
MOSTEI(®
Z80MICROCOMPUTER SOFlWARE

Operations Manual

.. MITE-80
MULTIPLE INDEPENDENT

TASK EXECUTIVE

MOSTEK MITE-80 OPERATION MANUAL

,

Publication No. MK 79726

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUfvlBER

1 GENERAL DESCRIPTION
1.1 I NTRODUCTI ON 1-1
1.1.1 FEATURES 1-1

1.1.2 SOFTWARE CONFIGURATION 1-1
1.2 REFERENCE DOCUMENTS 1-2

1.3 DEFINITION OF SYMBOLS USED IN THIS MANUAL 1-2
1.4 PRODUCT OVERVIEW 1-2

1.4.1 MITE-BO 1-3

1.4.2 MITE-BO DEBUG 1-3

1.4.3 MITE-BO MACROS 1-3
1.4.4 MITE-BO EQUATES 1-3

1.4.5 MITE-BO TIMER HANDLER 1-3
1.4.6 MITE-BO MEMORY POOL MANAGER 1-3

1.4.7 MITE-BO SYSTEM LINKAGES 1-4

1.5 DOCUMENT FORMAT 1-4

2 FUNCTIONAL DESCRIPTION
2.1 OVERVIEW 2-1
2.2 TASK IDENTIFICATION 2-1

2.3 MESSAGE IDENTIFICATION 2-1
2.4 TASK COMMUNICATION 2-1
2.5 PRIORITY 2-2
2.6 TASK STATES 2-2
2.6.1 RUNNING TASK 2-2
2.6.2 READY TASK 2-2

2.6.3 WAITING TASK 2-2
2.7 MESSAGE QUEUING 2-3
2.7.1 SPECIFIED PRIORITY 2-3
2.7.2 TASK PRIORITY 2-3

i i

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

2 2.7.3 LIFO QUEUING 2-3
2.7.4 FIFO QUEUING 2-3
2.S THEORY OF OPERATION 2-4
2.S.1 OVERVIEW 2-4
2.S.2 CONTEXT SWITCHING 2-4
2.9 METHODS OF TASK COMMUNICATION 2-4
2.9.1 TRANSMITTI NG MBs 2-4
2.9.1.1 MSSN 2-4
2.9.1.2 MSRCV 2-4
2.9.1.3 MSRET 2-5
2.9.1.4 MSFWD 2-5
2.9.1.5 MSRES 2-5
2.9.1.6 MSCAN 2-5
2.9.1.7 MSFIND 2-5
2.9.2 EVENT POSTING 2-5
2.9.2.1 r",SWINT 2-5
2.9.2.2 MSPINT 2-5
2.10 REGISTER USAGE 2-6
2.11 STACK USAGE 2-6

3 DATA STRUCTURES
3.1 INTRODUCTION 3-1
3.2 TASK CONTROL BLOCK (TCB) 3-1
3.2.1 STRUCTURE 3-1
3.2.1.1 STAT 3-2
3.2.1.2 PRIO 3-3
3.2.1.3 LINK 3-3
3.2.1.4 MPTR 3-3

iii

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

3 3.2.1.5 SPTR 3-4
3.2.1.6 NAf't1E 3-4
3.3 MESSAGE BLOCK (MB) 3-5
3.3.1 STRUCTURE 3-5
3.3.1.1 STAT 3-6
3.3.1.2 PRIO 3-6
3.3.1.3 LINK 3-7
3.3.1.4 RPTR 3-7
3.3.1.5 SPTR 3-7
3.3.1.6 DATA 3-7

4 SYSTEM SERVICES
4.1 INTRODUCTION 4-1
4.1.1 OVERVI EW 4-1
4.2 M8SN - SEND MESSAGE 4-3
4.2.1 FORMAT 4-3
4.2.2 DESCRIPTION 4-3
4.3 M8SNW - SEND MESSAGE & WAIT 4-3
4.3.1 FOI{MAT 4-3
4.3.2 DESCRIPTION 4-3
4.4 M8RSN - RESEND MESSAGE 4-4
4.4.1 FORMAT 4-4
4.4.2 DESCRIPTION 4-4
4.5 M8RSNW - RESEND MESSAGE & WAIT 4-4
4.5.1 FORMAT 4-4
4.5.2 DESCRIPTION 4-4
4.6 M8RCV - RECEIVE MESSAGE 4-5

iv

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NU~lBER

4 4.6.1 FORMAT 4-5
4.6.2 DESCRIPTION 4-5
4.7 MBRCVW - RECEIVE MESSAGE & WAIT 4-5
4.7.1 FORMAT 4-5
4.7.2 DESCRIPTION 4-6
4.B MBFWO - FORWARD MESSAGE 4-6
4.B.1 FORMAT 4-6
4.8.2 DESCRIPTION 4-6
4.9 fVlBFWDW - FORWARD MESSAGE & WAIT 4-6
4.9.1 FORMAT 4-6
4.9.2 OESCR I PT ION 4-7
4.10 fV18R ET - R ETUR N ME S SA GE 4-7
4.10.1 FORMAT 4-7
4.10.2 DESCRI PTION 4-7
4.11 M8RETW - RETURN MESSAGE & WAIT 4-7
4.11.1 FORMAT 4-8
4.11.2 DESCRIPTION 4-8
4.12 ~i8CAN - CANCEL MESSAGE 4-8
4.12.1 FORMAT 4-8
4.12.2 DE SCR I PTI ON 4-8
4.13 M8FIND - FIND RECEIVER 4-9
4.13.1 FOR~1AT 4-9
4.13.2 DESCRI PTION 4-9
4.14 MBWINT - WAIT FOR INTERRUPT 4-9
4.14.1 FORMAT 4-10
4.14.2 DESCRIPTION 4-10
4.15 M8PINT - POST INTERRUPT 4-10
4.15.1 FORMAT 4-10
4.15.2 DESCRI PTION 4-10

SECTION
NUMBER

5

PARAGRAPH
NUMBER

5.1
5.2
5.2.1

5.2.2

5.2.3

5.2.4
5.3

5.3.1
5.3.2

5.3.3

5.4

5.4.1
5.4.2

5.4.3

5.4.4

5.4.5
5.4.6

5.5
5.5.1
5.5.2

TABLE OF CONTENTS

TITLE

USING THE SYSTEi"1 SERVICES
OVERVIEW
ESTABLISHING A TASK

DESCRIPTION
EXAMPLE A
EXAMPLE B
PROGRAMMING NOTES

CANCELLING A TASK
DESCRIPTION
EXAMPLE
PROGRAMMING NOTES

SENDING A MESSAGE
DESCRIPTION
EXAMPLE A
EXAMPLE B
EXAMPLE C
EXAMPLE D
PROGRAMMING NOTES

RECEIVING A MESSAGE
DESCRI PTION
EXAMPLE A

PAGE
NUMBER

5-1

5-1

5-1
5-1

5-2
5-2

5-3
5-3
5-3
5-3

5-4
5-4

5-4
5-4
5-5

5-5
5-5
5-6
5-6
5-6

v

vi

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

5 5.5.3 EXAMPLE B 5-6
5.5.4 PROGRAMMING NOTES 5-7
5.6 FORWARDING A MESSAGE. 5-7
5.6.1 DESCRIPTION 5-7
5.6.2 EXAMPLE 5-S
5.6.3 PROGRAMMING NOTES 5-S
5.7 CANCELLING A MESSAGE 5-9
5.7.1 DESCRIPTION 5-9
5.7.2 EXAMPLE 5-9
5.7.3 PROGRAMMING NOTES 5-9
5.S ISR PROCESSING 5-9
5.S.1 DESCRIPTION 5-9
5.S.2 EXAMPLE 5-10
5.S.3 PROGRAMMING NOTES 5-10

6 MITE-SO DEBUG
6.1 INTRODUCTION 6-1
6.2 SOFTWARE CONFIGURATION 6-1
6.3 COMMAND FORMATS 6-2
6.3.1 COMMAND IDENTIFIERS 6-4
6.3.2 COMMAND OPERANDS 6-5
6.3.3 COMMAND TERMINATORS 6 ... 10
6.4 DETAILED COMMAND DESCRIPTIONS 6-10
6.4.1 B COMMAND, BREAKPO INT COMr.'iAND 6-11
6.4.1.1 FORMATS 6-11
6.4.1.2 DESCRI PTION 6-11

vii

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

6 6.4.2 C COMMAND, COpy MEMORY BLOCKS 6-13

6.4.2.1 FORMAT 6-13

6.4.2.2 DESCRI PTION 6-13

6.4.2.3 EXAMPLES 6-13

6.4.3 D COMMAND, DISPLAY HISTORY TABLE 6-14

6.4.3.1 FORMATS 6-14

6.4.3.2 DESCRI PTION 6-14

6.4.3.3 EXAMPLE 6-15

6.4.4 E COMMAND, EXECUTE A USER'S PROGRAM 6-16

6.4.4.1 FORIVIATS 6-16

6.4.4.2 DESCRI PTION 6-16

6.4.4.3 EXAMPLES 6-16

6.4.5 F COMMAND, FILL MEMORY COMMAND 6-17

6.4.5.1 FORMAT 6.:.17

6.4.5.2 DESCR I PTI ON 6-17

6.4.5.3 EXAMPLES 6-18

6.4.6 H COMIVIAND, HEXADEC IMAL AR ITHMETIC 6-18

6.4.6.1 FORMAT 6-18

6.4.6.2 DESCRIPTION 6-18

6.4.6.3 EXAI\1PLES 6-18

6.4.7 J COMMAND, SNAP SHOT COMMAND 6-19

6.4.7.1 FORMATS 6-19

6.4.7.2 DESCRIPTION 6-19

6.4.7.3 EXAMPLE 6-19

6.4.8 K COMMAND, SERVICE BREAKPOINT COMMAND 6-21

6.4.8.1 FORMATS 6-21

6.4.8.2 OESCRI PTION 6-21

6.4.8.3 EXAMPLES 6-23

viii

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

6 6.4.9 L COMMAND. LOCATE 8 OR 16 BIT DATA PATTERN 6-24
6.4.9.1 FORMATS 6-24
6.4.9.2 DESCRI PTION 6-24
6.4.9.3 EXAMPLE 6-24
6.4.10 M COMMAND. DISPLAY AND UPDATE MEMORY 6-24
6.4.10.1 FORMAT 6-25
6.4.10.2 DESCRI PTION 6-25
6.4.10.3 EXAMPLE 6-25
6.4.11 M COMMAND. TABULATE MEMORY 6-26
6.4.11.1 FORMAT 6-26
6.4.11.2 DESCRI PTION 6-26
6.4.11.3 EXAMPLES 6-26
6.4.12 o COMMAND. SET OFFSET CONSTANT 6-27
6.4.12.1 FORMAT 6-27
6.4.12.2 DESCRI PTION 6-27
6.4.12.3 EXAMPLE 6-27
6.4.13 P COMMAND. DISPLAY AND/OR MODIFY PORTS 6-27
6.4.13.1 FORMAT 6-27
6.4.13.2 DESCRI PTION 6-27
6.4.13.3 EXAMPLE 6-28
6.4.14 Q COMMAND. QUIT 6-28
6.4.14.1 FORMAT 6-28
6.4.14.2 DESCRI PTION 6-28
6.4.14.3 EXAMPLE 6-28
6.4.15 R COMMAND. DISPLAY CPU REGISTERS 6-29
6.4.15.1 FORMATS 6-29
6.4.15.2 DESCRI PTION 6-29
6.4.15.3 EXAMPLES 6-29

ix

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

6 6.4.16 V COMMAND, VERIFY MEMORY 6-30
6.4.16.1 FORMAT 6-30
6.4.16.2 DESCRIPTION 6-30
6.4.16.3 EXAMPLES 6-30
6.4.17 W COMMAND, WALK THROUGH A PROGRAM 6-31
6.4.17.1 FORMAT 6-31
6.4.17.2 DE SCR I PTI ON 6-31
6.4.18 X COMMAND, DUPLICATE OUTPUT TO PRINTER DEVICE 6-32
6.4.18.1 FORMAT 6-32
6.4.18.2 DESCRIPTION 6-32
6.4.18.3 EXAMPLE 6-32
6.4.19 PROGRAMMING NOTES 6-33

7 7 CONFIGURATION REQUIREMENTS
7.1 OVERVIEW 7-1
7.2 MEMORY REQUIREMENTS 7-1
7.2.1 MITE-80 NUCLEUS 7-1
7.2.2 USER TASKS 7-1
7.2.3 UTILITIES 7-2
7.2.4 DEVICE DRIVERS 7-2
7.2.5 TASK CONTROL BLOCK 7-2
7.2.6 MESSAGE BLOCK 7-2
7.2.7 STACK 7-3
7.3 TCB MACROS 7-3
7.3.1 MTCB MACRO 7-3
7.3.1.1 FORMAT 7-3
7.3.1.2 EXAMPLE A 7-4

x

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

7 7.3.1.3 EXAMPLE B 7-5
7.3.1.4 PROGRAMMING NOTES 7-5
7.3.2 ETCB MACRO 7-6
7.3.2.1 FORMAT 7-6
7.3.2.2 EXAMPLE A 7-7
7.3.2.3 EXAMPLE B 7-7

7.4 TASK INSTALLATION 7-8
7.5 STACK INSTALLATION 7-8
7.5.1 EXAMPLE 7-10

7.5.2 PROGRAMMING NOTES 7-10

8 MEMORY POOL ~~NAGER
8.1 INTRODUCTION 8-1
8.1.1 FEATURES 8-1
8.1.2 SOFTWARE CONFIGURATION 8-1
8.1.3 POOL CONFIGURATION 8-2
8.2 CALLING CONVENTIONS 8-3
8.3 M8MMAL - ALLOCATE MEMORY 8-3
8.3.1 FORMAT 8-3
8.3.2 DESCRIPTION 8-3
8.3.3 EXAMPLE A 8-4
8.3.4 EXAMPLE B 8-4
8.3.5 PROGRAMMING NOTES 8-4
8.4 M8MMDE - DEALLOCATE MEMORY 8-5
8.4.1 FORMAT 8-5
8.4.2 DESCRIPTION 8-5
8.4.3 EXAMPLE A 8-5
8.4.4 PROGRAMMING NOTES 8-6

xi

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

8 8.5 M8POOL - MACRO 8-6
8.5.1 FORMAT 8-6
8.5.2 DESCRIPTION 8-6
8.5.3 EXAMPLE A 8-7
8.5.4 EXAMPLES B 8-7
8.6 POOL CONSTRUCTION 8-8

9 TIMER HANDLER
9.1 INTRODUCTION 9-1
9.1.1 FEATURES 9-1
9.1.2 SOFTWARE CONFIGURATION 9-1
9.1.3 MEMORY 9-2
9.2 CALLING CONVENTIONS 9-2
9.2.1 TIMER MESSAGE BLOCK 9-2
9.2.1.1 STAT 9-3
9.2.1.2 PRIO 9-3
9.2.1.3 LINK 9-4
9.2.1.4 RPTR 9-4
9.2.1.5 SPTR 9-4
9.2.1.6 RQST 9-4
9.2.1.7 PERO 9-5
9.3 USING THE TIMER 9-5
9.3.1 FORMAT 9-5
9.3.2 DESCRIPTION 9-6
9.3.3 EXAMPLE 9-6
9.4 MTHTCB MACRO 9-7
9.4.1 FORMAT 9-7
9.4.2 DESCR I PTI ON 9-8

xii

SECTION
NUMBER

10

APPENDI X A

PARAGRAPH
NUMBER

9.4.3
9.4.4
9.5
9.5.1
9.5.2
9.6
9.7

10.1
10.2
10.2.1
10.2.1.1
10.2.2
10.2.2.1
10.2.3
10.2.3.1
10.2.3.2
10.3
10.3.1
10.3.2
10.4
10.4.1
10.4.2
10.5
10.5.1

TABLE OF CONTENTS

TITLE

EXAMPLE A
EXAMPLE B

ETHTCB MACRO
FORMAT
DESCRIPTION

INSTALLATION
PROGRAMMING NOTES

MITE-80 SYSTEM FILES
INTRODUCTION
FILE LIST

TCB QUEUE HEADER-M8TCBQ.OBJ
USING M8TCBQ.OBJ
LINKER MODULE-M80LNK.OBJ
USING M80LNK.OBJ
SYSTEM EQUATES-M80SYS.EQU
USING M80SYS.EQU
EXAMPLE

SYSTEM MACROS-M80SYS.MAC
USING M80SYS.MAC
EXAMPLE

SYSTEM EXECUTABLE MACROS-~180ESY • MAC
USING M80ESY.MAC
EXAMPLE

MITE-SO DEBUG-M80DDT.BIN[X]
EXAMPLE

MITE-80 SYSTEM EQUATES

PAGE
NUMBER

9-8
9-9
9-9
9-9
9-10
9-11
9-11

10-1
10-1
10-1
10-2
10-2
10-2
10-2
10-3
10-3
10-3
10-3
10-4
10-4
10-4
10-4
10-5
10-5

TABLE
NO.

6-1
6-2

LIST OF TABLES

TITLE

MNEMONICS RECOGNIZED BY MITE-80 DEBUG
MITE-80 SERVICE CALL LABELS RECOGNIZED BY

MITE-80 DEBUG

xiii

PAGE
NO.

6-8

6-9

1-1

SECTION 1

GENERAL DESCRIPTION

1.1 INTRODUCTION

MITE-80 is the MOSTEK Multiple Independent Task Executive Z80 software package. It
provides the basic services for managing the CPU's resources in an orderly
fashion. MITE-80 accommodates MDX applications requiring real-time multiple
asynchronous event handling.

1.1.1 FEATURES
The highlighted features of MITE-80 are:

Simplistic data structures.
Fast context switching between tasks.
Up to 127 priority levels for task execution.
Message queuing by several options.
Handles unlimited number of tasks.
Accommodates interrupt driven device handlers.
Can be stored in RAM, EPROM, and/or ROM.
A DEBUG version for assistance in application development.
Memory Pool Manager and Timer Handler.

1.1.2 SOFTWARE CONFIGURATION
MITE-80 is designed to work with the following minimum hardware:

MOSTEK MDX-CPU CARD.

MITE-80 DEBUG is designed to work with either a MOSTEK Development System having a
FLP-80DOS software package or an MDX Card system having a FLP-80DOS/MDX software
package. Refer to the FLP-80DOS/MDX Operation Manual for the MDX Cards required.

1-2

1.2 REFERENCE DOCUMENTS

FLP-80 DOS Operation Manual
FLP-80 DOS Operation Manual
MDX-CPUI Operation Manual
Micro Components Data Book

1.3 DEFINITION OF SYMBOLS USED IN THIS MANUAL

MK79668
MK78557
MK79612
MK79801

The following conventions are used throughout this manual:

1. Most hexadecimal numbers are identified by the character
IH' following the hexadecimal numbers.

2. aaaa indicates any hexadecimal number.

3. <CR) Stands for "carri age ret urn".

4. All user input is underlined.

1.4 PRODUCT OVERVIEW

The MITE-80 software package is provided on a floppy diskette in IBM 3740 single
density format. The files can be read using a MOSTEK FLP-80DOS system software
package. The MITE-80 software package contains the following files:

MITE-80
MITE-80 DEBUG
MITE-80 MACROS
MITE-80 EQUATES
TIMER HANDLER
MEMORY POOL MANAGER
MITE-80 SYSTEM LINKAGES

A brief overview of each file follows:

1-3

1.4.1 MITE-80

The MITE-80 program is the multi-tasking nucleus which provides the capability for

controlling multiple real-time tasks. In providing this control MITE-80 uses two

data structures; a Task Control Block and a Message Block. User tasks communicate

with each other through MITE-80 by a series of system services.

1.4.2 MITE-80 DEBUG

The MITE-80 DEBUG program provides the facil ity for interactively debugging Z80

programs executing under MITE-80. The various commands allow for displaying and

modifying memory and CPU registers, for executing programs, for setting break

points on tasks and services, and for displaying Task Control Block and Message

Block contents. MITE-80 DEBUG includes a special version of ~lITE-80 which con

tains loopdetect logic and certain integrity checks.

1.4.3 MITE-80 MACROS

A macro file is provided to aid the user in defining and developing MITE-80 Task

Control Blocks (TCB) and memory pools. The macros create a TCB from user

specified parameters. The macros will also generate code which will install the

TCB into the MITE-80 system.

1.4.4 MITE-80 EQUATES

An equate file is provided to facilitate using MITE-80. The file includes globals

for all of the MITE-80 system entry points and data structures and defines the

entries in each data structure.

1.4.5 MITE-80 TIMER HANDLER

A Timer Handler is provided for control over the MK3882 Counter Timer Circuit

(CTC) Chip. The timer can be used for applications requiring event time delays or

for event watchdog alerts. The timer executes as a MITE-80 task. A maximum time

duration of 13.9 minutes in increments of 12.8 milliseconds is provided. The time

increment is a user-configurable parameter.

1.4.6 MITE-80 MEMORY POOL MANAGER

A Memory Pool Manager is provided as a way to allocate and deallocate memory

blocks. The user can configure an area of memory into up to 252 memory pools,

1-4

with each pool consi sti ng of a uni que memory block si ze. A macro is provided to

aid the user in configuring the pools.

1.4.7 MITE-80 SYSTEM LINKAGES

A system 1 inkage file is provided which contains 1 inkage addresses for the debug

version of MITE-80. The user can link unique application programs to MITE-80DEBUG

with this file.

1.5 DOCUMENT FORMAT

The following sections detail the areas of functional description, data

structures, system services, configuration requirements, and debug usage.

2-1

SECTION 2

FUNCTIONAL DESCRIPTION

2.1 OVERVI EW

This section provides an operational overview of MITE-80.

2.2 TASK IDENTIFICATION

An application is divided into modules, with each module being a defined

processing chore. Each module can be identified as a task within MITE-80. All

the tasks share memory and coolpete for the CPU's processing time. MITE-80

allocates the CPU's time based on infonnation provided about each task. Each task

is uniquely identified by a Task Control Block (TCB). The TCB contains task

infonnation of status, priority, 1 ink to next TCB, message queue pointer, stack

pointer, and a task name.

2.3 MESSAGE IDENTIFICATION

Each task is a defined process which may produce intermediate and/or final results

required by other tasks. The means by which this data is moved throughout MITE-SO

is with a Message Block (MB). An r~B is used to pass data to another task or to

request service of another task. Each MB is constructed by the task that needs to

send infonnation to another task. MITE-80 passes these messages from task to task

based on information provided in the MB and in the service call. The MB contains

message i nformat ion of status, priori ty, queui ng, sending task identfficat ion,

receiving task identification, and any optional data that the sending task may

need to provide the receiving task.

2.4 TASK COMMUNICATION

All inter-task cornmunicat ion is perfonned by a message block. These message

blocks are used to pass results to another task, to initiate dn I/O request, to

create a task, and for any other user-to-user or user-to-system communicat ion.

MITE-80 provides several system services which the user can use within each task

2-2

for cOlTlllunicating between tasks. The services include the facilities to send,

receive, forward, return, wait for, and cancel messages.

2.5 PRIORITY

A priority field is part of both the TCB and MB data structures. MITE-80 uses

these priority fields to determine the order of processing importance. The TCB's

priority defines the task's level of execution. The MB's priority defines the

message's level of importance in a message queue. The priority value ranges from

a to 126, with a being the highest priority and 126 being the lowest priority.

Task priority 1 evel s a thru 15 are normally reserved for system tasks but may be

used by high priority user tasks. Each TCB can be assigned a different priority

level and any number of TeBs can have the same priority level. The determination

of a TCB's priority is dependent on the application requirement's urgency to

process the task. Each MB can be assigned a different priority level and any

number of MBs can have the same priority level. The determination of an MB's

priority is dependent on the appl ication ' s requirement. In most cases the MS ' s

priority level will be identical to the sending task's TCB priority level.

2.6 TASK STATES

A task can be in anyone of three possible states; running, waiting, or ready. At

any instant of time there is only one task running; all other tasks are either

waiting or ready.

2.6.1 RUNNING TASK

The running task is the task currently using the CPUls resources. The running

task was the current highest priority ready task.

2.6.2 READY TASK

A ready task is a task that would be running, but is not because a higher priority

task is running. Each ready task must become the current highest priority ready

task before MITE-80 will re-allocate the CPUls resources to it.

2.6.3 WAITING TASK

A waiting task is a task that has requested a system service and has specified

2-3

the "wait" option. When the event has satisfied the wait options the waiting task

then becomes a ready task.

2.7 MESSAGE QUEUING

The queuing of MB's by MITE-80 is accomplished by two algorithms; message priority

and queue type. The priority and the queue type each have two user-specifiable

options. For the prioritys either specified priority or task priority can be

used. And for queue types either LIFO or FIFO can be used. Both the priority and

queue type option are specified in the MB by the task prior to calling a MITE-80

service.

2.7.1 SPECIFIED PRIORITY

A specified priority is a priority level specified by the MB's issuing task. The

specified priority can be any priority level of 0 to 126. The higher the priority

level (the lower the numberL the higher the ~IB will be placed in the receiving

task's message queue.

2.7.2 TASK PRIORITY

A task priority is a priority level specified by MITE-80 when the MBs with a

priority of 127, is issued by the task. MITE-80 will take the issuing task's TCB

priority value and place it in the MB's priority field. The MB's priority level

will then be the same as the issuing task's priority. This feature is only valid

for the Send fv'.essage services.

2.7.3 LIFO QUEUING

LIFO is a Last-In-First-Out queuing concept. The MB is placed at the top of all

fvlB's having the same priority level within the MB's receiving task message queue.

2.7.4 FIFO QUEUING

FIFO is a First-In-First-Out queuing concept. The MB is placed at the bottom of

all MB's having the same priority level within the MB's receiving task message

queue.

2-4

2.S THEORY OF OPERATION

2.S.1 OVERVIEW

MITE-SO determines which task gets current use of the CPU resources based on

infonnation contained in each of the TCBs within the system. The task whose TCB

identifies it as in a ready state and is the current highest priority task will be

the running task.

2.S.2 CONTEXT SWITCHING

Whenever an external event happens or whenever an MB is processed by a f'iIITE-SO

service, MITE-SO will re-evaluate which task should be the running task. If it is

determined that the running task is still the highest priority ready task, the CPU

resources are returned to the running task to continue processing. If it is

determi ned that a hi gher pri ority task is now a ready task, the lower pri ority

running task will become ready. The higher priority ready task will then become

the running task. This task switching is known as context switching. Whenever

context swi tchi ng occurs, MITE-SO performs a CPU reg; ster image save and restore

operation. The running task's appropriate main or full Z-SO registers are all

pushed onto its stack. The ready task's stack is popped to restore its task's

Z-80 registers. MITE-SO then gives the CPU resources to the higher priority ready

task which then becomes the new running task.

2.9 METHODS OF TASK COMMUNICATION

Communication between tasks can occur either by the transmitting of MBs or by the

posting of an interrupt event.

2.9.1 TRANSMITTING MBs

MITE-SO provides several services which are task call able and allow for the

transmitting of an MB between tasks; MSSN, MSRCV, MSRET, MSFWD and MSCAN.

2.9.1.1 MSS N

This service is a Send Message service which allows a task to send an MB to

another task.

2.9.1. 2 MSRCV

Thi s service is a Receive Message service which allows a task to receive an MB

2-5

from its MB queue.

2.9.1. 3 M8RET
This service is a Return Message service which allows a task that has received an
MB to return that MB to the sending task.

2.9. 1. 4 M8FWD
This service is a Forward Message service which allows a Task to send an fYiB to
another task without altering the MB's sender and receiver pointers.

2.9.1. 5 M8RSN
This service is a Resend Message service which allows a task which has previously
sent a message to a task to resend that message with a minimum of overhead.

2.9.1. 6 M8CAN
This service is a Cancel Message service which allows a task that has previously
sent an MB to now cancel, or kill, that MB in the receiving task's MB queue.

2.9. 1. 7 M8F IN 0
This service is a Find fvlessage service which allows a task to find another task
given the other task ' s name~.

Further information on these and other MITE-80 services is outlined in Section 4,
System Serv ices.

2.9.2 EVENT POSTING
MITE-80 provides a service for the waiting and posting of interrupt events; M8WINT
and M8PI NT.

2.9.2.1 M8WINT
This service is a Wait for Interrupt service which allows a device driver to
create a wait until interrupt process is complete. The task will become a waiting
task.

2.9.2.2 M8PINT
This service is a Post after Interrupt service which allows an Interrupt Service

2-6

Routine or another task to post an interrupt process canpletion state. The

waiting task will becane a ready task.

2.10 REGISTER USAGE

A task can use all of the Z-80 registers or only the main set consisting of PC.

SP. A. B. C. D. E. F. H. L. IX. and IY. The task1s TCB contains a register usage

designation. When a context switch is required of this task. MITE-80 will PUSH or

POP the appropriate registers as specified in the task1s TCB.

2.11 STACK USAGE

Each task has its own stack. When a task becomes a running task. MITE-80 will POP

the task1s specified registers off the task1s stack before CPU control is given to

the task. When the task transitions to a wait or ready state. MITE-80 will PUSH

the task IS speci fi ed regi sters onto the task I s stack before the next task is

allowed to run. Each task must allocate a stack area sufficient for its unique

task requi rements (e.g. routine nest i ng level s) and task regi sters used.

3-1

SECTION 3

DATA STRUCTURES

3.1 INTRODUCTION

This section defines the MITE-80 data structures of Task Control Block and Message
Block.

3.2 TASK CONTROL BLOCK (TCB)

The Task Control Block contains the task state information required by MITE-80 in
order to make resource allocation decisions. Each task within the system must
have its own TCB. The TCB is 10 bytes in length.

3.2.1 STRUCTURE
The TCB's information is structured as:

Field # of
Bytes Offset Name Field Data Type Source

1 1 0 STAT Task status Bit encoded User/MITE-80

2 1 1 PRIO Task priority Binary User

3 2 2 LINK Next TCB Binary MITE-80
address

4 2 4 MPTR Message Binary MITE-80
pointer

5 2 6 SPTR Stack pointer Binary User

6 2 8 NAME Name of task Binary or User
ASCII

3-2

Each of these fields is further defined as follows:

3.2.1.1 STAT
The Status byte (STAT) contains infonnation which indicates task state, register
usage, and task's message state. The byte is user specified and is bit encoded as
foll ows:

Bit Name Bit

WAIT 7

IWAT 6

5

INTQ 4

DBUG 3

MROB 2

MHBS 1

TCBB o

Definition

U = if task not waiting for message

1 = if task is waiting for message

o = if task not waiting for an interrupt event
1 = if task is waiting for an interrupt event

0, reserved for future use

o = no interrupt has been posted since last
M8WINT call

1 = interrupt has been posted since last
M8WINT call

o = task running normally
1 = task currently being debugyed

o = if task uses all registers
1 = if task uses only main register set

o = if message not sent yet
1 = if message sent but task has not yet run

o = if this is not a TCB
1 = if this is a TCB

3-3

3.2.1.2 PRIO

The Priority byte (PRIO) contains information which determines where in the TCB

queue this TCB is to be placed. The byte is user specified. The priority of an

active task should NEVER be modified. If the priority of an active task must be

changed, then the task should be cancelled and re-created. Priority level a is

reserved for MITE-80 system use and must NOT be speci fi ed in user tasks. User

tasks can have priority level assignments from a to 126 inclusive. The priority

byte is bit encoded as follows:

Bit Definition

7-1 OOH = pri ority 1 evel of a
to

FCH = priority level of 126

a 1 = always set for TCB

3.2.1.3 LINK

The Link word (LINK) is used by MITE-80 to implement a singly linked list of all

TCBs within the TCB queue. The terminator for the list is a null TCB with a

pri ority of 127. The null TCB is 1 inked into the TCB queue by MITE-80 when the

TCB queue is created. The null TCB is provided by MITE-80. The Link word's

contents are maintained by MITE-80.

3.2.1.4 MPTR

The Message Pointer word (MPTR) is a message list head. All messages sent to this

TCB are 1 inked to thi s message 1 i st. All messages to be processed (recei ve

message) by this TCB are delinked from this message list, one MB at a time. The

message pointer is initialized to point to a null message block at task creation

time by MITE-80. The null message block is provided by MITE-80. The message

pointer word's contents are maintained by MITE-80.

3-4

3 • 2. 1. 5 S PTR

The Stack Poi nter word (SPTR) is a pointer to the task I s stack area. IVIITE-80 uses

the task's stack to maintain the context of the task. Whenever a context switch

occurs~ the task registers (including the program counter) are saved on the stack

and the Stack Pointer is saved in the TCB's SPTR field. The task registers are

retrieved from the stack when the task regains control of the CPU resources. When

a task is created~ it is the user's responsibility to set-up the TCB~ initialize

the registers on the stack~ and provide sufficient stack space for the new task.
Macros have been provided with the MITE-80 package to fac il i tate setting up the

TCB and stack.

The task registers are popped from the stack in the following order; HL'~ DE'~

BC ' ~ AF' ~ IY~ HL~ DE~ BC~ AF~ IX~ PC. If the task status byte (STAT) indicates

task register usage of IIMain Registers Onlyll (MROB bit = l)~ then the HL' through

AF' registers are not popped from the stack. MITE-80 assumes that these registers

do not exist on the stack. Thi s option saves 8 bytes of stack space and reduces

system 1 atency.

3 • 2. 1. 6 NAME

The task Name word (NAME) is used to identify the task. The task name can range

from OH to FFFFH. Si nce ASCII characters are i ncl uded within thi s range ~ the

following allocation of task names is recommended:

Range (HEX) Allocate For

0000 - IFFF User binary task names

2000 - 7FFF ASCII task names~ both user and

system task names (e.g. LP

for Line Printer)

8000 - FFFF User binary task names

3-5

The task name is specified by the user for each user task. For binary task names,
byte 8 is the least significant byte of task name and byte 9 is the most
significant byte of task name. For ASCII task names, byte 8 is the first
character of task name and byte 9 is the second character of task name.

3.3 MESSAGE BLOCK (MB)

The Message Block contains message identity information required by MITE-80 in
order to route the MB from the issuing task to the recipient task. Each message
transmitted within the system must have its own MB. The MB is 8 bytes in length
with optional user data expanding its length as necessary to fulfill user
application requirements.

3.3.1 STRUCTURE
The MB's information is structured as follows:

Fi el d # of

Bytes Offset Name Fi el d Data Type Source

1 1 0 STAT Message status User defined User

2 1 1 PRIO Message Bit encoded User *
priority

3 2 2 LINK Next MB address Binary MITE-80

4 2 4 RPTR Receiver Bi nary MITE-80
pointer

5 2 6 SPTR Sender pointer Binary User *

6 N 8 DATA Data User defined User

* denotes fields for which the user may request MITE-80 to supply the value.

3-6

Each of these fields is further defined as follows:

3.3.1.1 STAT

The Status byte (STAT) is used by the recelvlng task to inform the sending task

information about how the message was handled. This byte is defined by the user.

The byte can be used for process status results, error cond it ions, message number

tagging, or for any use required by the application.

3.3 • 1. 2 PR I 0

The Priority byte {PRIO} contains information which determines where in the

receiving task's message queue the sending task's MB is to be placed. The byte is

user specified, but the call ing task may request MITE-80 to insert a priority

value. The byte contains a priority value and a queuing directive. The priority

value can be assigned a level 0 to 127, and the queuing can be either LIFO or

FIFO. The priority byte is bit encoded as follows:

Bit Name Bit Definiton

-------- ---------
PRIO 7-1 OOH = priority 1 evel of a

to

FCH = priority 1 evel of 126

FEH = indicates to MITE-80 to replace this

value with sending task's TCB

priority level.

FIFO a 0 = LIFO queue at PRIO val ue in

message list

1 = FIFO queue at PRIO val ue in

message list

NOTE: On LIFO queue, MITE-80, sets the bit after the LIFO queuing operation. A

send ing task priority of 127 (FEH) can onl y be specifi ed when usi ng a M8SN[W]

Service.

3-7

3.3.1.3 LINK

The Link word (LINK) is used by MITE-80 to implement a singly linked list of all

MB's within the MB queue. The terminator for the list is a null MB with a

priority of 127. The null MB is linked onto the MB queue by IVIITE-80 when the MI3

queue is created. The null MB is provided by MITE-80. The 1 ink word I s contents

are maintained by MITE-80.

3.3.1.4 RPTR

The Receiver Pointer word (RPTR) is set to the address of the receiving task ' s TeB

by MITE-80 when the message is sent by the M8SN or M8SNW. The field is used by

the l"18RSN and M8RSNW to determine the task to which a message is to be re-sent.

3 • 3 • 1. 5 S PTR

The Sender Poi nter word (SPTR) is used by MITE-80 for deterrni ni ng to whi ch task

the MB is to be returned. The word is user specified, but the call ing task may

request MITE-80 to insert the calling task's TeB address in this field. The user

can specify this word to return the MB to the sending task or to a different task.

If the word is zero when a M8SN or M8SNW service is called, MITE-80 will insert

the sending task's TeB address into this field.

3 • 3 • 1. 6 DATA

The Data bytes (DATA) are used for transmitting user information between tasks.

The Data bytes are all user s pecifi ed and are not affected by MITE-80. The DATA

field can be used for passing process directives, process results, I/O vector

information, error codes, data blocks, or any user application requirement.

4-1

SECTION 4

SYSTEM SERVICES

4.1 INTRODUCTION

This section describes the MITE-80 Services callable from a user task.

4.1.1 OVERVIEW
The Services provided allow a user to perform the following:

A. Send and Receive message blocks.
B. Forward message blocks.
C. Return message blocks.
D. Cancel message blocks.
E. Find task control blocks.
F. Interrupt control handling.
G. Create and Cancel tasks.

4-2

The following table summarizes the Services:

SERVICE

M8SN

M8SNW

M8RSN

M8RSNW

M8RCV

M8RCVW

M8FWD

M8FWDW

M8RET

M8RETW

M8CAN

M8FIND

M8WINT

M8PINT

DESCRIPTION

Send a message to a task.

Send a message to a task and wait for a message to be
available for the sending task.

Resend a message to a task.

Resend a message to a task and wait for a message to
be available for the sending task.

Receive a message if one is available for calling
task.

Receive a message, otherwise wait till one is avail
able for calling task.

Forward a message to a task.

Forward a message to a task and wait for a message to
be available for the forwarding task.

Return a message to the sending task.

Return a message to the sending task and wait till a
message is available for calling task.

Cancel a message sent to a task.

Find the receiver address of the specified task name.

Wait for an interrupt event to be posted.

Post an interrupt event which is completed.

4-3

4.2 M8SN - SEND MESSAGE

4.2.1 FORMAT
The calling sequence is:

LD DE~<message receiver address>
LD BC~<message block address>
CALL M8SN

4.2.2 DESCRIPTION
The M8SN Service will send an MB to a task and return to the calling task.
Registers BC must contain the address of the MB to be sent~ and registers DE must
contain the address of the receiving task's TCB. The contents of registers DE are
loaded into the MB's RPTR field by the M8SN Service. The contents of the BC
registers are loaded into the SPTR field of the message if the SPTR field contains
a zero. CPU control will be immediately returned to the calling task if the task
is still the highest priority task ready to run. This service is al so used to
install a task into the system by having registers DE contain the fvlITE-BO TCB
queue address (M8TCBQ) and regi sters BC contain the "to be install ed" task's TCB
address.

4.3 M8SNW - SEND MESSAGE & WAIT

4.3.1 FORMAT
The calling sequence is:

LD DE~<message receiver address>
LD BC~<message block address>
CALL M8SNW

The Service will return:

HL = <message block address>

4.3.2 DESCRIPTION

The M8SNW Service will send an MB to a task and return to the calling task when an
MB is available. Registers BC must contain the address of the MB to be sent~ and
registers DE must contain the address of the receiving task's TCB. The contents

4-4

of registers DE are loaded into the MB's RPTR field by the M8SN Service. The

contents of the BC registers are loaded into the SPTR field of the message if the

SPTR field contains a zero. CPU control will be returned to the calling task only

when an MB is available for the calling task. On return, registers HL will

contain the address of the MB to process. This service is equivalent to an M8SN

followed by a M8RCVW.

4.4 M8RSN - RESEND MESSAGE

4.4.1 FORMAT

The calling sequence is:

LD BC,<message block address>

CALL M8RSN

4.4.2 DESCRIPTION

The M8RSN Service will resend an MB to a task and immediately return to the

calling task. The ~1B to be resent is an MB that has its RPTR correctly specified.

Regi sters BC must contai n the address of the MB to be resent. Thi s Service is

similar to M8SN except that this Service uses the contents of the RPTR field of

the MB as the receiving task address. CPU control will be iITlTlediately returned

to the calling task if the task is still the highest priority task ready to run.

4.5 M8RSNW - RESEND MESSAGE & WAIT

4.5.1 FORMAT

The calling sequence is:

LO BC,<message block address>

CALL 1~8RSNW

The Service will return:

HL = <message block address>

4.5.2 DESCRIPTION

The M8RSNW Service will resend an MB to a task and return to the calling task

4-5

when an MB is available. The MB to be resent is an MB that has its RPTR correctly
specified. Registers BC must contain the address of the MB to be resent. This
Service is similar to M8SNW except that this Service uses the contents of the RPTR
field of the MB as the receiving task address. CPU control will be returned to
the calling task only when an MB is available for the calling task. On return~

registers HL will contain the address of the MB to process. This service is
equivalent to a M8RSN followed by a M8RCVW.

4.6 M8RCV - RECEIVE MESSAGE

4.6.1 FORMAT
The calling sequence is:

CALL M8RCV

The Service will return:

HL = <message block address> or OOOOH
Z Flag = set if no message received or~

reset if a message received

4.6.2 DESCRIPTION
The M8RCV Service will get the next MB~ if one is avai1able~ for this task to
process and immediately return to the calling task. If an MB is available for the
calling task~ the Service will provide the MBls address; otherwise~ an indication
of no MBls available is given. CPU control will be returned to the calling task.
On return~ registers HL will contain either the address of the next MB to process
or zeroes if no MBls are available. The Zero Flag will be reset if an MB is
received; otherwise~ the flag will be set.

4.7 M8RCVW - RECEIVE MESSAGE & WAIT

4.7.1 FORMAT
The calling sequence is:

CALL M8RCVW

4-6

The Service will return:

HL = <message block address>

4.7.2 DESCRIPTION

The M8RCVW Service will return to the calling task only when an MB is available

for the task. On ret urn, regi sters HL contain the address of the MB to be

processed. If no MB exists for the calling task, CPU control is given to the next

highest priority ready task.

4.8 M8FWD - FORWARD MESSAGE

4.8.1 FORMAT

The calling sequence is:

LD DE,<message receiver address>

LD BC,<message block address>

CALL M8FWD

4.8.2 DESCRIPTION

The ~18FWD Service will forward an MB to a task and return to the call ing task. The

difference between M8FWD and M8SN is that M8FWD leaves the MB intact and does not

use or affect the ~1B's RPTR field. Registers BC must contain the address of the

MB to be forwarded, and registers DE must contain the address of the receiving

task's TCB, that is the lito be forwarded to" task. CPU control will be

immediately returned to the calling task if the task is still the highest priority

task ready to run. This Service is used to forward a receiver MB on to another

task without altering the MB being forwarded. Note that neither the RPTR or SPTR

fields are affected by this service.

4.9 M8FWDW - FORWARD MESSAGE & WAIT

4.9.1 FORMAT

The calling sequence is:

LD DE,<message receiver address>

LD BC,<message block address>

CALL M8FWDW

4-7

The Service will return:

HL = <message block address>

4.9.2 DESCRIPTION

The M8FWDW Service will forward an MB to a task and return to the call ing task

when an MB is available. The difference between M8FWDW and M8SNW is that M8FWDW

leaves the MB intact and does not use the MB's RPTR field. Registers BC must

contain the address of the MB to be forwarded, and registers DE must contain the

address of the receiving task's TCB, that is the lito be forwarded to" task. CPU

control will be returned to the calling task only when an MB is available for the

calling task. On return, registers HL will contain the address of the MB to

process. This Service is used to forward a received MB on to another task without

the MB being altered. Thi s serv ice is equi val ent to an MBFWD followed by a

M8RCVW. Note that neither the RPTR or SPTR fields are affected by this service.

4.10 M8RET - RETURN MESSAGE

4.10.1 FORMAT

The calling sequence is:

LD BC,<message block address>

CALL M8RET

4.10.2 DESCRIPTION

The M8RET Service will return a received MB to the sending task. The Service is

normally used by a task that has received a MB, and has to return the MB to the

sender task. Registers BC must contain the address of the MB to be returned. CPU

control will return to the call ing task if it is still the highest priority ready

·task. Note that neither the RPTR or SPTR fields are affected by this service.

4.11 M8RETW - RETURN MESSAGE & WAIT

4-8

4.11.1 FORMAT

The calling sequence is:
LD BC,<message block address>
CALL M8RETW

The Service will return:
HL = <message block address>

4.11.2 DESCRIPTION
The M8RETW Service will return a received MB to the sending task and will get the
next MB, if available, for the calling task. This Service is nonnally used by a
task that has received an MB (either by M8RCV or M8RCVW), has processed the MB,
has to return the MB to the sender task, and needs to receive the next foilB to
process. Regi sters BC must conta i n the address of the MB to be returned. On
return, registers HL contain the address of the next MB to be processed. If no MB
exists for the calling task, CPU control is given to the next highest priority
ready task. This Service is equivalent to M8RET followed by a M8RCVW. Note that
neither the RPTR or SPTR fields are affected by this service.

4.12 M8CAN - CANCEL MESSAGE

4.12.1 FORMAT
The calling sequence is:

LD DE,<message receiver address>
LD BC,<message block address>
CALL M8CAN

The Service will return:

HL = <message block address> or OOOOH
Z Flag = reset if service successful, or set if

unsuccessful

4.12.2 DESCRIPTION
The M8CAN Service will cancel an MB from a task I s MB queue. Regi sters BC must

4-9

contain the address of the MB to be cancelled, and registers DE must contain the
address of the receiver's TCB. On return if the MB is canc~led, registers HL
will contain the address of the cancell ed MB and the Zero Fl ag will be reset.
Otherwise, if the MB is not cancelled, registers HL will be zeroed and the Zero
Flag will be set. An unsuccessful cancel of an MB is a result of the MB not being
on the specified receiver's task MB queue.

This service can also be used for cancelling a task from the system by having
regi sters DE conta in the MITE-80 TCB queue address and by havi ng regi sters BC
contain the TCB address of the task to be cancelled.

4.13 M8FIND - FIND RECEIVER

4.13.1 FORf4AT
The calling sequence is:

LD DE,<queue header>
LD BC,<name of entry>
CALL M8FIND

The Service will return:

HL = <receiver TCB address>, or OOOOH
Z Flag = reset if service successful, set if unsuccessful

4.13.2 DESCRIPTION
The M8FIND Service will search a queue for a match to an entry name and return the
address of entry if found. Regi sters DE must contai n the address of the queue
header to be searched, and registers BC must contain the entry name to be searched
for. On return, registers HL will contain the address of the entry narne's TCB and
the Zero Fl ag will be reset. Otherwi se, if the search is unsuccessful, regi sters
HL will be zeroed and the Zero Flag will be set. This Service is used to find the
address of a receiving task.

4.14 M8WINT - WAIT FOR INTERRUPT

4-10

4.14.1 FORMAT
The calling sequence is:

CALL M8WINT

4.14.2 DESCRIPTION
The M8WINT Service is for use by device driver tasks. The driver task conditions
the device's Interrupt Service Routine (ISR) to interrupt when the current oper
ation is complete: for example, at end of block, or on carriage return character
detection. The driver calls this Service which will place this task in an inter
rupt wait state until the ISR posts a complete status (see M8PINT Service). This
service will return immediately if an ISR has already posted the calling task's
interrupt bit (INTQ).

4.15 M8PINT - POST INTERRUPT

4.15.1 FORMAT
The calling sequence is:

PUSH PC
PUSH IX
PUSH AF
PUSH BC
PUSH DE
PUSH HL
LD IX, <address of TCB to post)
JP M8PINT

4-11

4.15.2 DESCRIPTION
The M8PINT Service is for use by Interrupt Service Routines (ISR). This Service
is the compl ement to M8WINT Serv ice. When an ISR campl etes the requested oper
ation the ISR will normally jump to the MBPINT Service. The M8PINT service will
save the task's IV register contents on the task's stacks. M8PINT issues a RETI
for the ISR at operation completion time.

5-1

SECTION 5

USING THE SYSTEM SERVICES

5.1 OVERVIEW

This section provides information and examples on how to use the various MITE-80
system services. The areas covered include:

A. Establishing and Cancelling a Task.

B. Sending and Receiving MBs.

C. Tasks waiting states.

D. ISR processing.

5.2 ESTABLISHING A TASK

5.2.1 DESCRIPTION

To establ i sh a task into the system a TCB must fi rst be created. Thi sis

accompl i shed by either constructi ng one in RAM, or by transferri ng a
pre-constructed one in ROM to RAM. The TCB1s address is then sent to the MITE-80

TCB queue and is then placed in the TCB queue at the specified priority level.

5.2.2 EXAMPLE A

To configure a TCB whose address is NEWTCB into the system, and a TCB queue name
of M8TCBQ, the code sequence would be:

LD DE, M8TCBQ

LD BC,NEWTCB

CALL M8SN

,Set-up TCB Queue addr

,Set-up TCB addr

;Place NEWTCB into system

On return from the system service the TCB is then configured into the system, and

the Task is available for use. Note that the Send Message Service, M8SN, is used
to establ ish a new TCB into the system. The TCB address repl aces the MB address

5-2

and the TCB queue address is the message receiver a99ress.

Care must be taken when installing a task. If the lito be installed task" is. of a

higher priority than the task install i ng it, then CPU control will be given to the

newly installed task.

5.2.3 EXAMPLE B

Prior to installing a task, its initial register values must be set-up on the

task's stack since MITE-80 pops the task's stack before CPU control is given to

the new task. If the task does not require any initial register val ue set-ups,

then these registers need not be initialized. However, the minimal stack set-up

requirement is the loading of the task's entry point into its stack's Program

Counter location.

For a task which uses only the main register set, has an entry point label of

UTSP, the code sequence to initialize the PC in thetask's stack would be:

LD
LD

HL,UTASK

(UTSP+12) ,HL

5.2.4 PROGRAMMING NOTES

;UTASK ENTRY POINT

;INIT UTASK'S SP PC LOCATION

The TCB constructed MUSTadh~re to the TCB data structure.

The Task's TC~ must NOT be changed once it is placed into the TCB queue. If the

TCB has to be changed, then cancel the TCB, alter it, and send it again to the TCB

queue.

The task's stack must be initialized; at minimum the task's entry point must be.

loaded into its stack's PC location~ prior to installing the task.

Tasks should normally be installed using the MBSN service.

5-3

5.3 CANCELLING A TASK

5.3.1 DESCRIPTION
To cancel a task from the system the TCB's address must be known. The address can
be obtained by using the M8FIND service to find the address by using the TCB's
name for compari son. Once found, the TCB address is then used to cancel the TCB
from the TCB queue.

5.3.2 EXAMP-LE
To cancel a TCB whose name is AB from the systelfl, and a TCB queue name of M8TCBQ,
the code sequence would be:

LO OE,M8TCBQ ;Set-up TCB queue addr
LD BC, I BA I ;Set-up TCB name
CALL M8FINO ;Find TCB address
JP Z,TNIS ;Jump if TCB not in system
LO B,H ;Move TCB addr to BC
LD C,L
CALL M8CAN ;Cancel task 'AB'

A check is made after the M8FINO service call to assure that the TCB was still in
the system. On return from the M8CAN service the TCB has been cancell ed and the
Task is no longer available for use.

5.3.3 PROGRAf-'IMING NOTES

Care must be taken when cancelling a task:

If conditional cancelling is desired then the TCB must first be checked to assure
that the Task does not have a MB to process and that it is not waiting for a post
interrupt event.

If unconditional cancelling is desired then any unprocessed MBs for this TCB will
be LOST. Requeuing a task by means of the M8FWO Service will allow unprocessed
MBs to be found again.

5-4

5.4 SENDING A MESSAGE

5.4.1 DESCRIPTION

To send a message to a task a MB must fi rst be created. Thi sis accompl i shed by

either constructing one in RAM, or by transferring a pre-constructed one in ROM to

RAM. If the receiver's address is not known, the M8F IND service is used to fi nd

the address. Once the MB is constructed several opt ions exi st in which to send

the MB to the receiver; send and immediate returns or send and wait for another

MB. Regardless of the option selected, the service will queue the fvlB at the

specified priority in the receiver Task's MB queue.

5.4.2 EXAMPLE A

To send a MB whose address is TMB2 to a recei ver task MC whose TCB address is

MCTCBA the code sequence would be:

LD DE, MCTCBA

LD BC,TMB2

CALL M8SN

;Set-up tasks MC's TCB addr

;Set-up MB addr

;Send TMB2 to Task MC

In this example the calling task will retain CPU control if it is still the

highest priority ready task after sending the MB. The call ing task can then

continue processing its other requirements.

5.4.3 EXAMPLE B

If in Example A further processing is to be suspended after sending the MB until

another MB is available for the sending task, then the code sequence would be:

LD DE, MCTCBA

LD BC,TMB2

CALL M8SNW

;Set-up tasks MC's TCB addr

;Set-up MB addr

;Send TMB2 and wait till another MB is

;available

In this example the calling task will retain CPU control only if another MB is

available for the calling task to process and if it is still the highest priority

ready task after sending the MB. When a MB is available for the task, CPU control

will return to the instruction immediately following the call instruction and the

address of the next MB to process will be in registers HL.

5-5

5.4.4 EXAMPLE C

If in Example A the sending task wanted to send the MB to the last task to which

it had been sent, then the code sequence would be:

LD BC, TMB2 ;Set- up MB addr

CALL M8RSN ;Send TMB2 to Task MC

In this example the M8RSN service will retrieve the t·1CTCBA value from the MB's

RPTR field and set-up the DE registers. For MBs with their RPTR field already

initialized, this service can be used to minimize execution time and memory

overhead on service set-up requirements. The wait option, as shown in Example B,

is also available by using the M8RSNW service call.

5.4.5 EXAMPLE D

If in Examples A or B the receiver's TCB address was not known, the Find Receiver

Serv ice coul d be used to get the val ue. The code sequence woul d be:

LD DE,MSTCBQ ;Set-up TCB queue addr

LD BC, I BA I ;Set-up TCB name

CALL M8FIND ;Fi nd TCB address

JP l,TABNIS ;Jump if TCB 'AB' not in system

EX DE ,HL ;Move TCB addr to DE

LD BC,TMB2 ;Set- up MB address

CALL M8SN (or M8SNW) ;Send TMB2 to Task AB

In this example the system TCB queue (M8TCBQ) is searched for Task's 'AB' address

before the Send message service is set-up and call ed. Al so, a check is made on

return from the M8FIND service to assure that task AB's TCB is still in the

system.

5.4.6 PROGRAMMING NOTES

The MB constructed MUST adhere to the MB data structure.

The MB must NOT be changed once it is sent to the receiver. If the MB has to be

changed, then cancel the MB, alter it, and send it again to the receiver.

5-6

The wait option will suspend (wait state) the sending task if no MBs are currently

available for the sending task to process.

On return from the service with,a wait option specified, the MB address returned

is the highest priority MB to process, NOT necessarily the MB that was last sent

with the service call wa it option. If a task must know which MB has been

received, then a MB tag numbering or process level status scheme in the MB's data

or STATUS field should be used.

5.5 RECEIVING A MESSAGE

5.5.1 DESCRIPTION

To. receive a message fran any task a receiving task must condition its TCB to

receive messages. If a task does not condition itself to receive messages, then

all MBs sent to the task will be queued in the task's MB queue. To receive

messages a task must request an MB from its queue everyt i me an MB is to be

processed. There are no service set-up requirements. Two options exi st on the

service call: an immediate return regardless of whether or not an MB is available,

and a wait option until a MB is available. Regardless of the option selected, if

a MB is returned to the calling task it will be the highest priority MB in the

task's queue. The receiving task is responsible for returning the MB back to the

sending task, if required of the application.

5.5.2 EXAMPLE A

To receive a MB the code sequence would be:

CALL M8RCV ;Get next MB if available

In this example the calling task will retain CPU control. On return, register HL

will contain either zeros for no MB available, or the address of the MB to

process. Also, the Zero Flag is set if no MB is available.

5.5.3 EXAMPLE B

To receive an MB and return to caller only if an MB ;s available, the code

sequencewould be:

5-7

CALL M8RCVW ;Get next MB or wait if none available

In this example the calling task will retain CPU control only if an MB is
available. Otherwise, the calling task will be suspended (wait state) until an MB
is available. When an MB is available for the task, the task will then be in a
ready state. On return the HL registers contain the address of the MB to process.
The M8RCVW service will generally be the first service call made by a MB
processing task.

5.5.4 PROGRAMMING NOTES

The MB received will be the highest priority MB from the calling task's MB queue.

An immediate knowledge of whether the ~lB was initially sent by the receiving task
or by another task can be detenni ned. If the SPTR fi eld does NOT match the
receiver Task's address, then the MB was sent to it by another task. If the SPTR
field DOES match the receiver task's address, the receiving task was the original
sender task of the MB.

A task CANNOT receive any messages to process until a Receive Message Service is
call ed. For MBs sent to tasks which have not yet call ed a recei ve message
service, their MBs will be queued in the task's MB queue.

5.6 FORWARDING A MESSAGE

5.6.1 DESCRIPTION
To forward a message to another task, the receiver ' s address must be known. If
theforward receiver's address is not known, the M8FIND service can be used to find
the address. Once the receivers address is known, it is placed in the DE
registers and the MB to be forwarded is left intact. The MB can then be forwarded
to the receiver task with one of the two options, either forward and immediate
return, or forward and wait for another MB. Regardless of the option selected,
the service will queue the MB at the specified priority in the forwarded receiver
task ' s MB queue. The forward service is used in appl ications where the MB
specified receiving task cannot process or handle the MB, and the MB is forwarded
on, intact, to another task for processing.

5-8

5.6.2 EXAMPLE

To forward an MB whose address is TMB2 to a receiver task MC whose TCB address is

MCTCBA, the code sequence would be:

LD

LD

CALL

DE,MCTCBA

BC,TMB2

M8FWD

Set-up tasks MC's TCB addr

Set-up MB addr

Forward TMB2 to Task MC

In this example the calling task will retain CPU control if it is still the

highest priority ready task after forwarding the MB. The forwarding task can then

conti nue processi ng its other requirements. If the forwardi ng task only wanted

CPU control and another MB was available to process, then the M8FWDW service would

be called. Note that the received MB was left intact, thus allowing the next

receiving task to return the MB to the original sender task. Any MB can be

forwarded any number of times before it is returned, if required by the

application, to the original sender task.

5.6.3 PROGRAMMING NOTES

The MB forwarded MUST remain intact (unmodified) if the MB is to be returned to

the original sender task.

The wait option will suspend (wait state) the forwarding task if no more MBs are

currently available for the forwarding task to process.

A forwarded filB will NOT be returned to the task forwarding the MB, since the MB's

fields of RPTR and SPTR (receiver and sender pointers) remain intact from the

original sender task.

The MB to be forwarded must NOT have a priority of 127 (FEH) si nce queue by task

priority only works for M8SN and M8SNW.

5-9

5.7 CANCELLING A MESSAGE

5.7.1 DESCRIPTION

To cancel a message sent to a task the receiver IS TCB address and the lito be

cance 11 ed" MB add res s must be known.

5.7.2 EXAMPLE

To cancel an MB whose address is TMB2 from a receiver whose TCB address is MCTCBA,

the code sequence would be:

LD DE,MCTCBA

LD BC,TMB2

CALL MBCAN

;Set-up task's TCB addr

;Set-up MB addr

On return from MBCAN, a check should be made to verify that the MB was cancelled

from the receiver task's [vtB queue. If the Zero Flag is reset the cancel request

was successful; otherwise, the Zero Flag will be set to indicate an unsuccessful

request.

5.7.3 PROGRAMMING NOTES

A 1 ways check the Z Fl ag on return from the MBCAN Service to veri fy that the fvtB was

cancelled.

An unsuccessful cancel request indicates that the MB does not exist in receiver's

MB queue (which could mean that the message is currently being processed by the

receiver) •

5.B ISR PROCESSING

5.B.1 DESCRIPTION

Two services facil itate ISR processing; MBWINT AND MBPINI. MBWINT is for tasks

such as I/O drivers which condition an ISR to start and execute until a

terminating event occurs (end of block, carriage return, character present, etc).

This will place the task into an interrupt wait st'ate until an ISR process posts

the event being completed, MBPINT. The waiting task then becomes a ready task.

5-10

5.B.2 EXAMPLE
For a data entry driver to wait for an event of a character being entered, the
code sequence would be:

DEDRVR CALL

LD
LD
LD
LD
LD

LD
OUT
CALL

Data Entry Driver's ISR
DEDISR PUSH IX

PUSH AF
PUSH ~C
PUSH DE
PUSH HL

MBRCVW

HL,DBFFRC
(HL),O
H L, DBSPP
(DBFFRP),HL
C,DEPRTI

A,INTE

(CLA
M8WINT

IN A, (DEINP)
LD (DECTS),A
LD IX,DETCB
JP r~BPINT

5.B.3 PROGRAMMING NOTES

;Get next MB or wait if none
;avail ab 1 e
Decode MB request command

;Driver buffer count addr
;Initialize count to zero
;Driver buffer starting pointer
;Init buffer pointer to start addr
;Get Data Entry Port Addr for
;Interrupt
;Get interrupt enable bit code
;Enable card's interrupt
;Wait for character

;Save the registers

;Input character
;Save in temp area
;Get Data Entry Driver TCB address
;Post "character in" event complete

The posting interrupt event task MUST push the main register set, except for the
IV register, before jumping to MBPINI.

5-11

Always JUMP to the M8PINT service.

If the wait and post interrupt services are used for non-driver ISR purposes, such

as a synchronization mechanism between task-task, then the wait and post processes

within these tasks MUST follow the same guidelines.

A task perfonning an M8WINT will be placed into an interrupt wait state until

another task or ISR process posts the event compl etion by an MBPINT service.

6-1

SECTION 6

MITE-80 DEBUG

6.1 INTRODUCTION

This section describes the functions and operation of MITE-80 DEBUG, a software
package which provides the user with a means of debugging programs running under
the control of MITE-80. MITE-80 DEBUG is a combination of 2 primary programs; a
modified MITE-80 and a modified DDT-80 (Designer's Development Tool 80). The
modified MITE-80 portion is the application version of MITE-80 with checkpoint
features added for debug purposes. The modi fi ed DDT -80 portion is the DDT -80
package of FLP-80DOS with additional commands added for MITE-80 service debug
purposes.

6.2 SOFTWARE CONFIGURATION

MITE-80 DEBUG is a program that is provided on a diskette, named M80DDT.BIN[X],
where X is 16, 32, 48, or 64; the memory size in K (1024 bytes) of the debug
system. MITE-80 DEBUG is approximately 4000 bytes in size and resides at the top
of RAM as specified by [X]. In addition to program area, MITE-80 DEBUG uses 256
bytes of RAM for scratch RAM and temporary storage. This RAM resides at locations
FFOOH-FFFFH. An additional RAM area is used for a historical record of services
performed and requires 512 bytes of RAM (included in the 4000 bytes.)

The 256 byte RAM area is used by MITE-80 DEBUG for temporary storage, a push down
stack, and system data structures. Thi s RAM al so hol ds an image, or map, of all

. user's internal CPU registers, and a jump vector for all MITE-80 Services.

The 512 byte RAM area is used as a task history table. This table is a circular
list which contains the calling task registers, task address, and service name for
each MITE-80 service as it is entered or exited. This table provides a historical
trail of pertinent information as tasks utilize the MITE-80 services.

6-2

To preserve the state of the CPU for a user l s program whil e debuggi ng, MITE-80

DEBUG keeps an image or map of all the userls registers. This image or map is

referred to as the User Regi ster Map. MITE-80 DEBUG install s or makes the CPU

registers equal to the user register map when control is transferred from MITE-80

DEBUG to a user program. MITE-80 DEBUG saves the user register map when MITE-80

DEBUG is commanded (breakpoint) to interrupt a user program. MITE-80 DEBUG allows

modification to this register map with the display and/or update memory command.

The user register map resides in the 256x8 RAM area, locations FFE6H thru FFFFH,

as follows:

Location User Register Location User Register

FFFF Program Counter (MSB) FFF2 FI

FFFE Program Counter (LSB) FFFl BI

FFFD A FFFO CI

FFFC F FFEF 0 1

FFFB I FFEE EI

FFFA IF FFED H'
FFF9 B FFEC LI

FFF8 C FFEB IX (MSB)

FFF7 D FFEA IX (LSB)

FFF6 E FFE9 IV (MSB)

FFF5 H FFE8 IV (LSB)

FFF4 L FFE7 Stack Pointer (MSB)

FFF3 AI FFE6 Stack pointer (LSB)

6.3 COMMAND FORMATS

MITE-80 DEBUG operation is similar to that of DDT-80, and many of the commands are

identical to those of DDT-80. Further infonnation on DDT-80 can be found in the

FLP-80DOS Operation Manual. Users who are already familiar with FLP-80DOS DDT-80

need onl y be concerned with the added commands and operati onal differences that

MITE-SO DEBUG provides. However, all of the commands are outl ined in this section

with those commands identical to DDT -80 summari zed. MITE-80 DEBUG recogni zes

commands which consist of three parts:

1. A single letter identifer.
2. An operand, or operands separated by commas or blanks.
3. A terminator to either abort the command or cause it to be

executed.

In order to execute MITE-80 DEBUG, enter at the monitor level:

$M80DDT<CR>

6-3

MITE-80 DEBUG will then prompt with a colon (:). Any of the MITE-80 DEBUG
commands may then be executed. MITE-80 DEBUG echos the command letter, prints a
space, and then waits for the user to key-in the appropriate operand(s) in the
format described below. A command is not executed until terminated by a carriage
return (or one of the special terminators described below for display and update
commands) and may be aborted at any time by a period. MITE-80 DEBUG automatically
supplies a line feed for the carriage return.

MITE-80 DEBUG may also be loaded and entered directly from DDT-80 by looking up
the track and sector address from a PIP directory command and using the
stand-alone loader in DDT-80 to load MITE-80 DEBUG. When using this method, the
entry point and load address for MITE-80 DEBUG can be determined from the
following table:

VERSION ENTRY POINT

16K 2BOO
32K 6BOO
48K ABOO
64K CBOO

6-4

6.3.1 COMMAND IDENTIFIERS
The following summarizes the 17 different single letter identifiers recognized as
command identifiers:

1. B - Insert a breakpoint in the user l s program (must be in RAM) which
transfers control back to MITE-SO DEBUG. Thi s all ows the user to
intercept his program at a specific point and examine memory and CPU
registers to determine if his program is working correctly.

2. C - Copy the contents of a block of memory to another location in
memory.

3. D - Display the history table of last Tasks executed and MITE-SO ser
vices used.

4. E - Transfer control from MITE-SO DEBUG to a user's program.

5. F - Fi 11 memory 1 imits wi th an 8 bit data pattern.

6. H - Perform 16 bit hexadecimal addition and/or subtraction.

7. J - Snap shot a Task Control Block and/or a Message Block.

8. K Breakpoint on a Task and/or a MITE-80 service.

9. L - Locate all occurrences of an 8 or 16 bit data pattern.

10. M - Di spl ay, update, or tab ul ate the contents of mernory.

11. a - Set the offset constant.

12. P - Display and/or update the contents of an I/O port.

13. Q - Quit MITE-80 DEBUG and return to the system Monitor.

14. R - Display the contents of the user registers.

6-5

15. V - Verify that 2 blocks of memory are equal.

16. W - Software single step (walk).

17. X - Duplicate output to printer device.

All of the above commands, with the exception of the

identical to the correspond ing DDT -80 commands.

instead of a period (.) as in DDT-80.

0, J, K, and X commands, are

A colon (:) prompt is used

6.3.2 COMMAND OPERANDS

MITE-80 DEBUG command operands are described in this section. The user is

referred to the FLP-80DOS Operation rVianual for additional information and

examples.

A canmand operand represents 4 hexadecimal digits; e.g. aaaa. MITE-80 DEBUG

allows arithmetic expressions (addition and/or subtraction). The 4 hexadecimal

digits, aaaa, can be calculated "lith a string of additions and/or subtractions.

The values in the string may be entered in one of the following forms:

1. 0-9, A-F

2.

3. $

4. L

5. R

hexadecimal digits

a prefix of ":" before an alphacharacter specifies that the

next 1 or 2 characters are mnemonic and is equivalent to 4

hex digits

represents current address +1. This is valid for the M

command and is used to cal cul ate rel at ive jump di spl ace

ments.

a prefix of "L" before a character specifies that the ASCII

value of the next 1 or 2 characters is to be used.

a prefix of "R" specifies the relative address. This causes

the offset specified by the '0', command to be added to the

number entered.

6-6

6. xxxxxx xxxxxx is 4 to 6 alphanumeric characters which represent a

MITE-80 Service call 1 abel which is to be used as the

command operand. Thi s form is only val id for the 'K I

command.

An equal sign 1=1 may be entered at any time within the string to display the

operand val ue as 4 hexadecimal digits.

Examples of typical operands are:

1. 4F7F

2. : PC

3. 5038-5000

The operand value is equal to 4F7FH.

The mnemonic PC is equival ent to address FFFEH and the

operand val ue is equal to the contents of FFFEH and

FFFFH.

The operand value will be 38H.

4. 5038-5000=0038 The same as 3 except I = I was entered to di spl ay the

operand val ue.

5. 5038-$

6. LAB=4241

7. R100=1100

8. M8SN

If current address = 5000H, then $=5001H and the operand

value equals 37H.

Operand is equal to the ASCII value of 'AB'.

Assuming offset = 1000H.

The operand value is used to obtain the address of Send

Message Service.

A mnemonic is caoposed of 1 or 2 characters following a colon (:) and represents a

4 hexadecimal digit address. Tabl e 6-1 1 i sts the mnemonics recogni zed by MITE-80

6-7

DEBUG. Mnemonics are equivalent to a 4 hex digit address and the data at that

address may represent either a single or double byte val ue (marked by * in the

table). Table 6-2 lists the MITE-80 service call labels recognized by MITE-80

DEBUG. The labels are equivalent to 4 hex digits which represent the address of

the service. If a command requires more than one operand, those operands have to

be separated by either a blank or a comma.

6-8

TABLE 6-1

MNEMONICS RECOGNIZED BY MITE-80 DEBUG.

Unrecognized mnemonics are resolved with a value of zero.

MNEMONIC ADDRESS REPRESENTED DATA SAVED AT THAT ADDRESS
BY THE MNEMONIC

:PC* FFFE User's PC Regi ster
:A FFFD User I s A Register
:F FFFC User's F Register
: I FFFB User's I Register
: IF FFFA User's IFF Register
:B FFF9 User's B Register
:C FFF8 User's C Register
: D FFF7 User's D Register
:E fFF6 User's E Register
:H FFF5 User l s H Register
:L FFF4 User l s L Register
:A ' FFF3 User's AI Register
: F I FFF2 User l s F' Register
: B I FFFl User's B' Register
:C I FFFO User's C' Regi ster
:D ' FFEF User's 0 1 Register
: E I FFEE User's E' Register
: H I FFED User's H' Register
: L I FFEC User's L' Register
:IX* FFEA User's IX Register
: IY* FFE8 User's IV Register
:SP* FFE6 User's SP Register

* = 2 byte mnemonics

6-9

TABLE 6-2

MITE-80 SERVICE CALL LABELS RECOGNIZED BY MITE-80 DEBUG

Serv ice
Label

M8SN

M8SNW

M8RSN

M8RSNW

M8RCV

M8RCVW

M8FWD

M8FWDW

M8RET

M8RETW

M8CAN ..

M8FIND

M8WINT

M8PINT

M8ENAI

M8DISI

Represents Service of

Send a message to a task.

Send a message to a task and wait for a message
to be available.

Resend a message to a task.

Resend a message to a task and wait for a message
to be available.

Receive a message if one is available for calling
task.

Receive a message, otherwise wait until one is
available.

Forward a message to a task.

Forward a message to a task and wait for a mes
sage to be available.

Return a message to the sending task.

Return d message to the sending task and wait un
til a message is available.

Cancel a message sent to a task.

Fi nd the recei ver address of the specifi ed task
name.

Wait for an interrupt event to be posted.

Post an interrupt event which is completed.

Enable CPU interrupts.

Disable CPU interrupts.

6-10

6.3.3 COMMAND TERMINATORS

The command tenninator immediately follows the operand(s) and signals MITE-80

DEBUG that the command has been entered. Depending on the terminator, MITE-SO

DEBUG will do one of the following:

Tenninator

1. <RETURN KEY>

2. A

3.

4. /

Action

Carriage return. MITE-SO DEBUG will perfonn the

comma nd ent ered •

Carat or up arrow. This terrninator is val id only

fo r the M and P c'ommand s. When updat i ng a memory

location (M) or a port (P), it signals MITE-SO

DEBUG to display the contents of the location or

port just updated.

Period. MITE-SO DEBUG will abort the command,

enter the command mode and be ready to accept

another command.

Slash. This tenninator is valid only for the

M command. This causes the data entered to

replace the old data, then return to the command

mode. If no data was entered, it is treated

as a carriage return.

NOTE--Anytime erroneous input is detected, a question mark (?) is printed and

MITE-SO DEBUG returns to the command mode.

6.4 DETAILED COMMAND DESCRIPTIONS

This section describes each MITE-SO DEBUG command in detail. The command fonnat

is shown, followed by a description and examples. However, for those commands

6-11

which are identical to DDT-80, their sections are only highlighted and the user is

referred to FLP-80DOS Operations Manual for additional information and examples.

For the purpose of this section, the conventions used are:

1. aaaa, ••• ,zzzz

2. t

3.

4. <CR>

denotes 4 hexadecimal digit operand value.

denotes the command terminator; carriage return, carat,

period, or slash.

underline denotes the portion of the command entered by

the user.

Denotes the carriage return character (OOH).

6.4.1 B COMMAND, BREAKPOINT COMMAND

The breakpoi nt command causes the sett i ng of a "trap" or breakpoi nt with in the

user's program. Upon encountering the breakpoint, the user's program will trans

fer control back to !VIITE-80 DEBUG ~/here the regi sters, I/O ports, memory
contents,service call histogram, TCI:)'s amd MB's may be inspected. Breakpoints may

be set only in RAM, not ROM.

6.4.1.1 FORMATS

:8 aaaat Set breakpoint at address aaaa.

:B Raaaat Set breakpoint at relative address aaaaH.

:Bt Clear any previous breakpoint.

6.4.1.2 DESCRIPTION
The user types the command identifier B followed by the address where it is de

sired to place a breakpoint. Upon entering carriage return MITE-80 DEBUG proceeds

to:

6-12

1. Remove any pre-existing breakpoint by restoring user1s code.

2. Extract and save 3 bytes of the user l s program at the breakpoi nt ad

dress.

3. Place the 3 bytes at the breakpoint address with a breakpoint sequence.

(This sequence consists of a 3 byte JP instruction to return to the

breakpoint entry of MITE-3~ DEBUG).

MITE-30 DEBUG then types a line feed and a colon 11:11 to return to the command

mode. The user may now initiate execution of his program by using the execute

canmand. When the address specifi ed by the breakpoi nt command is encountered,

control is transferred to (VIITE-30 DEBUG where the following actions are taken.

1. The three bytes of user code repl aced by the trap instruction are re

stored.

2. All reg i sters are recorded in RAfvl storage withi n MITE-3~ DEBUG.

3. MITE-30 DEBUG types: the breakpoint address (Program Counter), and the

val ues of the A and F regi sters for short format output or all internal

CPU regi sters for long format output. If the offset command 110 11 had

been executed, the relative PC is also printed.

4. MITE-SO DEBUG waits for the user to enter a 11.11 to return to command

mode or carriage return/line feed to begin IIwalkingll. (See W command)

A breakpoi nt can be cleared by execut i ng its address or enteri ng the B command

with no operands. If the user misses a breakpoint while executing a program, the

3 bytes of breakpoint code must be replaced by executing the address of the

inserted breakpoint (using E command). If the RESET Switch was used, then MITE-SO

DEBUG must be reloaded along with the user program being debugged. The set break

point command and execute command are closely related and are normally used

together during the debug process for executing sections of a program and then

6-13

evaluating the registers for correct data.

There are certain characteristics of the ~lITE-80 DEBUG breakpoint facility which

the user should be aware of during debugging. The only difference between MITE-80

DEBUG and DDT-80 breakpoint is if the MITE-80 DEBUG package is loaded into RAM

instead of PROM, then care must be taken to not breakpoint within MITE-80 DEBUG

itself. Refer to the FLP-80DOS Operations Manual for common characteristics.

6.4.2 C COMMAND, COpy MEMORY BLOCKS

The copy canmand permits any block of memory data to be moved to any area of

memory. The move may be forward or backward and the new block mayor may not

overlap with the original memory block.

6 • 4 • 2. 1 F OR MA T

:~ aaaa,bbbb,cccct

6.4.2.2 DESCRIPTION

Copy rnemory 1 ocati ons aaaa through bbbb

inclusive to the memory block starting at ad

dress cccc.

The user enters the command identifier C followed by the starting address aaaa and

ending address bbbb of the block to be moved, followed by the starting address

cccc of the block receivi ng the data. The operands may be absol ute or rel ati ve

and are separated by commas or blanks. Upon terminating with a carriage return,

MITE-80 DEBUG prints aline feed, performs the requested copy operation, and then

prints a colon ":" to indicate that it is ready to accept another command. The

data copied is not displayed.

6.4.2.3 EXAMPLES

:~ lOO,200,1200<CR>

:~ lOO,200,150<CR>

Copy memory location lOOH through 1300H.

Copy memory locations lOOH 150H through 250H

(overlapping copy).

6-14

: 0 100<CR> Set relative offset to 100H.

:~ RO,R100,R50(CR> This would be the saIne as the previous copy ex

ampl e.

Entire programs or subroutines may be moved around in this way and still execute

properly in their new locations if they contain self relocating code (i.e. use

only relative jumps). Care should be taken to copy complete instructions on both

ends of the block when copying programs. and any relative branch instructions con

tained within a block to be moved should not branch outside the block. If the

second operand entered (bbbb) is smaller than the first (aaaa). a question mark

prints out (1) and control returns to command mode.

If the MITE-80 DEBUG package is loaded into RAM instead of PROM. care must be

taken not to copy memory locations into the MITE-80 DEBUG rnerilory locations.

6.4.3 D COMMAND, DISPLAY HISTORY TABLE

The History Table display command allows display of the history table of i"lITE-80

services most currently executed by a user program. The MITE-80 service. task

c~ling the service, type of action (exit or entry), and task1s main register set

contents are displayed by this command. Tasks \f/ith a priority in the range 0 to

15do not have their service calls recorded in the history table.

6.4.3.1 FORMATS

:D t Display entire history table.

:0 aaaat Display last aaaa history entries.

6.4.3.2 DESCRIPTION

The user enters the command identifier D for history display followed by an

6-15

optional 1 to 2 hex digits for the number of last history entries to be displayed.

Upon terminating with a carriage return, the specified number of last history

entries will be displayed with a heading to label the table1s contents. The

maximum number of history entries is a user-specified system generation value.

For console devices having 24 display lines, the user should specify 22 entries

which result in a maximum hex val ue of 16H. For each MITE-80 service called

duri ng the program execut ion, an entry into the hi story tabl e will occur. When the

maximum number of table entries has been reached, the next entry will replace the

oldest entry in the table. The table will always contain the last 32 service

calls executed. Once the history table is displayed, a colon 1.1 will be

displayed to indicate that it is ready to accept another command.

6.4.3.3 EXAMPLE

:D 5<CR>

ADDR TCB NAME PC IX AF BC DE HL SERV ICE

AOOO 4241 AB aaaa aaaa aaaa aaaa aaaa aaaa M8SN E

BF52 504C LP aaaa aaaa aaaa aaaa aaaa aaaa M8RCVW X

BF52 504C LP aaaa aaaa aaaa aaaa aaaa aaaa MBRCVW E

AOOO 4241 AB aaaa aaaa aaaa aaaa aaaa aaaa M8SN X

AOOO 4241 AB aaaa aaaa aaaa aaaa aaaa aaaa MBRCVW E

The history table heading label and contents are:

ADDR is the TCB address of the calling task in hexadecimal.

TCB is the calling task name in hexadecimal.

NAME is the calling task name in ASCII, a non printable ASCII

character will be denoted by 1.1 (period).

PC is the program counter contents and represents the location

within the task calling the service.

6-16

IX-HL

SERVICE

is the regi ster contents of the task on entry to or exit from

the service.

is the MITE-80 service called. The next character is the

direction between task and service. E indicates entry to serv

ice. X indicates exit from service.

6.4.4 E COMMAND. EXECUTE A USER'S PROGRAM The execute command is used to begin ex

ecution of all programs during debug sessions.

6.4.4.1 FORMATS

:E aaaat

:E t

6.4.4.2 DESCRIPTION

Transfer control to the program starting at address aaaa.

Transfer control to the address specified by PC in the

register map.

To cause execution of a program. the user types the identifier E followed by the

desired entry address of the program. Upon terminating with a carriage return

MITE-80 DEBUG will load the user's internal registers fran the saved register map

then transfer control to the program entry point. (It is therefore possible to

enter a program with preset values in the registers if desired.) Si nce the

register map is used for saving internal registers when a breakpoint is

encountered. the contents of the regi ster map refl ects the effect of the 1 ast

instruct i on before the breakpoi nt was encountered. If no entry address is

specified after the E command. MITE-80 DEBUG will transfer control to the address

specified by PC in the user's register map.

6.4.4.3 EXAfVlPLES

:E 1200<CR> Execute the program starting at location 1200H.

6-17

To return control to MITE-aD DEBUG, the user's program must encounter a

breakpoint. If the RESET button is pressed, then the reloading of MITE-SO DEBUG
will be required in order to return to debugging.

$M80DDT<CR> (User pressed RESET and enters Monitor).

Enter MITE-aO DEBUG.

:M :PC<CR> Examine user's program counter (PC).

:PC 62FF 1220<CR> Set user's PC to 1220H.

:E<CR> Execute program starting at location 1220H.

The execute command may al so be used together with the breakpoi nt command to ex
ecute portions of programs while debugging.

6.4.5 F COMMAND, FILL MEMOR Y COM~1AND
The fill command permits a block of memory to be filled with a data constant.

6.4.5.1 FORMAT

:I aaaa,bbbb,cct

6.4.5.2 DESCRIPTION

Fi 11 memory 1 ocat ions aaaa through bbbb inc 1 us i ve

with cc.

The user enters the command identifier F followed by the starting address aaaa and
ending address bbbb, followed by the data cc. The operands are separated by com
mas or blanks. Upon terminating with a carriage return, rviITE-aO DEBUG prints a
1 i ne feed, performs the requested fill operat i on and then pri nts a co 1 on II. II to
indicate that it is ready to accept another command.

6-18

6.4.5.3 EXAMPLES

:£ IOO,FFF,5A<CR>

:0 IOO<CR>

:£ RO,REFF,5A<CR>

Insert a 5A in every memory location between and

including 100H and FFFH.

Set relative offset to IOOH.

Fill same addresses as first fill example.

If the MITE-80 DEBUG program is loaded in RAM instead of PROM, then care must be

taken not to fill memory in its area.

6.4.6 H COMMAND, HEXADECIMAL ARITHMETIC

The arithmetic capabil ity of MITE-80 DEBUG allows hexadecimal addition and sub

traction.

6.4.6.1 FORMAT

:.!i +aaaa=bbbb+ ••• +yyyy=zzzz! Perfonn hexadec ima 1 arithmet ic.

6.4.6.2 DESCRIPTION

The user enters the command identifier and then enters the arithmetic expression.

Only + and - are legal operations. If the sign of the first operand is omitted,

it is assumed +. The equal sign causes the 4 digit (least significant 4 digits)

result to be di spl ayed. When the termi nator is entered fV1ITE-80 DEBUG returns to

accept another command. All operands may be absol ute or relative (with 'R'

prefix).

6.4.6.3 EXAMPLES

:H 5000-4FFF=0001<CR> Subract 4FFFH FROM 5000H.

6-19

:H 5000+4FFF=9FFF<CR) Add 4FFFH to 5000H.

6.4.7 J COMMAND, SNAP SHOT COMMAND

The Snap Shot command allows the displaying of the MITE-80 queue structure of

TCB's and MB's along with their respective contents.

6.4.7.1 FORMATS

:J t Snap shot the entire queue.

:J Lxxt Snap shot the task named "xx".

:J aaaat Snap shot the hex task name aaaa

6.4.7.2 DESCRIPTION

The user enters the command identifier J for snap shot followed by an optional

operand which specifies the desired task to be snap shot. If the TCB name is

omitted, the entire TCB queue will be snap shot. For a specified task name snap

shot, the display will show the TCB's contents followed by all MBs and their

contents which exi st in the TCB I s MB queue. The MBs which are present in the

tasks queue are displayed in the order as they appear in the queue. The snap shot

tabul at ion may be stopped at any time by enteri ng a period ". II on the consol e or

temporarily suspended by entering a space II II on the console.

6.4.7.3 EXAMPLE

:J LlB(CR)

ADDR ST PR LINK MPTR SPTR NAME *** TCB ***
0104 05 05 56A7 0184 0178 4231 IB

6-20

PC IX AF BC DE HL IY
07EF 0000 0000 0000 0000 0000 0000

ADDR 5T PR LINK RPTR SPRT DATA *** MB ***
0184 00 03 2152 0004 0084 018E

ADDR 5T PR LINK RPTR SPTR DATA *** MB ***
2152 00 09 FF2C 0104 157F 59AC

In this example a task whose name is 11BI is snap shot. The TCB contents are dis
played along with the MBls present in the taskls MB queue. The last MB will
always have its link point to the MITE-80 null MB5 which is not displayed. This
is also true for the last TCB. The structure header labelling is as follows:

For TCBs:

ADDR
ST
PR
LINK
MPTR
SPTR
NAME

PC-IV
AIFI-HILI

For MBs:

ADDR
ST
PR
LINK

is the Address in memory where the TCB is located.
is the Status field.
is the Priority field.
is the Link field.
is the Message Pointer field.
is the Stack pointer field.
is the Name field 5 in hex followed ·by the ASCII equivalent
characters. If non-printable characters exist 5 then a 1.1
(period) will be displayed.
the register contents of the task5 the main register set.
is the alternate register set.

is the Address in memory lIihere the MB is located.
is the Status field.
is the Priority field.
is the Link field.

RPTR
SPTR
DATA

is the Receiver Pointer field.
is the Sender Pointer field.

6-21

is the Data field, only the first 2 bytes of the field is dis
played.

6.4.8 K COMMAND, SERVICE BREAKPOINT COMMAND
The Service Breakpoint command allows for the setting of a "trap" or breakpoint on
a specified task and MITE-SO Service. Upon encountering the service breakpoint,
the program will transfer control back to MITE-80 DEBUG where the registers, I/O
ports, memory contents, service call history, TCBs and MBs many be inspected. The
service breakpoints may be set on tasks and/or services regardless of whether the
programs reside in RAM or ROM. Multiple breakpoints are allowed.

6.4.8.1 FORMATS

:~ aaaa,bbbbt

:~ ,bbbbt

:~ ,ALLt

:K t

6.4.8.2 DESCRIPTION

Breakpoint on MITE-80 service bbbb for task name
aaaa.

Breakpoint on MITE-80 service bbbb for all tasks.

Breakpoint on all MITE-80 services for alltasks.

Clear all previous service breakpoints.

The user types the command identifier K followed by the task name and MITE-80
service where it is desired to place a breakpoint. The operands are separated by
commas or blanks. Upon enteri ng carri age return, MITE-30 DEBUG proceeds to mark
the selected task and service as a breakpoint. Eash task name can have different
and multi pl e services specifi ed as breakpoi nts.

MITE-80 DEBUG then types ali ne feed and a colon II .11 to return to the command

6-22

mode. The user may now initiate execution of his program by using the execute lEI

command. When the task name and the service specified by the breakpoint command

is encountered, control is transferred to MITE-3~ DEBUG where the following

actions are taken:

1. All user registers are recorded in RAM storage within MITE-3~ DEBUG.

2. MITE-3~ DEBUG di spl ays the same information as provided in the D com-

mandls history display: TCB address, task name, service, direction of

service process, task address, and task register contents.

3. MITE-80 DEBUG di spl ays a colon I. I indicati ng it is ready for the next

command.

A service breakpoint can be cl eared only by enteri ng the K command without any

operands. The breakpoint is not cleared by execution of the trap.

There are certain characteristics of the K command breakpoint facility which the

user should be aware of during debugging:

1. The breakpoint all task feature is only valid on tasks whose priority is

greater than 15 (OFH). This is done so that the higher priority tasks,

such as system tasks like the timer handler, are not prevented from ex

ecuting when required. If breakpointing on these higher priority tasks

is desired, then the breakpoint must be expl iCitly set for the task

name.

2. An error indication is given if the user attempts to breakpoint a task

name and/or service not in the system.

3. Tasks which are created after a : K ,bbbb type command will not break

poi nt.

6-23

6.4.S.3 EXAMPLES

For command inputs:

:~ LAB ,MSSNW<CR) breakpoint on MSSNW for task name IA~I.

:f 4F27,MSRCV<CR) breakpoint on M8RCV for hex task name 4F27.

:~ LCD,ALL<CR) breakpoint on all services for task name ICDI.

:~ ,ALL <CR) breakpoint on all services for all tasks.

: K <CR) clear all breakpoints.

For a se s s ion:

:~ LAA,MSSN<CR>

: E O<CR)

*** BREAK POINT, TCB=004E 4141 AA
ADDR TCB NAME PC IX AF BC DE HL SERVICE

004E 4141 AA 016A 0000 0000 014E OOCE 0000 MSSN X

The table heading label and contents are:

ADDR
TCBNAME

PC

IX-HL

SERVICE

is the TCB address of the calling task, in hexadecimal.

is the calling task name in hexadecimal and ASCII, non-printable
ASCII character will be denoted by a I. I (period).

is the program counter contents and represents the 1 ocat i on

within the task calling the service.
is the register contents of the task on entry to or exit from the

serv ice.

is the MITE-80 service trapped on and the direction between
taskand service, E indicates entry to service, X indicates exit

from service.

6-24

6.4.9 L CO/vIMAND, LOCATE 8 OR 16 BIT DATA PATTERN The locate command pennits locat

i ng every occ urrence of an 3 or 16 bit data pattern ina block of memory.

6.4.9.1 FORMATS

:1. aaaa,bbbb,cct

:1. aaaa,bbbb,cccct

6.4.9.2 DESCRIPTION

Locate and print the address of every occurrence of

cc fran aaaa to and inc 1 ud i ng bbbb.

Locate and print the address of every occurrence of

the 16 bit pattern cccc from aaaa to and incl uding

bbbb.

The user enters canmand identifier L followed by the starting address aaaa and en

ding address bbbb, followed by the data cc to be located. The operands are

separated by commas or blanks. Upon terminating with a carriage return, 1''IITE-30

DEBUG prints a line feed, then every address between aaaa and bbbb which contains

cc is printed on the console. For 16 bit patterns, the address of the most

significant byte is displayed. When the operation is complete, MITE-30 DEBUG

prints a colon 11:11 to indicate that it is ready to accept another command.

6.4.9.3 EXAMPLE

:1. 0,750,35<CR>

0052 35

00F3 35

0542 35

075U 35

Locate every occurrence of 35H from address OH thru

750H.

Every Location containing 35H from OH thru 750H is

printed.

6.4.10 M COMMAND, DISPLAY AND UPDATE MEMORY

This canrnand allows display and/or modification of specified memory locations or

the CPU registers.

6-25

6.4.10.1 FORMAT

:M aaaat

6.4.10.2 DESCRIPTION

The user enters the command identifier M. MITE-80 DEBUG collects the command and

prints a space. The user then enters the operand aaaa followed by a tenninator.

MITE-80 DEBUG responds by printing the memory address on the next line. This is

followed by the contents of the particular address in hexadecimal. If the content

is to be changed, the new value is entered. The new value entered is an operand

as previously described except that the appropriate number of hexadecimal digits

(2 or 4) is sel ected.

6.4.10.3 EXAMPLE

If the memory location 5001H is to be changed to FFH:

: 1"1 5001 <CR)

5001 A3 FF<CR)

5002 A4 •

one memory 1 ocat ion was changed, therefore the 1 east

significant 2 hex digits are used as the operand.

The period ex its the M command and \'{ill allow for an

other command to be entered.

If the PC register is to be changed to 7F50H:

: \VI : PC <CR) The PC register is a 4 hex digit (16 bit) register,
-

therefore the least significant 4 hex digits are used as

the operand.

:PC 7F50 • Ex itt he M c anmand •

For additional information and examples on the ~1 Command, refer to the FLP-80DOS

Operation Manual, MK78557.

6-26

6.4.11 M COMMAND, TABULATE MEMORY
This command allows the user to display, but not change, a block of memory. Up to
16 values are printed per line.

6.4.11.1 FORMAT

:M aaaa,bbbbt tabulate memory locations aaaa through bbbb.

6.4.11.2 DESCRIPTION
The user enters the command identifier M followed by the starting (aaaa) and en
ding (bbbb) addresses of the memory block separated by a comma or a blank. Upon
termi nat i ng with a carri age return MITE-80 DEBUG pri nts ali ne feed, and then
prints the contents of aaaaH to bbbbH inclusive with up to 16 values per line.
MITE-80 DEBUG then returns to the command mode. The tabul at i on may be stopped at
any time by entering a period 11.11 on the console. It may also be suspended by
depressing the space bar and resumed by depressing any other character key. When
the IRI prefix is used, the relative address is printed before absolute.

6.4.11.3 EXAMPLES

:~ 4100,4127(CR> display memory locations 4100H through 4127H inclusive.

4100 2B 90 12 20 00 B7 A5 21 10 94 04 20 CA B7 44 18 + ••••• ! ••••• 0.
4110 81 11 34 21 07 94 17 45 12 55 A5 18 21 80 C5 55 •• 4! ••• E.U •• ! •• E
4120 90 OC A5 81 09 21 40 22 ••••• !@II

MITE-80 DEBUG waiting for next command.

:0 4100(CR> set offset to 4100.

:M RO,R27(CR>

10000 4100 2B 90 12 20 00 B7 A5 21 10 94 04 20 CA B7 44 18 + ••••• ! ••••• 0.
10010 4110 81 11 34 21 07 94 17 45 12 55 A5 18 21 80 C5 55 •• 4! ••• E.U •• ! •• E
10020 4120 90 OC A5 81 09 21 40 22 ••••• !@II

6-27

6.4.12 0 COMMAND, SET OFFSET CONSTANT
The offset command is used to set a constant. Thi s constant is added to any
operand entered with an 'R' prefix.

6.4.12.1 FORMAT

:0 aaaat set offset equal to aaaa.

6.4.12.2 DESCRIPTION
The user enters the command identifier 0 followed by the offset aaaa. Upon
tenninating with a carriage return, MITE-80 DEBUG prints a line feed, saves the 16
bit offset, and then prints a colon ":" to indicate that it is ready to accept
another command. The offset can be cl eared by enteri ng the 0 command with no
operands. After the offset has been set, both relative and absolute addresses are
printed any time addresses are displayed and until the offset is cleared.

6.4.12.3 EXAMPLE

:0 1200(CR) Sets offset to 1200H.

6.4.13 P COMMAND. DISPLAY AND/OR MODIFY PORTS
This command allows the user to display and/or modify any of the possible 256 I/O
ports. The reader should note that some ports are output only and cannot be read.

6.4.13.1 FORMAT

:P aat Di spl ay port aa.

6.4.13.2 DESCRIPTION
The user enters the command identifier P fall owed by the port address aa and a
terminator. MITE-80 DEBUG responds by printing the port address and the value at
the port. If the value at the port is to be changed, the user enters the new
value. The new value entered is a 2 hexadecimal digit operand. When the user is

6-28

examining and/or modifying a port, the terminator signals the action MITE-80 DEBUG
is to take.

6.4.13.3 EXAMPLE

:P D1<CR>

D1 FF CF'"

D1 CF '"

DO 00 AAA

DO AA •

Program PIO Port 1AH (D1H) for BIT MODE.

CFH sets 1A Control (D1H) to BIT MODE. Port D1 is output
only.

Displays same port with new value.

Output value AAH to Port DOH, then re-examine port.

Exi t the P command.

For additional information on terminator options and other examples, refer to the
FLP-80DOS Operation Manual.

6.4.14 Q COMMAND, QUIT
The quit command is used to exit MBODDT and reboot the FLP-80DOS Monitor.

6.4.14.1 FORfvlAT

:.Q.

6.4.14.2 DESCRIPTION ,
The user enters Q to exit. The Monitor prints the reboot message.

6.4.14.3 EXAMPLE

:Q <CR> exit MITE-80 DEBUG.

6-29

MOSTEK FLP-80DOS VX.X (DATE)

$

Monitor reboot message
Enter Monitor (Monitor prompts with $).

6.4.15 R COMMAND, DISPLAY CPU REGISTERS

The display CPU registers command allows the user to examine the contents of all
user registers to the console.

6.4.15.1 FORMATS

:R t

:R 1t

6.4.15.2 DESCRIPTION

Print the contents of the CPU registers.

Print a heading to label the CPU registers on one line,

on the next line print the contents of the CPU registers.

Print a headi ng to 1 abel the CPU regi sters and set the
long/short flag as follows: x=O SHORT, x=1 LONG. Long

causes all regi sters to be printed after breakpoint and
single step. Short causes only PC and AF to be printed.

The LONG/SHORT FLAG rerna ins set until changed by the • R'
command.

The user enters the command identifier R. If the user wants a heading to be

pri nted that 1 abel s the regi ster contents, the operand of 1 needs to be entered.

If no heading is desired, then no operand is entered. If the '0' canmand has been

used to set an offset, the relative PC is also printed.

6.4.15.3 EXAMPLES

: R <CR>

AOOO 0100 0104

R 1 <CR>

Display contents of CPU registers.

CFB3 C09A FFEE EDF6 9C3E C3DC FE9B D6ED F1BE FFB4

Display contents of CPU registers with heading.

6-30

PC AF I IF BC DE HL AIFI BIC I DIEI HILI IX IY SP

AOOO 0181 0104 CFB3 0010 C09A FFEE EDF6 C3DC FE9B D6EC F1BE FFB4

For further information and examples, refer to the FLP-80DOS Operation Manual.

6.4.16 V COMMAND, VERIFY MEMORY

The Verify command allows for the comparing of bJO memory blocks to detect any

differences.

6.4.16.1 FORfvlAT

:~ aaaa,bbbb,cccct

6.4.16.2 DESCRIPTION

Compare memory location aaaa to bbbb with the

memory starting at cccc.

The user enters command identifier V followed by the starting address aaaa and en

ding address bbbb, followed by the starting address cccc of the second memory

block. The operands are separated by commas or blanks. Upon terminating with a

carri age return, every address from aaaa to bbbb is compared with the cor

responding address starting at cccC. Any discrepancies are printed on the console

(address data address data). When the cornpari son is corilpl ete, MITE-SO DEBUG

prints a line feed and a colon 11,11 to indicate that it is ready to accept another

command.

6.4.16.3 EXAMPLES

:~ O,FF,1000<CR)

0000 AA 1000 BS

0038 55 1038 54

Compare every location from OH to FFH inclusive with

locations starting at 1000H. All differences are dis

played on the console.

6-31

6.4.17 W COMMAND, WALK THROUGH A PROGRAIYJ

The walk command, also known as software single-step, allows stepping through a

program which is contained in RAM. The user's registers are saved and displayed

a fter each step.

6. 4. 1 7 • 1 FOR MA T

:..\i aaaa,nn,xxxt

6.4.17.2 DESCRIPTION

Begin software single-step at address aaaa, for nn

steps, xxx = HD requests register heading.

The user enters the command identifier W followed by the starting address aaaa,

the number of steps to take nn, and the options operand xxx. The operands are

separated by canmas or blanks. Upon terminating with a carriage return, MITE-80

DEBUG begins "wal ki ng" through the user's program (RAM resident). After each step

the user's registers are displayed (See 'R' command). When nn steps have been

taken, MITE-BO DEBUG waits for the user to enter a carriage return, line feed,

space, or a period ".". A carriage return causes the next instruction to be

executed and wait again for input. A line feed causes a register heading to be

printed before the register print out. A space causes single stepping to continue

for 256 instructions or until another space is entered to stop stepping. If nn is

omitted, the default is!. If aaaa is omitted, the 1 ast val ue of the user's

program counter (:PC) is used to begin "walking". The stepping may always be

stopped by entering any of the characters described above. When the address

entered is relative, the PC' is also printed (relative PC).

Restrictions to W Command:

1. Only operates with programs in RAM.

2. Cannot CALL or RESTART to an address one or two locations prior to the

CALL or RESTART.

3. Walking through self-modifying code will generally not work.

6-32

6.4.18 X COMrvlAND, DUPLICATE OUTPUT TO PRINTER DEVICE The dupl icate command allows

the dupl icati ng of MITE-80 DEBUG output to console to al so be outputted to the

printer. This command is useful when outputting a snap shot (J Command) or

history table (0 Command) results.

6.4.1S.1 FORt~AT

:X t

:X t

Duplicate output to printer device along with console de

vice.

Output to console device only.

6.4.1S.2 DESCRIPTION

The user enters the ccxnmand identifier X followed by the terminator of carriage

return. MSODDT will then dupl icate all consol e device output to the printer de

vice as well if the console device was last designated for output only. If the

console device and printer device were last designated for output, then output

~vill be limited to the console device only. The output duplicate capability is

useful for dumping large amounts of output from commands such as J (Snap Shot) or

D (History Table), or M (Memory). The X COllflland would be entered just prior to

the canmand which will produce the large output, and then the X command is entered
,

again after output to limit output back to the console device.

DEBUG, the output is always defaulted to the console device.

On loading MITE-SO

I f 0 ut put i s 9 i ve n

to the printer device and the device is off-line, the console device will beep for

5 seconds. If the user does not bring the printer device on-l ine within the 5

seconds, the output will be automatically switched to the cansol e device.

6.4.1S.3 EXAMPLE

Input Output

Device Device

C C

C C

C C&P

(C = Console)

(P = Printer)

:B <CR> ---
: X <CR> ---
:D 15<CR>

Remove all breakpoints.

Duplicate output to printer device.

Display last 21 (decimal) history table ent

ries.

C

C

C&P

C

: X <CR)

:~ LTA,MSRET<CR)

6.4.19 PROGRAMMING NOTES

6-33

The hi story tabl e is output to the pri nter

and console

Limited output to console device.

Breakpoint on MSRET for task name ITAI.

The following is a list of items in MITE-SO DEBUG that could affect a program the

user is writing and debugging:

The user stack pointer is set by ~HTE-SO DEBUG on power,:-up and reset (SP=FFAAH).

MITE-SO DEBUG uses 6 locations on the userls stack for temporary storage when

transferring control to a user program (E canmand). The user l s stack is left

unaffected and the stack pointer points to the correct val ue. The user needs to

be aware that 6 locations past the stack pointer are used.

When a breakpoint (B or K canmand) has been entered and not encountered while

running the program, the user must press reset to regain control. MITE-SO DEBUG

must be reloaded into RAM if the reset button is used. The breakpoint must be

cleared by executing the address at which the breakpoint was inserted or by typing

"B"<CR).

To cl ear a program of all breakpoi nts, the user must remember that MITE-SO DEBUG

has 2 different breakpoint commands, Band K, and that both must be individually

cleared.

6-34

M80DDT can be re-entered after depressing the RESET button if there was no disk in
drive 0 and the resident ODT-80 printed 'OSK ERR'. To re-enter M800DT enter:

.E XBOB<CR>

Where X is 2. 6. A. or C for the 16K. 32K. 48K. and 64K version respectively of
M800DT. This allows the use of the M. J. and 0 commands to examine the state of
MITE-80 immediately before the RESET button was depressed. NOTE: do NOT attempt
to execute from this point without rebooting.

7-1

SECTION 7

CONFIGURATION REQUIREMENTS

7.1 OVERVIEW

This section outlines the requirements for configuring a MITE-80 system. The

areas covered include memory requirements, initialization requirements, user

specified configuration parameters, and MITE-8U macros.

7.2 MEMORY REQUIREMENTS

In order to compute the memory required for a MITE-80 system, the user must first

itemi ze all the software modul es which will compri se the system such as MITE-80

nucleus, user tasks, utilities, device drivers, TCBs, MBs, and stack areas.The

determination of RAM or ROM program residency must also be made. Specific MITE-80

memory requirements follow and are outlined in ROM for program requirements and in

RAM for volatile requirements. However, the ROM area can be a RAM area

requirement if the user's application is an all RAM configuration.

7.2.1 MITE-80 NUCLEUS

The MITE-80 nucl eus requires the foll owi ng memory area:

ROM = 500 bytes

RAM = 14 bytes

The ROM area provides the memory necessary for all of the system services. The

RAM area provides the memory necessary for the executive's current system state

information needs. MITE-80 can reside anywhere within the 64K address range of

the Z-80.

7.2.2 USER TASKS

User tasks are tasks which perfonn the user's appl ication functions. These tasks

7-2

can reside in either RAM, or ROM, or a combination of both. Tasks are readily

identifiable to MITE-80 by their TCB. Tasks require MBs in order to communicate

to other tasks.

7.2.3 UTILITIES

Util ities are modules Hhich are directly callable from a task. That is, an MB is

not required to be used either to communicate with the task or to identify it to

the system. Util ities perform a user specified function. Utilities can reside in

ROM, or RAM, or a combination of both.

7.2.4 DEVICE DRIVERS

Device drivers are tasks which provide interface and operation to a peripheral

device and the user's tasks. The drivers can reside in either RAM, or ROM, or a

combination of both. MOSTEK supplied drivers are tasks and follow the TCB and MB

rules. For user designed drivers, it is recommended that a task design approach

be followed since priority levels can be easily changed as user application

development conditions change.

7.2.5 TASK CONTROL BLOCK

Each task residing within the MITE-80 system must have a TCB. TCBs must reside in

RAM. An i nit i al i zat ion process or a task can construct or trans fer a TCB from ROM

to RAM. The size of a TCB can vary from task to task. However, the minimum TCB

size is 10 bytes. Any additional TCB bytes are defined by and dependent on the

specific task.

7.2.6 MESSAGE BLOCK

All inter-task communication is performed using an MB. MBs must reside in RAfil. A

task can construct or transfer an ~1B from ROM to RAM prior to call ing a system

service. The size of an MB can vary from MB to MB. However, the minimum MB size

is 8 bytes. Any additional MB bytes are defined by and dependent on the specific

task's application. The total amount of RAM required is the total number of bytes

of all the MBs which will be active in a system at any given time. Care should be

taken when calculating the total MB memory size. MBs which are known will be

inactive while others are active until their process is complete can share the

same memory area. The resultant memory si ze can then be less than the total of

all MBs. The MB RAM size need only be as large as the maximum number of MBs

7-3

active at any given time.

7.2.7 STACK

Each task must have a stack area. The stack must reside in RAM. The si ze of each

stack is dependent on the task's needs for nesting levels. However, the minimum

stack size is 16 bytes. This area is used by MITE-80 for register saving on

context switchi ng and for regi ster savi ng duri ng interrupt occurrences. Care

should be taken when calculating the total stack size. Tasks can not share stack

areas. The total stack size is the sum of all the individual task's stack sizes.

7.3 TCB MACROS

To assist the user in configuring TCBs, 2 macros are provided: MTCB and ETCB. The

MTCB mac ro wi 11 bui 1 d a TCB from user speci fi ed parameters at the macro defi ned

location. ETCB macro will build a TCB from user specified parameters and will

also build code to transfer the TCB from ROM to RAM. This latter macro is recom

mended for use during initialization processes as it will queue the TCB into the

MITE-80 system for the user. Both TCB macros require the use of MOSTEK's MACRO-80

Assembler.

7.3.1 MTCB MACRO

This macro builds a TCB from user specified parameters starting at the location

where the macro is used.

7.3.1.1 FORMAT

MTCB NAME,RS,PR,STKS,EP,[IX],[AF],[BC],[DE],[HL],[IY],[AF'],[BC'],[DE'],[HL']

7-4

The parameter fields are:

NAME

RS

PR

STKS

EP

IX-HL'

the name of the task, in 2 ASCII characters beginning with a
non-numeric character or a valid decimal or hexadecimal constant.

the register set used in the task, M for main register set only,
or A for full (all) regi ster set. If thi s parameter is omitted,
M is assumed.

the priority of the task. If this parameter is omitted, the
priority of the creating task is assumed.

the stack size of the task, in hexadecimal or decimal.

the task entry point address.

initial values for registers IX through HL' (optional).

If any of the parameters are incorrectly specified, an error message will be

pri nted. The TCB wi 11 still be bui lt with any val id parameters. For those para

meters in error their field entries will have zeroes.

7.3.1.2 EXAMPLE A

For a task name of TA using the main register set, a priority of 25, a stack size

of 100 bytes, and which is to begin execution at the label f1ENTRyfl, the macro

would be coded as:

MTCB TA,M,25,100,ENTRY

The resultant assembly code would be:

Assembly Code User Parameter

DEFS 100-16

TOOO1 DEFW 0

DEFW a
DEFW 0

DEFW 0

DEFW 0

DEFW ENTRY ENTRY

TeBTA DEFB 005H M

TeB Field

Stack s; ze Ill; nus fila; n regi ster

set area.

Initial main register set up

Task entry poi nt

Status

DEFB 033H
DEFW OOOOOH
DEFW OOOOOH
DEFW TOOO!
DEFM ITAI

7.3.1.3 EXAMPLE B

25

TA

Priority (25 * 2 + 1)
Link
Message Pointer
Stack Pointer
Task Name

7-5

For a task name of 4F7CH using the entire register set, a priority of 65, a stack
size of 40H bytes and which begins at the label "BEGIN", the macro would be coded
as:

MTCB 4F7CH,A,65,40H,BEGIN

The resultant assembly code would be:

Assembly Code

DEFS 040H-22

Toa01 DEFW a

DEFW BEGIN

TCB4F7CH DEFB 00lH
DEFB 083H
DEFW OOOOOH
DEFW OOOOOH
DEFW TOOO1
DEFW 4F7CH

7.3.1.4 PROGRAMMING NOTES

User Parameter

40H

BEGIN

A

65

4F7CH

TCB Field

Stack size minus full set area
reserved

Task Entry Point

Status
Priority (65 * 2 + 1)
Link
IvJessage Pointer
Stack Poi nter
Task Name

The MTCB macro should not be used to define a TCB which will initially reside in
ROM.

7-6

If the task requires no pre-defined values in its registers prior to the task ex
ecution, then these need not be concer·ned with the macro call. However, the
Program Counter (parameter EP, entry point) MUST be set-up in the macro call.

7.3.2 ETCB MACRO
This macro builds a TCB from user specified parameters and also creates code which
when executed will transfer the TCB from ROM to RAM. The code generated can be
part of a user's initialization program. An initial Tasks stack contents are also
built from user specified parameters. To install a task defined by an ETCB macro,
the user must execute the macro (i.e. the ETCB macro generates the instructions
necessary to create and install the task).

7 .3.2.1 FORr~AT

The parameter fields are:

ADDR address of RAM to load TCB ROM image.

NAME the name of the task, in 2 ASCII characters begi nni ng with a
non-numeric character or a valid decimal or hexadecimal constant.

RS the register set 'used in the task, M for main register set only,
or A for full (all) register set. If this parameter is omitted,
M is assumed.

PR the priority of the task. If this parameter is omitted, the
priority of the creating task is assumed.

STKS the stack size of the task, in hexadecimal or decimal.

EP the task entry point address.

IX-HL' initial values for registers IX through HL' (optional).

7-7

If the task does not require initial values in the registers, then the optional

parameters need not be specified. If only certain registers require initial

val ues, only their val ues need be specified. However, the proper parameter

positions must be adhered to by using commas (,) to separate them, incl uding any

non-specified ones.

If any of the parameters are incorrectly speci fed an error message ~'Iill be

printed. The TCB \vi11 still be built with any valid parameters. For those

parameters in error their field entries vJill have zeros. Also, entries which are

not specified will have their entry set to a default val ue of zero. Trail ing

parameters, however, \'/ill NOT have their entries set to zero if they are omitted.

7.3.2.2 EXAMPLE A

For a task to be loaded at address lOOOH and with a name of LT using the rnai n

register set, a priority of 30, a stack length of 32, an entry point of LTEP, with

an initial register values of IX = IOVECT, BC = 4752H, and IY = IbUFF, the macro

would be coded as:

ETCB lOOOH,LT,M,30,32,LTEP,IOVECT"4752H,,,IBUFF

The resultant code generated by the macro will transfer the specified TCB and

stack contents from ROM to RAM starting at the RAM address specified by address

parameter. Once the TCB and stack are transfered into RAM, the TCB will be

installed into the MITE-30 TCB queue.

7.3.2.3 EXAMPLE B

Multiple ETCB macros can be defined in succession and will occupy the RAM area

immediately following the last RAM location used from the previous macro. A

task IS TCI) and stack area will occupy a RAM area di fferent from the 1 ast defi ned

address contained in ADDR, then ADDR can be re-initialized v/ith the new desired

RA~J transfer address. An exampl e foll ows:

7-8

ETGB 4000H, • • • •

ETGB

ETGB

, . . .
6000H, ••••••

Task A

Task B

Task C

In the above code sequence, Task A IS TCB and Stack contents will be transfered to

RAM starting at RAM location 4000H. Task Bls TCB and stack contents will be

transfenj to RAM starting at the next available RAM address after the end of Task

Als TCB. Task CiS TCB and stack pointer will be transfered to RAM starting at RAM

1 ocat ion 6000H.

7.4 TASK INSTALLATION

The following procedures will serve as a guideline for those users electing to

install a task into the MITE-80 system with their own designed code as opposed to

the ETCB Macro generated code. A TCB must first be created either by direct

cadi ng or by the use of the MTCB Macro. The TCB must then be transferred into

RAM. The TCB is then installed into the MITE-80 system by sending it to the MITE-80

TCB queue as follows:

LD

LD

CALL

DE,~i8TCBQ

BG,<TCB Address>

M8SN

;MITE-80 TCB QUEUE ADDRESS

; liTO BE INSTALLEDJI TASK IS TCB ADDR

Note that in thi s code sequence the MITE-80 Send Message Serv ice is used to

install the task. The MB Address is the to be install ed task IS TCB address, and

the Receiver Pointer is the MITE-80 TCB Queue adddress (M8TCBQ).

Care must be exerci sed when install i ng a task. The task I s stack must al ready be

installed in RAM (refer to STACK INSTALLATION paragraph which follows).

7.5 STACK INSTALLATION

The following procedures will serve as a guideline for those users electing to

install a task l s stack with their own designed code as opposed to the ETeB ~lacro

generated code. The initial stack contents must be loaded into the proper stack

7-9

locations in order to assure proper register set-up at task run time. This order

is important since MITE-SO pops the registers off the taskls stack prior to
providing CPU control to the task. To assist the user, the following table

provides a referenced stack label offset to the corresponding register position:

Stack Pointer Offset (Decimal)
Main Set Only Full Set Register Position

- + 0 LI

- + 1 HI

- + 2 EI

- + 3 DI

- + 4 CI

- + 5 8 1

- + 6 FI

- + 7 AI

+ 0 + 8 IY 1 east significant byte
+ 1 + 9 IY most significant byte
+ 2 +10 L
+ 3 +11 H
+ 4 +12 E
+ 5 +13 0

+ 6 +14 C
+ 7 +15 B

+ S +16 F

+ 9 +17 A
+10 +lS IX least significant byte
+11 +19 IX most significant byte

+12 +20 PC least significant byte
+13 +21 PC most significan byte

Note that since the ZSO uses a push down stack concept, the initial stack pointer

(that is the initial value loaded into the Task TCBls SPTR field) will be pointing
to the IY registers least significant byte if only Main Register set is used, or

the LI register if the full register set is used.

7-10

If a task does not require any initial register values to be set-up, then the user
need not be concerned with their set-up procedures. However, the PC value is the
minimum stack installation the user MUST perform. The PC value will contain the
task's entry point. The entry point is the first location where CPU execution
will begin when MITE-80 gives CPU control to the task.

7.5.1 EXAMPLE
To initialize a stack with a PC of entry point TASKEP, main registers, and
registers BC = 407FH, the code sequence for stack pointer TASKSP installaton would
be:

LD
LD
LD
LD

HL,TASKEP
(TASKSP+l2) ,HL
HL,0407FH
{TASKSP+6),HL

7.5.2 PROGRAMMING NOTES

;TASK ENTRY POINT ADDRESS
;INITIALIZE PC STACK VALUE
;INITIAL BC VALUE
;INITIALIZATION BC STACK VALUE

When installing a task, the installing task should be of a higher priority than
the to be installed task, if the installing task wants immediate CPU control
returned.

A task's stack MUST be initialized before the task's TCB is installed.

Stack initialization at minimum MUST initialize the stack's initial PC value
(Entry Poi nt).

8-1

SECTION 8

MEMORY POOL MANAGER

8.1 INTRODUCTION

This section describes how to configure and use the MITE-80 r~emory Pool Manager

software module. This Memory Manager provides a way to allocate and deallocate

different size memory blocks from a various number of memory pools. Application

uses of memory pools are buffer areas, temporary storage, and Message Blocks or

TCBs.

8.1.1 FEATURES

A. Provides central control over memory pools.

B. Allows up to 252 pools.

C. Each pool can have a different size memory block.

D. Up to 256 bytes allowed per memory block.

E. Unlimited number of memory blocks allowed for each pool.

8.1.2 SOFTWARE CONFIGURATION

The Memory Manager operates as a user callable routine. It is re-entrant and can

be used by as many tasks as the user has configured into the MITE-80 system. The

routines are provided in relocatable object format, and as such can reside at any

user desired memory location. This module consists of the following programs:

A. f~8MMAL - Allocate a block of memory from a given pool to the caller.

S-2

B. MSMMDE - De all ocate a block of memory fran the call er and return it

to the appropriate pool.

C. MPOOL A system generation MACRO to assist the user in defining and

developing the desired number of pool's and the desired

block size within each pool. The macro requires the use of

MOSTEK's MACRO-SO Assembler.

The amount of memory required by the Memory Manager is dependent on the number and

types of pools configured. The following equations can be used to calculate the

RAM and program memory sizes required of a specific user configuration:

For Program Memory:

Total Bytes = 121 + (3 x Number of Pool s)

For RAM Area:

Total Bytes = (6 x Number of Pools)

S.I.3 POOL CONFIGURATION

+ (Pool #1 Block Size x Pool #1 Number of Blocks)

+ (Pool #2 Block Size x Pool #2 Number of Blocks)

+ (Pool #3 Block Size x Pool #3 Number of Blocks)

+
+ (Pool #N Block Size x Pool #N Number of Blocks)

A memory pool is a contiguous area of memory. A Memory block is a contiguous area

of memory within the pool. Multiple blocks of the same memory size comprise a

memory pool. A memory block size can range from 4 to 256 bytes, and the number of

blocks within a pool is limited only by user allotted memory. Multiple pools are

pennitted and each pool should have a different block size. However, all blocks

within a pool must have the same block size. The number of pools allowed is

1 irnited to 252 pool s.

8-3

8.2 CALLING CONVENTIONS

The fonnat ~ descri pt ion ~ and exampl es of how to allocate and deall ocate a memory

block from a user program are outlined in this section. Two user calls are

prov i ded for memory pool access;

M8MMAL - all ocate a memory block from a pool.

M8MMDE - deallocate a memory block back to a pool.

8.3 t~8MMAL - ALLOCATE MEMORY

8.3.1 FORMAT

The calling sequence is:

LD BC~ <Number of bytes desi red>

CALL M8MMAL

The Service will return:

HL = address of block or OOOOH

Z flag = reset if available~ set if unavailable

8.3.2 DESCRIPTION

The M8MMAL Service will search for an avail able memory block from a pool whose

block size is equal to or greater than the caller's requesting size~ and return

the address of the allocated memory block if one is available. The Service will
,

search all pools starting with the pool being closest in memory block size to the

request until an available block is found or until no more pools exist. Registers

BC must contain the number of bytes~ in binary~ desired to be allocated. On

return~ registers HL will contain the starting address of the memory block

allocated to user~ and the Zero Flag will be reset. Otherwise if no memory block

is available~ then registers HL will be zeroed and the Zero Flag will be set. The

Memory Manager uses 10 bytes of the calling task's stack for register saving. All

registers are preserved with the exception of HL and the Zero Flag.

8-4

8.3.3 EXAMPLE A
To request a memory area of 32 bytes the code sequence would be:

LD BC~00020H

CALL M8MMAL
JR Z~NBA

;Set-up memory request for 32 bytes
;Request memory block allocation
;Jump if no block available

Note in this example that on return the Zero Flag was checked for block
a vail ab i 1 i ty •

8.3.4 EXAMPLE B
To request a memory area of 253 bytes the code sequence would be:

LD BC~OOOFDH

CAll M8MfvlAl

JR Z~NBA

8.3.5 PROGRAMMING NOTES

The stack of the calling task MUST have 10 bytes available for use by the M8MMAl
Service.

It is recommended that the calling task always check for memory block availability
on return from Service.

A Task using the allocated memory block fvlUST limit the use of the memory block to
the area within the requested size.

The address range of Memory Block allocated is the starting address (Hl register
on return) plus the request size - 1.

8-5

8.4 M8MMDE - DEALLOCATE MEMORY

8.4.1 FORlYIAT
The calling sequence is:

LD HL,<allocated memory block address>
LD BC,<original number of bytes requested>
CALL M8MMDE

The Service will return:

Z flag = reset (0) if deal location successful, set if unsuccessful.

8.4.2 DESCRIPTION
The M8MMDE Service will return a memory block back to the proper memory pool. The
deallocated memory block will then be available for use by another task. Reyisters
HL must contai n the memory block address all ocated by the M8MMAL Service and the
BC registers must contain the original number of bytes requested when the MSMf'tlAL
Service was called. On return the Zero Flag will be reset if the deallocation was

successful. Otherwi se the Zero Fl ag will be set to indicate an unsuccessful
deall ocat ion (thi s can result from a bad parameter bei ng passed). The Memory
Manager uses 10 bytes of the calling task's stack for register saving. All
registers are preserved and restored with the exception of the Zero Flag.

S.4.3 EXAMPLE A
To Return an allocated memory area of 32 bytes at address 4CAOH, saved at
temporary location MBSAVE, the code sequence would be:

LD HL, (r~BSAVE) ;Set-up all ocated memory block address.

LD BC,00020H ;Set-up original byte count requested.
CALL MSMfvlDE ;Return memory block.

JR Z,DEFAIL ;Check if deal location failed.

Note in this example that on return the Zero Flag was checked for deallocation
fa i 1 ure.

8-6

8.4.4 PROGRAMMING NOTES

The stack of the call i ng task MUST have 10 bytes avail abl e for use by the M8MMDE

Serv ice.

It is recommended that the call ing task al ways checks for deallocation fail ure on

return from Service.

A deallocation failure can occur fran not providing the original allocated memory

block address and the original number of bytes requested from the M8MMAl Service.

8.5 M8POOl - MACRO

A macro is provided to assist the user in defining and developing memory pools.

The macro will produce the specified number of pools and blocks along with its

internal parameter requirements. The macro requires the use of tile MOSTEK

MACRO-80 Assembler.

8.5.1 FORMAT

M8POOl Size1.Block1.Size2.Block2.Size3.Block3 ••••• SizeN.BlockN

Where: Size1 size of blocks for first pool

Block1 - number of blocks in first pool

Size2 - size of blocks for second pool

Block2 - number of blocks in second pool

Size3 size of blocks for third pool

Block3 - number of blocks in third pool

SizeN - size of blocks for Nth pool

BlockN - number of blocks in Nth pool

8.5.2 DESCRIPTION

The M8POOl macro will produce the specified number of pools with their respective

8-7

block sizes all in one contiguous memory pool area. If multiple pools are
specified, then all of the pools will be located in one contiguous memory area.
The size parameters must be non-repeating, in ascending order, and in the range of
4 to 256. The block parameters must be a val ue greater than O. If not, then the
size is ignored and that pool is not generated. Macro errors will result if
illegal conditions are specified.

8.5.3 EXAl"lPlE A
Correct use of macro is:

M8POOl 16,14,64,2,256,10

This will create 3 pools;
the first with 14 blocks of 16 bytes each,
the second with 2 blocks of 64 bytes each,
the third with 10 blocks of 256 bytes each.

Using the equation provided in the SOFTWARE CONFIGURATION Section, the total RAM
area required for these pools would be:

18 = 6 x 3 for (6 x Number of Pool s)
+ 224 = 16 x 14 for (Pool #1 Block Size x Pool #1 Number of Blocks)
+ 128 = 64 x 2 for (Pool #2 Block Size x Pool #2 Number of Blocks)
+ 2,560 = 256 X 10 For (Pool #3 Block Size x Pool #3 Number of Blocks)

2,930 = Total RAM bytes required

8.5.4 EXAMPLES B
Incorrect uses of macro is:

M8POOl 16,4,64,2,32,12

The Size parameters are not in ascending order.

M8POOl 16,8,64

8-8

An invalid number of parameters is specified.

8.6 POOL CONSTRUCTION

To construct a pool or pools in a system, the user should follow this example

procedure:

INCLUDE MPOOL

ORG 04000H
M8POOL 16,12,32,4,64,8,128,8

The above sequence of code will create 4 pools starting at location 4000H.

9-1

SECTION 9

T I MER HAND LER

9:1 INTRODUCTION

This section describes how to configure and use the MITE-80 Timer-Handler Software
Module. The Timer Handler provides a means to time events using the MK3882 Counter
Timer Circuit (CTC) Chip. Appl ication uses of the timer are event timeouts and
watchdog alert timeouts.

9.1.1 FEATURES
The Timer Handler features are:

A. Multiple tilner handling capability.
B. User specified timer tick rate.
C. Control of 1 or multiple MK3882 CTC Chips.
D. Time range of 12.8 milliseconds to 13.98 minutes
E. Post interrupt event option on time-out occurrence.
F. Cyclic timer option on time-out occurrence.

9.1.2 SOFTWARE CONFIGURATION
The Timer Handler operates as a task executing under MITE-80.
communi cate with the Timer Task by use of a Message Block (MB).

User tasks
The Handl er is

provided in relocatable object format, and as such can reside at any user desired
memory location. This module is named M80TH. Thernodule is re-entrant and can
control multiple CTC channels.

The macro file M80SYS.MAC contains two I,lacros to assist the user in defining the
Timer Handler's Task Control Block:

A. MTHTCB - a system generation macro to assist the user in defining
and developiny the Timer Handler's leB in RAM.

9-2

B. ETHTCB - a system generation macro to assist the user in defining

and developing the Timer Handler's TCB as a ROM based

skeleton which is copied RAM at execution time.

The Timer Handl er requires an MK3882 CTC chi p for t imi ng purposes. The Timer

Handler can accOOlmodate any number of CTC chi ps with from 1 to 4 timer channel s

active within each chip. Each timer channel requires its own Timer Handler TCB

which can specify a different timer count rate. The tick rate is fixed at 12.8

milliseconds. This rate combined with 2 other user specified parameters (timer

rate and delay count) can produce a maximum delay time of 13.98 minutes. Ap

pl ications requiring time delays greater than the maximum delay will have to use

an additional counter which is maintained and kept by the Task requiring the

capabi 1 ity.

9.1. 3 MEMORY

The memory requi red by the Timer Hand 1 er is 195 bytes of program area and a

minimum 66 bytes of RAM area. The program area is for the timer initialization

and Timer Handler. The RAM area is for the timer handler's TCB and stack. Each

additional Timer Handler TCB requires 18 bytes of RAM plus 20 bytes for a stack.

9.2 CALLING CONVENTIONS

The format, descri pt ion, and exampl es on how to set- up a timer MB and use of the

timer handler are outlined in this section.

9.2.1 TIMER MESSAGE BLOCK

Tasks requiri ng use of the Timer Handl er communicate with it by an MB. The Timer

Handler MB format is:

9-3

Field # of
Bytes Offset Name Field Data Type Source

1 1 0 STAT Status Binary User

2 1 1 PRIO . Priority Bit Encoded User

3 2 2 LINK Next fvlB Addr Binary MITE-30

4 2 4 RPTR Timer Handl er Bi nary User
Pointer

5 2 6 SPTR Sender Pointer Binary User

6 1 7 RQST Request Code Bit Encoded User

7 1 3 PERD Period of Binary User
time

Field numbers 1 through 5 represent the standard MB format and fields 6 and 7 are

the timer handler's data field. Each field is further defined as follows:

9.2.1.1 STAT

The Status byte (STAT) is used by the Timer Handler for keeping record of the

remaining timer delay counts for this specific MB request. The user provides this

val ue, range of 01H (for 1 tick) to FFH (for 255 ticks) and OOH (for 256 ticks),

and the timer handler will decrement the count once for each timer rate count.

The total delay time is:

Del ay Time = Number of Delay Count s (STAT Fi el d) x Timer rate count.

Refer to the MTHTCB MACRO paragraph of this section for information on the timer

rate count.

9.2.1.2 PRIO

The Priority byte (PRIO) contains user provided information on where in the timer

9-4

handl er l s message queue thi s MB is to be pl aced. Refer to Section 3, Data

Structures, for additional information on the Priority byte.

9.2.1.3 LINK

The Link word (LINK) is used by MITE-80 to link the MB into the task's message

block queue.

9. 2. 1. 4 R PTR

The Receiver Point word (RPTR) is the task name the user has assigned the Timer

Handler TCB. For example; TH, TO, n, etc. This field contains the TCB address

of the Timer Handler.

9.2.1. 5 SPTR

The Sender Pointer word (SPTR) is the task name of the sending task's TCB. This

field contains the TCB address of the sending task.

9.2.1. 6 RQST

The Request Code byte (f{QST) is the user-specified timer option which is to be

used for this timer service request. The Request Code determines what action the

Timer Handler is to take with the MB when the STAT byte (delay count) becomes

zeroed, and \'Jhat type of return service is to be used. There are 3 Request Code

options and are:

Request Code Time-uut Acti on

OOH M8CAN and IVj8RET

OlH M8CAN and M8PINT

02H M8PINT

Request Code OOH. When delay timeout occurs, this request code will cause the

Timer Handler to cancel the MB time request and return the MB to the sending task.

Request Code OlH. When delay time-out occurs, this request code will cause the

Timer Handler to cancel the MB time request and post an interrupt event complete

status for the sending task.

9-5

Request Code 02H. When del ay time-out occurs. thi s request code will cause the

Timer Handler to RESET the MB's FIFO bit and to post an interrupt event complete

status for the sending task and will restart the delay time-out for the period

specified in the PERD field (Period). Tasks using this request code MUST perform

a M8WINT before delay time-out occurs. This sequence will be repeated every time

a delay time-out occurs until the sending task cancels the MB from the Timer

Handler's MB queue.

9.2.1.7 PERO

The Period byte (PERO) is required only if Request Code (RQST) of 02H is used.

This field is used by the Timer Handler to reload the STAT field (delay counts)

when delay time-out occurs. This user specified value is the new delay time-out

value to be used whenever the delay time-out occurs. The Period value range is

01H. 02H •• • FFH. OOH.

The delay time is:

Delay Time = Period (PERD) x Timer Rate Count

9.3 USING THE TIMER TASK

To use the timer task, a using task must first construct an MB to be sent to the

Timer Task. Thi s MB can either be contructed in RAM or al ready exi st in ROM and

be transferred to RAM. The MB is sent to the Ti mer Task, just as any MB is sent

between tasks.

9.3.1 FORMAT

The calling sequence is:

LD DE.<Timer TCB address>

LD BC.<MB address>

CALL M8SN (or M8SNW)

9-6

9.3.2 DESCRIPTION
The calling sequence is identical to that used for sending any MB to a task. The
M8SN or M8SNW Service can be used. CPU control will be returned to the call ing
task if M8SN Service is used and it is still the highest priority ready task. Care
should be taken when specifying the time-out delay value since a tick down count
could occur moments after the MB is sent to the Timer Handler Task. An additional
delay count of 1 should be added to the desired delay time-out value to guarantee
a minimum delay (STAT or PERD fields).

9.3.3 EXAMPLE
To use a timer service of return MB when a minimum delay time-out of 1 second
occurs (assume timer count rate of 51.2 milliseconds) the MB would be:

TMB DEFB 21 STAT - DELAY COUNT OF ABOUT 1 SECOND
DEFB 03CH PRIO - OF 30
DEFW OOOOH LINK
DEFW TCBTH RPTR - TIMER HANDLER TASK'S TCB
DEFW EWTCB SPTR - ERROR WATCHDOG TASK'S TCB
DEFB 0 RQST - RETURN MESSAGE UPON TIME-OUT

The total delay time is:

Delay time = 21 x 51.2 = 1075.2 milliseconds.

The delay count of 21 was determined by:

1 second/51.2 milliseconds = 19.53 counts or 20 counts.

An additional 1 count (51.2 milliseconds) is added to guarantee a minimum timer
delay of 1.024 seconds and a maximum delay of 1.0752 seconds. The result is a
delay count of 21.

The program code sequence would be:

LD DE, TCBTH
LD BC,TMB

TIMER HANDLER TASK
TIMER MESSAGE BLOCK

9-7

CALL MSSN SEND MB TO TIMER

9.4 MTHTCB MACRO
A macro is provided to assist the user in defining and developing a RA~i based
Timer Handl er TCB. The macro wi 11 produce the speci fi ed timer parameters in the
proper TCB data structure. The macro requires the use of the MOSTEK MACRO-SO As
semb 1 er.

9.4.1 FORMAT
MTHTCB NAME,TICK,VECTOR,PORT,PRIO,TMCNT

Where: NAME - the name of the Timer Handler task in 2-3 ASCII characters
or a hexadecimal or decimal number.

TICK - the timer tick rate in binary from 01 (for 1 tick) to FFH
(for 255 ticks) and OOH (for 256 ticks) with each tick
equaling 12.S milliseconds. Default value is 4 for 51.2
milliseconds.

VECTOR - the Timer Handler interrupt vector value (must be even).
Default label is (NM)VECT.*

PORT - the port number for this Timer Handler in 2 hexadecimal
digits or a global label. Default label is (NM)PORT.

PRIO - the priority level at which the Timer Handler task will
execute. Default value is (NM)PRIO.

TMCNT - the time constant used to load the eTC. Default is
(NM)MD25 for the MD series 2.5 MHz system (See CTC Tech
nical Manual).

* NOTE--(NM) indicates the first two characters of the NAME parameter.

9-8

9.4.2 DESCRIPTION
The MTHTCB will produce a Timer Handler TCB from the user-specified parameters.
Each one of the parameters MUST be separated by a comma. The default value will
be used for any parameter whi ch the user has NOT speci fi ed except for the NAME
field which will generate an error. A macro error message will result if any
illegal parameter value is specified. Care must be exercised when defining
multiple timer TCBs for the same CTC Chip. The CTC Chip rules for interrupt
vector addressing (offset from first channel) MUST be adhered to. Also, the user
MUST adhere to CTC Chip port addressing (offset from first channel). Refer to the
MK3882 Counter Timer Circuit Techinical Manual for further information.

9.4.3 EXAMPLE A
To configure a timer TCB of the name TH with a tick rate of 512 milliseconds,
vector of FOH, I/O port of DCH, and at a priority of 8 for MD series 4.0 MHz, the
macro call would be:

MTHTCB TH,40,OFOH,ODCH,8,THMD40

The resultant TCB code would be:

DEFS 6

TOOOI DEFS 10 STACK AREA
DEFW TCBTH TCB ADDRESS
DEFW M80TH ENTRY POINT
DEFB OFOH VECTOR FOR 'TH' ISR
DEFB ODCH PORT FOR 'TH' CHANNEL
CALL TH?ISR

TCBTH DEFB 005H STAT
DEFB OllH PRIO OF 8
DEFW OOOOH LINK
DEFW OOOOH MSG BLK POINTER
DEFW TOOOI STACK POINTER
DEFW 'TH' TIMER HANDLER NAME
DEFB 40 TICK COUNT OF 512 milliseconds
DEFB 40 CURRENT TICK COUNT
DEFB 200 CTC TIME CONSTANT

9-9

The characters s peci fi ed in the NAME parameter are used to construct a 1 abel for

the TCB Hith the first 3 characters always being "TCB".

9.4.4 EXAMPLE B

To configure four Timer TCBs all working from the same CTC Chip whose vector

address is AOH and the port address is BCH with unique timer features as follows:

Timer 0 Timer 1

Name TO T1

Priority 5 10

Tick Rate .192 seconds .512

The macro calls would be:

MTHTCB THO,15,OAOH,OBCH,5

MTHTCB TH1,40,OA2H,OBDH,10

fvlTHTCB TH2, 235, OA4H, OBEH,30

MTHTCB TH3,l15,OA6H,OBFH,15

seconds

Timer 2 Timer 3

T2 T3

30 15

3.008 seconds 1.472 seconds

Note that in this example the Timers THO, TH1, TH2, and TH3 all adhere to the CTC

Chip·s vector and I/O port addressing offset rules.

9.5 ETHTCB MACRO

A macro is provided to assist the user in defining and developing a RAM based

Timer Handler TCB. The macro will produce the specified timer parameters in the

proper TCB data structure. The macro requires the use of the ~1OSTEK MACRO-SO

Assembler.

9.5.1 FORMAT

ETHTCB ADDR,NAME,TICK,VECTOR,PORT,PRIO,TMCNT

9-10

Where: ADDR - the address at which the timer's TCB is to be installed.

(If this parameter is missing the TCB will follow the

previ ous I E' type TCB in memory).

NAME - the name of the Timer Handler task in 2-3 ASCII characters

or a hexadecimal or decimal number.

TICK - the timer tick rate in binary from 01 (for 1 tick) to FFH

(for 255 ticks) and OOH (for 256 ticks) with each tick

equal ing 12.8 mill iseconds. Default val ue is 4 for 51.2

mill i seconds.

VECTOR - the Timer Handler interrupt vector val ue (must be even).

Default label is (NM)VECr.*

PORT - the port number for this Timer Handler in 2 hexadecimal

digits or a global label. Default label is (NM)PORT.

PRIO - the priority level at which the Timer Handler task will

execute. Default value is (NM)PRIO.

TMCNT - the time constant used to load the CTC. Default is

(NM)MD25 for the MD series 2.5 MHz system (See CTC Tech

n i cal Ma n u a 1) •

* NOTE--(NM) indicates the first two characters of the NAME parameter.

9.5.2 DESCRIPTION

The ETHTCB wi 11 produce a Timer Handler TCB from the user specifi ed pararneters.

Each of the parameters MUST be separated by a comma. The defaul t val ue wi 11 be

used for any parameter which the user has NOT specified except for the NAr~E field

which will generate an error.

parameter value is specified.

TCBs for the same CTC Ch i p.

A macro error message will result if any illegal

Care must be exercised when defining multiple timer

The CTC Chip rules for interrupt vector addressing

9-11

(offset from first channel) MUST be adhered to. Also, the user MUST adhere to the

CTC Chip port addressing (offset from first channel). Refer to the MK3882 Counter

Timer Circuit Technical Manual for further information.

9.6 INSTALLATION

Once the Timer TCBs are contructed, they must be installed into the MITE-80 system

before any timer sevice request can be made. Install i ng the Timer Task can be

performed within a user's initialization task. The Timer TCBs can be installed

along \'Iith other TCBs as outlined in the MSTCB macro Section. If the TCB is

installed separately then the code sequence would be:

LD DE,M8TCBQ

LD BC,<Timer TCB Address>

CALL M8SN

Note that the Timer TCB must be in RAM and the Timer Handler ' s stack must contain

the Timer Task entry point in the Program Counter (PC) register locations within

the stack. The entry pOint value is loaded in the stack by the MTHTCB macro.

Since the ETHTCS is "self-installing" its TCB should NOT be installed as specified

above!

9.7 PROGRAMMING NOTES

When multiple timer Handlers are configured for the same CTC Chip, care MUST be

exercised when specifying the I/O ports and vector addresses.

Add an additional count of 1 to the MBs STAT and PERD fields for timer rate count

padding, if the timer must run for at least the specified period.

10-1

SECTION 10

MITE-80 SYSTEM FILES

10.1 INTRODUCTION

All of the system files provided on the MITE-80 diskette are outlined in this
section. A majority of the files are provided in relocatable object format, while
other files are in Z80 Assembler source format.

10.2 FI LE LIST

The filenames are as follows:

Fil ename

MITE80.0BJ
M8TCBQ. OBJ
M80TH.OBJ
M80LNK.OBJ
M8MMGR.OBJ
M80SYS.EQU
M80SYS.MAC
M80ESY.MAC
M80DUT.BIN[X]

Software Modul e

MITE-80 nucleus, relocatable object.
TCB Queue header, relocatable object.
Timer Handler, relocatable object.
MITE-80 DEBUG Linker module, absolute object.
Memory Pool Manager, relocatable object.
System equates, source.
System macros, source.
System executable macros, source.
MITE-80 DEBUG, binary.(where X=16,32,48,64).

The system routines of MITE-80, MITE-80 DEBUG, Timer Handl er, and Memory Pool
Manager have all been discussed in previous sections of this manual. The other
files are outlined as follows.

10.2.1 TCB QUEUE HEADER - M8TCBQ.OBJ

This file contains the initial MITE-80 Queue structure required to execute

10-2

MITE-80. It contains the null TCB to which all tasks are threaded.

10.2.1.1 USING r·18TCBQ.OBJ

The ~13TCBQ.OBJ file is used by linking this relocatable object file VJith the

application files. An example procedure follows:

$Ll NK APPL ••••• r~3TCBQ. • •• TO US YS

10.2.2 LINKER MODULE - M80LNK.OBJ

This ~lITE-3U DEBUG link file. ~180LNK.OBJ. provides the user application with the

required linkages for MITE-3~ debugging. This absolute object file contains the

1 inkage addresses for debug purposes of all MITE-3~ system services.

10.2.2.1 USING M30LNK.OBJ

The M80LNK.OBJ file is used by linking this absolute object file with the

application object files. An example procedure follows:

$LINK APPL ••••• M30LNK •••• TO USYS

10.2.3 SYSTEM EQUATES - M30SYS.EQU

All r~ITE-30 system equates that a user program would require are contained in one

file. M30SYS.EQU. This file is provided as a development aid and has all global

and value equates for MITE-30 references defined. This file can be included in

every user program that has references to MITE-30 services and labels. The labels

defined in the M80SYS.EQU file are reserved as MITE-3~ labels. When developing

programs. the user must use ONLY these labels for MITE-80 references in order to

. prevent multiple defined label errors from occurring.

10-3

10.2.3.1 USING M80SYS.EQU
The M80SYS.EQU file can be used as an INCLUDE file in a user program. A listing
of M80SYS.EQU is provided at the end of this section.

10.2.3.2 EXAMPLE

UlAB3

INCLUDE
GLOBAL
GLOBAL
EQU

~180SYS.EQU

ULAB1
ULAB2
OAAH

10.3 SYSTEM MACROS - MBOSYS.~AC

;MITE-BO GlOBAlS & EQUATES
;USER REQUIRED
;GLOBAlS & EQUATES

The system macro file, rviBOSYS.IViAC, contains all of the MITE-80 system macros in
ZBO assembler source format. The purpose and use of these macros has been
outlined in previous sections. All of the macros provided require the use of the
MOSTEK fvlACRO-80 Assembler. The macros provided in the M80SYS.~1AC file are:

MACRO

MTCB
MBPOOl
MTHTCB

10.3.1 USING M80SYS.MAC

PURPOSE

builds a TCB and stack
bui 1 ds memory pool
builds timer TCB and stack

REFER TO

Section 7
Section 8
Section 9

The MBOSYS.MAC file is used as an INCLUDE file in a user program.

10-4

10.3.2 EXAMPLE

INCLUDE
MTCB
MTCB

M80SYS.MAC
..........

;r~ITE-80 SYSTEM MACROS
;TCB A DEFINED
;TCB B DEFINED

10.4 SYSTEM EXECUTABLE MACROS - M80ESY.MAC

The system executable macro file, M80ESY.MAC, contains all of the MITE-80 system
macros that create executable code. The file is provided in source fonn. The
macros provided in this file are:

MACRO

ETCB

ETHTCB

PURPOSE REFER TO

Builds a TCB, stack Section 7
and installation code.
Builds Timer Handler TCB, Section 9
stack, and installation
code.

10.4.1 USING M80ESY.MAC

The M80ESY.MAC is designed to be used in an absolute program segment, and
generates executable code to transfer the TCB and stack structures from ROM/EPROM
to RAM.

10.4.2 EXAMPLE

PSECT ABS ; ABSOLUTE PROGRAM SEGMENT
ORG XXXXH ; XXXX=LOCATION OF EXECUTABLE TCSS

INCLUDE M80ESY.MAC MITE-80 SYSTEM EXECUTABLE tvlACROS

ETCB ; TCB A DEFINED

10-5

ETCB TCB B DEFI NED

10.5 MITE-80 DEBUG - M80DDT.BIN[X]

The following binary executable files contain the respective MITE-3~ DEBUG program
which will reside at the upper end of memory:

M80DDT.BIN[16] - 16K MITE-80 DEBUG SYSTEM
M80DDT.BIN[32] - 32K MITE-80 DEBUG SYSTEM
M80DDT.BIN[48] - 48K MITE-80 DEBUG SYSTEM
M80DDT.BIN[64] - 64K MITE-80 DEBUG SYSTEM

The user must load the application tasks to be debugged and then execute the ap
propriate M80DDT file for the particular user's debug system configuration.

10.5.1 EXAMPLE

$GET USYS<CR> - Application to debug

$M80DDT[x]<CR> - Execute MITE-80 DEBUG for system configuration x

APPENDIX A

MITE-SO SYSTEM EQUATES

MITE-80 EQUATES MOSTEK MACRO-80 ASSEMBLER V2.2 PAGE 1
LOC STMT-NR SOURCE-STMT PASS2 M80SYS MBOSYS M80SYS REL

COPYRIGHT 1979 MOSTEK CORP

*
* TITLE: MITE-80 SYSTEM EQUATES *
* *
* ID: VERSION 1.0 *
* *
* DATE: 20-AUG-79 *
* PROGRAMMERS: *
* PHIL MATHEWS *
* R.E. LEE *
*

16 GLOBAL CURTCB
17 GLOBAL CURPRI
18 GLOBAL CURNAM
19 GLOBAL M8TCBQ
20 GLOBAL NXTTCB
21 GLOBAL M8SN
22 GLOBAL M8SNW
23 GLOBAL M8RSN
24 GLOBAL M8RSNW
25 GLOBAL M8FWO
26 GLOBAL M8FWOW
27 GLOBAL M8RCV
28 GLOBAL M8RCVW
29 GLOBAL M8CAN
30 GLOBAL M8RET
31 GLOBAL M8RETW
32 GLOBAL M8FINO
33 GLOBAL M8WINT
34 GLOBAL M8PINT

*
36 GLOBAL RENTRY

A-I

A-2

MITE-SO EQUATES MOSTEK MACRO-SO ASSEMBLER V2.2 PAGE 2
LOC STMT-NR SOURCE-STMT PASS2 MSOSYS MSOSYS MSOSYS REL

=0000 3S STAT EQU 0
=0000 39 TCBB: EQU 0
=0001 40 MHBS: EQU 1
=0002 41 MROB: EQU 2
=0003 42 BKPT: EQU 3
=0006 43 IWAT: EQU 6
"70007 44 WAIT: EQU 7
=0001 45 PRIO EQU 1
=0000 46 FIFO: EQU 0

=0002 47 LINK EQU 2
=0004 4S RPTR EQU 4
=0004 49 MPTR EQU RPTR
=0006 50 SPTR EQU 6
=0006 51 OPTR EQU SPTR
=OOOS 52 NAME EQU S

=OOFE 54 NULPRI EQU 127*2

; TIMER HANDLER TCB DEFAULTS

=OOFE 5S THVECT DEFL OFEH
=007F 59 THPORT DEFL 07FH
=0001 60 THPRIO DEFL 1 ,TIMER HANDLER PRIORITY
=0004 61 THLOOP DEFL 4 ;TIMER LOOP CONSTANT
=007B 62 THSD25 DEFL 123 ,SO 2.4S6 MHZ TIME CONSTANT
=0070 63 THMD25 DEFL 125 ;MD 2.5 MHZ TIME CONSTANT
=OOCS 64 THMD40 DEFL 200 ;MD 4.0 MHZ TIME CONSTANT

MOSTEI(® zoo. F8CO'IIefing the full
spectrum of 3870 microcomputer

applications.

1215 W. Crosby Rd. • Carrollton. Texas 75006· 214/323-6000
In Europe. Contact: MOSTEK Brussels .

150 Chaussee de la Hulpe. B1170. Belgium;
Telephone: 660.69.24

Mostek reserves the right to make changes in specifications at any time and without notice. The information furnished by Mostek in this publication is believed
to be accurate and reliable. However. no responsibility is assumed by Mostek for its use; nor for any infringements of patents or other rights of third parties
resulting from its use. No license is granted under any patents or patent rights of Mostek.

PRINTED IN USA May 1980
Publication No. MK79726

Copyright 1980 by Mostek Corporation
All rights reserved

