISK SIZE PARAMETERS
 * **** **** **********
 * THE FOLLOWING CONSTANTS SETUP THE SIZE OF THE
 * DISK TO BE FORMATTED. THE VALUES SHOWN ARE FOR
 * 8 INCH DISKS. FOR 5 INCH DISKS, USE APPROPRIATE
 * VALUES. (IE. 35 TRACKS AND 10 SECTORS PER SIDE)
 **

 0023 MAXTRK EQU 35 NUMBER OF TRACKS
 * SINGLE DENSITY:
 000A SMAXS0 EQU 10 SD MAX SIDE 0 SECTORS
 000A SMAXS1 EQU 10 SD MAX SIDE 1 SECTORS
 * DOUBLE DENSITY:
 000A DMAXS0 EQU 10 DD MAX SIDE 0 SECTORS
 000A DMAXS1 EQU 10 DD MAX SIDE 1 SECTORS

 **
 * MORE DISK SIZE DEPENDENT PARAMETERS
 * **** **** **** ********* **********
 * THE FOLLOWING VALUES ARE ALSO DEPENDENT ON THE
 * SIZE OF DISK BEING FORMATTED. EACH VALUE SHOWN
 * IS FOR 8 INCH WITH PROPER 5 INCH VALUES IN
 * PARENTHESES.
 **

 * SIZE OF SINGLE DENSITY WORK BUFFER FOR ONE TRACK
 0BEA TKSZ EQU 3050 (USE 3050 FOR 5 INCH)
 * TRACK START VALUE
 0000 TST EQU 0 (USE 0 FOR 5 INCH)
 * SECTOR START VALUE
 0007 SST EQU 7 (USE 7 FOR 5 INCH)
 * SECTOR GAP VALUE
 000E GAP EQU 14 (USE 14 FOR 5 INCH)

 **
 ...
 ...
 etc.

Page 91 - Appendix G

6800 FLEX Adaption Guide Sample NEWDISK

 ...
 ...
 ...
 014F 8D B5 BSR OUTIN2 GET RESPONSE
 0151 26 BB BNE LEXIT EXIT IF "NO"
 0153 7F 00 25 CLR DBSDF CLEAR FLAG
 *** PLACE A "BRA FORM25" HERE IF HARDWARE IS
 *** ONLY SINGLE SIDED.

 0156 20 0E BRA FORM25

 0158 CE 05 56 LDX #DBST ASK IF DOUBLE SIDED
 015B 8D A6 BSR OUTIN PRINT & GET RESPONSE
 015D 26 07 BNE FORM25 SKIP IF "NO"
 015F 7C 00 25 INC DBSDF SET FLAG
 0162 86 0A LDA A #SMAXS1 SET MAX SECTOR
 0164 97 34 STA A MAX
 0166 7F 00 26 FORM25 CLR DENSE INITIALIZE SINGLE DENSITY
 0169 7F 00 27 CLR DNSITY
 *** PLACE A "BRA FORM26" HERE IF HARDWARE IS
 *** ONLY SINGLE DENSITY.

 016C 20 0A BRA FORM26 ****ONLY SINGLE DENSITY****

 016E CE 05 6A LDX #DDSTR ASK IF DOUBLE DENSITY
 0171 8D 90 BSR OUTIN PRINT & GET RESPONSE
 0173 26 03 BNE FORM26 SKIP IF "NO"
 0175 7C 00 26 INC DENSE SET FLAG IF SO
 0178 CE 05 80 FORM26 LDX #NMSTR ASK FOR VOLUME NAME
 ...
 ...
 ...
 etc.

Page 92 - Appendix G

Sample NEWDISK 6800 FLEX Adaption Guide

 **
 * SECTOR MAPS
 * ****** ****
 * THE MAPS SHOWN BELOW CONTAIN THE CORRECT
 * INTERLEAVING FOR AN 8 INCH DISK. IF USING 5
 * INCH DISKS (SINGLE DENSITY) YOU SHOULD USE
 * SOMETHING LIKE '1,3,5,7,9,2,4,6,8,10' FOR
 * SSCMAP FOR A SINGLE SIDED DISK.
 **

 04BC 01 SSCMAP FCB 1,3,5,7,9,2,4,6,8,10

 04BC DSCMAP EQU SSCMAP

 * STRINGS

 04C6 41 SURES FCC 'ARE YOU SURE? '
 04D4 04 FCB 4
 04D5 44 WPST FCC 'DISK IS PROTECTED!'
 04E7 04 FCB 4
 04E8 53 SCRDS FCC 'SCRATCH DISK IN DRIVE '
 04FE 04 FCB 4
 04FF 46 FATERS FCC 'FATAL ERROR --- '
 050F 46 ABORTS FCC 'FORMATTING ABORTED'
 0521 04 FCB 4
 0522 42 BADSS FCC 'BAD SECTOR AT '
 0530 04 FCB 4
 0531 46 CMPLTE FCC 'FORMATTING COMPLETE'
 0544 04 FCB 4
 0545 54 SECST FCC 'TOTAL SECTORS = '
 0555 04 FCB 4
 0556 44 DBST FCC 'DOUBLE SIDED DISK? '
 0569 04 FCB 4
 056A 44 DDSTR FCC 'DOUBLE DENSITY DISK? '
 057F 04 FCB 4
 0580 56 NMSTR FCC 'VOLUME NAME? '
 058D 04 FCB 4
 058E 56 NUMSTR FCC 'VOLUME NUMBER? '
 059D 04 FCB 4

Page 93 – Appendix G

6800 FLEX Adaption Guide Sample NEWDISK

 * WRITE TRACK ROUTINE *

 * THIS SUBROUTINE MUST BE USER SUPPLIED. *
 * IT SIMPLY WRITES THE DATA FOUND AT "WORK" ($0800) TO THE *
 * CURRENT TRACK ON THE DISK. NOTE THAT THE SEEK TO TRACK *
 * OPERATION HAS ALREADY BEEN PERFORMED. IF SINGLE DENSITY, *
 * "TKSZ" BYTES SHOULD BE WRITTEN. IF DOUBLE, "TKSZ*2" *
 * BYTES SHOULD BE WRITTEN. THIS ROUTINE SHOULD PERFORM *
 * ANY NECESSARY DENSITY SELECTION BEFORE WRITING. DOUBLE *
 * DENSITY IS INDICATED BY THE BYTE "DNSITY" BEING NON-ZERO. *
 * THERE ARE NO ENTRY PARAMETERS AND ALL REGISTERS MAY BE *
 * DESTROYED ON EXIT. THE CODE FOR THIS ROUTINE MUST NOT *
 * EXTEND PAST $0800 SINCE THE TRACK DATA IS STORED THERE. *

 * WESTERN DIGITAL PARAMETERS
 * ******* ******* *********
 * REGISTERS:
 8018 COMREG EQU $8018 COMMAND REGISTER
 8019 TRKREG EQU $8019 TRACK REGISTER
 801A SECREG EQU $801A SECTOR REGISTER
 801B DATREG EQU $801B DATA REGISTER
 * COMMANDS:
 00F4 WTCMD EQU $F4 WRITE TRACK COMMAND

 * CONTROLLER DEPENDENT PARAMETERS
 * ********** ********* **********
 8014 DRVREG EQU $8014 DRIVE SELECT REGISTER

 059E CE 08 00 WRTTRK LDX #WORK POINT TO DATA
 05A1 86 F4 LDA A #WTCMD SETUP WRITE TRACK COMMAND
 05A3 B7 80 18 STA A COMREG ISSUE COMMAND
 05A6 BD 05 CC JSR DELAY
 05A9 B6 80 18 WRTTR2 LDA A COMREG CHECK WD STATUS
 05AC 85 02 BIT A #$02 IS WD READY FOR DATA ?
 05AE 26 06 BNE WRTTR4 SKIP IF READY
 05B0 85 01 BIT A #$01 IS WD BUSY ?
 05B2 26 F5 BNE WRTTR2 LOOP IF BUSY
 05B4 20 0D BRA WRTTR8 EXIT IF NOT
 05B6 A6 00 WRTTR4 LDA A 0,X GET A DATA BYTE
 05B8 B7 80 1B STA A DATREG SEND TO DISK
 05BB 08 INX BUMP POINTER
 05BC 8C 13 EA CPX #SWKEND OUT OF DATA ?
 05BF 26 E8 BNE WRTTR2 REPEAT IF NOT
 05C1 8D 01 WRTTR6 BSR WAIT WAIT TIL WD IS DONE
 05C3 39 WRTTR8 RTS RETURN

Page 94 – Appendix G

Sample NEWDISK 6800 FLEX Adaption Guide

 05C4 B6 80 18 WAIT LDA A COMREG CHECK WD STATUS
 05C7 85 01 BIT A #$01 IS IT BUSY?
 05C9 26 F9 BNE WAIT LOOP IF SO
 05CB 39 RTS

 05CC BD 05 CF DELAY JSR DELAY2
 05CF BD 05 D2 DELAY2 JSR DELAY4
 05D2 39 DELAY4 RTS

Page 95 – Appendix G

6800 FLEX Adaption Guide Sample NEWDISK

 **
 *
 * BOOTSTRAP FLEX LOADER
 *
 * THE CODE FOR THE BOOTSTRAP FLEX LOADER MUST BE IN MEMORY
 * AT $A100 WHEN NEWDISK IS RUN. THERE ARE TWO WAYS IT CAN
 * BE PLACED THERE. ONE IS TO ASSEMBLE THE LOADER AS A
 * SEPERATE FILE AND APPEND IT ONTO THE END OF THE NEWDISK
 * FILE. THE SECOND IS TO SIMPLY PUT THE SOURCE FOR THE
 * LOADER IN-LINE HERE WITH AN ORG TO $A100. THE FIRST FEW
 * LINES OF CODE FOR THE LATTER METHOD ARE GIVEN HERE TO
 * GIVE THE USER AN IDEA OF HOW TO SETUP THE LOADER SOURCE.
 *
 * IT IS NOT NECESSARY TO HAVE THE LOADER AT $A100 IN ORDER
 * FOR THE NEWDISK TO RUN. IT SIMPLY MEANS THAT WHATEVER
 * HAPPENS TO BE IN MEMORY AT $A100 WHEN NEWDISK IS RUN
 * WOULD BE WRITTEN OUT AS A BOOT. AS LONG AS THE CREATED
 * DISK WAS FOR USE AS A DATA DISK ONLY AND WOULD NOT BE
 * BOOTED FROM, THERE WOULD BE NO PROBLEM
 *
 **

 * 6800 BOOTSTRAP FLEX LOADER

 * EQUATES

 A07F STACK EQU $A07F
 A300 SCTBUF EQU $A300 DATA SECTOR BUFFER

 * START OF UTILITY

 A100 ORG $A100
 A100 8E A0 7F BOOT LDS #STACK SETUP STACK
 A103 20 09 BRA LOAD0

 A105 00 TRK FCB 0 FILE START TRACK
 A106 00 SCT FCB 0 FILE START SECTOR
 A107 00 DNS FCB 0 DENSITY FLAG
 A108 A1 00 TADR FDB $A100 TRANSFER ADDRESS
 A10A 00 00 LADR FDB 0 LOAD ADDRESS
 A10C 00 00 SBFPTR FDB 0 SECTOR BUFFER POINTER

 A10E B6 A1 05 LOAD0 LDA A TRK SETUP STARTING TRK & SCT
 A111 B7 A3 00 STA A SCTBUF
 A114 B6 A1 06 LDA A SCT
 A117 B7 A3 01 STA A SCTBUF+1
 A11A CE A4 00 LDX #SCTBUF+256
 A11D FF A1 0C STX SBFPTR

 * PERFORM ACTUAL FILE LOAD

 A120 8D 35 LOAD1 BSR GETCH GET A CHARACTER
 A122 81 02 CMP A #$02 DATA RECORD HEADER?
 A124 27 10 BEQ LOAD2 SKIP IF SO

Page 96 – Appendix G

Sample NEWDISK 6800 FLEX Adaption Guide

 A126 81 16 CMP A #$16 XFR ADDRESS HEADER?
 A128 26 F6 BNE LOAD1 LOOP IF NEITHER
 A12A 8D 2B BSR GETCH GET TRANSFER ADDRESS
 A12C B7 A1 08 STA A TADR
 A12F 8D 26 BSR GETCH
 A131 B7 A1 09 STA A TADR+1
 A134 20 EA BRA LOAD1 CONTINUE LOAD
 A136 8D 1F LOAD2 BSR GETCH GET LOAD ADDRESS
 A138 B7 A1 0A STA A LADR
 A13B 8D 1A BSR GETCH
 A13D B7 A1 0B STA A LADR+1
 A140 8D 15 BSR GETCH GET BYTE COUNT
 A142 16 TAB PUT IN B
 A143 27 DB BEQ LOAD1 LOOP IF COUNT=0
 A145 37 LOAD3 PSH B
 A146 8D 0F BSR GETCH GET A DATA CHARACTER
 A148 33 PUL B
 A149 FE A1 0A LDX LADR GET LOAD ADDRESS
 A14C A7 00 STA A 0,X PUT CHARACTER
 A14E 08 INX
 A14F FF A1 0A STX LADR
 A152 5A DEC B END OF DATA IN RECORD?
 A153 26 F0 BNE LOAD3 LOOP IF NOT
 A155 20 C9 BRA LOAD1 GET ANOTHER RECORD

 * GET CHARACTER ROUTINE - READS A SECTOR IF NECESSARY

 A157 FE A1 0C GETCH LDX SBFPTR CHECK SECTOR BUFFER POINTER
 A15A 8C A4 00 CPX #SCTBUF+256 OUT OF DATA?
 A15D 27 07 BEQ GETCH2 GO READ SECTOR IF SO
 A15F A6 00 GETCH1 LDA A 0,X ELSE, GET A CHARACTER
 A161 08 INX
 A162 FF A1 0C STX SBFPTR UPDATE POINTER
 A165 39 RTS
 A166 CE A3 00 GETCH2 LDX #SCTBUF POINT TO BUFFER
 A169 A6 00 LDA A 0,X GET FORWARD LINK (TRACK)
 A16B 27 0B BEQ GO IF ZERO, FILE IS LOADED
 A16D E6 01 LDA B 1,X ELSE, GET SECTOR
 A16F 8D 0C BSR READ READ NEXT SECTOR
 A171 26 8D BNE BOOT START OVER IF ERROR
 A173 CE A3 04 LDX #SCTBUF+4 POINT PAST LINK
 A176 20 E7 BRA GETCH1 GO GET A CHARACTER

 * FILE IS LOADED, JUMP TO IT

 A178 FE A1 08 GO LDX TADR GET TRANSFER ADDRESS
 A17B 6E 00 JMP 0,X JUMP THERE

 * WESTERN DIGITAL EQUATES FOR READ

 0002 DRQ EQU 2 DRQ BIT MASK
 0001 BUSY EQU 1 BUSY MASK
 001C RDMSK EQU $1C READ ERROR MASK
 008C RDCMND EQU $8C READ COMMAND

Page 97 – Appendix G

6800 FLEX Adaption Guide Sample NEWDISK

 001B SKCMND EQU $1B SEEK COMMAND

 * READ ONE SECTOR

 A17D 8D 2F READ BSR XSEEK SEEK TO TRACK
 A17F 86 8C LDA A #RDCMND SETUP READ SECTOR COMMAND
 A181 B7 80 18 STA A COMREG ISSUE READ COMMAND
 A184 8D 3E BSR DEL28 DELAY
 A186 5F CLR B GET SECTOR LENGTH (=256)
 A187 CE A3 00 LDX #SCTBUF POINT TO SECTOR BUFFER
 A18A B6 80 18 READ3 LDA A COMREG GET WD STATUS
 A18D 85 02 BIT A #DRQ CHECK FOR DATA
 A18F 26 07 BNE READ5 BRANCH IF DATA PRESENT
 A191 85 01 BIT A #BUSY CHECK IF BUSY
 A193 26 F5 BNE READ3 LOOP IF SO
 A195 16 TAB SAVE ERROR CONDITION
 A196 20 0B BRA READ6
 A198 B6 80 1B READ5 LDA A DATREG GET DATA BYTE
 A19B A7 00 STA A 0,X PUT IN MEMORY
 A19D 08 INX BUMP THE POINTER
 A19E 5A DEC B DEC THE COUNTER
 A19F 26 E9 BNE READ3 LOOP TIL DONE
 A1A1 8D 03 BSR XWAIT WAIT TIL WD IS FINISHED
 A1A3 C5 1C READ6 BIT B #RDMSK MASK ERRORS
 A1A5 39 RTS RETURN

 * WAIT FOR 1771 TO FINISH COMMAND

 A1A6 F6 80 18 XWAIT LDA B COMREG GET WD STATUS
 A1A9 C5 01 BIT B #BUSY CHECK IF BUSY
 A1AB 26 F9 BNE XWAIT LOOP TIL NOT BUSY
 A1AD 39 RTS RETURN

 * SEEK THE SPECIFIED TRACK

 A1AE F7 80 1A XSEEK STA B SECREG SET SECTOR
 A1B1 B1 80 19 CMP A TRKREG DIF THAN LAST?
 A1B4 27 0E BEQ DEL28 EXIT IF NOT
 A1B6 B7 80 1B STA A DATREG SET NEW WD TRACK
 A1B9 8D 09 BSR DEL28 GO DELAY
 A1BB 86 1B LDA A #SKCMND SETUP SEEK COMMAND
 A1BD B7 80 18 STA A COMREG ISSUE SEEK COMMAND
 A1C0 8D 02 BSR DEL28 GO DELAY
 A1C2 8D E2 BSR XWAIT WAIT TIL DONE

 * DELAY

 A1C4 BD A1 C7 DEL28 JSR DEL14
 A1C7 BD A1 CA DEL14 JSR DEL
 A1CA 39 DEL RTS

 END NEWDISK

Page 98 – Appendix G

