
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 



CONTENTS 
 
I. Introduction .................................................................................................................................  1 
 
II. Disk Operating System ................................................................................................................  2 
 DOS Memory Map ......................................................................................................................  2 
 User Callable Routines ................................................................................................................  5 
 User Written Commands ...........................................................................................................  10 
 Disk Resident Commands .........................................................................................................  10 
 Comments About Commands ....................................................................................................  11 
 Examples of DOS Calls .............................................................................................................  11 
 
Ill. File Management System ..........................................................................................................  12 
 File Control Blocks ....................................................................................................................  12 
 FMS Entry Points ......................................................................................................................  15 
 FMS Global Variables ...............................................................................................................  15 
 FMS Function Codes ................................................................................................................  16 
 Error Numbers ..........................................................................................................................  21 
 
IV. Disk Drivers ..............................................................................................................................  23 
 
V. Disk Structures ..........................................................................................................................  24 
 Diskette Initialization .................................................................................................................  24 
 Directory Sectors ......................................................................................................................  24 
 Data Sectors .............................................................................................................................  25 
 Binary Files ...............................................................................................................................  25 
 Text Files ..................................................................................................................................  25 
 
VI. Writing Utility Commands ..........................................................................................................  26 
 Example Program .....................................................................................................................  28 
 
VII. The DOS LINK Utility ................................................................................................................  30 
 
VIII. Printer Routines ........................................................................................................................  30 
 The P Utility ..............................................................................................................................  31 
 
IX. FLEX Reference Sheet .............................................................................................................  33 
 
X. 1771 Reference Sheet ..............................................................................................................  34 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-- iii -- 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 



Preface 
 
The purpose of the Advanced Programmer's Manual is to provide the assembler language program- 
mer with the information required to make effective use of the available system routines and func- 
tions. This manual applies to the mini-floppy version of FLEX (sometimes referenced as "mini- 
FLEX"). Most of the features of the larger versions of FLEX are fully operational on the mini 
version. The programmer should keep this manual close at hand while learning the system. It is 
organized to make it convenient as a quick reference guide as well as a thorough reference manual. 
The manual is not written for the novice programmer and assumes the user to have a thorough 
understanding of assembler language programming techniques. 
 

Copyright Notice 
 
The FLEX Operating System and all of its associated documentation are provided for personal use 
and enjoyment by the purchaser. The entire program and all documentation, including this manual, 
are copyrighted by Technical Systems Consultants, Inc., and reproduction by any means is strictly 
prohibited. Use of the FLEX Operating System and/or its documentation, or any part thereof, for 
any purpose other than single end use is strictly prohibited. 
 

Disclaimer 
 
This product is intended for use only as described in this document and the FLEX User's Guide. 
Technical Systems Consultants cannot be responsible for the proper functioning of undocumented 
features or parameters. The user is also urged to abide by the warnings and cautions issued in this 
document lest valuable data or diskettes be destroyed. 
 

Important Note 
 
Although every effort has been made to make the supplied software and its documentation as 
accurate and functional as possible, Southwest Technical Products Corporation and Technical 
Systems Consultants will not assume responsibility for any damages incurred or generated by such 
material. Also, Southwest Technical Products Corporation and Technical Systems Consultants re- 
serve the right to make changes in such material at any time. 
 

Patching "FLEX" 
 
It is not possible to patch FLEX. Technical Systems Consultants cannot be responsible for any 
destructive side-effects which may result from attempts to patch FLEX. 
 

Introduction 
 
The FLEX Operating System consists of three main parts: the Disk Operating System (DOS) which 
processes commands, the File Management System (FMS) which manages files on a diskette, and 
the Utility Command Set, which are the user-callable commands. The Utility Command Set is des- 
cribed in the FLEX User's Guide. Details of the Disk Operating System and File Management Sys- 
tem portions of FLEX are described in this manual, which is intended for the programmer who 
wishes to write his own commands or process disk files from his own program. 
When debugging programs which use disk files and the File Management System, the user should 
take the following precautions: 
1. Write-protect the system diskette by putting tape over the write-enable cutout on the diskette. 
This will prevent destruction of the system disk in case the program starts running wild. 
2. Use an empty scratch diskette as the working diskette to which your program will write 
any data files. If something goes wrong and the diskette is destroyed, no valuable data will have been 
lost. 
 
 
FLEX® is a trademark of Technical Systems Consultants, Inc. 
 
 
 

-- 1 -- 



3. Test your program repeatedly, especially with "special cases" of data input which may not be 
what the program is expecting. Well-written programs abort gracefully when detecting errors, not 
dramatically. 
 
A careful programmer, using the information in this manual, should be able to make the fullest use 
of his floppy disk system. 
 

The Disk Operating System 
 
The Disk Operating System (DOS) forms the communciation link between the user (via a computer 
terminal) and the File Management System. All commands are accepted through DOS. Functions 
such as file specification parsing, command argument parsing, terminal I/O, and error reporting are 
all handled by DOS. The following sections describe the DOS global variable storage locations 
(Memory Map), the DOS user callable subroutines, and give examples of some possible uses. 
 

Memory Map 
 
The following is a description of those memory locations within the DOS portion of FLEX which 
contain information of interest to the programmer. The user is cautioned against utilizing for his 
own purposes any locations documented as being either "reserved" or "system scratch", as this 
action may cause destruction of data. 
 
$7000 - $707F -- Line Buffer 

The line buffer is a 128 byte area into which characters typed at the keyboard are placed by 
the routine lNBUF. All characters entered from the keyboard are placed in this buffer with the 
exception of control characters. Characters which have been deleted by entering the back- 
space character do not appear in the buffer, nor does the backspace character itself appear. The 
carriage return signaling the end of the keyboard input is, however, put in the buffer. This buf- 
fer is also used to hold the STARTUP file during a coldstart (boot) operation. 

 
$7080 -- TTYSET Backspace Character 

This is the character which the routine INBUF will interpret as the Backspace character. It 
is user definable through the TTYSET DOS Utility. Default =$08, a Control H (ASCII BS). 

 
$7081 -- TTYSET Delete Character 

This is the character DOS recognizes as the entry delete character. It is user definable thru the 
TTYSET utility. Default =$18, a control X. 

 
$7082 -- TTYSET End of Line Character 

This is the character DOS recognizes as the multiple command per line separator. It is user 
definable through the TTYSET Utility. Default = $3A, a colon (:). 

 
$7083 -- TTYSET Depth Count 

This byte determines how many lines DOS will print on a page before pausing or issuing 
ejects. It may be set by the user with the TTYSET command. Default = 0. 

 
$7084 -- TTYSET Width Count 

This byte tells DOS how many characters to output on each line. If zero, there is no limit to 
the number output. This count may be set by the user using TTYSET. Default = 0. 

 
$7085 -- TTYSET Null Count 

This byte informs DOS of the number of null or pad characters to be output after each car- 
riage return, line feed pair. This count may be set using TTYSET. Default = 4. 

 
$7086 - TTYSET Tab Character 

This byte defines a tab character which may be used by other programs, such as the editor. 
DOS itself does not make use of the tab character. Default = 0, no tab character defined. 

 
 
 

-- 2 -- 



$7087 -- TTYSET Duplex Transmission Mode 
A zero value indicates Full Duplex; a non-zero value, Half Duplex. Default = 0, Full Duplex. 

 
$7088 -- TTYSET Eject Count 

The Eject Count instructs DOS as to the number of blank lines to be output after each page. 
(A page is a set of lines equal in number to the Depth Count.) If this byte is zero, no 
Eject lines are output. Default = 0 

 
$7089 -- TTYSET Pause Control 

The Pause byte instructs DOS what action to take after each page is output. A zero value indi- 
cates that the pause feature is enabled; a non-zero value, pause is disabled. Default = $FF, 
pause disabled. 

 
$708A -- TTYSET Escape Character 

The Escape character causes DOS to pause after an output line. Default = $1B, ASCII ESC. 
 
$708B -- System Drive Number 

This is the number of the disk drive from which commands are loaded. Default = 0. 
 
$708C -- Working Drive Number 

This is the number of the default disk drive referenced for non-command files. Default = 0. 
 
$708D - $7090 -- Reserved for system scratch and future system use. 
 
$7091 -- Last Terminator 

This location contains the most recent non-alphanumeric character encountered in processing 
the line buffer. See commentary on the routines NXTCH and CLASS in the section "User- 
Callable System Routines". 

 
$7092 - $7093 -- User Command Table Address 

The programmer may store into these locations the address of a command table of his own 
construction. See the section called "User-Written Commands" for details. Default = 0000, 
no user command table is defined. 

 
$7094 - $7095 -- Line Buffer Pointer 

These locations contain the address of the next character in the Line Buffer to be processed. 
See documentation of the routines INBUFF, NXTCH, GETFIL, GETCHR, and DOCMND in 
the section "User-Callable System Routines" for instances of its use. 

 
$7096 - $7097 -- Escape Return Register 

These locations contain the address to which to jump if a RETURN is typed while output 
has been stopped by an Escape Character. See the FLEX User's Guide, TTYSET, for informa- 
tion on Escape processing. See also the documentation for the routine PCRLF in the section 
called "User-Callable System Routines". 

 
$7098 - $7099 -- System Scratch 
 
$709A -- Previous Character 

This location contains the most recent character taken from the Line Buffer by the NXTCH 
routine. See documentation of the NXTCH routine for additional details. 

 
$709B -- Current Line Number 

This location contains a count of the number of lines currently on the page. This value is com- 
pared to the Line Count value to determine if a full page has been printed. 

 
 
 
 
 
 

-- 3 -- 



$709C - $709D -- Loader Address Offset 
These locations contain the 16-bit bias to be added to the load address of a routine being load- 
ed from the disk. See documentation of the System Routine LOAD for details. These locations 
are also used as scratch by some system routines. 

 
$709E -- Transfer Flag 

After a program has been loaded from the disk (see LOAD documentation), this location is 
non-zero if a transfer address was found during the loading process. This location is also used 
as scratch by some system routines. 

 
$709F - $70A0 -- Transfer Address 

If the Transfer Flag was set non-zero by a load from the disk (see LOAD documentation), 
these locations contain the last transfer address encountered. If the Transfer Flag was set 
zero by the disk load, the content of these locations is indeterminate. 

 
$70A1 -- ACIA Flag 

This location is non-zero if the console terminal port (Port 1) has an MP-S ACIA serial inter- 
face. Zero in this location implies that a MP-C control Interface (PIA driven) is in that port. 

 
$70A2 -- Error Type 

This location contains the error number returned by several of the File Management System 
functions. See the "Error Numbers" section of this document for an interpretation of the error 
numbers. 

 
$70A3 -- Output Switch 

If zero, output performed by the PUTCHR routine is through the routine OUTCH. If nonzero, the 
routine OUTCH2 is used. See documentation of these routines for details. 

 
$70A4 -- System Scratch 
 
$70A5 -- Command Flag 

This location is non-zero if DOS was called from a user program via the DOCMND entry point. See 
documentation of DOCMND for details. 

 
$70A6 -- Current Output Column 

This location contains a count of the number of characters currently in the line being output 
to the terminal. This is compared to the TTYSET Width Count to determine when to start a 
new line. The output of a control character resets this count to zero. 

 
$70A7 - $70B4 -- System Scratch 
 
$70B5 - $70FF -- System Constants 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-- 4 -- 



User-Callable System Routines 
 
 
Unless specifically documented otherwise, the content of all registers should be presumed destroy- 
ed by calls to these routines. All routines, unless otherwise indicated, should be called with a JSR 
instruction. 
 
$7100 (COLDS) Coldstart Entry Point 

The BOOT program loaded from the disk jumps to this address to initialize the FLEX system. 
Both the Disk Operating System (DOS) portion and the File Management System portion 
(FMS) of FLEX are initialized. After initialization, the FLEX title line is printed and the 
STARTUP file, if one exists, is loaded and executed. This entry point is only for use by the 
BOOT program, not by user programs. Indiscriminate use of the Coldstart Entry Point by user 
programs could result in the destruction of the diskette. Documentation of this routine is included 
here only for completeness. 

 
$7103 (WARMS) Warmstart Entry Point 

This is the main re-entry point into DOS from user programs. A JMP instruction should be used 
to enter the Warmstart Entry Point. Here, the system stack is reset to $A07F, the monitor 
(SWTBUG® /MIKBUG®) program counter ($A048) is reset to $7103, as well as the Escape 
Return Register. At this point, the main loop of DOS is entered. The main loop of DOS 
checks the Last Terminator location for a TTYSET end-of-line character. If one is found, 
it is assumed that there is another command on the line, and DOS attempts to process it. If no 
end-of-line is in the Last Terminator location, DOS assumes that the current command line is 
finished, and looks for a new line to be input from the keyboard. If, however, DOS was called 
from a user program through the DOCMND entry point, control will be returned to the user program 
when the end of a command line is reached. 

 
$7106 (RENTER) DOS Main Loop Re-entry Point 

This is a direct entry point into the DOS main loop. None of the Warmstart initialization is 
performed. This entry point must be entered by a JMP instruction. Normally, this entry point 
is used internally by DOS and user-written programs should not have need to use it. For an example 
of use, see the "Printer Driver" section for details. 

 
$7109 (INCH) Input Character 

This routine inputs one character from the keyboard, returning it to the calling program in the 
A-register. The address portion of this entry point is set to the SWTBUG /MIKBUG Input 
Character routine. It is not possible to patch this address to refer to some other routine. User 
programs should use the GETCHR routine, documented below, rather than calling INCH, because 
INCH does not check the TTYSET parameters. Registers B and X are preserved. 

 
$710C (OUTCH) Output Character 
$7136 (OUTCH2) Output Charcter 

On entry to each of these routines, the A-register should contain the character being output. 
Both of these routines output the character in the A-register to an output device. The OUTCH 
routine usually does the same as OUTCH2; however, OUTCH may be changed by programs to 
refer to some other output routine. For example, OUTCH may be changed to drive a line prin- 
ter. OUTCH2 is never changed, and always points to the SWTBUG®/MIKBUG® Output Cha- 
racter routine. This address' may not be patched to refer to some other output routine. The 
routine PUTCHR, documented below, calls one of these two routines, depending on the content of 
the 
location "Output Switch" (see Memory Map). The Warmstart Entry Point re- 
sets the OUTCH jump vector to the same routine as OUTCH2, and sets the Output Switch to 
zero. User routines should use PUTCHR rather than calling OUTCH or OUTCH2 directly 
since the latter two do not check the TTYSET parameters. Registers B and X are preserved. 

 
 
 
 
 

-- 5 -- 



$710F (GETCHR) Get Character 
This routine gets a single character from the keyboard, echoing it back via PUTCHR, if neces- 
sary, in accordance with the TTYSET parameters. The character is returned to the calling pro- 
gram in the A-register. The Current Line Number location is cleared by a call to GETCHR. 
Because this routine honors the TTYSET parameters, its use is preferred to that of INCH. Registers 
B and X are preserved. 

 
$7112 (PUTCHR) Put Character 

This routine outputs a character to a device, honoring all of the TTYSET parameters. On 
entry, the character should be in the A-register. The column count is checked, and a new line 
is started if the current line is full. If an ACIA is being used to control the monitor terminal, 
it is checked for a TTYSET Escape Character having been typed. If so, output will pause at the 
end of the current line. If the location "Output Swtich" is non-zero, the routine OUTCH2 
is used to send the character. If zero, the routine OUTCH is called to process the character. 
Normally, OUTCH sends the character to the terminal. The user program may, however, 
change the address portion of the OUTCH entry point to go to another character output ro- 
utine. Registers B and X are preserved. 

 
$7115 (INBUFF) Input into Line Buffer 

This routine inputs a line from the keyboard into the Line Buffer. The TTYSET Backspace 
and delete characters are checked and processed if encountered. All other control characters, 
except RETURN, are ignored. The RETURN is placed in the buffer at the end of the line. At 
most, 128 characters may be entered on the line, including the final RETURN. If more are 
entered, only the first 127 are kept, the RETURN being the 128th. On exit, the Line Buffer 
Pointer is pointing to the first character in the Line Buffer. Caution: The command line 
entered from the keyboard is kept in the Line Buffer. Calling INBUF from a user program 
will destroy the command line, including all unprocessed commands on the same line. Using 
INBUF and the Line Buffer for other than DOS commands may result in unpredictable sideeffects. 

 
$7118 (PSTRNG) Print String 

This routine is similar to the PDATA routine in SWTBUG® and MIKBUG® . On entry, the 
X-register should contain the address of the first character of the string to be printed. The 
string must end with an ASCII EOT character ($04). This routine honors all of the TTYSET 
conventions when printing the string. A carriage return and line feed are output before the 
string. Register B is preserved. 

 
$711B (CLASS) Classify Character 

This routine is used for testing if a character is alphanumeric (i.e. a letter or a number). On 
entry, the character should be in the A-register. If the character is alphanumeric, the routine 
returns with the carry flag cleared. If the character is not alphanumeric, the carry flag is set 
and the character is stored in the Last Terminator location. All registers are preserved by this 
routine. 

 
$711E (PCRLF) Print Carriage Return and Line Feed 

In addition to printing a carriage return and line feed, this routine checks and honors several 
TTYSET conditions. On entry, this routine checks for a TTYSET Escape Character having 
been entered while the previous line was being printed. If so, the routine waits for another 
TTYSET Escape Character or a RETURN to be typed. If a RETURN was entered, the routine 
clears the Last Terminator location so as to ignore any commands remaining in the command 
line, and then jumps to the address contained in the Escape Return Register locations. Unless 
changed by the user's program, this address is that of the Warmstart Entry Point. If, instead of 
a RETURN, another TTYSET Escape Character was typed, or it wasn't necessary to wait for 
 

 
 
 
 
 
 
 

-- 6 -- 



one, the Current Line Number is checked. If the last line of the page has been printed and the 
TTYSET Pause feature is enabled, the routine waits for a RETURN or a TTYSET Escape 
Character, as above. Note that all pausing is done before the carriage return and line feed are 
printed. The carriage return and line feed are now printed, followed by the number of nulls 
specified by the TTYSET Null Count. If the end of the page was encountered on entry to this 
routine, an "eject" is performed by issuing additional carriage return, line feed, and nulls until 
the total number of blank lines is that specified in the TTYSET Eject Count. 

 
$7121 (NXTCH) Get Next Buffer Character 

The character to which the Line Buffer Pointer points is taken from the Line Buffer and saved 
in the Previous Character location. The Line Buffer Pointer is advanced to point to the next 
character unless the character just fetched was a RETURN or TTYSET End-of-Line character. 
Thus, once an end-of-line character or RETURN is encountered, additional calls to NXTCH 
will continue to return the same end-of-line character or RETURN. NXTCH cannot be used to 
cross into the next command in the buffer. NXTCH exits through the routine CLASS, auto- 
matically classifying the character. On exit, the character is in the A-register, the carry is clear 
if the character is alphanumeric, and the B-register and X-register are preserved. 

 
$7124 (RSTRIO) Restore I/O Vectors 

This routine forces the OUTCH jump vector to point to the same routine as does the OUTCH2 
vector. The Output Switch location is set to zero. The A-register and B-register are preserved 
by this routine. 

 
$7127 (GETFIL) Get File Specification 

On entry to this routine, the X-register must contain the address of a File Control Block, 
(FCB), and the Line Buffer Pointer must be pointing to the first character of a file specifica- 
tion in the Line Buffer. This routine will parse the file specification, storing the various com- 
ponents in the FCB to which the X-register points. If a drive number was not specified in the 
file specification, the working drive number will be used. On exit, the carry bit will be clear if 
no error was detected in processing the file specification. The carry bit will be set if there was 
a format error in the file specification. If no extension was specified in the file specification, 
none is stored. The calling program should set the default extension desired after GETFIL has 
been called by using the SETEXT routine. The Line Buffer Pointer is left pointing to the 
character immediately beyond the separator, unless the separator is a carriage return or End 
of Line character. 

 
$712A (LOAD) File Loader 

On entry, the X-register must contain the address of a File Control Block which has been 
opened for reading the desired file. This routine is used to load binary files only, not text files. 
The file is read from the disk and stored in memory, normally at the load addresses specified 
in the binary file itself. It is possible to load a binary file into a different memory area by using 
the Loader Address Offset locations. The 16-bit value in the Loader Address Offset locations 
is added to the addresses read from the binary file. Any carry generated out of the most signifi- 
cant bit of the address is lost. The transfer address, if any is encountered, is not modified by 
the Loader Address Offset. Note that the setting of a value in the Loader Address Offset does 
not modify any part of the content of the binary file. It does not act as a program relocator in 
that it does not change any addresses in the program itself, merely the location of the program 
in memory. On exit, the Transfer Address Flag is zero if no transfer address was found. This 
flag is non-zero if a transfer address record was encountered in the binary file, and the Transfer 
Address locations contain the last transfer address encountered. The disk file is closed on exit. 
If a disk error is encountered, an error message is issued and control is returned to DOS at the 
Warmstart Entry Point. 

 
 
 
 
 
 
 
 

-- 7 -- 



$712D (SETEXT) Set Extension 
On entry, the X-register should contain the address of the FCB into which the default exten- 
sion is to be stored of there is not an extension already in the FCB. The A-register, on entry, 
should contain a numeric code indicating what the default extension is to be. The numeric 
codes are described below. If there is already an extension in the FCB (possibly stored there by 
a call to GETFIL), this routine returns to the calling program immediately. If there is no ex- 
tension in the FCB, the extension indicated by the numeric code in the A-register is placed in 
the FCB File Extension area. The legal codes are: 

0 - BIN 
1 - TXT 
2 - CMD 
3 - BAS 
4 - SYS 
5 - BAK 

Any values other than those above are ignored, the routine returning without storing any ex- 
tension. 

 
$7130 (ADDBX) Add B-register to X-register 

The content of the B-register is added to the content of the X-register. The content of the B- 
register is destroyed on exit. 

 
$7133 (OUTDEC) Output Decimal Number 

On entry, the X-register contains the address of the most significant byte of a 16-bit (2 byte), 
unsigned, binary number. The B-register, on entry, should contain a space suppression flag. 
The number will be printed as a decimal number with leading zeroes suppressed. If the B- 
register was non-zero on entry, spaces will be substituted for the leading zeroes. If the B- 
register is zero on entry, printing of the number will start with the first non-zero digit. 

 
$7136 (OUTCH2) (See OUTCH) 
 
$7139 (OUTHEX) Output Hexadecimal Number 

On entry, the X-register contains the address of a single binary byte. The byte to which the X- 
register points is printed as 2 hexadecimal digits. The B and X-registers are preserved across this 
routine. 

 
$713C (RPTERR) Report Error 

On entry to this routine the X-register contains the address of a File Control Block in which 
the Error Status Byte is non-zero. The error code in the FCB is stored by this routine in the 
Error Type location, and reported to the monitor terminal as part of the message: 

DISK ERROR #nnn 
Where 'nnn' is the error number being reported. A description of the error numbers is given 
elsewhere in this document. 

 
$713F (GETHEX) Get Hexadecimal Number 

This routine gets a hexadecimal number from the Line Buffer. On entry, the Line Buffer 
Pointer must point to the first character of the number in the Line Buffer. On exit, the carry 
bit is cleared if a valid number was found, the B-register is set non-zero, and the X-register con- 
tains the value of the number. The Line Buffer Pointer is left pointing to the character immedi- 
ately following the separator character, unless that character is a carriage return or End of 
Line. If the first character examined in the Line Buffer is a separator character (such as a 
comma), the carry bit is still cleared, but the B-register is set to zero indicating that no actual 
number was found. In this case, the value returned in the X-register is zero. If a non-hexade- 
cimal character is found while processing the number, characters in the Line Buffer are skipped 
 

 
 
 
 
 
 

-- 8 -- 



until a separator character is found, then the routine returns to the caller with the carry bit 
set. The number in the Line Buffer may be of any length, but the value is truncated to be- 
tween 0 and $FFFF, inclusive. 

 
$7142 (DOCMND) Call DOS as a Subroutine 

This entry point allows a user-written program to pass a command string to DOS for pro- 
cessing, and have DOS return control to the user program on completion of the commands. 
The command string must be placed in the Line Buffer by the user program, and the Line Buf- 
fer Pointer must be pointing to the first character of the command string. Note that this will 
destroy any as yet unprocessed parameters and commands in the Line Buffer. The command 
string must terminate with a RETURN character ($D hex). After the commands have been 
processed, DOS will return control to the user's program with the B-register containing any 
error code received from the File Management system. The B-register will be zero if no errors 
were detected. Caution: do not use this featrue to load programs which may destroy the user 
program in memory. An example of a use of this feature of DOS is that of a program wanting 
to save a portion of memory as a binary file on the disk. The program could build a SAVE 
command in the Line Buffer with the desired file name and parameters, and call the DOCMND 
entry point. On return, the memory will have been saved on the disk. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-- 9 -- 



User-Written Commands 
 
The programmer may write his own commands for DOS. These commands may be either disk- 
residentas disk files with a CMD extension, or they may be memory-resident in either RAM or 
ROM. 
 
Memory-Resident Commands 
A memory-resident command is a program, already in memory, to which DOS will transfer when 
the proper command is entered from the keyboard. The command which invokes the program, and 
the entry-point of the program, are stored in a User Command Table created by the programmer 
in memory. Each entry in the User Command Table has the following format: 
 

FCC 'command' (Name that will invoke the program) 
FCB 0 
FDB entry address (This is the entry address of the program) 

 
The entire table is ended by a zero byte. For example, the following table contains the commands 
DEBUG (entry at $3000) and PUNT (entry at $3200): 
 

FCC 'DEBUG' Command Name 
FCB 0 
FDB $3000 Entry address for DEBUG 
FCC 'PUNT' Command Name 
FCB 0 
FDB $3200 Entry address for PUNT 
FCB  End of command table 

 
The address of the User Command Table is made known to DOS by storing it in the User Com- 
mand Table Address locations (See Memory Map). 
 
The User Command Table is searched before the disk directory, but after DOS's own command 
table is searched. The DOS command table contains only the GET and MON commands. There- 
fore, the user may not define his own GET and MON commands. 
 
Since the User Command Table is searched before the disk directory, the programmer may have 
commands with the same name as those on the disk. However, in this case, the commands on the 
disk will never be executed while the User Command Table is known to DOS. The User Command 
Table may be deactivated by clearing the User Command Table Address locations. 
 

Disk-Resident Commands 
 
A disk-resident command is an assembled program, with a transfer address, which has been saved on 
the disk with a CMD extension. The instructions supplied with the TSC 6800 Assembler describes 
the way to assign a transfer address to a program being assembled. 
 
Disk commands, when loaded into memory, may reside anywhere in the User RAM Area; the ad- 
dress is determined at assembly time by using an ORG statement. Small commands may be assem- 
bled to run in the Utility Command Space (see Memory Map). Most of the commands supplied with 
FLEX run in the Utility Command Space. For this reason, the SAVE command cannot be used to 
save information which is in the Utility Command Space or System FCB space as this information 
would be destroyed when the SAVE command is loaded. The SAVE. LOW command is to be used 
in this case. The SAVE.LOW command loads into memory at location $100 and allows the saving 
of programs in the $7600 region. 
 
The System FCB area is used to load all commands from the disk. Commands written to run in the 
Utility Command Space must not overflow into the System FCB area. Once loaded, the command 
itself may use the System FCB area for scratch or as in FCB for its own disk I/O. See the example 
in the FMS section. 
 
 

-- 10 -- 



General Comments About Commands 
 
User-written commands are entered by a JMP instruction. On completion, they should return 
control to DOS by jumping (JMP instruction) to the Warmstart Entry Point (see Memory Map). 
 
Processing Arguments 
User-written commands are required to process any arguments entered from the keyboard. The 
command name and the arguments typed are in the Line Buffer area (see Meory Map). The Line 
Buffer Pointer, on entry to the command, is pointing to the first character of the first argument, 
if one exists. If there are no arguments, the Line Buffer Pointer is pointing to either an end-of- 
line character or a carriage return. The DOS routines NXTCH, GETFIL, and GETHEX should be 
used by the command for processing the arguments. 
 
Processing Errors 
If the command, while executing, receives an error status from either DOS or FMS of such a nature 
that the command must be aborted, the program should jump to the Warmstart Entry Point 
of DOS after issuing an appropriate error message. Similarly, if the command should detect an error 
on its own, it should issue a message and return to DOS through the Warmstart Entry Point. 
 

Examples of Using DOS Routines 
 
1. Setting up a file spec in the FCB can be done in the following manner. This example assumes 
the Line Buffer Pointer is pointing to the first character of a file specification, and the desired re- 
sulting file spec should default to a TXT extension. 
 

LDX #FCB Point of FCB 
JSR GETFI L Get file spec into FCB 
BCS ERROR Report error if one 
LDAA #1 Set extension code (TXT) 
LDX #FCB Point to FCB 
JSR SETEXT Set the default extension 

 
The user may now open the file for the desired action, since the file spec is correctly set up in the 
FCB. Refer to the FMS examples for opening files. 
 
2. The following examples demonstrate some simple uses of the basic I/O functions provided 
by DOS. 
 

LDAA #'A Setup an ASCII A 
JSR PUTCHR Call DOS out character 
LDX #STRING Point to string 
JSR PSTRNG Print CR & LF + string 

 
The above simple examples are to show the basic mechanism for calling and using DOS I/O routines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-- 11 -- 



The File Management System 
 
The File Management System (FMS), forms the communication link between the DOS and the ac- 
tual disk hardware. The FMS performs all file allocation and removal on the disk. All file space is 
allocated dynamically, and the space used by files is immediately reusable upon that file's deletion. 
The user of the FMS need not be concerned with the actual location of a file on the disk, or how 
many sectors it requires. 
 
Communication with the FMS is done through File Control Blocks. These blocks contain the infor- 
mation about a file, such as its name and what drive it exists on. All disk I/O performed through 
FMS is "one character at a time" I/O. This means that programs need only send or request a single 
character at a time while doing file data transfers. In effect, the disk looks no different than a com- 
puter terminal. Files may be opened for either reading or writing. Any number of files may be 
open at any one time, as long as each one is assigned its own File Control Block. 
 
The FMS is a command language whose commands are represented by various numbers called Func- 
tion Codes. Each Function Code tells FMS to perform a specific function such as open a file for 
read, or delete a file. In general, making use of the various functions which the FMS offers is quite 
simple. The index register is made to point to the File Control Block which is to be used, the Function 
Code 
is stored in the first byte of the File Control Block, and FMS is called as a subroutine 
(JSR). At no time does the user ever have to be concerned with where the file is being located on 
the disk, how long it is, or where its directory entry is located. The FMS does all of this automa- 
tically. 
 
Since the file structure of FLEX is a linked structure and the disk space is allocated dynamically, it 
is possible for a file to exist on the disk in a set of non-contiguous sectors. Normally, if a disk 
has just been formatted, a file will use consecutive sectors on the disk. As files are created and de- 
leted, however, the disk may become "fragmented". Fragmentation results in the sectors on the 
disk becoming out of order, physically, even though logically they are still all sequential. This is a 
characteristic of "linked list" structures and dynamic file allocation methods. The user need not be 
concerned with this fragmentation, but should be aware of the fact that files may exist whose sec- 
tors seem to be spattered all over the disk. The only result of fragmentation is the slowing down of 
file read times because of the increased number of head seeks necessary while reading the file. 
 

The File Control Block (FCB) 
 
The FCB is the heart of the FLEX File Management System (FMS). An FCB is a 192 byte ($C0 
hex) long block of RAM in the user's program area which is used by programs to communciate with 
FMS. A separate FCB is needed for each open file. After a file has been closed, the FCB may be 
re-used to open another file or to perform some other disk function such as Delete or Rename. An 
FCB may be placed anywhere in the user's program area that the programmer wishes except in page 
zero (0 - 256). The memory reserved for use as an FCB need not be preset or initialized in any way. 
Only the parameters necessary to perform the function need be stored in the FCB; the File Manage- 
ment System will initialize those areas of the FCB needed for its use. 
 
In the following description of an FCB -- the byte numbers are relative to the beginning of the FCB; 
I.e. byte 0 is the first byte of the FCB. 
 
Description of an FCB 
 
Byte 0 Function Code 

The desired function code must be stored in this byte by the user before calling FMS to pro- 
cess the FCB. See the section describing FMS Function Codes. 

 
Byte 1 Error Status Byte 

If an error was detected during the processing of a function, FMS stores the error number in 
this byte and returns to the user with the CPU Z-Condition Code bit clear, i.e. a non-zero 
condition exists. This may be tested by the BEQ or BNE instruction. 
 

-- 12-- 



Byte 2 Activity Status 
This byte is set by FMS to a "1" if the file is open for read, or "2" if the file is open for 
writing. This byte is checked by several FMS function processors to determine if the requested 
operation is legal. A Status Error is returned for illegal operations. 

 
The next 12 bytes (3-14) comprise the "File Specification" of the file being referenced by the FCB. 
A "File Specification" consists of a drive number, file name and extension. See the documentation 
of the individual function codes for details. 
 
Byte 3 Drive Number 

This is the hardware drive number whose diskette contains the file being referenced. It should 
be binary 0 to 3. 

 
The next 24 bytes (4-27) comprise the "Directory Information" portion of the FCB. This is the 
exact same information which is contained in the diskette directory entry for the file being referen- 
ced. 
 
Bytes 4-11 File Name 

This is the name of the file being referenced. The name must start with a letter and contain 
only letters, digits, hyphens, and/or underscores. If the name is less than 8 characters long, 
the remaining bytes must be zero (null). The name should be left adjusted in its field. 

 
Bytes 12-14 Extension 

This is the extension of the file name for the file being referenced. It must start with a letter 
and contain only letters, digits, hyphens, and/or underscores. If the extension is less than 3 
characters long, the remaining bytes must be zero. The extension should be left adjusted. 
Files with null extensions should not be created. 

 
Bytes 15-16 Reserved for future system use 
 
Bytes 17-18 Starting disk address of the file 

These two bytes contain the hardware track and sector numbers, respectively, of the first 
sector of the file. 

 
Bytes 19-20 Ending disk address of the file 

These two bytes contain the hardware track and sector numbers, respectively, of the last sector 
of the file. 

 
Bytes 21-22 File Size 

This is a 16-bit number indicating the number of sectors in the file. 
 
Bytes 23-27 Reserved for future system use 
 
Bytes 28-29 FCB List Pointer 

All FCBs which are open for reading or writing are chained together. These two bytes con- 
tain the memory address of the FCB List Pointer bytes of the next FCB in the chain. These 
bytes are zero if this FCB is the last FCB in the chain. The first FCB in the chain is pointed to by the 
FCB Base Pointer. (See Global Variables). 

 
Bytes 30-31 Current Position 

These bytes contain the hardware track and sector numbers, respectively, of the sector current- 
ly in the sector buffer portion of the FCB. If the file is being written, the sector to which these 
bytes point has not yet been written to the diskette if it is still in the buffer. 

 
Bytes 32-33 Reserved for future use. 
 
 
 
 
 

-- 13 -- 



Byte 34 Data Index 
This byte contains the address of the next data byte to be fetched from (if reading) or stored 
into (if writing) the sector buffer. This address is relative to the beginning of the sector, and 
is advanced automatically by the Read/Write Next Byte function. The user program has no 
need to manipulate this byte. 

 
Byte 35 Random Index 

This byte is used in conjuntion with the Get Random Byte From Sector function to read a 
specific byte from the sector buffer without having to sequentially skip over any intervening 
bytes. The address of the desired byte, relative to the beginning of the sector, is stored in Ran- 
dom Index by the user, and the Get Random Byte From Sector function is issued to FMS. The 
specified data byte will be returned in the A-register. The value of Random Index may not ex- 
ceed 127. A value less than 4 will access one of the linkage bytes in the sector. User data starts 
at an index value of 4. 

 
Bytes 36-46 Name Work Buffer 

These bytes are used internally by FMS as temporary storage for a file name. These locations 
are not for use by a user program. 

 
Bytes 47-49 Current Directory Address 

If the FCB is being used to process directory information with the Get/Put Information Re- 
cord functions, these three bytes contain the track number, sector number, and starting data 
index of the directory entry whose content is in the Directory Information portion of the FCB. The 
values in these three bytes are updated automatically by the Get Information Re- 
cord function. 

 
Bytes 50-52 First Deleted Directory Pointer 

These bytes are used internally by FMS when looking for a free entry in the directory to which 
to assign a name of a new file. 

 
Bytes 53-63 Scratch Bytes 

These are the bytes into which the user stores the new name and extension of a file being 
renamed. The new name is formatted the same as described above under File Name and File 
Extension. 

 
Byte 59 Space Compression Flag 

If a file is open for read or write, this byte indicates if space compression is being performed. A 
value of zero indicates that space compression is to be done when reading or writing the data. 
This is the value that is stored by the Open for Read and Open for Write functions. A value of 
$FF indicates that no space compression is to be done. This value is what the user must store 
in this byte, after opening the file, if space compression is not desired. (Such as for binary 
files). A positive non-zero value in this byte indicates that space compression is currently in 
progress; the value being a count of the number of spaces processed thus far. (Note that al- 
though this byte overlaps the Scratch Bytes described above, there is no conflict since the 
Space Compression Flag is used only when a file is open, and the Scratch Bytes are used only 
by Rename, which requires that the file be closed.) In general, this byte should be 0 while 
working with text type files, and $FF for binary files. 

 
Bytes 64-191 Sector Buffer 

These bytes contain the data in the sector being read or written. The first four bytes of the 
sector are used by the system. The remaining 124 are used for data storage. 

 
 
 
 
 
 
 
 
 

-- 14 -- 



File Management System -- Entry Points 
 
$7800 -- FMS Initialization 

This entry point is used by the DOS portion of FLEX to initialize the File Management Sys- 
tem after a coldstart. There should be no need for a user-written program to use this entry 
point. Executing an FMS Initialization at the wrong time may result in the destruction of data 
files, necessitating a re-initialization of the diskette. 

 
$7803 -- FMS Close 

This entry point is used by the DOS portion of FLEX at the end of each command line to 
close any files left open by the command processor. User-written programs may also use this 
entry point to close all open files; however, if an error is detected in trying to close a file, any 
remaining files will not be closed. Thus the programmer is cautioned against using this routine 
as a substitute for the good programming practice of closing files individually. There are no 
arguments to this routine. It is entered by a JSR instruction as though it were a subroutine. 
On exit, the CPU Z-Condition code is set if no error was detected (i.e. a "zero" condition 
exists). If an error was detected, the CPU Z-Condition code bit is clear and the X-register con- 
tains the address of the FCB causing the error. 

 
$7806 -- FMS Call 

This entry point is used for all other calls to the File Management System. A function code is 
stored in the Function Code byte of the FCB, the address of the FCB is put in the X-register, 
and this entry point is called by a JSR instruction. The function codes are documented else- 
where in this document. On exit from this entry point, the CPU Z-Condition code bit is set if 
no error was detected in processing the function. This bit may be tested with a BEQ or BNE 
instruction. If an error was detected, the CPU Z-Condition code bit is cleared and the Error 
Status byte in the FCB contains the error number. Under all circumstances, the address of the 
FCB is still in the X-register on exit from this entry point. Some of the functions require addi- 
tional parameters in the A and/orB-registers. See the documentation of the function codes for 
details. The X and B registers are always preserved with a call to the FMS. 

 
Global Variables 

 
This section describes those variables within the File Managment System which may be of interest 
to the programmer. Any other locations in the FMS area should not be used for data storage by user 
programs. 
 
$7809 -- $780A FCB Base Pointer 

These locations contain the address of the FCB List Pointer bytes of the first FCB in the chain 
of open files. The address in these locations is managed by the FMS and the programmer should 
not store any values in these locations. A user program may, however, want to chain through 
the FCBs of the open files for some reason, and the address stored in these locations is the 
proper starting point. Remember that the address is that of the FCB List Pointer locations 
in the FCB, not the first word of the FCB. A value of zero in these locations indicates that 
there are no open files. 

 
$780B -- $780C Current FCB Address 

These locations contain the address of the last FCB processed by the File Management System. 
The address is that of the first word of the FCB. 

 
$782D Verify Flag 

A non-zero value in this location indicates that FMS will check each sector written for errors 
immediately after writing it. A zero value indicates that no error checking on writes is to be 
performed. The default value is "non-zero". 

 
 
 
 
 
 

-- 15 -- 



FMS Function Codes 
 
The FLEX File Management System is utilized by the user through function codes. The proper 
function code number is placed, by the user, in the Function Code byte of the File Control 
Block (FCB) before calling FMS (Byte 0). FMS should be called by a JSR to the "FMS Call" 
entry. On entry to FMS, the X-register should contain the address of the FCB. On Exit from FMS, 
the CPU Z-condition code bit will be clear if an error was detected while processing the function. 
This bit may be tested by the BNE and BEQ instructions. Note: In the following examples, the 
line "JSR FMS" is referencing the FMS Call entry at $7806. 
 
Function 0 -- Read/Write Next Byte/Character 

If the file is open for reading, the next byte is fetched from the file and returned to the calling 
program in the A-register. If the file is open for writing, the content of the A-register on entry 
is placed in the buffer as the next byte to be written to the file. The Compression Mode Flag 
must contain the proper value for automatic space compression to take place, if desired (see 
Description of the FCB, Compression Mode Flag for details). On exit, this function code 
remains unchanged in the Function Code byte of the FCB; thus, consecutive read/writes may 
be performed without having to repeatedly store the function code. When reading, an End-of- 
File error is returned when all data in the file has been read. When the current sector being 
read is empty, the next sector in the file is prepared for processing automatically, without 
any action being required of the user. Similarly, when writing, full sectors are automatically 
written to the disk without user intervention. 
Example: 

If reading- 
LDX  #FCB Point to the FCB 
JSR FMS Call FMS 
BNE ERROR Check for error 
The character read is now in A. 

 
If writing- 
LDAA CHAR Get the character 
LDX #FCB Point to the FCB 
JSR FMS Call FMS 
BNE ERROR Check for errors. 
The character in A has been written. 

 
Function 1,-- Open for Read 

The file specified in the FCB is opened for read-only access. If the file cannot be found, an 
error is returned. The only parts of the FCB which must be preset by the programmer before 
using this function are the specification parts (drive number, file name, and file extension) and 
the function code. The remaining parts of the FCB will be initialized by the Open process. The 
Open process sets the File Compression Mode Flag to zero, indicating a text file. If the file is 
binary, the programmer should set the File Compression Mode Flag to $FF, after opening the 
file, to disable the space compression feature. On exit from the FMS, after opening a file, the 
function code in the FCB is automatically set to zero (Read/Write Next Byte Function) in 
anticipation of Input/Output on the file. 
Example: 

LDX  #FCB Point to the FCB 
(Set up file spec in FCB) 
LDAA #1 Set open function code 
STAA 0,X Store in FCB 
JSR FMS Call FMS 
BNE ERROR Check for errors 
The file is now open for text reading 

 
 
 
 
 
 

-- 16 -- 



To set for binary-continue with the following 
LDAA #$FF Set FF for sup. flag 
STAA 59,X Store in suppression flag 

 
Function 2 -- Open for Write 

This is the same as Function 1, Open for Read, except that the file must not already exist in 
the diskette directory, and it is opened for write-only access. A file opened for write may not 
be read unless it is first closed and then re-opened for read-only. It is not possible to open a 
file for both read access and write access simultaneously. The space compression flag should 
be treated the same as described in "Open for Read". 
Example: 

LDX #FCB Point to FCB 
(Setup file spec in FCB) 
LDAA #2 Setup open for write code 
STAA 0,X Store in FCB 
JSR FMS Call FMS 
BNE ERROR Check for errors 
File is now open for text write 
 
For binary, follow example in Read open. 

 
Function 3 -- Reserved for future system use 
 
Function 4 -- Close File 

If the file was opened for reading, a close merely removes the FCB from the chain of open 
files. If the file was opened for writing, any data remaining in the buffer is first written to the 
disk, padding with zeroes if necessary, to fill out the sector. If a file was opened for writing but 
never written upon, the name of the file is removed from the diskette directory since the file 
contains no data. 
Example: 

LDX #FCB Point to FCB 
LDAA #4 Setup close code 
STAA 0,X Store in FCB 
JSR FMS Call FMS 
BNE ERROR Check for errors 
File has now been closed. 

 
Function 5 -- Rewind File 

Only files which have been opened for read may be rewound. On exit from the FMS, the function 
code in the FCB is set to zero, anticipating a read operation on the file. If the programmer 
wishes to rewind a file which is open for writing so that it may now be read, the file must first 
be closed, then re-opened for reading. 
Example: 

Assuming the file is open for read: 
LDX #FCB Point to FCB 
LDAA #5 Setup rewind code 
STAA 0,X Store in FCB 
JSR FMS Call FMS 
BNE ERROR Check for errors 
File is now rewound and ready for read. 

 
Function 6 -- Open Directory 

This function opens the directory on the diskette for access by a program. The FCB used for this 
function must not already be open for use by a file. On entry, the only information which 
 

 
 
 
 
 

-- 17 -- 



must be preset in the FCB is the drive number; no file name is required. The directory entries 
are read by using the Get Information Record function. The Put Information Record function 
is used to write a directory entry. The normal Read/Write Next Byte function will not func- 
tion correctly on an FCB which is opened for directory access. It is not necessary to close an 
FCB which has been opened for directory access after the directory manipulation is finished. 
The user should normally not need to access the directory. 

 
Function 7 -- Get Information Record 

This function should only be issued on an FCB which has been opened with the Open Di- 
rectory function. Each time the Get Information Record function is issued, the next directory 
entry will be loaded into the Directory Information area of the FCB (see Description of the 
FCB for details of the format of a directory entry). All directory entries, including deleted and 
unused entries are read when using this function. After an entry has been read, the FCB is 
said to "point" to the directory entry just read; the Current Directory Address bytes in the 
FCB refer to the entry just read. An End-of-File error is returned when the end of the direc- 
tory is reached. 
Example: 
 To get the 3rd directory entry- 
 LDX #FCB Point to FCB 
 LDAA DRIVE Get the drive number 
 STAA 3,X Store in the FCB 
 LDAA #6 Setup open dir. code 
 STAA 0,X Store in FCB 
 JSR  FMS  Call FMS 
 BNE  ERROR  Check for errors 
 LDAB #3 Set counter to 3 
LOOP LDAA #7 Setup get rec code 
 STAA 0,X Store in FCB 
 JSR  FMS  Call FMS 
 BNE  ERROR  Check for errors 
 DECB  Decrement the counter 
 BNE  LOOP  Repeat til finished 
 The 3rd entry is now in the FCB 

 
Function 8 -- Put Information Record 

This function should only be issued on an FCB which has been opened with the Open Direc- 
tory function. The directory information is copied from the Directory Information portion of 
the FCB into the directory entry to which the FCB currently points. The directory sector just 
updated is then re-written automatically on the diskette to ensure that the directory is up-to- 
date. A user program should normally never have to write into a director. Careless use of the 
Put Information Record function can lead to the destruction of data files, necessitating a 
re-initialization of the diskette. 

 
Function 9 -- Read Single Sector 

This function is a low-level interface directly to the disk driver which permits the reading of a 
single sector, to which the Current Postion bytes of the FCB point, into the Sector Buffer area 
of the FCB. This function is normally used internally within FLEX and a user program should 
never need to use it. The Read/Write Next Byte function should be used instead, whenever 
possible. On return from FMS, the B-register is zero if no error was detected. If the B-register 
is non-zero on exit, a non-recoverable error was detected and the B-register contains the hard- 
ware status returned by the disk driver, not a F LEX error number. The error code is not stored 
in the Error Status byte by this function, nor are any of the pointers in the FCB updated. Ex- 
treme care should be taken when using this function since it does not conform to the usual 
conventions to which most of the other FLEX functions adhere. 

 
 
 
 
 
 

-- 18 -- 



Example: 
LDX #FCB Point to FCB 
LDAA TRACK Get track number 
STAA 30,X Set current track 
LDAA SECTOR Get sector number 
STAA 31,X Set current sector 
LDAA #9 Setup function code 
STAA 0,X Store in FCB 
JSR FMS Call FMS 
BNE ERROR Check for errors 
The sector is now in the FCB 

 
Function 10 ($0A hex) -- Write Single Sector 

This function, like the Read Single Sector function, is a low-level interface directly to the disk 
driver which permits the writing of a single sector. As such, it requires exteme care in its use. 
This function is normally used internally by FLEX, and a user program should never need to 
use it. The Read/Write Next Byte function should be used whenever possible. Careless use of 
the Write Single Sector Function may result in the destruction of data, necessitating the re- 
initialization of the diskette. The disk address being written is taken from the Current Position 
bytes of the FCB; the data is taken form the FCB Sector Buffer. On return, the B-register is 
zero if no error was detected. This function honors the Verify Flag (see Global Variables sec- 
tion for a description of the Verify Flag), and will check the sector after writing it if directed 
to do so by the Verify Flag. If the B-register is non-zero on exit, an unrecoverable error was de- 
tected, and the B-register contains the hardware status returned by the driver, not a FLEX 
error number. The error status is not stored in the Error Status byte of the FCB, nor are any 
of the pointers in the FCB updated. 

 
Function 11 ($0B hex) -- Reserved for future system use 
 
Function 12 ($0C hex) -- Delete File 

This function deletes the file whose specification is in the FCB (drive numbers, file name, and 
extension). The sectors used by the file are released to the system for re-use. The file should 
not be open when this function is issued. The file specification in the FCB is altered during the 
delete process. 
Example: 

LDX #FCB Point to FCB 
(setup file spec in FCB) 
LDAA #12 Setup function code 
STAA 0,X Store in FCB 
JSR FMS Call FMS 
BNE ERROR Check errors 
File has now been deleted. 

 
Function 13 ($0D hex) -- Rename File 

On entry, the file must not be open, the old name must be in the File Specification area of the 
FCB, and the new name and. extension must be in the Scratch Bytes area of the FCB. The file 
whose specification is in the FCB is renamed to the name and extension stored in the FCB 
Scratch Bytes area. Both the new name and the new extension must be specified, neither the 
name nor the extension can be defaulted. 

 
 
 
 
 
 
 
 
 
 
 

-- 19 -- 



Example: 
LDX #FCB Point to FCB 
(setup both file specs in FCB) 
LDAA #13 Setup function code 
STAA 0,X Store in FCB 
JSR FMS Call FMS 
BNE ERROR Check for errors 
File has been renamed. 

 
Function 14 ($0E hex) -- Reserved for future system use. 
 
Function 15 ($0F hex) -- Reserved for future system use 
 
Function 16 ($10 hex) -- Get Random Byte From Sector 

On entry, the file should be open for reading. Also, the desired byte's number should be stored 
in the Random Index byte of the FCB. This byte number is relative to the beginning of the 
sector buffer. On exit, the byte whose number is stored in the Random Index is returned to 
the calling program in the A-register. A byte number larger than 127 will result in an error 
being returned. The Random Index should not be less than 4 since there is no user data in the 
first four bytes of the sector. 
Example: 

To read the 54th data byte of the current sector- 
LDX #FCB Point to the FCB 
LDAA #54+4 Set to item +4 
STAA 35,X Put it in random index 
LDAA #16 Setup function code 
STAA 0,X Store in FCB 
JSR FMS Call FMS 
BNE ERROR Check for errors 
Character is now in acc. A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-- 20 -- 



FLEX Error Numbers 
 
1 -- Illegal Function Code 

FMS was called with a function code in the Function Code byte of the FCB that was too large 
or illegal. 

 
2 -- File Busy or FCB Already in Use 

An Open for Read or Open for Write Function was issued on an FCB that is already open. 
 
3 -- File Exists 

a. An Open for Write was issued on an FCB containing the specification for a file already 
existing in the diskette directory. 

b. A Rename function was issued specifying a new name that was the same as the name of a 
file already existing in the diskette directory. 

 
4 -- File Does Not Exist 

An Open for Read, a Rename, or a Delete function was requested on an FCB containing the 
file specification for a file which does not exist in the diskette directory. 

 
5 -- Directory Error 

Reserved for future system use. 
 
6 -- Too Many Files 

The diskette directory has no more room for new file names. The directory can hold a maxi- 
mum of 75 file names. 

 
7 -- Disk Full 

All of the available space on the diskette has been used up by files. If this error is returned by 
FMS, the last character sent to be written to a file did not actually ge t written. 

 
8 -- End of File 

A read operation on a file encountered an end-of-file. All of the data in the file has been pro- 
cessed. This error will also be returned when reading a directory with the Get Information 
Record function when the end of the directory is reached. 

 
9 -- Read Error 

A checksum error was encountered by the hardware in attempting to read a sector. DOS has already 
attempted to re-read the failing sector several times, without success, before reporting the error. This 
error may also result from illegal track and sector addresses being put in the FCB. 

 
10 ($0A hex) -- Write Error; 

A checksum error was detected by the hardware in attempting to write a sector. DOS has al- 
ready tried several times, without success, to re-write the failing sector before reporting the 
error. This error may also result from illegal track and sector numbers being put in the FCB. A 
write-error status may also be returned if a read error was detected by DOS in attempting to 
update the diskette directory. 

 
11 ($0B) -- Write Protected 

An attempt was made to write on a diskette which has been write protected by the placing of 
tape over the write-enable cut in the diskette. 

 
 
 
 
 
 
 
 
 
 

-- 21 -- 



12 ($0C) -- Delete Protected 
Reserved for future system use. 

 
13 ($0D) -- Illegal File Control Block 

An attempt was made to access an FCB from the open FCB chain, but it was not in the chain. 
 
14 ($0E) -- Illegal Disk Address 

Reserved for future system use. 
 
15 ($0F) -- Drive Number Error 

Reserved for future system use. 
 
16 ($10) -- Not Ready 

The drive does not have a diskette in it. 
 
17 ($11) -- Access Denied 

Reserved for future system use. 
 
18 ($12) -- Status Error 

a. A read or rewind was attempted on a file which was closed, or open for write access. 
b. A write was attempted on a file which was closed, or open for read access. 

 
19 ($13) -- Index Range Error 

The Get Random Byte from Sector function was issued with a Random Byte number greater 
than 127. 

 
20 ($14) -- FMS Inactive 

Reserved for future system use. 
 
21 ($15) -- Illegal File Name 

A format error was detected in a file name specification. The name must begin with a letter 
and contain only letters, digits, hyphens, and/or underscores. Similarly with file extensions. 
File names are limited to 8 characters, extensions to 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-- 22 -- 



Disk Drivers 
 
The following information is for those users who wish to write their own disk drivers to interface 
with some other disk configuration than is supplied by the vendor. Neither the vendor nor Techni- 
cal Systems Consultants is in a position to write disk drivers for other configurations, nor do these 
companies guarantee the proper functioning of FLEX with user-written drivers. 
 
The disk drivers are the interface routines between FLEX and the hardware driving the floppy disks 
themselves. The drivers released with the FLEX System are designed to interface with the Western 
Digital 1771 Floppy Disk Formatter/Controller chip. 
 
The disk drivers are located in RAM at addresses $7F00 - $7FFF. All disk functions are vectored 
jumps at the beginning of this area. The disk drivers need not handle retries in case of errors; FLEX 
will call them as needed. If an error is detected, the routines should exit with the disk hardware 
status in the B-register and the CPU Z-Condition code bit clear (issue a TST B before returning 
to accomplish this). FLEX expects status responses as produced by the Western Digital 1771 Control- 
ler. These statuses must be simulated if some other controller is used. All drivers should return 
with the X-register unchanged. All routines are entered with a JSR instruction. 
 
 
$7F00 -- Read 

Entry -- (X) = FCB Sector Buffer Address 
 (A) = Track Number 
 (B) = Sector Number 
The sector referenced by the track and sector numbers is to be read into the Sector Buffer 
area of the indicated FCB. 

 
$7F03 -- Write 

Entry -- (X) = FCB Sector Buffer Address 
 (A) = Track Number 
 (B) = Sector Number 
The content of the Sector Buffer area of the indicated FCB is to be written to the sector re- 
ferenced by the track and sector numbers. 

 
$7F06 -- Verify 

Entry -- (No parameters) 
The sector just written is to be verified to determine if there are CRC errors. 

 
$7F09 -- Restore 

Entry -- (X) = FCB Address 
Exit -- CC, NE, & B = $B if write protected 
 CS, NE, & B = $F if no drive 
A Restore Operation (also known as a Seek to Track ~ is to be performed on the drive whose 
number is in the FCB. 

 
$7F0C -- Drive Select 

Entry -- (X) = FCB Address 
The drive whose number is in the FCB is to be selected. 

 
 
 
 
 
 
 
 
 
 
 
 

-- 23 -- 



Diskette Initialization 
 
The NEWDISK command is used to "initialize" a diskette for use by the FLEX Operating System. 
The initialization process writes the necessary track and sector addresses in the sectors of a "soft- 
sectored" diskette such as is used by FLEX. In addition, the initialization process links togehter all 
of the sectors on the diskette into a chain of avialable sectors. 
 
The first track on the diskette, track 0, is special. None of the sectors on track 0 are available for 
data files, they are reserved for use by the FLEX system. The first two sectors contain a "boot" 
program which is loaded by the "D" command of the SWTBUG® monitor. The boot program, once 
loaded, then loads FLEX from the diskette. Another sector on track 0 is the System Information 
Record. This sector contains the track and sector address of the beginning and ending sectors of the 
chain of free sectors, those available for data files. The rest of track 0 is used for the directory of 
file names. 
 
After initialization, the free tracks on the diskette have a common format. The first two bytes of 
each sector contain the track and sector number of the next sector in the chain. The next two bytes 
are reserved for future system use. The remaining 124 bytes are zero. When data is stored in a file, 
the two linkage bytes at the beginning of each sector are modified to point to the next sector in the 
file, not the next sector in the free chain. The sectors in the diskette directory on track 0 also have 
linkage bytes similar to those in the free chain and data files. 
 
A FLEX diskette is not initialized in the strict IBM standard format. In the standard format, all 
tracks start with sector number 1. On a FLEX diskette, all tracks except track 0 start with sector 
1. Track 0 starts with sectors 0 and 1, but there is no sector 2. Sector 3 immediately follows sector 1 
in the logical ordering of the sectors. This is due to the requirements of the SWTBUG monitor's 
"D" command. In the standard format, the sectors on the diskette should be physically in the same 
order as they are logically, i.e. sector 2 should follow sector 1, 3 follow 2, etc. On a FLEX diskette, 
the sectors are interleaved so that there is time, after having read one sector, to process the data and 
request the next sector before it has passed under the head. If the sectors are physically adjacent, 
the processing time must be very short. The interleaving of the sectors allows more time for proces- 
sing the data. The phenomena of missing a sector because of long processing times is called "missing 
revolutions", and results in very slow running time for programs. The FLEX format reduces the 
number of missed revolutions, thus speeding up programs. 
 

Description of a Directory Sector 
 
Each sector in the directory portion of a FLEX diskette contains 5 directory entries. Each entry 
refers to one file on the diskette. In each sector, the first four bytes contain the sector linkage in- 
formation and the next four bytes are not used. When reading information from the directory using 
the FMS Get Information Record function, these 8 bytes are skipped automatically as each sector 
is read; the user need not be concerned with them. 
 
Each entry in the directory contains the exact same information that is stored in the FCB bytes 
4-27. See the description of the File Control Block (FCB) for more details. 
 
A directory entry which has never been used has a zero in the first byte of the file name. A direc- 
tory entry which has been deleted has the leftmost bit of the name set (i.e. the first byte of the 
name is negative). 
 
 
 
 
 
 
 
 
 
 
 

-- 24 -- 



Description of a Data Sector 
 
Every sector on a F LEX diskette (except the two BOOT sectors) has the following format: 

Bytes 0-1 Link to the next sector 
Bytes 2-3 Reserved for future system use 
Bytes 4-127 Data 

 
If a file occupies more than one sector, the "link to the next sector" portion Contains the track and 
sector numbers, respectively, of the next sector in the file. These bytes are zero in the last sector of 
a file, indicating that no more data follows (an "end-of-file" condition). The user should never 
manually change the linkage bytes of a sector. These bytes are automatically managed by FMS. 
In fact, the user need not be concerned at all with sector linkage information. 
 
 

Description of a Binary File 
 
A FLEX binary file may contain anything as data, all ASCII characters are allowed. Each binary file 
is composed of one or more binary records. There may be more than one binary record in a single 
sector. 
 
A binary record looks as follows: (byte numbers are relative to the start of the record, not the be- 
ginning of a sector) 

Byte 0 Start of record indicator ($02, the ASCII STX) 
Byte 1 Most significant byte of the load address 
Byte 2 Least significant byte of the load address 
Byte 3 Number of data bytes in the record 
Byte 4-n The binary data in the record 

 
The load address portion of a binary record contains the address where the data resided when it 
was written to the file with the FLEX SAVE command. When the file is loaded for execution 
or use, it will be put in the same memory areas from which it was SAVED. 
 
A binary file may also contain an optional transfer address record. This record gives the address in 
memory of the entry point of a binary program. The format of a transfer address record is as 
follows: 

Byte 0 Transfer Address Indicator ($16, ASCII ACK) 
Byte 1 Most significant byte of the transfer address 
Byte 2 Least significant byte of the transfer address 

 
If a file contains more than one transfer address record (caused by appending binary files which 
contain transfer addresses), the last one encountered by the load process is the one that is used, the 
others are ignored. 
 
When reading or writing a binary file through the File Management System from a user program, the 
calling program must process the record indicator bytes and load address itself, Flex does not 
supply or process this information for the user. 
 
 

Description of a Text File 
 
A text file (also called an "ASCII file" or "coded file") contains only printable ASCII characters 
plus a few special-purpose control characters. There is no "load address" associated with a FLEX 
text file as there is with FLEX binary files. It is the responsiblity of the program which is reading 
the text file to put the data where it belongs. 
 
The only control character which FLEX recognizes and processes in a FLEX text file are: 
 
$0D (ASCII CR or RETURN) 

This character is used to mark the end of a line or record in the file. 
 

-- 25 -- 



$00 (ASCII NULL) 
Ignored by F LEX, if encountered in the file, it is not returned to the calling program. 

 
$18 (ASCII CANCEL) 

Ignored by F LEX; if encountered in the file, it is not returned to the calling program. 
 
$09 (ASCII HT or HORIZONTAL TAB) 

This is a flag character which indicates that a string of spaces has been removed from the file as 
a space-saving measure. The next byte following the flag character is a count of the number of 
spaces removed (2-127). The calling program sees neither the flag character nor the count 
character. The proper number of spaces are returned to the user program as successive charac- 
ters are requested by the Read Next Byte function. The data compression is, therefore, trans- 
parent to the calling program. (The above discussion is only valid if the file is open for Text 
operations. If open for Binary, the compression flag and count get passed exactly as they 
appear in the file.) 

 
 

Writing Utility Commands 
 
Utility commands are best prepared by the use of an assembler. FLEX reserves a block of memory 
in which medium size utilities may be placed. This memory starts at hex location $7600 and ex- 
tends through location $773F. The system FCB at location $7740 may also be used in user written 
utilities for either FCB space or temporary storage. No actual code should reside in this FCB space 
since it would interfere with the loading of the utility (FLEX is using that FCB while loading utilities.). 
 
An example will be given to demonstrate some of the conventions and techniques which should be 
used when writing utilities. The example, which can be found on the following pages, is a simple 
text file listing utility. Its syntax is: 

LIST, {(FILE SPEC)} 
The default extension on the file spec is TXT. The utility will simply display the contents of a text 
file on the terminal, line for line. 
 
The following is a section by section description of the LIST utility. The first section of the source 
listing is a set of EQUATES which tell the assembler where the various DOS routines reside in 
memory. These equates represent the addresses given in this manual for "User Callable DOS System 
Routines". 
 
The next two sections are also equates, the first to the FMS entry points, and the second references 
the system FCB. The actual program finally starts with the ORG statement. In this program, we will 
make use of the Utility Command space located at $7600, therefore, the ORG is to $7600. 
 
One of the conventions which should be observed when writing DOS utilities is to always start the 
program with a BRA instruction. Following this instruction should be a 'VN FCB 1' which defines 
the version number of the utility. The 1 should of course be set to whatever the actual version num- 
ber is. In this example, the version number is 1. This convention allows the FLEX VERSION Utility 
to correctly identify the version number of a command. 
 
Moving down the program to the label called 'LIST2', the program needs to retrieve the file specifi- 
cation and get it into the FCB. Pointing X to the FCB, we can make use of the DOS resident sub- 
routine called 'GETFIL' to automatically parse the file spec, check for errors, and set the name in 
the FCB correctly. If all goes well in GETFIL, the carry should be clear, otherwise there were errors 
in the file spec and this fact needs reporting. If the carry is set, control is passed to the line with the 
label 'LIST8'. At this point, X is made to point to the error string 'ILLST'. Calling the DOS routine 
PSTRNG will print this string after first having output a carriage return and line feed. 
 
Finally, control is returned to DOS by a JMP to WARMS since there is nothing else to be done in 
the utility. 
 
 
 

-- 26 -- 



If the file spec was correct, and the carry was clear after the return from GETFIL, we want to set 
a default file name extension of TXT. The DOS subroutine named SETEXT will do exactly that. 
First it is necessary to put the code for TXT in the A accumulator (the code is 1). X needs to be 
pointing to the FCB so it is reset. The call is made to SETEXT and the file name is now correctly 
set up in the FCB. Note that no errors can be generated by a call to SETEXT. 
 
Now that we have the file spec, it is necessary to open the requested file for read. Once again X is 
made to point to the FCB. The FMS Function Code for 'open a file for read' is 1. Therefore, we 
load the accumulator with 1 and store it in the FCB Function Code byte (FCB+0). A call to the FMS is 
now made in an attempt to open the file. Upon return, if the Z-condition code is set, there were no 
errors. If there was an error, the 'BNE LIST7' will take us to the code which will determine what 
kind of error exists. At 'LIST7', the error status is retrieved from the FCB and compared to 4. This 
is the error number which is generated if the requested file could not be found on the disk. If this is 
the error which was generated, this program will print a message to that effect and then return to 
DOS. 
 
If the error reported by FMS was not a 4, control is transfered to 'LIST9'. This section of code is 
the desired way to handle most FMS caused disk errors. The first thing to do is call the DOS routine 
RPTERR which will print the disk error number on the monitor terminal. Next, all open disk files 
should be closed. This can be easily accomplished by a call to the FMS close entry (FMSCLS). Fi- 
nally, return control back to DOS by jumping to the WARM START entry. 
 
If the file opened successfully, control will be transfered to the line with the label 'LIST4'. At this 
time it is desirable to fetch characters one at a time from the file, printing them on the monitor ter- 
minal as they are received. Since line feeds are not stored in text files (carriage returns mark the end 
of lines, but the next line will follow immediately), each carriage return received from the file is not 
output as is, but instead a call to the DOS routine 'PCRLF' is made to print a carriage return and a 
line feed. As each character is received from the file (by a call to the FMS at label LIST4), the error 
status is checked. If an error does occur, control is transferred to 'LIST6'. Since FLEX does not 
store an End of File character with a file, the only mechanism for determining the end of a file is 
by the End of File error generated by FMS. At 'LIST6', the error status is checked to see if it is 8 
(end of file status). If it is not an 8, control is transfered to the error handling routine described 
above. If it is an End of File, we are finished listing the file so it must now be closed. The FMS 
Function Code for closing a file is 4. This is loaded into A and stored in the FCB. Calling the FMS will 
attempt to close the file. Upon return, errors are checked, and if none is found, control is transferred 
back to DOS by the jump to 'WARMS'. 
 
This example illustrates many of the methods used when writing utilities. Many of the DOS and 
FMS routines were used. The basic idea of file opening and closing were demonstrated, as well as 
file I/O. The methods of dealing with various types of errors were also presented. Studying this 
example until it is thoroughly understood will make writing your own disk commands and disk 
oriented programs an easy task. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-- 27 -- 



 * 
 * SIMPLE TEXT FILE LIST UTILITY 
 * 
 
 * COPYRIGHT (C) 1978 BY 
 * 
 * TECHNICAL SYSTEMS CONSULTANTS, INC. 
 
  * DOS EQUATES 
 
 7103  WARMS EQU $7103 DOS WARM START ENTRY 
 7127 GETFIL EQU $7127 GET FILE SPECIFICATION 
 7112 PUTCHR EQU $7112 PUT CHARACTER ROUTINE 
 7118 PSTRNG EQU $7118 PRINT STRING ROUTINE 
 711E PCRLF EQU $711E PRINT CR & LF 
 712D SETEXT EQU $712D SET DEFAULT NAME EXT 
 713C RPTERR EQU $713C REPORT DISK ERROR 
 
 * FMS EQUATES 
 
 7806 FMS EQU $7806 FMS CALL ENTRY 
 7803 FMSCLS EQU $7803 FMS CLOSE ENTRY 
 
 * SYSTEM EQUATES 
 
 7740 FCB EQU $7740 SYSTEM FCB 
 
 * LIST UTILITY STARTS HERE * 
 
 7600  ORG $7600 
 
 7600 20 O1 LIST BRA LIST2 GET AROUND TEMPS 
 
 7602 O1 VN FCB 1 VERSION NUMBER 
 
 7603 CE 77 40 LIST2 LDX #FCB POINT TO FCB 
 7606 BD 71 27  JSR GETFIL GET FILE SPEC 
 7609 25 4B  BCS LIST8 ANY ERRORS? 
 760B CE 77 40  LDX #FCB RESTORE POINTER 
 760E 86 O1  LDA A #1 SETUP TXT EXTENSION 
 7610 BD 71 2D  JSR SETEXT SET DEFAULT EXTENSION 
 7613 CE 77 40  LDX #FCB POINT TO FCB AGAIN 
 7616 86 01  LDA A #1 OPEN FOR READ CODE 
 7618 A7 00  STA A 0,X STORE IN FCB 
 761A BD 78 06  JSR FMS CALL FMS - DO OPEN 
 761D 26 28  BNE LIST7 CHECK FOR ERRORS 
 761F CE 77 40 LIST4 LDX #FCB POINT TO FCB 
 7622 BD 78 06  JSR FMS CALL FMS - GET CHAR 
 7625 26 OE  BNE LIST6 ANY ERRORS? 
 7627 81 OD  CMP A #$D IS CHARACTER A CR? 
 7629 26 O5  BNE LIST5 
 762B BD 71 1E  JSR PCRLF OUTPUT A CR & LF 
 762E 20 EF  BRA LIST4 
 
 
 
 
 

-- 28 -- 



 7630 BD 71 12 LIST5 JSR PUTCHR OUTPUT THE CHARACTER 
 7633 20 EA  BRA LIST4 REPEAT SEQUENCE 
 
 7635 A6 01 LIST6 LDA A 1,X GET ERROR STATUS 
 7637 81 08  CMP A #8 IS IT EOF ERROR? 
 7639 26 20  BNE LIST9 
 763B 86 04  LDA A #4 CLOSE FILE CODE 
 763D A7 00  STA A 0,X STORE IN FCB 
 763F BD 78 06  JSR FMS CALL FMS - CLOSE FILE 
 7642 26 17  BNE LIST9 ERRORS? 
 7644 7E 71 03  JMP WARMS RETURN TO DOS 
 
 7647 A6 01 LIST7 LDA A 1,X GET ERROR STATUS 
 7649 81 04  CMP A #4 IS IT "N0 FILE" ERROR? 
 764B 26 0E  BNE LIST9 
 764D CE 76 64  LDX #NOFST POINT TO MESSAGE 
 7658 BD 71 18 LIST75 JSR PSTRNG OUTPUT THE STRING 
 7653 7E 71 03  JMP WARMS RETURN TO DOS 
 
 7656 CE 76 71 LIST8 LDX #ILLST POINT TO MESSAGE 
 7659 20 F5  BRA LIST75 
 
 765B BD 71 3C LIST9 JSR RPTERR REPORT DISK ERROR 
 765E BD 78 03  JSR FMSCLS CLOSE ALL FILES 
 7661 7E 71 03  JMP WARMS RETURN TO DOS 
 
  * STRINGS FOR ERROR MESSAGES 
 
 7664 4E NOFST FCC 'NO SUCH FILE' 
 7670 04  FCB 4 
 
 7671 49 ILLST FCC 'ILLEGAL FILE NAME' 
 7682 04  FCB 4 
 
   END LIST 
 
NO ERROR(S) DETECTED 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-- 29 -- 



The DOS LINK Utility 
 
The LINK Utility provided with FLEX is a special purpose command. Its only function is to inform 
the "disk boot", which is on track 0, where the program resides which is to be loaded during the 
boot operation. Normally, LINK is used to set the pointer to the DOS program. Since DOS may re- 
side anywhere on the disk, LINK takes the starting disk address of the file and stores it in a pointer 
in the boot sector. When the boot program is later executed, it simply takes this disk address, and 
loads the binary file which resides at that location. The load process is terminated upon the receipt 
of a transfer address record. At this time, control is transferred to the program just loaded by jump- 
ing to the address specified in the transfer address record. If the 'linked' program is ever moved on 
the disk, then it must be re-linked so the boot knows the new disk address. 
 
LINK may be used in some specialized applications. One is the development of custom operating 
systems. The user may write his own operating system, link it to the boot, and use it exactly as 
FLEX is used now. It may also be desirable for special disks to boot in specialized programs rather 
than the operating system. If this is done, remember that unless the DOS is loaded during the boot 
process, there will not be any disk drivers or File Management System resident in memory. 
 
 

Printer Routines 
 
There are two printer related programs provided with FLEX. One is the P Utility, the other is the 
PRINT.SYS file which is the actual set of printer drivers (initialize printer and output character). 
The P command source listing is provided on the following pages and should be self explanatory. 
Below you will find the requirements of the PRINT.SYS file. No source listing is provided here 
since one is given in the "FLEX User's Manual". 
 
PRINT.SYS File Requirements 
The PRINT.SYS file needs to load several locations in memory. The P command, when executed, 
loads PRINT.SYS as a binary file. During the load process, two locations need to be set. The first is 
at location $0010 At this location, the starting address of the printer initialization routine should 
be loaded. As an example, if the Printer Initialization routine actually resides at location $A04A, 
then the value $A04A should be loaded at address $0010 This address is referenced in the "P" 
command listing. The second address which needs to be set is location $710D. This should contain 
the address of the actual location of the printer output character routine. As an example, if the out- 
put routine resided in memory at location $A016, then the value $A016 should be loaded at 
address $710D. It should be noted that this is the address part of the OUTCH jump vector in the 
DOS jump table. This overstore operation simply is changing the jump address which FLEX uses for 
character output. This address is automatically restored to its original value upon DOS Warmstart. 
Finally, PRINT.SYS must also load the actual print drivers referenced by the addresses in $0010 
and $710D. The output character routine should preserve the X and B registers. Refer to the source 
listing provided in the user's manual. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-- 30 -- 



 * 
  * "P" UTILITY COMMAND 
  * 
  * THE P COMMAND INITIALIZES A PORT AND 
  * CHANGES THE OUTCH JUMP VECTOR IN DOS 
  * 
 
  * COPYRIGHT (C) 1978 BY 
  * 
  * TECHNICAL SYSTEMS CONSULTANTS, INC. 
 
  * EQUATES 
 
 0010 INDEX EQU $0010 
 7740 FCB EQU $7740 
 712A LOAD EQU $712A 
 7806 FMS EQU $7806 
 7803 FMSCLS EQU $7803 
 7106 RENTER EQU $7106 
 0004 NFER EQU $4 
 7089 PAUSE EQU $7089 
 7118 PSTRNG EQU $7118 
 713C RPTERR EQU $713C 
 7103 WARMS EQU $7103 
 7091 LSTTRM EQU $7091 
 7082 EOL EQU $7082 
 
 7600  ORG $7600 
 
 7600 20 O1 P BRA P1 BRANCH AROUND TEMPS 
 
 7602 01 VN FCB 1 THE VERSION NUMBER 
 
 7603 B6 70 91 P1 LDA A LSTTRM GET THE LAST TERMINATOR 
 7606 81 OD  CMP A #$D IS IT A CR? 
 7608 27 39  BEQ P8 
 760A B1 70 82  CMP A EOL IS IT AN EOL CHARACTER? 
 760D 27 34  BEQ P8 
 760F 7F 70 89  CLR PAUSE DISABLE THE PAUSE FEATURE 
 7612 CE 77 40  LDX #FCB POINT TO THE FCB 
 7615 86 O1  LDA A #1 OPEN THE FILE FOR READ 
 7617 A7 00  STA A 0,X 
 7619 BD 78 06  JSR FMS 
 761C 26 OE  BNE P2 CHECK FOR ERRORS 
 761E 86 FF  LDA A #$FF SET FOR BINARY READ 
 7620 A7 3B  STA A 59,X SET COMPRESSION FLAG 
 7622 BD 71 2A  JSR LOAD CALL DOS'S BINARY LOADER 
 7625 DE 10  LDX INDEX GET THE JUMP VECTOR 
 7627 AD 00  JSR 0,X DO THE INITIALIZATION 
 7629 7E 71 06  JMP RENTER RETURN TO DOS 
 
 
 
 
 
 
 
 
 

-- 31 -- 



 762C A6 O1 P2 LDA A 1,X GET THE ERROR CODE 
 762E 81 04  CMP A #NFER IS IT "N0 SUCH FILE"? 
 7630 26 08  BNE P3 
 7632 CE 76 48  LDX #NOPST POINT TO MESSAGE STRING 
 7635 BD 71 18 P25 JSR PSTRNG PRINT STRING 
 7638 20 03  BRA P4 
 
 763A BD 71 3C P3 JSR RPTERR CALL DOS'S REPORT ERROR ROUTINE 
 763D BD 78 03 P4 JSR FMSCLS CLOSE ALL FILES 
 7640 7E 71 03  JMP WARMS RETURN TO DOS 
 
 7643 CE 76 5E P8 LDX #ERSTR POINT TO MESSAGE 
 7646 20 ED  BRA P25 
 
 7648 22 NOPST FCC '"PRINT.SYS" NOT FOUND' 
 765D 04  FCB 4 
 765E 43 ERSTR FCC 'COMMAND MUST FOLLOW "P"' 
 7675 04  FCB 4 
 
  * THE FOLLOWING CODE IS LOADED INTO 
  * THE SYSTEM FCB WHEN THE P COMMAND IS 
  * LOADED INTO MEMORY. 
  * IT PRESETS THE FILE NAME IN THE FCB. 
 
 7744  ORG $7744 
 
 7744 50  FCC 'PRINT' 
 7749 00  FCB 0,0,0 
 774C 53  FCC 'SYS' 
 
   END P 
 
NO ERROR(S) DETECTED 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-- 32 -- 



 
FLEX REFERENCE SHEET 

 
 

FLEX SUBROUTINES 
 
$7100 COLDS (coldstart entry) 
$7103 WARMS (warm start entry) 
$7106 RENTER (main loop re-entry) 
$7109 INCH (input character 
$710C OUTCH (output character) 
$710F GETCHR (prefered get character) 
$7112 PUTCHR (prefered output character) 
$7115 INBUFF (input to line buffer) 
$7118 PSTRNG (print string) 
$711B CLASS (classify character) 
$711E PCRLF (print C/R, L/F) 
$7121 NXTCHR (next character) 
$7124 RSTRIO (restore I/O vectors) 
$7127 GETFIL (parse file spec.) 
$712A LOAD (file loader) 
$712D SETEXT (set extension) 
$7130 ADDBX (add ACC-B to X) 
$7133 OUTDEC (output decimal number) 
$7136 OUTCH2 (output character) 
$7139 OUTHEX (output hex number) 
$713C RPTERR (report error) 
$713F GETHEX (get hex number) 
$7142 DOCMND (call DOS) 
$7800 FMS Initialization 
$7803 FMS Close 
$7806 FMS Call 
 
 

 
FLEX MEMORY LOCATIONS 

 
$7000 - $707F Line buffer 
$7080 TTYSET Backspace Character 
$7081 TTYSET Delete Character 
$7082 TTYSET End of Line Character 
$7083 TTYSET Depth Count 
$7084 TTYSET Width Count 
$7085 TTYSET Null Count 
$7086 TTYSET Tab Character 
$7087 TTYSET Duplex Mode 
$7088 TTYSET Eject Count 
$7089 TTYSET Pause Control 
$708A TTYSET Escape Character 
$708B System Drive Number 
$708C Working Drive number 
$708D - $7090 System Scratch; future use 
$7091 Last Terminator 
$7092 - $7093 User Command Table Address 
$7094 - $7095 Line Buffer Pointer 
$7096 - $7097 Escape Return Register 
$7098 - $7099 System Scratch 
$709A Previous Character 
$709B Current Line Number 
$709C - $709D Loader Address Offset 
$709E Transfer Flag 
$709F - $70A0 Transfer Address 
$70A1 ACIA Flag 
$70A2 Error Type 
$70A3 Output Switch 
$70A4 System Scratch 
$70A5 Command Flag 
$70A6 Current Output Column 
$70A7 - $70B4 System Scratch 
$70B5 - $70FF System Constants 
$7809 - $780A FCB BASE POINTER 
$780B - $780C CURRENT FCB ADDRESS 
$782D VERIFY FLAG 

 
FMS COMMANDS 

 
FUNCTION - 
  (HEX)       FUNCTION 
   01 OPEN FOR READ 
   02 OPEN FOR WRITE 
   03 reserved/future use 
   04 CLOSE FILE 
   05 REWIND FILE 
   06 OPEN DIRECTORY 
   07 GET INFORMATION RECORD 
   08 PUT INFORMATION RECORD 
   09 READ SINGLE SECTOR 
   0A WRITE SINGLE SECTOR 
   0B reserved/future use 
   0C DELETE FILE 
   0D RENAME FILE 
   0E reserved/future use 
   0F reserved/future use 
   10 GET RANDOM BYTE FROM 
 SECTOR 

 
 

FILE CONTROL BLOCK SPECIFICATIONS 
 
   BYTE # 
(DECIMAL) FUNCTION 
 
  0 FMS COMMAND 
  1 ERROR STATUS 
  2 ACTIVITY STATUS 
  3 DRIVE NUMBER 
  4 - 11 FILE NAME 
12 - 14 EXTENSION 
15 - 16 Reserved/future use 
17 - 18 STARTING DISK ADDRESS 
19 - 20 ENDING DISK ADDRESS 
21 - 22 FILE SIZE 
23 - 27 Reserved/future use 
28 - 29 FCB LIST POINTER 
30 - 31 CURRENT POSITION 
32 - 33 Reserved/future use 
34 DATA INDEX 
35 RANDOM INDEX 
36 - 46 NAME WORK BUFFER (internal) 
47 - 49 CURRENT DIRECTORY ADDRESS 
50 - 52 FIRST DELETED DIRECTORY 
 POINTER 
53 - 63 SCRATCH BYTES (for RENAME) 
59 SPACE COMPRESSION FLAG 
64 - 191 SECTOR BUFFER 

 
 

-- 33 -- 



1771 REFERENCE SHEET 
 

Below is a short table showing the possible error combinations that a 1771 controller integrated cir- 
cuit can return. For Example, if during a read single sector read operation an error is found and the B ac- 
cumulator return a 08 hex (0000 1000), the controller discovered a CRC error. 
 

COMMANDS 
BIT 
SET 

All Type 1 
Commands 

Read 
Address 

Read Read 
Track 

Write Write 
Track 

7 
6 
5 
4 
3 
2 
1 
0 

Not Ready 
Write Protect 

Head Engaged 
Seek Error 
CRC Error 

Track 0 
Index 
Busy 

Not Ready 
0 
0 

ID Not Found 
CRC Error 
Lost Data 

DRQ 
Busy 

Not Ready 
Record Type 
Record Type 

Record Not Found 
CRC Error 
Lost Data 

DRQ 
Busy 

Not Ready 
0 
0 
0 
0 

Lost Data 
DRQ 
Busy 

Not Ready 
Write Protect 
Write Fault 

Record Not Found 
CRC Error 
Lost Data 

DRQ 
Busy 

Not Ready 
Write Protect 
Write Fault 

0 
0 

Lost Data 
DRQ 
Busy 

 
Bits  Type Command 

7 6 5 4 3 2 1 0  

DC1 and DC2 Address Registers 
DRIVE REGISTER $8014 
COMMAND REGISTER $8018 
TRACK REGISTER $8019 
SECTOR REGISTER $801A 
DATA REGISTER $801B 

I 
I 
I 
I 
I 
II 
II 
III 
III 
III 
IV 

Restore 
Seek 
Step 

Step In 
Step Out 

Read Command 
Write Command 
Read Address 
Read Track 
Write Track 

Force Interrupt 

0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 

0 
0 
0 
1 
1 
0 
0 
1 
1 
1 
1 

0 
0 
1 
0 
1 
0 
1 
0 
1 
1 
0 

0 
1 
u 
u 
u 
m 
m 
0 
0 
1 
1 

h 
h 
h 
h 
h 
h 
h 
0 
0 
0 
I3 

V 
V 
V 
V 
V 
E 
E 
1 
1 
1 
I2 

r1 
r1 
r1 
r1 
r1 
0 

a1 
0 
0 
0 
I1 

r0 
0 
r0 
r0 
r0 
0 

a0 
0 
s 
0 
I0 

 

 

 
h = Head Load flag (bit 3 of Type I) 
       h = 1, Load head at beginning 
       h = 0, Do not load head at beginning 
 
V = Verify flag (bit 2 of type I) 
       V = 1, Verify on last track 
       V = 0, No verify 
 
r1r0 = Stepping Motor Rate (bits 1 - 0 of type I)(2MHz clock) 
       r1r0 = 00,    6 ms steps 
       r1r0 = 01,    6 ms step 
       r1r0 = 10,  10 ms step 
       r1r0 = 11,  20 ms step 
 
u = Update flag (bit 4 of type I) 
      u = 1, Update track register 
      u = 0, No update 
 
b = Block Length flag (bit 3 of type II) 
      b = 1, IBM format (128 to 1024 bytes) 
      b = 0, Non-IBM format (16 to 4096 bytes) 
 
E = Enable HLD & 10 ms delay (bit 2 of type II) 
       E = 1, Enable HLD, HLT & 10 ms delay 
       E = 0, Head is assumed engaged & no 10 ms delay 

a1a0 = Data Address Mark (bits 1 - 0 of type II) 
            a1a0 = 00, FB (Data Mark) 
            a1a0 = 01, FA (Data Mark) 
            a1a0 = 10, F9 (Data Mark) 
            a1a0 = 11, F8 (Data Mark) 
 
 
s = Synchronize flag (bit 0 of type III) 
       s = 0, Synchronize to AM 
       s = 1, Do not synchronize to AM 
 
 
m = Multiple Record flag (bit 4 of tyep III) 
       m = 0, Single Record 
       m = 1, Multiple Records 
 
 
In = Interrupt Condition flags (bit 3 - 0 of type IV) 
        I0 = 1, Not Ready to Ready Transition 
        I1 = 1, Ready to Not Ready Transition 
        I2 = 1, Index Pulse 
        I3 = 1, Every 10 ms 

 
The above tables are for reference only – a complete data sheet on the 1771 disk controller (not 

available from SWTPC or TSC) should be consulted for detailed information 
 
 
 

-- 34 -- 


