MCCAP
Microcontroller
Cross Assembler
Program

MICROCONTROLLER CROSS ASSEMBLER PROGRAM {(MCCAP)

Development Systems Products Group

Bipelar LS| Division

January 1983

SIGNETICS reserves the right to make changes in the products contained in this book
in order to improve design or performance and to supply the best possibie products.
Signetics also assumes no responsibility for the use of any circuits described herein,
conveys no license under any patent or other right, and makes no representations that
the circuits are free from patent infringement. Applications for any integrated circuits
contained in this publication are for illustration purposes only and Signetics makes no
representation or warranty that such applications will be svitable for the use specified
without further testing or modification. Reproduction of any portion hereof without
the prior written consent of Signetics is prohibited.

Copyrighted by Signetics Corporation March 1979

DSPG Document No. 79-101

Revised January 1983

0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363

0364

FORTRAN MCCAP ERROR

Summary: An error has been identified in the FORTRAN versian %‘ the
MOCAP CROSS ASSEMBLER (8X300 AS1l- *SS). This error kan be
corrected by adding one statement to the MCCAP SCURCE
PROGRAM.

Error: Cannot write extension code to a statement which selects
a right bank data field variable using the SEL statement.

EXAMPLE - EXT BQ 100H
DATA RIV 123H, 7, 8
SEL. DATA/EXT

Solution: Add one statement, "GO TO 7500%, right after the statement
with the label 3240 in subroutine PASS2 of the FORTRAN
MOCAP source program as shown below.

PROCESS SEL STATEMENT

wooo

200 CALL SCAN (IARG,IVAL)
MOLE = 3
LEN = 1
G0 TO (3210,9100,9000,3210,9300,9300,9300,3210,9300) ,IERR
3210 IF(IVIND) 9600,9600,3200
3220 L = IWAL/8
ITYPE = 7
IBYTE = IVAL
IF(L~2) 9600,3230,3240
3230 IBIN = 1792+IBYTE

GO TO 7500
3240 _IBIN = 3840+IBYTE
(GO TO 7500¢ new_statement)
0
0 PROCESS MACRO STATEMENT
0

3300 GO TO 8000

* =], 2, 3 or 4 depending on density or encoding

PREFACE

The MicroController Cross Assembler Program (MCCAP) has been
developed to support the Signetics 8X300/8X305 MicroControiler.
MCCAP provides many powerful features including macros,
automatic subroutime handling, conditional assembly and extended
instructions. These features significantly reduce the time required
to compose and assembie MicroController programs. When combined
with standard assembler features such as mnemonic op-codes and
address labels, these extended features make MCCAP a powerful
programming tool. :

As input, MCCAP accepts source code written according to the
rules presented in this manual. After assembling the source input,
MCCAP produces an assembly listing and machine-readable object

module,

MCCAP is written in ANSI standard FORTRAN [V and is available
on the more popular timesharing services. MCCAP is also available
as a fully supported product from Signetics for use on a user's
in-house system.

This manual assumes a familiarity with the 8X300/8X305 Micro-
Controiler and its instruction set. Those unfamiliar with the
8X300/8X305 should read Appendix D before reading the main body
of this manual.

CONTENTS

SECTION

l INTRODUCTION . . . v v v v o v s s s v o s o v o s s s .

l.l MCCAP FEATURES « « . e e e e e e .

1.2 MCCAP ASSEMBLY PROCESS . . « « + o o o« o & .

.3 MCCAP OPERATION. . . + « « o+ e e e e e e

I.b SOURCE PROGRAM ASSEMBLY « « « v v v v
YNTAX AND FORMAT RULES e e e e e e
CHARACTER SET v v v v ¢ o s s o s 0 s s o 0 0 s v s
SYMBOLS . & v v v v v 4 o o o o s o 8 o o s s & s s
RESERVED SYMBOLS . . . « v « v = ¢ o & e e e s
CONSTANTS .+ v v v s v v v 0 0 s e e e e e e e
EXPRESSIONS. e e e e e e e e e e e s .
PROGRAM FORMAT. . v v v v ¢ ¢ v o o o v o o o v s
STATEMENT FORMAT . . . v v v« v o s 0 0 o 0 v 0
COMMENTS . &+ v ¢ v« s o v v o o o s 2 = 8 & s s o s

DD 19 1 09 000 1)

a4 a .

W~ n PN —

3 SYMBOLIC REFERENCES . . « v v v s o v o v o 0 0 v 0 v s
3.1 ASSEMBLY LOCATION COUNTER . ¢ v v o« v v v v o
3.2 PROGRAM STORAGE SYMBOLIC ADDRESSES.
3.3 DATA FIELD SYMBOLIC ADDRESSES. . « « v ¢ v » « &
3.4 SYMBOLIC VALUES . .« v v v v v o v v s v e o v e
3.5 GENERAL RULES . . .+ .+ « « « & e e e e e e e s

5 ASSEMBLER DECLARATIONS . . . « . « « e e e e e
5.] EQU -- DEFINE A CONSTANT . . ¢ v+ v o v v v v v s
5.2 SET — DEFINE OR REDEFINE A CONSTANT
LIV -- DEFINE A LEFT BANK DATA FIELD

5.
5. RIV — DEFINE A RIGHT BANK DATA FIELD

=W

SEMBLER DIRECTIVES . . . v « ¢ ¢ v o o v o 0 s e oe e
PROG — PROGRAM TITLE STATEMENT
PROC -- PROCEDURE TITLE STATEMENT
ENTRY — SECONDARY ENTRY POINT . . .« « v+ o
END - END THE PROGRAM OR A PROCEDURE
ORG -- SET LOCATION COUNTER . . + +» « « « . v e
OBJ — SPECIFY AN OBJECT FORMAT « « « «
IF, ENDIF — CONDITIONAL ASSEMBLY.
LIST -- LIST THE SPECIFIED ELEMENTS « .
NLIST — SUPPRESS LISTING OF ELEMENTS
EJCT — EJECT THE LISTING PAGE . . « . . « « o«
SPAC — LINE FEED THE LISTING . « « + v o ¢ v o v«
PROM — SPECIFY PROM SIZE . .« « « o v & v » o o e
DEF - DEFINE INSTRUCTION EXTENSION FIELDS . . .
8X300/8X305 MICROCONTROLLER SPECIFIERS

[+a}
AN A A
0~ in W —

+

&

A A A A AN AT A

e —_———t0
LN —0

M) — o= —

OO NONONON O
O T R P O O A I O e L e
— OO WNNY — —

0'\0\0\0\0'\0'\
(&)

SECTION

7

EXECUTABLE STATEMENTS.

oooooooooooo

7.1 MOVE, ADD, AND, XOR -- DATA MANIPULATION
7.2 XMIT - LOAD IMMEDIATE . .
7.3 XEC - EXECUTE. :
7.4 NZT — NON-ZERO TRANSFER .
7.5 JMP -- UNCONDITIONAL JUMP
7.6 SEL — i1/O DATA FIELD SELECTION . . + v « ¢« « o« &
7.7 CALL -—- PROCEDURE (SUBROUTINE) CALL
7.8 RTN — PROCEDURE RETURN.
7.9 NOP — NO OPERATION. . . .
7.10 HALT -- STOP PROCESSING . .
7.11 XML, XMR -- LOAD IMMEDIATE TO LEFT OR
RIGHT BANK . . . « + + « « &
8 MACROS . . .+« « ¢« o o o s o =
8. THE MACRO DEFINITION . . .
8.2 THE MACRO CALL
8.3 MACRO EXAMPLES FOR USE WITH ICC . . .« « « -
9 ASSEMBLY PROCESS
9.1 THE ASSEMBLY LISTING . . .
9.2 THE CROSS REFERENCE TABLE
9.3 THE OBJECT MODULE
9.4 ERROR CODES+ . ..
APPENDICES
A STATEMENT/DEFINITION REFERENCE
B UNASSEMBLED SAMPLE PROGRAM .
C ASSEMBLED SAMPLE PROGRAM. . .
D ASSEMBLER ERROR TEST PROGRAM

oooooooooooo

SECTION |

INTRODUCTION

The MicroController Cross Assembler Program (MCCAP) translates
symbolic statements into object code that can be executed by the
8X300/8X305 MicroController, The assembler consists of two passes
which build @ symbol table, issue heipful error messages, produce
a detagiled program listing, and output a machine-readabie object
module.

MCCAP is written in ANSI standard FORTRAN and runs on
large-scale computers, {MCCAP is also written in Intel 8080
assembly language and runs on the Intel Intellec Micro-
computer Development System.) It requires a direct access
mass storage device such as disk, an input device far source
code, and two output devices--one to output the assembly
Tisting and one to output the object module. The program
uses a minimum of memory but is modularized and may be
linked to execute in overlays if memory restrictions
require.

1.1 MCCAP FEATURES

The MCCAP assembler language has been developed with the
following features:

Free format source code

Reserved symbols for registers

ASCIl character set

Symbolic address assignments

Forward referencing

Address arithmetic

Bit or byte manipulation

Macros nested to three levels
Conditional assembly

Automatic procedure/subroutine handling
Symbolic data field references
Comments for self-documenting code
Cross reference of the symbol table
MicroController instruction words to 32 bits wide
Versatile object file format specification

1.2 MCCAP ASSEMBLY PROCESS

When a program is assembled with MCCAP, two types of infermation
are produced: an assembly listing and an object module.

The main purpose of the assembly listing is to convey all pertinent
information about the assembled program; that is, memory cddresses
and their machine code contents, the original source code, and any
error indications. The listing may also be used as a documentation
tool through the inclusion of comments. The assembly listing may
be displayed on a CRT or printed on a line printer.

The object module is the executable machine code produced from
the source code. The object module is produced in a computer-
readable format,

1.3 MCCAP OPERATION

MCCAP is a two-pass assembler. This means that the source code
is scanned twice, During the first pass, symbols are examined and
placed in a symbol table. Certain errors may be detected during
this pass and will be retained for display in the assembly listing.
In the second pass, symbolic addresses are resolved, the object code
is generated, and the assembly listing and object module are
produced. Errors detected during the second pass are included on
the assembly listing with those errors detected during the first

pass.

.4 SOURCE PROGRAM ASSEMBLY

The following steps are used in assembling source programs:

. Write a source program.

2. Transfer the source program to a computer-readable medium.
3. Assemble the source code program using the MCCAP assembler.
4, Obtain an assembly listing and an object module.

SECTION 2

SYNTAX AND FORMAT RULES

The assembler language has a character set, vocagbulary, rules of
grammar and allows individuals to define new elements. The rules
that describe the language are cailed the syntax of the l[anguage.
Likewise, an assembler language also has rules of format. For a
MCCAP program to be translated properly, it must be written in
accordance with the rules of syntax and format.

2.1 CHARACTER SET

2.2 SYMBOLS

A MCCAP program statement may not be more than 80 characters
long and must include onily valid MCCAP characters. These char-
acters consist of all alphabetic characters (the letters A-Z), all
numbers (0-9) and the special symbols shown in Tabie 2-|, The
use of any other characters will result in errors.

Table 2-1. Valid Special Symbols in MCCAP Programs
Character Lescription
) blank character (space)
' single quote
comma
plus sign
minus sign
slash
dollar sign
asterisk
left parenthesis
right parenthesis
greater than
less than
commercial "at" sign
periad
armpersand
double quote
sharp
percent
colon
semi-coion
equal
question mark
exclamation point

et BAV T Ry~ 1

32 5=

=3 e e

A symbol is a sequence of characters that may be used to represent
a register, an arithmetic value, a memory address, or an |/O data
field. Only the first six characters of a symbol are scanned by
MCCAP. Any remaining characters in a symbol will be treated

2-1

as documentation. The first character of a symbol must be
alphabetic. Any other character may be alphabetic or numeric,
The use of special characters or imbedded blanks within a symbol
will result in an error indication.

The number of characters in a symbol and the number of symbols
in the symbol table (usually 500) may be modified during the
installation of MCCAP, (Refer to MCCAP Instaliation and
Maintenance Manual for details.)

Exampile 2-1. Examples of Symbols

LOCPRI

GOBACK

TABPTRS (MCCAP recognizes this as TABPTR)
LOOP# (invalids special character used)

2NDTRY (invalid: starts with a numeric)
GO BACK (invalid: imbedded blank)

2.3 RESERVED SYMBOLS

As shown in Table 2-2, the assembler has 18 symbois that are
internally defined to save the user the necessity of defining them
in each program. Typically, these symbols are used quite frequently,
but they are not required.

Table 2-2, Reserved Symbols and Their Values
Octal 8X300 8xX305

Symbois Register Value Usage Usage
AUX Auxiliary Reg. g S,D 5,0
RI Register | | ,0 5,0
R2 Register 2 2 5,0 5,D
R3 Register 3 3 5D s,D
R4 Register 4 4 5,D 5,0
R5 Register 5 5 5,0 5,D
Ré Register 6 & S,D 5,0
IVL or Left Bank

R7 Address Reg. 7 O Only S5,D

OVF QOverflow Regq. 10 S Only S5 Only
R Register || H 5B 5D
Ri2 Register 12 2 —— 5,0
R13 Register 13 13 — 5D
R4 Register |4 4 -— 5,0
RI15 Register {5 15 -—- 50
Rl6 Register 16 16 -— S,D
IVR or Right Bank

R17 Address Reg. 17 D Only 5,D
S= Source, D= Destination, —-= Invalid

2.4 CONSTANTS

MCCAP recognizes four types of numeric constanis: decimal, octal,
binary and hexadecimal. These are defined as a sequence of numeric
characters optionally preceded by a plus or a minus sign and followed

by an alphabetic descriptor that indicates the type. I[f unsigned,
the value is assumed to be positive. If no descriptor is given, the
number is assumed to be decimal. The available descriptors are
B for binary, H for octal, and X for hexadecimal.

Hexadecimal constants, in order not to be confused with symbols,
must begin with a numeric character.

The size of a constant is limited to the field size specified by the
format of the machine instruction being assembled. When a constant
is negative, its two's complement representation is generated and
placed in the field specified.

Example 2-2. Numeric Constants

300 -1 +52 -1000
1001118 +00111B ~-111t0B
7755H +513H -5726H
+OBCX 4F3X -2CFX OACEX

An ASCIl character may be specified as a character constant by
enclosing the character within single quote marks. (To cause the
ASCIll code for the single quote mark to be generated, it must be
specified by four single quote marks, that is, ™=") Each ASCII
character converts to an 8-bit value with the high-order bit set to
zero.

Example 2-3. Character Constants

rGl
Oy
bl

2.5 EXPRESSIONS

An expression is a sequence of operands (symbols, constants, or
other expressions) separated by one of the operators shown in Table

2-3.
Table 2-3. Recognized Operators
Operator Function
+ Plus: produces the sum of its operands.
- Minus: produces the difference between its oper-

ands, or produces the negative value of its operand
when used as a unary minus.

S Logical AND: produces the bit-by-bit logical pro-
duct of its operands.
R. Right shift: shifts the first operand right the number

of bit positions specified by the second operand.
Zeros are shifted into the high-order bit and bits
are "dropped off" the Jow-order bit.

L. Left shift: shifts the first operand left the number
of bit positions specified by the second operand.
Zeros are shifted into the low-order bit, and bits
are "dropped off" the high-order bit.

2-3

These operators are evaluated within an expression in two levels
of hierarchy. Level | operators, $, .R., and .L., are evaluated
first, from left fo right as they are encountered. Level 2 operators,
+ and -, are then evaluated left to right as they are encountered.
There is no way to clter the level of hierarchy. That is, parentheses
are not legal delimiters to define an order of precedence that is
not as described above.

Example 2-4. Expression Evaluation

ression Algebraic Equivalent
IN.L.A.-BSC (IN.L..A)-(BSC)
-ARA+B.L.35C -(A.R.4)+{(B.L.3)5C)
A.R.B.L.C.+DSE {(A.R.B).L.C)+(DSE)

2.6 PROGRAM FORMAT

2-4

A complete program is composed of one or more program segments.
The first program segment must be the main program, the one in
which execution begins.

Procedures (subroutines) are program segments which perform a
specific function and which may be executed from several points
within the main program or other procedures. By creating the
required function as a procedure, the statements associated with
that function need be coded only once and then called out as
needed.

To transfer to a procedure for execution and then return to the
original program, "call" and "return" statements are provided in
MCCAP.

The main program starts with a program title statement (PROG)

and ends with the appearance of a procedure title statement (PROC)

or a program END statement, if no procedures exist. Procedures

begin with a procedure title statement (PROC) and are terminated

by a procedure END statement. The complete program must be

terminated by a program END statement. Only listing control and

comment statements may appear

. before the program title statement (PROG),

2. between a procedure END statement and the next procedure
title statement (PROC), or

3. between a procedure END statement and the program END
statement,

Exampie 2-5. General Program Organization

PROG namel (Program Title Statement)

{(directives, declarations, executable statements, call statements,
and comments}

PRO.C name2 {(Procedure Title Statement)

{directives, declarations, executable statements, call and return
statements, and comments)

END. name? (Procedure End Statement)
PROC name3l (Procedure Title Statement)

{directives, declarations, executable statements, call and return
statements, and comments)

END name3 {Procedure End Statement)
END namel (Program End Statement)

2.7 STATEMENT FORMAT

MCCAP statements will always follow the general format:

CABElL. OPERATION OPERAND EXTENSION COMMENT
field field field field field

In this manual each statement is explained in terms of this format,
showing what data, if any, must appear in the various fields.

Each statement is written as an 80-column free-form image without
regard for spacing other than that required to delimit one field
from another, Logical columns 73-80 are simply reproduced on the
assembly listing without processing. If desired, these columns may
be used for sequence numbers, as shown in Appendix B.

The label field generaily assigns values to symbols. If present, the
labet field must begin in logical column one.

The operation field specifies an executable statement, an assembler
declaration, or an assembler directive. The operation field must
either begin after column one or be separated from the label field
by one or more blanks.

2-5

The operand field specifies operands for the code in the operation
field. The operand field, if present, is separated from the operation
field by at least one blank.

The extension field specifies code to be generated for parts of the
microprocessor system other than the 8X300/8X305. The extension
field, if present, is separated from the operand field by a slash.

The comment field enabiles the proegrammer to enter a message
stating the purpose or intent of a statement or a group of
statements., The comment field must be separated from the last
required field of a statement by one or more blanks.

2.8 COMMENT STATEMENTS

2-6

A comment statement is a complete line dedicated to o message
solely for documentation purposes. [t is not processed by the
assembler program but is merely reproduced on the assembly listing.
A comment statement is indicated by beginning the line with an
asterisk in the first column.

Example 2-6. Cormment Statements

* DATA AND ADDRESS DECLARATIONS
* MACRO DEFINITIONS :
* MAIN PROGRAM

(Taken from lines 10, 61, and 77 of Appendix B.)

SECTION 3

SYMBOLIC REFERENCES

When writing programs in MCCAP assembler language, symbolic

references may be used to relieve the programmer of keeping track

of absolute addresses and values, therefore reducing programming

time. MCCAP recognizes four different types of symbolic

references:

. Location counter

2. Program storage

3. Data fields (typically divided into working storage addresses and
/O addresses)

4. Vaives (constants and variables)

Figure 3-1 depicts the two areas which may be addressed
symbolically in a typical 8X300/8X305 system: program storage
and 1/O data fields (I/O ports, RAMs, peripherals, etc.).

]
PROGRAM | 8X300/8X308 DATA
t
STORAGE ! MICROCONTROLLER FIELDS
1
: 1
1 1
1 1
| .
1 [}
] [
¥
[]
)
1
i Data
ADDRESS, |} LEFT
EE Storage
]
1 ! ! and BANK
H H i/Q Ports
) 1
) [
skx18| | 8X3200 4
H ar !
(Max) : 8X305 :
i a
1 1] Data
i] HT
H 1 Storage RiG
LT) and BANK
INSTRUCTION ! VoL
! ! 5 11O Ports
] 1 "B
DATA
CONTROL

Figure 3-1. Typical 8X300/8X305 Configuration

3.1 ASSEMBLY LOCATION COUNTER

During the assembly process, MCCAP maintains a counter which
always contains the address of the current program storage location
for which machine code is being assembled. This counter is called
the location counter. The special character * is the symbolic name

3-1

of the location counter and it may be used like any other symbol,
except that it may not be used as such in the label field (an * in
column | represents a comment). When using the *, the programmer
may think of it as expressing the idea "*' = "this location",

The symbol * is the only valid symbol containing a special character
that the assembler recognizes.

Example 3-I. Non-labeled Reference

The use of g * in a program is shown as follows:

NZT 23H,4,%+6
RTN

LOOPCT RS

SEL DISPI
LOOPCT DIiSPI
SEL DISP2

LOOPCT DisSP2
(Taken from lines 229 through 235 of Appendix B.)

The *+6 in line 229 refers to "this location plus six", which is line
235.

3.2 PROGRAM STORAGE SYMBOLIC ADDRESSES

3-2

When writing a program, the programmer can optionally place a
symbol in the label field of any of the executable statements. The
assembler, upon detecting the symbol, assigns the wvalue of the
location counter to that symbol. The symbol can then be used in
the operand field of any instruction in that program segment to
reference the address of the statement in whose |abel field it
appears. The important concept is that the absolute program
storage address of an executable statement need not be known
when writing in MCCAP; only a symbol is needed to reference the
location of that statement.

Example 3-2. Labeled Reference

LAST HALT

(Taken from line 31 of Appendix B.)

MCCAP aqlso recognizes relative addressing of program locations,
which is the use of label field symbols as "landmarks" to other
executable statements nearby.

Forward referencing, referring to a symbol prior to its appearance
in source code, is also valid in MCCAP but only when referencing
symbols in label fields of executable statements. All other forward
references will result in error indications.

Exampie 3-3. Relative Addressing

START NOP
XMIT O,R!
XMIT 0,R2

LOOK DSTAT,RI
STC CALL ARITH

CALL MOVMNT

CALL TRNSMT

CALL EXECT

LOOPCT Ré

NZT OVF,START+3

(Taken from lines 8} through 90 of Appendix B.)
The expression START+3 in line 90 refers to three instructions

after the statement with a label field of START, which would point
to line 84,

3.3 DATA FIELD SYMBOLIC ADDRESSES

In addition to recognizing program storage address symbols, MCCAP
recognizes data field address symbols as the operands of executable
statements. Whereas program storage symbols are defined and
recognized by their appearance in the label field of an executable
statement, data field address symbols must be defined separately
by the programmer in declaration statements prior to being used
in any other source statements.

Further explanation is provided in Section 5 under LIV and RIV
declaration statements.

3.4 SYMBOLIC VALUES

Assigning constant or variable values to symbols is another type
of symbolic referencing in MCCAP. These constants or variables
are declared in a fashion similar to that described above for data
field symbols. Value symbols must be defined prior to being used
in any executable statement.

Further explanation is provided in Section 5 under EQU and SET
declaration statements.

3.5 GENERAL RULES

The following are additional rules which apply to symbolic references
in MCCAP programs. Failure to adhere to these will result in
error indications.

3-3

v = W N
- - L]

The program name must appear only in the program title and
end statements.

Procedure and entry point names are global to the entire
program,

Symbols declared within the main program segment are global
to the entire program.

Symbols declared within a procedure by any declaration except
SET are local to that procedure,

Symbols declared anywhere in a program by a SET declaration
are glcbal.

Control storage symbolic addresses are local to the program
segment in which they appear.

Table 3-1. Accessibility of Symbol References

Statement Main Procedure Main Program Procedure
Type Program (Subroutine) Macro Call Macro Call
EQU, LIV, RIV Global Local Global Locadl
SET Global Global Global Global
Directives Error Error Error Error
Executable Local Local Local Local

3.4

SECTION &

EXTENDED INSTRUCTIONS
The MCCAP Assembler assists the user with generating not only
the {6-bit 8X300/8X305 instructions, but also an additional sixteen
bits of code. These extensions specify code o be used for
controlling parts of the microprocessor system other than the
8X300/8X305 instructions. They are addressed simultaneously with
the 8X300/8X305 instructions and are used for the hardware
selection of |/O ports or working storage. This technique reduces
the program length and increases throughput of the system. Further
descriptions of their usage are found in the 8X300/8X305
applications literature; here we will simply discuss the generation
of these instruction extensions by MCCAP.
1 H '
EXTENSION | PROGRAM | 8X300/8X305 DATA
STORAGE | STORAGE EMICHOCONTROLLEH: FIELDS
1 1
i i i
1 H [
| ; i
t ! [
I !)
i 3 f
1 ! 1
i i [
; : : Data
| ADDRESS, | | LEFT
; 3 E] Storage
1 i Y i] o and BANK
1 [:)
! ! ' /O Ports
| ; 8X300 :
8K X 16 oskxsl or :
1 — -
{Max} i {Max) i 8X305 2
1
i i E Data
i : i | Storage RIGHT
: 18, : o ag .
| INSTRUCTION " | " - BAN
d) H 5 11O Ports
] : H ""8
<16,
DATA
CONTROL

Figure 4-1. Typical Extended 8X300/8X305 Configuration

4-|

)

The DEF directive ailows the user to specify as many as sixteen
additional fields with a total extension size of sixteen bits. During
assembly these fields may be filled with any expression allowable
by the assembler. The result will be an object moduie containing
bit patterns which may then be piaced into a PROM.

The sample DEF directive shown in Example 4-1 specifies three
additional fields. The first is four bits in length and the remaining
two are three bits each. Note that the second field has a defauit
value of 2, Becquse there are ten bits defined, the actual object
module will contain twelve bits since only 4 and 8-bit object
modules may be produced. The two right-most bits will be set to
zero. Also the first field will be truncated to four bits.

Example 4-1. Use of Instruction Extensions

DEF -4,3(2),3
ALY 35
MOVE AUXRI/IVI, 1,7

-

HALT /24,4

The instruction extension of the MOVE command will consist of a
4-bit field containing the lower four bits of the address of V!, a
3-bit field with the value {, and another 3-bit field with a value
of 7. The actual bit pattern would be 33C,, (QO| [OOHH2 plus
the two low-order zeros). If the user had specified

MOVE AUX,RI/IVI,,7

the extended bit pattern would be 35C,, (001 1010111,), In this
case the second field which was not speéléfied in the source state-
ment assumes the value of 2 which was specified as the default
in the DEF directive.

The statement
MOVE AUX,RI/IVI

would use the default value of 2 for the second field and the
defauit value of 0 for the third field, giving a bit pattern of 3-’+0
(001 IOiOOOOz) for the extension,

To define instruction extensions during assembly, the user merely
places a slash after the standard 8X300/8X305 instruction and
specifies the vailues to be placed into the fields as specified in the
DEF directive. For those instructions that do not contain an
operand field, the instruction extension will follow the operator
directly (with the intervening siash, of course). The user need not
specify each field of an extension or even specify any fields. Source

statements without an explicit extension field or with only the
slash following the 8X300/8X305 instruction will generate an
extension that consists of only the default values specified in the

DEF statement.

Only standard 8X300/8X305 instructions that generate code
(executable statements) may have instruction extensions attached.
They may not be specified for directives. An exception to this is
the END statement. An instruction extension specified on the END
statement for the program will be used as the extension for any
instructions in the return jump table.

4-3

4-4

SECTION 5

ASSEMBLER DECLARATIONS

Declaration statements are used to assign values or addresses to
symbols. References to the symbol so declared use the assigned
values or addresses as required by the context in which the symbol
is used. Assembler declarations do not generate any object code.

The declarations are EQU, SET, LIV, and RIV.

S.| EQU — DEFINE A CONSTANT

The EQU statement assigns a value to the symbol in the label
field, which may subsequently be used in the operand field of any
other statement.

N D ION COMMENT
symbol EQU expression none statement

Where:

"symbol™. . . . is any valid symbol not previously defined as local
to this program segment or global to the entire
program. ,

"expression” . . is any valid expression which uses only pre-defined
symbols.

Exaompie 5-1. Use of EQU Statements

DEC EQU -1

SINMSK EQU | 00000008
OEMASK EQU 18

LSMASK EQU H

SSMASK EQU LSMASK.L.3
MSMASK EQU LSMASK.R.l.L.6
ROT EQU 3

(Taken from lines 16 through 22 of Appendix B.}

5.2 SET — DEFINE OR REDEFINE A CONSTANT

The SET directive is identical to the EQU directive, except that
the symbol defined by the SET directive may be redefined later in
the program by another SET directive. Any attempt to redefine
a symbol defined by the SET statement in any manner other than
by another SET statement will result in an error indication.

5-1

LLABEL. OPERATION OPERAND EXTENSION COMMENT
symbol SET expression none statement

Where:

"symbol". . . . is any valid symbol not previously defined as local
to this program segment or global to the entire
program.

"expression" . . is any valid expression which uses only pre-defined
symbaols.

" Example 5-2. Use of SET Statements

VALI SET 0
VAL2 SET !
VAL3 SET 2
VALY SET 3
VAL SET VALI+5
VAL2 SET VAL2+5
VAL3 SET VAL3+5
VALG SET VAL4+5

(Taken from lines 24 through 27 and 217 through 220 of
Appendix B.)

5.3 LIV — DEFINE A LEFT BANK DATA FIELD VARIABLE

The LIV declaration assigns a symbelic name to a left bank data
field and defines the address, position, and precision (length) of
that variable.

LABEL OPERATION OPERAND EXTENSION COMMENT
syrmbal LIV byte,bit,length none statement

Where:
"symbol™, . . . is any valid symbol not previously defined as locai
to this program segment or global to the entire

program.
"byte", "bit",. . are constants, symbols or expressions. Any sym-
and "length" bols used in an expression must be previously

defined. "byte" represents the address, and must
evaluate to less than 256; "bit" represents the
least significant bit of the variable, and must
evaluate to less than 8; and "length" represents
the number of bits in the variable, and must
evaluate to less than or equal to 8. Values greater
than these will result in an error indication. it
is also required that "length" be less than or equal
to "bit"+ 1.

If "length" is not specified, it has a defauit value of I. If "bit"
is not specified, "bit" has a default value of 7 and "length" has a
default value of |. For example: INI LIV [0 is the same as
INT LIV 10,7,l. The use of an expression for "byte" allows data
field varigbles to be defined relative to each other, for example,
if A LIV 10,7,8, then B LIV A+l,7,8 is equivalent to B LIV 11,7,8.

When "symbol" is used in a subsequent statement as @ source or
destination address, the appropriate information "bit" and "length"
are used. However, when "symbol" is used as part of the expression,
it has only the value given by "byte".

Example 5-3. Use of LIV Statements

DISCI LIV flH,7,8
DSTAT LIV DisCLO
DSCLOK LIV DIsCL5
DRDWR LIV DISCI,6
DRDAT LIV DISCI

(Taken from lines 29 through 33 of Appendix B.)

5.4 RIV — DEFINE A RIGHT BANK DATA FIELD VARIABLE

The RIV declaration assigns symbolic names to right bank data field
variables, but is otherwise identical to the LIV declaration.

[LABEL OPERATION OPERAND EXTENSION —COMMENT
symbol RIV byte,bit,length none statement

Where:
"symbol", "byte", "bit" and "length", have identical meaning to those

used in the LIV declaration.

Example 5-4. Use of RIV Statements

DATAI RIV |100H,7,8
DISIGN RIV DATALD
DIODEV RIV DATALI
DATA2 RIV DATA1+1,7,8
D2SIGN RIV DATA2,0
D20DEV RIV DATAZ

(Taken from lines 36 through 4! of Appendix B.)

5-3

SECTION 6
ASSEMBLER DIRECTIVES

An assembler directive is a statement that is not transiated into
object code, but rather is interpreted as a command to the assembler
program to perform some action during the assembly process. By
using directives, the programmer may divide the program into
logical segments, format the output listing, or specify the format
of the object module. The directives are:

PROG ORG LIST IF

PROC oBJ NLIST ENDIF
ENTRY DEF EJCT 8X300
END PROM SPAC 8X305

6.1 PROG — PROGRAM TITLE STATEMENT

The PRQOG statement introduces and names the main program.
With the exception of listing control directives and comments, it
must be the first statement of a program and may appear only
once,

LABEL OPERATION OPERAND @ EXTENSION COMMENT
none PRQOG name none statement

Where: ,

"name". is any valid symbol. It must not appear in any
other assembler statement except the main program
END statement.

Example 6-1. Use of PROG Statement

PROG SAMPLE

(Taken from line 7 of Appendix B.)

6.2 PROC — PROCEDURE TITLE STATEMENT

The PROC directive begins and names a procedure. A PROC
directive may only appear after another procedure has been ter-
minated, or after the last executable or declaration statement of
the main program segment. The main program segment is considered
to be ended upon the occurrence of the first PROC directive.

Since other segments may call this procedure name, it is a globai
name known to the entire program. Use of the PROC name in
the operand field of a procedure CALL statement calls the procedure
into execution.

6-1

LABEL OPERATION OPERAND EXTENSION COMMENT

none FPROC name none statement
Where:
"name". is any valid symbol which must not be used anywhere

else in the program, except as the operand of the
procedure CALL and END statements.

Example 6-2. Use of PROC Statements

PROC ARITH
PROC EXECT

{Taken from lines 98 and 163 of Appendix B.)

6.3 ENTRY — SECONDARY ENTRY POINT INTO A PROCEDURE

The ENTRY directive specifies an additional entry point to a
procedure. Calls to the procedure by additional names cause
execution to start at the first executabie statement following the
ENTRY directive which defined that additional name. A procedure
may contain more than one additional entry point.

LABEL OPERATION _OPERAND _EXTENSION _ COMMENT

none ENTRY narme none statement
Where:
"name'". is any valid symbol that must not be used anywhere

else in the program, except as the operand of the
procedure CALL statements.

Example 6~3. Use of ENTRY Statements

ENTRY MOVMNT
ENTRY TRNSMT

(Taken from lines 132 and 143 of Appendix B.)

6.4 END — END THE PROGRAM OR A PROCEDURE

6-2

The END directive is required to terminate q procedure or the
complete program. |[f an extension field is added to the END
statement of the main program, the extension code will be added
to the return jump table that is generated at the end of the
program.

LABEL OPERATION OPERAND EXTENSION COMMENT

none END name /code statement
Where:
"mame" is the same name as was used in the title
statement for this program segment (PROG or
PROQC).
"code". is an optional series of symbols, constants, or

expressions specifying the bit patterns to be
generated for placement into the extension field.

Example 6-4. Use of END Statements

END NONZXF
END SAMPLE

(Taken from lines 237 and 239 of Appendix B.)
END MAIN/0,0,0,0
(Taken from line 284 of Appendix D.)

CAUTION
If "name" is not used in the PROC or PROG
statement, or no name appears, an error will
be indicated and the program terminated.

6.5 ORG — SET LOCATION COUNTER

The ORG directive changes the value of the location counter either
conditionally or unconditionally. The first form of the ORG
directive unconditionally changes the value of the location counter
to the value indicated by "address".

LABEL OPERATION OPERAND EXTENSION ~ COMMENT

none ORG address none statement

Where:

"address" . . . is any constant, valid symbol, or valid expression
which evaluates to a value between 0 and 8191.
If the value is outside this range, an error is
indicated and the location counter is not changed.

Example 6-5. Use of the Unconditionai ORG Statement

ORG 0

(Taken from line 80 of Appendix B.)

6-3

The second form of the ORG directive conditionally sets the location
counter to the next page or segment boundary if there are insuf-
ficient locations in the current page or segment, This is determined
by evaluating the operands "space" and "page size".

A conditional ORG may be necessary when using NZT or XEC
instructions. [f adding the value "space-I" to the location counter
would move the location counter into the next page or segment,
then the location counter will be set to the beginning of the next
page. If the location counter would not move into the next page,
then this statement will have no effect on the location counter.

If the location counter is moved to the next page, a jump instruction
to that address is inserted in the program at the point where the
ORG statement appeared. This added instruction assures the sequen-
tial flow of the program.

LABEL _OPERATION OPERAND _EXTENSION __COMMENT

none ORG space,page size none statement

Where:

"space" is any constant, valid symbol or valid expression,
"space” specifies the number of program locations
which must remain in this page or segment.

"nage size" . . is a constant or valid symbol, or valid expression
that evaluates to 256 or 32 (the page and segment
sizes of control storage). If "space" is equal to
"page size", this statement is an unconditional
alignment to the next boundary of length "page
size",

Exampie 6-6. Use of Conditional ORG Statements

ORG 256,236
ORG 5,32
CRG 7,32
ORG 16,256

(Taken from lines |00, 184, 189, and 22! of Appendix B. Reference
also the results of assembling these lines in Appendix C.)

CAUTION
It is the programmer's responsibility to avoid
setting the location counter to an address
which already contains a previously assembied
instruction, since no error is indicated if this
is done.

6.6 OBJ - SPECIFY AN OBJECT FORMAT

The OBJ directive is used to specify to the assembler the format
of the object module for both standard 8X300/8X305 instructions
and for any instruction extensions. In addition, this directive allows
the user to fill any unused addresses in the program.

The output format for an object module may be specified as blocked
or unblocked. A blocked format implies that when the object
module is produced, all words, including unused locations, will be
output. The size of the block is specified by the PROM directive.
A gap in the program due to an ORG directive will cause the
object module to be output if the address is moved beyond the
range of the block. If the program is smailer than the PROM size,
a complete biock will be output.

An unblocked format will produce an object module only when the
module size specified in the PROM directive has been satisfied, if
a program gap occurs, and/or when the program ends. '

NOTE
Object modules produced in the MCSIM for-
mat are always unblocked even if the user
specifies otherwise. [f the ASCIll-Hex word
format is specified for either the 8X300/-
8X305 instructions or the instruction exten-
sions, it will be used for both modules.

A complete description of each format is given in Section9.3.In
the absence of a given specifications, there are three independent
defaults:

. 8X300/8X305 instructions are output in MCSIM format,

2. extensions are output in ASCll-Hex (Space) format, and

3. output is blocked and filled in with NOP's.

I[f MCSIM format is the case, the output will be unblocked.

LABEL OPERATION _OPERAND _EXITENSION _COMMENT

none OBJ format,type /format,type statement

Wheres:
"format". . . . is the object module format required. This may
be specified as any of the following characters:
M for MCSIM format,
N for BNPF format,
R for ASCll-Hex (Quote) format,
D for ASCll-Hex (Space) format,
S for ASCll-Hex Word format, or
Z to suppress output of the object module.
"type"., . . . is optional and determines the type of blocking
for the object module. One of the following
characters can be specified:
H for block format filled out with HALT's,
B for blocked format filled out with NOP's (all
zeros),
O for blocked format filled out with all one's, or
J for unblocked format.

6.7

IF, ENDIF

Example 6-7. Use of OBJ Statements

oBJ M
(Taken from line 57 of Appendix B.)
0BJ R,H/R

(Taken from line 12 of Appendix D.)

— CONDITIONAL ASSEMBLY

The conditional assembly statement, IF, allows the programmer to
control whether or not certain source statements are assembled.
When an IF statement is encountered, the associated expression is
evaluated to be either true (not zero) or false (zero). If true, the
following source statements are processed until an ENDIF s
encountered, If false, the source statemenis following the IF are
not processed until an ENDIF is encountered, at which point normal
processing resumes,

Conditional assembly constructs may be nested but may not be
overlapped; that is, the end of an inner IF construct must be
encountered before the end of the cuter IF construct is encountered.

LABEL OPERATION OPERAND EXTENSION — COMMENT

none IF expression none statement

Where: _
"expression" . . is a constant, a valid symbol, or a valid expression.

Any symbols wused in "expression" must be
previously defined.

The ENDIF - directive terminates the source statements subject to
conditional assembly. In the case of the nested IF statements,
ENDIF is paired with the most recent IF statement.

LABEL OPERATION OPERAND EXTENSION COMMENT
none ENDIF none none statement

Example 6-8. Use of IF ond ENDIF Statements

IF FINAL
LIST 1L,M,5,0
0BJ M
ENDIF

(Token from lines 55 through 58 of Appendix B.)

6.8 LIST — LIST THE SPECIFIED ELEMENTS

The LIST directive causes files to be generated for listing or
punching according to the options specified.

LABEL OPERATION OPERAND EXTENSION — COMMENT
none LIST options none statement
Where:
moptions". . . . indicate the output required. The following char-
acters specify the necessary combinations.
S for listing source statements (not including
macro expansions and unassembled conditionals).
O for producing output object code.
M for listing statements generated by macro cails.
| for listing statements which would not be
assembled due to conditional assembly (IF).
T for listing symboi table,
X for listing cross reference tabie.
A For printing the addresses and object code in
absolute hexadecimal numbers instead of
MCGSIM format. (Four digits for address and
four digits for object code.)

The default options are S, O, and T. If both X and T options are
specified, the X option will override.

Example 6-9. Use of the LIST Statement
LIST [,M,S,0
(Taken from line 56 of Appendix)

6.9 NLIST — SUPPRESS LISTING OF ELEMENTS

The NLIST directive is the same as the LIST directive, except the
specified options are not produced for listing or punching. This
directive is not printed on the listing if 5 is an option.

LABEL OPERATION OPERAND EXTENSION COMMENT

none NLIST cptions none statement
Where:
"options". . . . indicate the output to be suppressed. The

following characters are used for specifying the

necessary combinations.

S for not listing source statements (not including
macro expansions and unassembled conditionals).

O for not producing output object code.

M for not listing statements generated by macro
calls.

| for not listing statements which would not be
assembled due to conditional assembly (IF).

T for not listing symbol tabie.

X for not listing cross reference table. (This
option overrides the T option if both are
specified.)

A For printing the addresses and object code in
MCSIM format instead of absolute hexadecimal.

6-7

Example 6-10. Use of the NLIST Statement

NLIST 5,0

(Taken from line 52 of Appendix B.)

NOTE
Assembly lines with errors are always listed,
regardiess of the options specified by an

NLIST. Also, an NLIST of the source (S)
overrides any LIST of macros or unassembied
conditionals (M and [), but only until a LIST
S is executed.

6.10 EJCT — EJECT THE LISTING PAGE

EJCT is a listing control directive which causes the output listing
to be advanced to the next page, thus making it possible to format
the assembly listing. For example, each procedure could start on
a new page of the assembly listing. EJCT is not printed on the
assembiy listing.

P P ND ICN COMMENT
none EJCT none none statement

6.11 SPAC — LINE FEED THE LISTING

SPAC is a listing control directive which inserts blank lines in the
assembly listing. The SPAC statement is not printed on the assembly

listing.
CABEL OPERATION _OPERAND EXTENSION COMMENT
none SPAC expression none statement
Where:
"expression" . . is a constant, a valid symbal, or a valid expression

(constants typicailly are used). Texpression" is
evaluated to determine the number of biank lines
to insert in the listing. There is no default
"expression™,

Exampie 6-11. Use of SPAC Statements

SPAC I
SPAC 12

(Taken from lines é and 238 of Appendix B.}

6.12 PROM — SPECIFY PROM SIZE

The PROM directive is used to specify the widths and depth of
the PROMs used for the assembled object code. Only those PROMs
specified by this directive will be included in the object module.
Thus if 8 bits are specified for a PROM and the DEF directive
defines an extension to contain |6 bits, only 8 bits will be included
in the object module.

This directive must appear prior to any executable statements.

PERATION P D TENSION COMMENT
none PROM d, W, Waee fd,w,w... statement

Where:

ndt specifies the depth of the PROM used and hence
the size of the object module format that will be
used. "d" may be specified as 128, 256, 512, 1024,
2048. Any other value will generate an error
indication. The depth of extension PROMs may
differ from that the 8X300/8X305 instruction
PROMs.

"w' specifies the width of the PROM and hence the size
of the object module format that will be used. A
width should be specified for each PROM used and
may be specified as either 4 bits or 8 bits. Note
that some object module formats, e.g. MCSIM, will
always work with a 16-bit value regardless of the
width specified in this directive. The tfotal width
of all PROMs used for 8X300/8X305 instructions
must be exactly 16 bits. The width of ali PROMs
used for the instruction extensions may be any value.

NOTE
The default PROM sizes are a depth of 512
and a width of 8. The user need only specify
the extended instruction PROM sizes if
desired.

Example 6-12. Use of the PROM Statement

PROM 128,8,8/256,4,8,4

{Taken from line 11 of Appendix D.)

6.13 DEF -- DEFINE INSTRUCTION EXTENSION FIELDS

This directive is used to specify operand fields and default values
for instruction extensions. The fields define output module bit
positions in order from left to right (bit 0 to 15). This directive
may define up to |6 fields with a total fength of 16 bits. The
length in bits of each field is specified along with an optional
default fieid value and an error checking flag.

6-9

No extensions can be generated unless the format has been specified
by this directive. This directive must appear before any executable
instructions.

B PERATION OPERAND ENSION M
none DEF 1(v),l(v)ye.. none statement
Where:
e specifies the number of bits in the field. Any values

placed in this field during assembly will be checked
to ensure that it fits into the number of bits
specified. If not, the value will be truncated and
an error indication output. If "I" is preceded by a
minus sign, error checking will not take place. This
is useful when a field will contain the {ow-order
bits of a program address.

L. . specifies the default value for the field. The default
value must fit within the number of bits specified
or an error will be indicated. If no default vaiuve
is specified, it is assumed to be zero.

Example 6-13. Use of the DEF Statement

DEF 4(5),-8(2),2,2

(Taken from line 10 of Appendix D.)

6.14 8X300/8X305 MICROCONTROLLER SPECIFIERS

The 8X300 directive specifies assembly of 8X300 instructions. The
8X305 directive specifies assembly of 8X305 instructions. (Use of
XML, XMR or RI2-R|6 cause error diagnostics if 8X305 is not
specified.)

NOTE
If neither is specified, 8X300 will be the
default option.

LABEL. OPERATION OPERAND EXTENSION COMMENT

none 8300 none none statement

Example 6-14. Use of MicroController Specifiers

8X300
8X305

(Taken from lines 246 and 243 of Appendix D.)

SECTION 7

EXECUTABLE STATEMENTS

The statements described in this section result in object code that
is executable by the 8X300/8X305 MicroController. There are
fifteen:

MOVE NZT XMIT CALL
ADD XEC HALT RTN
AND JMP NOP SEL
XOR XML XMR

It is not intended in this section to describe the operation or
execution of the 8X300/8X305 machine codes, but rather to describe
the MCCAP formats. Machine code information is contained in
Appendix D for reference; however, more specific information
about operation and execution may be obtained from the availabie
8X300/8X305 and other peripheral technical and applications
literature.

NOTE
There are certain notes generally applicable
to each of these statements. They are listed
here and subsequently referenced whenever
relevant.

. If a source "s" or destination "d" field is
specified by a constant, the value of that
constant is evaluated as follows:

a. Registers are designated by values
less than 17,

b. Left bank dcéxsto fields are designated
by values between 20, and 27..

c. Right bank data fields are designated
by values between 308 and 378.

If the value is greater than 37, an error
is indicated and the wvalue is 8’rreofed as
modulo 408.

2. If the value of the expression in the
operand field is too large to fit in the
8-bit immediate field (in the case of a
register) or 5-bit immediate field (in the
case of an |/O data field) of the object
code, an error is indicated and the vaive
is truncated {high-order bits dropped) to
fit into the appropriate field length,

7-1

7.1

7-2

3. [If the high-order five bits {in the case
of a register) or eight bits (in the case
of an 1/O data field) of an indexed value
(expression+index) are not equal to the
corresponding bits of the location coun-
ter, a paging error is indicated.

4, If an optional value within a field is
~ omitted, the associated punctuation must
also be eliminated to prevent errors. For
example, if a length or size is omitted,
the comma preceding it must also be
omitted from the statement.

MOVE, ADD, AND, XOR — DATA MANIPULATION

The MOVE, ADD, AND, and XOR symbolic codes may be written
in any of three formats, as required.

LABEL. OPERATION OPERAND EXTENSION COMMENT
symbol op s,d /code statement

LABEL OPERATION OPERAND EXTENSION ~ COMMENT
symboi op s(r),d /code statement

LABEL OPERATION OPERAND EXTENSION — COMMENT

symbol op s,ien,d /code statement

Where:

"symbol". . . . is any valid symbol that is not defined as local
to the current program segment or global to the
entire program.

"op". is one of the four data manipulation commands:
MOVE, ADD, AND, XOR.

"L .. . is an 1/O data field varigble or any of the
8X300/8X305 internal registers that may be used
as source operands. "s" may be a symbol
predefined by a declaration or it may be a
constant. (See note [.)

"o, oL is an /O data field variable or any of the
8X300/8X305 internal registers that may be used
as destination operands. "d" may be a symbol
predefined by a declaration or it may be a
constant. (See note |.)

Men™

is an optional value that specifies the explicit
length of an I/O data field. This may be used
to override the "length" of a LIV or RIV
declaration. More typically, it is used when no
LIV or RIV declaration is made and the source
or destination operand is given by a constant. If
"len" is greater than 8, an error is indicated and
the value is taken as modulo 8. A "len" of 8
generates a value of 0. The default value of
Men" is O (full byte). (See note 4.)

is an optional value that specifies the number of
bit positions to right rotate the source register
when both source and destination operands are
registers. The default value for "r* is 0.

is an optional series of symbols, constants, or
expressions specifying the bit patterns to be
generated for placement into the extension field.

Example 7-1. Data Manipulation Commands

STMV

MOVE DSTAT,RI
MOVE 24H,LEN,R2
MOVE DRDAT,LEN,R3

(Taken from lines 134 through 136 of Appendix B.)

STAD

ADD RI,R1
ADD 2,2
ADD R3(ROT),R3

(Taken from lines |07 through 109 of Appendix ©.)

STAND

AND R|,DATAI

AND R2,LEN,DATA2
AND R3,LEN,37H
AND 4(4),AUX

(Taken from lines 112, 115, 118, and 12| of Appendix B.)

STOR

XOR DATAI,DATAL
XOR DATA2,3,DATA2
XOR 37H,LEN,37H
XOR 33H,LEN, 37H

(Taken from lines 124, 126, 128, and 130 of Appendix B8.)

MOVE AUX,AUX/7
MOVE RI,R11/1,2,,3
MOVE RI,R5/1111B,~1,2
MOVE R2,R [/1V3,77H

{Taken from lines 40, 43, 47 and 51 of Appendix D.)

7-3

CAUTION

Addressing the [/O data fields which are
allocated to different locations in the same
[/O bank is not valid. Any attempt to do so

will

be detected by the assembler and

indicated as an error. Also, data movement
between data fields allocated to different I/Q
banks must move full bytes or an error is
indicated.

7.2 XMIT — LOAD IMMEDIATE

The XMIT instruction may be written in either of two formats, as

follows:

LABEL OPERATION OPERAND EXTENSION COMMENT

symbol XMIT exp8,req /code statement

LABEL OPERATION OPERAND — EXTENSION COMMENT

symbol XMIT exp5,df,len /code statement

Where:
"symbol". . . .

"exp8".

"expS".

reg"

< 1

"len"

"eode",

is any valid symbe! that is not defined as local
to the current program segment or global to the
entire program.

is any valid epxression. "exp8" is evaluated and
used as the 8-bit immediate field of the object
code. (See note 2.)

is any valid expression. "exp5" is evaluated and
used as the 5-bit immediate field of the object
code,

is any of the 8X300/8X305 internal registers
usable as a destination operand. This may be a
symbol or a constant. (See note [.)

is an !/O data field variable used as the destination
operand. This may be a symbol defined by a LIV
or RIV declaration, or it may be a constant. (See
note 1.)

is an optional value that specifies the explicit
length of an 1/O data field, This may be used
to override the "length" operand of a LIV or RIV
declaration. More typically, it is used when the
destination /O data field variabie is written as
a constant. The default value of "len" is 0. (See
note 4.)

is an optional series of symbols, constants, or
expressions specifying the bit patterns to be
generated for placement into the extension field.

Example 7-2. Use of the XMIT Statement

XMIT RS
XMIT VALI,DISP{,LEN
XMIT VAL2,23H,4

(Taken from lines 151, 153, and 154 of Appendix B.)
XMIT 2,R0/1,*,0

(Taken from line 148 of Appendix D.)

7.3 XEC — EXECUTE

The XEC instruction may be written in either of two formats, as

required,
LABEL OPERATION OPERAND EXTENSION COMMENT
symbol XEC expB(reg),size /code statement

[ABEL OPERATION OPERAND _ EXTENSION COMMENT

symbol XEC exp5(df,len),size /code statement
Where:
"symbol". . . . is any valid symbol that is not defined as local

to the current program segment or giobal to the
entire program.

"exp8". is any valid expression. "exp8" is evaluated, and
is placed in the 8-bit immediate field of the
object code. (See note 3.)

"exp5". is any valid expression. "exp5" is evaluated, and
is placed in the 5-bit immediate field of the
object code. (See note 3.)

"reg" is any of the 8X300/8X305 internal registers
usable as a source operand. "reg" is used as an
index to "exp8" and may be represented
symbolically or by a constant., (See note I.)

"df", represents an 1/O data field variable used as an
index to "exp5". "df" may be a symbol defined
by a LIV or RIV declaration, or it may be a
constant. (See note l.)

Men™ . L . . . is an optional value that specifies the length of
an 1/O data field. This may be used to override
the "length" operand of a LIV or RIV declaration.
More typically it is used when the "df" operand

is written as a constant. The default value of
"len" is 0. (See note 4.}

7-5

"size" is the optional table length size if the XEC is
used with a jump table. The assembler checks
to ensure that an XEC and its associated jump
table are on the same program storage page.
"size" has a default value of |. The user
specifying an XEC preceeding his jump table can
obtain error checking on the table size by
specifying this operand. (See note 4.)

"code". is an optional series of symbols, constants, or
expressions specifying the bit patterns to be
generated for placement into the extension fieid.

Example 7-3. Use of the XEC Statement

STXC XEC *+1(R6),5

TAB! XEC *|[(R])
XEC *+|(T2PTR)
XEC *+{(T3PTR,2)
XEC *+|(T4PTR),2
XEC *+[{T5PTR,2),4

(Taken from lines |71, 178, {85, 190, 197 and 202 of Appendix B.)
XEC * [(IV1,3}/,L12,0

(Taken from line 76 of Appendix D.)

1.4 NZT — NON-ZERO TRANSFER

1-6

The NZT symbolic code may be written in either of two formats,
as follows:

LABEL _OPERATION _OPERAND _ EXTENSION COMMENT

symbol NZT reg,exp8 /code statement

LABEL OPERATION OPERAND EXTENSION COMMENT

symbol NZT df,len,exp5 /code statement
Where:
"symbol™., . . . is any valid symbol that is not defined as local

to the current program segment or global to the
entire program.

"reg" is any of the B8X300/8X305 internal registers
usable as a source cperand 'reg" may be a
symbol or a constant. (See note 1.)

e) LN . is an I/O data field variable used as a source
operand. "df" may be a symboi defined by a LIV
or RIV declaration, or it may be a constant. (See
note |.}

"exp8". is any valid expression. "exp8" is evaluated and
used as the low-order B-bit immediate field of
the object code. {(See note 2.)

"expS". . .

Men™ . o oL .

"eode".,

is any valid expression. "exp3" is evaluated and
used as the low-order 5-bit immediate field of
the object code. (See note 2.)

is an optional value that specifies the length of
an /O data field. This may be used to override
the "length" operand of a LIV or RIV declaration.
More typically, it is used when the I/O data fieid
variable is written as a constant. The default
value of "len" is 0. (See note 4.)

is an optional series of symbols, constants, or
expressions specifying the bit patterns to be
generated for placement into the extension field.

Example 7-4. Use of the NZT Statement

STNT NZT
NZT
NZT

RS,%+8
DISP!,*+7
23H,4,%4+6

(Taken from lines 223, 226, and 229 of Appendix B.)

NZT

IV1,3,%/0,IV1,1,0

(Taken from line 110 of Appendix D.)

7.5 JMP — UNCONDITIONAL JUMP

The JMP symbolic code is written in the following format:

LABEL OPERATION OPERAND EXTENSION COMMENT

symbol

JMP address /code statement

Where:
"symbol™. . . .

"address"

is any valid symbol that is not defined as local
to the current program segment or global to the
entire program.

is any valid address in the range 0 to 8191, If
"address" is outside this range, an error is
indicated and the address field of the object code
will be set to the current value of the location
counter.

is an optional series of symbols, constants, or
expressions specifying the bit patterns to be
generated for placement into the extension field.

7-7

Example 7-5. Use of the JMP Statement

JMP TABI
JMP DONE

(Taken from lines 172 and 179 of Appendix B.)
JMP 8191/4,0,0,0

(Taken from line 85 of Appendix D.)

7.6 SEL — !/O DATA FIELD SELECTION

7-8

The SEL statement generates code which, upon execution, places
the address of an |/O data fieid into the IVL and IVR register, as
appropriate, The generated object code is equivalent to one of
the following executable statements.

XMIT ngfr, (VL
or XMIT ndf", VR

LLABEL. OPERATION OPERAND EXTENSION COMMENT
symbol SEL df /code statement

Where:

"symbol”. . . . is any symbol that is not defined as local to the
current program segment or global to the entire
program.

"df". is a symbol that has been defined by a LIV or
RIV declaration. If "df" is not so defined, an
error is indicated.

"code". ., . . . is an optional series of symbols, constants, or
expressions specifying the bit patterns to be
generated for placement into the extension field.

Example 7-6. Use of SEL Statements

STAR SEL TEMPI
TAB2 SEL TABPTRS

(Taken from lines 101 and 183 of Appendix B.)
SEL LI12/17H,0,3,3

(Taken from line 87 of Appendix D.)

NOTE

In an executable statement, if an /O data
field is referenced, the address of that port
must have been already placed in the IVL or
IVR select register. This can be accomplished
by a SEL or a XMIT. Since the assembler
cannot detect whether or not a data field
has been selected at the time it is addressed,
it is the responsibility of the programmer to
select /O data fields before they are
referenced,

7.7 CALL — PROCEDURE (SUBROUTINE) CALL

The 8X300/8X305 MicroController does not have a provision for
storing the program counter before jumping to a subroutine. How-
ever, an equivalent technique is used by MCCAP to permit the use
of subroutines (or procedures as they are cailed). Each CALL
statement generates a return jump index which is loaded into
register R11, then control is transferred to the subroutine, When
execution reaches a RTN (return) statement, control passes to a
"return jump table" which uses the value in RIl as an index to
jump back to the calling program. The entries in the return jump
table, which match the CALL statements, are provided automat-
ically by MCCAP, The programmer needs only to call the subroutine
and return as he would with any subroutine arrangement. Of course
if he wishes to use RI| within the subroutine, he must restore it
before returning. For techniques in nesting. subroutines, see the
8X300/8X305 Programming Manual. For subroutine call macros
using the 8X310, see Section 8.3.

Example 7-7 illustrates the expansion of the source statements and
the position of the return jump table.

LABEL OPERATION OPERAND EXTENSION —COMMENT

symbol CALL name [code statement
Where:
"symbol”. . . . is any valid symbol that is not defined as local

to the current program segment or global to the
entire program.

*"mame" is a procedure name defined by a PROC or an
ENTRY statement,
"eode". is an optional series of symbols, constants, or

expressions specifying the bit patterns to be
generated for placement into the extension field.

7-9

7-10

Exampie 7-7. Equivaient Code for Procedure CALL's and RTN's

SOURCE EQUIVALENT
STATEMENTS CODE
PROG MAIN
CALL SUB XMIT O,R1]
ONE . IMP SUB
CALL SUB XMIT 1,RI
TWO . IMP SUB
PROC SUB
RTN JMP TABL
END MAIN)
TABL XEC *+i(®RID)
IMP ONE
IMP TWO

For actual usage of procedures, see the programs listed in the
Appendices,

A program is limited to a maximum of 255 CALL statements;
more will resuit in a "Table Qverflow" error indication.

Example 7-8. Use of the CALL Statement

STC CALL ARITH
CALL MOVMNT
CALL TRNSMT
CALL EXECT

(Taken from lines 85 through 88 of Appendix B.)
CALL PROC3/90,0

(Taken from line 126 of Appendix D.)

CAUTION
The programmer is responsible for saving and
restoring the vaiue of R11, if it is used within
a procedure. No error will be indicated from
a failure to do so. '

7.8 RTN — PROCEDURE RETURN

The RTN statement terminates the execution of a procedure and
causes a return of control to the calling program segment. The
assemnbler generates a return jump table at the end of the entire
program to allow for this return of control. A RTN statement
causes a jump to the return jump table, which in turn contains a
XEC (with an index value in R1!) followed by one jump instruction
for each CALL statement in the program. RTN statements are
not valid in the main program, but at least one must appear in
each procedure. Example 7-7 shows the equivalence between the
source code and the code produced by the assembier for RTN and
the return jump table.

LABEL OPERATION OPERAND EXTENSION COMMENT

symbol RTN none /code statement

Where:

"symbol". . . . is any valid symboi that is not defined as locai
to this program segment or global to the entire
program.,

"code". is an optional series of symbols, constants, or

expressions specifying the bit patterns to be
generated for placement into the extension field,

Example 7-9. Use of the RTN Statement

DONE RTN
(Taken from fine 208 of Appendix B.)
RTN/,,3
{Taken from line 277 of Appendix D.)
RETURN TABLE

0173 8974
0174 EO0O8
0175 EQOA
0176 EOQC
0177 EGOE
0178 E104

(Taken from page 8 of Appendix C.)

CAUTION
The programmer is responsible for saving and
restoring the value of R, if it is used within
a procedure. No error wiil be indicated from
a failure to do so.

7.9 NOP — NO OPERATION

The NOP instruction generates code which commands the
8X300/8X305 to advance to the next instruction without performing
any other operation. It typically serves as a time delay. The NOP
actually generates a "MOVE AUX,AUX" instruction.

_[ABEL OPERATION _OPERAND __EXTENSION COMMENT

symbol NOP none /code statement

Where:

"symbol". . . . Is any vadlid symbol that is not defined as local
to the current program segment or global to the
entire program.

"code". is an optional series of symbols, constants, or
expressions specifying the bit patterns to be
generated for placement into the extension field.

Example 7-10. Use of the NOP Statement

START NOP
(Taken from line 81 of Appendix B.)
NOP/Q,WS2

(Taken from line 38 of Appendix D.)

7.10 HALT — STOP PROCESSING

The HALT instruction generates code which causes the 8X300/8X305
to stop processing and remain at the current address. The HALT
instruction actually generates a "JMP *' instruction. The RESET
signal of the 8X300/8X305 must be puised to restart the program
after the execution of a HALT instruction.

LABEL OPERATION OPERAND EXTENSION COMMENT
symbal HALT none /code statement

Wheres:

"symbol"., . . . is any valid symbol that is not defined as locai
to the current program segment or global to the
entire program.

"code", is an optional series of symbols, constants, or
expressions specifying the bit patterns to be
generated for placement into the extension field.

Example 7-11. Use of the HALT Statement

LAST HALT
(Taken from line 91 of Appendix B.)
STOP HALT/17H,377H,3,3

(Taken from line 249 of Appendix D.)

7.11 XML, XMR - LOAD IMMEDIATE TO LEFT OR RIGHT BANK

NOTE
XML or XMR cause opcode error diagnostics
if 8X305 is not specified. These statements
are only valid for use with the 8X305.

The XML statement generates code which, upon execution, transmits
an 8-bit constant to the left bank. (Right bank for XMR.) The
generated object code is equivalent to a XMIT immediate to RI2
or R13 respectively.

XMIT IMMED, RI12
XMIT IMMED, RI13

XML
XMR

i h

LABEL OPERATION OPERAND EXTENSION COMMENT
symbol XML, XMR immed /code statement

Where:

"symbol® is any valid symbol that is not defined as local
to the current program segment or global to the
entire program.

"immed" ., . . . is an 8-bit constant.

"eode” . « . . is an optional series of symbols, constants, or
expressions specifying the bit patterns to be
generated for piacement into the extension field.

Example 7-12. Use of the XML Statement

XML 2
XMR CFX

(Taken from lines 244 and 245 of Appendix D.)

7-14

SECTION 8

MACROS

A macro is a predefined sequence of source statements that can
be inserted into a MCCAP program by coding only one statement,
the "macro call". The predefined sequence is written in the same
program and is called a "macro definition™. The macro definition
statements must be written prior to a call to the macro. When
a macro call is encountered during assembly, the assembler locates
the saved macro definition statements, copies them into the source
program immediately after the macro call statement, and then
assermbles them normally. Each macro, once defined, may be called
any number of times within a program.

The number of macros that can be defined (initially 500) may
be modified during the installation of MCCAP. (Refer to
MCCAP Instaltlation and Maintenance Manual and/or the
8X300/8X305 Cross Assembler Installation Guide for 8080
based systems for details.)

Upon encountering ¢ macro definition statement, the assembler
saves the body of the definition as it is. The statements are not
assembled, nor are they checked for errors. When the macro is
called, the assembler obtains the saved definition body, places it
‘m-line with the source code immediately following the macro call,
and substitutues the actual parameters for the formal parameter
symbols. At this point, MCCAP assembles these statements as if
they had originally been coded in that position, Therefore, all
rules for statements, expressions, and symbols are enforced only
at the point of expansion, not at the point of definition.

Example 8-1. Macro Usacge

The following demonstrates the statements used to implement
macros within a program..

Macro definition as it would appear in the source code:

INPUT MACRO R,5,T,LAB (Title Statement)
MOVE R,S
XMIT I,T
ADD R,S
LAB RIV 22,3, 1
MOVE LARB,S
ENDM (Terminator)

Macro cail as it would appear in the source code:

LIST M
XMIT -1,R3
MOVE OVF,AUX
LOOP INPUT RI1,R2,IV1,IV2 (Macro Call)
JMP GO

8-1

8.1

8.1.1

Expansion of the macro call as it would appear in the assembly
listings

LIST M
XMIT -1,R3
MOVE OVF,AUX

LOOP INPUT RI,R2,1V1,1V2 (Macro Call)

+ MOVE RI,R2

+ XMIT [,IV]

v ADD RI,R2

V2 RIV 22,3,

v MOVE IV2,R2
JMP GO

NOTE
The LIST M directive is necessary to produce
the expansion of the macro in the listing.

THE MACRO DEFINITION

The macro definition consists of a title statement, g body of
assernbly statements, and a terminator statement, as shown in
Exarmple 8-1l.

The Title Statement

The title statement marks the beginning of a macro definition, it
narmes the macro and provides a list of format parameters to be
passed to the macro.

CABEL OPERATION OPERAND EXTENSION COMMENT

name MACRO O 1,P2yeeepN none statement
Where:
"name" is a valid symbol that defines the name of the

macro. This "name" must not be used as a symbol
anywhere else in the program except in the
operation fields of macro cail statements.

" l,p2,..pn" . . is an optional formal parameter list. These formal
parameters can be any valid symbols. The number
of formal parameters per definition is a factor
of the number of characters per source code line.
'f no formal parameters are included in the title
statement, each call of the macro captures an
exact copy of the macro definition body.

8.1.2 The MACRO Body

8-2

The bedy of a macro definition is composed of any number of
assembler statements (and comments). These statements perform
the function defined by the macro, and may include any valid
assermbler statements, with the following limitations:

|, The PRCG directive are not valid.

2. Definitions of other macros, or calls to the same macro are

not valid.

3. Nesting of macros is valid to three levels, but the innermost
macros must be defined first.

4, Symbols that appear as statement labels within @ macro are
local to that macro.

5. Symbolic references to labels outside the macro are not valid.

6. Symbols defined by declarations within @ macro are local if the
macro call is made from a procedure, and global if made from
the main program.

The

CAUTION

assembler operation codes PROC,

ENTRY, END, ORG, EQU, LIV and RIV are
valid in a macro, but are difficult to imple-
ment without error.

8.1.3 The Terminator Statement

The terminator statement marks the end of a macro definition.

CABEL OPERATION OPERAND EXTENSION COMMENT

none

ENDM none none statement

8.2 THE MACRO CALL

The macro call statement marks a point in the program where the
saved macro definition is expanded.

TABEL OPERATION OPERAND — EXTENSION COMMENT

symbol

name pl,p2,e..pn none statement

Where:
"syrmbol™.

"name™

"pl,p2,..pn" . .

is any valid symbol that is not defined as local
to this program segment or global to the entire
program.

is the name of a macro which has appeared in
the label field of a MACRO statement.

is a list of the actual parameters to be substituted
for the formal parameters that appear in the
macro definition. These parameters may be
constants, symbols, or expressions. Any symbols
must be either previously defined, or defined
within the macro definition prior fo their use
there. (Refer to the parameters IVI| and V2 of
Exampie 8.1.)

8-3

Example 8-2. Substitution of Mcocro Parameters

MACRO definition showing dummy parameters REPL! and RX:

LOOK MACRO REPLI,RX
ORG 4,256
SEL DisCl
MOVE REPLI,RX
NZT RX,*-2

MACRO call with the actual parameters substituted for the dummy
parameters:

LOOK DSTAT,RI

ORG 4,256

SEL DISCI

MOVE DSTAT,RI

NZT Rl,*-2

+ + + +

(Taken from lines 63 through 67 and line 84 of Appendix C.)

8.3 MACRO EXAMPLES FOR USE WITH 8X3!0 interrupt Control Coprocessor

8-4

*§X310 CLEAR INTERRUPT

CLRI MACRO
MOVE R2, R2
ENDM

*8X310 SUBROUTINE CALL (ONLY AT ODD LOCATION)

JSR MACRO
IF*S1t- 1
NOP
ENDIF
MOVE R3, R3
ENDM

*8X310 CLEAR MASK

CLRM MACRO
MOVE R4, R4
ENDM

*8X310 SET MASK

SETM MACRO
MOVE RS, R5
ENDM

*8X310 RETURN FROM SUBROUTINE OR INTERRUPT

RETN MACRO
MOVE Rs, Ré
ENDM

SECTION 9

ASSEMBLY PROCESS

There are three results of assembling a program with MCCAP: the
assembly listing, an object moduie, and the error codes.

9.1 THE ASSEMBLY LISTING

The most important function of the listing is to provide a record
of ail that occurred during the assembly process: source codes,
object codes with addresses, and error codes. Typically, the
assembly listing also serves as a documentation tool through the
inclusion of descriptive comments with the source statements.

The following description refers to the partial assembly listing
provided in Figure 9-1.

l.

2.

3.

The first field, if present, contains alphabetic characters to
indicate any errors during assembiy.

The second field contains decimal numbers which are the hs’rmg
line numbers. The maximum line number is 9999.

The third field contains a 5-digit octal number or a &4-digit
hexadecimal number which represents the program memory
address of the instruction generated.

The fourth field represents the code that was assembled or
the value assigned in a symbol declaration. The code is written
in the MCSIM object module format or in absolute hexadecimal
format.

I[f extended instructions have been defined by the user, the
fifth field will contain the instruction extension. Otherwise,
the field is blank,

The sixth field contgins the user's original source statements,
without alteration.

A " in the sixth field indicates that the line was generated
by a MACRO call and is the expansion of the macro.

After the END statement for the complete program, the return
jump table is listed if any procedure calls were made.

After the return jump table the assembler prints the message
"TOTAL ASSEMBLY ERRORS =", followed by a cumulative
count of the errors,

The final part of the output is the symbol table or cross
reference listing.

9-1

200 pooe0?2 ABCDEF ECU 2

0 201 000003 ABCDEF EQU 13
202 0oQ0o0s ABCDEC EQU 5
20% Dt10s&1 0 02002 5020 J2 MOYE 2.2
o 204 01062 0 03002 35020 J? MOVE 3,2
X 2058 LAB10 ORGC ¥
D 20e¢ 01083 & 0037¢ 5020 ST XMIT «2sAUX
v 207 041064 0 07000 5020 MOYE R1»R7
20e » REGLSTER ERRORS
R 209 01085 O 17001 5020 ROYE TY¥YR,R1
L 21C 01066 0 D000 5020 MOVE ®1,0¥F
P 211 010¢7? 0 000t2 5020 MOYE D»t0
212 01070 0 0OR37 5029 MOYE 0,31
R 213 010717 O 00000 5020 MOYE 0,32
R 214 01072 & 10000 <5020 INET 0s0¥F
215 01073 0 270?77 5020 MOVE JY¥Y1,3,1V%
R 21¢ 01074 0 27127 5020 MOYE I¥1,%,1¥1
217 0107% T D107S FFFF STOP HALT/17Ha377Hs393
218 0107¢ PROC PROCY
219 ges ¢ 1 IVVT RIY 3,647
220 0107¢ 6 Q0004 5020 XmIT R&saAUX
221 0p0o0n 2 X6 £Cu 2
222 01077 & 01002 5020 IMIT XhaR1
u 223 CN1100 7 01100 5020 JHP LAB1
224 011Gt 7 01131 5020 RYN
225 01102 0 36102 %020 MOYE 1Y¥1,RZ
226 END PPOCT
227 01103 PROC PROCZ2
U 22R 01103 7 01103 5020 JUF ST
D 229 ogooe 1 $1 SET 17
230 01104 7 01131 5020 RTN
231 END PROC2
232 01105 PROC PROC
u 233 €105 & 00CO0 5020 I*1T StaR}
234 01106 Q 37000 5020 MOYE WST,8UX
235 01107 7 01131 5020 RTN
236 01110 0O QOCtt 5020 KOVE AUY,R11
237 01111 7 01331 s5Q20 RTN
238 END PROC3
239 0112 PROC PROCS
2t0 071112 & D2COT 5Q2C RRIT 1,02
247 01313 4 MOD3 5020 CALL PROCT/
01114 7 01076 SQ20
242 ENTRY ENTRYS
243 01115 & 11004 5020 CALL PROC?
D111¢ 7 01103 5020
264 01117 7 011317 s02¢C RIN/ 523
245 END PROCS
266 01120 FROC PROCR
247 01120 0 01C01 5020 PYT mOYE R1,R1
248 01121 ¢ 11005 S@Q20 CALL ENTRYS
01122 7 g1115 5020
249 HAC2

249 01123I ? 01125I 5020 . JUP w42
[J

L d (L
Field 1 j_, Field G—I

Fieid 2
Fieid 3-

Field 4
Field 5~

Figure 9-1. Interpretation of the Assembly Listing

9-2

9.2 THE CROSS REFERENCE TABLE

The accumulation of references may be started or stopped through
use of the X parameter on the LIST and NLIST directives. I[f it
is desired to list a complete cross reference table, the LIST X
directive must be placed before the first symbol is used in the
program. References during certain portions of a program will not
be accumulated if the user specifies the NLIST X directive. Thus
by use of the LIST and NLIST directives, the user may accumulate
references wherever desired in the program. Typically a cross
reference toble will be generated for the entire program.
References to internally defined Reserved Symbols are not
accumulated. For a cross reference table to be generated at the
end of the assembly listing, the LIST X directive must not have
been turned off before the END directive.

The format of the cross reference table is shown in Example 9-1.
A minus sign preceding a reference indicates that the symbol was
defined on that line. A symbol may be defined on multiple lines
by use of the SET directive. When 0 is given as a reference, it
indicates that the symbol is a Reserved Symbol.

Example 9-1. Cross Reference Table Listing

LABEL VALUE REFERENCES

AUX 000000 0

VL 000007 0

MAIN 000000 -2 18

TABLE 001057 105 -149 200 205

9.3 THE OBJECT MODULE

The object module is a machine readabie output produced in either
MCSIM, BNPF or ASCll-Hex format, as selected by the OBJ
directive,.

9.3.1 MCSIM Format
The MCSIM format is utilized by some 8X300/8X305 Development

Systems, and can be loaded directly into it. This format is
illustrated in Example 2-2.

Example 9-2. MCSIM Format

leader

program name (CR)LF)

00000: 0 00000,6 (1000,6 02000,6 070!1,...,7 00400,
00010: & 11000,7 00400,...

(TAPE OFF)
END program name

9.3.2 BNPF Format

The BNPF format is used to produce paper tapes which can be
vused on most PROM programmers. This format is illustrated in
Example 9-3.

Example 9-3. BNPF Format

leader

prograrm name

leader (CR)LF)

MODULE nn (STXXCRXLF)

0 BPNPNNNNNF BNNNPNPNPE BNPPNPNNNF
BNNPNPNNNF (CR)LF)
4 BPNNPPPPPF BNNNNNPNNF BNPNPNPPPF

SNNNPNPNNF (CRXLF)

508 BPPNPNNNPE BNNNNPNNPFE BPNNPNNNPFE
BNNPNPNPNF (CRXLFXETX)

leader (CR)LF)

MODWULE nn (STXXCR)LF)

leader
END program name

The object module is divided into blocks according to the PROM
staterments in the MCCAP program. If a 512 by 8 PROM were
defined, module 01 would represent 8X300/8X305 program storage
locations 0 through 511, bits 0 through 7; and module 02 would
represent locations 0 through 511, bits 8 through 5.

Note that since the program name may contain the letter B, the
tape contains a leader foliowing the program name so that the
tape can be conveniently positioned in the programmer tape reader
after the name.

9.3.3 ASCIll-Hex (Quote) Format

9-4

The ASCli-Hex (Quote) format is one of three MCCAP formats
which represent data as ASCIll characters. The object module is
divided into sections corresponding to the ROM size as specified
in the PROM statement. A leader of blanks and the program name
precede the module.

A STX character followed by a carriage return and a line
feed indicates the start of each object module section.
Each record in the object module consists of an address and
eight words of data followed by a carriage return and a line
feed. The address is a 4-digit hexadecimal number. Each
word contains two hexadecimal characters written in pairs
followed by a quote mark. An ETX character indicates the

end of each object module section. The trailer consisting
of the characters END and the program name follow each
object modu]e_. This fo__r'f_r[a_t isr illustrated in _Ex_ampjie}-j;

Example 9-4. ASCll-Hex (Quote) Format

leader

program name (CR}LF)

MODULE nn’

(STXNCRXLF)

SAD000, AO0'I15'%68'28'9F'04'57'14' (CR)LF)
SA0008, 05'F2'B3'21'00'81'DD'C2' (CRXLF)

$Ab IF8, BI1'26'79'36'DI'09"91"2A" (CR)LF)
(ETX)

MODULE nn nn!
(STXNCRXLF)

(ETX)
END program name

9.3.4 ASCll-Hex {Space) Format
The ASCll-Hex (Space) format also represents data as ASCII
characters. This format is identical to the ASCll-Hex (Quote)
format, with a space separating the data rather than a quote mark.

9.3.5 ASCIl-HEX Word Format
The ASCll-Hex word format is a hexadecimal format widely used
by development systems, ROM simulators, and PROM programmers.
For word widths wider than eight bits, this format permits the
entire word to be cutput as a single record.

The format generates a modified memory image, blocked into
discrete records with length equal to one word. A word is defined
to be one-user memory location and with MCCAP may be from 16
to 32 bits in width. Each record starts with a record mark and
header consisting of length, type, and memory address (in user
memory space) and is followed by a trailer consisting of two
checksum characters. Data frames consist of ASCll-Hex characters
where each character represents & bits. [n cases where the micro.
word width is an odd number of nibbles, leading zeros are used to
fill out the most significant byte of the data word to ensure that
data records always contain a whole number of data bytes. A
frame-by-frame description of the record is shown in Table 9-I.

9-5

9-6

Table

9-1. ASCll-Hex Word Format

Frame Contents
0 Record Mark. Signals the start of a record. The
ASCIl character colon, 3AX, is used as the record
mark.
[,2 Record Length. Two digits representing a hexa-
decimal number in the range 0 to FFX (0-255).
This is the number of data bytes in the data frames.
A record length of O indicates end of file.
3 toé Load Address. Four digits that represent the
memory location where the data wiil begin loading.
7,8 Record Type. Two ASCH digits. Data records are
type 00 and the end record is type Ol (length 0).
9 to Data. Each byte of memory is represented by two
9+2*Length-1 digits to represent 8 bits of binary data. These
proceed from most significant nibble to least
significant nibble. The number of data bytes is
specified in Frames | and 2.
9+2*Length Checksum. Two ASCIl characters. The checksum
and is the two's complement of the 8-bit binary sum-
9+2*_ength+] mation of all previous bytes in the record since
the record mark (colon).
Example 9-5. ASCIll-Hex Word Format
The |6-bit binary value OfQIQ01 111111000 is 53F8 in hexadecimal.

To encode this,
the character 5

the first frame would contain the ASCIl code for
(35X), the second frame would contain the ASCII

code for the character 3 (33X), and so on.

If memory locations 1C40 through [C&2 contain 32-bit data of

53F8 ECA40
rery 2222
3333 4444

the hex file produced (including control characters) would be:

:041C400053
:041C41001H!
:041C420033
:00000001FF

F8ECA4029
11222239
33444480

9.4 ERROR CODES

If format or syntax errors are detected in the source code during
the assembly process, an indication of the type of error is printed
on the listing on the same line as the statement in error, Certain
errors are considered to be catastrophic to the statement itself.
Of these, some cause a "JMP *' to be assembled, while others
enter a truncated or modulo value into a field if the specified
value is too large. An error associated with a procedure definition
will be reflected in references to the procedure. In ail cases,
however, object code is produced for every executable statement
that is assembled, regardless of its validity.

Appendix D is a test program used to check for proper operation
of the MCCAP assembler. Examples of error codes are presented
in that test program.

Table 9-2. MCCAP Error Codes
Code Error

A Argument Error:
|. An operand (argument) is missing or contains an
invalid character.
2. A PROG or PROC name is included in an

expression.

B Bank Error:
In @ MOVE, ADD, AND, or XOR, source and des-
tination were data fields in the same bank but with
different addresses.

C Context Error:

. A source or destination field contains g register
or I/O data field variable used in an illegal
context (that is, MOVE IV(2),Al; ADD R1,3,R3).

2. The name in a CALL statement is not a pro-
cedure name.

D Duplicate Definition:
I. The symbol in the label field of a statement
has been previously defined.
2. The procedure name has been previously defined.

F Format Error:
An instruction has a trailing comma or stash. (The
instruction is assembled correctly.)

M Heading Error:

The program does not follow the correct format.
That s,

1. no PROC statement after an END procedure

statement; or

2. PROG is not the first statement in the program.
(Some heading errors associated with the END
statement will terminate the program.)

g-7

2-8

Code Error
I /O Data Field Error:

l. 1/O data fields whose precisions are not both
eight and are in different banks are referenced
in the same instruction.

2. 1/O data fields within the same address but of
different precisions are referenced in the same
instruction.

L Label Error:

The symbol in the label field has.

. special characters, or

2. does not begin with an alphabetic character.

M Missing Symbol or RTN Statement:
[. A statement requires a symbol.
2. A procedure does not have an RTN statement.
N Nesting Error:
An attempt was made to nest macros to more than
three levels.
0 Opcode Error:
The code in the operation field has not been
recognized as valid.

2. A RTN statement is used in the main program.

3. A macro definition is nested within another
macro definition.

4, XML or XMR were used as opcodes without
specifying 8X305 (See Sections 6.4 and 7.11).

P Paging Error:

An attempt was made to access a control storage

address which is not in this page or segment (as

applicable).
R Register Error:

. The register expressaon could not be evaqluated.

2, The register expression is not in the proper
range.

3. The register is not valid as used {See Table-
2-2.)

4. A rotate or a length field is out of range.

S Syntax Error:

A rule of syntax has been violated (for example,

4+*VAR),

T Table Overflow:

I. The symbol table has overfiowed.

2. More than 255 CALL statements were encoun-
tered by the Assembler,

3. The depth specified in a PROM directive is
greater than the PROM buffer.

Code trror

U Undefined Symbol:
There is a symbol in the operand field which
[. does not appear in any label field of this program
segment or
2. has not been defined in a declaration statement.

\ Value Error:

. An evaluated expression or constant is out of
range for the field of the actual machine
instruction in which it is to be contained.

2. For the LIV or RIV statements, the required
length "bit+I" is not satisfied.

3. The PROM directive specifies more than {é bits
for instruction extension PROM's.

4. The number of bits in the PROM directive for
standard 8X300/8X305 instructions does not
total 16 bits,

S. More than |6 bits are defined in a DEF directive
or a default value is too large for the field.

X Symbol Error:
A symbol is included in the label field of a statement
for which it is not ailowed.

"CROSS REFERENCE OVERFLOW AT LINE nnnn."
The cross reference table was filled at the line
number specified.

9-10

APPENDIX A

STATEMENT/DEFINITION REFERENCE

EQU
SET
LIv
RV

oBJ

IF, ENDIF
LIST
NLIST
EJCT
SPAC
PROM
DEF

MOVE, ADD,
AND, XOR

XMIT
XEC
NZT
JMP
SEL
CALL
RTN
NOP
HALT
XML
XMR

ASSEMBLER DECLARATIONS

Define a statement

Define or redefine a constant

Define a left bank data field variable
Define a right bank data field variable

ASSEMBLER DIRECTIVES

Program title statement
Procedure title statement
Secondary entry point into a procedure
End the program or a procedure
Set [ocation counter

Specify an objective format
Conditional assembly

List the specified elements
Suppress listing of elements

Eject the listing page

Line feed the listing

Specify PROM size

Define instruction extension fields

EXECUTABLE STATEMENTS

Data manipulation

Load immediate

Execute

Non zero transfer

Unconditional jump

[/O data field selection

Procedure (subroutine) call

Procedure retum

No operation

Stop processing

8 bit load immediate to left bank (8X305 only)
8 bit load immediate to right bank (8X305 only)

APPENDIX B

UNASSEMBLED SAMPLE PROGRAM

LRSS SRR R SRRl S Ll

* THIS PROCRAM SERYES ONLY AS A ¥

* DEMONSTRATION OF ALL MCCAP *
* STATEMENTS. *
IR AR E LA LEREERRAERERE SRS R R EEEEEE]

LIST A

SPAC |

PROG SAMPLE

SPAC 2

LRSI EEEE LA SRS R R R SRR RS LRSS

* DATA AND ADDRESS DECLARATIONS *

R R R R RS E LS R AR EEARE R EEERE SRS S

SPAC 1
FINAL EQU 1
PRELIM EQU 0
INC EQU 1
DEC EQU -1
SINMSK EQU 100000008
OEMASK EQU 1B
LSMASK EQU 7H
SSMASK EQU LSMASK .L. 3
MSMASK EQU LSMASK.R.1.L.6
ROT EQU 3
LEN EQU 4
VAL1 SET o
VALZ SET 1
VAL3 SET 2
VAL 4 SET 3
DISCO LIV 10H,7,8
DISCt LIV 114,7.8
DSTAT LIV DISCI, 0
DSCLOK LIV DISCI, S
DROWR LIV DISCI, 6
DRDAT LIV DISCI
DISP1T L1V 20H,7, 8
DISPZ LIV DISP1+1,7.8
DATA1 RIV 100H,7, 8
DISIGN RIV DATAT, 0
DIODEV RIV DATA1
DATAZ RIV DATAT+1,7,8
D2SIGN RV DATAZ, 0
D20DEV RIV DATA2
TEMP1 RIV 200H,7,8
TEMP2 RIV TEMP1+1,7,8
SPAC 3
EJCT
LR EE R R EREEE R RS AR E SRS EESEEERSEEEEES&S B}
* CONDITIONALS AND SPECIAL *
* DIRECTIVES *
ER SR EEEEEEEESE SRS R EESERERESEEEERESES]
SPAC 1
IF PREL | M
NLIST 5,0
ENDIF
SPAC 1
IF F I NAL
LIST 1.M,5.0
0BJ M
ENDIF
SPAC 1
R S S R RS S SRREREEEEEEEEEEEEEEELESELES]
* MACRO DEFINITIONS *

LEZ A SR AL SRS LESEELESESESEEESEESEEEEE]

LOOK MACRO REPL1,RX

ORG 4,256
SEL DISCI
MOVE REPL 1, RX
NZT RX, *-2
ENDM
SPAC 1
LOOPCT MACRO RX
XMIT - 1. AUX
ADD RX,RX
ENDM
SPAC 19
EJCT
tE SRR A EEENSEEEEEEE LN EEEEEESERE RS E R NE]
* MAIN PROGRAM »
LA R e A I
SPAC 1
ORG 0
START NOP
XMIT 0.R1
XMIT 0,R2
LOOK DSTAT.R1
STC CALL ARITH
CALL MOVMNT
CALL TRNSMT
CALL EXECT
LOOPCT Rs
NZT OVF, START »3
LAST HALT
SPAC 24
g.CT
LR EE R EEEEREEREEEREEEREESEEREREESSE SN
* AR!TH PROCEDURE *
eSS A SRS E RS EEEEEREEEENEREESEEREEREREESERESS]
SPAC ;
PROC ARITH
SPAC]
ORG 256,256
STAR SEL TEMP 1
HMOVE R11, TEMP
CANT CALL NONZXF
SEL TEMP?
MOVE TEMP1,R11
XMIT 40H, AUX
STAD ADD R1,R1
ADD 2.2
ADD R3(ROT),R3
SEL DATA1
XMIT LSMASK , AUX
STAND AND R1,DATAT
SEL DATA2
XMIT SSMASK , AUX
AND R2,LEN,DATA2

XMIT DATAZ+1, IVR
XMIT CMSMASK , AUX

AND R3,LEN,37H
XMIT DATA2+2,17H
XMIT 263H, AUX
AND 44, AUX
SEL DATAT
XMIT -1, AUX

STCR XCR DATA1, DATA

B-2

SEL DATA2

XOR DATA2, 3, DATA2

XMIT DATA2+1, IVR

XOR 37H, LEN, 37H

XMIT DATA2+2, 17H

XOR 33H, LEN, 37H

SPAC 1

ENTRY MOVMNT

SEL DISCI
STMY ~ MOVE DSTAT,RT

MOVE 24H, LEN,R2

MOVE DRDAT,LEN,R3

SPAC 4

EJCT
Yo drdr Je ded e e Kk S e R e ok ok dr dr ok e e b o or ke O e e ke ok ok ok e
* ARITH PROCEDURE {CONT'D) *
P rE T2 EEE LA ER R SR S EL EEE LS ESEEENEE]

SPAC 1

ENTRY TRNSMT

SEL DISP1
STXT XMIT 'C' RS

MOVE RS, DISP3

SEL DiISP2

XMIT ‘0", RS

MOVE R5,DISP2

SEL DISP1

XM1T t1tLRS

MOVE R5,DISP1

AMIT YAL1,DISP1,LEN
KMIT VALZ, 23H. 4

EAR RTN
END ARITH
SPAC 6
EJCT
P s 22 es e X R R E R ESE RS EE LS LRSS
* EXECT PROCEDURE *
Y R X R 22222 R AR R R R R R AR 2 R RN
SPAC 1
PROC EXECT
SPAC 1
TABPTRS RIV 240H,7.,8
T2PTR RIV TABPTRS
T3IPTR RIV TABPTRS, 5
T4PTR RIV TABPTRS, 3
T5PTR RI1V TABPTRS, 1
CRG 7,256
STXC XEC *+1(R6).,5
JMP TAB1
MP TAB2
IMP TAB3
JMP TABY
JMP TABS
ORG 6,256
TAB1 XEC *+1(R1)
IMP DONE
JMP DONE
IMP DONE
IMP DONE
TAB2 SEL TABPTRS
ORG 5,312
XEC *+1(T2PTR)
JmMmpP DONE

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
HET)
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
1853
186

JMP
SEL
ORG
XEC
JMP
JMP
JMP
JMP
SEL
ORG
XEC
MP
JmMP
SEL
ORG
XEC
JMP
JMP
JMP
MP
ORG
RTN
END
SPAC

TAB3

TABY

TABS

DONE

DONE .
TABPTRS

7,32
*+1(T3PTR. 2}
DONE

DONE

DONE

DONE
TABPTRS

5,32
*+1(T4PTR]), 2
DONE

DONE
TABPTRS

7.32
*+1{T5PTR, 2).4
DONE

DONE

DONE

DONE

32,32

EXECT
1

LR AT S LA SR ERL SRR ESEEEEERE LRSS S

* NONZXF PROCEDURE *

LS E AL L EE LRSS ERSEEREELESS]

SPAC
PROC
SPAC
SET
SET
SET
SET
ORG
AMIT
NZT
SEL
AMIT
NZT
SEL
AMIT
NZT
RTN
LOOPCT
SEL
LOOPCT
SEL
LOOPCT
RTN
END
SPAC
END

YAL1
VAL2Z
YAL3
VALY

STNT

ENT

B-4

1
NONZXF

1

VAL T+5

VAL 2+5
VAL3+S
VALA4+5
16,256
YAL1,RS
R5, *+8
ISPt
VAL2,DISP1
DISPY, *+7
DiISP2
VAL3,DESP2
23H,4, *+6

RS

DisP1
DiIsSP1
DISP2
DISP2

NONZXF
12
SAMPLE

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
208
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
126
227
228
229
230
231
232
233
23y
235
1386
237
138
239

APPENDIX C

ASSEMBLED SAMPLE PROGRAM

L= RS LI Y PR Y

o

PROG

PRGCC

SAMPLE

0001
gooo
0001
FEFF
0080
0001
0007
0038
00Co
0003
0004
0000
0001
0002
a003
0238
0278
0241
0269
0271
0279
0438
0478
1038
1001
1029
1078
1041
1079
2038
2078

SAMPLE

MICROCONTROLLER CROSS ASSEMBLER VER 3.0

R EREFEEEEEESE AR R RS LSRR XSS

* THIS PROCRAM SERVES ONLY AS A *

* DEMONSTRATION OF ALL MCCAP *

* STATEMENTS. *

i W e e % e e W b o e o o ok ok e o e e de b o etk o 30 e ok X ok F
LIST A

PROG SAMPLE

de i e e e e de i de de e e i e e e O de e e e e o kg W e e d e e ke ke K

* DATA AND ADDRESS DECLARATIONS *

IS X2 EEEE R EELE SRR RS R R ERESEEE SRS

FINAL EQU 1

PRELIM EQU 0

INC EQU 1

DEC EQU -1

SINMSK EQU 10000000B
OEMASK EQU 18

LSMASK EQU 7H

SS5MASK EQU LSMASK . L. 3
MSMASK EQU LSMASK . R.T.L.6
ROT EQU 3

LEN EQU 4

VAL 1 SET 0

YAL?2 SET 1

VAL3 SET 2

VALY SET 3

DISCO LIV 10H,7.8
DIsCI Liv 114.,7.8
DSTAT Liv DIsCl.0
DSCLOK LIV DISCI, 5
DRDWR Liv DISCI, 6
DRDAT LIV DIsCt

DIsSP] Liv 20H,7,8
DISP2 Liv DISP1+1,7.8
DATA1 RV 100H,7.,8
DI1SIGN RIV DATAT,0
D10DEY R}V DATA]

DATA2 RIV DATA1+1,7.8
D2SIGN RV DATA2, 1
D20DEY RIV DATA2Z

TEMP1 RIV 200H,7,8
TEMP2 RI1Y TEMP1+1,7.8

MICROCONTROLLER CROSS ASSEMBLER

wmoE ok -

YER 3.0

C-2

PROG

SAMPLE

~MICROCONTROLLER CROSS ASSEMBLER

LA E RS S AL R LRSS ERLERELERELEESEE]

* CONDITIONALS AMND SPECIAL *
* DIRECTIVES *

AR S ER RS SR EEREE SR ELEEREEERESERSESES,]

IF PREL IM
ENDIF

iF FiNAL
LIST .M, 5,0
QBlJ M

ENDIF

b2 R EEE RS SRS EE RS RS RR R SRR EEEERSSES]

* MACRO DEFINITICNS *

tEE SR EEEEREEEERELEE RS L LSS EEEE S ESS]

LCOOK MACRO REPL1,RX
CRG 4,256
SEL DISCH
MOVE REPL1,RX
NZT RX, *-2
ENCM

LOOPCT MACRO RX
MIT -1, AUX
ADD RX,RX
ENDM

YER 3.0

46
47
48
49

76
77
78

80
81
82
83
84
84
84
34
84
85

86
87
88
89
89
89

90
91

PROG

0000
0001
0002

0003
0004
0005
0006
0007
noos
0009
000A
0008
000C
600D

000E
QOO0F
0010
Qo1

SAMPLE

0000
cio0
C200

C709
1021
Atl03
C900
E100
C901i
E11F
C902
E123
C903
E12F

COFF
2606
A803
E011

4+ 4t

MICROCONTROLLER CROSS ASSEMBLER VER 3.0

el Pl EESEE AR E LR EE S E R R LR S RS &

* MAIN PROGRAM

*

PR L2 2R 2 X S R AR RS R ESSS RS

START

sTC

LAST

ORG
NOP
XMIT
AMIT
LOOK
ORC
SEL
MOVE
NZT
CALL

CALL
CALL
CALL
LOOPCT
AMIT
ADD

NZT
HALT

0

0.R1
0,R2
DSTAT,R1
4,256
DIsClI
DSTAT ,R1
R1, *-2
ARITH

MOVMNT
TRNSMT
EXECT
R&

-1, AUX

R6,R6
OVF, START+3

76
77
78

87
88
89
71
72

91

C-3

94
35
96

98

1o¢
101
102
103

104
105
106
107
108
109
110
111
112
113
114
1715
116
117
118
113
120
121
122
123

125
126
127
i28
129
130

132
133
134
135
136

C-4

PROG

SAMPLE

E100
CF8o
091F
c904
E161
CF30
1F09
Co29
2101
2202
2363
CF40
cooz
411F
CFa1
Co38
L29F
CF42
CocCo
439F
CF43
CoB3
4480
CF40
COFF
7F1F
CF471
7FT7F
CFy2
TFSF
CF43
7B9F

c709
1621
1482
1783

MICROCONTROLLER CROSS ASSEMBLER

RS S LS ESESEEESESESEEEEEIEEE LRSS

* ARITH PROCEDURE

LSS RS EREEEES L EEEE SRS EEEESE S EEY

STAR

CANT

STAD-

STAND

STOR

STMY

PROC

ORG
SEL
MOVE
CALL

SEL
MOVE
AMIT
ADD
ADD
ADD
SEL
XMIT
AND
SEL
XMIT
AND
MIT
XMIT
AND
XMIT
XMIT
AND
SEL
XMIT
XOR
SEL
XOR
XMIT
XOR
KMIT
XOR

ENTRY
SEL
MOVE
MOVE
MOVE

ARITH

256,256
TEMP 1
R11, TEMP1
NONZXF

TEMP 1
TEMPT, R11
40H, AUX
Ri,R1

2,2
R3{ROT),R3
DATAT
LSMASK, aUX
R1,DATAL
DATA2
SSMASK , AUX
R2,LEN,DATA2
DATAZ+1,1VR
MSEMASK | AUX
R3,LEN,37H
DATAZ+2,17H
263H, AUX
4(4),AUX
DATA!

-1, AUX
DATAT, DATAL
DATA2
DATA2 3 ,DATA2
DATA2+1, VR
37H,LEN, 37H
DATA2+2,17H
33H,LEN, 37H

MOVMNT

DiIsCH
DSTAT . R
24H, LEN,R2
DRDAT, LEN,R3

*

YER 3.0

94
95
96

38

100
01
102
103

104
108
166
107
108
109
110
i1
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

132
133
134
135
136

139
140
141

143
luy
145
1486
147
148
149
150
151
152
153
154
153
156

PRCG

0123
0134
0125
0126
0127
0128
0129
012A
0128
012C
012D
012E

SAMPLE

c710
cs47
0517
c711
C54F
0517
C710
Cs21
0317
D780
D381
E173

MICROCONTROLLER CROSS ASSEMBLER

TEETTEREES AR SRR R A LR R RS RS R RN ES]

* ARITH PROCEDURE (CONT'D)

ITEEEIEEEE SN R LR EERE SRR R R RS RS R RN

STXT

ENTRY
SEL
XMIT
MOVE
SEL
xMIT
MOVE
SEL
XMIT
MOVE
AMIT
XMIT
RTN
END

TRNSMT
D1SP1

'G' RS
R5,DI5P1
DISP2
'O',R5
R3,DISP2
DISP1

"I, R5
R5,DISP]
VALI,DISP1,LEN
YAL2Z, 23H. 4

ARITH

*

VER 3.0

139
140
141

143
144
145
146
147
143
149
150
151
152
153
154
153
156

C-5

PRCG SAMPLE MICROCONTROLLER CROSS ASSEMBLER VER 3.0

159 de s dede v p dr dr ek v e Rk e de e e e e e o e e dr ke Nl o ok e W e O ‘[59
160 * EXECT PROCEDURE * 160
151 *hkrkhkkhkkdh ki h e redid iy iiie 161
163 012F PROC EXECT 163
165 2838 TABPTRS RIV 240H,7,8 165
166 2839 T2PTR RIV TABPTRS 166
167 2829 T3PTR RIV TABPTRS, § 167
168 2819 T4PTR RIV TABPTRS, 3 168
159 2809 TSPTR RIV TABPTRS, 1 169
170 ORG 7.256 170
171 012F 8630 STXC XEC *+1(R6).5 171
172 0130 E135 IMP TAB1 172
173 0131 E13A IMP TAB2 173
1748 0132 E13E _ mP TAB3 174
175 0133 E145 IMP TABY 175
176 0134 E149 Ime TABS 176
177 ORG 6,256 177
178 0135 8136 TAB1 XEC *+1(R1) 178
179 0136 E160 JMP DONE 179
180 0137 E160 MP DONE 180
131 0138 E160 IMP DONE 181
182 0139 E160 JMP DONE 182
183 013A CFAD TAB2 SEL TABPTRS 183
184 ORG 5,32 184
185 013B IF3IC XEC *+1(T2PTR} 185
186 013C E160 IMP DONE 186
187 013D E160 Mg DONE 187
188 013E CFAD TAB3 SEL TABPTRS 183
189 013F E140 ORG 7.32 189
190 0140 9D4 1 XEC *+1(T3PTR, 2) 190
191 0141 E160 iMP DONE 191
192 0142 E160 IMP DONE 192
193 0143 E160 MP DONE 193
194 0144 E160 IMP DONE 194
195 0145 CFAQ TABu SEL TABPTRS 195
196 ORG 5,32 196
197 0146 9B27 XEC £+ [{T4PTR], 2 197
198 0147 E160 IMP DONE 198
199 01438 E160 IMP DONE 199
200 0149 CFAD TABS SEL TABPTRS 200
201 ORG 7.32 201
202 014A 9948 XEC *~1(TSPTR,2}.4 202
203 014B E160 mMP DONE 203
204 014C E160 M DONE 204
205 014D E160 JMP DONE 205
206 014E E160 IMP DONE 206
207 O14F £160 ORG 32,32 207
208 0160 E173 DONE RTN 208
209 END EXECT 209

PROG SAMPLE MICROCONTROLLER CROS3 ASSEMBLER VER 3.0

211 AA A KA AER A IR Ak h A XAk R ANFIETERTTRSY T]]
212 * NONZXF PROCEDURE * 212
113 A A A RRE AR R A N R TR AR T IE LA R AL T 13
215 0161 PROC NONZXF 215
217 0005 YAL1 SET VALT+35 217
218 0006 YAL?2 SET VAL2+5 218
219 0007 VAL3 SET VAL3+5 219
220 0008 VALY SET YALY +5 220
221 ORG 16,256 221
222 2161 C505 XMIT YAL1,R5 222
223 0162 AS6A STNT NZT R5, *+8 223
274 0163 Cc710 SEL DIsP 224
225 0164 D706 XMIT YAL2,DISP1 225
226 07165 B70C NZT DISP1, *+7 226
227 0166 C711 SEL DISP2 227
228 0167 D707 XMIT VAL3,DISP2 228
229 0168 B3I8E NZT 23H. 4, *+6 229
230 0169 E173 RTN 230
231 LOOPCT RS 231
231 016A COFF + XMIT -1, AUX 71
231 0168 2505 + ADD R5,R5 72
232 016C c710 SEL DISP 232
233 LOOPCT DIsP1 233
233 016D COFF + XMIT -1, AUX 7
233 0I6E 3717 + ADD DISP1,DISP1

134 016F C7i SEL DIsP2 234
235 LOOPCT DISP2 235
235 0170 CoFF + MIT -1, AUX 71
235 0171 3niz + ADD BDiSP2,DISP2

236 0172 E173 ENT RTN 236
237 END NONZXF 237

239 END SAMPLE 239

PROG SAMPLE MICROCONTROLLER CROSS ASSEMBLER VER 3.0

2173 8974
0174 E0Q08
at75 EQ0A
0176 EGOC
0177 EQOE
0178 ET04
ASSEMBL.ER ERRORS = 0

C-8

PROG SAMPLE M{CROCONTROLLER CROSS ASSEMBLER VER 3.0

SYMBOL TABLE

* 1

ARITH 0100 AUX 0000 DIODEV 1039 DISIGN 1001
D20DEV 1079 D2SIGN 1041 DATA1 1038 DATAZ 1078
DEC FFFF DISCI 0278 DISCO 0238 DISP1 0438
DISP2 0478 DRDAT 0279 DRDWR 0271 DSCLOK 0269
DSTAT 0241 EXECT 012F FINAL 0001 I NC 0001
VL 0007 VR 000F LAST 0011 LEN 0004
LOOK 0001 LOOPCT 0006 LSMASK 0007 MOVMNT 0 11F
MSMASK 00C0 NONZXF 0161 OEMASK 0001 OVF 0008
PRELIM 0000 RO 0000 R 0001 R11 0009
R12 000A R13 ¢00B R14 000C R1S 000D
R16 000E R17 000F R2 0002 R3 0003
R4 0004 RS 0005 R& 0006 R7 0007
ROT 0003 SAMPLE 0000 SINMSK 0080 SSMASK 0038
START 0000 STC 0006 TEMP1 2038 TEMP2? 2078
TRNSMT 0123 VAL 1 0005 VAL2 0006 VAL3 0007
VALY 0008

* 2

* 3

= oy

CANT 0102 EAR 012E STAD 0107 STAND 010C
STAR 0100 STMY 0120 STOR 0118 STXT 0124
* 5

DONE 0160 STXC 012F T2PTR 2839 TIPTR 2829
T4PTR 2819 TSPTR 2809 TAB] 0135 TAB2 013A
TAB3 013E TABu 0145 TABS 0149 TABPTR 2838
* 6

ENT 0172 STNT 0162

* 7

* 8

= 9

APPENDIX D

ASSEMBLER ERROR TEST PROGRAM

PROG MAIN

—h b —a b b a
L) o S WU o

0000
00901

0002

0003
0004
0005
0006
0007
gaos
0009
000A
0008
Q00C
co0abD
000E
000F
0010
0011

a0B8
00FE
Q0F6
1938
1977
19AE
Eono
0000
0000
6000
0100
0101
0109
0102
0103
0104
0105
0106
0107
010F
0201
0802
0coo
0001

5020
0650
5020
7020
5020
5020
1023
2070
5A00
5020
FFF8
0FFF
5021
5020
33F0
20F5
0000
5020

MICROCONTROLLER CROSS ASSEMBLER VER 3.0

THIS PROGRAM IS USED TO TEST THE ASSEMBLER

FOR PROPER OPERATION. IT SHOWS THE VARIOUS
INSTRUCTION FORMATS, ASSEMBLER DIRECTIVES,

AND ERROR CONDITIONS.

L JNE T B

PROC MAIN
LIST X GENERATE CROSS REF TABLE
DEF 4(s).-802),2,2
PROM - 128,8,8/256,4,8,4
oBJ R,H/R
k4
LIST M, L A
MAC3 MACRO A1, A2
MOVE A1, A2
XEC *{A1l)
XMIT 1,AZ
ENDM
MAC2 MACRO
IMP *+2
MOVE R1,IvVL
SEL WsS1
MAC3 R1,R11
ENDM
MAC1 MACRO P1,P2
MOVE P1,P2
MOVE P2,P1
ENDM
x
V1 LIV 2,7,8
tv2 LIV 3,7.8
1v3 LIV 3,6,8
WS1 RIV 100,7,.8
WS2 RIV 101.6,7
WS3 RIY WS2+1,5,6
HALT
NOP /0, WS2
NOP
MOVE AUX, AUX/7
MOVE R1,R0/
MOVE R1,R!
MOVE R1,R11/1,2..3
MOVE R1,R2/1V1,7
MOVE R1,R3/,LAB1
MOVE R1,R4
MOVE R1,RS/111T1B,~-1,2
MOVE R1,R6/0,X1,3,3
MOVE R1,IVL/,, .1
MOVE R1, IVR
MOVE R2,R1/1V3,77H
MOVE OVF,R2/2,%*,1,1
MOVE AUX,AUX/0,0,0,0
MOVE 0,1

D-2

PROG MAIN
55 0012
56 0013
57 0014
58 00715
59 0014
60 0017
61 6018
62 0019
63 O001A
64 001B
65 001C
66 001D
67 O0O01E
68 O001F
69 0020
70 0021
71 8022
72 0023
73 0024
74 0025
75 0026
76 0027
77 0028
78 0029
79 002A
g0 002B
81 002C
42 002D
83 002E
8a 002F
85 0030
86

87 0031
88 0032
89

90 0033
91 0034
92

93

94

95 90200
96 00201
97 00202
98 00203
99 00204
100 00205
101 00206
102 00207
103 20210
104

165 00240
106 Q0241
107 00242
108 00243

I
I
5
4
N
4
4
I

0007
0009
000F
0010
0017
2121

2101

4017
5117
4237
42F7
4217
7702
7702
7722
77E2

C141

C25A
Co30
c927
9707
9768
C51F
C7CH
COES
CuFF
€900
C700
CF01

D718
FFFF
05AT

C716
0234
0699
C71A
3323

¢1200
01201
01240
27000
27037
27037
27006
27010
27010

a0000
01300
27000
27037

5020
5020
5020
5020
5020
5020
5020
5020
5020
5020
5029
5020
306290
50290
S020
5020
102F
5020
5020
5020
5020
5160
5020
5020
5020
5020
5020
5020
5020
502¢
0000

FoOF
5020

5020
5020

5020
5020
5020
5020
5020
5020
5020
5020
2640

5020
5020
5020
5020

MICROCONTROLLER CROSS ASSEMBLER VER 3.0

MOVE 0,7
MCVE ¢,9
MOVE 0,15
MOVE 0, 16
MOVE 0,23

ADD R1(1),R1
ADD R1{8),R1
AND AUX, I'V1
AND R1, IV1+1
AND R2,1, IV1
AND R2,7, V1
AND R2,8, V1
XOR [V1.R2
XOR 1V1,0,R2
XOR IV1,1,R2
XOR 1V1,7,R2
XMIT 'A'.R1/1,2,3,3
XMIT 'Z',R2
XMIT '0', AUX
XMIT '000 R11
XEC *+1(1V1)
XEC *+1((V1,3)/.L12,0
XMIT 1FX,RS
XMIT 0CuX,R7
XMIT -1BX,R0
XMIT -1,Rt
XMIT -256,R11
XMIT o, iVL
XMIT 1, 1VR
XMIT 30, 1V1
JMP 8191/0,0,0,0
L2 LIV 22,4
SEL L12/17H,0,3,3
MOVE R2,L12
Lig LIV Li2+4. 3,1
SEL LI4
ADD L14,R3
* PAGING ERROR
ORG 128
NLIST A
XEC *(R1), 256
XEC *(R1),253
XEC LABI{R1)
XEC LABT(IV1)
XEC LAB1-1(1V1)
XEC LAB1-1(1V1),32
XEC *(1V1),LAB1-*
XEC *+1(1V1),LAB1-*
XEC *(1V1),LAB1-*/2,100
ORG 128+32
LABT MOVE AUX,AUX
NZT R1,LAB2
NZT IV1,LAB2
NZT iV1,LAB2-1

PROG MAIN
109 00244
110 00245
111
112 00300
i13 00301
114 00302
115 00303
116
117
117 00304
117 00305
118
119 00306
120
121 00307
122 00310

00311
123 00312
P24 00313
00374
125 00315
126 00316
00317
127
129
130 071000
131 010061
132
133
134
135
136
137
138 071002
139
140
141 01003
142 01004
143 01005
144 01Q06
145 01007
146 01010
147 01011
148 01012
149

5 27435
27305

w

0000
01000
27002
01303

= oo

0 01000
0 00001
000026
7 00306
300031
00307
11000
01121
00001
11001
01126
02060
11002
01130

NI LI = SN i e e R B s

0000¢
01001

[= =)

0 02003

00100
00000
00004
01020
00017
0G0zs
02027
a0002

GG G h

5020
0024

5020
5020
5020
5020

5020
5020

5020

5020
5020
5020
5020
5020
5020
5020
0000
0000

5020
5020

5020

5020
5020
5020
5020
5020
5020
5020
10A0

MICROCONTROLLER CROSS ASSEMBLER VER 3.0

NZIT I1V2,4,LAB2-3
NZT IVT,3,*/0,1VY, 1,0
ORG 128+32+32

LABZ MOVE AUX,RI1

XMIT 0,R1
XEC *{I1Vv1,8)
XEC *(R1),2

* EXPAND MACRO

MACt R1, AUX
MOVE R1, AUX
MOVE AUX,R1

S1 SET 22

JMP 51

S1 SET S51+3

JMP ST
CALL PRCCH

MOVE AUX,R1
CALL PROC2

MOVE 2, AUX
CALL PROC3/0,0

SPACE 5 LINES

ORG 512

MOVE AUX, AUX
AMIT 1,R1

IF DIRECT!VE
IF o
MOVE R1,1
XMIT 2,R4
ENDIF

1F

MOVE 2,R3
ENDIF

VARICUS EXPRESSIONS AND OPERATORS
IMP 2.L.5

JMP 2.R.5

XMET 31$4,AUX

XMIT 2+3-6+17,R1

XMIT 1001B+6, AUX

XMIT R5+2.L.3,AUX

XMIT 27H,R2

XMIT 2,R0/1,%,0
EJECT TO NEXT PAGE

D-3

> PP rPPon

wnunw

<

<

< <

O n0O0O0n

PROG MAIN

151
152
153
154
155
a6
157
158
155
160
161
162
163
164
165
166
167
168
1689
17¢
171
172
173
174
173
176
177
178
179
180
182
183
184
186
187
188
189
190
91
192
193
194
195
196
197
193
199
200
201
202
203
204
205

01013
01G14
010158
010186
01017
010290

g1021
Q1022
01023

01024
g1025
01026
0roz27
01030
01031
01032
01033

Dz21C
021D
021E
021F
0220
0221
0222
0223
Q223

0226
0227

01050

B1031

01052
01053
01054
01055

01056

d0000
01014
00000
010186
01017
02377
001237
000000
000000

L= Bt BN = BN Y)

g1o021
20000
00001

< oon o~

27027
37027
is027
276128
27627
27036
27036
27027

oo O Do oo

E21C
B71D
E21E
<300
D780
D700
b7Co
E223
Ccooo

C105
C2FF

1 01000
020000
7 0105
37T 7ot
000 0 0
000 0 0

01002
01053
Q7037
01055
177777
7 01056

~ T~ on

5020
5020
5020
5020
s020
0001

50290
3020
0005

3020
5020
3020
5020
5020
5020
5020
5020

5020
3020
5020
5020
3020
5020
5020
5020
5020

Fa2o
0020

5021

5020

5020
5020
5020
5020

3020

MICROCONTROLLER CROSS ASSEMBLER VER 3.0

* ARGUMENT ERRORS
XMIT ,Iv2,8
XEC ,R1
XMIT -1,
JMP MATN
JMP PROCT
XMIT -1,R2/1,28H, 1.0

K1 EQU 1237H

K3 EQU 1238H

K4 EQU 1002B

* SYNTAX ERRORS
XEC *,Ri1

XMIT 1++2 R

XMIT 1,RO/, IVI+,

* |V BYTE AND BYTE ERRORS
MOVE V71, IV
MOVE WS71, IV}
MOVE WS2, IVv]
MOVE V2, 1v3
MOVE IV, IV2
MOVE Ivz,8,WwS2
MOVE IV¥2,0,WS2
MOVE IV1i+1, IV

* VALUE ERRORS
LIST A
XEC *(1IV1,9)
NZT iVvi,g,*
NZT I¥1,9,*
XMIT -257.R3
XMIT 32,1v2,4
AMIT -32,1V1
AMIT =33, 1v2
JMP g192
AMIT 256, AUX
LIST S
XMIT 3,R1/15
MIT -1,R2/16
NLIST A

ADD R, AUX/, . .5

X5 EQU 8192
JMP X5

Ri2 RIV 255

RI3 RIV 256

RI5 RIV 2,8,0

* CONTEXT ERRORS
AMIT 2,R1,3
NZT R1,2,*
AMIT 31, 1vL, 3
XEC *+1{R1,2)

X1 EQU -1
SEL X1

* UNDEFINED LABELS, LABEL ERRORS,

* AND DUPLICATE LABELS.

L AA BAR

AAow AR

PROG MAIN

206
207
208
209
230
211
212
213
214
215
216
217
218
219
220
R
222
223
224
123
226
227
228
22%
230
231
232
233
234
235
236
217
238
239
240
241
242
243
24
245
246
247
248
249
250
2351
252
253
254
255
256
257
258
259

01057
01060

01061
01062

01063
01064

01065
01066
01067
01079
01071
a1072
01073
0to74

21075
010786
01077
21100
01101
21102
01103

01104
01105
011086
01107
gr110
01111
91112
01113

011
011

-
w E

011148
01117
01120
01121

01121
oi1122
01123
01124
01125

01126

6 00000
0 00000
300002
000003
000005
0 02002
0 03002

6 00376
31007

=]

17001
21010
Q0012
00037
00000
10000
27027
27127

oMo oo

07007
15007
12013
13013
14005
00016
17001

O ool

01007
07001
12001
07013
00017
02014
15017
16000

o OO0 O oo

on

12002
6 13017

¢ 00000
0 00000
7 01120

003 6 1
6 00004
0400002
01002
01123
07154
36102

(== B B

5020
5020

5020
5020

5020
5020

53029
50290
5020
5020
5020
5020
5020
5020

5020
5020
5020
5020
5020
5020
5020

5020
5020
5020
5029
5020
5020
5020
5020

5020
5020

5020
5020
FFFF

5020

5020
5020
50290
5020

MICROCONTROLLER CROSS ASSEMBLER VER 3.0

XMIT

LABEL,
ABCDEF
ABCDEF
ABCDEG
J2 MOVE 2,2
J2 MOVE 3,2
LAB10 ORG *

S1

*

XM
MOVE
REGI
MOVE
MOVE
MOVE
MOVE
MOVE
XMIT

- MOVE

MOVE
8X30
MOVE
VOVE
MOVE
MOVE
MOVE
MOVE
MOVE
axX30
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

K7.R1
EQU 2
EQU 2
EQU 3
EQU 5

IT -2,AUX
R1,R7
STER ERRCRS
IVR,R1
R1,0VF
0,10

0,31

0,32
0,QVF
fv1,8, 1v1
V1,9, 1v1
5

R7, IVL
R15,R7
R12,R13
R13,R15
R14,R5
RO,R16
R17.,R1
0

R1,R7
R7.R1
R12,R1
IVL,R13
RO, IVR
R2,R14
R15,R17
R16,R0

CP CODE ERRORS

8X30
XML
XMR
8X30
AML
XMR

STOP

PROC

VY1

X4

MIT

5
2
oFX
0
7
11
HALT/17H,377H,3.,3
PROC1
RIV 3,6,1
R4, AUX

EQU 2

MIT
JMP
RTN
MOVE
END
PROC

X4, R1
LAB1

IVv1,R2
PROC1
PROC2

D-5

PROG MAIN MICROCONTROLLER CROSS ASSEMBLER VER 3.0

260 01126 7 01126 5020 IMP S

261 600021 51 SET 17

262 01127 7 01154 5020 RTN

263 END PROC2

264 01130 PROC PROC3

265 LIST A

2566 0258 cooo 5020 XMIT S1,R1

267 0259 1F00 5020 MOVE WS1, AUX

268 025A E26C 5020 RTN

269 0258 0009 5020 MOVE AUX,R11

270 D2s5C E26C 5020 RTN

271 END PROC3

272 025D PROC PROCS

273 025D C201 5020 XMIT 1,R2

274 025E C903 5020 CALL PROC1/
025F E251 5020

273 ENTRY ENTRYS

276 0260 Co04 5020 CALL PROC2
0261 E256 5020

177 0262 E26C 502C RTN/, .3

178 END PROCS

279 0263 PROC PROCS

2890 0263 0101 5020 Pi MOVE R1,RT

231 0264 C905 5020 CALL ENTRYS
0265 E260 5020

282 MAC 2

282 0266 E258 5020 + JMP *+2

282 0267 D107 5020 + MOVE R1,IVL

182 0268 CF64 5020 + SEL WSt

282 ' + MAC3 R1,R71

282 0269 0109 5020 + MOVE RI1,R11

282 026A 816A 5020 + XEC *(R1)

282 0268 C901 5020 + XMIT 1,R11

283 END PROCS

284 END MAIN/G,0,0,0

RETURN TABLE

026C 896D 0000
026D EOCA 0000
026E EQCD gooo0
026F E0Do 0000
Q270 E260 0000
0z71 E262 3060
0272 E268 oooo
ASSEMBLER ERRORS = 66

D-6

PROG MAIN MICROCONTROLLER CROSS ASSEMBLER VER 3.0

CROSS REFERENCE

LABEL VALUE REFERENCE

* 1

ABCDEF 0002 -208 ~-209

ABCDEG 0005 =219

AUX ooco 0

ENTRY S 0260 -275 281

V1 ooBS8 ~31 44 62 63 64 65 66 67
68 69 70 75 76 84 98 39

100 101 102 103 107 103 110 110
114 164 166 166 167 168 170 173
173 176 177 178 182 223 223 224

224

V2 00FE -32 109 169 170 171 172 180 183

V3 . 0OFb -33 51 169

VL o007 0

IVR D0OF 9

J2 0231 -211 -212

K1 029F -158

K3 0000 ~159

Ky 0000 -160

LAB1 00A0 45 97 98 99 100 101 102 103
-103

LAB2 00Co 106 107 108 109 -112

Liz 05A1 76 -86 87 88 89

Lla 0699 -39 90 91

MACT 0O0A 0

MAC2 0005 0

MAC3 0001 0

MAIN 0000 155 284

QVF 0008 0

PROC1 0251 122 156 -250 58 174

PROCZ 0256 124 -259 263 276

PRCC3 0258 126 -264 271

PROCS 025D -272 278

PROCS 0263 -279 283

RO 0000 0

R1 0001 0

R11 0009 0

R12 000A 0

R13 0o00B 0

R14 00oC 0

R13 000D 0

R16 Q00E a

R17 000F 0

R2 0002 i

R3 0003 0

R4 0004 0

R5 0005 Q

R& 0006 0

R7 Q007 0

RI2 IFF3 -194

R1i3 oooo0 =195

RIS 0009 -1%6

S1 0019 ~118 119 =120 120 121 -214 260 -261

266

B-7

STOP
WS
wS2
W33
X1
X5

0-8

0250
1938
1977
19AE
FEFF
2000

0eF
0002

0263

-249
-34
-35
-386

=192

=231
-253

-280

167
36

-202
193

257
254

167
38

203

283
168

171

172

R
Signetics

a subsidiary of U.S. Philips Corporation

Signetics Corporation

811 E. Arques Avenue

P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 408 /991-2000

98-3001-830

