CHAPTER |

INTRODUCTION

CONTENTS
INTRODUCTION
INTRODUCING THE 2650 FAMILY.t ittt ittt i iienneens 3
FEATURESOF THE 2650 FAMILY ¢t enrenneenn. 4
Family Approachttt ittt nannnnnnsn 4
Microprocessor FEatureso v v vv vt nnnsanocannnannns 4
Compatible Products . - -« o oo v tvneneenetnionneeenennasnans 5
PROCESSOR HARDWAREDESCRIPTION.. civiiinnenn 6
ArchiteCture00 vevvroennoeesnssonossnnncensen 6
Interfacing it it i i e i i e e 8
INSTrUCHION Set ittt et ie e it nnea e 12
SUPPORT ..ttt ittt iee et s e casasiasnsanns 15
Documentationttt r e 15
Software SUPPOItt et e e 15
Prototyping Hardwarec. i iiiiiientennncenenns 16
System Compatible Familiesttt ennans 16
2650 HARDWARE
INTRODUCTION . .ottt ettt et e e .19
General Features ittt eennnnnnnnns 18
APPHCAtIONS . . it i s e e e e et e e e 20
INTERNAL ORGANIZATION ittt ittt e iee e 2
Internal Registersciiiuevereeonneeenenennenas 21
Program Status Word0ttt ittt i et it e 22
Memory Organizationttt enrnnnneennennnns 27
INTERFACE ... ittt it ittt et e seesitanennns 29
T Lo T 13 29
Signal Timingttt ittt i tnnneeeaeeeoroaaenns 34
Electrical Characteristics oo v e vt v vttt onnnorannoonsnannns 37
Interface Signals i e e i e e 39
PinConfiguration ittt i ittt e e 39
FEATURES . - . i i it et e ettt e et 41
Input/Qutput Facilitiesttt ittt ittt 41
Interrupt MeChanism .+« v o vt i ittt e e ettt e e e 43
Subroutine Linkage - - -« .t ittt s i i e e i 45
ConditionCode Usage c.vvi v iintn i tmeennnnnan. 45
Start-up Procedure e e e e 46
INSTRUCTIONS . o o it it s e e e e e et e e e e euns 47
AddressingModest e e e e e 47
Instruction FOrmats ittt it ittt eeeenn. 51

INTRODUCING THE 2650 FAMILY

“5—VOLT SYSTEM REDUCES SYSTEM COSTS”
“2650 PUTS THE INTERFACE ON THE CHIP.. NOT ON THE CIRCUIT BOARD”
“POWERFUL INSTRUCTION SET PRQVIDES LOWER COST SYSTEMS™

The greatly increased sophistication and rising production costs of today’s
logic systems force the system designer to use every available resource in
order to economically produce his system. In keeping with this cost reduc-
tion goal, Signetics has developed a powerful general purpose integrated
microprocessor called the 2650. The first Signetics microprocessor, in con-
junction with Signetics MOS and Bipolar memory and interface product
lines, offers the system designer a viable and attractive alternative to the
hard-wired approach to system design. For many applications, the system
designer can use this general purpose microprocessor and standard memory
and interface circuits to implement systems with lower cost than the hard-
wired logic approach without sacrificing performance.

By using the 2650 and compatible products, the system designer can
obtain two other major benefits of microcomputer systems. These benefits
are greatly enhanced system flexibility and minimized design or modification
cycles compared with the hard-wired logic approach.

The requirements of the majority of applications for integrated micro-
processors (logic replacement and control functions) have defined a general
set of processor parameters based on system and device economies, ease of
use, and speed requirements.

These characteristics include:

e Single chip ® Eight bit parallel structure
e Fixed instruction set ® TTL compatibility

In addition to these characteristics, the design of the 2650 has been
optimized around three generalized objectives:

e Lowest system cost o Capable of a wide range
» Ease of use of applications

The optimum technology choice for implementing these features is the
low threshold ion-implanted N-Channel silicon gate process. This process
has matured in the past few years, providing a combination of high density,
low threshold voltage, moderate speed and good manufacturing yields. Using
this technology, a total of 576 bits of ROM, approximately 250 bits of
register and about 900 logic gates are used to implement the processor
function on the 2650 chip.

The instruction set consists of 75 instructions, of which about 40% con-
sists of arithmetic instructions. This class contains the Boolean, arithmetic,
and compare operations, each of which may be executed using any one of
eight addressing modes. Another 30% of the instruction set consists of
branch instructions which incorporate six addressing modes. The remaining
30% of the instruction set includes, amoung others, I/0 instructions, instruc-
tions for performing operations on the two status registers, a decimal adjust
instruction and the HALT instruction.

Utilizing multiple addressing modes greatly increases coding efficiency,
allowing functions to be performed using fewer instructions than less power-
ful machines. The resulting reduction in routine execution time and memory
capacity requirements directly translates into improved system performance
and reduced memory cost. In this way the powerful instruction set and
addressing modes of the 2650 allow a significant reduction in the memory
required to perform a given function, resulting in sizeable system cost savings
without sacrificing performance.

FEATURES OF THE 2650 FAMILY

2650 Processor Architecture

2650 FAMILY APPROACH
* Low System Cost
— Low cost N-Channel products
— Intrinsic advantages of single 5V supply
— Uses standard low cost memories
— Low cost interfacing

- Ease of Use
— Easy interfacing
— Conventional instruction set
— Ease of programming

Wide Range of Applications
— General purpose capability
— Powerful architecture
— Powerful instruction set
— Flexible
— Expanding family of devices
FEATURES OF THE MICROPROCESSOR
Basic 2650 Processor Characteristics
- Single chip 8-bit processor
» Signetics low threshold double ion-implanted
silicon gate N-Channel technology
* Single +5V power supply
+ Low power consumption: 525 mW maximum
* Single phase TTL-compatible clock
+ Static operation: no minimum clock frequency
: Clock frequency: 1.25MHz maximum
¢ Cycle time: 2.4us minimum
+ Standard 40 pin DIP

2650 Interfaces

“ TTL compatible inputs, outputs — no external
resistors required

* Tri-state bus outputs for multiprocessor and
direct memory access systems

" Asynchronous (handshaking) memory and I/O
interface

» Accepts wide range of memory timing

* Interfaces directly with industry standard mem-
ories

+ Powerful control interface

¢ Single-bit direct serial I/O path

- Parallel 8-bit I/O capability

v ¢ & 2O e

I

8-bit bidirectianal tri-state data bus

Separate tri-state address bus

32,768-byte addressing range

Internal 8-bit parallel structure

Seven 8-bit addressable general purpose registers
Eight-level on-chip subroutine return address
stack

Program status word for flexibility and enhanced
processing power

Single-level hardware vectored interrupt cap-
ability

+ Interrupt service routines may be located any-

where in addressable memory
Separate adder for fast address calculation

2650 Instruction Set

% 3 5 e

A

General purpose instruction set with substantial
capabilities in arithmetic, character manipulation
and control and 1/O processing

Fixed instruction set

75 instructions

Up to eight addressing modes

True indexing with optional auto increment/
decrement

One, two or three byte instructions

One- and two-byte I/O instructions

Selective test of individual bits

Powerful instruction set and addressing modes
minimize memory requirements

FEATURES OF COMPATIBLE PRODUCTS

2602, 2606, 1K RAMs

Completely static operation
N-Channel silicon gate technology

" 1024 X 1 organization (2602)

256 X 4 organization (2606)
Single +5V power supply

200mW typical power dissipation
Maximum access time:

1us : 2602

750ns : 2606

650ns : 2602-2

500ns :2602-1, 2606-1
TTL-compatible

Tri-state outputs
Data I/O bus (2606 only)
Standard 16 pin DIP

2608 8K ROM

Completely static operation
N-Channel silicon gate technology
1024 X 8 organization

- Single +5V power supply

400mW maximum power dissipation
650ns maximum access time

TTL compatible

Tri-state outputs

- Standard 24 pin DIP

8726 Quad Transceiver

-

Schottky TTL technology

Four pairs of bus drivers/receivers
Separate drive and receive enable lines
Tri-state outputs

Low current pnp inputs

High fan out — driver sinks 40mA
20ns maximum propagation delay

¢+ Stendard 16 pin DIP

8T31 8-bit Bidirectional Port

Schottky TTL technology

~ Two independent bidirectional busses
= Eight bit latch register

Independent read, write controls for each bus
Bus A overrides if a write conflict occurs
Register can be addressed as a memory location
via Bus B Master Enable

30ns maximum propagation delay

Low input current: 500uA

High fan out — sinks 20mA

Standard 24 pin DIP

8795/6/7/8 Hex Buffers/inverters

Schottky TTL technology

Six buffers or inverters per package
Non-inverting (8T95, 8T97) or
Inverting (8T96, 8T98)

Buffered control lines

- Tri-state outputs

Low current pnp inputs
Standard 16 pin DIP

825115/123/129 PROMs

Schottky TTL technology

Single +5V power supply

32 X 8 organization (825123)

256 X 4 organization (825129)

512 X 8 organization (82S115)

Field programmable (Nichrome)
On-chip storage latches (825115 only)
Low current pnp inputs

Tri-state outputs

35ns typical access time

Standard 24 pin DIP (8258115)
Standard 16 pin DIP (825123, 825129)

(See Appendix for additional products and data
sheets.)

PROCESSOR HARDWARE DESCRIPTION

ARCHITECTURE
GENERAL DESCRIPTION

A block diagram of the processor is shown in Figure 1. The first, second,
and third bytes of instructions are read into the processor on the data bus
and loaded into the Instruction Register, Holding Register, and Data Bus
Register, respectively. The instructions are decoded through a combination
of ROM and random logic.

The ALU performs arithmetic, Boolean, and combinatorial shifting func-
tions. It operates on eight bits in parallel and utilizes carry-look-ahead logic.
A second adder is used to increment the instruction address register and to
calculate operand addresses for the indexed and relative addressing modes.
This separate address adder allows complex addressing modes to be imple-
mented with no increase in instruction execution time.

The General Purpose Register Stack and the Subroutine Return Address
Stack are implemented with static RAM cells. The Register Stack consists
of seven 8-bit registers. The Subroutine Stack can contain eight 15-bit
addresses, thereby allowing eight levels of subroutine nesting. Placing the
Subroutine Stack on the chip allows efficient ROM-only systems to be
implemented in some applications. Separate 15-bit Instruction Address and
Operand Address Registers and provided. The 2650 is an 8-bit binary pro-
cessor with BCD capability. See Figure 2 for a diagram of the 2650 registers
as seen by the programmer.

PROGRAM STATUS WORD
The Program Status Word (PSW) is a major feature of the 2650 with

greatly increases its flexibility and processing power. The PSW is a special
purpose register within the processor that contains status and control bits.

It is divided into two bytes called the Program Status Upper (PSU) and
Program Status Lower (PSL). The PSW bits may be tested, loaded, stored,
preset, or cleared using the instructions which affect the PSW. The bits are
utilized as follows:

PSUO0, 1,2 — SP — Pointer for the Return Address Stack.

PSUS —1II — Used to Inhibit recognition of additional Interrupts.

PSU6 —F — Flag is a latch directly driving the flag output.

PSU7 —S — Sense equals the state of the sense input.

PSLO —-C — Carry stores any carry from the high-order bit of
the ALU.

PSL1 — COM — Compare determines if a logical or arithmetic com-
parison is to be made.

PSL2 . — OVF — Overflow is set if a two’s complement overflow
occurs.

PSL3 — WC — With Carry determines is the carry is used in arith-
metic and rotate instructions.

PSL4 — RS — Register Select identifies which bank of 3 GP regis-
ters is being used.

PSL5 — IDC — Inter Digit Carry stores the bit-3-to-bit-4 carry in
arithmetic operations.

PSL6,7 — CC — Condition Code is affected by compare, test and

arithmetic instructions.
INTERRUPT HANDLING CAPABILITY

The 2650 has a single level hardware vectored interrupt capability. When
an interrupt occurs, the 2650 finishes the current instruction and sets the

Interrupt Inhibit bit in the PSW. The processor then executes a Branch to
Subroutine Relative to location Zero (ZBSR) instruction and sends out
Interrupt Acknowledge and Operation Request signals. On receipt of the
INTACK signal the interrupting device inputs an 8-bit address, the interrupt
vector, on the data bus. The relative and relative indirect addressing modes
combined with this 8-bit address allow interrupt service routines to begin at
any addressable memory location.

1 L

ADDRESS STACK [\ srack STATUS

SUBROUTINE RETURN REGISTER PROGRAM :a

———
AU
¢
z MUL TIPLEXER
ADORESS §
‘sus E fp— CONDI 110N COOE
g AND
z [msvuucnou ADORESS I!GII'EIJ Y] srance Locic
«
OPERAND ADDRESS REGISTER &
<]
M
Tr L3 DATA BUS
“ c:AV
=3
H
<
Aponess apoen INTERRUPY :a INSTRUCTION 3
LoGIc
1 E INTERRUPT
[] ACHKNOWLEDGE i L
b N N n: cLocK
"o 10 TR TIMING LOGIC
CONTROC Lines LOGIC v AND CONTROL LOGIC A N
Figure 1. BLOCK DIAGRAM
1 0 7 [7 [
REG 3 s fr] sy | sy | sp | psu
REG 2 T
REG V' LSVM:K POINTER
UNUSED
INTERAUPY INHIBIT
FLAG
7 (J SENSE
REG 3
7 0
REG 2 'cc,!ccolnoclus]wclow]con c]vst
LOGICAL/ARITH COMPARE
OVERFLOW 8IT
WITH/WITHOUT CARRY
L] BANK SELECT
SUBROUTINE RETUAN ADDRESS STACK (8 2 15 RAMI -~ INTERDIGIT CARRY
AEG O CONDITION COQE
GENERAL PURPOSE REGISTERS PROGRAM STATUS WORD
LU I T o
INSTRUCTION ADDRESS REGISTER
PAGE CONTROL NOTE: Not all internal registers are shown.

Figure 2. MAJOR 2650 REGISTERS

INTERFACING

INTRODUCTION TO INTERFACING WITH THE 2650

Five key concepts have been incorporated in the 2650 to make interfacing
easy gnd inexpensive. The extent to which these concepts have been incor-
porated in the Signetics 2650 provides unique benefits of system density and
low cost to the system designer.

1. SINGLE 5V POWER SUPPLY

Low threshold double ion-implanted Silicon Gate N-Channel MOS tech-
nology is used to allow operation from one +5V power supply with resultant
cost savings and improved reliability. This reduces power consumption signi-
ficantly compared with the multi-power supply approach.

2. INTERFACE CIRCUIT COMPATIBILITY

The 2650 inputs and outputs are specified to be compatible with widely
available, standard, low cost logic families such as TTL, CMOS and Low-
power STTL. This includes the single phase clock input which saves the cost
of high level multiphase clock driver circuitry. Bus outputs are tri-state and
capable of driving one 7400 TTL load or four 74LS loads. The 2650 is cap-
able of driving several loads of pnp-buffered STTL inputs. Many MSI, Inter-
face and Memory LSI circuits (for example, in Signetics 82S00 and 8T00
series) have these low current pnp inp.its and are recommended for use in
2650 microcomputer systems. See Table 1 for DC characteristics of the 2650.

3. USE OF STANDARD MEMORIES

One of the major 2650 design achievements is to operate efficiently in a
system using industry standard memories, for example 1024 X 1 and 256 X 4
N-channel RAMs and 1024 X 8 N-Channel ROMs. These standard memories
are widely available and used in volume with corresponding low cost. Non-
standard memories, particularly those produced by only one manufacturer
will be less available, run in lower volume and often cost 2 to 3 times as
much per bit as industry standard products. The 2650 operates successfully
with memories of any access time, due to the completely asynchronous
interface that is provided for this purpose. Memories which respond in less
than 0.8 microseconds allow the processor to operate at maximum speed.

4. NO SPECIAL INTERFACE PRODUCTS

Similarly, another major achievement is to operate efficiently in a system
using no special I/O products. This approach avoids the problems of a
system requiring high cost specialized components with restricted avail-
ability.

TABLE 1. PRELIMINARY 2650 DC ELECTRICAL CHARACTERISTICS

LIMITS
SYMBOL | PARAMETER TEST CONDITIONS MIN MAX UNIT
/K] Input Load Current Vin = 0 to 5.25V 10 HA
ILoH Output Leakage Current ADREN, DBUSEN = 2.2V, Vour = 4V 10 uA
lLoL Output Leakage Current ADREN, DBUSEN = 2.2V, VouT = 0.45V 10 uA
ice Power Supply Current Vee = 5.25V, Ta = 0°C 100 mA
ViL input Low -0.6 0.8 \
VIR Input High 2.2 Vee \Y%
VoL Output Low loL = 1.6 mA 0.0 0.45 \
VoH Qutput High foH = -100 uA 24 Vce-0.6 \%
CIN Input Capacitance VIN = OV 10 pF
Cour Output Capacitance VouT = 0V 10 pF

Conditions: Ta = 0°C to 70°C, Vg = 5V 5%

5. POWERFUL MEMORY AND 1/0 INTERFACE
The following features characterize the memory and 1/O interfaces:

® Both memory and input/output may operate in a completely asynchronous
fashion. Consequently, devices operating at any speed up to the maximum
data transfer rate may be connected without buffering. External latching
of data from these interfaces is not required.

® Data paths are

driven with tri-state buffers, allowing multiprocessor and

Direct Memory Access (DMA) configurations to be designed.
¢ Eight-bit data paths communicate data in parallel.
¢ One- and two-byte 1/O instructions provide maximum flexibility and

efficiency when

interfacing with 1/O devices.

SENSE ——) 1 U 40} FLAG
ADR1Z €— 2 39t+—o vee
ADR11 ¢—- 3 38— cLOCK
ADR10 ¢&-— 4 37— PAUSE
ADR2 {5 36 k— QPACK
ADRE ¢— 6 35— RUNWAIT
ADR7 é— 7 34})-—> iNTACK
ADRb &—— 8 33— DBUSO
ADRS & 9 32— pBUST
ADRA ¢——{10 2650 31— pBUS2
ADR3 €~ 11 30 K pBUS3
ADRZ &< 12 .29—> DBUSA
ADR1 ¢— 13 28— DBUS S
ADRO é—— 14 27— DBUS6
ADREN — 15 26 - DBUS?
RESET —X 16 25 K— DBUSEN
INTREQ ——3 17 24— OPREQ
ADR14-D/C &— 18 23— Rw
ADR13-E/NE ({19 22} WRP
Mrl_d(—‘ 20 21}—o0 GND

Figure 3. PIN CONFIGURATION

PIN CONFIGURATION AND INTERFACE SIGNAL DEFINITION
Refer to Figure 3 for the 2650 pin configuration. Signals are defined as

follows:
ADRO-ADR12 —

ADR13-E/NE —

ADR14-D/C -

ADREN —
DBUS0-DBUS7 —
DBUSEN -

OPREQ —

The low order 13 bits of address for memcry access are
on these pins. ADRO-ADR7Y are also used in two-byte I/O
instructions. These outputs are tri-state buffers con-
trolled by ADREN.

This multiplexed output signal delivers the ADR13
address bit when M/IO is in the M phase or discriminates
between Extended and Non-Extended I/O instructions
when M/IO is in the 1/O phase.

Address 14 or Data/Control is a multiplexed output
signal. This pin delivers the ADR14 address bit when
M/IO is in the M phase or discriminates between Data
and Control I/O instructions when M/IO is in the I/O
phase.

Address Bus Enable is an input providing the external
control for the ADRO-ADR12 tri-state buffer drivers.
This is the 8-bit, bidirectional tri-state bus over which
most data is communicated into or out of the processor.
Data Bus Enable is an input that controls the tri-state
buffer drivers for DBUSO to DBUST.

Operation Request is an output signal that informs
external devices that the information on other output
pins is valid.

10

OPACK — Operation Acknowledge is an input which is used by
external devices to end an I/O or memory signaling
sequence.

M/10 — Memory/Input-Output. This output informs external
devices whether Memory or Input/Output functions are
being performed.

R/W — This output signal describes an 1/O or memory operation
as Read or Write, and defines whether the bidirectional
DBUS is transmitting or receiving.

WRP — This Write Pulse is generated during write sequences and
may be used to strobe memory or 1/O devices.

SENSE — Is an input, independent of the other I/O signals, that

\ provides a direct input to the processor.

FLAG — This pin provides a direct output signal that is completely
independent of the other I/O signals.

INTREQ — Interrupt Request. This input is used by external devices
to force the processor into the Interrupt sequence.

INTACK — Interrupt Acknowledge is the signal used by the pro-

cessor to inform external devices that it has entered an
interrupt sequence.

PAUSE — Pause is used to temporarily stop the processor at the end
of the current instruction. It may stop processing for an
indefinite length of time and is available to use for DMA
(Direct Memory Access).

RUN/WAIT — Informs external circuits as to the Run/Wait status of the
2650 processor.

RESET — Is an input used to cause the 2650 to begin processing
from a known state.

CLOCK — This is the only clock input to the processor. It accepts
standard TTL levels.

vCC — +5V power.

GND — The logic and power supply ground for the processor.

2650 TIMING

The clock input to the 2650 provides the basic timing information that
the processor uses for all its internal and external operations. The clock rate
determines the instruction execution time, except to the extent that external
memories and devices slow the processor down. The maximum clock rate of
the standard 2650 is 1.25 Megacycles (one clock period is 800ns minimum).
One unique feature of the 2650 is that the clock frequency may be slowed
down to DC, allowing complete timing flexibility for interfacing. This feature
permits single stepping the clock which can greatly simplify system check-
out. It also provides an easy method to halt the processor. Each 2650 cycle
is comprised of three clock periods. Direct instructions require either 2, 3, or
4 processor cycles for execution and, therefore, vary from 4.8 to 9.6us in
duration.

A timing diagram for a memory read cycle is shown in Figure 4. OPREQ
(Operation Request) is the master control signal that coordinates all opera-
tions external to the processor. When true, OPREQ indicates that other
output signals are valid. During a memory read cycle M/IO is in the M
(Memory) state and R/W is in the R (Read) state. The address lines and the
control lines become valid before OPREQ rises. The data to be read may
be returned anytime after OPREQ becomes valid. An OPACK (Operation
Acknowledge) should accompany the read data from the memory. The
Data and OPACK signals should remain valid for 50 ns after OPREQ falls.

INPUT/OUTPUT INTERFACE

The 2650 microprocessor has a set of versatile I/O instructions and can
perform I/O operations in a variety of ways. One- and two-byte I/O instruc-
tions are provided, as well as a special single-bit I/O facility. The I/O modes
provided by the 2650 are designated as Data, Control, and Extended 1/O.

Data or Control I/O instructions are one byte long. Any general purpose
register can be used as the source or destination. A special control line
indicates if either a Data or Control instruction is being executed. Extended
1/O is a two-byte read or write instruction. Execution of an extended I/O
instruction will cause an 8-bit address, taken from the second byte of the
instruction, to be placed on the low order eight address lines. The data,
which can originate or terminate with any general purpose register, is placed
on the data bus. This type of I/O can be used to simultaneously select a
device and send data to it.

Memory reference instructions that address data outside of physical
memory may also be used for 1/O operations. When an instruction is exe-
cuted, the address may be decoded by the 1/O device rather than memory.

MEMORY INTERFACE

The memory interface consists of the address bus, the 8-bit data bus and
several signals that operate in an interlocked or handshaking mode.

The Write Pulse signal is designed to be used as a memory strobe signal for
any memory type. It has been particularly optimized to be used as the Chip
Enable or Read/Write signal for the Signetics 2602 and 2606 RAMs.

INTERFACING — A MINIMAL SYSTEM EXAMPLE

The 2650 has been designed for low cost, easy interfacing, which is
dramatically illustrated by a minimal system configuration shown in Figure 5.
This system has a Teletype interface, 1024 bytes of ROM, and 256 bytes of
RAM, yet requires only seven (7) standard integrated circuit packages. The
ROM can contain a bootstrap loader and I/O driver programs for the Tele-
type. Other programs could reside in ROM or be read into RAM via the
Teletype. An alternative to the 2608 N-Channel MOS ROM is the 825115
Bipolar PROM which offers a 512 X 8 organization. Only one +5-volt power
supply is required for this system. The advantages of conceptual simplicity
and minimum system costs of the 2650 approach will be obvious to the
system designer, particularly when compared to alternative microprocessor
products.

Y -
w " N 10 £
Cuoce = '
4039 ’
sEnsE .y Ty

et mreanac INTERNAL FLAG fr—. kaidd 1‘
; Df LAy~ DELAY ~500m8 6 O—AAA -4

CONTROL|oUTRUTS anD T bavAeus T T
ACDRESIESVALID 007 < 2|
comsacme b= *, ___________ - - ﬁ ﬁ
wwmony B o m e m - - - ;: " aw
i)

U { weme= PR DU) W FRCK | Ta38 008 2008 faoad

e f-----d B o ey 3 X ARAM Bax4RAM 1034 % 3 AOM
ReadmmTE oraca

______________ _/ S Ci ct [
FROM AZCISSAL " 43
MENCRY ! {}
Ay
Bt ’ PESTOR WA Ag-Ay
245CYCLE
- el NOTES:

oaram = A m e a bos = _~/ "

| - Voo GND crock 10123 1. ORE *5V SUPPLY" BEVEN IC PACKAGES

_____________________ - 2. *CMOS RECEIVER USED FOR MIGH NOISE MIMUMITY
! 2830 CYCLL TIME A

+3CLOCK PEKIODSS2 45 MINIML 4

NOTES 11 TFACK must ga bow ot less1 100 1S Betore (he Uadmg sy of T2 1n order not 10 sow down the 2650
121 DATA IN 31t rust be vabid for S0nS altee Ihe raning ¢ yo of OPREQ

Figure 4. MEMORY READ CYCLE TIMING Figure 5. SEVEN PACKAGE MINIMAL SYSTEM
1

12

LOAD/STORE

ROTATE COMPARE LOGICAL ARITHMETIC

BRANCH

INSTRUCTION SET

It may be seen from examination of the 2650 instruction set that there
are many powerful instructions which are all easily understood and are
typical of larger computers. There are one-, two-, and three-byte instruc-
tions as a result of the multiplicity of addressing modes. See Table 2 for a
complete listing and Figure 6 for instruction formats.

Automatic incrementing or decrementing of an index register is available
in the arithmetic indexed instructions..All of the branch instructions except
indexed branching can be conditional.

Register-to-register instructions are one byte; register-to-storage instruc-
tions are two or three bytes long. The two-byte register-to-memory instruc-
tions are either immediate or relative addressing types.

TABLE 2. INSTRUCTION SET

MNEMONIC OP CODE | FORMAT* DESCRIPTION OF OPERATION AFFECTS CYCLES
z 000 000 12 Load Register Zero CC (Note 1) 2
t 000 001 21 Load Immediate CC (Note 1) 2
LOD 3R | oooot0 2R Load Relative CC (Note 1) 3
A | 000011 3A Load Absolute CC (Note 1) 4
z 110 000 12 Store Register Zero (r # 0) CC (Note 1) 2
STR R 110010 2R Store Relative - 3
A 11001 3A Store Absolute - 4
Z 100 000 12 Add to Register Zero wi/wo Carry C, CC {Note 1), IDC, OVF 2
ADD | 100 001 21 Add tmmediate w/wo Carry C, CC (Note 1}, 1DC, OVF 2
R 100 010 2R Add Relative w/wo Carry C, CC (Note 1}, IDC, OVF 3
A 100011 3A Add Absoiute w/wo Carry C, CC (Note 1), IDC, OVF 4
2 101 000 12 Subtract from Register Zero w/wo Borrow C, CC (Note 1), IDC, OVF 2
SUB | 101 001 21 Subtract Immediate w/wo Borrow C, CC (Note 1), IDC, OVF 2
R 101 010 2R Subtract Relative w'wo Borrow C. CC (Note 1), IDC, OVF 3
A 101 011 3A Subtract Absolute w'wo Borrow C, CC (Note 1), IDC, OVF 4
DAR 100 101 12 Decimal Adjust Register CC (Note 2) 3
Z | 010000 12 AND to Register Zero (r3£0) CC (Note 1) 2
AND I 010 001 2! AND tmmediate CC (Note 1) 2
R | 010010 2R AND Relative CC {Note 1) 3
A | 010011 3A AND Absotute CC {Note 1) 4
Z { 011000 12 Inclusive OR to Reaqister Zero CC {Note 1) 2
JOR 1 011 001 21 Inclusive OR Immediate CC (Note 1) 2
R 1011010 2R Inclusive OR Relative CC (Note 1) 3
A 011011 3A Inclusive OR Absolute CC (Note 1) 4
Z | 001 000 1Z Exclusive OR to Register Zero CC (Note 1) 2
EOR | 001 001 21 Exclusive OR Immediate CC (Note 1) 2
R | 001010 2R Exclusive OR Relative CC (Note 1) 3
A | 001011 3A Exciusive OR Absolute CC (Note 1) 4
Z | 111000 12 Compare to Register Zero Arithmetic/Logical| CC (Note 3) 2
coM | 111 001 21 Compare tmmediate Arithmetic/Logical CC {Note 4) 2
R 111010 2R Compare Relative Arithmetic/Logical CC (Note 4) 3
A 111011 3A Compare Absolute Aritnmetic/Logical CC {Note 4) 4
RRR 010100 12 Rotate Register Right w/wo Carry C, CC, IDC, OVF 2
RRL 110 100 12 Rotate Register Left w/wo Carry C,CC, IDC, OVF 2
BCT R] 000110 2R Branch On Condition True Relative - 3
A | 000111 38 Branch On Condition True Absolute — 3
BCF i R | 100110 2R Branch On Condition False Relative - 3
A | 100111 38 Branch On Condition False Absolute - 3
BRN R | 010110 2R Branch On Register Non-Zero Relative - 3
A | 010111 3B Branch On Register Non-Zero Absolute - 3
BIR R 110110 2R Branch On Incrementing Register Relative - 3
A 1110111 38 Branch On Incrementing Register Absolute - 3
BDR R 111110 2R Branch On Decrementing Register Relative - 3
A 1111 3B Branch On Decrementing Register Absolute - 3
ZBRR 100 110 1 2ER Zero Branch Relative, Unconditional - 3
BXA 10011111 3EB Branch Indexed Absolute, Unconditional - 3
(Note 5)

SUBROUTINE BRANCH/RETURN

INPUT/OUTPUT

MISC.

PROGRAM STATUS

TABLE 2. INSTRUCTION SET (CONTINUED)

RS Register Bank Seiect C Carry/Borrow

MNEMONIC OP CODE | FORMAT* DESCRIPTION OF OPERATION AFFECTS CYCLES
R | 001110 2R Branch To Subroutine On Condition True, SP 3
BST Relative
A 1001111 38 Branch To Subroutine On Condition True, SP 3
Absolute
R | 101110 2R Branch To Subroutine On Condition False, sP 3
BSF Relative
A 101111 38 Branch To Subroutine On Condition False, SP 3
Absolute
R 011110 2R Branch To Subroutine On Non-Zero Register,| SP 3
BSN Relative
A 01111 38 Branch To Subroutine On Non-Zero Register,| SP 3
Absolute
ZBSR 101 110 11 2ER Zero Branch To Subroutine Relative, sP 3
Unconditional
BSXA 101111 11 3EB Branch To Subroutine, Indexed, Absolute sP 3
Unconditional (Note 5)
C 000101 12 Return From Subroutine, Conditional SP 3
RET E | 001101 1z Return From Subroutine and Enable SsP, 1t 3
interrupt, Conditionat
WRTD 111 100 12 Write Data — 2
REDD 011100 1z Read Data CC (Note 1) 2
WRTC 101 100 12 Write Control - 2
REDC 001 100 1Z Read Control CC (Note 1) 2
WRTE 110101 21 Write Extended - 3
REDE 010101 21 Read Extended CC (Note 1) 3
HALT 010 000 00 1€ Halt, Enter Wait State - 2
NOF 110 000 00 1E No Operation - 2
TM™MI 111 101 21 Test Under Mask Immediate CC (Note 6) 3
LPS U 1606100 10 1€ Load Program Status, Upper F,H,SP 2
L 100 100 11 1€ Load Program Status, Lower CC, IDC, RS, WC, OVF, COM, C 2
SPS U 00010010 1E Store Program Status, Upper CC (Note 1) 2
L 000 10011 1€ Store Program Status, Lower CC (Note 1) 2
CPS V] 011101 00 2E1 Clear Program Status, Upper, Masked F, li, SP 3
L Q11101 01 2Ei Clear Program Status, Lower, Masked CC, IDC, RS, WC, OVF,COM, C 3
PPS U |011 10110 2E1 Preset Program Status, Upper, Masked F, Il,SP 3
L 011101 11 2E! Preset Program Status, Lower, Masked CC, IDC, RS, WC, OVF,COM, C 3
TPS 3 U 101 101 00 2EI Test Program Status, Upper, Masked CC {Note 6) 3
L 101 101 01 2El Test Program Status, Lower, Masked CC (Note 6) 3
*FORMAT CODE: The number indicates the number of bytes. The letter(s) indicate the format type(s). See Fig. 6.
NOTES:
1. Condition code (CC1, CCO): 01 if positive, 00 if zero, 10 if negative.
2 Condition code 15 set to a meaningless value.
3 Condition code {CC1, CCO). 01 f RO > r, 00 RO=r, 10 if RO < 1.
4. Conditton code (CC1, CCO). Ot ifr >V, 00ifr=V,101fr < V.
5 Index register must be register 3or 3',
6 Condition code (CC1, CCO): 00 if all selected bits are 15, 10 if not all the selected bits are 1s.
PROGRAM STATUS WORD
PSU PSL
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 4]
Not | Not
S F oL Used | Used SP2 { SP1 | SPO CC1{CCO|IDC| RS | WC]|]OVFICOM| C
S Sense SP2 Stack Pointer Two CC1 Condition Code Gne WC With/Without Carry
F Flag SP1 Stack Pointer One CCO Conditton Code Zero OVF Overflow
Interrupt inhibit SPO Stack Pointer Zero IDC Interdigit Carry COM Logical/Arith. Compare

OPERATION CODE RNV
I

SYMBOLS:
(Z) recister aooRESSING R - REGISTER NUMBER
V- VALUE OR CONDITION
7 6 5 4 3 2 1 o X - INDEX REGISTER NUMBER
I - INDIRECT 8IT
OPERATION CODE R DATA MASK OR BINARY VALUE
1 Al
Z \ v
(1) mmEDIATE ADORESSING
15 “ 13 12 n 0 9 8 7 6 [4 3 2 . 1 L]
RELATIVE DISPLACEMENT
OPERATION CODE AV ' -64<DISPLACEMENT<+63
. N\ PV : —\
{R) ReLaTive aDDRESSING
L I R R R T I S 7 6 5 & 3 2 1 0
*INDEX
OPERATION CODE RIX i CONTROL HIGHER ORDER ADDRESS LOWER ORDER ADDRESS
L L 1
— A
ABSOLUTE ADDRESSING
{A) (NON-BRANCH INSTRUCTIONS)
2 2 21 2 19 18 17 % T T R T R s T T e 7 6 S5 & 3 2 1 o
HIGHER ORDER ADDRESS
1
—
OPERATION CODE R/V 1 PAGE LOWER ORDER ADDRESS
. « — g "
ABSOLUTE ADDRESSING
{B) (8RANCH INSTRUCTIONS)
23 22 21 20 19 8 7 e B I U B R T R T R T R T 7 6 5 4 3 7 190
HIGHER ORDER ADDRESS
1
v
UNUSED PAGE LOWER ORDER ADDRESS
i P)
INDIRECT ADDRESSING
15 12 13 12 n 10 9 8 7 6 5 4 3 2 1]
OPERATION CODE
A *INDEX CONTROL:
00= NON-INDEXED
(E) 01= INDEXED WITH AUTO-INCREMENT
MISCELL ANEOUS 10 = INDEXED WITH AUTO-OECREMENT
INSTRUCTIONS 1t = INDEXED ONLY
7 6 5 L] 3 2 1 [}

Figure 6. INSTRUCTION FORMATS

14

SUPPORT

DOCUMENTATION

The complete manual set is available in a durable 3-ring binder, The binder
contains the Hardware Specifications, the Assembler Language Manual, the
Software Simulator Manual, and a section called System Application Notes.
Our update service provides customers with new application notes and
updates to the manual set.

The Hardware Specification Manual includes a detailed description of the
instruction set, the pin-outs, the AC and DC electrical characteristics, the
Input/Output and memory interface signals with timing diagrams, the
internal processor organization, and other useful information.

The Assembler Language Manual describes how to write programs in the
2650 symbolic assembly language, the pseudo-ops, and how to assemble a
2650 program. Additional information is presented on how to use the
assembler program, how to interpret the output listings and how to load
object modules.

The Simulator Manual describes the nature of the simulation program,
how to write simulation commands and how to interpret the simulation
output.

System Application Notes are included to help the user design with the
2650 processor. These notes present detailed technical information on
various subjects of interest and apply to either programming, hardware con-
figuration, or system concepts. This section will continue to grow.

Examples of Application Notes are:
e Serial 1/O for the 2650 ® I/O Device Selection Methods
e Memory Interfaces ® A Minimal System Configuration
e How to use the Decimal
Adjust instruction

SOFTWARE SUPPORT

Signetics-developed software is available to both the batch processing user
and the timesharing user. The Batch Assembler and Batch Simulator are
written in standard FORTRAN and may be compiled and executed on most
medium to large scale computer systems. Because of the modular design
used, it is expected that many minicomputer users will also be able to utilize
these programs. The main features of the programs are listed in Tables 3
and 4.

Signetics has also made the Batch Assembler, Batch Simulator and Inter-
active Simulator available on several international timesharing networks for
those customers who wish to run these programs using a timesharing service.

When a customer chooses to follow the timesharing approach, he can also
make use of the interactive version of the 2650 Simulator. With the Inter-

TABLE 4. SIMULATOR FEATURES

- Cycle Counter for timing estimates ¢ Statistical information generated

& |nstruction fetch break points ® Easy-to-use command language
Operand fetch break points & Optionally selected start and end addresses
* Trace facilities » Dynamic changes of simulated registers

« Snapshot dumps
® Patching facility

Optionally simulates ROM-RAM environment

TABLE 3. ASSEMBLER FEATURES

® 2-Pass Assembler
Diagnostic error messages
+ Symbolic addressing including
forward references
¢ Constant generation
Pseudo-ops to aid programming
* Free format source code

15

16

active Simulator the software designer can utilize his timesharing terminal to
dynamically alter his program and effectively reduce his program develop-
ment time.

The Signetics 2650 Symbolic Assembly Language has been modeled after
other assembly languages; because of this, the assembler is easy to learn and
to use.

The Simulator programs are designed to aid the user in testing and correct-
ing his programs. This approach is an alternative to dedicating hardware
development tools to one or two programmers or designers for program
development. The Simulator allows users to simulate the execution of pro-
grams without utilizing a processor. The Simulator utilizes the object module
produced by the Assembler as input, and through use of appropriate simu-
lator commands, can display and/or alter the internal registers of the simu-
lated 2650 processor and the simulated memory contents.

The progréms are usually delivered delivered on IBM compatible magnetic
tape “mini-reels”. All programs are in FORTRAN source code as card image
records.

A growing Program Library is available to Signetics microprocessor users.
We encourage users to submit all non-proprietary programs to Signetics to
add to the program library so that we may make them available to other
users.

PROTOTYPING HARDWARE

PROTOTYPING CARD

In order to develop a product using the Signetics 2650 microprocessor,
both hardware and software must be designed. Recognizing that the basic
needs of many of our customers for prototyping systems will be similar,
Signetics has designed a prototyping card containing a basic microcomputer
system. This card provides a starting point for the development of hardware
interfaces while simultaneously providing a tool for software checkout.

The first Signetics prototyping card consists of a 2650 processor, ROM
memory containing a loader and editor, RAM memory for program storage
before committing to PROM or ROM, a TTY interface for easy access, a
crystal-controlled clock and two input and output ports (8 bits each).

SYSTEM COMPATIBLE FAMILIES

The 2650 has been designed to interface directly with industry standard
logic and memory families, particularly 7400 and 74LS00 logic families,
TTL compatible 5V NMOS memories (Signetics’ 2600 series) and bipolar
memories (Signetics’ 8200 and 82S00 series). Many interface circuits in the
8T00 family are particularly useful for constructing interfaces in 2650
systems.

Other logic families including 8200 TTL, 82800 STTL and 4000 CMOS
are compatible with the 2650. See Table 5.

TABLE 5. SYSTEM COMPATIBLE FAMILIES

Logic 7400, 8200 - TTL

74LS00 - TTL-LS

82S00 - STTL

4000 - CMOS
Memory 2500 - PMOS

2600 — NMOS

7400, 8200 - Bipolar TTL

82S00 - Bipolar STTL
Interface 8T00 - TTL, STTL

CHAPTER II

2650 HARDWARE

17

18

FEATURES

GENERAL PURPOSE PROCESSOR
SINGLE CHIP

FIXED INSTRUCTION SET

PARALLEL 8-BIT BINARY OPERATIONS
40 PIN DUAL IN-LINE PACKAGE

N-CHANNEL SILICON GATE MOS TECHNOLOGY
TTL COMPATIBLE INPUTS AND OUTPUTS
SINGLE POWER SUPPLY OF +5 VOLTS

SEVEN GENERAL PURPOSE REGISTERS
RETURN ADDRESS STACK, 8 DEEP, ON CHIP

32K BYTE ADDRESSING RANGE

SEPARATE ADDRESS AND DATA LINES

VARIABLE LENGTH INSTRUCTIONS OF 1, 2, OR 3 BYTES
75 INSTRUCTIONS

MACHINE CYCLE TIME OF 2.4usec

AT CLOCK FREQUENCY OF 1.25 MHz

DIRECT INSTRUCTIONS TAKE 2,3 or 4 CYCLES
SINGLE PHASE TTL LEVEL CLOCK INPUT
STATIC LOGIC

TRI-STATE OUTPUT BUSSES

REGISTER, IMMEDIATE, RELATIVE, ABSOLUTE
INDIRECT, AND INDEXED ADDRESSING MODES
VECTOR INTERRUPT FORMAT

INTRODUCTION

GENERAL FEATURES

The 2650 processor is a general purpose, single chip, fixed instruction set,
parallel 8-bit binary processor. A general purpose processor can perform any
data manipulations through execution of a stored sequence of machine in-
structions. The processor has been designed to closely resemble conventional
binary computers, but executes variable length instructions of one to three
bytes in length. BCD Arithmetic is made possible through use of a special
“DAR” machine instruction.

The 2650 is manufactured using Signetics’ N-channel silicon gate MOS
technology. N-channel provides high carrier mobility for increased speed and
also allows the use of a single 5 volt power supply. Silicon gate provides for
better density and speed. Standard 40 pin dual in-line packages are used for
the processor.

The 2650 contains a total of seven general purpose registers, each eight
bits long. They may be used as source or destination for arithmetic opera-
tions, as index registers, and for I/O transfers.

The processor can address up to 32,768 bytes of memory in four pages of
8,192 bytes each. The processor instructions are one, two, or three bytes
long, depending on the instruction. Variable length instructions tend to con-
serve memory space since a one-or two-byte instruction may often be used
rather than a three byte instruction. The first byte of each instruction always
specifies the operation to be performed and the addressing mode to be used.
Most instructions use six of the first eight bits for this purpose, with the
remaining two bits forming the register field. Some instructions use the full
eight bits as an operation code.

The most complex direct instruction is three bytes long and takes 9.6
microseconds to execute. This figure assumes that the processor is running at
its maximum clock rate, and has an associated memory with cycle and access
times of one microsecond or less. The fastest instruction executes in 4.8
microseconds.

The clock input to the processor is a single phase pulse train and uses only
one interface pin. It requires a normal TTL voltage swing, so no special clock
driver is required.

The Data Bus and Address signals are tri-state to provide convenience in
system design. Memory and I/O interface signals are asynchronous so that
Direct Memory Access (DMA) and multiprocessor operations are easy to
implement.

The 2650 has a versatile set of addressing modes used for locating oper-
ands for operations. They are described in detail in the INSTRUCTIONS
section of this manual.

The interrupt mechanism is implemented as a single level, address vector-
ing type. Address vectoring means that an interrupting device can force the
processor to execute code at a device determined location in memory. The
interrupt mechanism is described in detail in the FEATURES section of this
manual.

19

20

APPLICATIONS

The ability of the semi-conductor industry to manufacture complete gen-
eral purpose processors on single chips represents a significant technological
advance which should prove to be of great benefit to digital systems manu-
facturers. In terms of chip size and density of transistors, the processors are
simply extensions of the continually evolving MOS technology. But in terms
of function provided, a significant threshold has been crossed.

By allowing designers to convert from hardware logic to programmed
logic, the integrated processor provides several important advantages.

1. Logic functions may be implemented in memory bits instead of logic gates. The user
then has greater access to the advantages of memory circuits. Memories use patterned
circuitry and thus provide greater density and therefore greater economy.

2. Random logic implementations of complex functions are highly specialized and cannot
be used in other applications. They are not often used in large volume. Programmed
logic, on the other hand, relies on general purpose processor and memory circuits that
are used in many applications. Thus, economies of volume are available for both the
user and the manufacturer.

3. Because the functional specialization resides in the user’s program rather than the
hardware logic, changes, corrections and additions can be much easier to make and can
be accomplished in a much shorter time.

4. With the programmed logic approach it is often possible to add new features and
create new products simply by writing new programs.

5. The design cycle of a system using programmed logic can be significantly shorter than
a similar system that attempts to use custom random logic. The debugging cycle is also
greatly compressed.

A general purpose processor designed to implement programmed logic has
many characteristics that allow it to do conventional computer operations as
well. Many applications will specialize in programmed logic or in data pro-
cessing, but some will take advantage of both areas. In a line printer applica-
tion, for example, a processor can act primarily as a controlier handling the
housekeeping duties, control sequencing and data interfacing for the printer.
It also might buffer the data or do some code conversions, but that is not its
primary duty. On the other hand, in a text editing intelligent terminal, the
processor is mainly concerned with data manipulation since it handles code
translations, display paging, insertions, deletions, line justification, hyphena-
tion, etc.

A point-of-sale type of terminal represents an application that combines
both control and data processing activities for the processor. Coordinating
the activities of the various devices and displays that make up the terminal is
an important part of the job, as are the calculations that are essential to the
operation of the machine.

INTERNAL ORGANIZATION

INTERNAL REGISTERS

The block diagram for the 2650 shows the major internal components and
the data paths that interconnect them. In order for the processor to execute
an instruction, it performs the following general steps:

1. The Instruction Address Register provides an address for memory.
2. The first byte of an instruction is fetched from memory and stored in the Instruction

Register.

3. The Instruction Register is decoded to determine the type of instruction and the
addressing mode.

4. If an operand from memory is required, the operand address is resolved and loaded
into the Operand Address Register.

5. The operand is fetched from memory and the operation is executed.

6. The first byte of the next instruction is fetched.

The Instruction Register (IR) holds the first byte of each instruction and
directs the subsequent operations required to execute each instruction. The
IR contents are decoded and used in conjunction with the timing informa-
tion to control the activation and sequencing of all the other elements on the
chip. The Holding Register (HR) is used in some multiple-byte instructions
to contain further instruction information and partial absolute addresses.

The Arithmetic Logic Unit (ALU) is used to perform all of the data
manipulation operations, including Load, Store, Add, Subtract, And, Inclu-
sive Or, Exclusive Or, Compare, Rotate, Increment and Decrement. It con-
tains and controls the Carry bit, the Overflow bit, the Interdigit Carry and
the Condition Code Register.

The Register Stack contains six registers that are organized into two
banks of three registers each. The Register Select bit (RS) picks one of the
two banks to be accessed by instructions. In order to accomodate the regis-
ter-to-register instructions, register zero (RO) is outside the array. Thus,
register zero is always available along with one set of three registers.

The Address Adder (AA) is used to increment the instruction address and
to calculate relative and indexed addresses.

The Instruction Address Register (IAR) holds the address of the next
instruction byte to be accessed. The Operand Address Register (OAR) stores
operand addresses and sometimes contains intermediate results during effec-
tive address calculations.

The Return Address Stack (RAS) is an eight level, Last In, First Out
(LIFO) storage which receives the return address whenever a Branch-to-Sub-
routine instruction is executed. When a Return instruction is executed, the
RAS provides the last return address for the processor’s IAR. The stack
contains eight levels of storage so that subroutines may be nested up to eight
levels deep. The Stack Pointer (SP) is a three bit wraparound counter that
indicates the next available level in the stack. It always points to the current
address.

21

22

ADDRESS
Bus

OUTPUT CONTROL

SUBROUTINE RETUAN
ADDRESS STACK

A

<F

REGISTER
STACK

PROGRAM
STATUS
WORD

MULTIPLEXER

DATA BUS REGISTER

Figure 7. SIGNETICS 2650 BLOCK DIAGRAM

PROGRAM STATUS WORD

Vi CONDITION COOE
AN
INSTRUCTION ADDRESS REGISTER BRANCH LOGK
i OPERAND ADDRESS REGISTER |
ADDRESS ADDER . INTERRUPT ~eN A
heuest] wrennoer REGISTER
. L0GIC
INTEARUPT h
T] [ACKNOWLEDGE _:? L
[a 5
CONTROULINES 0GIC AND CONTROL LOGIC
—N —————
pem—

TIMING LOGIC

b:bu ATA BUS

cLock

The Program Status Word (PSW) is a special purpose register within the
processor that contains status and control bits. It is 16 bits long and is
divided into two bytes called the Program Status Upper (PSU) and the

Program Status Lower (PSL).

The PSW bits may be tested, loaded, stored, preset or cleared using the
instructions which effect the PSW. The sense bit, however, cannot be set or
cleared because it is directly connected to pin #1.

PSU

II
SP2
SP1
SPO

PSL

CC1
cco
IDC
RS

OVF
COM

7 6 5 4 3 2 1 0
Not Not
P1 SPO
S F II Used Used SP2 S
Sense
Flag
Interrupt Inhibit
Stack Pointer Two
Stack Pointer One
Stack Pointer Zero
7 6 5 4 3 2 1 0
.CC1 CcCo IDC RS wC OVF | COM (o

Condition Code One
Condition Code Zero
Interdigit Carry
Register Bank Select
With/Without Carry
Overflow

Logical/Arithmetic Compare

Carry/Borrow

SENSE (S)

The Sense bit in the PSU reflects the logic state of the sense input to the
processor at pin #1. The sense bit is not affected by the LPSU, PPSU, or
CPSU instructions. When the PSU is tested (TPSU) or stored into register
zero (SPSU), bit #7 reflects the state of the sense pin at the time of the
instruction execution.

FLAG (F)
The Flag bit is a simple latch that drives the Flag output (pin #40) on the
processor.

INTERRUPT INHIBIT (I)
When the Interrupt Inhibit (II) bit is set, the processor will not recognize
an incoming interrupt. When interrupts are enabled (II=0), and an interrupt

signal occurs, the inhibit bit in the PSU is then automatically set. When a -

Return-and-Enable instruction is executed, the inhibit bit is automatically
cleared.

STACK POINTER (SP)

The three Stack Pointer bits are used to address locations in the Return
Address Stack (RAS). The SP designates the stack level which contains the
current return address. The three SP bits are organized as a binary counter
which is automatically incremented with execution of Branch-to-Subroutine
instructions, and decremented with execution of Return instructions.

CONDITION CODE (CC)

The Condition Code is a two bit register which is set by the processor
whenever a general purpose register is loaded or modified by the execution
of an instruction. Additionally, the CC is set to reflect the relative value of
two bytes whenever a compare instruction is executed.

The following table indicates the setting of the Condition Code whenever
data is set into a general purpose register. The data byte is interpreted as an 8-
bit, two’s complement number.

Register Contents cci CcCo

Positive

Zero

Negative

For compare instructions the following table summarizes the setting of
the CC. The data is compared as two 8-bit absolute numbers if bit #1, the
COM bit, of the Program Status Lower byte is set to indicate “logical”
compare (COM=1). If the COM bit indicates ‘‘arithmetic” (COM=0), the
comparison instructions interpret the data bytes as two 8.bit two’s com-
plement binary numbers.

Register to Storage Register to Register
Compare Instruction Compare Instruction cC1 cco
Reg X Greater Than Storage Reg 0 Greater Than Reg X (
Reg X Equal to Storage Reg 0 Equal to Reg X 0 0
Reg X Less Than Storage Reg 0 Less Than Reg X 1 0

23

24

The CC is never set to 11 by normal processor operations, but it may be
explicitly set to 11 through LPSL or PPSL instruction execution.

INTERDIGIT CARRY (DC)

For BCD arithmetic operations it is sometimes essential to know if there
was a carry from bit #3 to bit #4 during the execution of an arithmetic
instruction.

The IDC reflects the value of the Interdigit Carry from the previous add or
subtract instruction. After any add of subtract instruction execution, the
IDC contains the carry or borrow out of bit #3.

The IDC is also set upon execution of Rotate instructions when the wC
bit in the PSW is set. The IDC will reflect the same information as bit #5 of
the operand register after the rotate is executed. See Figure 8.

REGISTER SELECT (RS)

There are two banks of general purpose registers with three registers in
each bank. The register select bit is used to specify which set of three general
purpose registers will be currently used. Register zero is common and is
always available to the program. An individual instruction may address only
four registers, but the bank select feature effectively expands the available
on-chip registers to seven. When the Register Select Bit is ‘0", registers 1, 2,
& 3 in register bank #0 will be accessable, and when the bit is 1", registers
1, 2, & 3 in register bank #1 will be accessable.

WITH/WITHOUT CARRY(WC)

This bit controls the execution of the add, the subtract and the rotate in-
structions.

Whenever an add or a subtract instruction executes, the following bits are
either set or cleared: Carry/Borrow (C), Overflow (OVF), and Interdigit Carry
(IDC). These bits are set or reset without regard to the value of the WC bit.
However, when WC=1, the final value of the carry bit affects the result of an
add or a subtract instruction, i.e., the carry bit is either added (add instruc-
tion) or subtracted (subtract instruction) from the ALU. ‘

Whenever a rotate instruction executes with WC=0, only the eight bits of
the rotated register are affected. However, when WC=1, the following bits
are also affected: Carry/Borrow (C), Overflow (OVF) and Interdigit Carry
(IDC). The carry/borrow bit is combined with the 8-bit register to make a
nine-bit rotate (see Figure 8). The overflow bit is set whenever the sign
bit (bit 7) of the rotated register changes its value, i.e., from a zero (0) to a
one (1) or from a one (1) to a zero (0). The interdigit carry bit is set to the
new value of bit 5 of the rotated register.

OVERFLOW (OVF)

The overflow bit is set during add or subtract instruction executions
whenever the two initial operands have the same sign but the result has a
different sign. Operands with different signs cannot cause overflow. Ex-
ample: A binary +124 (01111100) added to a binary +64 (01000000) pro-
duces a result of (10111100) which is interpreted in two’s complement form
as a —68. The true answer would be 188, but that answer cannot be con-
tained in the set of 8-bit, two's complement numbers used by the processor,
so the OVF bit is set.

Rotate instructions also cause OVF to be set whenever the sign of the
rotated byte changes.

--2’4—»_’-—»_’—-»

) 6 5 4 3 2 1 0 -
ROTATE REGISTER RIGHT WITH CARRY

E {NOT CHANGED)

1 1
[c] | 4»| 4>
(NOT CHANGED)
7 6] 4 3 2 1 0

ROTATE REGISTER RIGHT WITHOUT CARRY

- -1 -t
e
- <¥ - -

7 6 5 4 3 2 1 0
ROTATE REGISTER LEFT WITH CARRY

(NOT CHANGED)

- - PR
-~
- - e —
{(NOT CHANGED)
7 6 5 4 3 2 1 0
Figufe 8. ROTATE REGISTER LEFT WITHOUT CARRY

COMPARE (COM)

The compare control bit determines the type of comparison that is ex-
ecuted with the Compare instructions. Either logical or arithmetic com-
parisons may be made. The arithmetic compare assumes that the comparison
is between 8-bit, two’s complement numbers. The logical compare assumes
that the comparison is between 8-bit positive binary numbers. When COM is
set to 1, the comparisons will be logical, and when COM is set to 0, the
comparisons will be arithmetic. See Condition Code (CC).

26

CARRY (C)

The Carry bit is set by the execution of any add or subtract instruction
that results in a carry or borrow out of the high order bit of the ALU. The
carry bjt is set to 1 by an add instruction that generates a carry, and a
subtract instruction that does not generate a borrow. Inversely, an add that
does not generate a carry causes the C bit to be cleared, and a subtract
instruction that generates a borrow also clears the carry bit.

Even though a borrow is indicated by a zero in the Carry bit, the pro-
cessor will correctly interpret the zero during subtract with borrow opera-
tions as in the following table.

Low Order bit Low Order bit Carry bit
Minuend Subtrahend Borrow bit Low Order Bit Result
0 0 0 1
0 0 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

The carry bit may also be set or cleared by rotate instructions as described
earlier under “With/Without Carry”.

To perform an Add with Carry or a Subtract with Borrow, the WC bit
must be set.

MEMORY ORGANIZATION

The 2650 has a maximum memory addressing capability of 049
—32,76710 locations. As may be seen in the INSTRUCTIONS section of this
manual, most direct addressing instructions have thirteen bits allocated for
the direct address. Since thirteen bits can only address locations 010
—8,19110, a paging system was implemented to accomodate the entire
address range.

The memory may be thought of as being divided into four pages of 8,192
bytes each. The addresses in each page range as in the following chart:

START ADDRESS _END ADDRESS
page 0 | 000000000000000 {001111111111111] 049—8191,4

page 1 | 010000000000000 |011111111111111 819210—16,3831p
page 2 | 100000000000000 {101111111111111 16,38410—24.575 19
page 3 | 110000000000000 [111111111111111| 24,5676 10—32,767 10

The low order 13-bits in every page range through the same set of num-
bers. These 13-bits are the same 13-bits addressed by non-branch instructions
and are also the same 13-bits which are brought out of the 2650 on the
address lines ADRO — ADR12.

The high order two bits of the 15-bit address are known as the page bits.
The page bits when examined by themselves also represent, in binary, the
number of the memory page. Thus, the address 010000001101101 is known
as address location 10910 in page 1. The page bits, corresponding to
ADR13 and ADR14 are brought out of the 2650 on pins 19 & 18. These bits
may be used for memory access when more than 8,192 bytes of memory are
connected.

There are no instructions to explicitly set the page bits. They may be set
through execution of direct or indirect, branch or branch-to-subroutine in-
structions. It may be seen that these instructions (see INSTRUCTION
Section) have 15-bits allocated for address and when such an instruction is
executed, the two high order address bits are set into the page bit latches in
the 2650 processor and will appear on ADR13 and ADR14 during memory
accesses until they are specifically changed.

For memory access from non-branch instructions, the 13-bit direct add-
ress will address the corresponding location within the current page only.
However, the non-branch memory access instruction may access any byte in
any page through indirect addressing which provides the full 15-bit address.
In the case of non-branch instructions, the page bits are only temporarily
changed to correspond to the high order two bits of the 15-bit indirect add-
ress used to fetch the argument byte. Immediately after the memory access,
ADR13 & ADR14 will revert to their previous value.

27

28

The consequences of this page address system may be summarized by the
following statements.

1. The RESET signal clears both page latches, i.e., ADR13 & ADR14 are cleared to zero.

2. All non-branch, direct memory access instructions address memory within the current
page.

3. All non-branch, memory access instructions may access any byte of addressable mem.-
ory through use of indirect addressing which temporarily changes the page bits for the
argument access, but which revert back to their previous state immediately following
instruction execution.

4. All direct and indirect addressing branch instructions set the page bits to correspond to
the high order two bits of the 15 bit address. '

5. Programs may not flow across page boundaries, they must branch to set the page bits.

6. Interrupts always drive the processor to page zero.

INTERFACE

SIGNALS

RESET
The RESET signal is used to cause the 2650 to begin processing from a

known state. RESET will normally be used to initialize the processor after
power-up or to restart a program. RESET clears the Interrupt Inhibit control
bit, clears the internal interrupt-waiting signal, and initializes the IAR to zero.
RESET is normally low during program execution, and must be driven high
to activate the RESET function. The leading and trailing edges may be
asynchronous with respect to the clock. The RESET signal must be at least
three clock periods long. If RESET alone is used to initiate processing, the
first instruction will be fetched from memory location page zero byte zero
after the RESET signal is removed. Any instruction may be programmed for
this location including a Branch to some program located elsewhere.

Processing can also be initiated by combining an interrupt with a reset. In
this case, the first instruction to be executed will be at the interrupt address.

CLOCK

The clock signal is a positive-going pulse train that determines the instruc-
tion execution rate. Three clock periods_comprise a processor cycle. Direct
instructions are 2, 3, or 4 processor cycles long, depending on the specific
type of instruction. Indirect addressing adds two processor cycles to the
direct instruction times.

PAUSE

The PAUSE input provides a means for temporarily stopping the execu-
tion of a program. When PAUSE is driven low, the 2650 finishes the instruc-
tion in progress and then enters the WAIT state. When PAUSE goes high,
program execution continues with the next instruction. If PAUSE is turned
on then off again before the last cycle of the current instruction begins,
program execution continues without pause. If both PAUSE and INTREQ
occur prior to the last cycle of the current instruction, the interrupt will be
recognized, and an INTACK will be generated immediately following release
of the PAUSE. The next instruction to be executed will be a ZBSR to ser-
vice the interrupt.

If an INTREQ occurs while the 2650 is in a WAIT state due to a PAUSE,
the interrupt will be acknowledged and serviced after the execution of the
next normal instruction following release of the PAUSE.

INTREQ

The Interrupt Request input (normally high) is a means for external
devices to change the flow of program execution. When the processor recog-
nizes an INTREQ, i.e., INTREQ is driven low, it finishes the instruction in
progress, inserts a ZBSR instruction into the IR, turns on the Interrupt
Inhibit bit in the PSU, and then responds with INTACK and OPREQ signals.
Upon receipt of INTACK, the interrupting device may raise the INTREQ
-line and present a data byte to the processor on the DBUS. The required
byte takes the same form as the second byte of a ZBSR instruction. Thus,
the interrupt initiated Branch-to-Subroutine instruction may have a relative
target address anywhere within the first or last 64 bytes of memory page 0.
If indirect addressing is specified, a branch to any location in addressable
memory is possible.

29

30

For devices that do not need the flexibility of the multiple target address-
es, a byte of eight zeroes may be presented and will cause a direct subroutine
branch to memory location zero in page zero. The relative address presented
by the interrupting device is handled with a normal I/O read sequence using
the usual interface control signals. The addition of the INTACK signal distin-
guishes the interrupt address operation from other operations that may take
place as part of the execution of the interrupted instruction. At the same
time that it acknowledges the INTREQ), the processor automatically sets the
bit that inhibits recognition of further interrupts. The Interrupt Inhibit bit
may be cleared anytime during the interrupt service routine, or a Re-
turn-and-Enable instruction may be used to enable interrupts upon leaving
the routine. If an INTREQ is waiting when the Interrupt Inhibit bit is
cleared, it will be recognized and processed immediately without the execu-
tion of an intervening instruction.

OPACK

The Operation Acknowledge signal is a reply from external memory or
I/0O devices as a response to the Operation Request signal from the processor.
OPREQ is used to initiate an external operation. The affected external de-
vice indicates to the processor that the operation is complete by turning on
the OPACK signal. This procedure allows asynchronous functioning of exter-
nal devices.

If a Memory operation is initiated by the processor, the memory system
will provide an OPACK when the requested memory data is valid on the
Data Bus. If an 1/O operation is initiated by the processor, the addressed 1/0
device may respond with an OPACK as soon as the write data is accepted
from the Data Bus, or after the read operation is completed. However, in
order to avoid slowing down the processor when using memories or 1/0
devices that are just fast enough to keep the processor operating at full speed
the OPACK signal must be retumed before the external operation is com-
pleted. Any OPACK that is returned within 600 nsec. following an OPREQ
will not delay the processor. Data from a read operation can return up to
1000 nsec. after an OPREQ is sent and still be accepted by the processor
without causing delays. If all devices will always respond within these time
limits, the OPACK line may be permanently connected in the ON (low)
state. Whenever an OPACK is not available within that time, the processor
will delay instruction execution until the first clock following receipt of the
OPACK. All output line conditions remain unchanged during the delay and
the processor does not enter the WAIT state. OPACK is true in the low state
and false in the high state.

SENSE

The SENSE line provides an input line to the 2650 that is independent of
the normal 1/0 Bus structures. The SENSE signal is connected directly to one
of the bits in the Program Status Word. It may be stored or tested by an
executing program. When a store (SPSU) or test (TPSU) instruction is exe-
cuted, the SENSE line is sampled during the last cycle of the instruction.

Through proper programming techniques the SENSE signal may be used
to implement a direct serial data input channel, or it may be used to present
any bit of information that the designer chooses.

The SENSE input and FLAG output facilities provide the simplest method
of communicating data in or out of the 2650 Processor as neither address
decoding nor synchronization with other processor signals is necessary.

ADREN
The Address Enable signal allows external control of the tri-state address

outputs (ADRO-ADR12). When ADREN is driven high, the address lines are
switched to their third state and show a high output impedance. This feature
allows wired-OR connections with other signals. The ADR13 and ADR14
lines which are multiplexed with other signals are not affected by this signal.

When a system is not designed to utilize the feature, the ADREN input
may be connected permanently to a low signal source.

DBUSEN

The Data Bus Enable signal allows external control of the tri-state Data
Bus output drivers. When DBUSEN is driven high, the Data Bus will exhibit a
high output impedance. This allows wired-OR connection with other signals.

When a system is not designed to utilize this feature, the DBUSEN input
may be permanently connected to a low signal source.

DBUS

The Data Bus signals form an 8-bit bi-directional data path in and out of
the processor. Memory and 1/0 operations use the Data Bus to transfer the
write or read data to or from memory.

The direction of the data flow on the Data Bus is indicated by the state of
the R/W line. For Write operations, the output buffers in the processor out -
put data to the bus for use by memory or by external devices. For Read
operations, the buffers are disabled and the data condition of the bus is
sensed by the processor. The output buffers may also be disabled by the
DBUSEN signal.

The signals on the data bus are true signals, i.e., a one is a high level and a
zero is low.

ADR
The Address signals form a 15 bit path out of the processor, and are used

primarily to supply memory addresses during memory operations. The ad-
dresses remain valid as long as OPREQ is on so that no external address
register is required. For extended 1/O operations, the low order eight bits of
the ADR lines are used to output the immediate byte of the instruction
which typically is interpreted as a device address.

The 13 low order lines of the address are used only for address informa-
tion. The two high order address lines are multiplexed with I/O control
information. During memory operations, the lines serve as memory address-
es. During 1/O operations they serve as the D/C and E/NE control lines.
Demultiplexing is accomplished through use of the Memory/IO Control line.

The line ADRO carries the low order address bit, and ADR12 carries the
high order address bit. The output drivers may be disabled by the ADREN
signal.

The signals on the address bus are true, i.e., a one is a high level and a zero
is low.

OPREQ

The Operation Request output is the coordinating signal for all external
operations. The M/TO, R/W, E/NE, D/C and INTACK lines are operation
control signals that describe the nature of the external operation when the
OPREQ line is true. The DBUS and ADR bus also should not be considered

31

valid except when OPREQ is in the high, or on state.

No output signals from the processor will change as long as OPREQ is on,
with the exception of WRP. OPREQ will stay on until the external operation
is complete, as indicated by the OPACK input. The processor delays all
internal activity following an OPREQ until the OPACK signal is received.

INTACK

The Interrupt Acknowledge signal is used by the processor to respond to
an external interrupt. When an INTREQ is received, the current instruction
is completed before the interrupt is serviced. When the processor is ready to
accept the interrupt it sets the INTACK to the high, or on, state along with
OPREQ. The interrupting device then presents a relative address byte to the
DBUS and responds with an OPACK signal. INTREQ may be turned off
anytime following INTACK. INTACK will fall after the processor receives
the OPACK signal.

M/TO

The Memory/IO output is one of the operation control signals that de-
fines external operations. M/IO indicates whether anoperationis memory or
I/O and should be used to gate Read or Write signals between memory or I/O
devices.

The state of M/IO will not change while OPREQ is high.

The high state corresponds to Memory operation, and the low state cor-
responds to an I/O operation.
RW

The Read/Write output is one of the operation control signals that defines
external operations. R/W indicates whether an operation is Read or Write. It
controls the nature of the external operation and indicates in which direc-

tion the DBUS is pointing. R/W should not be considered valid until OPREQ
is on and the state of the R/W line does not change as long as OPREQ is on.

The high state corresponds to the Write operation, and the low state
corresponds to the Read operation.

D/C

The Data/Control Output is an I/O signal which is used to discriminate
between the execution of the two types of one byte I/O instructions. There
are four one byte 1/O instructions; WRTC, WRTD, REDC, REDD. When
Read Control or Write Control is executed, the D/C line takes on the low
state which indicates Control (C). When Read Data or Write Data is exe-
cuted, the D/C line takes on the high state, indicating Data (D).

D/C should not be considered valid until (a) OPREQ is on and (b) M/IO
indicates an I/O operation and (c) E/NE indicates a non-extended (one byte)
operation, D/C is multiplexed with a high order address line. When the M/IO
line is in the I/O state, the ADR14-D/C line should be interpreted as
“D/C”. (When the M/IO line is in the M state, the ADR14-D/C line should
be interpreted as memory address line #14.)

E/NE

The Extended/Non-Extended output is the operation control signal that
is used to discriminate between two byte and one byte I/O operations. Thus,
E/NE indicates the presence or absence of valid information on the eight low
order address lines during 1/O operations.

E/NE should not be considered valid until (a) OPREQ is on and (b) M/TO
indicates an I/O operation. E/NE is multiplexed with a high order address
line. When the M/IO line is in the 1/O state, the ADR13-E/NE line should be
interpreted as “E/NE”. (When the M/IO line is in the M state, the
ADR13-E/NE line should be interpreted as memory address bit #13.)

There are six 1/O instructions; REDE, WRTE, REDC, REDD, WRTC,
WRTD. When either of the two byte I/O instructions is executed (REDE,
WRTE), the E/NE line takes on the high state or “Extended” indication.
When any of the one byte 1/O instructions is executed, the line takes on the
low state or ‘“‘non-extended” indication.

RUN/WATT

The RUN/WAIT output signal indicates the Run/Wait Status of the pro-
cessor. The WAIT state may be entered by executing a HALT instruction or
by turning on the PAUSE input. At any other time the processor will be in a
RUN state.

When the processor is executing instructions, the line is in the high or
RUN state; when in the WAIT state, the line is held low.

The HALT initiated WAIT condition can be changed to RUN by a RE-
SET or an interrvpt. The PAUSE initiated WAIT condition can be changed
to RUN by removing the PAUSE input.

If a RESET occurs during a PAUSE initiated WAIT state and the PAUSE
remains low; the processor will be reset, fetch one instruction from page zero
byte zero and return to the WAIT state. When the PAUSE is eventually
removed, the previously fetched instruction will be executed.

FLAG

The FLAG output indicates the state of the Flag bit in the PSW. Any
change in the Flag bit is reflected by a change in the FLAG output. A one
bit in the Flag will give a high level on the FLAG output pin. The LPSU,
PPSU, and CPSU instructions can change the state of the Flag bit.The FLAG
output 1s always a valid indication of the state of the Flag bit without regard
for the status of the processor or control signals. Changes in the Flag bit are
synchronized with the last cycle of the changing instruction.

WRP

The Write Pulse output is a timing signal from the processor that provides
a positive-going pulse in the middle of each requested write operation
(memory or I/O) and a high level during read operations. The WRP is
designed to be used with Signetics 2606 R/W memory circuits to provide a
timed Chip Enable signal. For use with memory, it may be gated with the
M/I0 signal to generate a Memory Write Pulse.

Because the WRP pulse occurs during any write operation, it may also be
used with I/O write operations where convenient.

SIGNAL TIMING

The Clock input to the 2650 provides the basic timing information that
the processor uses for all its internal and external operations. The clock rate
determines the instruction execution rate, except to the extent that external
memories and devices slow down the processor. Each internal processor
cycle is composed of three clock periods as shown in Figure 9, 2650 TIMING
DIAGRAMS.

N

top— e ﬁl
‘cn—k—ta
ctock ST _JSm2__fro__ [\ J __/ _/ \

I‘“CORJ:"L
OPREQ —u ' L—./—_\—

t0AD
N l A [|oaH
OPACK | | 1___/—_
DBUS IN fe-1010—se—tD1H—)
4% SIGNALS VALID
t |
DBUS OUT 2l jetooa h
X, SIGNALS VALID
- -tcsa
CONTROL
SIGNALS (LsmNA‘:’s VALID
(M/I0, R/W, tPOLWP!
E/NE, D/C) Jl‘_'__,"f‘—vﬂ 1

WRP P L_(

GENERAL TIMING

LAST CYCLE
OF CURRENT ’ :
INSTRUCTION

CLOCK T0 T T2 T0 hal T2 TO T

OPREQ L‘ /—__—
_ IRS
INTREQ \ A

INTACK v N
—){ & YR

INTERRUPT TIMING

ADREN \ /
—!l '(— tABD —){ I(— tABD
HIGH IMPEDANCE HIGH IMPEDANCE
ADR STATE x SIGNALS VALID X YRS

—3 f'oRT

A — /
-’| k—‘oeo —)‘ ‘E-‘DBD

HIGH IMPEDANCE HIGH IMPEDANCE
bBus STATE x SIGNALS VALID x STATE

=3 -toRT
TRI-STATE BUS TIMING

Figure 9. 2650 TIMING DIAGRAMS

OPREQ is the master control signal that coordinates all operations
external to the processor. Many of the other signal interactions are related to
OPREQ. The timing diagram assumes that the clock periods are constant and
that OPACK is returned in time to avoid delaying instruction execution. In
that case, OPREQ will be high for 1.5 clock periods (1/2 of tpc) and then
will be low for another 1.5 clock periods.

The interface control signals have been designed to implement asynchro-
nous interfaces for both memory and input/output devices. The control
signals are relatively simple and provide the following advantages: no
external synchronizing is necessary, external devices may run at any data
rate up to the processor’s maximum I/O data rate, and because data signals
are furnished with guard signals the external devices are often relieved of the
necessity of latching information such as memory address.

MEMORY READ TIMING
The following signals are involved in the processor’s memory read
sequence, as shown in Figure 10.

OPREQ = Operation Request
DBUSO-DBUST* = Data Bus
ADRO-ADR12 = Address Bus

ADR13 = Address bit 13

ADR14 = Address bit 14

M/I0 = Memory /Input-Output
R/wW = Read/Write

OPACK* = Operation Acknowledge

The signals marked with an asterisk are sent from the memory device to
the processor. The other signals are developed by the processor.

OPREQ is a guard signal which must be valid (high) for the other signals
to have meaning. When reading main memory the 2650 simultaneously
switches OPREQ to a high state, M/IO to M (memory), R/W to R (Read),
and places the memory address on lines ADRO-ADR14. Remember that

CLOCK

2650 QUTPUTS

INT
oPRED ERNAL INTERNAL
DELAY 500nS
CONTROL[OUTPUTS AND
ADDRESSES|VALID
T R e -
R -
memorvio [T T TT TS T T o= o -~ =
T | S 15 R NS 2 W
— e m——— - —-—-——- s - -—
R T p . - | U

FROM ACCESSED MEMORY

OPATK 600ns a1 _Y 'V
24.SCYCLE N

ALLOWAELE MEMORY
ACCESS TIME 13)

1 2650 CYCLE TIME

| <3 CLOCK PERIODS+7 455 MINIMUM

DATA IN

NOTES :1) OPACK must go low at lesst 100 nS before the traihing edge ot T2 «n order not to stow down the 2650
2] DATA IN 5ignais must be valid for 50nS after the trading edge of OPREQ

{3) Allowable memory access time 13 1.5 with 2 4us cycie time

Figure 10. MEMORY READ SEQUENCE

ADR13 & ADR14 are multiplexed with other signals and must be logically
ANDed with OPREQ and M to be interpreted. Of course, ADR13 & ADR14
may be ignored if only page zero (8,192 bytes) is used.

Once the memory logic has determined the simultaneous existance of the
signals mentioned above, it places the true data corresponding to the given
address location on the data bus (DBUSO to DBUST7), and returns an OPACK
signal to the processor. The processor, recognizing the OPACK, strobes the
data into the receiving register and lowers the OPREQ. This completes the
memory read sequence. ’

If the OPACK signal is delayed by the memory device, the processor waits
until it is received. OPREQ is lowered only after the receipt of OPACK. The
memory device should raise OPACK after OPREQ {alis.

MEMORY WRITE TIMING

The signals involved with the processor’s memory write sequence are
similar to those used in the memory read sequence with the following
exceptions: 1) the R/W signal is in the W state and, 2) the WRP signal
provides a positive going pulse during the write sequence which may be used
as a chip enable, write pulse, etc.

Figure 11 demonstrates the signals that occur during a memory write.

" \ / 12 \ To0 \
cLock
2650 OUTPUTS
V INTERNAL
orREQ DELAY 500nS
conkoLluipuTs Data
ANG ADORES~ [aLio
ADRO-ADR14
——
memorvA G -
b e - — — - —— — el SIS S —_— -
READ whiTE
e o - - —— b e e = b - e o b -——
BHUSO.0BUS — b — — . —— — —_——
...... N
wne _-t —_1
FROM ACCESSED
MEMORY
BFAZR .
600ns N
AT 24,56C
CYCLE TiRe
2650 CVCLE Tinte
ICLOCK PERIODS . 4.8EC MINIAUS

NOTES (11 GFATK must ga tow 1 ieast 100nS betore the Touhing adge 0t T2 0 ocder Aot 10 tow down the 2650

Figure 11. MEMORY WRITE SEQUENCE

INPUT/OUTPUT TIMING

The signal exchanges for I/O with external devices is very similar to the
signaling for memory read/write. See the Features Section, INPUT/OUT
PUT FACILITIES.

CRITICAL TIMES

Figure 9 describes the timing relationship between the various interface
signals. The critical times are labeled and defined in the table of AC
characteristics.

ELECTRICAL CHARACTERISTICS

PRELIMINARY AC CHARACTERISTICS

TA=0°C to 70°C VCC=5V1’.5% unless otherwise specified, see notes 1,2,.3 & 4.

LIMITS
SYMBOL PARAMETER N MAX UNITS
tcH Clock High Phase 400 10,000 nsec
teL Clock Low Phase 400 o0 nsec
tce Clock Period 800 oo nsec
tpc6 Processor Cycle Time 2,400 oo nsec
toR OPREQ Pulse Width 2tcy +toL -100 L nsec
tcoRr Clock to OPREQ Time 100 700 nsec
toan’ OPACK Delay Time 0 oo nsec
toAH OPACK Hold Time 0 oo nsec
tcsa Control Signal Available 50 nsec
tDoA Data Out Available 50 nsec
t pip8 Data in Delay 0 1000(8) nsec
tpiH9 Data in Hold 150 nsec
twpD Write Pulse Delay tc-100 teoL-50 nsec
twPw Write Pulse Width teL ter nsec
tABD Address Bus Delay 80 nsec
tpep Data Bus Delay 120 nsec
trst0 INTREQ Set up Time 0 nsec
tyrH10 INTREQ Hold Time 0 nsec
toRTS Output Buffer Rise Time 150 nsec

NOTES ON AC CHARACTERISTICS

NOOSWN =

. See preceding timing diagrams for definition of timing terms.
. input levels swing between 0.65 voit and 2.2 volts.

. Input signal transition times are 20ns.

. Timing reference level is 1.5 volts,

. Load s -100uA at 20pF.

A Processor Cycle time consists of three clock periods.

. In order to avoid slowing down the processor, OPACK must be lowered 100ns before the trailing edge of

T2 clock, if OPACK 1s delayed past this point, the processor will wait in the T2 state and sampie OPACK
on each subsequent negative clock edge until OPACK is lowered.

. In order to avoid slowing the processor down, input data must be returned to the processor in 1us or

less tme from the OPREQ edge, at a cycle time of 2.4s,
Input data must be held unti! 50ns after OPREQ falls.

. In order to interrupt the current instruction, INTRE Q must fail prior to the first clock of the last cycle

of the current instruction. INTREQ must remain low until INTACK goes high.

37

MAXIMUM GUARANTEED RATINGS(1)

Operating Ambient Temperature 0°C to +70°C
Storage Temperature 65°C to + 150°C
All Input, Output, and Supply Voltages

with respect to ground pin(3) 0.5V to +6V
Package Power Dissipation{2)=iWPkg. 1.6W

PRELIMINARY 2650 DC ELECTRICAL CHARACTERISTICS

LIMITS
SYMBOL | PARAMETER TEST CONDITIONS MIN MAX UNIT
ot Input Load Current Vin = 0 to 5.25V 10 BA
ILOR Output Leakage Current ADREN, DBUSEN = 2.2V, VoyT = 4V 10 HA
ILoL Output Leakage Current ADREN, DBUSEN = 2.2V, VoyTt = 0.45V 10 BA
lee Power Supply Current Vee = 5.25V, Ta = 0°C 100 mA
ViL Input Low -0.6 08 \
ViH Input High 2.2 Vee \'
VoL Output Low loL = 1.6 mA 0.0 0.45 v
VOH Output High lon = -100 wA 24 Vee-0.5 \Y
CiN Input Capacitance Vin = OV 10 pF
CouT Output Capacitance Vout = 0V 10 pF

Conditions: Tp = 0°C to 70°C, Vgc = 5V 5%

NOTES:

1. Stresses above those listed under ‘‘Maximum Guaranteed Ratings’” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or at any other condition above those indicated in the operation sections of this
specification is not implied.

2. For operating at eievated temperatures the device must be derated based on a +1509C maximum junction temperature and a thermal

resistance of 500C/W junction to ambient (40 pin IW package).

. This product includes circurtry specifically designed for the protection of its internal devices from the damaging effects of excessive

static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maxima.

- Parameter valid over operating temperature range unless otherwise specified.

. All voltage measurements are referenced to ground.

. Manufacturer reserves the right to make design and process changes and improvements.

. Typical values are at +259C, nominal supply volitages, and nominal processing parameters.

w

NO O L

INTERFACE SIGNALS

TYPE PINS ABBREVIATION FUNCTION SIGNAL SENSE
INPUT 1 GND Ground GND=0
INPUT 1 Vee +5 Volts 5% Vee=!
INPUT 1 RESET Chip Reset RESET=1 (puise), causes reset
INPUT 1 CLOCK Chip Cilock
INPUT 1 PAUSE Temp. Halt sxecution PAUSE =0, temporarily halts execution
INPUT 1 INTREQ interrupt Request INTREQ=0, requests interrupt
INPUT t OPACK Operatian Acknowledge OPACK =0, ascknowiedges operation
INPUT 1 SENSE Sense SENSE=0 {low) or SENSE=1 (high)
INPUT 1 ADREN Address Enable ADREN=1 drives into third state
INPUT 1 DBUSEN Data Bus Enable DBUSEN=1 drives into third state
IN/OUT 8 DBuUSo-DBUS? Data Bus DBUSN=0 liow}, DBUSA=1 (high}
OUTPUT 13 ADRO-ADR12 Address 0 through 12 ADRn=0 {iow}, ADRna=1 {high}
QUTPUT 1 ADR13 or E/NE Address 13 or
E d/Non-E d Non-Extended=0, Extended=1
OuTPUT 1 ADR14 or D/C Address 14 or
Dsta Control Control=0, Data 1
OuUTPUT 1 OPREQ Operation Request OPREQ=1, requests operation
OouTPUTY 1 M0 Memory/tO 10=0, M=1
OuUTPUT 1 RW Read/Write R=0, W=1
OuTPUT 1 FLAG Flag Output FLAG=1 (high), FLAG=0 {low}
OUTPUT 1 INTACK tnterrupt Acknowledge INTACK=1, acknowiedges interrupt
ouTeuT 1 RUN/WAIT Run/Wait Indicator RUN=1, WAIT=0
OUTPUT 1 WRP Write Pulse WRP=1 (pulse}, causes writing
PIN CONFIGURATION

SENSE 1 U 0 FLAG

ADR 12 2 » Vee

ADR 11 3 38 cLocK

ADR 10 . ” FAUSE

ADR 9 s % OPACK

ADR 8 . s RUNMWAIT

ADR7 ? 3 INTACK

ADR 6] 33 osus 0

ADR & [] 2080 32 oeus 1

ADR 4 10 n DBUS 2

ADR3 n 30 osus3

ADR 2 7 » osus e

ADR 1 3 E] oeuss

ADR O 1 27 osus ¢

ADREN "] osus 7

RESET "] DEUSEN

INTREG ” 24 OPREQ

ADR 14-0/C 1 F) Am

ADR 13-€/NE 1 2 wRe

/0 20 n GND

TOP VIEW

FEATURES

INPUT/OUTPUT FACILITIES

The 2650 processor provides several mechanisms for performing input/
output functions. They are flag and sense, non-extended 1/O instructions,
extended I/O instructions, and memory I/O. These four facilities are
described below.

FLAG & SENSE 1/0
The 2650 has the ability to directly output one bit of data without
additional address decoding or synchronizing signals.

The bit labeled ““Flag” in the Program Status Word is connected through a
TTL compatible driver to the chip output at pin #40. The Flag output always
reflects the value in the Flag bit.

When a program changes the Flag bit through execution of an LPSU,
PPSU, or CPSU, the bit will be set or cleared during the last cycle of the
instruction that changes it.

The Flag bit may be used conveniently for many different purposes. The
following is a list of some possible uses:
1. Aserial output channel
2. An additional address bit to increase addressing range.
3. A switch or toggle output to control external logic.
4. The origin of a pulse for polling chains of devices.

The Sense bit performs the complementary function of the Flag and is a
single bit direct input to the 2650. The Sense input, pin #1 is connected to a
TTL compatible receiver and is then routed directly to a bit position in the
Program Status Word. The bit in the PSW always represents the value of the
external signal. It may be sampled anytime through use of the TPSU or
SPSU instructions.

This simple input to the processor may be used in many ways. The
following is a list of some possible uses:
1. A serial input channel
2. A sense switch input
3. A break signal to a processing program
4. An input for yes/no signaling from external devices.

NON-EXTENDED 1/0

There are four one byte I/O instructions; REDC, REDD, WRTC, and
WRTD. They are all referred to as non-extended because they can
communicate only one byte of data, either into or out of the 2650.

REDC and REDD causes the input transfer of one byte of data. They are
identical except for the fact that the D/C Signal is in the D state for REDD
and in the C state for REDC. Similarly, the instructions WRTC and WRTD
cause an output transfer of one byte of data. The D/C line discrim-
inates between the two pairs of input/output instructions. The D/C line
can be used as a 1-bit device address in simple systems.

The read and write timing sequences for the one byte 1/O instructions are
the same as the memory read and write sequences with the following
exceptions: the M/IO signal is switched to TO, the D/C line becomes valid,
E/NE is switched to NE (non-extended), and the Address bus contains no
valid information.

4

42

The NE signal informs the devices outside the 2650 that a one byte I/O
instruction is being executed. The D/C line indicates which pair of the one
byte I/O instructions are being executed; D implies either WRTD or REDD,
and C implies either WRTC or REDC. Finally, to determine whether it is a
read or a write, examine the R/W signal level.

Table 6 illustrates the sense of the interface signals. The “Signal Timing”
section should be referenced for the exact timing relationships. It should
be remembered that the control signals are not to be considered valid ex-
cept when the OPREQ signal is valid.

TABLE 6. /O INTERFACE SIGNALS

OPREQ | M/iO | R/'W | ADR13-E/NE | ADR14-D/C
MEMORY READ T M R ADR13 ADR14
MEMORY WRITE T M w ADR13 ADR14
2BYTE READ T o | R E Don’t Care
2BYTE WRITE T o | w E Don't Care
1 BYTE CONTROL READ T 0| R’ NE 9
1BYTECONTROLWRITE| T ol w NE [
1 BYTE DATA READ T 0| R NE D
1 BYTE DATA READ T io w NE D

EXTENDED I/O

There are two, two byte I/O instructions; REDE and WRTE. They are
referred to as extended because they can communicate two bytes of data
when they are executed. The REDE causes the second byte of the
instruction to be output on the low order address lines, ADRO-ADR7, which
is intended to be used as a device address while the byte of data then on the
Data Bus will be strobed into the register specified in the instruction. The
WRTE also presents the second byte of the instruction on the Address Bus,
but a byte of data from the register specified in the instruction is
simultaneously output on the Data Bus.

The two byte I/O instructions are similar to the one byte /O instructions
except: the D/C line is not considered, and the data from the second byte of
the I/O instruction appears on the Address Bus all during the time that
OPREQ is valid. The data on the Address Bus is intended to convey a device
address, but may be utilized for any purpose.

Table 6 illustrates the sense of the interface signals for extended I/O in-
structions. Refer to ‘‘Signal Timing” section for exact timing relationships.

MEMORY /0

The 2650 user may choose to transfer data into or out of the processor
using the memory control signals. The advantage to this technique is that the
data can be read or written by the program through ordinary instruction

executian and data may be directly operated upon with the arithmetic
instructions.

To make use of this technique, the designer has to assign memory
addresses to devices and design the device interfaces to generate the same
signals as memory.

A disadvantage to this method is that it may be necessary to decode more
address lines to determine the device address than with other I/O facilities.

INTERRUPT MECHANISM

The 2650 has been implemented with a conventional, single level, address
vectoring interrupt mechanism. There is one interrupt input pin. When an
external device generates an interrupt signal (INTREQ), the processor is
forced to transfer control fo any of 128 possible memory locations as
determined by an 8-bit vector supplied by the interrupting device.

Of special interest is that the device may return a relative indirect address
signal which causes the processor to enter an indirect addressing sequence
upon receipt of an interrupt. This enables a device to direct the processor to
execute code anywhere within addressable memory.

Upon recognizing the interrupt signal, the processor automatically sets the
Interrupt Inhibit bit in the Program Status Word. This inhibits further
interrupts from being recognized until the interrupt routine is finished
executing and a Return-and-Enable instruction is executed or the inhibit bit
is explicitly cleared.

When the inhibit bit in the PSW is set, the processor will not recognize an
interrupt input. The Interrupt Inhibit bit may be set under program control
(LPSU, PPSU) and is automatically set whenever the processor accepts an
interrupt. The inhibit bit may be cleared in three ways:

1. By a RESET operation
2. By execution of an appropriate clear or load PSU instruction; (CPSU, LPSU)
3. By execution of a Return-and-Enable instruction.

The sequence of events for a normal interrupt operation is as follows:

. An executing program enables interrupts.

. External device initiates interrupt with the INTREQ line.

. Processor finishes executing current instruction.

. Processor sets inhibit bit.

. Processor inserts the first byte of ZBSR (Zero Branch-to-Subroutine, Relative)
instruction into the instruction register instead of what would have been the next
sequential instruction.

. Processor accesses the data bus to fetch the second byte of the ZBSR instruction.

. Interrupting device responds to the Processor generated INTACK (Interrupt Acknow-
ledge) by supplying the requested second byte.

8. The processor executes the Zero Branch-to-Subroutine instruction, saving the address
of the instruction following the interrupted instruction in the RAS, and proceeds to
execute the instruction at page 0, byte 0, or the address relative to page 0, byte 0 as
given by the interrupting device.

9. When the interrupt routine is complete, a return instruction (RETC, RETE) pulls the

address from the RAS and execution of the interrupted program resumes.

T W N

-~

Since the interrupting device specifies the interrupt subroutine address in
the standard relative address format, it has considerable flexibility with
regard to the interrupt procedure. It can point to any location that is within
+63 or -64 bytes of page zero, byte zero of memory. (Negative relative
addresses wrap around the memory, modulo 8,1921¢ bytes.) The inter-
rupting device also may specify whether the subroutine address is direct or
indirect by providing a zero or one to DBUS #7 (pin #26). If the external
device is not complex enough to exercise these options, it may respond to
the INTACK operation with a byte of all zeroes. In such a case, the
processor will execute a direct Branch-to-Subroutine to page zero, byte zero
of memory.

The timing diagram in Figure 12 will help explain how the interrupt
system works in the processor. The execution of the instruction labeled “A”
has been proceeding before the start of this diagram. The last cycle of
instruction ““A” is shown. Notice that, as in all external operations, the
OPREQ output eventually causes an OPACK input, which in turn allows
OPREQ to be turned off. The arrows show this sequence of events. The last
cycle of instruction “A” fetches the first byte of instruction “B’’ from
Memory and inserts it into the Instruction Register.

Assume that instruction “B” is a two cycle, two byte instruction with no
operand fetch (e.g., ADDI). Since the first byte has already been fetched by
instruction “A”, the first cycle of instruction ““B”’ is used to fetch the second
byte of instruction ‘‘B”. Had instruction “B’’ not been interrupted, it would
have fetched the first byte of the next sequential instruction during its
second (last) cycle. The dotted lines indicate that operation.

Since instruction “B”’ is interrupted, however, the last cycle of “B’"is used
to insert the interrupt instruction (ZBSR) into the instruction register.
Notice that the INTREQ input can arrive at any time. Instruction B is in-
terrupted since INTREQ occured prior to the last (2nd) cycle of execution.

Instead of being the next sequential instruction following ‘B”’, instruction
“C” is the completion of the interrupt. The first cycle of “C” is used to
fetch the second byte of the ZBSR instruction from the DBUS as provided
by the interrupting device. This fact is indicated by the presence of the
INTACK control signal. The INTREQ may then be removed. When the
device responds with the requested byte, it uses a standard operation
acknowledge procedure (OPACK) to so indicate to the processor. During the
second cycle of instruction “C” the processor executes the ZBSR instruction,
and fetches the first byte of instruction “D” which is located at the
subroutine address.

INST INST INST INST
A \,,‘L 8 e c de b

LASTCYCLE ' CYCLE1 ! CYCLE2 ' CYCLE1 1| CYCLEZ | CYCLEJ
OPREQ { ;
OPACK T '

S U S

DBUS N\ N\ {--""} [—\ Vi Y Vo

ISTBYTE 2N TE 7 o STEVIE
— INST B INST B INST D
iNTREQ —\ [

INTACK ﬁ

* PROCESSOR INSERTS 1ST BYTE OF 28SR INSTRUCTION. ADDRESS
OF 1ST BYTE OF INSTC IS PUSHED INTO RETURN ADDRESS STACK.

** 2ND BYTE OF 2BSR (INTERRUPT VECTOR)

Figure 12. INTERRUPT TIMING

SUBROUTINE LINKAGE

The on-chip stack, along with the Branch-to-Subroutine and Return
instructions provide the facility to transfer control to a subroutine.The
subroutine can return control to the program that branched to it via a
Return instruction.

The stack is eight levels deep which means that a routine may branch to a
subroutine, which may branch to another subroutine, etc., eight times before
any Return instructions are executed.

When designing a system that utilizes interrupts, it should be remembered
that the processor jams a ZBSR into the IR and then executes it. This will
cause an entry to be pushed into the on-chip stack like any other
Branch-to-Subroutine instruction and may limit the stack depth available in
certain programs. ‘

When branching to a subroutine, the following sequence of events occurs:

1. The address in the IAR is used to fetch the Branch-to-Subroutine instruction and is
then incremented in the Address Adder so that it points to the instruction following
the subroutine branch.

2. The Stack Pointer is incremented by one so that it points to the next Return Address
Stack location.

3. The contents of the IAR are stored in the stack at the location designated by the Stack
Pointer.

4. The operand address contained in the Branch-to-Subroutine instruction (the address of
the first instruction of the subroutine) is inserted into the IAR.

When returning from a subroutine, this sequence of events occurs:

1. The address in the IAR is used to fetch the return (RETC, RETE) instruction from
memory.
2. When the return instruction is recognized by the processor, the contents of the stack
entry pointed to by the Stack Pointer is placed into the IAR.
- The Stack Pointer is decremented by one.
4. Instruction execution continues at the address now in the IAR.

w

CONDITION CODE USAGE

The two-bit register, called the Condition Code, is incorporated in the
Program Status Word. It may be seen in the description of the 2650
instructions, that the Condition Code (CC) is specifically set by every
instruction that causes data to be transferred into a general purpose register
and it is also set by compare instructions.

The reason for this design feature is that after an instruction executes, the
CC contains a modest amount of information about the byte of data which
has just been manipulated. For example, a program loads register one with a
byte of unknown data and the Condition Code setting indicates that the
byte is positive, negative or zero. The negative indication implies that bit #7
is set to one.

Consequently, a data manipulation operation when followed by a
conditional branch is often sufficient to determine desired information
without resorting to a specific test, thus saving instructions and memory
space.

In the following example, the Condition Code is used to test the parity of
a byte of data which is stored at symbolic memory location CHAR.

EQ EQU 0 THE EQUAL CONDITION CODE
CHAR DATA 2 UNKNOWN DATA BYTE
wC EQU H'04'" THE WITH CARRY BIT
NEG EQU 2 CC MASK
CPSL wc CLEAR CARRY BIT
LODI,R2 -8 SET UP COUNTER
SUBZ RO CLEAR REG 0

LODR,R1 CHAR GET THE CHARACTER (cc is set)
LOOP BCFR,NEG GO1 IF NOT SET, DON’T COUNT (cc is

tested)
. ADDI,RO +1 COUNT THE BIT
GO1 RRL,R1 MOVE BITS LEFT (cc is set)

BIRR,R2 LOOP LOOP TILL DONE

* FINISHED,TEST IF REG 0 HAS A ONE IN LOW ORDER
* IF BIT #0 = 1, ODD PARITY. IF BIT #0 = 0, THEN EVEN.,
TMIL,RO H'0o1'

BCTR.EQ ODD
EVEN HALT
ODD HALT

START-UP PROCEDURE

The 2650 processor, having no internal start-up procedure must be started
in an orderly fashion to assure that the internal control logic begins in a
known state.

Assuming power is applied to the chip and the clock input is running, the
easiest way to start is to apply a Reset signal for at least three clock periods.
When the RESET signal is removed the processor will fetch the instruction at
page 0, byte 0 and commence ordinary instruction execution.

To start processing at a specific address, a more complex start-up proce-
dure may be employed. If an Interrupt signal is applied initially along
with the Reset, processing will commence at the address provided by the
interrupting device. Recall that the address provided may include a bit to
specify indirect addressing and therefore the first instruction executed may
be anywhere within addressable memory. The Reset and Interrupt signal
may be applied simultaneously and when the Reset is removed, the processor
will execute the usual interrupt signal sequence as described in INTERRUPT
MECHANISM. There is an example of a start-up technique in the System
Application Notes.

INSTRUCTIONS

ADDRESSING MODES

An addressing mode is a method the processor uses for developing
argument addresses for machine instructions.
The 2650 processor can develop addresses in eight ways:
Register addressing
Immediate addressing
Relative addressing
Relative, indirect addressing
Absolute addressing
Absolute, indirect addressing
Absolute, indexed addressing
Absolute, indirect, indexed addressing
However, of these eight addressing modes, only four of them are basic.
The others are variations due to indexing and indirection. The basic
addressing mode of each instruction is indicated in parentheses in the first
line of each detailed instruction description. The following text describes
how effective addresses are developed by the processor.

REGISTER ADDRESSING
All register-to-register instructions are one byte in length. Instructions
utilizing this addressing mode appear in this general format.

Operation Code Register

LTI

76543210

Since there are only two bits designated to specify a register, register zero
always contains one of the operands while the other operand is in one of the
three registers in the currently selected bank. Register zero may also be
specified as the explicit operand giving instructions such as: LODZ RO.

“In one byte register addressing instructions which have just one operand,
any of the currently selected general purpose registers or register zero may
be specified, e.g., RRL,RO.

IMMEDIATE ADDRESSING

All immediate addressing instructions are two bytes in length. The first
byte contains the operation code and register designation, while the second
byte contains data used as the argument during instruction execution.

Two's complement binary number
Operation Code Register or 8.bitllogic mask

e Ve 4 ~\
LIGIIHII LLITITTT]

543210 76543210
Byte O Byte 1

The second byte, the data byte, may contain a binary number or a logic
mask depending on the particular instruction being executed. Any register
may be designated in the first byte.

47

RELATIVE ADDRESSING

Relative addressing instructions are all two bytes in length and are
memory reference instructions.One argument of the instruction is a register
and the other argument is the contents of a memory location. The format of

relative addressing instructions is:
Operation Code Register | Relative Displacement

S VA
JNNENNENRERREEERY

765 4 0 76543210
Byte O Byte 1

The first byte contains the operation code and register designation, while
the second byte contains the relative address. Bits 0—6, byte 1, contain a 7-
bit two’s complement binary number which can range from —64 to +63. This
number is used by the processor to calculate the effective address. The
effective address is calculated by adding the address of the first byte
following a relative addressing instruction to the relative displacement in the
second byte of the instruction.

If bit 7, byte 1 is set to *“1”, the processor will enter an indirect addressing
cycle, where the actual operand address will be accessed from the effective
address location. See Indirect Addressing.

Two of the branch instructions (ZBSR, ZBRR) allow addressing relative
to page zero, byte 0 of memory. In this case, values up to +63 reference the
first 63 bytes of page zero and values up to -64 reference the last 64 bytes

of page zero.

ABSOLUTE ADDRESSING FOR NON- BRANCH INSTRUCTIONS

Absolute addressing instructions are all three bytes in length and are
memory reference instructions. One argument of the instruction is a register,
designated in bits 1 and 0, byte 0; the other argument is the contents of a
memory location. The format of absolute addressing instructions is:

Index
Register
or
Argument |ndex High-Order
Operation Code Register | Control Adqress Low-Ordfr Address

(T (T (O

Bits 4—0, byte 1 and 7—0, byte 2 contain the absolute address and can
address any byte within the same page that the instruction appears.

The index control bits, bits #6 and #5, byte 1 determine how the
effective address will be calculated and possibly which register will be the
argument during instruction execution. The index control bits have the
following interpretation:

Index Control

Bit 6 Bit 5 Meaning
0 0] Non-indexed address
0 1 Indexed with auto-increment
1 0 Indexed with auto-decrement
1 1 Indexed only

When the index control bits are 0 & 0, bits #1 and #0 in byte O contain
the argument register designation and bits O to 4, byte 1 and bits 0 to 7, byte
2 contain the effective address. Indirect addressing may be specified by
setting bit #7, byte 1 to a one.

When the index control bits are 1 & 1, bits #1 and #0 in byte 0 designate
the index register and the argument register implicitly becomes register zero.
The effective address is calculated by adding the contents of the index
register (8-bit absolute integer) to the address field. If indirect addressing is
specified, the indirect address is accessed and then the value in the index
register is added to the indirect address. This is commonly called post
indexing.

When the index control bits contain 0 & 1, the address is calculated by the
processor exactly as when the control bits contain 1 & 1 except a binary 1 is
added to the contents of the selected index register before the calculation of
the effective address proceeds. Similarly, when the index control bits contain
1&0, a binary 1 is subtracted from the contents of the selected index register
before the effective address is calculated.

ABSOLUTE ADDRESSING FOR BRANCH INSTRUCTIONS
The three byte, absolute addressing, branch instructions deviate slightly in
format from ordinary absolute addressing instructions as shown below:

Register
or
Condition
Code
QOperation Code Mask /I\tigh-Ordelr Addressing Low-Order‘Addressing
\

(0 (o OIIIITm

76543210 76543210 76543210
Byte O Byte 1 Byte 2

The notable difference is that bits 6 and 5, byte 1, are no longer
interpreted as Index Control bits, but instead are interpreted as the high
order bits of the address field. This means that there is no indexing allowed
on most absolute addressing branch instructions, but indexed branches are
possible through use of the BXA and BSXA instructions. The bits #6 and
#5, byte 1, are used to set the current page register, thus enabling programs
to directly transfer control to another page.

See the MEMORY ORGANIZATION, BXA and BSXA instructions, and
INDIRECT ADDRESSING.

49

50

INDIRECT ADDRESSING

Indirect addressing means that the argument address of an instruction is
not specified by the instruction itself, but rather the argument address will
be found in the two bytes pointed to by the address field or relative address
field, o{nabsolute or relative addressing instructions. In the case of absolute
addressing, the value of the index register is added to the indirect address not
to the value in the address field of the instruction. In both cases, the
processor will enter the indirect addressing state when the bit designated
“I”” is set to one. Entering the indirect addressing sequence adds two cycles
(6 clock periods) to the execution time of an instruction.

Indirect addresses are 15-bit addresses stored right justified m two
contiguous bytes of memory. As such, an indirect address may specify any
location in addressable memory (0—32,767). The high order bit of the two
byte indirect address is not used by the processor.

Only ngle level indirect addressing is implemented. The following
examples demonstrate indirect addressing.

Example 1.
fpboooi1i11o0[iooooo0o00[01010001]LODAR2 «H's?
Address 1016 1116 1246
fooooooo1{oo 10100 0]ACON H'128'
Address 5146 5216
[011001 11 DATA H'67'
Address 12816

The LODA instruction in memory locations 10, 11, and 12 specifies
indirect addressing (bit 7, byte 1, is set). Therefore, when the instruction is
executed, the processor takes the address field value, H' 51', and uses it to
access the two byte indirect address at 51 and 52. Then using the contents of
51 and 52 as the effective address, the data byte containing H' 67" is loaded
into register 2.

Example 2.
[poo00101010000 101 LODR,R2 «H"17'
Address 104¢ LA RT

[00000001[0010100 0] ACON H'128"

Address 1716 1816
[P1 100117 DATA H'67'
Address 12846

In a fashion similar to the previous example, the relative address is used to
access the indirect address which points to the data byte. When the LODR
instruction is executed, the data byte contents, H' 67", will be loaded into
register 2.

INSTRUCTIONS FORMAT EXCEPTIONS

There are several instructions which are detected by decoding the entire 8
bits of the first byte of the instruction. These instructions are unique and
may be noticed in the instruction descriptions. Examples are: HALT, CPSU,
CPSL.

Of this type of instruction, two operation codes were taken from
otherwise complete sets thus eliminating certain possible operations. The

cases are as follows:

(NOT OKAY) STRZ 0
(OKAY) NOP
(NOT OKAY) ANDZ 0
(OKAY) HALT

L

operation).

Storing register zero into register zero is not imple-
- mented, the operation code is used for NOP (no

| AND of register zero with register zero is not im-
plemented, the operation code is used for HALT.

OPERATION CODE RV
/ L \
(Z) REGISTER T e oaata
LEY
ADDRESSING V- VALUE OR CONDITION
7 s 3 r} 3 F] 3 'y X - INDEX ASGISTER NUMBEA
- INDIRECT BIT
OPERATION CODE R DATA MASK OR BINARY VALUE
L — L \
(1) IMMEDIATE
ADDRESSING
1% 1“ 3 12 " 10 [] [] 7 [} [3 4 3 2 1 1]
RELATIVE DISPLACEMENT
OPERATION CODE ANV 1 SACDISPLACEMENT<+8]
; = L .
(R) RELATIVE
ADDRESSING
4 13 17 W 0] s 7 3 3) k) 2 0 0
OPERATION CODE R/X) (;;;:M%ENXDL HIGHER ORDER ADDRESS LOWER ORDER ADDRESS
i Y i — A I i
(A) ABSOLUTE
ADDRESSING
{(NON-BRANCH 23 1 n 20 1w w7 16 IEOEE] asz 1" |g° 9 0 7 s 5 4] 2
INSTRUCTIONS) HIGH ROI‘DERA RESS
OPERATION CODE R/V + PAGE LOWER ORDER ADDRESS
(B) ABSOLUTE
ADDRESSING
|8RANCH _21— 2 21 1 18 17 16 A3 14 13 12 " 10] [] 7 [] [} 4 3 2
INSTRUCTIONS) HIGHER one:u ADDRESS
7/
UNUSED PAGE LOWER ORDER ADDRESS
. N\
INDIRECT
ADDRESSING
1 1“ 12 12 1" 10 9 [7 [} 1] 4 3 2 1 1]
OPERATION CODE
. —\ *INDEX CONTROL.
0= NON-INDEXED
{E) MISCELLANEOUS %05 INDENED WITH AUTO-DECRERNT
INSTRUCTIONS T memo

Figure 13. INSTRUCTION FORMATS

61

DETAILED PROCESSOR INSTRUCTIONS

LOAD REGISTER ZERO (Register Addressing)
Mnemonic LODZ r
Binary Coding

[o[o[o[o]o]o] ¢ |
76543210
Execution Time - 2 cycles (6 clock periods)

Description

This one-byﬁe instruction transfers the contents of the specified register, r,
into register zero. The previous contents of register zero are lost. The
contents of register r remain unchanged.

When the specified register, r, equals 0, the operation code is changed to 6016
by the assembler. The instruction, 00000000, yields indeterminate results.

Processor Registers Affected cC
Condition Code Setting Register Zero (o{0d] CCo
Positive 0 1
Zero 0 0
Negative 1 0
LOAD IMMEDIATE {Immediate Addressing)
Mnemonic LODt,r v
Binary Coding

< =

lolofofofols [r] [T 73777
76543210 76543210
Execution Time 2 cycles (6 clock periods)

Description
This two-byte instruction transfers the second byte of the instruction, v,
into the specified register, r. The previous contents of r are lost.

Processor Registers Affected cc

Condition Code'Setting Register r CC1 Ccco
Positive 0 1
Zero 0 0
Negative 1 0

LOAD RELATIVE {Relative Addressing)

Mnemonic LODR,r (+)a
Binary Coding

lofofele[tfo] ¢ J [] | ¢ fal T 7]

76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction transfers a byte of data from memory into the
specified register, r. The data byte is found at the effective address formed
by the addition of the a field and the address of the byte following this
instruction. The previous contents of register r are lost. Indirect addressing
may be specified.

Processor Registers Affected cc
Condition Code Setting Register r CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0
LOAD ABSOLUTE (Absolute Addressing)
Mnemonic LODA,r (#)a(,X)
Binary Coding

ofoofot]1ford [t] e ¢namoded [T o Gwiorer - |

76543210 76543210 76543210

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction transfers a byte of data from memory into the
specified register, r. The data byte is found at the effective address. If
indexing is specified, bits 1 and 0, byte 0, indicate the index register and the
destination of the operation implicitly becomes register zero. The previous
contents of register r are lost.

Indirect addressing and/or indexing may be specified.

Processor Registers Affected cC

Condition Code Setting Register r CC1 cco
Positive 0 1
Zero 0 0
Negative 1 0]

53

STORE REGISTER ZERO {Register Addressing)

Mnemonic STRZ r
Binary Code

[']1[o]o]ofo] ¢]
76543210
Execution Time 2 cycles (6 clock periods)

Description .

This one-byte instruction transfers the contents of register zero into the
specified register r. The previous contents of register r are lost. The contents
of register zero remain unchanged.

Note: Register r may not be specified as zero. This operation code,
‘11000000, is reserved for NOP.

Processor Régisters Atfected cc
Condition Code Setting Register‘r CC1 CcCo
Positive 0 1
Zero 0 0
Negative 1 0
STORE RELATIVE {(Relative Addressing)
Mnemonic STRR,r (*)a
Binary Code

Dlofofofafo] r] [far 77]
76543210 76543210
3 cycles (9 clock periods)

Execution Time

Description

This two-byte instruction transfers a byte of data from the specified
register, r, into the byte of memory pointed to by the effective address. The
contents of register r remain unchanged and the contents of the memory
byte are replaced.

Indirect addressing may be specified.
Processor Registers Affected None
Condition Code Setting N/A

STORE ABSOLUTE (Absolute Addressing)

Mnemonic STRAr (+)a(,X)
Binary Code

[TTofo[[T 7] [ilie [svisnorser] |5 toworger, |

76543210 76543210 76543210

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction transfers a byte of data from the specified
register, r, into the byte of memory pointed to by the effective address. The
contents of register r remain unchanged and the contents of the memory
byte are replaced. ‘

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Processor Registers Affected None

Condition Code Setting N/A

ADD TO REGISTER ZERO {Register Addressing)
Mnemonic ADDZ r

Binary Code

[1[o]o[o]o]o] ¢]

76543210

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register, r,
and the contents of register zero to be added together in a true binary adder.
The 8-bit sum of the addition replaces the contents of register zero. The
contents of register r remain unchanged.

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register Zero CC1 cco
Positive 0 1
Zero 0 0
Negative 1 0

56

ADD IMMEDIATE (Immediate Addressing)

Mnemonic ADDI r v
Binary Coding

Lofofofolef ¢ | [, L ;v .,]

76543210 76543210

Execution Time 2 cycles (6 clock periods)
Description ’

This two-byte instruction causes the contents of register r and the contents
of the second byte of this instruction to be added together in a true binary

adder. The eight-bit sum replaces the contents of register r.
Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF
Condition Code Setting Register r cc1 CCo
Positive 0 1
Zero 0 0
Negative 1 0
ADD RELATIVE (Relative Addressing)
Mnemonic ADDR,r {*)a
Binary Coding

Llofofofrfof ¢ | [, | ol [7]

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of register r and the contents
of the byte of memory pointed to by the effective address to be added to-
gether in a true binary adder. The eight-bit sum replaces the contents of
register r.

Indirect addressing may be specified.
Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CC1 Ccco
Positive 0 1
Zero 0 0
Negative 1 0

ADD ABSOLUTE (Absolute Addressing)

Mnemonic ADDA r (+)a(,X)
Binary Coding

[1[ofoJo[a 1]] [1]rg [amamorder] [| fatoworder 7]
76543210 76543210 76643210

Execution Time 4 cycles (12 clock periods}

Description

This three-byte instruction causes the contents of register r and the
contents of the byte of memory pointed to by the effective address to be
added together in a true binary adder. The eight-bit sum replaces the
contents of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and O, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C, CC, IDC, OVF
Condition Code Setting Register r CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0
SUBTRACT FROM REGISTER ZERO (Register Addressing)
Mnemonic suBz r
Binary Coding

Lol ololo] ¢ |

76654321

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to
be subtracted from the contents of register zero. The result of the subtraction
replaces the contents of register zero.

The subtraction is performed by taking the binary two’s complement of
the contents of register r and adding that result to the contents of register
zero. The contents of register r remain unchanged.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register Zero CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

57

SUBTRACT IMMEDIATE {Immediate Addressing)

Mnemonic SUBIr v
Binary Code

Ploffolofr] £] [.

LU L
| S |
76543210 76543210

|

Execution Time 2 cycles (6 clock periods)
Description

This two-byte instruction causes the contents of the second byte of this
instruction to be subtracted from the contents of register r. The tesult of the
subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two’s complement of
the contents of the second instruction byte and adding that result to the
contents of register r.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF
Condition Code Setting Register r CcC1 cco
Pasitive 0 1
Zero 1] 0
Negative 1 0
SUBTRACT RELATIVE (Relative Addressing)
Mnemonic SUBR,r («)a
Binary Code

Lfofofolrfo ¢ | [] ., o, ,]
76543210 766543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the byte of memory
pointed to by the effective address to be subtracted from the contents of
register r. The result of the subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two’s complement of
the contents of the byte of memory and adding that result to the contents of
registerr. °

Indirect addressing may be specified.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected C,CC,iDC, OVF

Condition Cade Setting Register r CC1 CCOo
Positive 0 1
Zero 0 0
Negative 1 0

SUBTRACT ABSOLUTE {Absolute Addressing)

Mnemonic SUBA,r (=)a{,X)
Binary Code

ofrfofafe] ¢ | [Jaminorder] [7 & owlorder, | |

76543210 76643210 76543210

Execution Time 4 cycles (12 clock periods)
Description
This three-byte instruction causes the contents of the byte of memory

pointed to by the effective address to be subtracted from the contents of
register r. The result of the subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two’s complement of
the contents of the memory byte and adding that result to the contents of
register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF
Condition Code Setting Register r CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0
AND TO REGISTER ZERO (Register Addressing)
Mnemonic ANDZ r
Binary Code

lo[1[o]o]o]o] 1 |
76543210
Execution Time 2 cycles {6 clock periods)
Description

This one-byte instruction causes the contents of the specified register, r,
to be logically ANDed with the contents of register zero. The result of the
operation replaces the contents of register zero. The contents of register r
remain unchanged.

The AND operation treats each bit of the argument bytes as in the truth
table below: :

Bit (0-7) Bit (0-7 || AND Result
0 0 0
0 1 0
1 1 1
1 0 0

Note: Register r may not be specified as zero. This operation code,
‘01000000°, is reserved for HALT.

Processor Registers Affected CcC

Condition Code Setting Register Zero CC1 CcCo
Positive 0 1
Zéro 0 0
Negative 1 0

60

AND IMMEDIATE (Immediate Addressing)

Mnemonic ANDI,r v
Binary Code

lo[tfelofol } ¢ J [. ¥,]

76543210 76543210

Execution Time 2 cycles (6 clock periods)
Description _

This two-byte instruction causes the contents of the specified register r to
be logically ANDed with the contents of the second byte of this instruction.
The result of this operation replaces the contents of register r.

The AND operation treats each bit of the argument bytes as in the truth
table below:

Bit (0-7) Bit (0-7) | I AND Result
0 0 0
0 1 0
1 1 1
1 0 0
Processor Registers Affected cC
Condition Code Setting Register Zero CcCi1 cco
Positive 0 1
Zero 0 0
Negative 1 0
AND RELATIVE (Relative Addressing)
Mnemonic ANDR,r («)a

Binary Code

llfofo[+]o] £][], . =, . |

76543210 76543210

Execution Time 3 cycles {9 clock periods}
Description

This two-byte instruction causes the contents of the specified register r to
be logically ANDed with the contents of the memory byte pointed to by the
effective address. The result of this operation replaces the contents of
register r.

The AND operatioﬁ treats each bit of the argument bytes as in the truth
table below:

Bit (0-7) Bit (0-7) AND Result

-0 O
[y
O OO

Processor Registers Affected CcC
Condition Code Setting Register Zero CC1 CCco

Positive 0
Zero v}
Negative 1

OO =

AND ABSOLUTE {Absolute Addressing)

Mnemonic ANDA r (#)a(,.X)
Binary Code

[ofTofols[o] T] [tc [emanoraer] [stoworder | |

76543210 76543210 76543210

Execution Time 4 cycles (12 clock periods)
Description : ‘

This three-byte instruction causes the contents of Register r to be logically
ANDed with the contents of memory byte pointed to by the effective
address. The result of the operation replaces the contents of register r.

" The AND operation treats each bit of the argument bytes as in the truth
table below:

Bit (0-7) Bit (0-7) I | AND Result
0 0 0
0 1 0
1 1 1
1 0 0

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Processor Registers Affected CcC
Condition Code Setting Register Zero CcC1 Cco
Pasitive 0 1
Zero 0 0
Negative 1 0
INCLUSIVE OR TO REGISTER ZERO (Register Addressing)
Mnemonic IORZ r
Binary Code

1]

lo[1[+]ofo[o] | |
76543210
Execution Time 2 cycles (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register, r,
to be logically Inclusive ORed with the contents of register zero. The result
of this operation replaces the contents of register zero. The contents of
register r remain unchanged.

The Inclusive OR operation treats each bit of the argument bytes as in the
truth table below:

Bit (0-7) Bit (0-7) I | Inclusive OR Result
0 0 0
0 1 1
1 1 1
1 0 1
Processor Registers Affected cc
Condition Code Setting ‘ Register Zero CC1 CcCo
Positive 0 1
Zero 0 0
1 0

Negative

61

INCLUSIVE OR IMMEDIATE {Immediate Addressing)

Mnemonic IORI,r v
Binary Code

loftfefolofrf ¢ | [, L v ..]

76543210 76543210

Execution Time 2 cycles (6 clock periods)
Description

This two-byte instruction causes the contents of the specified register r to
be logically Inclusive ORed with the contents of the second byte of this
instruction. The result of this operation replaces the contents of register r.

The Inclusive OR operation treats each bit of the argument bytes as in the
truth table below:

Bit (0-7) Bit (0-7) || Inclusive OR Result
0 0 0
0 1 1
1 1 1
1 0 1
Processor Registers Affected cC
Condition Code Setting Register r cc1 cco
Positive 0 1
Zero 0 0
Negative 1 0
INCLUSIVE OR RELATIVE ' (Relative Addressing)
Mnemonic IORR,r («)a
Binary Code

T T T T T 71

ol]tfo[Jo] 1] [, | o), 1]
76543210 76543210
Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction causes the contents of the specified register r to
be logically Inclusive ORed with the contents of the memory byte pointed
to by the effective address. The result of this operation replaces the previous
contents of register r.

Indirect addressing may be specified.

The. Inclusive OR operation treats each bit of the argument byte as in the
truth table below:

Bit (0-7) Bit (0-7) | | Inclusive OR Result
0 0 0
0 1 1
1 1 1
1 0] 1
Processor Registers Affected cC
Condition Code Setting Register r cc1 cco
Positive 0 1
Zero 0 0
Negative 1 0

INCLUSIVE OR ABSOLUTE {Absolute Addressing)

Mnemonic IORA,r {#)a(,X)
Binary Code

lr[tJo[s[+] ¢ | [r]rc [o ignorder] [o, tew, oroer

76543210 76543210 76543210

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r to be logically
Inclusive ORed with the contents of the memory byte pointed to by the
effective address. The result of the operation replaces the previous contents
of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

The Inclusive OR operation treats each bit of the argument bytes as in the
truth table below:

Bit (0-7) Bit (0-7) | | Inclusive OR Result
0 0 0
0 1 1
1 1 1
1 0 1
Processor Registers Affected cc
Condition Code Setting Register Zero CC1 CCo
Positive 0 1
Zero - 0 0
Negative 1 0
EXCLUSIVE OR TO REGISTER ZERO (Register Addressing)
Mnemonic EORZ r
Binary Code

T

[ofo]r[ofo]o] ¢]
/76543210
Execution Time 2 cycles (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register r to
be logically Exclusive ORed with the contents of register zero. The result of
this operation replaces the contents of register zero. The contents of registet
r remain unchanged.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (0-7) Bit (0-7) | | Exclusive OR Result
0 0 0
0 1 1
1 1 0
1 0 1
Processor Registers Affected cC
Condition Code Setting Register Zero CC1 CCO .
Positive 0 1
Zero 0 0
Negative 1 0

EXCLUSIVE OR IMMEDIATE (Immediate Addressing)

Mnemonic EORI,r v
Binary Code

I T L) 1
lofolvfofolo] ¢] [¥ 71 1]
76543210 76543210
Execution Time 2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to
be logically Exclusive ORed with the contents of the second byte of this
instruction. The result of this operation replaces the previous contents of

register r.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (0-7) Bit (0-7) 1 Exclusive OR Result
0 0 0
0 1 1
1 1 0
1 0 1
Processor Registers Affected CC
Condition Code Setting Register r cc1 CCo
Positive 0 1
Zero 0 0]
Negative 1 0
EXCLUSIVE OR RELATIVE (Relative Addressing)
Mnemonic EORR,r («)a
Binary Code

T T T _ T T

ole[vfoftfo ¢ | [T 1 o] 1]
76543210 76543210
Execution Time 3 cycles {9 clock periods)
Description

This two-byte instruction causes the contents of the specified register r to
be logically Exclusive ORed with the contents of the memory byte pointed
to by the effective address. The result of this operation replaces the previous
contents of register r.

Indirect addressing may be specified.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (0-7) Bit (0-7) | | Exclusive OR Result
0 0 0
0 1 1
1 1 0
1 0 1
Processor Registers Affected cc
Condition Code Setting Register r CC1 cco
Positive 0 1
Zero 0 0
Negative 1 0

EXCLUSIVE OR ABSOLUTE {Absolute Addressing) '

Mnemonic EORA,r {=)a(,X)
Binary Code

Pl T] [Fpstom] [Torovide 7]

76543210 76543210 76543210
Execution Time 4 cycles (12 clock periods)
Description

This three-byte instruction causes the contents of register r to be
Exclusive ORed with the contents of the memory byte pointed to by the
effective address. The result of the operation replaces the previous contents
of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (0-7) Bit (O 7) 1] Exclusive OR Result
0 0
0 1 1
1 1 0
1 0 1
Processor Registers Affected
Condition Code Setting Register r cc CCo
Positive 0 1
Zero 0 0
Negative 1 0
COMPARE TO REGISTER ZERO (Register Addressing)
Mnemonic comz r
Binary Code

L1 fofofo] 1]
76543210

Execution Time 2 cycles (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register r
to be compared to the contents of register zero. The comparison will be
performed in either “arithmetic” or “logical” mode depending on the setting
of the COM bit in the Program Status Word.

When COM=1 (logical mode) the values will be interpreted as 8-bit
positive binary numbers; when COM=0, the values will be interpreted as 8-bit
two’s complement numbers.

The execution of this instruction only causes the Condition Code to be set
as in the following table.

Processor Registers Affected cC

Condition Code Setting CC1 CCo
Register zero greater than Register r 0 1
Register zero equal to Register r 0 0
Register zero less than Register r 1 0

66

COMPARE IMMEDIATE {Immediate Addressing)

Mnemonic COMI r v
Binary Code

Llffofolof e | [T 7 TV T T

76543210 76543210

Execution Time 2 cycles (6 clock periods)

Description v

This two-byte instruction causes the contents of the specified register r to
be compared to the contents of the second byte of this instruction. The
comparison will be performed in either the ‘““arithmetic” or “logical” mode
depending on the setting of the COM bit in the Program Status Word.

When COM=1 (logical mode), the values will be treated as 8-bit positive
binary numbers; when COM=0, the values will be treated as 8-bit two’s
complement numbers.

The execution of this instruction only causes the Condition Code to be set
as in the following table.

Processor Registers Affected cc
Condition Code Setting CC1t cco
Register r greater than v 0 1
Register r equal to v 0 0
Register r less than v 1 0
COMPARE RELATIVE (Relative Addressing)
Mnemonic COMR r (*)a
Binary Code
T T 1T
Cllelefef o) DL o) 11
1 T T T S
76543210 76543210
Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction causes the contents of the specified register r to
be compared to the contents of the memory byte pointed to by the effective
address. The comparison will be performed in either the “arithmetic” or
“logical” mode depending upon the setting of the COM bit in the Program
Status Word.

When COM=1 (logical mode), the values will be treated as 8-bit positive
binary numbers; when COM=0, the values will be treated as 8-bit, two’s
complement numbers.

The execution of this instruction only causes the Condition Code to be set
as in the following table.

Processor Registers Affected cC

Condition Code Setting cc1 cco
Register r greater than memory byte 0 1
Register r equal to memory byte 0 0
Register r less than memory byte 1 0

COMPARE ABSOLUTE (Absolute Addressing)

Mnemonic COMA r (+)a(,X)
Binary Code

T T T T
[lofole[t] ¢ | [T e amishorder] | o, 10w order
76543210 76543210 76543210
Execution Time 4 cycles (12 clock periods)
Description

This three-byte instruction causes the contents of register r to be
compared to the contents of the memory byte pointed to by the effective
address. The comparison will be performed in either the “arithmetic” or
“logical” mode depending on the setting of the COM bit in the Program
Status Word. _

Where COM=1 (logical mode), the values will be treated as 8-bit, positive
binary numbers; when COM=0 (arithmetic mode), the values will be treated
as 8-bit, two’s complement numbers.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

The execution of this instruction only causes the Condition Code to be set
as in the following table. '

Processor Registers Affected cc

Condition Code Setting _(E_(_:_C_O_
Register r greater than memory byte 0 1
Register r equal to memory byte 0 0]
Register r less than memory byte 1 0

ROTATE REGISTER LEFT (Register Addressing)

Mnemonic RRL,r

Binary Code

17‘|]61 lﬁol‘: l30 [20 l1 E0]

Execution Time 2 cycles (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register r to
be shifted left one bit. If the WC bit in the Program Status Word is set to
zero, bit #7 of register r flows into bit #0; if WC=1, then bit #7 flows into
the Carry bit and the Carry bit flows into bit #0.

Register bit #4 flows into the IDC if WC=1.

[ioc)inoT cHANGED)
@ g - -+ - A
—1—_1 =1 s WC=0
7 6 5 4 3 2 1 0
IDC
C e = - g e

7 6 5 4 3 2 1 0
Note: Whenever a rotate causes bit #7 of the specified register to change
polarity, the OVF bit is set in the PSL.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CC1 CCO
Positive 0 1
Zero 0]
Negative 1 0

67

ROTATE REGISTER RIGHT {Register Addressing)

Mnemonic RRR,r
Binary Code

lof+[o]+]o[o] {]

76543210

Execution Time 2 cycles (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register r to
be shifted right one bit. If the WC bit in the Program Status Word is set to
zero, bit #0 of the register r flows into bit #7; if WC=1, then bit #0 of the
register r flows into the Carry bit and the Carry bit flows into bit #7.

Register bit #6 flows into the IDC if WC=1.

{NOT CHANGED)

B S TLIF LT LT

et 0 el WC=0
7 6 5 4 3 2 1 0
L o — -
yA Rl R
WC=1

7 6 5 4 3 2 1 0

Note: Whenever a rotate causes bit #7 of the specified register to change
polarity, the OVF bit is set in the PSL.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CcCi1 CCOo
Positive 0 1
Zero 0 0
Negative 1 0

LOAD PROGRAM STATUS, UPPER

Mnemonic LPSU
Binary Code

L1[efo[t]o]o][+]o]

76543210

Execution Time 2 cycles (6 clock periods)

Description
This one-byte instruction causes the current contents of the Upper
Program Status Byte to be replaced with the contents of register zero.

See Program Status Word description for bit assignments. Bits #4 and #3
of the PSU are unassigned and will always be regarded as containing zeroes.

Processor Registers Affected F,H,SP
Condition Code Setting N/A

LOAD PROGRAM STATUS, LOWER

Mnemonic LPSL
Binary Code

[[ofo]]ofo]1]1]

76543210

Execution Time 2 cycles (6 clock periods)
Description
This one-byte instruction causes the current contents of the Lower
Program Status Byte to be replaced with the contents of register zero.
See Program Status Word description for bit assignments.
Processor Registers Affected CC, IDC, RS, WC, OVF,COM, C

Condition Code Setting
The CC will take on the value in bits #7 and #6 of register zero.

STORE PROGRAM STATUS, UPPER

Mnemonic SPSU
Binary Code

[o[ofo]1]ofo]1]o]

76543210

Execution Time 2 cycles (6 clock periods)

Description
This one-byte instruction causes the contents of the Upper Program Status
Byte to be transferred into register zero.

See Program Status Word description for bit assignments. Bits #4 and #3
which are unassigned will always be stored as zeroes.

Processor Registers Affected cc

Condition Code Setting Register Zero CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

70

STORE PROGRAM STATUS, LOWER

Mnemonic SPSL
Binary Qode

Lo[ofo[1]o]o]+]1]

76543210

Execution Time 2 cycles (6 clock periods)

Description
This one-byte instruction causes the contents of the Lower Program
Status Byte to be transferred into register zero.

See Program Status Word description for bit assignments.

Processor Registers Affected cc

Condition Code Setting Register Zero CC1 cco
Positive 0 1
Zero 0 0
Negative 1 0

PRESET PROGRAM STATUS UPPER, SELECTIVE (immediate Addressing)

Mnemonic PPSU v
Binary Code

Lol oo [0, [v,

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description :

This two-byte instruction causes individual bits in the Upper Program
Status Byte to be selectively set to binary one. When this instruction is
executed, each bit in the v field of the second byte of this instruction is
tested for the presence of a one and if a particular bit in the v field contains
a one, the corresponding bit in the status byte is set to binary one. Any bits
in the status byte which are not selected are not modified.

Processor Registers Affected F, 11, SP
Condition Code Setting N/A

PRESET PROGRAM STATUS LOWER, SELECTIVE (Immediate Addressing)

Mnemonic PPSL v
Binary Code

el el) L v]

76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction causes individual bits in the Lower Program
Status Byte to be selectively set to binary one. When this instruction is
executed, each bit in the v field of the second byte of this instruction is
tested for the presence of a one and if a particular bit in the v field contains
a one, the corresponding bit in the status byte is set to binary one. Any bits
in the status byte which are not selected are not modified.

Processor Registers Affected CC, IDC, RS, WC, OVF,COM, C

Condition Code Setting
The CC bits may be set by the execution of this instruction.

CLEAR PROGRAM STATUS UPPER, SELECTIVE {Immediate Addressing)

Mnemonic CPSU v
Binary Code

lo[1[+[1ofr]o]o] [v [7]

76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction causes individual bits in the Upper Program
Status Byte to be selectively cleared. When this instruction is executed, each
bit in the v field of the second byte of this instruction is tested for the
presence of a one and if a particular bit in the v field contains a one, the
corresponding bit in the status byte is cleared to zero. Any bits in the status
byte which are not selected are not modified.

Processor Registers Affected F, il,SP
Condition Code Setting N/A

7N

72

CLEAR PROGRAM STATUS LOWER, SELECTIVE (immediate Addressing)

Mnemonic CPSL v
Binary Code

(o1 [1[r[ofafofo} [| | v T

76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction causes individual bits in the Lower Program
Status Byte to be selectively cleared. When this instruction is executed, each
bit in the v field of the second byte of this instruction is tested for the
presence of a one and if a particular bit in the v field contains a one, the
corresponding bit in the status byte is cleared to zero. Any bits in the status
byte which are not selected are not modified.

Processor Registers Affected CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting
The CC bits may be cleared by the execution of this instruction.

TEST PROGRAM STATUS UPPER, SELECTIVE (tmmediate Addressing)
Mnemonic TPSU v
Binary Code

l‘l°l1I1l°|1l]°l°J L]

7665432 76543210

0
Execution Time 3 cycles (9 clock periods)

Description :

This two-byte instruction tests individual bits in the Upper Program Status
Byte to determine if they are set to binary one. When this instruction is
executed, each bit in the v field of this instruction is tested for the presence
of aone, and if a particular bit in the v field contains a one, the corresponding
bit in the status byte is tested for a one or zero. The Condition Code is set
to reflect the result of this operation.

If a bit in the v field is zero, the corresponding bit in the status byte is
not tested.

Processor Registers Affected cC

Condition Code Setting CC1 CcCo
All of the selected bits in PSU are 1s 0 0
Not all of the selected bits in PSU are 1s 1 0

TEST PROGRAM STATUS LOWER, SELECTIVE {(Immediate Addressing)

Mnemonic TPSL v
Binary Code

[ifel+]rfofefor] [T 77+ 7" 7]

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction tests individual bits in the Lower Program
Status Byte to determine if they are set to binary one. When this instruction
is executed, each bit in the v field of this instruction is tested for a one, and
if a particular bit in the v field contains a one, the corresponding bit in the
status byte is tested for a one or zero. The Condition Code is set to reflect
the result of this operation.

Processor Registers Affected cC
Condition Code Setting CC1 cco

All of the selected bits in PSL are 1s 0 0

Not all of the selected bits in PSL are 1s 1 0
ZERO BRANCH RELATIVE (Relative Addressing)
Mnemonic ZBRR (#)a
Binary Code

Llolo[a[s[o[+[o] [i[T 77T 7

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte unconditional relative branch instruction directs the
processor to calculate the effective address differently than the usual
calculation for the Relative Addressing mode.

‘The specified value, a, is interpreted as a relative displacement from page
zero, byte zero. Therefore, displacement may be specified from - 64 to +63
bytes. The address calculation is modulo 8192.,, so the negative dis-
placement actually will develop addresses at the end of page zero. For
example, ZBRR -8, will develop an effective address of 818449, and a
ZBRR +52 will develop an effective address of 52,9.

This instruction causes the processor to clear, address bits 13 and 14, the
page address bits; and to replace the contents of the Instruction Address
Register with the effective address of the instruction. This instruction may
be executed anywhere within addressable memory.

Indirect addressing may be specified.
Processor Registers Affected None
Condition Code Setting N/A

73

74

BRANCH ON CONDITION TRUE, RELATIVE {Relative Addressing)

Mnemonic BCTR,v (#)a
Binary Code

lofofoftfrfo] ¥ | [i]J 7 T Sel 7]

76543210 76543210

Execution Time 3 cycles (9 clock periods}
Description

This two-byte conditional branch instruction causes the processor to fetch
the next instruction to be executed from the memory location pointed to by
the effective address only if the two -bit v field matches the current
Condition Code field (CC) in the Program Status Word.

If the v field and CC field do not match, the next instruction is fetched
from the location following the second byte of this instruction.

Indirect addressing may be specified.

If the v field is set to 3¢, an unconditional branch is effected.

Processor Registers Affected None

Condition Code Setting N/A

BRANCH ON CONDITION TRUE, ABSOLUTE {(Absolute Addressing)
Mnemonic BCTAv (*)a

Binary Code

(olofo[1[+[+] v] [t] & high order? | [T Taliow forger]

76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This three-byte conditional branch instruction causes the processor to
fetch the next instruction to be executed from the memory location pointed
to by the effective address only if the two-bit v field matches the two-bit
Condition Code field (CC) in the Program Status Word.

If the v field and CC field do not match, the next instruction is fetched
from the location following the second byte of this instruction.

Indirect addressing may be specified.

If the v field is set to 3,¢, an unconditional branch is effected.
Processor Registers Affected None
Condition Code Setting N/A

BRANCH ON CONDITION FALSE, RELATIVE (Relative Addressing)

Mnemonic BCFR v (#)a
Binary Code

Liofolrfrfo] ¥ } V]) 2y o)]

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the processor to fetch the next
instruction to be executed from the memory location pointed to by the
effective address only if the two-bit v field does not match the two-bit
Condition Code field (CC) in the Program Status Word. If there is no match,
the contents of the Instruction Address Register are replaced by the
effective address.

If the v field and CC field match, the next instruction is fetched from the
location following the second byte of this instruction.

Indirect addressing may be specified.

The v field may not be set to 3,¢ as this bit combination is used for the
ZBRR operation code.

Processor Registers Affected None

Condition Code Setting N/A

BRANCH ON CONDITION FALSE, ABSOLUTE (Absolute Addressing)
Mnemonic BCFA,v (+)a

Binary Code

Liofofifslvl v | [] Lo mign oroer | | [o low Lorcer]

76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This three-byte instruction causes the processor to fetch the next
instruction to be executed from the memory location pointed to by the
effective address only if the two-bit v field does not match the two-bit
Condition Code field (CC) in the Program Status Word. If there is no match,
the contents of the Instruction Address Register are replaced by the
effective address.

If the v field and CC field match, the next instruction is fetched from the
location following the second byte of this instruction.

Indirect addressing may be specified.

The v field may not be set to 3¢ as this bit combination is used for the
BXA operation code.

Processor Registers Affected None
Condition Code Setting N/A

75

76

BRANCH ON INCREMENTING REGISTER, RELATIVE (Relative Addressing)

Mnemonic BIRR,r (#)a

Binary Code

Clofolefefol o] [, L 2, .,

76543210 76543210
3

Execution Time cycles (9 clock periods)
Description

This two-byte branch instruction causes the processor to increment the
contents of the specified register by one. If the new value in the register is
non-zero, the next instruction to be executed is taken from the memory
location pointed to by the effective address, i.e., the effective address
replaces the previous contents of the Instruction Address Register. If the
new value in register r is zero, the next instruction to be executed follows
the second byte of this instruction.

Indirect addressing may be specified.
Processor Registers Affected None
Condition Code Setting N/A

BRANCH ON INCREMENTING REGISTER, ABSOLUTE({Absolute Addressing)

Mnemonic BIRAr (+)a
Binary Code

[T] [o] [e e

76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This three-byte branch instruction causes the processor to increment the
contents of the specified register by one. If the new value in the register is
non-zero, the next instruction to be executed is taken from the memory
location pointed to by the effective address, i.e., the effective address
replaces the previous contents of the Instruction Address Register. If the
new value of register r is zero, the next instruction to be executed follows
the second byte of this instruction.

Indirect addressing may be specified.
Processor Registers Affected None
Condition Code Setting N/A

BRANCH ON DECREMENTING REGISTER,RELATIVE (Relative Addressing)

_ Mnemonic BDRR,r (+)a
Binary Code

PLDD Dol o] [o),]

76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This two-byte branch instruction causes the processor to decrement the
contents of the specified register by one. If the new value in the register is

non-zero, the next instruction to be executed is taken from the memory .

location pointed to by the effective address, i.e., the effective address
replaces the previous contents of the Instruction Address Register. If the
new value in register r is zero, the next instruction to be executed follows
the second byte of this instruction.

Indirect addressing may be specified.
Processor Registers Affected None

Condition Code Setting N/A

BRANCH ON DECREMENTING REGISTER,ABSOLUTE(Absolute Addressing)

Mnemonic BDRA,r («)a
Binary Code

CLDDD] ¢] [o hoh jorder | [o tow order |

76543210 76543210 76643210

Execution Time 3 cycles (9 clock periods)
Description

This three-byte instruction causes the processor to decrement the contents
of the specified register by one. If the new value in the register is non-zero,
the next instruction to be executed is taken from the memory location
pointed to by the effective address, i.e., the effective address replaces the
previous contents of the Instruction Address Register. If the new address in
register r is zero, the next instruction to be executed follows the second byte
of this instruction.

Indirect addressing may be specified.
Processor Registers Affected None
Condition Code Setting N/A

77

78

BRANCH ON REGISTER NON-ZERO, RELATIVE {Relative Addressing)

Mnemonic BRNR,r (+)a
Binary Code

lofrfofsfofof ¢ J 1] . | &, ..

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the contents of the specified
register r to be tested for a non-zero value. If the register contains a non-zero
value, the next instruction to be executed is taken from the location pointed
to by the effective address, i.e., the effective address replaces the current
contents of the Instruction Address Register.

If the specified register contains a zero value, the next instruction is
fetched from the location following the second byte of this instruction.

Indirect addressing may be specified.
Processor Registers Affected None
Condition Code Setting N/A

BRANCH ON REGISTER NON-ZERO, ABSOLUTE (Absolute Addressing)

Mnemonic BRNA,r («)a
Binary Code

el or[r[r] ¢] [1] o highioer | [& tow] oraer

76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

The three-byte branch instruction causes the contents of the specified
register r to be tested for a non-zero value. If the register contains a non-zero
value, the next instruction to be executed is taken from the location pointed
to by the effective address, i.e., the effective address replaces the contents of
the Instruction Address Register.

If the specified register contains a zero value, the next instruction is
fetched from the location following the third byte of this instruction.

Indirect addressing may be specified.
Processor Registers Affected None
Condition Code Setting N/A

BRANCH INDEXED, ABSOLUTE {Absolute Addressing)

Mnemonic BXA (#)a,X
Binary Code

Lloloftfa[t]t]r] [1] L2 /high order | [/o iow order]

76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This three-byte branch instruction causes the processor to perform an
unconditional branch. Indexing is required and register #3 must be specified
as the index register because the entire first byte of this instruction is
decoded by the processor. When executed, the content of the Instruction
Address Register (IAR) is replaced by the effective address.

If indirect addressing is specified, the value in the index register is added
to the indirect address to calculate the effective branch address.

Processor Registers Affected None

Condition Code Setting N/A

ZERO BRANCH TO SUBROUTINE, RELATIVE _ (Relative Addressing)
Mnemonic ZBSR (*)a

Binary Code

Clof[rlrfolrfo]] [T 7 7 7]

76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description
This two-byte unconditional subroutine branch instruction directs the

processor to calculate the effective address differently than the usual
calculation for the Relative Addressing mode.

The specified value a is interpreted as a relative displacement from page
zero, byte zero. Therefore, displacement may be specified from - 64 to +63
bytes. The address calculation is modulo 819240, so the negative displace-
ment will develop addresses at the end of page zero. For example, ZBSR
-10, will develop an effective address of 8182, and ZBSR 81 will develop
an effective address of 314q.

This instruction causes the processor to clear the page address bits, address
bits 14 and 13, and may be executed anywhere within addressable memory.

Indirect addressing may be specified.

When executed, this instruction causes the Stack Pointer to be incre-
mented by one, the address of the byte following this instruction is pushed
into the Return Address Stack (RAS), and control is transferred to the
effective address.

Processor Registers Affected SP

Condition Code Setting N/A

79

(Relative
BRANCH TO SUBROUTINE ON CONDITION TRUE, RELATIVE, 4 o)

Mnemonic BSTR,v (#)a
Binary Code

Clo[ol ¥] [T 72T 7]

76543210 765432'10

Execution Time 3 cycles (9 clock periods)
Description

This two - byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field matches
the current Condition Code field (CC) in the Program Status Word. If the
fields match, the Stack Pointer is incremented by one and the current
contents of the Instruction Address Register, which points to the byte
following this instruction, is pushed into the Return Address Stack. The
effective address replaces the previous contents of the IAR.

If the v field and CC field do not match, the next instruction is fetched
from the location following the second byte of this instruction and the SP is
unaffected.

Indirect addressing may be specified.

If vis set to 316, the BSTR instruction branches unconditionally.
Processor Registers Affected sP
Condition Code Setting N/A

Absol
BRANCH TO SUBROUTINE ON CONDITION TRUE. ABSOLUTE prsolute

Mnemonic BSTAv (+)a
Binary Code

Il T3] (T3 o ot] [o ™

76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This three-byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field matches
the current Condition Code Field (CC) in the Program Status Word. If the
fields match, the Stack Pointer is incremented by one and the current
contents of the Instruction Address Register, which points to the byte
following this instruction is pushed into the Return Address Stack. The
effective address replaces the previous contents of the IAR.

If the v field and the CC field do not match, the next instruction is

fetched from the location following the third byte of this instruction and the
Stack Pointer is unaffected.

Indirect addressing may be specified.

If v is set to 34, the BSTA instruction branches unconditionally.
Processor Registers Affected spP

Condition Code Setting N/A

BRANCH TO SUBROUTINE ON CONDITION FALSE, RELATIVE fpisre

Mnemonic BSFR,v («)a
Binary Code

Cloftfvfvfol v § [, &) /]

76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This two-byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field does not
match the current Condition Code field (CC) in the Program Status Word. If
the fields do not match, the Stack Pointer is incremented by one and the
current content of the Instruction Address Register, which points to the
location following this instruction, is pushed into the Return Address Stack.
The effective address replaces the previous contents of the IAR.

If the v field and the CC match, the next instruction is fetched from the
location following this instruction and the SP is unaffected.

Indirect addressing may be specified.

The v field may not be coded as 3, because this combination is used for
the ZBSR operation code.

Processor Registers Affected SP
Condition Code Setting N/A

BRANCH TO SUBROUTINE ON CONDITIONFALSE, ABSOLUTE 43550042
Mnemonic BSFA,v (+)a

Binary Code

Plo[t[r[a[s] v] [\ Tign oer | [Ta iow oraer ' |

76543210 76543210 76543210

Execution Time 3 cycles {9 clock periods)
Description

This three-byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field does not
match the current Condition Code (CC) in the Program Status Word. If the
fields do not match, the Stack Pointer is incremented by one and the current
content of the Instruction Address Register, which points to the location
following this instruction, is pushed into the Return Address Stack. The
effective address replaces the previous contents of the IAR.

If the v field and the CC match, the next instruction is fetched from the
location following this instruction and the SP is unaffected.

Indirect addressing may be specified.

The v field may not be coded as 3,¢ as this combination is used for the
BSXA operation code.

Processor Registers Affected SP
Condition Code Setting N/A

81

BRANCH TO SUBROUTINE ON NON-ZERO REGISTER, RELATIVE

(Relative Addressing)
Mnemonic BSNR,r (#)a

Binary Code

OOOO0ORE N NNON

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte subroutine branch instruction causes the contents of the
specified register r to be tested for a non-zero value. If the register contains a
non-zero value, the next instruction to be executed is taken from the
location pointed to by the effective address. Before replacing the contents of
the Instruction Address Register with the effective address, the Stack Pointer
(SP) is incremented by one and the address of the byte following the
instruction is pushed into the Return Address Stack (RAS).

If the specified register contains a zero value, the next instruction is
fetched from the location following this instruction.

Indirect addressing may be specified.
Processor Registers Affected sP
Condition Code Setting N/A

BRANCH TO SUBROUTINE ON NON-ZERO REGISTER, ABSOLUTE

(Absolute Addressing)
Mnemonic BSNA r (#)a

Binary Code

ofrprfafa]a] ¢ i| a iﬁg'h 'ord'err " a IIovlv lord'erl
i A L 1 L A 'l 1 1 | 4 L 1 i

76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This three-byte subroutine branch instruction causes the contents of the
specified register r to be tested for a non-zero value. If the register contains a
non-zero value, the next instruction to be executed is taken from the
location pointed to by the effective address. Before replacing the current
contents - of the Instruction Address Register (IAR) with the effective
address, the Stack Pointer (SP) is incremented by one and the address of the
byte following the instruction is pushed into the Return Address Stack (RAS).

If the specified register contains a zero value, the next instruction is
fetched from the location following this instruction.

Indirect addressing may be specified.
Processor Registers Affected SP
Condition Code Setting N/A

BRANCH TO SUBROUTINE INDEXED, ABSOLUTE, UNCONDITIONAL

(Absolute Addressing)

Mnemonic BSXA (#)a,X
Binary Code

Lofa]ofefe]e] (1] 2 highorder | [2 fiow oraer ™]
76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This three-byte instruction causes the processor to perform an uncondi-
tional subroutine branch. Indexing is required and register #3 must be
specified as the index register because the entire first byte of this instruction
‘is decoded by the processor.

Execution of this instruction causes the Stack Pointer (SP) to be
incremented by one, the address of the byte following this instruction is
pushed into the Return Address Stack (RAS), and the effective address
replaces the contents of the Instruction Address Register.

If indirect addressing is specified, the value in the index register is added
to the indirect address to calculate the effective address.

Processor Registers Affected SpP
Condition Code Setting N/A

RETURN FROM SUBROUTINE, CONDITIONAL

Mnemonic RETC,v
Binary Code

lofo]o]]o[+] ¥]

76543210

Execution Time 3 cycles (9 clock periods)

Description
This one-byte instruction is used by a subroutine to conditionally effect a

return of control to the program which last issued a subroutine branch
instruction.

If the two-bit v field in the instruction matches the Condition Code field
(CC) in the Program Status Word, the following action is taken: The address
contained in the top of the Return Address Stack replaces the previous
contents of the Instruction Address Register (IAR), and the Stack Pointer is
decremented by one.

If the v field does not match CC, the return is not effected and the next
instruction to be executed is taken from the location following this
instruction.

If v is specified as 3¢, the return is executed unconditionally.

Processor Registers Affected SP

Condition Code Setting N/A

RETURN FROM SUBROUTINE AND ENABLE INTERRUPT,CONDITIONAL

Mnemonic RETE,v
Binary Code

lofo[+]t]o[+] ¥ |

76543210

Execution Time 3 cycles {9 clock periods)
Description

This one-byte instruction is used by a subroutine to conditionally effect a
return of control to the program which last issued a subroutine branch
instruction. Additionally, if the retum is effected, the Interrupt Inhibit (II)
bit in the Program Status Word is cleared to zero, thus enabling interrupts.
This instruction is mainly intended to be used by an interrupt handling
routine because receipt of an interrupt causes a subroutine branch to be
effected and the Interrupt Inhibit bit to be set to 1. The interrupt handling
routine must be able to return and enable simultaneously so that the
interrupt routine cannot be interrupt unless that is specifically desired.

If the two-bit v field in the instruction matches the Condition Code field
(CC) in the Program Status Word, the following action is taken: The address
contained in the top of the Return Address Stack (RAS) replaces the
previous contents of the Instruction Address Register (IAR), the Stack
Pointer is decremented by one and the II bit is cleared to zero.

If the v field does not match CC, the return is not efiected and the next
instruction to be executed is taken from the location following this instruction.

If v is specified as 3¢, the return is executed unconditionally.

Processor Registers Affected SP,II

Condition Code Setting N/A

READ DATA {Register Addressing)
Mnemonic REDD,r

Binary Code

lo[+[1]+o]o] 7]
76543210

Execution Time 2 cycles (6 clock periods)
Description

This one-byte input instruction causes a byte of data to be transferred
from the data bus into register r. Signals on the data bus are considered to be
true signals, i.e., a high level will be set into the register as a one.

When executing this instruction, the processor raises the Operation
Request (OPREQ) line, simultaneously switching the M/TO line to IO and
the R/W to R (Read)._@so, during the OPREQ signal, the D/E line switches
to D (Data) and the E/NE switches to NE (Non-extended).

See Input/Output section of this manual.

Processor Registers Affected cc

Condition Code Setting Register r CC1 cCco
Positive
Zero

- O 0
O O -

Negative

READ CONTROL ' {Register Addressing)

Mnemonic REDC,r
Binary Code

[ofo]1]1]o]of ¢ |

76543210

Execution Time 2 cycles {6 clock periods)

Description

This one-byte input instruction causes a byte of data to be transferred
from the data bus into register r. Signals on the data bus are considered to be
true signals, i.e., a high level will be set into the register as a one.

When executing this instruction, the processor raises the Operation
Request (OPREQ) line, simulianeouslx_ switching the M/IO line tp 10, the
R/W line to R (Read), the D/C line to C (Control), and the E/NE line to NE
(Non-extended).

See Input/Outpu:t section of this manual.

Processor Registers Affected cc
Condition Code Setting Register r CCt Ccco
Positive 0 1
Zero 0 0
Negative 1 0
READ EXTENDED {Immediate Addressing)
Mnemonic REDE,r v
Binary Code

o Jolr]] [T T4 1]

76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This two-byte input instruction causes a byte of data to be transferred
from the data bus into register r. During the execution of this instruction,
the content of the second byte of this instruction is made available on the

address bus. Signals on the data bus are true signals, i.e., a high level is
interpreted as a one.

During execution, the processor raises the Operation Request (OPREQ)
line, simultaneously placing the contents of the second byte of the
instruction on the address bus. During the OPREQ signal, the M/IO line is

switched to I0,the R/W line to R (Read), line and the E/NE line to E
(Extended).

See Input/Output section of this manual,

Processor Registers Affected cC

Condition Code Setting Register r CC1 cco
Positive 0o 1
Zero 0 0
Negative 1 0

85

WRITE DATA (Register Addressing)

Mnemonic WRTD,r
Binary Code

Llr[1]r]ofo] ¢ |

76543210

Execution Time 2 cycles (6 clock periods)

Description

This one-byte output instruction causes a byte of data to be made
available to an external device. The byte to be output is taken from register r
and made available on the data bus. Signals on the data bus are true signals,
i.e., high levels are ones.

When executing this instruction, the processor raises the Operation Request
(OPREQ) line and SImulta.neously places the data on the Data Bus. Along
with the OPREQ, the M/IO line is switched to IO the R/W signal is switched
to W (Write), and a Write Pulse (WRP) is generated. Also, during the valid
OPREQ signals, the D/C line is switched to D (Data) and the E/NE line is
switched to NE (Non-extended).

See Input/QOutput section of this manual.

Processor Registers Affected None

Condition Code Setting N/A

WRITE CONTROL {Register Addressing)
Mnemonic WRTC,r

Binary Code

[Jo[[i]o[el T]

765643210

Execution Time 2 cycles (6 clock periods)
Description

This one-byte output instruction causes a byte of data to be made
available to an external device.

The byte to be output is taken from register r and made available on the
data bus. Signals on the data bus are true signals, i.e., high levels are ones

When executing this instruction, the processor raises the Operation
Request (OPREQ) line and simultaneously places the data on the Data Bus.
Along with the OPREQ signal, the M/IO line is switched to IO, the R/W
signal is switched to W (Write), the D/C line is switched to C (Control), the
E/NE is switched to NE (Non-extended), and a Write Pulse (WRP) is
generated.

See the Input/Output section of this manual.
Processor Registers Affected None
Condition Code Setting N/A

WRITE EXTENDED {Immediate Addressing)

Mnemonic WRTE,r v
Binary Code

Clfolrlolef) 1, o w0)]

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte output instruction causes a byte of data to be made
available to an external device. The byte to be output is taken from register r
and is made available on the data bus. Simultaneously, the data in the second
byte of this instruction is made available on the address bus. The second
byte, v, may be interpreted as a device address.

Signals on the busses are true levels, i.e., high levels are ones.

When executing this instruction, the processor raises the Operation
Request (OPREQ) line and simultaneously places the data from register r on
the data bus and the data from the second byte of this instruction on the
address bus. Along with OPREQ, the M/IO line is switched to TO, the R/W
line is switched to W (Write), the E/NE line is switched to E (Extended), and
a Write Pulse (WRP) is generated.

See the Input/Output section of this manual.
Processor Registers Affected None
Condition Code Setting N/A

NO OPERATION

Mnemonic NOP
Binary Code

bhh?b@@k]

Execution Time 2 cycles {6 clock periods)

Description

This one-byte instruction causes the processor to take no action upon
decoding it. No registers are changed, but fetching and executing a NOP
instruction requires two processor cycles.
Processor Registers Affected None

Condition Code Setting N/A

87

TEST UNDER MASK IMMEDIATE (Immediate Addressing)

Mnemonic TMI r v
Binary Code

Clfefofoff e b L 00y |

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction tests individual bits in the specified register r to
determine if they are set to binary one. During execution, each bit in the v
field of the instruction is tested for a one, and if a particular bit in the v field
contains a one, the corresponding bit in register r is tested for a one or zero.
The condition code is set to reflect the result of the operation.

If abit in the v field is zero, the corresponding bit in register r is not tested.

Processor Registers Affected cC
Condition Code Setting CC1 cco
All of the selected bits are 1s 0 0

Not all of the selected bits are 1s 1 0

DECIMAL ADJUST REGISTER © (Register Addressing)

Mnemonic DAR,r
Binary Code

Lfefefr]o]] ¢ |

76643210

Execution Time 3 cycles (9 clock periods)

Description

This one-byte instruction conditionally adds a decimal ten (two’s
complement negative six in a four-bit binary number system) to either the
high order 4 bits and/or the low order 4 bits of the specified register r.

The truth table below indicates the logical operation performed. The
operation proceeds based on the contents of the Carry (C) and Interdigit
Carry (IDC) bits in the Program Status Word. The C and IDC remain
unchanged by the execution of this instruction.

This instruction allows BCD sign magnitude arithmetic to be performed on
packed digits by the following procedure.

BCD Addition: 1. add 66,¢ to augend

2. perform addition of addend and augend
3. perform DAR instruction

BCD Subtraction: 1. perform subtraction (2’s complement of subtra-
hend is added to the minuend)
2. perform DAR instruction

Since this operation is on sign-magnitude numbers, it is necessary to establish
the sign of the result prior to executing in order to properly control the defi-
nition of the subtrahend and minuend.

Interdigit Added to
Carry Carry | | Register r
0 0 AAyg
0 1 A0 ¢
1 1 00
1 0 0A ¢
Processor Registers Affected cc

Condition Code Setting
The Condition Code is set to a meaningless value.

89

HALT, ENTER WAIT STATE

Mnemonic HALT
Binary Code

of1]o]ofo[o]o]o]
76543210
Execution Time 2 cycles (6 clock periods')

Description
This one-byte instruction causes the processor to stop executing instruc-
tions and enter the WAIT state. The RUN/WAIT line is set to the WAIT state.

The only way to enter the RUN state after a HALT has been executed, is
to reset the 2650 or to interrupt the processor.

Processor Registers Affected None
Condition Code Setting N/A

APPENDIXES

145

APPENDIX A

MEMORY INTERFACE

Figure 22 shows a complete interface between the 2650 and a 256 x 8
R/W random access memory. Since the memory chips are MOS they can be
driven directly by the address lines and the control lines. The gates shown
are assumed to be standard 7400 series TTL so that some signal buffering is
assumed to be necessary. If CMOS or 74LS gates are used, some of the
buffering inverters may not be necessary. The same is true of the data bus.
Depending on the number and nature of the I/O devices being interfaced, it
may or may not be necessary to buffer the data bus.

Because the data in and data out signals for the memory chips are bussed
together, care must be taken to avoid overlap of drivers on the data bus. In
this example, the problem is solved by using the write pulse into the memory
as the chip select input instead of using the R/W line as is conventionally
done. The R/W output from the processor is a level and is valid when
Operation Request is true. Write Pulse from the processor is gated with the
OPREQ and M/IO signals to assure proper operation.

For a large memory the next address line (ADR8) could be gated into the
chain that generates the chip select signals, with similar write pulse
generation for the higher order memory.

The OPACK signal is assumed to be false for the duration of all memory
operations. This eliminates some gating from that control input. No
problems will be encountered with this approach as long as the memories are
fast enough for the clock speed being used with the processor. At a cycle
time of 2.4us, data must be returned tc the processor by lus or less time
from the OPREQ leading edge.

A?

ADR 7 2608
256x4
R/W RAM
ADDRESS
QUTPUTS
ARO
ADR 0 RW
CE
- Aw Do
DATA I/0
WRP
| od A7 2606
256x4 A\
ovnro—_.DOT__’:DyJ—:D}—‘ Lol ploexd 19
MNo —-{)o-v—<
2650 PROCESSOR :'l‘vg
[43
DATA /0
s 087 I? v
DATA
8uUS {
, D8 o !
\ o/C |
QPACK
1Z
z 15
o, &3
5 < !g J 4 4 4
i f ll S AA
+sv [cLock ==
RESET
Figure 22.

147

APPENDIX B

1/0 INTERFACE

Figure 23 shows one of many possible methods for buffering the data bus
and interfacing it to several devices. There are advantages to be gained by
using the Signetics 8T26. It has a PNP input buffer that keeps its low input
level current at 200uA instead of 1.6mA. This lightens the load on the
processor bus drivers and allows the processor to interface to several 8T26’s
if necessary. The 8T26 has four complete driver/receiver pairs in a package,
so two packages can fully buffer the 8-bit data bus.

The control signals generated for use with I/O interfaces are very
straightforward. Combining M/IO with OPREQ generates a signal that can
often be used conveniently at the 1/O devices instead of having each device
derive the signal individually. In the figure it is gated with the Read/Write
information in order to control the bus buffer.

Each I/O device must handle four basic processor interface functions:
(a) bus interface
(b) data transfer logic
(c) device selection logic
(d) transfer acknowledge logic

Depending on the nature of the complete éystem and the particular I/0
device, these functions can be either extremely simple or fairly complex.

——
) ADORESS LINES TO MEMORY
osus o
- 10
MEMORY
- sus
- ° 1
psus? DRIVER 1 t
oento ;D@_‘ ENABLE AL ULC
wis 1
ok RECEIVER
qx ENABLE
2680
1/0 OPERATION Dny‘o'“'
ADDITIONAL
1/0 DEVICES
-—
r4-t-4--=|-=-cccea--- il s il (ST PEUpE PN F R)
: 872¢ 8726 —f]
[]
— 1
orACK + lm“t:lcw“ Lraaz::n ' !
', W LOGIC 1
aone a4k = 1] LI TTTITTTTT 1
- | s— 1 T 1 I 4 T S DATA
= oEveE T N N N A N Nl
= ut’.c:‘?“ %‘J‘_“G T T I 1 1 1 . s)
ADR 7 vd f 1
b o e e e e e e e e e e m L _ fxremwaoeviee

Figure 23.

148

APPENDIX C

INSTRUCTIONS, ADDITIONAL INFORMATION

The 2650 uses variable length instructions that are one, two or three
bytes long. The instruction length is determined by the nature of the
operation being performed and the addressing mode being used. Thus, the
instruction can be expressed in one byte when no memory operand
addressing is necessary, as with register-to-register or rotate instructions. On
the other hand, for direct addressing instructions, three bytes are allocated.
The relative and immediate addressing modes allow two-byte instructions to
be implemented.

The 2650 uses explicit operand addressing; that is, each instruction
specifies the operand address. The first byte of each 2650 instruction is
divided into th-ee fields and specifies the operation to be performed, the
addressing mode to be used and, where appropriate, the register or condition
code mask to be used.

Function Class Register

Field Field Field
A

HEREN

76543210

The CLASS field specifies the instruction group, the major address mode
and the number of processor cycles required for each instruction. The
CLASS field also specifies, with one exception, the number of bytes in the
instruction. The following table shows the specifications for each class.

CLASS INSTRUCTION ADDRESS BYTE DIRECT
FIELD GROUP REGISTER LENGTH CYCLES
0 Arithmetic Register 1 2
1 Arithmetic Immediate 2 2
2 Arithmetic Relative 2 3
-3 Arithmetic Absolute 3 4
4 Control (inc. rotate) 1 2
5 Control 1-2 3
6 Branch Relative 2 3
7 Branch Absolute 3 3

Within the arithmetic groups (classes ‘0, 1, 2, and 3) the function field
specifies one of the eight operations as follows:

FUNCTION ARITHMETIC
FIELD OPERATION

0 LOAD
1 EXCLUSIVE OR
2 AND
3 INCLUSIVE OR
4 ADD
5 SUBTRACT
6 STORE
7 COMPARE

149

150

Within the branch group (classes 6 and 7) the function field specifies one
of eight operations as follows:

FUNCTION BRANCH
FIELD OPERATION
0 Branch On Condition True
1 Branch To Subroutine On Condition True
2 Branch On Register Non-Zero
3 Branch To Subroutine On Register Non-Zero
4 Branch On Condition False
5 Branch To Subroutine On Condition False
6 Branch On Incrementing Register
7 Branch On Decrementing Register

There -is very little pattern to the use of the function field within the
control group (classes 4 and 5).

The register field is used to specify the index register, to specify the
operand source register, to specify the destination register, or a condition
code mask. For the register-to-register and the indexed instructions, register
zero is implicitly assumed to be the source or the destination ‘of the
instruction. For all other instructions that involve a register, the register field
allows any of four registers to be specified, except for indexed branch
instructions which require that register 3 be specified.

Conditional branch instructions utilize the 2-bit register field as a
condition code mask field. A few instructions use the register field as part of
the operation code and consequently allow no variation in register usage.

APPENDIX D

INSTRUCTION SUMMARY
SIGNETICS 2650 PROCESSOR

ALPHABETIC LISTING

HEX

8C
8D
8E
8F
84

85
86
87

88

89
8A
88
80
81

82

83
ac
4D
4E
4F
a4
45
46
47

48 ANDR

49
4A
48
41

42
43

9C
9D
9E

oP
ADDA

ADDI

ADDR

ADDZ

ANDA

ANDI

ANDZ

BCFA

Pg.
57

56

56

55

61

60

60

59

75

HEX

98
99
9A

1C
1D
1E
1F
18
19
1A
18

FC
FD
FE
FF
78
F9
FA
FB
DC
DD
DE
OF

D8
D9
DA
0B
5C
5D
5&
5F

oP
BCFR

BCTA

BCTR

BDRA

BDRR

BIRA

BIRR

Pg.
75

74

74

77

77

76

76

BRNA 78

58 BRNR 78

59
5A
5B

HEX OP Py

8C BSFA 81
8D
BE

B8 BSFR 81
89
BA

7C BSNA 82

70
7E
7F

78 BSNR 82

79
7A
78

3C BSTA 80

3D
3E
3F

38 BSTR 80

39
3A
38

BF BSXA 83

OF BXA 79

EC Ccgma 67
ED
EE
EF

161

162

HEX

E4
ES
E6
E7
E8
EQ
EA
EB

opP Pg.
cgMi 66

CPMR 66

EO CBMZ 65

E1
E2
€3

75
74

CPSL 72
CPSU 71

94
95
96
97
2C
2D
2E
2F
24
25
26
27
28
29
2A
2B
20
21
22
23

DAR 89

EZRA 65

EZRI 64

EZRR 64

EZRZ 63

HEX

40

op Pg.
HALT 90

6C
6D
6E
6F
64
65
"66
67

|9(RA 63

IgRI 62

68
69
6A
68
60
61

62

63

|¢RR 62

IgrRz 61

oc
oD
OE

07

L@DA 53

Lgol 52

08 LBDR 53

09
0A
08
00
01
02
03

LgDZ 52

HEX
93

92

co

77

76

30
31
32
33

op Pg.
LPSL 69

LPSU g8

NgP 87

PPSL 71

PPSU 70

REDC 85

70
71
72
73
54
55
56
57
14
15
16
17
34
35
36
37
Do
D1
D2
D3

REDD 84

REDE 85

RETC 83

RETE 84

RRL 67

53
13

SPSL

70

12 SPSU 69

cC
cD
CE
CF
cs8

Cc9
CA
cs
c1

Cc2

c3

AC
AD
AE
AF
A4

A5
A6
A7

A8
A9
AA
AB
A0
Al

A2
A3

STRA

STRR

STRZ

SUBA

SuBI

SUBR

suBz

55

54

54

59

58

58

57

HEX OP Pg.

B85
B4
B0
81
B2
83

FO

™I 88

TPSL. 73
TPSU 72
WRTC 86

WRTD 86

WRTE 87

ZBRR 73
Z8SR 79

163

154

NUMERIC LISTING

HEX opP Pg.

00 LgDZ 52
01
02
03

04 L@DI 52

08 L@DR 53

0A
08
oc L@DA 53
oD
OE
OF
12 SPSU 69
13 SPSL 70
14 RETC 83
15
16
17
18 BCTR 74
19
1A
1B
1C BCTA 74
1D
1E
1F

20 EFRZ 63
21
22
23

HEX

24
25
26
27
28
29
2A
2B

2C
2D
2E
2F
30
31

32

33

34

35

36
37

38
39
3A
38
3C
3D
3E
3F

40

41
42
43

SIGNETICS 2650 PROCESSOR

oP Pg.

EZR! 64

EJRR 64

EGRA 65

REDC 85

RETE 84

BSTR 80

BSTA 80

HALT 90

ANDZ 59

HEX opP Pg.

44 AND! 60
45
46
47

48 ANDR 60

49
4A
4B

ac ANDA 61
4D
4E
4aF
50 RRR 68
51
52
53

54 REDE 85

55
56
57

58 BRNR 78

59
5A
58

5C BRNA 78

5D
5E
5F

60 IBRZ 61

61
62
63
64 IGRI 62
65
66
67

5

a”

HEX

68
69
6A
68
6C
6D
6E
6F
70
71

72
73

I@RR

REDD

74

CPSU

75

CPSL

76

PPSU

. n

PPSL

78
79
7A
78
7C
7D
7E
7F

80

BSNR

BSNA

ADDZ

Pg.

63

84

71

72

70

71

82

82

55

56

HEX OP

88 ADDR
89
8A
8B

8C ADDA

98 BCFR
99
9A

l

98B ZBRR

aC BCFA
9D
9t

9F BXA

AO susz
Al
A2
A3

57

69

89

75

73

75

78

57

HEX op
A4 sust
A5

A6

A7

A8 SUBR
A9

AA

AB

AC SUBA
AD

AE

AF

80 WRTC
B1

B2

83

B4 TPSU
BS TPSL
88 BSFR
89

BA

BB ZBSR

Pg.

58

59

72

73

81

79

8C BSFA 81

BD
BE

BF BSXA 83

155

156

HEX oep Pyg.

CO NgP 87

e ————————————

ct STRZ 54
c2
c3

C8 STRR 54
Cc9
CA
cB

cc STRA 55

CcD
CE
CF
Do RRL 67
D1
D2
D3

D4 WRTE 87

D5
Dé
D7
D8 BIRR 76
D9
DA
D8
DC BIRA 76
DD
DE
DF
EO COMZ 65
E1
E2
E3

HEX orp Pg.

E4 cpMi 66
E5
E6
E7
E8 CgMR 66
E9
EA
EB
"EC C@MA 67
ED
EE
EF

FO WRTD 86

F1
F2
F3
Fa T™I 88
F5
F6
F7
“F8 BDRR 77
F9
FA
FB
FC BDRA 77
FD
FE
FF

2650 INSTRUCTIONS
ORGANIZED BY FUNCTION

LOAD/STORE Pg. ARITHMETIC Pg. ARITHMETIC Py
00 Lgpz 52 80 ADDZ 55 68 IBRR 62
01 81 69
02 82 6A
03 83 68
04 L@DI 62 84 ADDI 56 6C IPRA 63
05 85 6D
06 86 6E
n7 87 6F
08 L@DR 53 88 ADDR 56 20 E@GRZ 63
09 89 21
0A 8A 22
0B 88 23
oC L@DA 53 8C ADDA 57 24 E@RI 64
oD 8D 25
OE : 8E 26
OF 8F 27 —
c1 STRZ 54 A0 suBz 57 28 EARR 64
c2 Al 29
c3 A2 2A
A3 2B
c8 STRR 54 A4 suB! 58 2C EGRA 65
co A5 2D
CA A6 2E
cB A7 2F
cc STRA 56 A8 SUBR 58 41 ANDZ 59
co A9 42
CE AA 43
CF AB
AC SUBA 59 44 ANDI g0
AD 45
AE 46
AF 47
60 IBRZ 61 48 ANDR 60
61 49
62 4A
63 4B
64 BRI 62 Tac_ _ANDA 61
65 4D
66 4E
67 4F

157

158

BRANCH

18
19
1A
1B
1C
10
1E
1F

98
99
9A

9C
9D
9E

58
59
5A
5B

5C

5D
5E

5F

D8
D9
DA
DB
DC
DD
DE
DF

BCTR

BCTA

BCFR

BCFA

BRNR

BRNA

BIRR

BIRA

F8
F9
FA
FB
FC
FD
FE
FF

BDRR

BDRA

Pg.

74

74

75

75

78

78

76

76

77

77

79

73

SUBROUTINE BRANCH

38
39
3A
3B
3C
3D
3E
3F
B8
B9
BA

BC
8D
BE

78
79
7A
7B
7C
7D
7E
7F

BF

BB

SUBROUTINE RETURN

14
15
16
17
34
35
36
37

BSTR

BSTA

BSFR

BSFA

BSNR

BSNA

BSXA

ZBSR

RETC

RETE

Pg.

80

80

81

81

82

82

83

79

83

84

COMPARE Pg.

EO
E1

E2
E3
E4
E5
E6
E7
E8
E9
EA
EB

EC
ED
EE
EF

30
31
32
33
70
71
72
73

BO
B1
B2
83
FO
F1
F2
F3
54
55
56
57
D4
D5
D6
D7

CoMZ 65

CoMI 66

COMR 66

COMA 67

INPUT/OUTPUT

REDC 85

REDD 84

WRTC 86

WRTD 86

REDE 85

WRTE 87

PROGRAM STATUS

MANIPULATION Pg. MISCELLANEOUS Pyg.
92 LPSU 68 co N@P 87
93 LPSL 69
12 SPSU 69 40 HALT 90
13 SPSL 70
74 CPSU 71 F4 ™I 88
F5
75 CPSL 72 F6
F7
76 PPSU 70 94 DAR 89
95
77 PPSL 71 . 96
97
B4 TPSU 72
B5 TPSL 73

ROTATE INSTRUCTIONS
DO RRL 67

50 RRR 68

169

160

APPENDIX E

SUMMARY OF 2650 INSTRUCTION MNEMONICS

In these tables parentheses are used to indicate options. In no case are they
coded in any instruction. The following abbreviations are used:

r — register expression, must evaluate to 0 <r < 3.

v — value expression

* — indirect indicator

a — address expression

x — index register expression

X — index register expression with optional auto-increment or auto-
decrement

NOTE: _

— the use of the indirect indicator is always optional.

— when an index register expression is specified, it can be followed by ', +' or

', -' which indicates use of auto-increment or auto-decrement of the index
register. Example:

LODA, 0 DPR,R3,+

BXA, BSXA are exceptions and do not permit auto-increment or auto-decrement.

— even though an address expression is specified in a hardware relative addressing
instruction, the assembler develops it into a value of (-64 < V < +63).

— a memory reference instruction which requires indexing may use only register
0 as the destination of the operation.

— if an index register expression is used with either the BXA or BSXA instruc-
tions it must specify index register #3 (either register bank) for indexing. Any
other value in the index field will produce an error during assembly. However,
it is not necessary to use an index register expression with these instructions;
a blank in this field will default to register 3.

LOAD/STORE INSTRUCTIONS

LODZ r Load Register Zero
LODLr v Load Immediate
LODRyr (»)a Load Relative
LODAr ({#*)a(,X) Lond Absolute
STRZ r Store Register Zero
STRRr (s)a Store Relative
STRA,r (s)a(,X) Store Absolute
ARITHMETIC INSTRUCTIONS

ADDZ r Add to Register Zero
ADDILr v Add Immediate
ADDR,;r (»)a Add Relative
ADDA,;r (s)a(,X) Add Absolute

SUBZ r Subtract from Register Zero
SUBI¢ v Subtract Immediate
SUBRr (+)a Subtract Relative
SUBA,r (*)a(,X) Subtract Absolute

LOGICAL INSTRUCTIONS

ANDZ r And to Register Zero
ANDIr v And Immediate

ANDRr (#)a And Relative

ANDAr (s)a(,X) And Absolute

IORZ r Inclusive or to Register Zero
IORIr v Inclusive or Immediate
IORRr (s)a Inclusive or Relative

IORA,r (#)a(,X) Inclusive or Absolute

EORZ T Exclusive or to Register Zero
EORIr v Exclusive or Immediate
EORR,y (¢)a Exclusive or Relative

EORA,r (*)a(,X) Exclusive or Absolute

COMPARISON INSTRUCTIONS

COM2 r Compare to Register Zero
COMIr v Compare immediate
COMR,r (*)a Compare Relative

COMA;r (=)a(,X) Compare Absolute

ROTATE INSTRUCTIONS
RRR,r Rotate Register Right
RRL,r Rotate Register Left

BRANCH INSTRUCTIONS

BCTR,v (#)a Branch on Condition True Relative
BCFR,v (#)a Branch on Condition False Relative
BCTA,v (*)a Branch on Condition True Absoiute
BCFAv (%) Branch on Condition Faise Absolute
BRNRr (#)a Branch on’ Register Non-Zero Relative
BRNAr (e)a Branrh on Register Non-Zero Absolute
BIRRr (s)a Branch on Incrementing Register Relative

i
i

WM -WMNN -

WA - WD W N LN N O NN

NN

Length (bytes)

-

NWNWwWwNN

BIRA®
BDRR,r
BDRA,r
BXA
ZBRR

(+)a
(s)a
(«)a
(*)a(x)
(+)a

Branch on Incrementing Register Absolute
Branch on Decrementing Register Relative
Branch on Decrementing Register Absolute
Branch Indexed Absolute, Unconditional
Zero Branch Relative, Unconditional

SUBROUTINE BRANCH/RETURN INSTRUCTIONS

BSTR,v
BSFR.v
BSTAv
BSFAv
BSNR,r
BSNA,r
BSXA

RETCyv
RETE,v
ZBSR

(s)a
(+)a
(*)a
(*)a
(*)a
(s)a

(#)a(x)

(+),a

Branch to Subroutine on Condition
True, Relative

Branch to Subroutine on Condition
False, Relative

Branch to Subroutine on Condition
True, Absolute

Branch to Subroutine on Condition
False, Absolute

Branch to Subroutine on Non-Zero
Register, Relative

Branch to Subroutine on Non-Zero
Register, Absolute

Branch to Subroutine, Indexed, Unconditional
Retum From Subroutine, Conditional
Return From Subroutine and Enable
Interrupt, Conditional

Zero Branch to Subroutine

Relative, Unconditiona!}

PROGRAM STATUS INSTRUCTIONS

LPSU
LPSL
SPSU
SPSL
CPSU
CPSL
PPSU
PPSL
TPSU
TPSL

< € < < <<

Load Program Status, Upper

Load Program Status, Lower

Store Program Status, Upper

Store Program Status, Lower

Clear Program Status, Upper, Selective
Clear Program Status, Lower, Selective
Preset Program Status, Upper, Selective
Preset Program Status, Lower, Selective
Test Program Status, Upper, Selective
Test Program Status Lower, Selective

INPUT/OUTPUT INSTRUCTIONS

WRTD,r
REDD,r
WRTC,r
REDCr
WRTE,r
REDEr

v
v

Write Data
Read Data
Write Control
Read Control
Write Extended
Read Extended

MISCELLANEOUS INSTRUCTIONS

HALT
DARr
TMIx
NOP

v

Halt, Enter Wait State
Decimal Adjust Register
Test Under Mask Immediate
No Operation

NWwwN W

DR DO N NN et e g

BN e e b

D e b

161

162

APPENDIX F

NOTES ABOUT THE 2650 PROCESSOR

1.

AUTO-INCREMENT, DECREMENT of index register. This feature is
optional on any instruction which uses indexing with the exception of
BXA and BSXA. The increment or decrement occurs before the index
register is added to the displacement in the instruction.

. The contents of registers when used for indexing are considered to be

unsigned absolute numbers. Consequently, index registers can contain
values from 0 to 255. They “wrap-around” so that the number following

255is 0.

. Only absolute addressing instructions can be indexed.

. The Branch on Incrementing Register or Decrementing Register instruc-

tions perform the increment or decrement before testing for zero. The
only time the branch address is not taken, is when the register contains
zero,

. All hardware relative addressing is implemented as modulo 8K and there-

fore relative addressing across the top of a page boundary will result in a
physical address near the bottom of the page being accessed. For example:

1FFC,, LODR,R2 $+16

This instruction results, during execution, in accessing the byte at location
000C in the same page as the instruction. Similarly, negative relative
addresses from near the bottom of a page may result in an effective
address near the top of the page.

6. Page boundaries cannot be indexed across.

7. Data can always be accessed across a page boundary through use of

relative indirect or absolute indirect addressing modes.

8. The only way to transfer control to a program in some other page is to
branch absolute or branch indirectly to the new page. Program execution
cannot flow across a page boundary.

9. Unconditional branch or branch to subroutine instructions are coded by
specifying a value of 3 in the register/value field of BSTA, BSTR, BCTA
or BCTR. Example:

UN EQU 3

L N B

o o0

o 00

BSTA,UN PAL
BCTR,3 LOOP

Unconditional branches on conditions false (BCFA, BCFR) are not allowed.

APPENDIX G

ASC II AND EBCDIC CODES

This table presents the only characters that the assembler will recognize
in an A or E type constant and their equivalent codes in hexadecimal.

VALID EBCDIC
CHARACTERS CODE
FO
F1
F2
F3
F4
F5
F6
F7
F8
F9
c1
c2
c3
c4
C5
cé
c7
c8
c9
D1
D2
D3
D4
D5
D6
D7
D8
D9
E2
E3
E4

CHNDOUVOZZENRS " IOHEHUOE>OCOAON A WNDHO

AsSCII
CODE
30
31
32
33
34
35
36
37
38
39
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50

VALID
CHARACTERS

EBCDIC ASCII

CODE
E5
Eé6
E7
E8
E9
40
4B
4D
4E
4F
50
5A
5B
5C
5D
5E
5F
60
61
6B
6C
6D
6E
6F
TA
7B
7C
7D
7E
7F
4C

*may have different graphic symbols on different computer systems

CODE
56
57
58
59
5A
20
2E
28
2B
7C
26
21
24
2A
29
3B
TE*
2D
2F
2C
25
5F*
3E
3F
3A
23
40
27
3D
22
3C

163

164

APPENDIX H

COMPLETE ASCIICHARACTER SET

(MSB) b, 0 1
bg 1 1
% 1
be by | by [by
] 0 0 0 sp P
0 0] 1] q
0 0 1 0 "’ r
0 0 1 1 # s
] 1 0 0 $ t
(] 1 0 1 % u
0 1 1] & v
0 1 1 1 ! w
1 0 0 0 { x
1 0 0 1) Y
1 0 1 0 . z
1 0 1 1 + {
1 1] 0 ! I
1 1 0 1 - }
1 1 1 0 ~
1 1 1 1 / DEL

