

ICL

DCL SERIES

DCL SPECIFICATIONS HANDBOOK, Vol.I

Multivibrator, Low Power Elements, High Speed Elements, Ultra High Speed Elements, Interface Elements

DCL SPECIFICATIONS HANDBOOK, Vol. II

MSI Arrays

Signetics Corporation reserves the right to make changes in the products contained in this book in order to improve design or performance and to supply the best possible product.

Signetics Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

TABLE OF CONTENTS

Page
INTRODUCTION vii
SECTION I DESIGN CONSIDERATIONS 1-1
ABOUT THIS SECTION 1-1
TEMPERATURE RANGES AND PACKAGE TYPES. 1-1
ABSOLUTE MAXIMUM RATINGS 1-1
NOISE IMMUNITY 1-1
DC LOADING 1-2
TO USE THE NORMALIZED DC LOADING CHART. 1-2
AC LOADING 1,-2
TO USE THE AC LOADING CHART. 1-2
PROPAGATION DELAY. 1-2
POWER CONSUMPTION $1-3$
SECTION II ELECTRICAL CHARACTERISTICS 2-1
MULTIVIBRATOR
8162 MONOSTABLE MULTIVIBRATOR 2-2
LOW POWER ELEMENTS
8415 DUAL 5-INPUT NAND GATE 2-3
8416 DUAL 4-INPUT EXPANDABLE NAND GATE. 2-4
8417 DUAL 3 -INPUT EXPANDABLE NAND GATE. 2-6
8424 DUAL RS/T BINARY. 2-8
8425 DUAL RS/T BINARY. 2-10
8440 DUAL AND-OR-INVERT GATE 2-12
8455 DUAL 4-INPUT NAND GATE DRIVER 2-14
8470 TRIPLE 3 -INPUT NAND GATE 2-16
8471 TRIPLE 3 -INPUT NAND GATE 2-18
8480 QUAD 2-INPUT NAND GATE 2-16
8481 QUAD 2-INPUT NAND GATE 2-19
8490 HEX INVERTER 2-16
8706 DUAL 5-INPUT DIODE EXPANDER ELEMENT 2-20
8731 QUAD 2-INPUT DIODE EXPANDER ELEMENT 2-20
STANDARD ELEMENTS
8806 DUAL 4-INPUT EXPANDER ELEMENT 2-21
8808 SINGLE 8-INPUT NAND GATE 2-22
8815 DUAL 4-INPUT NOR GATE 2-24
8816 DUAL 4-INPUT NAND GATE 2-22
8821 DUAL MASTER-SLAVE J-K BINARY 2-26
8822 DUAL MASTER-SLAVE J-K BINARY 2-26
8824 DUAL MASTER-SLAVE J-K BINARY 2-26
8825 DC CLOCKED J-K BINARY 2-28
8826DUAL J-K BINARY2-30

TABLE OF CONTENTS (Continued)

Page
HIGH SPEED ELEMENTS (Continued)
8827 DUAL J-K BINARY 2-32
8828 DUAL D BINARY 2-34
8829 HIGH SPEED J-K BINARY 2-36
8840 DUAL EXPANDABLE AND-OR-INVERT GATE 2-38
8848 EXPANDABLE AND-OR-INVERT GATE 2-4088558870
8875888088818885
DUAL 4-INPUT DRIVER 2-42
TRIPLE 3-INPUT NAND GATE 2-22
TRIPLE 3-INPUT NOR GATE. 2-24
QUAD 2-INPUT NAND GATE 2-22
QUAD 2-INPUT NAND GATE $2-44$
QUAD 2-INPUT NOR GATE 2-24
HIGH SPEED ELEMENTS
8H16 DUAL 4-INPUT NAND GATE 2-45
8H20 DUAL J-K BINARY ELEMENT 2-47
8H21 DUAL J-K BINARY ELEMENT 2-47
8H22 DUAL J-K BINARY ELEMENT 2-47
8H70 TRIPLE 3-INPUT NAND GATE 2-45
8H80 QUAD 2-INPUT NAND GATE 2-45
8H90 HEX INVERTER 2-50
8890/8891 HEX INVERTERS 2-46
INTERFACE ELEMENTS
8T18 DUAL 2-INPUT NAND INTERFACE GATE 2-51
8 T 80 QUAD 2-INPUT NAND INTERFACE GATE 2-52
8 T 90 HEX INVERTER INTERFACE ELEMENT 2-52
SECTION III AC TESTING 3-1
SECTION IV APPLICATIONS 4-1
GATES 4-1
INPUTS 4-1
TTL Input Structure 4-1
DTL Input Structure 4-1
Unused Inputs 4-2
OUTPUTS 4-2
8416, 8440, 8470, 8480 Outputs (Active Pull-Up) 4-2
8455 Output (Active Pull-Up) 4-3
8800 Outputs (Active Pull-Up) 4-3
8 H 00 Outputs (Active Pull-Up) 4-4
8415, 8417, 8471, 8481, 8881 Outputs (Bare-Collector or Passive Pull-Up) 4-4

TABLE OF CONTENTS (Continued)

Page
OUTPUTS (Continued)
Expansion of 8000 Series Outputs (Collector Logic) 4-4
Allowed Values of R_{L} for Collector Logic Elements 4-4
8440, 8840, 8848 AND-OR-INVERT Gates 4-6
BINARIES 4-7
RELATIONSHIP OF BINARY TYPES 4-8
CLOCKING $4-8$
8424, 8425 4-8
8821, 8822, 8824 4-8
8825, 8828 4-8
8826, 8827 4-9
8829 4-9
8H20, 8H21, 8H22 4-9
SYNCHRONOUS INPUTS 4-9
8424, 8425 4-9
8821, 8822, 8824 4-10
8825, 8829 4-10
8826, 8827 4-10
8828 4-10
$8 \mathrm{H} 20,8 \mathrm{H} 21,8 \mathrm{H} 22$ 4-10
ASYNCHRONOUS INPUTS 4-10
8424, 8425 4-10
8821, 8822, 8824 4-10
8825 4-10
8826, 8827 4-11
8828, 8829 4-11
$8 \mathrm{H} 20,8 \mathrm{H} 21,8 \mathrm{H} 22$ 4-1.1
MONOSTABLE MULTIVIBRATOR 4-11
8162 Multivibrator 4-11
INTERFACE ELEMENTS $4-13$
8T18 Interface Element. 4-13
8T80, 8T90 Interface Element 4-13

TABLE OF CONTENTS (Continued)

Page
SUB-SYSTEMS 4-14
COUNTERS 4-14
Synchronous BCD Decade Up Counter 4-14
Synchronous BCD Decade Up-Down Counter 4-14
Asynchronous BCD Decade Up Counter (Low Power) 4-14
Asynchronous Divide-By-16 Up Counter 4-15
Synchronous Divide~By-32 Up Counter 4-15
Binary Up-Down Counter 4-16
5-Bit Ring Counter, Self-Starting and Correcting 4-16
Twisted Ring Counters 4-17
Counters in Cascade. 4-17
Count, Store and Decode 4-17
Variable Modulus Counter 4-17
SHIFT REGISTERS 4-19
Serial-In, Parallel-Out. 4-19
Left-Right, Parallel Entry 4-19
PARALLEL BINARY ADDER 4-20
PARALLEL COMPARATOR 4-20
DECODERS 4-20
Serial and Parallel Gray-To-Binary Decoders 4-20
SECTION V SURE* PROGRAM 5-1
OPTIONAL HIGH RELIABIL.ITY SCREENING 5-2

[^0]
INTRODUCTION

The Designers Choice Logic (DCL) handbooks provide the the reader with a software package that clearly explains the performance and use of the DCL Series 8000 family. Volume I covers basic logic elements including multivibrators, low power elements, standard elements, high speed elements and interface elements. Volume II covers MSI arrays including shift and buffer registers, synchronous and asynchronous counters, adders and arithmetic elements, multiplexers and conditional complementors, gating steering and decoding arrays, and decoders/display drivers.

This handbook is divided into five sections for easy refercnce:

Section 1 -- "Design Considerations" provides all the information necessary to design a reliable, working system.

Section 2-- "Electrical Characteristics" contains detailed test limit and test condition information for simplified device evaluation and incoming inspection. Compatibility between the various product types is guaranteed by these tests. The material is organized in a format which lends it-
self to generation of device specifications with a minimum of cost and time.

Section 3 -- "AC Testing" and Section 2 provide complete AC test methods and procedures to ensure accurate specification guarantees.

Section 4-- "Applications" contains straightforward information on the use and operation of DCL devices. In addition, several time-saving device applications are provided to help speed system design and minimize costs.

Section 5-- "SURE Program" consists of a combination of 100 percent and statistical sample tests designed to assure specificd performance, continuing uniformity, and long term reliability in Signetics products. This program, along with the individual device data sheets, provides a complete procurement specification, thus saving procurement cycle time and cost.

If the reader desires more information, he should contact the Signetics representative in his area.
.

SECTION 1

DESIGN CONSIDERATIONS

Abstract

ABOUT THIS SECTION This section is intended to provide all of the required information necessary to allow reliable System Design. The tables and charts presented here are derived from the test guarantees in the circuit characteristic: section. The information covered is as follows:

Table 1-1 - Temperature Range and Package Type Table 1-2 - Absolute Maximum Ratings Table 1-3-Guaranteed Worst Casc DC Noise Margins Table 1-4 - Guaranteed Worst Case DC Loading Table 1-5-Guaranteed Worst Case AC Joading Table 1-6 - Guaranteed Propagation Delay Limits Table 1-7 - Guaranteed Power Consumption Limits Per Gate

TEMPERATURE RANGES AND PACKAGE TYPES

DCL elements are available in two temperature ranges and several packages. Temperature ranges and package types are specified as shown in Table 1-1.

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings constitutc limiting values above which serviceability of the device may be impaired. Provisions should be made in system design and testing to limit currents and voltages in accordance with T'able 1-2.

NOISE IMMUNITY

The two most significant types of noise commonly encountered in digital systems can be characterized as being of the slow drift type or of the fast narrow pulse type. Slow drift noise is generally traceable to changes in power supply and ground levels produced by variations in load and temperature demands on the power supply. This is usually designated as DC noise. The ability of a circuit to maintain a preseribed logic state in the presence of DC noise is measured in terms of DC noise margin. DC noise margin is defined as the difference between the output voltage level of a driving gate and the input threshold voltage of a driven gate for both the " 1 " and the " 0 " states. The input threshold voltage is specified as a test condition in guaranteeing ' 1 " and " 0 " output voltages in the data tables in Section 2. The margins tabulated in Table

1-3 are calculated from those data tables and constitute guaranteed worst case DC noise margins for all combinations of driving and driven elements over the full temperature range and the power supply range of 4.75 V to 5.25 V with full temperature differential and power supply differential of 0.5 V between driving and driven elements.

Noise which displays a rate of change which is fast relative to the response capability of the device is defined as AC noise. Noise of this type is usually gencrated within a subsystem by high speed switching. Such noise, whether it be internally or externally generated, may be propagated directly along signal lines, or may be capacitively or inductively coupled into them. Switching transients also appear prominently on power supply lines, particularly in very high speed systems.

AC noise immunity is a measure of a circuit's ability to maintain the prescribed logic state in the presence of such noise. AC noise immunity is defined in terms of the amplitude and pulse width of an input noise signal to which the element will not respond. Rejection of positive-going AC noise on the ground line is required for the " 0 " input state of the device and of negative-going AC noise on the power supply line for the " 1 " input state of the device. As the pulse width of the noise signal increases, the amplitude of that noise signal which will be rejected by a device approaches the DC noise margin for that device.

Low circuit impedances will, naturally, minimize noise coupling. For all elements in the 8000 Series, a saturated switching transistor provides a desirable low output impcdance in the output " 0 " state. The active output pull-up configuration provides Iow output impedance in the output " 1 " state.

Since the prime sourcc of AC noise within a system is the switching transient associated with all very high speed circuitry, proper design attention to layout, termination, and board fabrication should be exercised, when very high speed elements are used.

In general, the 8400 group of elements is less susceptible to AC noise than is the 8800 group, as illustrated in Figure 1. This is attributable to the faster response of the 8800 .

Typical AC noise immunity curves are furnished to provide the systems designer with a relative descrip-
tion of the AC noise immunity of the devices available in the 8000 family.

DC LOADING

Table 1-4 is a DC loading chart containing normalized fan-out information. All DC load factors are normalized with respect to an 8480 input which is considered as one DC load (0.8 mA). The chart also provides a fan-out capability for each element based on its ability to drive multiples of the normalized input load. The loading chart is guaranteed by data table test limits and conditions covering " 1 " Output Voltage, "0" Output Voltage, "1" Input Current, and "0" Input Current. It is applicable over the temperature range and power supply range of 4.75 V to 5.25 V with full temperature differential and power supply differential of 0.5 V between driving and driven elements. Note in Table 1-4 the $\mathrm{S}_{\mathrm{C}}, \mathrm{R}_{\mathrm{C}}$ inputs of the 8424 and 8425 are rated at a normalized DC load of 1.5 instead of .75 as would be indicated by the test limit in Section 2. The additional load rating is required due to transient current which will flow during the positivegoing transition of the clock input signal of the 8424 and 8425.

To Use The Normalized DC Loading Chart

In Table 1-4, sum the normalized load rating of the driven elements under consideration. In the same table, find the normalized fan-out rating of the driving unit under consideration. The sum of the load ratings of the driven elements should not exceed the normalized fan-out of the driving element.

The chart presents the worst case loading rules over the temperature range and power supply range of 4.75 V to 5.25 V .

AC vs DC LOADING

The effect that AC loads have on turn-off and turnon times is to increase the rise and fall times. If the designer wishes to stay within the maximum switching times guaranteed on the data sheet, he should use the emperically arrived at relationship that one AC load is approximately equivalent to three DC loads. It must be pointed out, however, that even though DC loads have approximately 3pF per load, the prime effect on the output is a decrease in " 0 " and " 1 " level noise immunity, whereas, AC loads only increase the switching times.

AC LOADING

The clock inputs of the 8424 and 8425 , dual RS/T binaries, and the 8826 and 8827 , dual J-K binaries, being capacitively coupled, are defined as AC loads.

The AC fan-out ratings shown in Table 1-5 are provided to assure compatibility, under worst case conditions, between driving elements and AC binary clock lines. AC fan-out is guaranteed by virtue of the output fall-time test in each of the test tables in Section 2. The fall-time test is conducted under
the specific conditions of load capacitance, voltage transition and allowable transition time necessary to assure reliable triggering of the binary under worst case conditions. The relevant test procedures are given in Section 3.

To Use The AC Loading Chart

The system designer need only follow the AC fanout loading rules in Table 1-5 when driving AC clock lines. This will assure reliable system operation under worst case conditions.

PROPAGATION DELAY

Table 1-6 provides propagation delay information which is guaranteed under test conditions specified in Section 2. Propagation delay for the 8400 gates is defined in terms of pair delay, or the delay through two gates. The condition of the pair delay tests represents system conditions producing maximum system delays. The first gate, whose rising output waveform is under consideration, drives a full-rated capacitance and minimum current load.

FIGURE 1 - AC NOISE CHARACTERISTICS

The second gate, whose falling output waveform is under consideration, drives a full-rated capacitance and current load. This test method provides repeatability which is unattainable with other common methods of specifying propagation delay since the measurement is made between two sharply falling waveforms.

Propagation delay for the 8000 series elements is presented in terms of $T_{o n}$ and $T_{\text {off }}$ which provides a figure of merit by which to compare similar products tested under the same conditions. The guaranteed delay times in the chart take into consideration the " 1 " and " 0 " input current and the Ioad capacitance associated with the information presented in Table 1-4. Test coonditions for the propagation delay guarantees are presented in Section 3.

POWER CONSUMPTION

Power consumption in the 8400 group is primarily DC in nature and power supply designs should take the DC power consumption limits into consideration. The 8800 group, like all high speed designs, has an AC power consumption component in addition to the DC power consumption. Increases in system operating frequency produces increases in the magnitude of the AC power consumption. Typical AC power consumption curves are provided in Section 2 and should be considered in power supply designs for high frequency subsystems.

Table 1-7 provides guaranteed DC power consumption and current drain limits for the 8000 family for conditions presented in Section 2.

CLAMP DIODES

A11 8800 and 8 H 00 gates have input clamp diodes which present a very low impedance to negative voltage swings and minimize the effects of ringing.

TABLE 1.1-TEMPERATURE RANGES AND PACKAGE TYPES

RECOMMENDED OPERATING VOLTAGE FOR ALL DCL ELEMENTS: $5 \mathrm{~V} \pm 5 \%$
TABLE 1-2 - ABSOLUTE MAXIMUM RATINGS (Notes 1, 2, 6)

$\begin{aligned} & \text { ELEMENT } \\ & \text { (NOTE 2) } \end{aligned}$	$\begin{aligned} & \text { INPUT } \\ & \text { VOLTAGE } \end{aligned}$	$\begin{gathered} \text { OUTPUT } \\ \text { VOLTAGE } \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \left(\mathrm{NOTE}_{4}\right) \end{gathered}$	INPUT CURRENT	OUTPUT CURRENT
$\begin{aligned} & 8162 \\ & 841 \mathrm{X} \\ & 842 \mathrm{X} \\ & 8440 \\ & 8455 \\ & 847 \mathrm{X} \\ & 848 \mathrm{X} \\ & 87 \mathrm{XX} \\ & 88 \mathrm{XX} \\ & 8 \mathrm{HXX} \\ & 8 \mathrm{TI} 18 \\ & 8 \mathrm{~T} 80 \\ & 8 \mathrm{~T} 90 \end{aligned}$	$\begin{aligned} & +5.5 \mathrm{~V} \\ & +50.0 \mathrm{~V} \\ & +5.5 \mathrm{~V} \\ & +5.5 \mathrm{~V} \end{aligned}$	+7.0 V +6.0 V +40.0 V +40.0 V	$\begin{aligned} & +7.0 \mathrm{~V} \\ & \mathrm{~N} / \mathrm{A} \\ & +7.0 \mathrm{~V} \\ & +7.0 \mathrm{~V} \\ & \text { NOTE } 3 \\ & +7.0 \mathrm{~V} \\ & +7.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 30 \mathrm{~mA} \\ & \pm 10 \mathrm{~mA} \\ & \pm 30 \mathrm{~mA} \\ & \pm 30 \mathrm{~mA} \\ & \pm 30 \mathrm{~mA} \\ & \pm 10 \mathrm{~mA} \\ & \pm 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 100 \mathrm{~mA} \\ & \pm 30 \mathrm{~mA} \\ & +30,-10 \mathrm{~mA} \\ & +30,-10 \mathrm{~mA} \\ & \pm 100 \mathrm{~mA} \\ & +30,-10 \mathrm{~mA} \\ & +30,-10 \mathrm{~mA} \\ & \text { NOTE } 5 \\ & \pm 100 \mathrm{~mA} \\ & \pm 100 \mathrm{~mA} \\ & +30,-10 \mathrm{~mA} \\ & +100,-10 \mathrm{~mA} \\ & +100,-10 \mathrm{~mA} \end{aligned}$
Notes:		ed on che tolle	2. These device 3. For the 8I1s, 4. Operacing Vcc 5. See data sinee 6. Sturage temye Lemperatutes	ake for all package tanges $\left\langle-55^{\circ} \mathrm{C}\right.$ <4 +12 -7.0 V and $\mathrm{y}_{\mathrm{CC}}^{2} 2=+354$. Series is spectifed 1) MCL elemeits are t a sore 1 .	atlons (A, B, S, 8 or R : cto.15 C). +58. to makirtan junctisa

TABLE 1.3 - GUARANTEED WORST CASE DC NOISE MARGIN

DRIVING ELEMENT	OUTPUT STATE	DRIVEN INPUT (mV)						
		$\begin{gathered} \text { ALL } \\ 8400 \\ \text { GATES } \end{gathered}$	$\begin{gathered} 8424,8425 \\ \mathrm{~S}_{\mathrm{D}} \mathrm{R}_{\mathrm{D}} \mathrm{~S}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \text { ALL } \\ 8800 \\ \text { GATES } \end{gathered}$	$\begin{gathered} 8821 / 22 / 24 / 25 \\ 8828 / 29 \\ \text { ALL } \\ \text { INPUTS } \end{gathered}$	$\begin{gathered} 8826 / 27 \\ \mathrm{~S}_{\mathrm{D}}, \mathrm{R}_{\mathrm{D}} / \mathrm{J}, \mathrm{~K} \end{gathered}$	$8 \mathrm{II} 16 / 70 / 80$	81120/21/22
ALL 8400 GATES	"0"	350	350	450	450	350/450	450	450
	"1"	1400	1400	1400	1400	1400/1400	1400	3400
$\begin{aligned} & 8424 \\ & 8425 \end{aligned}$	"0"	350	350	350	450	$350 / 450$	450	450
	"1"	1400	1400	1400	1400	1400/1400	1400	1400
$\begin{aligned} & \text { ALL } \\ & 8800 \text { GATES } \end{aligned}$	" 0 "	300	300	400	400	300/400	400	400
	"1"	600	600	600	600	600/600	600	600
$\begin{aligned} & 8821 / 22 / 24 / 25 \\ & 8828,8829 \end{aligned}$	" 01	300	300	400	400	$300 / 400$	400	400
	"1"	600	600	600	600	600/600	600	600
$\begin{aligned} & 8826 \\ & 8827 \end{aligned}$	"0"	300	300	400	400	300/400	400	400
	"1"	600	600	600	600	600/600	600	600
8162	"0"	300	300	400	400	300/400	400	400
	"1"	1400	1400	1400	1400	1400/1400	1400	1400

TABLE 1-3 - GUARANTEED WORST CASE DC NOISE MARGIN (Cont.)

		DRIVEN INPUT (mV)						
DRIVING ELEMENT	$\begin{aligned} & \text { OUTPUT } \\ & \text { STATE } \end{aligned}$	$\begin{gathered} \text { ALLL } \\ 8400 \\ \text { GATES } \end{gathered}$	$\begin{gathered} 8424,8425 \\ \mathrm{~S}_{\mathrm{D}} \mathrm{R}_{\mathrm{D}} \mathrm{~S}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \text { ALL } \\ 8800 \\ \text { GATES } \end{gathered}$	$\begin{gathered} 882 \mathrm{I} / 22 / 24 / 25 \\ 8828 / 29 \\ \text { ALL } \\ \text { INPUTS } \end{gathered}$	$\begin{gathered} 8826 / 27 \\ \mathrm{~S}_{\mathrm{D}}, \mathrm{R}_{\mathrm{D}} / \mathrm{J}, \mathrm{~K} \end{gathered}$	8H16/70/80	8H20/21/22
$8 \mathrm{H16}$	"0"	300	300	400	400	$300 / 400$	400	400
$\begin{aligned} & 8 \mathrm{H} 70 \mathrm{GATES} \\ & 8 \mathrm{H} 80 \\ & 8 \mathrm{H} 90 \end{aligned}$	"1"	600	600	600	600	600/600	600	600
8H20	" 0 "	300	300	400	400	$300 / 400$	400	400
$\begin{aligned} & 8 \mathrm{H} 21 \\ & 8 \mathrm{H} 22 \end{aligned}$	"1"	600	600	600	600	600/600	600	600

TABLE 1-4-GUARANTEED WORST CASE DC LOADING

PART NUMBER	NORMALIZED LOAD RATING		NORMALIZED FAN-OUT RATING
8162			12.0
8415			9.0
8416			9.0
8417			9.0
8424	RESET: $\mathrm{R}_{\mathrm{C}}, \mathrm{~S}_{\mathrm{C}}:$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	9.0
8425	$\begin{aligned} & \text { RESET: } \\ & \text { SET: } \\ & \mathrm{R}_{\mathrm{C}}, \mathrm{~S}_{\mathrm{C}}: \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \\ & 1.5 \end{aligned}$	9.0
8440			9.0
8455			25.0
8470/80/90			9.0
8471/81			9.0
8706/8731			Expander
8806			Expander
8808			20.0
8816			20.0
8821	RESET: SET: J, K: CLOCK:	$\begin{aligned} & 8.0 \\ & 4.0 \\ & 2.0 \\ & 8.0 \end{aligned}$	20.0

TABLE 1 -4 - GUARANTEED WORST CASE DC LOADING (Cont.)

PART NUMBER	NORMALIZED LOAD RATING		NORMALIZED FAN-OUT RATING
8822/24	RESET: SET: (8824 only) J, K: CLOCK:	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 2.0 \\ & 4.0 \end{aligned}$	20.0
8825	$\begin{aligned} & \text { SET, RESFT: } \\ & \mathfrak{J}_{1}, \mathrm{~J}_{2}, \overline{\mathrm{~J}:} \\ & \mathrm{K}_{1}, \mathrm{~K}_{2}, \overline{\mathrm{~K}}: \\ & \text { CLOCK: } \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	20.0
8826	RESET: J, K:	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	10.0
8827	RESET: SET: J, K:	$\begin{aligned} & 5.0 \\ & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	10.0
8828	SET: RESET: DATA: CLOCK:	$\begin{aligned} & 4.0 \\ & 6.0 \\ & 2.0 \\ & 4.0 \end{aligned}$	20.0
8829	SET, RESET: $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$: $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$: CLOCK:	$\begin{aligned} & 6.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	20.0
8840/48	2.0		20.0
8855	2.0		60.0
881.5/75/85	2.0		20.0
8870/80	2.0		20.0
8881	2.0		20.0
8H16/70/80/90	3.0		30.0
8H20/22	SET: RESET: J, K: CLOCK:	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	30.0
8H21	SET: RESET: J, K: CLOCK:	$\begin{aligned} & 3.0 \\ & 6.0 \\ & 3.0 \\ & 6.0 \end{aligned}$	30.0

TABLE $1-4$ - GUARANTEED WORST CASE DC LOADING (Cont.)

PART NUMBER	NORMALIZED LOAD RATING	NORMALIZED FAN-OUT RATING
$8 T 18$	High Voltage Input (See Data Sheet)	$\mathbf{1 0 . 0}$
8 T 80	2.0	High Voltage Output (See Data Sheet)
8 T 90	2.0	High Voltage Output (See Data Sheet)

TABLE 1-5 - GUARANTEED WORST CASE AC LOADING

ELEMENT	DRIVEN CLOCK INPUTS				
	8162	8424	8425	8826	8827
8162	2	3	1	3	1
8415*	-	-	-	-	0
8416	1	2	1	1	0
8417*	-	-	-	-	0
8424	1	2	1	1	0
8425	1	2	1	1	0
8440	1	2	1	1	0
8455	4	9	4	3	1
8470	1	2	1	1	0
8480/90	1	2	1	1	0
8471*	-	-	-	-	0
8481*	-	-	-	-	0
8808	3	6	3	6	3
8816	3	6	3	6	3
8870	3	6	3	6	3
8880	3	6	3	6	3
8881*	-	-	-	-	-
8815	3	6	3	6	3
8875	3	6	3	6	3
8885	3	6	3	6	3
8821	3	6	3	6	3
8822	3	6	3	6	3
8824	3	6	3	6	3
8825	3	6	3	6	3

*Not recommended due to pull-up resistor requirements.

TABLE 1-5 - GUARANTEED WORST CASE AC LOADING (Cont.)

ELEMENT	DRIVEN CLOCK IN PUTS				
	8162	8424	8425	8826	8827
8826	1	2	1	2	1
8827	1	2	1	2	1
8828	3	6	3	6	3
8829	3	6	3	6	3
8840	3	6	3	6	3
8848	3	6	3	6	3
8855	5	10	5	10	5
8H16	3	6	3	6	3
$8 \mathrm{H70}$	3	6	3	6	3
$8 \mathrm{H} 80 / 90$	3	6	3	6	3
8H20	3	6	3	6	3
8H21	3	6	3	6	3
8H22	3	6	3	6	3
8T18	1	2	1	1	0

TABLE 1-6 - GUARANTEED PROPAGATION DELAY LIMITS

ELEMENT	$\begin{array}{\|c} \text { MAXIMUM } \\ \text { PAIR } \\ \text { DELAY } \\ * * \end{array}$	$\begin{gathered} \text { TYPICAL } \\ \text { PAIR } \\ \text { DELAY } \\ * * \end{gathered}$	$\begin{gathered} \text { MINIMUM } \\ \text { TOGGLE } \\ \text { RATE } \\ \dagger \end{gathered}$	TYPICAL TOGGLE RATE \dagger	MAXIMUM		TYPICAL	
					$\underset{* *}{\text { TURN ON }}$	$\underset{* *}{\text { TURN OFF }}$	$\underset{* *}{\text { TURN ON }}$	TURN OFF
8162					45	60	27	30
8415	150	85			40	50	30	30
8416	95	60			60	40	30	30
8417	150	85			40	50	30	30
8424			8	11	60	60	30	30
8425			8	11	60	60	30	30
8440	95	60			40	50	30	30
8455	95	60			40	40	30	30
8470	95	60			40	40	30	30
8480	95	60			40	40	30	30
8471	150	85			40	40	30	30
8481	150	85			40	40	30	30
8806*					15	30	10	20
8808					13	13	8	8
8816					13	13	8	8

[^1]TABLE 1-6 - GUARANTEED PROPAGATION DELAY LIMITS (Cont.)

ELEMEN'T	$\begin{gathered} \text { MAXIMUM } \\ \text { PAIR } \\ \text { DELAY } \\ * * \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { TYPI CAL } \\ \text { PAI R } \\ \text { DELAY } \\ * * \\ \hline \end{array}$	```MINIMUM TOGGLE RATE \dagger```	$\begin{gathered} \text { TYPICAL } \\ \text { TOGGLE } \\ \text { RATE } \\ \dagger \end{gathered}$	MAXIMUM		TYPICAL	
					$\underset{* *}{\text { TURN ON }}$	$\underset{* *}{\text { TURN OFF }}$	$\begin{aligned} & \text { TURN ON } \\ & { }_{*}^{* *} \end{aligned}$	$\underset{* *}{\text { TURN OFF }}$
8870					13	13	8	8
8880					13	13	8	8
8881					20	30	15	20
8815					13	13	8	8
8875					13	13	8	8
8885					13	13	8	8
8821			10	25	50	50	25	1.5
8822			10	25	50	50	25	15
8824			10	25	50	50	25	15
8825			15	25	50	50	27	32
8826			25	30	35	20	17	8
8827			25	30	35	20	17	8
8828				25	50	35	28	20
8829			15	25	50	50	16	25
8840					13	13	8	8
8848					13	13	8	8
8855					15	15	10	10
81116					10	10	5	5
8H70					10	10	5	5
8H80					10	10	5	5
8 H 90					10	10	5	5
8 H 20			50	75			10	8
8H21			50	75			10	8
8 H 22			50	75			10	8
8T18					20	70	12	35
8 T 80					55	95	35	40
8T90					55	95	35	40

** All times are in nanoseconds
\dagger Toggle rates are in megahertz. .

TABLE 1-7 - GUARANTEED POWER CONSUMPTION LIMITS PER GATE OR BINARY

$\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					
ELEMENT	OUTPUT STATE	POWER CONSUMPTION (mW)	CURRENT DRAIN (mA)	AVERAGE POWER CONSUMPTION (mW)	AVERAGE CURRENT DRAIN (mA)
8162	"0"	85	16.2	92.5	17.6
	"1"	100	19.0		
8415	$\begin{aligned} & " 0 " \\ & " 10 " \end{aligned}$	$\begin{array}{r} 22.6 \\ 7.3 \end{array}$	$\begin{aligned} & 4.3 \\ & 1.4 \end{aligned}$	15.0	2.8
8416	"0"	25.2	4.8	16.3	3.1
	"1"	7.3	1.4		
8417	"0"	22.6	4.3	15.0	2.8
	"1"	7.3	1.4		
8424		24.7	4.7	24.7	4.7
8425		24.7	4.7	24.7	4.7
8440	"0"	29.4	5.6	19.4	3.7
	"1"	9.5	1.8		
8455	"0"	28.4	5.4	17.8	3.4
	"1"	7.3	1.4		
8470	" 0 "	16.8	3.2	11.0	2.1
	"1"	5.2	1.0		
8471	"0"	16.8	3.2	11.0	2.1
	"1"	5.2	1.0		

TABLE 1-7 - GUARANTEED POWER CONSUMPTION LIMITS PER GATE OR BINARY (Cont)

$\mathrm{V}_{\mathrm{C} \dot{\mathrm{C}}}=+5.25 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					
ELEMENT	OUTPUT STATE	POWER CONSUMPTION (mW)	$\begin{aligned} & \text { CURRENT } \\ & \text { DRAIN } \\ & \text { (mA) } \end{aligned}$	AVERAGE POWER CONSUMPTION (mW)	AVERAGE CURRENT DRAIN (mA)
8480/90	"0"	16.8	3.2	11.0	2.1
	"1"	5.2	1.0		
8481	"0"	16.8	3,2	11.0	2.1
	"1"	5.2	1.0		
8806	"0"	6.3	1.2	7.6	1.4
	"1"	8.9	1.7		
8808	${ }^{19} 0$	31.0	5.9	20.0	3.8
	"1"	8.9	1.7		
8815	"0"	49.7	9.5	42.8	8.1
	"1"	35.6	6.8		
8816	"0"	31.0	5.9	19.1	3.8
	"1"	8.9	1.7		
8821		72	13.7	72	13.7
8822		72	13.7	72	13.7
8824		72	13.7	72	13.7
8825		132	25.1	132	25.1
8826		64	12.2	64	12.2
8827		64	12.2	64	12.2

TABLE 1-7 - GUARANTEED POWER CONSUMPTION LIMITS PER GATE OR BINARY (Cont)

$\mathrm{V}_{\mathrm{CC}}-+5.25 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				AVERAGE POWER CONSUMPTION (mW)	AVERAGE CURRENT DRAIN (mA)
ELEMENT	OUTPUT STATE	POWER CONSUMPTION (mW)	$\begin{aligned} & \text { CURRENT } \\ & \text { DRAIN } \\ & \text { (mA) } \end{aligned}$		
8828		60	11.2	60	11.2
8829		132	25.1	132	25.1
8840	"0"	37.3	7.1	27.6	5.3
	"1"	17.9	3.4		
8848	"0"	48.8	9.3	42.3	8.1
	" 1 "	35.7	6.8		
8855	"0"	56.8	10.8	35.7	6.8
	"1"	14.7	2.8		
8870	"0"	31.0	5.9	20.0	3.8
	${ }^{11} 1{ }^{1}$	8.9	1.7		
8875	"0"	43.7	8.3	35.4	6.8
	"1"	27.1	5.2		
8880	${ }^{10} 0$	31.0	5.9	20.0	3.8
	"1"	8.9	1.7		
8881	${ }^{\prime \prime} 0^{+\prime}$	31.0	5.9	20.0	3.8
	"1"	8.9	1.7		
8885	"0"	37.3	7.1	27.6	5.2
	"1"	17.8	3.4		
8H16	"0"	46.2	8.8	34.6	6.4
	"1"	21.0	4.0		
$\begin{aligned} & 8 \mathrm{H} 20 \\ & 8 \mathrm{H} 21 \\ & 8 \mathrm{H} 22 \end{aligned}$		90	17.2	90	17.2

TABLE 1.7 - GUARANTEED POWER CONSUMPTION LIMITS PER GATE OR BINARY (Cont)

$\mathrm{V}_{\mathrm{CC}}-\div 5.25 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					
ELEMENT	$\begin{aligned} & \text { OUTPUT } \\ & \text { STATE } \end{aligned}$	POWER CONSUMPTION (mW)	$\begin{aligned} & \text { CURRENT } \\ & \text { DRAIN } \\ & \text { (mA) } \\ & \hline \end{aligned}$	AVERAGE POWER CONSUMPTION (mW)	AVERAGE CURRENT DRAIN (mA)
8H70	"0"	46.2	8.8	34.6	6.4
	"1"	21.0	4.0		
8H80/90	"0"	46.2	8.8	34.6	6.4
	"1"	21.0	4.0		
8T18	"0"	44.6	8.5	22.8	4.4
	"1"	1.0	0.2		
8T80	"0"	20.0	3.8	14.0	2.7
	"1"	7.9	1.5		
8 T 90	"0"	20.0	3.8	14.0	2.7
	"I"	7.9	1.5		

Signetics offers a broad line of MOS products including Dynamic and Static Shift Registers, Random Access Memories and Read-only Memories. The 2500 series is fabricated using Signetics' advanced P-Channel SILICON-GATE PROCESS which provides compatibility with 5 volt TT'L/DTL, high speed, and low power dissipation. Also available are the 2000 and 2400 series which are P-Channel metai gate devices. MOS products are available in commercial temperature ranges. All silticon gate devices are available ín silicone dual in-line packages.

2516
$64 \times 6 \times 8$ Static Character Genearatar
Column Output
7S0ns Max. Access Time
Powntr Suppdies $+5,-5,-12 \mathrm{~V}$
415 mW


```
2430
756\times8.512 < 4
Single or 3-line Chip Enable
Single or 3-li
```


SECTION 2-ELECTRICAL CHARACTERISTICS

This section contains specific test limit and test condition information for use in device evaluation and incoming inspection for DC parameters. AC test circuits are contained in the following section.

Circuit diagrams and product descriptions are also contained in this section to provide assistance in evaluating specific devices and total 8000 Series flexibility.

For many devices, typical curves, describing the product's operating characteristics, are included. These curves arc not guaranteed, but are intended to provide additional, useful information for device evaluation.

Unless otherwise specified, all devices are available in the " S " and " N " temperature ranges (" S " $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, " $\mathrm{N} "=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$), and in the silicone dual in-line package (A or B), and the flat package (J QorR).

TTL/MOS INTERFACE
The Darlington-type output structure of most 8800 Series gates and flip-flops provides a high logic "l" output level at low output currents. These circuits typically offer an unloaded autput voltage separated from VCC by only one diode drop. Since the Signetics 2500 Series Silicon Gate MoS has a minimum threshold of $3.2 V$, the 8800 Series elements can drive the 2500 Series directly without the need for an external pull-up resistor.

The devices listed in Table $2-1$ are all guaranteed to provide 3.6 V at 10 uA output current. Under worst case conditions, this results in a minimum guaranteed "l" level noise margin of 400 mV when the MOS and TTL $V_{C C}$ supplies are tied together.

GATE		FLIP-FLOPS	
8808	Single 8-Input Nand Gate	8821	Dual Master-S1ave J-K Binary
8815	Dual 4-Input Nor Gate	8822	Dual Master-Slave J-K Binary
8816	Dual 4-Input Nand Gate	8824	Dual Master-Slave J-K Binary
8840	Dual Expandable and-or-Invert Gate	8825	DC Clocked J-K Binary
8848	Expandable and-or-Invert Gate	8826	Dual J-K Binary
8870	Triple 3-Input Nor Gate	8827	Dual J-K Binary
8875	Triple 3-Input Nor Gate	8829	High Speed J-K Binary
8880	Quad 2-Input Nand Gate		
8885	quad 2-Input Nor Gate		

The 8162 Monostable Multivibrator is intended for use in high-speed, low-power digital systems.

Among the features of this device are complementary buffered outputs, high noise immunity, excellent pulse width tolerance capability and high duty cycle (to 75%). The unit is very versatile in pulse-shaping and delayapplications, and provides delays over the range of 80 ns to 2 seconds by using appropriate external components. Complete isolation of the timing stage and the output stage allows very fast fall times, even at wide pulse widths. If the internal timing resistor (R_{x}) is used, pulse width is approximately 1 ms per microfarad of external capacitance.
Applications and usage information is provided in Section 4 of this handbook.

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: $1,2,3,4,5$) STANDARD CONDITIONS: $R_{x}=V_{C C}, G A T E=$ GROUND

$\begin{gathered} \text { ACCEPTANCE } \\ \text { TEST } \\ \text { ZUB-GROUP } \end{gathered}$	Charactifuticte	LIM11's				TEST CONDITIONS						
		MIN.	TYP.	MAX.	UNITS	$\begin{gathered} \text { TEMS. } \\ 88162 \end{gathered}$	$\begin{aligned} & \text { TEMP, } \\ & \text { NB162 } \end{aligned}$	V_{cc}	\mathbf{R}_{T}	$\begin{gathered} \text { TOGGL, E } \\ \text { INPU'T } \end{gathered}$	OUTPUT	NOtES
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	"נ" outplut voltagie (X)	3.4 3.6 3.4			v v v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.00 V 4.75 V	0V 0v 0 V		$-300 \mu \mathrm{~A}$ -300 A -300 A	6 6 6
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	"I" UUPPLT VOITAGE ($\overline{\mathrm{Y}}$)	3.4 3.6 3.4			v v v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.00 y 4.75 V			$-300 ; \mathrm{A}$ $-300_{1}+A$ $-300 \mathrm{H} \cdot \mathrm{A}$	6 6 6
$\begin{aligned} & A-\bar{\delta} \\ & A-3 \\ & A-4 \\ & C-1 \end{aligned}$	"0" OLTPPUT VOLTAGE (Y)			0.35 0.35 0.40 0.35	v v v V	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$ $00^{\circ} \mathrm{C}$	4.75 V 5.00 V 4.75 V 4.75 V			9.6 mA 9.6 mA 9.6 mA 1.6 mA	8 8 8 8.13
$\begin{aligned} & A-E \\ & A-3 \\ & A-4 \\ & C-1 \end{aligned}$	"D" OuTPlit vol:dge ($\overline{\mathrm{Y}}$)			0.35 0.35 0.40 0.35	v v V v	$-55^{\circ} \mathrm{C}$ $+2.55^{\circ} \mathrm{C}$ $+125{ }^{\circ} \mathrm{C}$ $-655^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$	4.75 V 5.00 V 4.75 V 4.75 V	0 V 0 V 0 V 0 V		9.6 mA 9.6 mA 9.6 mA 1.6 mA	8 8 8 8,19
$\begin{aligned} & A-3 \\ & A-1 \end{aligned}$	CLOCK InPUT "I" CURRENT			150 15	nA	$-25^{\circ} \mathrm{C}$ $\cdot 125^{\circ} \mathrm{C}$	$+2.5{ }^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	$\begin{aligned} & 5.00 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 5.9 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$		
A-3	LOAD RESISTOR CURRENT (H_{y})	-7.8		-12.3	ms	+25 ${ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.60 v				12
A-3	LOAD RFSEIETOR CURRENT ($\mathbf{R}_{\dot{j}}$)	-7. H		-12.3	miA	$+25^{\circ} \mathrm{C}$	-25 ${ }^{\circ} \mathrm{C}$	5.00 V				12
A-3	TIMING HESISTOR CUELEN'T	-2.75		-4.2	mat	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V	Ov			
A-2	OL.'TPCT " 2 " POWER DISSIPATION (Y)			100	mw	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V	0 V			
A-2	OI:TPIT " 0 " PDWs, DISSIPATION (Y)			85	mw	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V				
C-2	EFFECTIVE TRIGGER INPUT CAPACITANCE			75	pr	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V		2.0 V		7,11
A-6				60	ns	$-25^{\circ} \mathrm{C}$	$+23^{\circ} \mathrm{C}$	5.90 V			$\begin{aligned} & \text { D.C. } \\ & \text { F.D. }=1 \end{aligned}$	$9_{1} 14$
A-G	'TCRN-UN DEELAY (V_{2}			45	ns	$-25^{\circ} \mathrm{C}$	$+26^{\circ} \mathrm{C}$	5.60V			$\begin{aligned} & \text { D.C. } \\ & \text { F. } 0 .-12 \end{aligned}$	9, 14
A-6	OLTPCT PULSE WIDTH (\%)	25		A.	ns	$\div 25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	5.00 V			$\begin{aligned} & \text { D.C. } \\ & \text { F. } 0 .-12 \end{aligned}$	9,14
A-G	OUTPUT PULSE WIDTH (T)	25		\% 0	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V			$\begin{aligned} & \text { D.C. } \\ & \text { F. } 0=12 \end{aligned}$	9, 14
A-6	oCTPT: P PULSE WIDTE (Y) WITH C. EXTEHNAL $=250 \mathrm{pf}$	175			ns	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V			$\begin{aligned} & \text { D.C. } \\ & \text { F.O. } 12 \end{aligned}$	9,14
$\mathrm{C}-2$	OL'TPLT FALL TIME $\bar{Y}^{\text {Y }}$ \%			50	ns	-5.5	$0^{\circ} \mathrm{C}$	4.75 v			$\begin{aligned} & \text { A.C } \\ & \text { F.O. }-3 \end{aligned}$	10.14
A-2		-1.25		-2.25	mA	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V	0V			
A-2		-1.25		-2.25	m / h	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V				

Notes:

1. All voltage and eapacitanee measuecents are referenesd to the ground terminal Tcrminals not specifically zeferenced ure left electrically open.
2. All measurements are takem with gremul pin tied to zero volis.
3. Positlve current flow 15 detined as into the terminal referenced.
4. POSAtIve NAND Logic tefintion: "LP" Level = "L", "UOWN" Level = "ry".
5. Precactiondry measures should be taken to ensure eurrent limiting in acenrdance with maximum ralings should the isolation diodes become forward biased.
6. Output sowree current is supplied through a resistor to ground.
7. Capacltance as measured on Boonton Electronic Corporatlon Mccdel ToA-Sy Capaci-

referenced are tled to guard for capacitance cests. Output pins are left open.
8. Outpuc sink current is supplicd through a resistor to v_{cc}.
9. Ont DC fan-out is defined as 0.9 mA
10. One AC lan-out is defined as 50 pt .
11. The to input falling rate requlrements, the trifger inpur repesents two standiarc AC loads or 100 pi .
12. 'T'ie resistor pins H_{y} and $\mathrm{H}_{\bar{y}}$ to zero volts
13. Tic resistor Ry and $\mathrm{R} \overline{\mathrm{y}}$ bo Y and $\overline{\mathrm{Y}}$ respectively.
14. Detalled lest conditions for AC lesting are in Section a.

The 8415 is a Dual 5-Input NAND Gate with bare output collectors. Absence of an output pull-up structure allows the user complete freedom in the use of the 8415 in collector-logic (wired-AND) and similar applications. Proper pull-up resistor selection will allow as many as 30 outputs to be tied together.

Collector logic, using the 8415, can provide increased system flexibility and lower system cost due to reduced can count.

Section 4 of this handbook provides detailed usage rules and collector-logic information for this element.

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: $1,2,3,4,5,6,12$)

ACCEP'ANCE	CHAAACLERISTIC	Limits				TEST CONDITIONS						
$\begin{gathered} \text { TEST } \\ \text { SUB-GROUP } \end{gathered}$		MIN.	TYP.	MAX.	LINITS	$\begin{aligned} & \text { TFMP. } \\ & 38415 \end{aligned}$	$\begin{aligned} & \text { TEMT. } \\ & \text { NBAI } \end{aligned}$	${ }^{\mathrm{V}} \mathrm{cc}$	DRIVEN MPUT	OTIIER INPU'S	outpurs	NCTEES
A-4	"I" OCTPUT İEAKAGE CUnRENT			40	${ }^{\mu} \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$	5.0 V	0.7 V			11
A-5	"0" OL'TPIJT YOLTAGE			0.35	V	$-35^{\circ} \mathrm{C}$	$9^{\circ} \mathrm{C}$ C	1.75 V	2.04	2.0 V	8.2 mA	8
A-3				0.35	v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	2.04	2.0 V	8.2 mA	8
A -3				0.35	V	$+125^{\circ} \mathrm{C}$	$\cdot 7.75^{\circ} \mathrm{C}$	4.75 V	2.04	2.0 V	9. 2 ma	8
C-1	'0' INPUT CLRRENT	-(1) 1		-1. 2	$m A$	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25 V	0. 35 V	5.25 v		
A. 3		-0.1		-1. 2	mA	$+25^{\circ} \mathrm{C}$	+ $25^{\circ} \mathrm{C}$	5.25 v	0.35 V	5. 25.5		
C-1				-1.2	ma	$+125^{\circ} \mathrm{C}$		5.25 V		5.25 V		
A-	"1" INPUT CURRENT			25	; ${ }^{\text {A }}$	$+126^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.0V	0 V			
A-b	PALK DELAY	50		150	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			B.C. F'O. $=9$	9
C-2	FALL TMME			75	ns	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	475 V			A.C.F.O. $=2$	10
C-2	TURN-ON DELAY			40	$n \mathrm{~S}$	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.04			D. C. F.O. $=9$	9,14
C-2	TURK-OFF DELAY			50	ns	$-25^{3} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C. F.O. $=1$	9.111
C-2	INPUT CAPAGTTANCE			3.0	pf	$-25^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	5.0\%	2.05			7
A-2	POWER CONSUMPTION OLTPUT "0" (PCOR Gate) OL.TPITT "1"			22.6 7.3	$\begin{aligned} & m W \\ & m W \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \\ & 125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	0 V			
A -2 A -2	INPUT VOLTAGE RATING OITPIIT VOLTAGE RATJNG	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \\ & \cdot 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 50 \times 1 \mathrm{~A} \\ 0 \mathrm{~V} \end{gathered}$	0 V		1.3

Notes:

1. All voltage and capacitance meaturements are referenced to the ground terminal Tertinale zot spectfically referenced are left electrically open.
2. Als measurements are taken with ground pln tied to zero volts.
3. Positive currext flow i: defined an into the terminal referencerd

4. Precautionary merasures shonld he raken to enciure current limiting in accordince Precautionary measures should he taken to eniure current. limiting in accornitnce With Ahanlute Maximum Ratings shoulf the isolation ciodes become forward blased.
5. Measuremente apply to each gale elenkent independenily.
7 .
crace Brilse or ruserenced are tiel to fiaci fur capauilance tescs. Outpul pincere laft pecil
6. Output sink curront is supplied through a resistor io $V_{\text {uec }}$.
7. One DC fan-mut ls definer as 0.3 Bm .
8. One AC fan-out is delined as 50pi.
9. Connect an external $1 \mathrm{~K} \pm 1 \mathrm{~F}$, reaistar from V_{CC} to the output terminal for this test.
10. Hamuacturer reserves the right to make degign and frocess ehouges and umprowements.

11. Detailed esat eondituns for $A C$ testimg are in fection 3.

The 8416 Dual 4-Input Expandable NAND Gate implements the NAND function for positive logic (highest voltage level $=$ " 1 ") and the NOR function for negative logic (lowest voltage level $={ }^{\prime \prime} 1 "$).

The DTL input structure provides an expansion node for logic flexibility. The compatibly characterized 8731 diode expander is recommended for this purpose.

The active output structure of the 8416 provides high AC noise immunity due to it's low output impedance in both the " 1 " and " 0 " output states.

Output short circuit protection is provided by a current limiting resistor.

The values chosen for the collector and emitter resistors of the phase-splitter transistor, ensure optimum on-off relationships of the totem-pole output pair.

BASIC CIRCUIT SCHEMATIC

Section 4 of this handbook provides helpful usage rules and applications for the 8416 .

ELECTRICAL CHARACTERISTICS (NOTES: $1,2,3,4,5,6,12$)

$\begin{gathered} \text { ACCEPTANCE } \\ \text { TEST } \\ \text { SUB GROLI } \end{gathered}$	CHARACTEEHISTIC	LIMITS				TEST CONDITIONS						
		Min.	TYP.	MAX.	UNITS	$\begin{aligned} & \text { TEMP' } \\ & \text { S8416 } \end{aligned}$	$\begin{aligned} & \text { TEMP. } \\ & \text { NB4 } 16 \end{aligned}$	Vec	$\begin{aligned} & \text { DRIVEN } \\ & \text { [NPUT } \end{aligned}$	OTHER INPUTS	oritputs	NOTES
A-5	"3" outple voltage	3.1			V	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75V	0.7 V		$-225 \mu \mathrm{~A}$	8
A-3		3.6			V	$+25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	5.0 V	0.7 V		-2254A	8
A -4		3.4			v	$+125^{\circ} \mathrm{C}$	$+75^{*} \mathrm{C}$	4.75 V	0.7 V		$-225 \mu \mathrm{~A}$	8
A-5	"0" outpur voltauk			0.35	V	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V	2.0 V	2.0 V	7.2 mA	9
A-3				0.35	v	$+25^{*} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	2.0 V	2.0 V	7.2 ma	9
A-1				0.3.	V	$+125^{\circ} \mathrm{C}$	$175{ }^{\circ} \mathrm{C}$	4.75 V	2.0 V	2.0 V	7.2 mA	9
C-1	"0" infut curfent	-0.1		-1.2	ma	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25V	0.35 V	5. 25.5		
A-3		-0.1		-1.2	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V	0.35 V	5.25 V		
C-1		-0.1		-1,2	$m A$	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.25 V	0.35 V	5.85 V		
A-3	EKPANDER NODE	-0.1			mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	0v			
A $=4$	-1" input cimrent			25	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	+75 ${ }^{\circ} \mathrm{C}$	5.0 V	4.5 V	OV		
A-6	Paik detlay	30		86	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	6.0V			D.C.F.O. g	10, 13
C-2	FAI, TIME			7%	ns.	$-55^{*} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C.F.O. $=2$	11. 13
$\mathrm{C-2}$	TtIRN-ON DELAY			60	ns	$125^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C.F.O. $=9$	10,13
C-2	TURN-OFF DELAY			40	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C.F.O. $=1$	10.13
c-2	infut capactiance			3.0	pf	$+25^{\circ} \mathrm{C}$	$+25^{*} \mathrm{C}$	5.0 V	2.0 V			7
A-2	POWER CONSUMPTION OUTPUT "O"			25.2 7.3	mW $m W$	$+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	0 V			
A-2	INPUT VOLTAGE HATING	\$.6.			V	$425^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0V	$50 \times 1 \mathrm{~A}$	0 y		
A-2	OUTPIT SHORT CIRCLIT CURAENT	-1.0		-12.0	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	OV		0v	

Notes:

1. All voltage and capacilance measurements are referenced to the ground terrminal Terminala not specifically referenced are lett electrically open
2. All meaburcments are taken with ground pin tied to zero volts.
3. Posilive current flow is delmed as into the terminal reierenced
4. Positive NAND Logic definition: "UP" Level - "i", "DOWN" Level = "0"
5. Precautionary ineasures should be tiken to ensure current limiting in accordance with Absolute Maximum Hatings ahould the isolation diodes become forward biased.
6. Measurements apply to each gate element indepeadently.
7. (lapacitance as measured on Eoonton Electronie Corporation Model 75A-58 Capacitance

are tied to guard for capacitarce tests. Onymt pins are geit apen
8. Outpul surfee current is supplied through a resistor to fr
9. Output siak current is supplied through a resistor to $\mathrm{V}_{\text {ec }}$.
10. One DC fan-out is defined as 0.8 ma .
11. One AC lan-out is delined as 50 pf .
12. Manufacturer reserves the right to make design and process changes and improvemente.
13. Detailed teat conditions for AC testing are in Section 3.

8417 DUAL 3-INPUT EXPANDABLE NAND GATE

The 8417 Dual 3-Input Expandable NAND Gate implements the NAND function for positive logic (highest voltage level $={ }^{\prime 1} 1$ ") and the NOR function for negative logic (lowest voltage level = ${ }^{\prime} 1{ }^{\prime \prime}$).

The optional pull-up resistor allows collector logic, or wired-AND, to be easily implemented. By paralleling optional pull-up resistors of two or more gates or by selecting discrete external pull-up resistors, more than 30 collectors may be tied together. The optional resistor is brought out at the pin adjacent to the output pin to simplify board layout when it is used.

An expansion node is provided for system flexibility. The compatibly characterized 8731 Diode Expander is recommended for this purpose.

Section 4 of this handbook provides helpful usage rules, including collector logic techniques, and applications for the 8417 .

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 13)

$\begin{gathered} \text { ACGFPTANCE } \\ \text { TEST } \\ \text { SLB-GROUP } \end{gathered}$	CHARACTERISTIC	LIMTTS				TEST CONDITIONS						
		M1N.	TYP.	MaX.	UNITA	TEMP.	$\begin{aligned} & \text { TEMP. } \\ & \text { N\&S17 } \end{aligned}$	$V_{\text {cc }}$	$\begin{aligned} & \text { DRIVEN } \\ & \text { INPITT } \end{aligned}$	()THER inpuTs	outputs	NOTES
A-1	"'I" OUTPUT LEAKAGE CURRENT			40	HA	$1225^{\circ} \mathrm{C}$.75 ${ }^{\circ} \mathrm{C}$	3.04	0.7 V			11, 12
	OUTPLT LOAD GESISTOR	3.5	4.4	5.3	K52	+ $25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V				11
A-5	"0" OUTPUT VOLTAOE			0.35	v	$-55^{9} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 v	2.04	2.04	7.2 mA	${ }^{8}$
A-3				0,35	y	$+25^{n} \mathrm{C}$	$225^{\circ} \mathrm{C}$	5.0 V	2.0 V	2.04	7.2 ma	8
A-4				0.35	Y	$+125^{\circ} \mathrm{C}$	$+79^{\circ} \mathrm{C}$	4.75 V	2.0 V	2.0 V	7.2 mA	8
C-1	-0" INPUT CURRENT	-0.1		-1.2	mA	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25 V	0.35 V	S.25V		
A-3		-0.1		-1.2	ms	. $25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25v	0.354	5.25 V		
$\mathrm{C}-\mathrm{i}$		-0.1			na	$1825^{\circ} \mathrm{C}$	$1755^{\circ} \mathrm{C}$	5.25 V	0.35 V	5.25 v		
A-3	EXPANDER SODE	-0.1			mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 y	OV			
A-4	"1" INIPUT CURRENT			25	$\mu \mathrm{A}$	$4125^{\circ} \mathrm{C}$	+75 ${ }^{\text {c }} \mathrm{C}$	5.0 v	4.5 V	0v		
A-b	Path delay	50		150	nc	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C.F.O. -	9,14
C-2	r'A LL TIME			75	ns	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C.E.O.- 2	10,14
C-2	TUHN-ON DELAY			40	n3	$+2.5{ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$.	5.0 V			D.C.F.O. - 9	$9,2 \%$
C-2	TURN-UFF DELAY			50	ns	$+25^{\circ} \mathrm{C}$	$1255^{\circ} \mathrm{C}$	5,0Y			D.C.E.O. 1	9.14
C-2	INPUT CAPACXTANCE			3.0	HS	$+26^{\circ} \mathrm{C}$	$+255^{\circ} \mathrm{C}$	5.0 v	2.0 V			7
A-2	POWER CONSUMPTION OUTPC'T ${ }^{\text {'0' }}$ (Per (iate) OUTPLT "1"			$\begin{array}{r} 22.6 \\ 7.3 \end{array}$	$\begin{aligned} & \operatorname{inW} W \\ & m W \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +255^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	\%V			
A-2	INPUT VOLTAGE RATING	5.5			V	$+25^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	5.0 y	$50 \mu \mathrm{~A}$	0 O		
A-2	OL'TVET SHORT CLRCUIT CURHENT	-0, 0.4		-1.45	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 v	0 V		DV	

Notes:

1. All voltage and capacitance measurementis are referenced to the ground certninal. Terminals not specificalty referenced are ieft electrically open
2. All measuraments are taken with groand platied to zero volts
3. Dositive current Dow is defined as into the termlnal referenced.

Positive Nand LLgic defimil
Precautionary measures should be taken to ensure current limiting in atcordance with Abs olute Maximwr. Ratings sheuld the livelation diodea beome forward lyiased.
. Beasur enconts apply to euth gate element independently
Capacitarees as measured on Boonton Electranie Corporation Mortel 75A-58 Capact-列 referencod are ticd to guard for capacitance tests. Owtput pins are left open
8. Output sink current is supplied through a resistor to v_{ec}.
I. One DC fan-out is deflned as 0.6 inA .
10. Onc AC tan-out is delined as 30 pl .
11. Optional palli-up resistor not connected to output.
12. Connect an external $1 \mathrm{~K} \pm 1 \%$ resistor from V_{ec} to the output termlnal for this test.
13. Manufacturer reserven the right to make deslign and process chamges and improvements.
14. Detanled test conditions for AC tesung ate in Section is.

8417

8424 DUAL RS/T BINARY

The 8424 is a low power, capacitively coupled Dual RS/T Binary.

This element responds to the trailing or negativegoing transition of the clock pulse. The asynchronous RESET input, $\overline{\mathrm{R}}_{\mathrm{D}}$, may be activated independent of the state of the clock. The synchronous inputs ($\overline{\mathrm{R}}_{\mathrm{C}}$ and $\overline{\mathrm{S}}_{\mathrm{C}}$) are especially adaptable to NAND logic systems since they respond to low levels. The R_{C}
and $\overline{\mathrm{S}}_{\mathrm{C}}$ inputs have no effect when the clock line is stationary.

Each logic element in the 8000 series is characterized to provide guarantees for driving the 8424. A convenient summary of these AC loading rules is provided in Table 1-5, Section 1.
Usage rules and applications information and suggestions are included in Section 4 of this handbook.

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 15)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ACCEPTANCE \& \multirow[b]{2}{*}{CHARACTERISTIC} \& \multicolumn{4}{|c|}{TEST LIMITS} \& \multicolumn{9}{|c|}{TEST CONDITIONS}

\hline $$
\begin{aligned}
& \text { TEST } \\
& \text { SUR-GROUP }
\end{aligned}
$$ \& \& MIN, \& TYP. \& MAX \& UNITS \& $$
\begin{aligned}
& \text { TEMP. } \\
& \text { S8424 }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { TEMP. } \\
& \text { N8424 }
\end{aligned}
$$ \& V_{cc} \& $\stackrel{\rightharpoonup}{2}^{\text {B }}$ \& CLOCK \& $\overline{\bar{n}}_{C}$ \& $\overline{5}_{C}$ \& OUTPUT \& NOTES

\hline A-5
A-3
$\mathrm{A}-4$ \& "1" OLTPUT vOLTAGE ${ }^{\text {a }}$ (Q) \& 3.4
3.6
3.4 \& \& \& v
v
v \& $-55^{\circ} \mathrm{C}$
$+25^{\circ} \mathrm{C}$
$+125^{\circ} \mathrm{C}$ \& $0^{\circ} \mathrm{C}$
$+25^{\circ} \mathrm{C}$
$+75^{\circ} \mathrm{C}$ \& 4.75 V
5.0 V
4.75 v \& 2.0 V
2.0 V
2.0 V \& \& \& \& $-225 \mu \mathrm{~A}$
-225μ
-2254 A \& 12,8
12,8
12,8

\hline $\mathrm{A}-5$
$\mathrm{~A}-3$
$\mathrm{~A}-4$ \& "i" output voltage \& 3.4
3.6
3.4 \& \& \& v
v
v \& $-65^{\circ} \mathrm{C}$
$+25^{\circ} \mathrm{C}$
$+1255^{\circ} \mathrm{C}$ \& $0^{\circ} \mathrm{C}$
$+25^{\circ} \mathrm{C}$
$+75^{*} \mathrm{C}$ \& 4.75 V
5.0 V
4.75 V \& 0.7 V
0.7 V
0.7 V \& \& \& \& $-225 \mu \mathrm{~A}$
$-225 \mu \mathrm{~A}$
$-225 \mu \mathrm{~A}$ \& 8
8
8

\hline A-5
$\mathrm{A}-3$
$\mathrm{~A}-4$ \& "O" OLTPUT VOLTAGE \& \& \& 0.35
0.35
0.35 \& v
V
v \& $-55^{\circ} \mathrm{C}$
$-255^{\circ} \mathrm{C}$
$+125^{\circ} \mathrm{C}$ \& $0^{\circ} \mathrm{C}$
$+25^{\circ} \mathrm{C}$
$+75^{\circ} \mathrm{C}$ \& 4.75 v
5.0 v
4.75 V \& 0.7 V
0.7 V
0.7 V \& \& \& \& 7.2 mA
7.2 mA
7.2 mA \& 9
9
9

\hline $\mathrm{A}-5$
$\mathrm{~A}-3$
$\mathrm{~A}-4$ \& $\begin{array}{ll}\text { "0" OUTPLT VOLTAGE } \\ & \text { (Q) } \\ \\ & \text { (Q) }\end{array}$ \& \& \& 0.35
0.35
0.35 \& V
V \& $-55^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$
$+125^{\circ} \mathrm{C}$ \& $0^{\circ} \mathrm{C}$
$+25^{\circ} \mathrm{C}$
$+75^{\circ} \mathrm{C}$ \& 4.75 V
5.0 V
4.75 V \& 2.0 V
2.0 V
2.0 V \& \& \& \& 7.2 mA
7.2 mA
7.2 mA \& 12,9
12.9
12.9

\hline $\mathrm{C}-1$
$\mathrm{~A}-3$
$\mathrm{C}-1$ \& 'OH INPI:T CURRENT ${ }^{\left(\bar{R}_{0}\right)}$ \& -0.1
-0.1
-0.1 \& \& -0.8
-0.8
-0.8 \& mA \& $-55^{\circ} \mathrm{C}$
$-255^{\circ} \mathrm{C}$
$+125^{\circ} \mathrm{C}$ \& $0{ }^{\circ} \mathrm{C}$
$+25^{\circ} \mathrm{C}$
$+75^{\circ} \mathrm{C}$ \& 5.25 V
5.25 V
5.25 V \& $$
\begin{aligned}
& 0.35 \mathrm{~V} \\
& 0.35 \mathrm{~V} \\
& 0.35 \mathrm{~V}
\end{aligned}
$$ \& \& \& \& \& 13
13
13

\hline $\mathrm{C}-1$
$\mathrm{~A}-3$
$\mathrm{C}-1$ \& \& -0.1
-0.1
-0.1 \& \& -0.6
-0.6
-0.6 \& mA
mas
mas \& -5.5 ${ }^{\circ} \mathrm{C}$
$+25^{\circ} \mathrm{C}$
$+1255^{\circ} \mathrm{C}$ \& $10^{\circ} \mathrm{C}$
$1255^{\circ} \mathrm{C}$
$+75^{\circ} \mathrm{C}$ \& 5.25 V
5.25 V
3.25 V \& \& \& 0.35 V
0.35 V
0.85 V \& $$
\begin{aligned}
& 0.35 \mathrm{~V} \\
& 0.35 \mathrm{~V} \\
& 0.35 \mathrm{v}
\end{aligned}
$$ \& \&

\hline A-4 \& "0" INPUT CURRENT (CLOCK) \& \& \& 25 \& HA \& $+126^{\circ} \mathrm{C}$ \& $+75^{\circ} \mathrm{C}$ \& 5.25 V \& \& 0v \& \& \& \&

\hline A-4 \& '1' InPuT CURRENT ($\left.\overline{\mathrm{R}}_{\mathrm{j})}\right)$ \& \& \& 25 \& $\mu \mathrm{A}$ \& $+125^{\circ} \mathrm{C}$ \& $+75^{\circ} \mathrm{C}$ \& 4.75 V \& 4.5 V \& \& \& \& \& 14

\hline $\mathrm{A} \rightarrow$ \& "1" InPUT CURRENT ($\overline{\mathrm{I}}_{\mathrm{C}} \mathrm{C}, \overline{\mathrm{S}}_{\mathrm{C}}$) \& \& \& 25 \& $\mu \mathrm{A}$ \& $+125^{\circ} \mathrm{C}$ \& $+75^{\circ} \mathrm{C}$ \& 4.75 V \& \& \& 4.5 V \& 4.5 V \& \&

\hline A-6 \& ClOCKED MODE HOLDING TEST (C) \& \& \& 10 \& ns \& $+25^{\circ} \mathrm{C}$ \& $425^{\circ} \mathrm{C}$ \& 5.0 V \& \& PULSE \& \& \& \& 16

\hline $$
\begin{aligned}
& A-6 \\
& A-6
\end{aligned}
$$ \& $\begin{array}{ll}\text { CLOCKED MODE SWITCHING TEST } & \text { (C) } \\ & \text { (C) }\end{array}$ \& \& \& 75 \& ns \& $$
\begin{aligned}
& +25^{\circ} \mathrm{C} \\
& +25^{\circ} \mathrm{C}
\end{aligned}
$$ \& $+25^{\circ} \mathrm{C}$
$+25^{\circ} \mathrm{C}$ \& 5.0 V
5.0 V \& \& PULSE PULSE \& \& \& \& 16

\hline A-6 \& CLOCKED MODE TURK-ON DELAY \& \& \& 60 \& ns \& $+25^{\wedge} \mathrm{C}$ \& $+2.50$ \& 5.0 V \& \& \& \& \& L.C.F.O. $=9$ \& 10, 16

\hline A-6 \& CLOCKED MODE TURK-OFF DELAY \& \& \& 60 \& ns \& $+25^{\circ} \mathrm{C}$ \& $+25^{\circ} \mathrm{C}$ \& 5.0 V \& \& \& \& \& D.C.F.O. $=9$ \& 10, 16

\hline A-fi \& Toggier rate \& ¢ \& \& \& M / Hz \& $+25^{\circ} \mathrm{C}$ \& $+2.5{ }^{\circ} \mathrm{C}$ \& 5.0 V \& \& \& Q \& Q \& \& 16

\hline C-2 \& OUTPUT FALL TME \& \& \& 75 \& ns \& -951 ${ }^{\circ} \mathrm{C}$ \& $0^{\circ} \mathrm{C}$ \& 4.75v \& \& \& \& \& A.C.F.O. $=2$ \& 11, 16

\hline C-2 \& INPUT CAPACITANCE (CLOCK) \& \& \& 50 \& pf \& $+25^{\circ} \mathrm{C}$ \& $-25^{\circ} \mathrm{C}$ \& 5.0 V \& \& 2.0 V \& \& \& \& $$
7
$$

\hline C-2 \& $$
\overline{\mathrm{R}}_{\mathrm{C}}, \overline{\mathrm{~T}}_{\mathrm{S}}^{\mathrm{S}_{\mathrm{C}}}{ }^{\mathrm{D}}
$$ \& \& \& 3.0
3.0

3 \& $\mathrm{pf}_{\mathrm{pf}}$ \& $+25^{\circ} \mathrm{C}$
$+25^{\circ} \mathrm{C}$ \& $+25^{\circ} \mathrm{C}$
$+25^{\circ} \mathrm{C}$ \& 5.0 V

5.0 v \& 2.0 V \& \& 2.0\% \& 2.0 V \& \& $$
\begin{aligned}
& 7 \\
& 7
\end{aligned}
$$

\hline A-2 \& POWER CONSUMPTION (PER RINARY) \& \& \& 24.7 \& mw \& $125^{\circ} \mathrm{C}$ \& $\cdot 25^{\circ} \mathrm{C}$ \& 5.25 y \& \& \& \bar{Q} \& Q \& \&

\hline A-2 \& INPUT VOLTAGE RATING

$$
\begin{aligned}
& (\mathrm{CLOCK}) \\
& \left.\overline{(\bar{R}}_{\mathrm{C}} \cdot \overline{\bar{R}}_{2}^{\mathrm{S}_{\mathrm{C}}^{2}}\right)
\end{aligned}
$$ \& \[

$$
\begin{gathered}
5.0 \\
5.5 \\
\mathbf{5 . 5}
\end{gathered}
$$

\] \& \& 6.0 \& \[

$$
\begin{aligned}
& \mathrm{v} \\
& \mathrm{~V} \\
& \mathrm{v}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& +25^{\circ} \mathrm{C} \\
& 125^{\circ} \mathrm{C} \\
& +2.5^{\circ} \mathrm{C}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& -255^{\circ} \mathrm{C} \\
& 125^{\circ} \mathrm{C} \\
& -25^{\circ} \mathrm{C}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.0 \mathrm{~V} \\
& 5.0 \mathrm{~V} \\
& 5.0 \mathrm{~V}
\end{aligned}
$$
\] \& soun \& 102 A

OV \& $$
\begin{gathered}
0 \mathrm{~V} \\
1(4+\mathrm{A}
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 0 \mathrm{~V} \\
& \cos \mathrm{~A}
\end{aligned}
$$
\] \& \& 14

\hline A-2 \& OUTPUT SIOMT CIRCUT CLRRENT (Q) \& -5.0 \& \& -12.0 \& ma \& $+25^{\circ} \mathrm{C}$ \& $-25^{\text {n }} \mathrm{C}$ \& 5.0 V \& 0 V \& \& \& \& OV \&

\hline
\end{tabular}

Notes:

1. All voltage and capacitance measurements are referenced to the ground terminal. Terminals not speoificaliy referenced are left electrically open.
All measurements are taken with ground pin tied to zero volts.
2. Positive current fow is defined as into the terminal referenced.
3. Positive NAND Logic deficition: "UP" Level = "1", "DOWN" Level = "0"

Precautionery measures shauld be taken to ensure' current limiting in accordance. with Absolute Maximum Ratinga should the isolation diodes become forward biased
6. Mersurements apply to each gate element independently.

Copal lanoe Bridge or equivalent. $f=1 \mathrm{MHz}$, Vac $=25 \mathrm{~m} V_{\text {rms. }}$. All pins not specifically referenced are ticd to guand for capacitance tests. Output pins are left open
8. Output source current is supplied through a resistor to ground.
9. Output alnk current is supplied through a resistor to V_{cc} -
10. One DC fan-out is defined as 0.8 mA
11. One $A C$ fan-out is detined as 50 pf.
12. Momentarily apply zerra volts to \bar{Q} and $V_{e c}$ to Q to ensurn the stato of the fllp-flop prior to measurement.
13. Apply 0.5V to the Q output terminal
14. Apply $V_{\text {sce }}$ to \bar{C} output terminal and zero volts to Q output terminal.
15. Manufacturer rescrves the right to make design and process changes antimprove-
16. Detailed tegt conditiona for AC testing are in Section 3.

The 8425 is a low-power, capacitively coupled Dual RS/T AC Binary.

This element responds to the trailing or negativegoing transition of the clock pulse and features a common-clock, common RESET ($\overline{\mathrm{R}}_{\mathrm{D}}$) and separate SET ($\overline{\mathrm{S}}_{\mathrm{D}}$) which provide maximum usage of all inputs in synchronous systems such as shift registers and synchronous counters. The asynchronous RESET inputs, $\overline{\mathrm{R}}_{\mathrm{D}} / \overline{\mathrm{S}}_{\mathrm{D}}$, may be activated independent of the state of the clock, thus providing random access to synchronous systems. The synchronous inputs ($\overline{\mathrm{R}}_{\mathrm{C}}$
and \bar{S}_{C}) are especially adaptable to NAND logic systems since they respond to low levels. The \bar{R}_{C} and \bar{S}_{C} inputs have no effect when the clock line is stationary.

Each logic element in the 8000 series is characterized to provide guarantees for driving the 8425. A convenient summary of thesc AC loading rules is provided in Table 1-5, Scetion 1.

Usage rules and applications information are included in Section 4 of this handbook.

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 15)

ACCEPTANCE	CHARACTEHSSIIC	LIMITS			TEST CONDITIONS									
SUB-GROLP		Mn.	MAX.	UNITS	$\begin{aligned} & \text { TEMP } \\ & \text { S8425 } \end{aligned}$	$\begin{aligned} & \text { TEMP } \\ & \text { NÊ425 } \end{aligned}$	v_{cc}	$\stackrel{\rightharpoonup}{*}_{0}$	$\stackrel{\rightharpoonup}{1}$	CL.OCK	$\stackrel{\rightharpoonup}{R}_{C}$	${ }^{\text {c }}$	OUTPI:TS	NOTES
A-5 $A-3$ $A-1$	"1" OUTPUT VOLTAGE	3.1 3.6 3.4		v v V	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+7 \overline{2}^{4} \mathrm{C}$	4.75 V 5.0 V 4.75 V	0.7 V 0.7 V 0.7 V	2.0 V 2.0 V 2.0 V				-22.54 A -2254 -2254	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	" 1 " OUTPUT VOLTAGE	$\begin{aligned} & 3.4 \\ & 3.6 \\ & 3.4 \end{aligned}$		v v v	$-5.5{ }^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ $1225^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $175^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	2.0 V 2.0 v 2.0 V	$\begin{aligned} & 0.7 \mathrm{~V} \\ & 0.7 \mathrm{~V} \\ & 0.7 \mathrm{~V} \end{aligned}$				$-225 \mu \mathrm{~A}$ -225μ $-225 \mu \mathrm{~A}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$
$\mathrm{A}-5$ $A-3$ $\mathrm{~A}-4$	"0" ourcut voltage ${ }^{\text {a }}$		0.35 0.35 0.35	v v v	$-55^{\circ} \mathrm{C}$ $.25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	2.0 v 2.0 V 2.0 V	0.7 V 0.7 V 0.7 V				7.2 mA 7.2 mA 7.2 mA	9 9 9
A-5 A-3 A-4	"O" OUTPUT VOLTAGE		$\begin{aligned} & 0.35 \\ & 0.35 \\ & 0.35 \end{aligned}$	v V v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	0.7 V 0.7 V 0.7 V	2.0 V 2.0 V 2.0 V				7.2 mA 7.2 mA 7 l 2 mA	$\begin{aligned} & 9 \\ & 9 \\ & 9 \end{aligned}$
$C-1$ $\mathrm{~A}-3$ $\mathrm{C}-1$	"0" INPUT CURRENT	-0.1 -0.1 -0.1	-1.6 -1.6 -1.6	mA mA mA	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+755^{\circ} \mathrm{C}$	5.25 V 5.25 V 5.25 V		$\begin{aligned} & 0.35 \mathrm{~V} \\ & 0.35 \mathrm{~V} \\ & 0.35 \mathrm{~V} \end{aligned}$					12 12 12
C-1 $\mathrm{C}-3$ $\mathrm{C}-1$	"0" INPUT CURRENT	-0.1 -0.1 -0.1 -0.1	-0.8 -0.3 -0.8	$m A$ $m A$ $m A$	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25 V 5.25 V $\mathbf{5 . 2 5}$	$\begin{aligned} & 0.35 v \\ & 0.35 v \\ & 0.36 v \end{aligned}$						12 12 12
$\begin{aligned} & C-1 \\ & A-3 \\ & C-1 \end{aligned}$	"O" inpul CtRRENT	$\begin{aligned} & -0.1 \\ & -0.1 \\ & -0.5 \end{aligned}$	$\begin{aligned} & -0.6 \\ & -0.6 \\ & -0.6 \end{aligned}$	mA mA ma	$\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 0.35 \mathrm{~V} \\ & 0.35 \mathrm{~V} \\ & 0.35 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.35 \mathrm{~V} \\ & 0.35 \mathrm{~V} \\ & 0.35 \mathrm{~V} \end{aligned}$		
A -4	"0" 1NPUT CUAHENT (CyOCK)		-50	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.25 V			0 V				
A-4 $A-3$ $A .4$ $A-3$	"I" INPUT CURRENT		25 25 50 50	μA μA μA μA	$+125^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	4.75 V 4.75 V 4.75 V 4.75 V	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \% \\ & 4.5 \% \end{aligned}$					19 13 13 13
A-6	ClOCKED MODE HOLJING TEST		10	nc	$125^{\circ} \mathrm{C}$	- $25^{\circ} \mathrm{C}$	5.0 V			PULSE				15
	OLOCKED MODE SWITCHING TEST		$\begin{aligned} & 50 \\ & \text { Tu } \end{aligned}$	ns	$+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{v} \\ & 5.0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \text { PULSE } \\ & \text { PCLSE } \end{aligned}$				$\begin{aligned} & 15 \\ & 15 \end{aligned}$
A-6	CLOCKED MODE TURN-ON DELAY		80	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V						D.C.F.O. $=9$	10, 15
A-6	CLOCKED MODE TURN-OFF DELAY		60	$n 5$	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V						D.C.F.O. 9	10, 15
A-6	togighe rate	8		Mliz	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V				\bar{Q}	Q		15
$\mathrm{C}-2$	OUTPLT FALl time		75	ne	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 VV						A.C.F.O. - 2	11, 15
$\begin{aligned} & \mathrm{C}-2 \\ & \mathrm{C}-2 \\ & \mathrm{C}-2 \\ & \mathrm{C}-2 \end{aligned}$	input capactiance		100 3.0 6.0 3.0	pf pf pf pf	$+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	$\begin{gathered} +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +85^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	2.0 V		7 7 7 7				
A-2	POWER CONSUMPTION (Per Binary)		24.7	mid	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V				$\overline{8}$	Q		
$\mathrm{A}-2$ $\mathrm{~A}-2$ $\mathrm{~A}-2$	INPUT VOLTAGE HATING $\begin{aligned} & (\mathrm{CLOCK} \\ & \left(\mathrm{S}_{\mathrm{S}}, \mathrm{~B}_{\mathrm{B}}\right) \\ & \left(\mathrm{R}_{\mathrm{C}}, \mathrm{~S}_{\mathrm{C}}\right) \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \\ & 3.5 \end{aligned}$	B. 6	v V v	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	504.	$5{ }^{\text {q }}$ A	$\begin{gathered} 104 \mathrm{~A} \\ 0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \mathrm{~V} \\ 10 \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} 0 \mathrm{~V} \\ 10 \mathrm{~A} \end{gathered}$		13
$\begin{aligned} & \mathrm{A}-2 \\ & \mathrm{~A}-2 \end{aligned}$	OUTPIIT SIORT CIRCUIT CURRENT ($\overline{\text { a }}$ (Q)	$\begin{aligned} & -5.0 \\ & -5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & -12 \\ & -12 \end{aligned}$	Lita	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 3.0 \mathrm{~V} \end{aligned}$	OV	3 V				$\begin{aligned} & 0 \mathrm{~V} \\ & \mathbf{o v} \end{aligned}$	

Notes:

1. All voltage ard capacilance measurements are referenced to the ground terminal Teminals not x pecifically referenced are left electrically open
. All measurements are taken with ground pin tied to zero volts.
2. Postive NAND Logie defintton: "int" Level-"1", "Down" Level = "0"
3. Precautionary theasures should be taken to ensure current lituitlog in accoreance wirh ibsolute N^{+}.ximum Ratings should the :solation dibdes become forward biased.
4. Measurcment; auply to each gate clement independencly.
5. Capacituncen as maanured oll Ponaton Electronic Corporation Model $75 \mathrm{~A}-58$ Capuci tince Brldge or equivalent. $f-1 \mathrm{MHz}, V_{n c}=25 \mathrm{mV}$ nms. All pias not spucifically referenced are tied to guard for capacitance tests. Outpul yiax are ieft open.
6. Dutpat source current is supplied through a resistor to ground.
7. Oulput sink current is supplled through a resistor to $\mathrm{v}_{\mathrm{c}} \mathrm{c}$ -
8. One DC jan-out is ceflned as 0.8 mas
9. One ic fan aut it defined as 50pf.
10. Apuly Vee to Q output terminal and zero volts to Q output terminal for $\overline{\mathrm{R}}_{\mathrm{D}}$, test and V_{r} ee to Q and zero volts to \bar{Q} for \bar{S}_{D} test.
11. Banufacturer reserves the right to make design ant process changes and improvemerts.
12. Detalled test concitlons for AC testing are in Section 3.

BASIC CIRCUIT SCHEMATIC
(

The 8440 Dual AND-OR-INVERT Gate implements the Exclusive-OR function.

The active output structure of the 8440 provides high AC noise immunity due to its low output impedance in both the " 1 " and " 0 " output states.

Output short circuit protection is provided by a current limiting resistor.

Values chosen for the collector and emitter resistors of the phase-splitter transistor ensure optimum on-off relationships of the totem-pole output pair.

General areas of application for the 8440 include half and full adders, digital comparators, and AND-OR control logic for inputs to binary clock steering lines.

BASIC CIRCUIT SCHEMATIC

Section 4 of this handbook contains helpful applications information and usage rules for the 8440 .

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 14)

$\begin{gathered} \text { ACCEPTANCE } \\ \text { TEST } \\ \text { SUB-GROUP } \end{gathered}$	CHARACTERISTIC	LIMITS				TEST CONDITIONS						
		MIN.	TYP.	MAX.	CNITS	$\begin{aligned} & \text { TEMP. } \\ & \$ 8440 \end{aligned}$	$\begin{aligned} & \text { TEMP. } \\ & \text { N84 } 6.0 \\ & \hline \end{aligned}$	v_{cc}	ORIVEN INPUT	OTHER INPITTS	OITPuts	NOTES
A-5 $A-3$ $A-4$	"1" OURPUT vOLTAGE	3.4 3.6 3.4			v v v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-75^{\circ} \mathrm{C}$	4.75 V 5.0 v 4.75 V	0.79 0.78 0.78		-2254 A -2254 A -225 A	8 8 8
A-5 A-3 A-4	"0" OUTPUT VOLTAGE			0.35 0.35 0.35	V V V	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 3.0 v 4.75 v	2.0 V 2.0 V 2.0 V	2.0 V 2.0 V 2.0 V	7.2 mA 7.2 mA 7.2 mA	$\begin{aligned} & 9,12 \\ & 9,12 \\ & 9,12 \end{aligned}$
$\mathrm{C}-1$ $\mathrm{~A}-3$ $\mathrm{C}-\mathrm{i}$	"0" INPUT CORRENT	$\begin{aligned} & -0.1 \\ & -0.1 \\ & -0.1 \end{aligned}$		-0.8 -0.8 -0.8	mA mA mA	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25 V 5.25 V 5.25 V	$\begin{aligned} & 0.35 v \\ & 0.35 \mathrm{~V} \\ & 0.35 v \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{y} \\ & 5.25 \mathrm{~V} \end{aligned}$		
A-4	"]" input curnent			25	$\mu \mathrm{A}$	$1125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.0 V	4.5 V	0 V		
A-6	FAll dellay	30		95	${ }^{15}$	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C'F.'O. $=9$	10, 15
C-2	OUTPLT FALL TIME			75	n8	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C.F.O. -2	11,15
C-2	TURN-ON DELAY			40	пв	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C.F.O. $=9$	10, 15
C-2	TLRN-OFF DELAY			50	nc	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C.F.O. - 1	10,15
C-2	INPUT CAPACTTANCE			3.0	pf	$+25^{\circ} \mathrm{C}$	$+26^{\circ} \mathrm{C}$	5.0 V	2.0 V			7
A-2	POWER CONSUMPTION OUTPUT "O" (Per Gate) OUTPUT "I"			$\begin{array}{r} 29.4 \\ 9.5 \end{array}$	$\mathrm{mW}_{\mathrm{mW}}^{\mathrm{m}}$	$\begin{aligned} 125^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +2.5^{\circ} \mathrm{C} \\ & 125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	OV			13
A-2	INPCT volitage rating	5.5			v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.04	50.4 A	ov		
A-2	OUTPUT SHORT CIRCUIT CURRENT	-4.0		-12	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 y	ov		OV	

Notes:

1. All voltage and capdeitance measurements are referenced to the ground terminal Terminals not spectfleally referenced are left electrically open.
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the cerminal referenced.
4. Positlve NAND Lagic definition: "UP" Level - " " ", "Jown" Level = "0"
5. Precautionary measures should be taken to ensure current jimiting in accordance
with Absolute Maximum Katings should the isolation diodes become forward biased
6. Neasuremenls apply to each gate element independently
7. Capacitance as measurexl on Boonton Electronic Corporation Model 75A-ss Capacitance Bridge or equivalent. $f=1$ MH2, $V_{a c}=25 \mathrm{~m}_{\text {Ims }}$. All plns not specilically
B. Output souree current is supplied through aresistor to cround apaly open. Onfit tormat apply 0.7 V to on input terminal of as sociated $A N D$ gate.
8. Output sink current is supplied through i resistor to V_{cc} -
9. One DC (an-out is defined as 0.8 mA .
10. One AC tan-out is defined as 50pr.
11. To tesi 'G" output vollage, apply 2.0 V to the input terminal of one input AND gate and apply zero volts to the input terminals of the associaled Input AND gate. Re verse input condftions and measure again.
12. For outpul "1" power consumption test. apply zero volts to one input terrinal of associated input AND gates.
13. Manufacturer resterven the tight to make design and procese changes and improvements.
14. Detailed test eonditions for AC testing are in Section 3 ,

8455 DUAL 4-INPUT NAND GATE DRIVER

The 8455 Dual 4-Input TTL NAND Gate Driver is used in high fan-outapplications involving either AC or DC loads. The device implements the NAND function for positive logic (highest voltage level $=$ "1") and the NOR function for negative logic (lowest voltage level = "1").

This element utilizes an active output structure which provides high AC noise immunity due to its low output impedance in both the " 1 " and " 0 " output states.

The current limiting resistor between the active pull-up and the output terminal features a parallel diode which displays extremely low impedance in the output " 1 " state. The design ensures optimum rise time when driving high capacitance loads encountered in high fan-out situations, and when driving AC binaries or long lines.

The values chosen for the collector and emitter resistors of the second stage transistor provide an optimum on-off relationship of the totem-pole output pair to minimize transient current spikes.

BASIC CIRCUIT SCHEMATIC

Section 4 of this handbook contains helpful usage rules and applications for the 8455 .

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 12)

$\begin{gathered} \text { ACCEPTANCE } \\ \text { TEST } \\ \text { SCB-GHOUP } \end{gathered}$	CHARACTERISTIC	LImits				'TEST CONDITIONS						
		MIN.	TYP.	MAX	UNITS	$\begin{aligned} & \text { TENP. } \\ & 88455 \end{aligned}$	$\begin{aligned} & \text { TENP, } \\ & \text { N845s } \end{aligned}$	V_{cc}	QRIVEN INPUT	OTHER INPUTS	OUTPLTS	NOTES
A-S	"-l Gitput voitage	3.4			ϑ	-.55 ${ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	+.75\%	0.7 v		-6250, A	8
A-:		4.6			v	$-25^{\circ} \mathrm{C}$	$+2.9{ }^{\circ} \mathrm{C}$	5.0 V	0.7 V		$-625 \mu \mathrm{~A}$	8
A-4		3.1			v	$4125^{\circ} \mathrm{C}$	+ $7.75^{\circ} \mathrm{C}$	4.75 V	0.75		-625\%A	8
A-5	"0" OUTPUT VOLTAGE			0.35 v	v	$-59^{\circ} \mathrm{C}$	$\theta^{\circ} \mathrm{C}$	4.75 V	2.0 y	2.0 V	20 ma	9
A-3				0.35 y	V	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	3.0V	2.0 v	2.0 V	20 mA	9
A-:				0.35 V	v	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	4.75 V	2.0 y	2.0 V	2 mmi	9
C-1	"0" INPUT CURRENT	-0.1		-1.2	mi	$-.55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.20 V	0.36 V	7. 25 V		
A-3		-0.1		-1.2	mi	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$., 2.i.v	0.35 V	-. 2.25 V		
C-1		-0.1		-1.2	mà	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.25 V	0.35 V	5.25 V		
A-4	"1" INPLT CURRENT			25	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	${ }^{7} 75^{\circ} \mathrm{C}$	5.0 V	4.5 V	ov		
A-6	PAIR DELAY	30		95	ns	$-25^{\circ} \mathrm{C}$	${ }^{2} 3^{\circ} \mathrm{C}$	5.0 V			D.C.F.O. .. 25	10, 13
C-2	FALL TIME			75	mi	$-55{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C.F.O. $=9$	11,13
C-2	TLRN-ON DELAY			10	ns	$-25^{\circ} \mathrm{C}$	$+2.5^{\circ} \mathrm{C}$	5.0 V			D.C.F.O. 25	10,13
C-2	TLRN-OFF DELAY			10	ni	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C.F.O. $=1$	10, 13
C-2	INPUT GAPACITANGF.			8.0	pi	$-25^{\circ} \mathrm{C}$	$+23^{\circ} \mathrm{C}$	5.0 v	2.0 v			7
A-2	POWEH CONSUMPTJON QLTPPU'1 "F"			28.4	mw	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V				
A-2	(Per Gate) OL'TPUT "l"			7.3	mW	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V	0V			
A-2	INPUT VOLTAGE RATING	5.5			V	$-26^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	$50 / \mathrm{A}$	ov		
A-2	OUTPUT SHORT CIRCUIT CURRENT	-20		-95	m.	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	OV		OV	

NOTES:

1. All voltage and capacitance measurements are referemeed to the ground terminal. Terminals not specifically referenced are leit electrically open
All measurements are taken with ground pin thed to zero volts.
Positive NAND Logic Definition: "Vp" Level $-411 "$, "DOWN" Level $=$ " 0 ".
2. Precautionary measures should be taken to ensure current 1 lmlting in accordance Precautionary neasures should be taken to ensure current limiting in accordance withabsolute Maximum Ratings shouk the isolaton diodes
3. Capaciluance as measured on Boonton Electronic Corporation Model 75A-s8 Capacitance Bridge or equivalent. $f-1 \mathrm{HHz}$, Ve $-25 \mathrm{~m} \mathrm{~V}_{\text {ring }}$. Alt pins not apecifically referenced are lied to guard for capacitance tosts. Output pins are left open.
4. Output sturce curfent is supplled through a resistor to ground.
5. Output sink current is supplled through a reststor to $V_{\text {cc }}$.
6. One DC fan-out is defined as 0.8 ma .
7. Onc AC tan-out is defined an 50pi.
8. Manulacturer reserves the right to make design and process changes and improvements.
9. Detailed test conditiuns for AC testing are in Section 3.

8470 TRIPLE 3-INPUT NAND GATE 8480 QUAD 2-INPUT NAND GATE 8490 HEX INVERTER

The 8470 Triple 3 -Input NAND Gate and the 8480 Quad 2-Input NAND Gate implement the NAND func-tion for positive logic (highest voltage level $={ }^{\prime \prime} 1$ ") and the NOR function for negative logic (lowest voltage level = " 1 ").
The 8490 Hex Inverter is an addition to the $8470 / 8480$ group of NAND gates.
The active output structure of these elements provides high AC noise immunity due to its low output impedance in both the " 1 " and " 0 " output states. This output configuration is particularly suited for driving high capacitive loads such as those encountered in high fan-out situations and line driving applications.

Output short circuit protection is provided by a current limiting resistor.

The values chosen for the collector and emitter resistors of the phase-splitter transistor ensure optimum on-off relationships of the totem-pole output pair.
Section 4 of this handbook contains helpful usage rules and applications for the 8470 and 8480 .

BASIC CIRCUIT SCHEMATIC

Component values are typical.

ELECTRICAL CHARACTERISTICS (NOTES: $1,2,3,4,5,6,12$)

ACCEPTANCE	CHARACTERISTIC	L.IMITS				TEST CONDITIONS						
$\begin{gathered} \text { TEST } \\ \text { SUB-GROLP } \end{gathered}$		MIN ,	TYP.	MAX.	UNITS	$\begin{aligned} & \text { TEMP. } \\ & \text { S } 9470 \\ & \text { S\&4e0 } \end{aligned}$	TEMP. N8470 NB480	$V_{\text {ec }}$	URIVEN INPUT	OTHER INPUTS	OLTPuTs	NOTES
A-5,	"1" OUTIU'T voltage	3.4			v	-55 ${ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 v	0.7 V		$-2 \mathrm{SH}_{5} \mathrm{~A}$ A	8
A-3		3.6			v	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 v	0.7 V		-225pa	8
A-4		3.4			v	${ }^{+125}{ }^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	4.75 v	0.7 V		$-225 \mu \mathrm{~A}$	8
A-5	"0" output voltage			0.35	v	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V	2.0 V	2.0 V	$7.2 \mathrm{~m} /$	9
A-3				0.35	v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 v	2.0 V	2.0 v	7.2 mA	9
A-4				0.35	v	$+125^{\circ} \mathrm{C}$	+76\%	4.76 v	2.0 V	2.0 V	$7.2 \mathrm{~m} \lambda$	9
C-1	"0" INPUT CURRENT	-0.1		-0. 8	ma	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25	0.35 V			
A-3		-0.t		-0, ${ }^{\text {a }}$	m / A	$-25^{\circ} \mathrm{C}$	$+2.5{ }^{\circ} \mathrm{C}$	5.25 V	0.35 V	5.25 V		
C. 1		-0.1		-0.8	mA	$-125^{\circ} \mathrm{C}$	$\rightarrow 75^{\circ} \mathrm{C}$	5.25 v	0.36 V	¢. 25 v		
A-4	"L" INPIIT Cutrenkt			25	${ }_{1} \mathrm{~A}$	$1125^{\circ} \mathrm{C}$	$.75^{\circ} \mathrm{C}$	5.0 V	4.5 V	ov		
A-6	Pair delay	25		45	$n \mathrm{~s}$	$-25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	5.0 v			D.C.F.O. - 9	10,13
C-z	OUTPUT FALL TIME			75	ns	$-65^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C.F.O. $=2$	11, 13
C-2	TUlin-un delay			40	ns	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C.F.O. $=9$	10,13
c-2	TUKN-OFF DELAY			40	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	6.0V			D.C.F.O. $=1$	10, 13
C-2	INPL'T CAPACITANCE			3.0	Hi	$-25^{\circ} \mathrm{C}$	$425^{\circ} \mathrm{C}$	5.0 V	2.0 V			7
A-2	POWER CONSLMPTION OUTPUT " 0 " (Per Gate)			16.8 5.2	mı mW	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	0 V			
A-2	INPL'T VOLTAGE RATING	6.5			V	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	5 ch 4	OV		
A-2	OUTPLT SHORT CIRCUT CURRENT	-4.0		-12.0	mA	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	Ov		OV	

NOTES:

[^2]8. Output source current is supplied through a resistor to ground.
9. Output sink current is supplied through a reststor to Viee
10. One DC fan-out is definetl as 0.8 m 4 .
11. One Ac fan-out is slefined as 50pr
12. Manufacturer reserves the right to muke तesign and proness changes andimprovements.
13. Detailed test conditions for AC testing are in Seetion 3 .

The 8471 is a Triple 3 -Input NAND Gate with bare output collectors. Absence of an output pull-up structure allows the user complete freedom in the use of the 8471 in collector-logic (wired-AND) and similar applications. Proper pull-up resistor selection will allow as many as 30 outputs to be tied together.

Collector-logic, using the 8471, can provide increased system flexibility and lower system cost due to reduced can count.

Section 4 of this handbook contains detailed usage rules and collector-logic information for this element.

BASIC CIRCUIT SCHEMATIC

NOTE. $1 / 3$ of unit shown. Componemt values are typical. - Isolation diode

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 12)

ACCEPTANCE TEST SLB-GROUP	CHARACTERISTIC	IJKTTS				TEST CONDITIONS						
		M1N.	TYP.	MAX.	UNITS	$\begin{aligned} & \text { TEMP } \\ & \text { S } 8971 \end{aligned}$	$\begin{aligned} & \text { TEMP } \\ & \text { N } 8471 \end{aligned}$	Vec	$\begin{aligned} & \text { DRIVEN } \\ & \text { INPUT } \end{aligned}$	$\begin{aligned} & \text { OTHER } \\ & \text { INPUTS } \end{aligned}$	OUTPUTS	NOTES
A-4	" 1 " OUTPUT LEAKAGE CURRENT			25	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.0V	0.6 V			11
A-5 A-3	"0" OUTPUT VOLTAGE			0.35 0.35	V	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	4.75V 5.0 V	2.0 V 2.0 V	2.0 V 2.0 V	8.2 mA 8.2 mA	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
A-4				0.35	v	$4125^{\circ} \mathrm{C}$	$475^{\circ} \mathrm{C}$	4.75 v	2.0 V	2.0 V	B.2mA	8
C-1	"0" INPLT CURHENT	-0.1		-0.8	mA	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25 V	0.35 V	5.25 V		
A-3		-0.1		-0.8	mA	$125^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V	$0.35 v$	5.25 V		
C-1		-0.1		-0.8	mA	$+125^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	5.25 V	0.35 V	5.25 V		
A-4	"I" INPUT CURAENT			25	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.0 V	4.5\%	ov		
A-6	YAIR UELAY	30		150	${ }_{\mathrm{LB}}^{8}$	$+25^{\circ} \mathrm{C}$	$425^{\circ} \mathrm{C}$	5.0 v			D.C.F.O. 9	9.13
$\mathrm{C}-2$	FALL TIME			75	ne	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C.F.O. $=2$	10, 13
O-2	TURN-ON DELAY			40	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C.F.O. -9	9,23
C-2	TURN-OFF DELAY			50	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5,0v			D.C.F.O. $=1$	9,13
$\mathrm{C}-2$	INPUT CAPACTTANCE			3.0	pf	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	2.0V			7
A-2	POWER CONSUMPTION OUTPUT " 0 " (Per Gate)			$\begin{array}{r} \mathbf{1} 6.8 \\ \mathbf{3} .2 \end{array}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} \end{gathered}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +35^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & \mathbf{5 . 2 5 \mathrm { V }} \end{aligned}$	0V			
A-2	INPUT VOLTAGE RATING	3.5			v	$+25^{\circ} \mathrm{C}$	$425^{\circ} \mathrm{C}$	5.0V	EquA	OV		

NOTES:

1. All voltage and capacitance measurements are relurencud to the gruund turminal. Terminals not specifically referenced are leit electrically open.
All measurements are taken with ground pin tied to zuro volls.
Positive current flow is dulined as into the lemminal referenced,
Positive NAND Logic definition: 'UP" Level = "1", "DOWN" Level - "0"
Precautlonary muasures shoutd be taken to ensure current limiting in accordance with Absolule Maximum Ratings ohould the Isolation diodes become forward biased.
2. Measurements apply to each gate element independently
3. Capacitance as measured on Boonton Electronic Corporation Biodel 75A-58 Capacitance Pridge ar equivalent, $f=1 \mathbf{M H z}, Y_{a c}=25 \mathrm{mV}$ rms. All pins not specifically referenced are tied to guard for capacitance tests. Output pins are left open.
4. Output sink current is supplied chrough a resistor to Vec.
. One DC ten-out is defined as $0.8 \mathrm{~m} \Lambda$
5. One AC fan-out is defined as 50 pf .
6. Connect an extermal $\mathrm{dK} \pm 1$ 登. resistor from V_{cc} to the output terminal for this test
7. Manufacturer reserves the right to make design and process changea andimprovements.
8. Detalled test conditions for AC testing are in Section 3.

8481

The 8481 is a Quad 2-Input NAND Gate with bare output collectors. Absence of an output pull-up structure allows the user complete freedom in the use of the 8481 in collector-logic (wired-AND) and similar applications. Proper pull-up resistor selection will allow as many as 30 outputs to be ticd together.

Collector logic, using the 8481, can provide increased system flexibility and lower system cost due to reduced can count.

Section 4 of this handbook provides detailed usage rules and collector-logic information for this element.

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: 1,2,3,4,5,6,12)

$\begin{gathered} \text { ACCEPTANCE } \\ \text { TEST } \\ \text { SUB-GROUP } \end{gathered}$	CHARACTERISTIC	LIMITS				TEST COXDITIONS						
		MIN.	'TYP.	MAX	CNITS	TEMP. S8481	$\begin{aligned} & \text { TEMP. } \\ & \text { N8481 } \end{aligned}$	V_{cc}	DRIVEN InPUT	OTHER INPUTS	OUTPU1TS	NOT'FS
A-4	'1"' OUTPUT LEAKAGE CURHENT			25	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.04	0.6 V			11
A -5 A-3	"0' OUTPIT VOLTACE			0.35 0.35	V	$-655^{\circ} \mathrm{C}$ $1255^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	4.75 V 5.0 V	2.0 V 2.0 V	2.0 V 2.0 V	8. 2 mA B. 2 mA	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
A-4				0.35	V	$+125^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	4.75 V	2.0 V	2.0 V	8. 2 mA	5
C-1	"0" INPUT CURRENT	-0.1		-0.8	ma	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25 V	0.35 V	5. 25 V		
A-3		-0.1		0.8	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V	0.35 V	5.25 V		
c-1		-0.1		-0.8	ma	$1125^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$	5.25 V	0.35 v	5. 25 V		
A-4	'1'INPLTT CURRENT'			25	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5. OV	4.5 V	0 V		
A-6	PALR DELAY	50		150	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0V			D.C. F.O. 9	9,13
C-2	FALL TLME			75	$n \mathrm{~s}$	$55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C.F.O. 2	10, 1:]
C-2	TURN-UN DELAY			40	ns	$+25^{\circ} \mathrm{C}$	$42.5{ }^{\circ} \mathrm{C}$	5.0v			D.C. F.O. - 9	9,13
C-2	TIRN-OFF DELAY			50	ns	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C. F.O. $=1$	9,13
C-2	INPUT CAPACITANCE			3.0	pf	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	20 V			7
A-2	POW FR CONSIMMTTON OT:TPUT "Q" (Per Gate)			16.8 5.2	mw	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	0 V			
A-2	INPUT VOI.TAGE RATING	55			V	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	$50 \sim \mathrm{~A}$	0V		

Notes:

1. Al voltoge and capacitance measurements are referenced to the groubd terminal, Terminals not specifieally referencerl are beft efectricaly open.
2. All measurements are talcen with ground pin tied to zero volla.
3. Positive eurrent now is clefineri as into the terminal referenced.
4. Positive NinND Logie definitlon: "LP" level "1", "DOWN" Level - "o"
5. Procautionart measures should be taken to ensure current limiting in accordance with thsolute Maximuss Ifatings should the isolation dodes lwecome forword blased,
lement indepencolently
Caphes indye or referent ore all pins not specifically referenced are tied to huard for capacit:ance tests. Output pins are left open
6. Cutput sink current is suppllet through a resistor to vec
y. One DC fan-out ls sefinec as $6.8 \mathrm{~m} A$.
7. One AC fan-out ib defined as $50 p \mathrm{f}$.
8. Connect an external 1 K resistor from Vee to the oulput terininal for this tent.
9. Manulacturer rexerves the right to make design and provess chunges and improvements.
10. Detailed test conditions for AC testing are in Section 3 .

8706 DUAL 5-INPUT DIODE EXPANDER ELEMENT 8731 QUAD 2-INPUT DIODE EXPANDER ELEMENT

The 8706 Dual 5-Input and the 8731 Quad 2-Input Diode Expander Elements complete the full range of diode input expansion capacility for the 8400 series expandable gate (8415,8416 and 8417).

The 8706 and the 8731 provide optimum flexibility for the most efficient utilization of pin and package configurations in achieving a desired number of additional input term and input combinations.

Applications information on the 8706 and 8731 is included in Section 4 of this handbook.

BASIC CIRCUIT SCHEMATIC 8706

BASIC CIRCUIT SCHEMATIC 8731

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 9)

$\begin{gathered} \text { ACCEPTANCE } \\ \text { TEST } \\ \text { SUB-GROUP } \end{gathered}$	CHARACTERISTIC	LIMIJTS			TEST CONDITIONS					
		M1N,	MAX	UNITS	$\begin{aligned} & \text { TEMP. } \\ & \text { S8731 } \end{aligned}$	$\begin{aligned} & \text { TEMP. } \\ & \text { N8731 } \end{aligned}$	ORIVEN INPUT	OTHER INPUTS	OUTPUTS	NOTES
A-4	'1' INPUT CURRENT		25	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	4.5 V	OV	0 V	
C-1	DIODE FORWARD VOLTAGE		0.95	V	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	0 V	Open	1.2 mA	
A-3			0.85	V	$+25^{\circ} \mathrm{C}$	$425^{\circ} \mathrm{C}$	0 V	Open	1.2 mA	
C-1			0.68	V	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	0 V	Open	1.2 mA	
A-2	INPUT VOI.TAGE RATING	6.5		V	$1.25{ }^{\circ} \mathrm{C}$	+25 ${ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$	Open	0 V	
C-2	INPLT CAPACITANCE		3	pf	${ }^{2} 25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	2.0 V		0V	7
C-2	DIODE RECOVERY TIME		4	15	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$\pm 2 \mathrm{~mA}$	Open		8

Notes:

1. All voltage and capacitance measurements are referenced to the ground terminal Terminals not sjeceffleally referenced are left tlectrieally open
2. All measurements are taken with ground pin tied to zero volto.
3. Positive NAND Logic Deinition: "UP" Level $=" 1$ ", "DOWN" Level $=" 0$ "
4. Preceutionary mieasures should be taken to ensure current Ilmiting in acoordance ith maxdmum ratings should the isolation diodes beeme forward hiased.

5. Mersurements apply to each diode cluster independently.

- Capacitance as uneasured on Boonton Eleetronic Corporation Model 75A-SB Capacitance Bridge or equivalent. $f=1 \mathrm{Mc}, \forall-2 \mathrm{~J}_{\mathrm{m}} \mathrm{y}_{\mathrm{rmb}}$. All pins not specifically referenced a r e tied to guard for capacitance teats. Outpul pins are IeIr open.

8. Recovery to 0.2 mA , Loop Resistance - 100 ohms. Measure with Tektronlx Type 29 I Diode Switching Jime Trster.
9. Manufacturer reserves the right to make design and process changes and improvements.

The 8806 Dual 4-Input Expander Element is compatibly designed and characterized for use with the 8840 and 8848 AND-OR-INVERT Gates, thereby providing increased system usefulness for the 8840 and the 8848 .

Applications information on the 8806 is included in Section 4 of this handbook.

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 12)

$\begin{gathered} \text { ACCEPTANCF } \\ \text { TEST } \\ \text { SUR GROUP } \end{gathered}$	CHARACTERISTIC												
		MIN,	TYP.	MAX.	UNITS	TEMP, Ssa06	TEMP. N880)	$v^{\circ} \mathrm{co}$	DRIVEN [NPUT	GI'HER inplets	OUlPUTS		NOTES
											V_{0}	$\mathrm{V}_{\mathrm{F}:}$	
A-3	OLIFUT "ON" VOLTAGEAT VC, $(1,2)^{*}$			1.23	V	$-23^{\circ} \mathrm{C}$	$+23^{2} \mathrm{C}$	4.75 V	2.0 V	2.0 V	7.2 mA	0.85%	9
A-3	OUTPUT "ON" CURRENT AT $\mathrm{V}_{\mathrm{E}}(2,3)^{*}$	-2. 5			ma	$-25^{\circ} \mathrm{C}$	- $25^{\circ} \mathrm{C}$	4.356	2.0 V	2.0 V	2.2 mA	0.85 v	8, 9
A 3				-50	UA	$-25^{\circ} \mathrm{C}$	- $25^{\circ} \mathrm{C}$	5.25 V	0.8 y		4. 75 V	9. 598 v	9
C-1	"D" Input clirhfan	-0.1		-1.6	$\mathrm{m} \lambda$	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25 V	0.10 V	5.25 V			
A-3		-0.1		-1.6	mA	${ }^{2} 5^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	5.25 v	0.40 V	S. 25 V			
c 1		9.1		-1. 10	ma	$-1.25^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.25 v	0.40 V	5.25 V			
A -4	'r" INPUT CERREN'			25	4	$+125^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	5.0 y	4.5 V	0V			
C-2	INPLT CAPACIL ANCE			3.0	pt	$+25^{\circ}{ }^{\circ}$	$-25^{\circ} \mathrm{C}$	5.0 V	2.0 V				3
A-2 A-2	POWER CONSLMPTION OUTPUT ON (Per Expander) OUTPI'T "OFF"			6.3 8.9	mw $m \mathrm{~m}$	$\begin{aligned} & -95^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	9\%			0.59 V	
$\mathrm{C}-1$	INPLT LATCG voltage rating	5.5.			V	$+25^{\circ} \mathrm{C}$	$\div 25^{\circ} \mathrm{C}$	5.0 V	10 mA	OV			10
A-6	TURN-ON LDEEAY			20	ns	$-25^{\circ} \mathrm{C}$	$-25^{\prime \prime} \mathrm{C}$	5.0 V					13
A-6	TT:RN-OFF LVELAY			34	ns	$12.5{ }^{\circ} \mathrm{C}$	-250 ${ }^{\circ} \mathrm{C}$	5.0 V					13

*ss.t0 Node Test Correlation Note il

Notes:

1. Alt vollage and capactance measurements are referenced to the ground terminal Terminals not specifically referenced are leit electrbally open
2. All measurements are taken with ground pin tied to zero volts.
3. Positive current flow is defined as into the terminal referercer.,
4. Pusitive NAND Lobic definition: "UP" Level = " 1 ", "DOW' N^{\prime} I Ievel • "0"

Precautionary masures should be taker to easure current llmbting in aceordanee with Absotute Maximum Ratings shoulc the ssolatlon slicces become ferward biased
6. Measurements apply to tath eate element indepentiently.
tence liringe ne equizalent. $f=1 \mathrm{MHz}_{\mathrm{V}} \mathrm{V}$ 20my tence liningere nequitient.
8. Output current is supphied through a resiator to ground.
9. Oupmut current is scipplied through a resiator to $V_{\text {ece. For output "OFF" current a }}$ Vc use $2.5 \mathrm{~K}+1$ '约 resistor.
10. This test guarantees operation free of input lateh-up over the spectfled operating power supply volcage range
11. Compatibility hetween the 8906 , the 8840 and 9848 are proved by this serics of tests for correnfonding tests performei on the RA40 and 884月. Check those testa enclosed in special box on 8840 and 5818 data tables
1\%. Mantiocturer reserves the right to make real gn and procesa changes and umprovements
15. Detalled test conditions for AC testing are in Section 3.

These NAND gates provide high switching speed while maintaining high fan-out and noise margin. They perform the NAND function for positive logic (highest voltage level $=$ " 1 ") and the NOR function for negative logic (lowest voltage level = "1").

The output structure utilizes a totem-pole arrangement which employs a Darlington Pair for active pull-up. This configuration provides extremely low output impedance for the " 1 " output state. As a result, switching times are relatively insensitive to capacitive loads when compared to single transistor active pull-ups. The saturating output switching transistor provides a low impedance driving source in the output " 0 " state, enhancing turn-on times and providing high fan-out capability.

Because of the low output impedance of these gates, they exhibit high AC noise immunity at the output which is extremely important in high speed systems in eliminating erroneous crose-coupled signals.

BASIC CIRCUIT SCHEMATIC

Output short-circuitprotection is provided by a current limiting resistor.

Section 4 of this handbook provides usage rules and application information for these gates.

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 12)

$\begin{aligned} & \text { ACCEPTANCE } \\ & \text { TEST } \\ & \text { SUB-GKOIP } \end{aligned}$	CHARACTERISTIC	LIMITS				TEST CONDITIONS						
		MIN.	тYP.	MAX.	UNITS	$\begin{aligned} & \text { TEMP, } \\ & \text { S8800 } \end{aligned}$	$\begin{aligned} & \text { TEMG } \\ & \text { N8800 } \end{aligned}$	V_{ce}	$\begin{aligned} & \hline \text { DRIVEN } \\ & \text { INYT'T } \end{aligned}$	O'THER INPUTS	OUTPLTS	MOTES
A-5 $A-3$ A-4	"F" OLTPL'T VOLTAGE	2.6 2.8 2.6			V V V	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+1255^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $475^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	$\begin{aligned} & 0.8 \mathrm{y} \\ & 0.8 \mathrm{y} \\ & 0.8 \mathrm{y} \end{aligned}$		$\begin{aligned} & -500 \mu A \\ & -500 \mu A \\ & -500 \mu A \end{aligned}$	8 8 8
A-s A-3 A $-\frac{4}{4}$				0.40 0.40 0.40	y v v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{*} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	2.0 V 2.0 V 2.0 V	2.0 V 2.0 V 2.0V	16 mA 16 mA 16 ma	9 9 9
$\mathrm{C}-1$ $\mathrm{~A}-3$ $\mathrm{C}-1$	-0"INPET CURRENT	$\begin{aligned} & -0.1 \\ & -0.1 \\ & -0.1 \end{aligned}$		-1.6 -1.6 -1.6	mA mA mA	$-55^{\circ} \mathrm{C}$ $1.25^{\circ} \mathrm{C}$ $1.125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25 v 5.25 v 5.25 v	0.40 V 0.40 V 0.40 V	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$		
A-4	" ${ }^{\prime \prime}$ InPut Curiekt			25	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$\rightarrow 75^{\circ} \mathrm{C}$	5.0 V	4. 5V	0 V		
A-6	'TUAN-ON DELAY			13	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C. F. O, . 20	10. 14
A-s	TURN-OFF DELAY			13	n'	$+25^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	5.0 V			D.C. F.O. $=20$	10, 14
C-2	OUTPUT FALE TTME			60	ns	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V				11, 14
C-2	input capacitance			3.0	pf	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	2.0V			7
A-2	POWER CONSUMPTION "0" (Per Gate) "1"			31 8.9	mw	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	OV			
c-1	InPut tatch voltager mating	5.5			v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	10 mA	0 V		12
8-2	OUTPCT SHOHT CLECUET CURRENT	-20		-70	$m \mathrm{~A}$	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	OV		OV	

Notes:
i. All voltage and capacitance measurements are relerenced to the ground terminal, Termioals nat specifiesally ceferenced are left elcetrieally opeth
All measurements are taken wilh ground pin tied to zero volts.
3. Positive current flow is itefined as suto the terminal referencer
4. Pusitive current tow is itefined as moto the ferminal referencer.
6. Precautionary measures shoulc be taken to ensure current limiting in accordance withalosolute Maxinum Ratings should the isolation diedes become forward biased.
B. Muasurements apply to each gate clemend independently,
7. Capacitance as mesasured on Boonton Electronic Corporation Mocel 75A-SB Capaeltance Bridge or equivalent. $1=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{ac}}=25 \mathrm{mV}$ rms. All pins not ipecifically referenced are tied to guare for capacitance tests, Output pins are left open.
8. Dutput acorce current is supplied through a resistor to ground.
9. Gutput sink eurrent is supplied throuth a resistor to Vee

One DC fan-out is defined as 0.8 mA .
One aC lantout is deflined as sopi.
12. This test guarantees ogeration Iree of input latch-up ower the specified operating supply voltage range.
13. Manufacturer reserves the right to make design and process changes and improve ments.
14. Detalled test comditions for AC testing are in Sertion 3.

8808 8816 8870 8880

A PACKAGE

8815 DUAL 4-INPUT NOR GATE 8875 TRIPLE 3-INPUT NOR GATE 8885 QUAD 2-INPUT NOR GATE

The 8815,8875 and 8885 gates perform the logic NOR function for positive logic (the logic "ONE" is assigned to the highest voltage Ievel) and complement the NAND gate elements 8816,8870 and 8880.

These gates are all designed for high speed application while maintaining high fan-out and noise margin.

The parallel transistor structure forms the NOR function. All unused inputs must be tied to ground. The output arrangement is basically the same as the NAND implementation providing low impedance for both logic levels.

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 13)

ACCEPTANCE	CHARACTERISTIC	LImTS				TEST CONDITIONS						
TEST SUB-GROUP		MIN.	TYP.	MAX	UNITS	$\begin{gathered} \text { TEMP. } \\ \text { S8815 } \\ \mathbf{S 8 8 7 5} \\ \mathbf{S 8 8 8 5} \end{gathered}$	$\begin{aligned} & \text { TEMP. } \\ & \text { N8815 } \\ & \text { N } 8875 \\ & \text { N8885 } \end{aligned}$	$\mathrm{v}_{\text {ec }}$	$\begin{aligned} & \text { DRIVEN } \\ & \text { INPUT } \end{aligned}$	OTHER INPUTS	outputs	NOTES
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	-1" OUTPUT VOLTAGE	2.6 2.8 2.6			V Y	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+1255^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+755^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	0.8 V 0.8 V 0.8 V	$\begin{aligned} & 0.8 \mathrm{v} \\ & 0.8 \mathrm{v} \\ & 0.8 \mathrm{v} \end{aligned}$	$-5004 \mathrm{~A}$ $-5004 \mathrm{~A}$ $-5004 \mathrm{~A}$	8 8 8
$\begin{aligned} & A-5 \\ & A-3 \\ & A-1 \end{aligned}$	"G" output voltage			0.4 0.4 0.4	Y V V	$-55^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	0 V OV 0 V	16 mA 16 mA 16 mA	9 9 9
C-1 A-3 C-1	-0" נNPUT CURRENT	-0.1 -0.1 -0.1		-1.6 -1.6 -1.6	mA $m A$ $m A$	$-55^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ $-1855^{\circ} \mathrm{C}$	$0^{*} \mathrm{C}$ $.25^{\circ} \mathrm{C}$ $-75^{\circ} \mathrm{C}$	5.85 V $\mathbf{5 . 2 5}$ 5.25 V 5.25 V	0.4 V 0.4 V 0.4 V			
A-4	"1" input current			25	$\mu \mathrm{A}$	- $125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.0 V	4.5 V			
A-6	TUAN-ON DELAY		8.0	13	ne	- $255^{\circ} \mathrm{C}$	- $25^{\circ} \mathrm{C}$	5.0 V			D.C.F.O. $=20$	10,44
A-6	TURN-OFF DELAY		10	13	D6	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C.F.O. $=20$	10,14
$\mathrm{C-2}$	OUTPUT FALL TIME			50	n8	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C.F.O. $=6$	11,14
C-2	Input capacitance			3.6	pf	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 v	2.0 v			7
A. 2	POWER CONSUMPTION (Por Gate) 8815 "1"			35.6	mw	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V	OV	0 V		
	8875 "1"			27.1	mW	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	3.25 V	0 V	0 V		
	8885 "1"			17.8	m^{4}	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V	0 V	OV		
	8 815 5 "0"			49.7	mw	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V				
	8675 "0"			48.7	mw	. $25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	5.25 v				
	з8в5 "0"			37.3	mw	-25%	$+25^{\circ} \mathrm{C}$	5.25 V				
C-1	input latch voltage hating	5.5			V	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	10 mA			12
A-2	OUTPUT SHORT CLRCLIT CLRHENT	-30		-70	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	0 V	OH	0 V	

NOTES:

1. All voltage and capadtance measurements are referenced to the ground terminai. Terminals not specifically reterenced are left electrically oper,
2. All mbasurements are taken with ground pin tied to zcro volts.
3. Pasitive current flow is defined as into the terminal referenced
4. Positive NAND Logic defindtion: "UP" Level = " λ ", "DOWN" Level $=$ " 0 ".
5. Precautionary measures should be taken to ensure current limeting in accordance with Absciute Maximum Ratings shoulc: the isolation diodes become forward biased.
G. Measurements apply to each gate element jndependently.

Cayacitance as measured on Boonton Electronic Corporation Model 75A -S8 Capacitance Bridge or equivalent. $f=3 \mathrm{MHz}, V_{a 0}=25 \mathrm{mV} V_{\text {rog }}$ All pins not sperifically referencod are thed to guard for eapacitance tests, Output pins are left open
8. Dutput source current is supplied through a resistor to ground.
9. Output sink current is supplied throush a resistor to Vec
10. One DC fan-out is deflned ab 0.8 mA
11. One AC fan-out is clefined as sopf.
12. This test gramanieses operation tree of inpul lateh-up over the spacified operaling suppiy voltage range.
15. Manufacturer reseryes the right to make design and procests changes and improvements.
14. Detaileç test conditions for AC testing are in Secthon ss

The 8821,8822 and 8824 Dual Master-Slave J-K Binaries provide pin configuration and logic input variations of the same basic device to obtain maximum board layout convenience and design flexibility.

The 8821, available in the J package only, provides common clock and \bar{R}_{D} inputs and separate \bar{S}_{D} inputs. This configuration is especially useful in synchronous counter and shift register applications. Where a dual in-line package is required, the 8824 is recommended.

The 8822 provides separate clock and separate $\overline{\mathbf{R}}_{\mathrm{D}}$ inputs and is in the dual in-line (A) package and has V_{cc} at pin 14 and ground at pin 7 for consistency with other dual in-line pin configurations. This pin configuration can significantly simplify board layout. The 8822 is also available in the J package.

The 8824 is available in the 16 pin dual in-line (B) package. This unit provides two separate binaries with full synchronous and asynchronous access. The 8824 provides V_{ce} and ground pin orientation which is consistent with other dual in-line devices and thus simplifies board layout.

Triggering is accomplished on the negative transition (falling edge) of the clock pulse. Set up time must be greater than or equal to the clock pulse width. There is no hold time requirement for the inputs. Set up time is defined as the time prior to a negative transition of the clock line.

For optimum reliability, all three devices are fabricated from a single monolithic die.

BASIC CIRCUIT SCHEMATIC

TRUTH TABLES

8822			
J_{n}	K_{n}	Q_{n+1}	
0	0	Q_{n}	
1	0	1	
0	1	0	
1	1	\bar{Q}_{n}	
\bar{R}_{D}	$=0 \Rightarrow$	$Q=0$	

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 15)

ACCEPTANCE	Characteristic	LIMnTS				TEST CONDITIONS										
$\begin{gathered} \text { TEST } \\ \text { SUB-GROUP } \end{gathered}$		MIIN.	TYP.	MAX,	UNITS	$\begin{gathered} \text { TEMP. } \\ \text { S8821 } \\ \text { SB822 } \\ \text { SBR24 } \end{gathered}$	TEMP N8821 N8822 N8824	$V_{\text {ce }}$	SET	HESET	DRIVEN INPUY	J	K	CLOCK	OUTPUT	NOTES
$\begin{aligned} & A-4 \\ & A-3 \\ & A-4 \end{aligned}$	"1" OU'TPUT VOLTAGE (\%)	$\begin{aligned} & 2.6 \\ & 2.8 \\ & 2.6 \end{aligned}$			V V V	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 0.8 \mathrm{v} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$					$-500 \mu \mathrm{~A}$ -500 A -500 A	$\begin{aligned} & 8,16 \\ & 8,18 \\ & 8,16 \end{aligned}$
A-5 A-3 A-4		2.6 2.8 2.6 2.6			V V V	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	2.0 V 2.0 V 2.0 V	0.8 V 0.8 V 0.8 V					$-509 \% \mathrm{~A}$ $-50 r \mu \mathrm{~A}$ $-500 \mu \mathrm{~A}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	"O" OUTPUT VOETAGE (Q)			0.4 0.4 0.4	V	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 0 . \mathrm{BV} \\ & 0.8 \mathrm{~V} \end{aligned}$					1 mma 16 mA 16 ma	9 9 9
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	"O" OUTPUT VOLTAGE ($\overline{\text { Q }}$			0.4 0.4 0.4	V	$-55^{*} \mathrm{C}$ $+255^{*} \mathrm{C}$ $+125^{+} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	0.8 V 0.8 V 0.8 V	2.0 V 2.0 V 2.0 V					16 mA 16 mA 16 mA	$\begin{aligned} & 9,16 \\ & 3,16 \\ & 9,10 \end{aligned}$
$\begin{aligned} & C-1 \\ & \text { A-S } \\ & C-1 \end{aligned}$	"0" INPUT CURRENT (${ }^{\text {a }}$, K)			-1.6 -1.6 -1.6	mA mA mA	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+1255^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $125^{\circ} \mathrm{C}$ $+73^{\circ} \mathrm{C}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$			0.4 V 0.4 V 0.4 V					
$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~A}-3 \\ & \mathrm{C}-1 \end{aligned}$	"0" INPUT CURRENT (CLOCK, $\mathrm{S}_{\mathrm{D}}, \mathrm{R}_{\mathrm{D}}$)			$\begin{aligned} & -3.2 \\ & -3.2 \\ & -3.2 \end{aligned}$	mA mA mA	$-55^{\circ} \mathrm{C}$ $+255^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$			0.4 V 0.4 v 0.4 V					
C-1 $\mathrm{A}-3$ $\mathrm{C}-1$	"0" miput clifinent (CL.OCK, $\mathrm{K}_{\mathrm{D}}, 8821 \mathrm{only}$)			-6.4 -6.4 -6.4	mA mA mA	$-55^{*} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$00^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25 V 5.25 V 5.25 V			0.4 V 0.4 V 0.4 V					
$\begin{aligned} & \text { A-4 } \\ & \text { A-4 } \\ & \text { A-4 } \end{aligned}$	INPUT CLRRENT (J, K) (CLOCK, SD, HD) (CLOCK, R ${ }_{\mathrm{D}}$, 8821 only)			25 50 100	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$ $+12.5{ }^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$\begin{aligned} & +75^{\circ} \mathrm{C} \\ & +75^{\circ} \mathrm{C} \\ & +75^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{v} \\ & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	0 V	0v	OV		17
A-2	POWER CONSUMPTION (Per Blnary)			72	mW	+25 ${ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V								
A-2 $\mathrm{A}-2$	OUTPUT SHORT CJRCUT CURRENT $\frac{Q}{C}$ (except 8822)	$\begin{aligned} & -20 \\ & -20 \end{aligned}$		$\begin{aligned} & -70 \\ & -70 \end{aligned}$	$\mathrm{ma}_{\mathrm{mA}}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 5.0 \mathrm{Y} \end{aligned}$	0v	0 V					ov	
C-1	INPUT LATCH VOLTAGE (All inpuls)	5.5			v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			10 mA					12, 17
C-2	OUTPUT FALL TIME			50	ns	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V							A.C.F.O. $=6$	11, 14
A-6	CIOCKED MODE TURN-ON DELAY	10	25	50	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	6.0 V							D.C.F.O. $=20$	10,14
A-6	CLOCKED MODE TURN-OFF DELAY	7	15	50	ns	+25 ${ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V							D.C.F.O. $=20$	10,14
A-6	DIRECT MODE TURN-ON DELAY		25	50	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V							D.C.F.O. - 20	10,14
A-6	DIRECT MODE TURN-OFF DELAY		15	50	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V							D.C.F.O. - 20	10, 14
A-6	toggle Rate	10	25		M Hz	+25\% ${ }^{\circ} \mathrm{C}$	$+2.5{ }^{\circ} \mathrm{C}$	5.0 v								14
C-2	inpur Capadritance (J, K)			3.0			$425^{\circ} \mathrm{C}$				2,0v					7
C-2	${ }_{\left(\mathrm{R}_{\mathrm{D}}, \mathrm{S}_{\text {d }}\right.}$			6,0	pf	$+25^{\circ} \mathrm{C}$	+25 ${ }^{+2} \mathrm{C}$	5.0 V			2.0 V					7
C-2	($\mathrm{R}_{\mathrm{D}}, 8821$ only)			12	pif	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			2.0 V					7
C-2	(CLOCK) (CLOCK, 8821 only)			${ }_{18}^{8.0}$	pf	$+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	5.0 V 5.0 V			2.0 V 2.0 V					7 7

NOTES:

1. All voltage and capacitance meaaurements are, referenced to the ground tarminal. Tarminals not specifically referenced are left electrically open.
2. All measurements are taken with ground pitn Hed to zero voits.
3. Positive current flow la defined as into the terminal referenced.
4. Positive NAND Logic definition: "UP" Level = " 1 ", "DOWN" Levet $=$ " 0 ".
5. Precautionarymeazures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings shauld the ísolation diodes become forward biased.
6. Measurements apply to each element independently
7. Capacitance as mpasured on Boonton Electronic Corporation Model 75A-S8 Capacitance Bridge or equivatent. $f=1 \mathrm{MHz}, V_{a c}=25 \mathrm{~m} \mathrm{~V}_{\mathrm{rms}}$. All pins not specifically referenced are tied to guard for capacitance tests. Output pint are left open.
8. Outpat source current is supplied through a resiotor to ground
9. Output sink current is supplled through a resistor to Vec.
10. One DC fan-out is defined as 0.8 mA
11. One AC fan-out is deflned as sopf.
12. This test guarantees operation frce of input latch-up over the speoffied uperating power supply woltage range.
13. Mantiacturer reserves the right to make design and procest changes and improvements.
Detalled test conditions for AC testing are \ln Section 3 .
14. Test conditiona and limits for the Set Input are not applicable to the S82z.
15. For 8822 , momentarily apply zero volts to Q and $V_{C C}$ to Q to ensure alste of the binary element prior to teat measurement,
16. For clock tetta, groumd Y and K. For J, K and S_{D} tests, ground clock. For F_{D} teats, ground J on 8821 and elock on 8822 and 8824.

JPACKAGE

The 8825 is a high-speed, direct-coupled, J-K Binary which responds to the positive transition (rising edge) of the clock pulse. For logic flexibility, two J, two K, an inverting J and an inverting K, inputs are provided. Separate set (S_{D}) and reset (R_{D}) lines are available when asynchronous operation is required. To prevent system errors, logic inputs are locked out approximately 10 ns after the clock threshold voltage is reached. This feature prevents more than
one logic transition per clock pulse.
The characterization of each logic element in the 8000 -Series includes loading rules for driving the 8825. A convenient summary of these DC loading rules is provided in Table 1-4, Scction 1.

Applications and usage rules for the 8825 may be found in Section 4.

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 14)

$\begin{aligned} & \text { ACCEMTANCE } \\ & \text { TEST } \\ & \text { SUB CROLY } \end{aligned}$	characteristic	LIMITS				TEST CONBITIONS												
		MIN.	TYP.	max.	OnIT	TEMP. 58825	$\begin{aligned} & \text { TEMP } \\ & \text { NSE25 } \end{aligned}$	$v_{\text {ce }}$	SFP	neset	DRIVEN TNPUT	J_{1}, J_{2}	J	κ_{1}, κ_{2}	$\overline{\mathrm{K}}$	Clokk	gutput	Fites
$\begin{aligned} & \begin{array}{l} A-5 \\ A-3 \\ A-3 \end{array} \end{aligned}$	"1" nUTPUT VOLTAGE (Q)	$\begin{aligned} & \hline 2.6 \\ & 2.6 \\ & 2.6 \end{aligned}$			V	+ $+\begin{aligned} & -55^{\circ} \mathrm{C} \\ & +28{ }^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C}\end{aligned}$	O+ $+25^{\circ} \mathrm{C}$ $.755^{\circ} \mathrm{C}$	1.75 V 5.0 V 4.75 V	$0.8 V$ $3.8 v$ $0.8 V$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 2.0 \mathrm{v} \\ & 2.0 \mathrm{v} \end{aligned}$						$\begin{aligned} & \text { ov } \\ & \text { ov } \\ & \mathbf{o v} \end{aligned}$		-
$\begin{aligned} & A-5 \\ & A-3 \\ & A-3 \end{aligned}$	-1. output voltage ($\overline{1}$)	$\begin{aligned} & 2.6 \\ & 2.6 \\ & 2.6 \end{aligned}$			v	$-555^{\circ} \mathrm{C}$ $+23^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$10{ }^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+755^{\circ} \mathrm{C}$	$4.75 y$ 5.04 4.75 V	2. 04 2.04 2.04	0.8 V $0 . \mathrm{BV}$ 0.8 BV						OV ov ov		3 8 8
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	"o" output voltage 			$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$	v	$-555^{\circ} \mathrm{C}$ $1255^{\text {C }}$ -1256	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75 \%$	4.75 y 3.0V 4.756	a.0V 2.07 2.00	c.evy 0.8 y 0.8 y						ov OV OV		9 9 9
A-5 A-3 A -4	"0" odtrut voltage (2)			0.40 0.40 0.40 0.40	v v v	$-55^{\circ} \mathrm{C}$ 825 $-1255^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+23^{\circ} \mathrm{C}$ $+755^{\circ} \mathrm{C}$	$4.7 \times \mathrm{y}$ S. l 4.75 V	0.802 $0.80 V^{2}$ 0.80%	$\begin{aligned} & 2.0 \mathrm{y} \\ & \text { 8. } 0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$						OV 0 V ov	16 mA 16 man 18 ma	9 3 9
$\begin{aligned} & C-1 \\ & \mathrm{~A}^{3} \end{aligned}$	"D" INPLT: CuARENT $\mathrm{J}_{1}, \mathrm{~J}_{2}, \bar{J}, K_{1}, \mathrm{~K}_{2}, \overline{\mathrm{~K}}$, clock			-1.8 -1.6 -1.6	$\mathrm{min}_{\substack{\text { mad } \\ \mathrm{mua}}}$	- $\begin{aligned} & -55^{\circ} \mathrm{C} \\ & -25{ }^{\circ} \mathrm{C} \\ & -125^{\circ} \mathrm{C}\end{aligned}$	$0 . \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25 V 5.35 V 5.25 V			0.40 V 0.40 V 0.40 V							12 12 12
C. $\mathrm{A}-3$ $\mathrm{C}-1$	"C" Inpur curbent SET, HESET			-3.2 -3.2 -3.2	$\operatorname{ras} A$ $m A$ $m A$		$0 \cdot \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25 V 5.25 V 5.25 V			0.40 V 0.40 V 0.40 V		$\begin{aligned} & \text { ey } \\ & i 4 \\ & 0 \psi \end{aligned}$		$\begin{aligned} & \text { ov } \\ & \text { ov } \\ & \text { ov } \end{aligned}$	oy OV ov		
A-4	- I infug current $\mathrm{s}_{1}, \mathrm{~J}_{2}, \bar{\jmath}, \mathrm{~K}_{2}, \mathrm{~K}_{2}, \bar{k}$, CLOCK			40	${ }^{4} \mathrm{~A}$	$+125^{\circ} \mathrm{C}$	+75*	5. ov			4. 54							
A-4	"1" tnpt:T curnent SET, RESET			80	$\mathrm{H}^{\text {A }}$	$-125^{\circ} \mathrm{C}$	* $75{ }^{\circ} \mathrm{C}$	5,0v			4.54					DV		
A-6	tirn-on delay			50	n5	$+35 \%$	+230 ${ }^{\circ}$	5.04									D.C. F.C-20	15
A-5	TURN-OFF DELAY			30	n5	$+45 \cdot \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V									D.c. F.O. $=20$	15
c. 2	OUTPUT FALL TIME			51	${ }^{8}$	$-55^{\circ} \mathrm{C}$	$0^{\prime} \mathrm{C}$	4.75 V									A.C. F.C. $=0$	11, 15
A-8	Togele rate MINIMUM INPCT SET-CP TIME	15	15		$\mathrm{orgz}_{\mathrm{OB}}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$		5.0y 5. V,										$\begin{aligned} & 15 \\ & 15 \end{aligned}$
			10		ก\%	$\div 25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.04										15
C-2	input capacitance $\mathrm{J}_{1}, \mathrm{~J}_{2} \cdot \bar{J}, \mathrm{~K}_{2}, \mathrm{~K}_{2}, \overline{\mathrm{~K}}, \text { CLOCK }$			3.0	pi	+250 ${ }^{\circ}$	$+25^{*} \mathrm{C}$	5.0y			2.0 v							7
c-2	input capacitance SET, RESET			6.0	pt	*25* ${ }^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	5.04			2.04							
A-2	power consumptjon		30	132	anw	-25 ${ }^{\circ} \mathrm{C}$	4850 C	S.25v								0 v		
c-1	infulí latch volitace all ENPUTS	0.5			v	-250 ${ }^{\circ}$	$+23^{\circ} \mathrm{C}$	5.04			10 mA							13
A-2	OETPDT SHORT CIACIT CORRENT Q	$\begin{aligned} & -20 \\ & -20 \end{aligned}$		$\begin{gathered} 70 \\ \because 0 \end{gathered}$	$m_{m A}^{m A}$	$\begin{aligned} & +23^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \% \mathrm{C} \\ & -25 \cdot \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & \mathrm{s.0V} \end{aligned}$	ov	riv						$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{y} \end{aligned}$	$\begin{aligned} & \text { (i4 } \\ & 04 \end{aligned}$	

Notes:

All voltage ansl capacitarce measurements are referenced to the ground terminal. Terminals not specsfically referenced are left electrically upen.
2. All measurements are tuken with groancl pin lict to zeros volts.
3. Postive current fow is clefined as Into the terminal referencel.

- Poritive Nand togic: definition; "LP" Level "1", "DONN"Level - 0 "
- Precautionary measures shoukd be taken tu tinsure current 'imiting in accordance with Ahsolutr Maximum fatings shoukl the isolntion diodes become forward hiased

7. Bensurements apply to ench fate element incepercienlly.
8. Capacitance as measured on Boonton Electronjc Corporatlon Holel 75A-58 Capacicance bringe or equivalent. 1-1MFIz, vac-25thV rus. Alt pitus not specifleally fierrenced are tied to ghard for capacitance teatr. Outpal pine are left open.

Qutput source current is supplied through a resistor ground
5. Output sink current is supplied through a resistor to Vec-
10. One DC fan-uut it definert as 0.8 mA
12. Inpul current measurements at J_{1}, J_{2} require \bar{J} - CLOCN - zerovolta and momen mpul carrent meast ments at $\mathrm{J}_{1} \mathrm{~J}_{2}$ equrements at $\mathrm{K}_{1}, \mathrm{~K}_{2}$ resuire R CLOCK aero volts and momantarily ground SET.
13. Thip test guarantees operation free of input latch-up over the specified operating power supply voltage range.
14. Manufacturer reserves the right to make design and process changes and improvements.
15. Detailed test conditions for $A C$ testing are in Section 3.

The 8826 is a capacitively coupled, high-speed, Dual $J-K$ Binary intended for use in systems requiring storage and counting rates up to 25 MHz . Two completely separate binaries are provided with common connections only at $V_{c c}$ and ground. Separate J, K, Clock, Q and \bar{Q}, and Reset lines are provided for each binary. The AC clock steering network provides high speed operation with low power consumption.

This element responds to the trailing or negativegoing transition of the clock pulse. The Reset line may be activated regardless of the state of the clock.
Characterization of each logic element in the 8800 group includes loading rules for driving the 8826. A convenient summary of these AC loading rules is provided in Table 1-5, Section 1.
Detailed usage and applications information may be found in Section 4.

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 15)

$\begin{gathered} \text { ACCEPTANCE } \\ \text { TEST } \\ \text { SUB-GROLP } \end{gathered}$	CHARACTERISTIC	Limits				TEST CONDITIONS								
		MIN.	TYP.	MAX.	UNITS	$\begin{aligned} & \text { TEMP. } \\ & \text { 88826 } \\ & \hline \end{aligned}$	TEMP.	Vec	RESET	CLOCK	J	K	OUTPUT	NOTES
$\begin{aligned} & A-3 \\ & A-3 \\ & A-4 \end{aligned}$	$\begin{aligned} & \text { "I' OUTPUT VOLTAGF } \\ & \ell_{1}, Q_{2} \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.8 \\ & 2.6 \end{aligned}$			v v v	$-55^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $129^{\circ} \mathrm{C}$ $-75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	2.0 V 2.0 V 2.0 V				$-250 \mu A$ $-2.0 \mu A$ $-250 \mu A$	$\begin{array}{ll}8, & 12 \\ 8, & 12 \\ 8, & 12\end{array}$
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	$\begin{gathered} \prime \prime \prime \prime \text { OU'TPUT VOLTAGE } \\ \bar{Q}_{1} \cdot \bar{Q}_{2} \end{gathered}$	$\begin{aligned} & 2.6 \\ & 2.8 \\ & 2.6 \end{aligned}$			v V v	$-55^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ $-75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	$\begin{aligned} & 0.8 \mathrm{yy} \\ & 0.8 \mathrm{y} \\ & 0.7 \mathrm{y} \end{aligned}$				$\begin{aligned} & -2 J 0 \mu \mathrm{~A} \\ & -250 \mu \mathrm{~A} \\ & -250 \mu \mathrm{~A} \end{aligned}$	8 8 8
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	"0" OUTPUT VOLTAGE Q_{1}, Q_{2}			0.40 0.40 0.40	v v v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $.125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	$1.75 y$ 5.0 V 4.75 V	0.8 v 0.8 y 0.7 v				B. OMA B. $0 \mathrm{~mA} A$ $8.0 \mathrm{~mA}^{4}$	9 9 9
$\begin{aligned} & A-6 \\ & A-3 \\ & A-4 \end{aligned}$				0.40 0.40 0.40	v v	$-55{ }^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0 . \mathrm{C}$ +2.5 +7.5 .$+^{\circ} \mathrm{C}$	4.75 V 6.0 V 4.75 V	2.0 V 2.0 V 2.0 V				8. 0 mA 8. 0 mA 8.0 mA	8,12 9,12 9,12
C-1 $\mathrm{A}-3$ $\mathrm{C}-1$	O" INPUT Clirrent $\mathrm{J}_{1}, \mathrm{~K}_{1}, \mathrm{~J}_{2}, \mathrm{~K}_{2}$			-2.4 -2.4 -2.4	ma ma mA	$-65^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25 V 5.25 V 5.25 V			0.40 y 0.40 V 0.40 V	0.40 V 0.40 V 0.40 V		
C-1 $\mathrm{A}-3$ $\mathrm{C}-1$	"O" INPUT CURRENT RFSET , ARSET			-2.0 -2.0 -2.0	mA mA mA	$-515{ }^{\circ} \mathrm{C}$ $+255^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$00^{\circ} \mathrm{C}$ +2.5 $+7.5^{\circ} \mathrm{C}$	55.25y	0.10 V 0.40 V 0.40 v					
$\begin{aligned} & C-1 \\ & \mathrm{~A}-3 \\ & \mathrm{C}-1 \end{aligned}$	$\begin{gathered} " D^{\prime} \text { INPUT CCIRENT } \\ C_{P_{1}}, C_{P}(C L O C K) \end{gathered}$			$\begin{aligned} & -10 \\ & -10 \\ & -10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$125^{\circ} \mathrm{C}$ $-255^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$-2.5{ }^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ $-7.3^{\circ} \mathrm{C}$	as. $\begin{aligned} & \text { in } 25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V}\end{aligned}$		$\begin{aligned} & 0.40 \mathrm{~V} \\ & 0.40 \mathrm{~V} \\ & 0.10 \mathrm{~V} \end{aligned}$				
A-1	"1" WPPLT CURRENT $\mathbf{J}_{1}, \mathbf{J}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$, RESET $_{1}$, RESET $_{2}$			2.5	$5 \cdot \mathrm{~A}$	$+125^{\circ} \mathrm{C}$	*7.5. ${ }^{2}$	5.0 V	1.5V		4.5v	t. 5 SV		13
A-H	$\begin{aligned} & \text { 1NPI:I CIRRANNT } \\ & \mathrm{CP}_{1}, \mathrm{C}_{\mathrm{P}_{2}},(\mathrm{CLOCK}) \end{aligned}$			25	$\mu \mathrm{A}$	$+1233^{\circ} \mathrm{C}$	17.508	ก. ov		4. i V				
A-2	POWER CONSUMPTION (Per Binary)			04	mw	-2.30 ${ }^{\circ} \mathrm{C}$	-2:30	5.23y						
A-2	$\begin{aligned} & \text { OUTPUT SHORT CIRCUIT CURRENT } \\ & Q_{1}, Q_{2} \text { ONLY } \end{aligned}$	-20		-70	mA	$-27^{\circ} \mathrm{C}$	$+2.3^{\circ} \mathrm{C}$	6.0 V	04				0 V	
C-1	INPU'T LATCH VOLTAGE $C_{F_{1}}, C_{P_{2}}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$		6.0	v	$\begin{aligned} & +255^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{~V} \\ & 3.0 \mathrm{~V} \end{aligned}$	10 mA	104.	10 mA	10 mA		13, 14
A-15	TUİN-GN DELAY			35	$n 5$	$-25^{\circ} \mathrm{C}$	$-2.3^{-} \mathrm{C}$	$\therefore \mathrm{ab}$					D.C. F.O. -10	10, 16
A-6	TURN-GFF OELAY			20	ns	$125^{\circ} \mathrm{C}$	-2.35	5.0 V					1.C.F.C. 10	10,15
A-C	TOGGLE RATE	25			MHz	$-23^{\circ} \mathrm{C}$	$+2.3^{\circ} \mathrm{C}$	-5. OV						16
C-2	OUTPUT FALL TIME			50	п\%	${ }^{-55^{n} \mathrm{C}}$	$0^{\circ} \mathrm{C}$	4.75 V					A.C. F.c. 2	11, 16
C-2	INPUT CAPACITANCE $\mathrm{J}_{1} . \mathrm{J}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$, RESE'T1 $_{1}$, RESET 2			3.0	pf	$+25^{\circ} \mathrm{C}$	$+2.50$	3.0v	2.0 V		2.04	2.0 V		7
C-2	inpit capacitance. ${ }^{C} \mathbf{p}_{1}, C_{1_{2}},(C L O C K)$			(6)	$\mathrm{pf}^{\text {f }}$	$126 .{ }^{\circ} \mathrm{C}$	$12.9{ }^{\circ} \mathrm{C}$							7
A-6	C.LOCK MODE HOLDING TEST			10	ns	- $25^{\circ} \mathrm{C}$	$+25^{*} \mathrm{C}$	5. 1 V		Plusic.				16
A- 49	CLOCK MODE SWITCling test			50	ns	$+25^{\circ} \mathrm{C}$	$+23^{\circ} \mathrm{C}$	3.04		PULSE				16

Notes:

1. All voltage and capacitance measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open
2. All measurements are taken with ground pin tied to zero volts.
3. Posltive current flow is defined as ato the rerminal referenced.
4. Positive NAND Lofic definition: "Ol" Level $=$ " 1 ", "DOWN" Level \cdot " 0 ".
5. Precautionary measures should be takent to ensure" current limiting in accordance with Absolute Maximum Hatings should the isolation diodes become forward blased.
6. Heasurements apply to each element independently.
7. Capacitance as measured on Bumbton Electronic Corporation Model 76A-S8Capacilance Bridge or equivalent. i $-1 \mathrm{MHz}, V_{Q c}=25 \mathrm{mV}$ yms. All pins not speciltcally relerenced are tied to guard for apacitance tests. Output pins are left open.
ground
8. Cutput sink eurrent is supplicd through a resistor to vee.
9. Ore DC fant-nut is defined as 0.8 mA

1t. One AC fan-out is defined as 50 pf .
12. Momentarily apply zero volts to \bar{Q} and $V_{c c}$ to Q to ensure state of the binary element prior to test measurement.
13. To test " 1 " INPUT CURRENT AND LATCH VOLTAGE RATING for J and RESET, ensure $Q=$ " 0 ". To test "L" INPUT CURAENT AND LATCH VOLTAGE RATING for K, emsure Q - " 0 ".
14. This test guarantees operallon free of impud lateh-up over the specified operating power supply voltage range.
15. Manufacturer reserves the right to make design and process changes and improvementa.
18. Detailed test conditions for AC testing are in Section 3.

J PACKAGE

8826

BASIC CIRCUIT SCHEMATIC

TRUTH TABLE

J_{n}	K_{n}	Q_{n+1}
0	0	Q_{n}
1	0	1
0	1	0
1	1	\bar{Q}_{n}
$\overline{\mathrm{R}}_{\mathrm{D}}=0 \Rightarrow \mathrm{Q}=0$		

n is time prior to clock $n \cdot 1$ is time following clock

8827 DUAL J-K BINARY

The 8827 is a Dual J-K Binary especially suited to high-speed parallel load counter and shift register applications. The clock and asynchronous reset inputs on the two binaries are common to allow separate $\mathrm{Q}, \overline{\mathrm{Q}}, \mathrm{S}_{\mathrm{D}}$ (asynchronous set) and J and K . The $\mathrm{S}_{\mathrm{D}} / \mathrm{R}_{\mathrm{D}}$ lines may be activated regardless of the state of the clock.

The clock input of the 8827 is capacitively coupled;
clocking is effected on the negative moing transition of the clock pulse. All elements in the 8000 Series are characterized for AC fan-out to assure compatible operation under worst case conditions.

Table 1-5 of Section 1 summarizes AC loading guarantees for the 8827 .

Section 4 provides detailed usage suggestions and applications.

BASIC CIRCUIT SCHEMATIC

truth table

n is time prior to clock
$\mathrm{n}-1$ is time following clock
$\dagger=$ both outputs in "1" state

A PACKAGE

JPACKAGE

ELECTRICAL. CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 14)

$\begin{gathered} \text { ACCEFTANCE } \\ \text { TEST } \\ \text { SUB-GHOUP } \end{gathered}$	CHARACTERISTIC	LIMITS				TEST CONDTTJONS									
		Min.	T YP.	Max.	UNITS	$\begin{array}{\|c\|} \hline \text { TENP. } \\ \text { \$8827 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { TEMP. } \\ \text { N3927 } \\ \hline \end{array}$	${ }^{\mathrm{Cb}}$	IEESET	Ster	cluck	J	K	OUTPU'	NOTES
A -5	"1" OUTPLT VOLTAGE	2.8			V	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	1.75 V	2.0 V	0.8 V				-250,4	8
A-3	Q_{1}, Q_{2}	2.9			Y	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V	2.0 V	0.88				-250pA	8
A 41		2.8			V	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	4.75 V	2.0 v	0.7 V				-250aA	8
A-5	"1"OUTPLT VOLTAGE	2.6			y	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$4.75 \mathrm{~V}^{\circ}$	0.9 V	2.0 V				-250¢ μ A	8
A-3	\bar{Q}_{1}, \bar{Q}_{2}	2.A			ϑ	+25 ${ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V	0.9 V	2.0 V				$-250{ }_{\mu} \mathrm{A}$	8
A-d		2.6			V	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	4.75 V	0.7 V	2.0 V				$-250) \mu \mathrm{A}$	8
A-5	*O" UUTHET VOLTAGE			0.4	v	$-5.5{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	1.75 v	0.9 V	2.05				8.0 mA	9
A-9	Q_{1}, Q_{2}			0.4	v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V	0.8 V	2.0 V				5.0 mA	9
A-4				0.4	v	$+125^{\circ} \mathrm{C}$	$-75^{\circ} \mathrm{C}$	4.75 V	0.7 V	2.0 V				8.0 mA	9
A-5	"O"OUTPUT VOLTAGE			0.4	V	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 v	2.0 V	0.85				$\cdots .0$ mA	9
A- 3	$\overline{\mathrm{Q}}_{1}, \bar{Q}_{2}$			0.4	V	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00v	2.0 v	0.8v				H.9mA	9
A-4				0.4	v	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	4.75 v	2-0v	0.7 V				9.0 ms S	9
C-1	"u" INPUT CURRENT	-0.1		-2.4	mA	-55 ${ }^{\circ}$	$0^{\circ} \mathrm{C}$	5.254				0.4 V	0.45		
A-:3	$\mathrm{J}_{1}, \mathrm{~K}_{1}, \mathrm{~J}_{2}, \mathrm{~K}_{2}$	-0.1		-2.4	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V				0.4 V	0.4 v		
C-1		-0.1		-2.4	mA	${ }^{12} 25^{\circ} \mathrm{C}$	+730 ${ }^{\circ} \mathrm{C}$	5.25 Y				0.4 V	0.4 V		
C-1	*O' INPUT CURRENT	-0.1		-4.0	mA	$-53^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5,25v	0.4 V						
A - 3	RESE'T	-0.1		-4.0	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.255	0.4%						
C 1		-0.1		-4.0	mA	$+125^{\circ} \mathrm{C}$	+75 ${ }^{\circ} \mathrm{C}$	5.25 V	0.4%						
C-1	"G's' INFUT CURTIFNT	-0.1		-2.0	mA	- $5^{\circ} \mathrm{C} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.255		$0.4 V$					
A-3	$\mathbf{S E T}_{1}, \mathbf{S E T}_{2}$	0.1		-2.0	mA	$125^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V		0.47					
C-1		-0.1		-2.0	mA	$+125^{\circ} \mathrm{C}$	+75 ${ }^{\circ} \mathrm{C}$	5.25 V		0.4 V					
C-1	"O゙ INPUT CURRENT	-0.1		-30	$\mu \mathrm{A}$	$35^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25 v			0.4 V				
A-3	ClUCK	-0.1		-20	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 y			0.4 y				
r.]		-0.1		-20	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	+ $35{ }^{\circ} \mathrm{C}$	5.25 y			0.4 V				
A-4				25	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	+ $75^{\circ} \mathrm{C}$	3.004		4.5 V		4.5 V	4.5 V		12
A-4	$\begin{aligned} & \text { " } 1 \text { " INPM'T CURIREN' } \\ & \text { RFSET } \end{aligned}$			50	$\mu \mathrm{A}$	+123 ${ }^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5,00v	4.5 V						
A.4	$\begin{aligned} & " 1 " \text { NFUT CURRENT' } \\ & \text { CLOCK } \end{aligned}$			50	$\mu \mathrm{A}$	$\cdot 125^{\circ} \mathrm{C}$	+75 ${ }^{\circ} \mathrm{C}$	5.004			4.5 ${ }^{\prime}$				
A. 2	POWER CONSUMPTION (Per Binary)			0.4	mW	$+25^{\circ} \mathrm{C}$	+25 ${ }^{3} \mathrm{C}$								
A-2	OUTPUT SHORT CIRCUIT CURRENT \bar{Q}_{1}, \bar{Q}_{2}	-20		-76	mA	$+23^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.004	19 4					OV	
A-2	OUTPUT SHORT CIRCUIT CURRENT $Q_{1} \cdot Q_{2}$	-20		-70	-IA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V		0 y				0 V	
C-1	INPUT LATCIS VOLTAGE $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}, \mathrm{RESET}, \mathrm{SET}_{1}, \mathrm{SET}_{2}$,	5.5			v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V	10 mA	10 mA		10 mA	10 mA		12, 13
	CLOCK	5,0		6,0	v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.004			104A				
A-6	TURN-ON DELAY			. 35	ns	+25 ${ }^{\circ} \mathrm{C}$	+25 $5^{\circ} \mathrm{C}$	5.004						D.C.F.O $=10$	10, 15
A-6	TURN-OFF DELAY			20	¢	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00\%						D.C.F.O=10	10, 15
A-6	toggle rate	25			MHz	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 Y							15
C-2	OUTPUT FALL TIME.			50	ns	$-35^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V						A.C.F,O=2	11, 15
c-2	INPUT CAPACITANCE $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}, \mathrm{SET}_{1}, \mathrm{SE}_{\mathrm{E}} \mathrm{~T}_{2}$			3.0	pi	$+25^{\circ} \mathrm{C}$	$\cdot 25^{\circ} \mathrm{C}$	5.00 y		2.0 V		2.0 V	2.0 V		7
c-2	INPUT GAPACITANCE RESE'T			6,0	pi	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 v	2.0 V						7
C-2	input capacitance. CLOCK			100	pr	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$								7
A-6	CLOCK MODE HOLDING TEST			10	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V			PULSE				15
A-6	CLOCK MODE SWIICHING TEST			50	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V			PULSE				15

NOTES:

1. All voltage and capacitance meagurements are referenced to the ground terminal. Terminals not specifically referenced are left electrisally upen,
2. All measurements are taken with ground pintied to zaro volts,
3. Positive current flow is defined as into the terminal referenced,
4. Positive NAND Logic derinition: "UP" Level $=$ " 1 ", "DOWN" Level = " 0 ".
5. Precantionary measuras should be taken to ensure current limiting in accordatce with Absolute Maximum Ratiogs should the isolation diodes become forward blased,
6. Measurements apply to each element independently

Capacitance as mespured on Foonton Flectronic Corporation Mode1 73A-88 Capacitance Bridge or equivalent. $F=1 \mathrm{MHz}, V_{\mathrm{ac}}=25 \mathrm{~m} V_{\mathrm{rms}}$. All pins not spectically referenced are thed to guard for capacitance testo. Output pins are left open.
8. Output soarce current is supplied through a resistor to stound.
9. Output sink current is supplied through a resistor to $\mathrm{V}_{\mathrm{cc}}{ }^{+}$
10. One $D C$ tan-out is defined as 0.8 raA
11. One AC fan-out is defined as 50 pf .
12. Totest "1" INPUT CURFENTiand LATCH VOLTAGE RATING for J and RESERT, ensure $Q={ }^{\prime \prime} 0 "$, To test " $\mathbf{I}^{\prime \prime}$ INPUT CURRENT and LATCH VOLTAGE RATING for K and SET, ensure $\bar{Q}=10$.
13. This testguarantees uperation free of imput latch-up ower the specified operating power supply voltage range.
14. Manufacturer reasives the right to make design and process changes and improvements. 15. Detatited teat corditions for AC teating are in Section 3.

8828

The 8828 is a Dual Delay (D) Binary which responds to the positive-going transition of the clock pulse. Each binary has one synchronous logic input (D), a clock line, complementary outputs, and asynchronous set and reset lines. The logic level defined at the D input, prior to activation of the clock, appears at the Q output upon activation of the clock.

The delay binary is ideally suited for general application in shift registers and ripple counters.

Detailed usage rules and suggested applications for the 8828 may be found in Section 4 of the handbook.

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 13)

$\begin{gathered} \text { ACCEPTANCE } \\ \text { TEST } \\ \text { SUB-GROUP } \end{gathered}$	Characteristic	t.IMIT				TEST CONDTTIONS								
		MIN.	TYP.	MAX.	UNIT'S	$\begin{gathered} \hline \text { TEMP, } \\ \text { S8828 } \end{gathered}$	$\begin{aligned} & \text { TEMP, } \\ & \text { N8828 } \end{aligned}$	Yce	RESET	SET	CLOCK	D	OLTPUT	NOTES
$\begin{aligned} & \mathrm{A}-5 \\ & \mathrm{~A}-3 \\ & \mathrm{~A}-4 \end{aligned}$	"I"OLTPLT VOLTAGE (Q_{1}, Q_{2})	2.6 2.8 2.6	2.8 3.1 3.4		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	2.0 V 2.0 V 2.0 V	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 0.8 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$			$\begin{aligned} & -500 \mu \mathrm{~A} \\ & -500 \mu \mathrm{~A} \\ & -500 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \end{aligned}$
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	" 1 ' OLTPUT VOLTAGE ($\left.\overline{\mathrm{Q}}_{1}, \bar{Q}_{2}\right)$	2.6 2.4 2.6	2.8 3.1 3.4		V V	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+26^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	0.8 V 0.8 V 0.8 V	2.0 V 2.0 V 2.0 V			$\begin{aligned} & -500 \mu \mathrm{~A} \\ & -500 \mu \mathrm{~A} \\ & -500 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \end{aligned}$
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	"O" OLTPUT VOLTAGE (Q_{1}, Q_{2})		0.30 0.30 0.30	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+26^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 6.0 V 4.75 V	0.8 V 0.8 V 0.8 V	2.0 V 2.0 V 2.0 V			16 mA 16 mA 16 mA	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$
$\begin{aligned} & A-5 \\ & \text { A }-3 \\ & \text { A }-4 \end{aligned}$	"0" OUTPUT VOLTAGE ($\left.\overline{\mathrm{Q}}_{1}, \overline{\mathrm{Q}}_{2}\right)$		0.30 0.30 0.30	0.40 0.40 0.40	V v v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	2.0 V 2.0 V 2.0 V	0.8 y 0.8 V 0.8 V			16 mA 16 mA 16 mA	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$
$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~A}-3 \\ & \mathrm{C}-1 \end{aligned}$	'0' INPUT CURRENT ($\left.\mathrm{D}_{1}, \mathrm{D}_{2}\right)$	$\begin{aligned} & -0.1 \\ & -0.1 \\ & -0.1 \end{aligned}$	-1.3 -1.3 -1.3	-1.6 -1.6 -1.6	mA m. mA	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $-25{ }^{\circ} \mathrm{C}$ $-75^{\circ} \mathrm{C}$	5.25V 5.25v 5.25 V			$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{y} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.40 \mathrm{~V} \\ & 0.40 \mathrm{~V} \\ & 0.40 \mathrm{~V} \end{aligned}$		
$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~A}-3 \\ & \mathrm{C}-1 \end{aligned}$	$\begin{gathered} " O " \text { INPUT CURRENT } \\ \left\{\mathrm{SET}_{1}, \mathrm{SET}_{2}\right\} \end{gathered}$	$\begin{aligned} & -0.1 \\ & -0.1 \\ & -0.1 \end{aligned}$	-2.5 -2.5 -2.5	-3.2 -3.2 -3.2	mA mA (as	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5. 25 v 5.25 V $5,25 \mathrm{~V}$	bV 0 V OV	$\begin{aligned} & \text { o. } 40 \mathrm{~V} \\ & 0.40 \mathrm{~V} \\ & 0.40 \mathrm{~V} \end{aligned}$				9 9 9
$\begin{aligned} & \mathrm{C}-1 \\ & \mathrm{~A}-3 \\ & \mathrm{C}-1 \end{aligned}$	$\begin{aligned} & \text { "O" INPUT CURRENT } \\ & \left(\text { CLOCK }_{1}, \text { CLOCK }_{2}\right) \end{aligned}$	$\begin{aligned} & -0.1 \\ & -0.1 \\ & -0.1 \end{aligned}$	-2.5 -2.5 -2.5	$\begin{aligned} & -3.2 \\ & -3.2 \\ & -3.2 \end{aligned}$	mA $m A$ min	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +225^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	5. 25 V 5.25 V 5.25 V			$\begin{aligned} & 0.40 \mathrm{~V} \\ & 0.40 \mathrm{~V} \\ & 0.40 \mathrm{~V} \end{aligned}$			
$\begin{aligned} & C-1 \\ & A-3 \\ & C-1 \end{aligned}$	$\begin{aligned} & " 0 " \text { INPUT CURRENT } \\ & \text { (RFSET }{ }_{1} \text {, RESET }{ }^{2} \end{aligned}$	$\begin{aligned} & -0.1 \\ & -0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & -3.3 \\ & -3.3 \\ & -3.3 \end{aligned}$	$\begin{aligned} & -4.8 \\ & -4.8 \\ & -4.8 \end{aligned}$	$\begin{aligned} & m A \\ & m A \\ & m A \end{aligned}$	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	5.25 V 5. 25 V 5.25 V	0.40 V 0.40 V 0.40 V	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$				10 10 10
$\begin{aligned} & C-1 \\ & C-1 \\ & A-4 \end{aligned}$	$\begin{aligned} & " 1 \text { ': }{ }^{(N P U T} \text { CURRENT } \\ & \left\{\mathrm{D}_{1}, \mathrm{D}_{2}\right\} \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mu \mathbf{A} \\ & \mu \mathbf{A} \\ & \mu \mathbf{A} \end{aligned}$	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	5.0 V 5.0 V 5.0 V	0 V OV 0 V			4.5 V 4.5 V $\mathbf{4} .5 \mathrm{~V}$		
$\begin{aligned} & c-1 \\ & C-1 \\ & \Lambda-4 \end{aligned}$	$\begin{gathered} \text { "1" INPMT CURHENT } \\ \left\{\text { SET }_{1}, \text { SE'T }_{2}\right\} \end{gathered}$		20 20 20	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	μ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.0 V 5.0 V 5.0 V		$4.5 V$ 4.54 $4.5 V$				11 11
$\mathrm{C}-1$ $\mathrm{C}-1$ $\mathrm{~A}-4$	1" INPUT CURRENT ($\mathrm{CLOCK}_{1}, \mathrm{CLOCK}_{2}$)		20 20 20	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ $.255^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.0 V 5.0 V 5.0 V	0V 0 V 0 V		$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$			
$\mathrm{C}-1$ $\mathrm{C}-1$ $\mathrm{~A}-4$	$\because 1 "$ INPUT CURRENT (RESET $_{1}$, RESET $_{2}$)		30 30 30	$\begin{aligned} & 75 \\ & 75 \\ & 75 \end{aligned}$	${ }_{\mu}^{\mu \mathrm{A}}$	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $4.75^{\circ} \mathrm{C}$	5.0 V 5.0 V 5.0 V	4.5 V 4.5 V 4.5 V		OV OV OV	OV 0 V OV		12
A-2	POWER CONSUMPTION (Par Blnary)			610	mW	$425^{\circ} \mathrm{C}$	$425^{\circ} \mathrm{C}$	5.25 V			OV	OV		
A -2	OUTPUT SHORT CIRCUT CURRENT $\left(Q_{1}, Q_{2}\right)$	-10		-55	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V		OV			OV	
A-2	OUTPUE SHORT CIRCUIT CURHENT $\left(\bar{Q}_{1}, \dot{Q}_{2}\right)$	-10		-55	ma	$+25^{\circ} \mathrm{C}$	$\pm 25^{\circ} \mathrm{C}$	5.0 V	OV				0 V	
C-1	INPUT LATCH VOLTAGE $\mathrm{D}_{1}, \mathrm{D}_{2}$, $\mathrm{CLOCK}_{1}, \mathrm{CLOCK}_{2}$, CLEAR $_{1}$, CLEAR $_{2}$, PRESET $_{1}$, PRESET $_{2}$)	5.5			v	$\rightarrow 25^{\circ} \mathrm{C}$	$+2.5{ }^{\circ} \mathrm{C}$	5.0 V	10 mA	10 mA	10 mA	10 mA		13
A-6	TURN-ON DELAY		28	50	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V					F.C. $=20$	14, 16
A-6	TURN-OFF DELAY		20	35	ni	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V					$\stackrel{\text { F }}{\text { F }} \cdot \mathrm{C}:=20$	14, 16
C-2	OUZPUT FALL TIME			50	Hs	$-55^{*} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V					$\begin{aligned} & \text { A.C. } \\ & F_{ \pm} O_{,}=6 \end{aligned}$	

Notes:

1. All voltage and capcitance measurements are referenced to the ground terminat. Terminals not specifically referenced are left electricallv open.
2. All measurements are taken with ground pintied to zero volts.
. Positive current flow is defined as into the terminal referenced.
. Positive NAND Loglo defintion: "џF" Level = " 1 ", "DOWN" Level - "0".
Precautionary measures should be taken to ensure current limiting in accordance with Abrolute Maximum Ratings should the ifolation dioves become forward blased
. Measurements apply to each gate elernent independently.
3. Output source current is supplied through a reatstor to ground.
4. Output sink current is gupplied through a resistor to Vec.
5. The SET input is specifled at two standard loads because if $\bar{Q}=" 1$ " when SET goen to " 0 ", the output driving the RET line must be capable of sinking the current fron 4 standard loads to make the חip-flop change state. Oncse the binary state 18 changed, less than 4 loads w ill be seen by the driving gate: 1,4, , when $Q=$ " 0 ".
6. Thls test simulates worst case transient concition, If SEP, RESET, DATA, CLOCK and $Q={ }^{\prime} l^{\prime \prime}$ prior to activating the RESET line, the fate trivim, RESFT must be capable of slnking the curcent from 6 standard loads. Once the fip-flop changes state, i.e., Q^{-}" 0 ", less than 6 standard loads will be seen by the driving qate.
7. To test "I" Input Current for SET imput, momentarily ground SET to ensure Q - " 1 " and $\bar{Q}=" 0 "$ ".
8. To test "1" Input Current for RFSET input, momentarily ground RESET to ensure $Q=" 0$ ".
9. This test guarantees operation free of input latch-up over the specificd operating ower aupply range
10. Onc DC fan-out is defined as 0.8 mA .
11. Manufacturer reserves the right to make design and process changés and improveManufa
ments. Detailed test conditions for $A C$ teating are in Section' 3
12. One AC fan-out is defined as sopt.

8828

BASIC CIRCUIT SCHEMATIC

8829 HIGH SPEED J-K BINARY

The 8829 is a high speed, direct-coupled J-K Binary which responds to the negative transition (falling edge) of the clock pulse. For logic flexibility, three J and three K inputs and asynchronous SET and RESET control lines are provided.

To prevent system errors, the 8829 features clock skew tolerances approximately equal to the clock pulse width. This feature is the result of "lock-out" of the logic inputs on the positive transition of the
clock signal while the outputs are not activated until the negative transition of the clock signal.

The characterization of each logic element in the 8000 series includes loading rules for driving the 8829. A convenient summary of these DC loading rules is provided in Table 1-4, Section 1.

Detailed usage rules and application information may be found in Section 4.

BASIC CIRCUIT SCHEMATIC

8829

ELECTRICAL. CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 14)

	CHARACTERISTIC	TEST LiMLTS				TEST CONDITIONS										
$\begin{aligned} & \text { ACCEPTANCE } \\ & \text { TEST } \\ & \text { SUB-GROUP } \end{aligned}$		MIN.	TYP.	MLAX.	ENTTS	$\begin{gathered} \hline \text { TRMP. } \\ \mathbf{8 8 8 2 9} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { TF,MP. } \\ \text { N日B29 } \end{array}$	Vec	$\overline{\text { SET }}$	EESET	$\begin{aligned} & \text { DRIVEN } \\ & \text { INPUT } \end{aligned}$	J_{1}, J_{2}, J_{3}	$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$	cl.ock	OUTPIT	NOTFS
A-5	"1" OITTPUT VOLTAGE	2.6			v	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V	0.8V	2.10 V				OV	-500¢A	7
A-3	(Q)	2.8			v	$+25^{\circ} \mathrm{C}$	$+25^{4} \mathrm{C}$	$5,00 \mathrm{~V}$	0.8v	2.0 V				Ov	$-500 \mathrm{kA}$	7
A-4		2.6			v	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	4.75 V	0.8V	2.0 V				Ov	-50ckes	7
A-5	"1" OUTPIIT VOITAGE	2.8			V	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V	2.0 V	0.8 V				OV	-500ka	7
A-3	(\%)	2.8			v	$125^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 v	2.0 V	0.8 V				OV	$-500 \mathrm{p} \cdot \mathrm{A}$	7
A-4		2.8			v	$+125^{\circ} \mathrm{C}$	$-75^{\circ} \mathrm{C}$	4.75 V	2.0 V	0.8 V				ov	$-500 \mu \mathrm{~A}$	7
A-5	"0" OUTPIT VOLTAGF.			0.4	v	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V	2.0 V	0.8V				OV	1 mmh	8
A-3	(Q)			0.4	v	$425^{\circ} \mathrm{C}$	-2.5%	5.00 V	2,0N	0.8V				OV	16 mmA	8
A-1				0.4	v	$+125^{\circ} \mathrm{C}$	$-75^{\circ} \mathrm{C}$	4.75 V	2.0V	0.8 V				ov	16 mA	8
A-5	"0" OUTPUT VOLTAGE			0.4	v	$-55^{\circ} \mathrm{C}$	$0{ }^{\circ} \mathrm{C}$	4.75 V	0.8V	2.0 V				Ov	16 mA	8
A-3	(1)			0.4	v	$+25^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	5.00 V	0.8V	2.0 V				ov	16 mA	8
A $=1$				0.4	v	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	4.75 V	0.9 V	2.0 V				OV	16 mA	8
C-1	"0" INPUT CURRENT			-1.6	mA	${ }^{-5} 55^{¢} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25 V			0.4 V					11
A-3	${ }^{\top} \mathrm{T}_{1}, \mathrm{~F}_{2}^{\prime}, \mathrm{J}_{3}, \mathrm{~K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{CLOCK}$	-0.1		-1.6	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V			0.4 V					11
$\mathrm{C}-1$				-1.6	$\mathrm{ma}^{\text {A }}$	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.25 V			0.4 V					11
C-1	"0" INPUT CURRENT			-4.8.	mA	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25 V			0.4 V			Ov		
A-3	$\bar{s}_{D}, \overrightarrow{\mathrm{H}}_{\mathrm{D}}$	-0.1		-4,8	$\mathrm{ma}^{\text {A }}$	$+2.5 \%$	$+25^{\circ} \mathrm{C}$	5.25 V			0.4 V			OV		
C-1				-4.8	mA	$-125^{\circ} \mathrm{C}$	+75\%	5.25 V			0.4 V			OV		
A-4	$\begin{aligned} & " 1 " \text { INPUT CURRENT } \\ & J_{1}, J_{2}, J_{3}, K_{1}, K_{2}, K_{3}, \text { CLOCK } \end{aligned}$			40	$\mu \mathrm{A}$	+125\%	$+75^{\circ} \mathrm{C}$	5.00 V			4.5 V					
A-4	" I " INPUT CURRENT $\bar{s}_{D} \cdot R_{D}$			80	$\mu \mathrm{A}$	$-125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.00 y			4.5 V			Ov		
A-6	TURN-ON DELAY			50	$n \mathrm{~s}$	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V							D.C. F.O. $=20$	15
A-6	TURN-OFF DELAY			50	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V							i.C. F.O. $=20$	4
A-6	TOGGLE RATE	15.			miHz	$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00V								15
C-2	OUTPUT FALL TIME			50	$n 3$	$-55 \mathrm{C}$	$\begin{array}{r}10 \\ \hline 0\end{array}$	4.76 V								$\begin{aligned} & 10,161 \\ & 13,15 \end{aligned}$
	INRUT \&ET-UP TIME		10		ns	$+25^{\circ} \mathrm{C}$	${ }^{2} 25^{\circ} \mathrm{C}$	5.00 V								L3, 15
	INPITT TIME, T_{X}		10		$n \mathrm{n}$	$\cdot 25^{\circ} \mathrm{C}$	- $25^{\circ} \mathrm{C}$	5.00 V								13, 15
C-2	INIUT CAPACITANCE $J_{1}, J_{2}, J_{3}, K_{1}, K_{2}, K_{3}, C L O C K$			3.0	pt	125%	$125^{\circ} \mathrm{C}$	5.00 V			2.0 V					6
C-2	input capacitance δ_{D}, \bar{k}_{D}			6.0	pt	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V			2.0 V					6
A-2	POWER CONSIMMPTION		75	132	mw	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	3.26 v						OV		
C-1	INPUT I_ATCH VOLTAGE ALL INPUTS	5.5			V	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V			10 mA					
A-2	OUTPIT SHORT CHROUTT CERRENT Q	-20 -20		-70 -70	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 6.00 \mathrm{~V} \\ & 5.00 \mathrm{~V} \end{aligned}$	OV	OV				ov ov	$\begin{aligned} & \text { ov } \\ & \text { ov } \end{aligned}$	

NOTES:

1, All voltage and eapacitance measurements are referenced to the ground terminal Terminals not specifically referenced are left efeetrically open
2. All measurements are taken with ground pin tied to zero volts,
3. Positive current flow is defined as into the terminal referenced.
3. Positive current flow is derined as intw the terminal referenced.
5. Frecuutionary meanures should he taken to ensure carrent limiting in accordanee with Absolute Maximum Ratings should the isolation diodes become forward biased
6. Capacitance as measured on Boonton Electronic Corporation Model 75A-58 Capacitance Bridge or equivalent. $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{ac}}=25 \mathrm{~m} \mathrm{~V}_{\mathrm{rms}}$. All $^{\text {A }}$ pins wot specifically referenced are tied to guard for enpachtance tests. Output pips are left open.
7. Output current is supplied through a resistor to grounc.
R. Output sink current is supplied through a rebistor to $V_{C c}$
9. One DC fanout is delined as 0.8 ma .
10. One AC fan-out is felineri as 50pt.
11. Input current measurements at $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$ reouire that Clock $=0 \mathrm{~V}$ and R_{0} be momen larily prounded. Input current measurements at $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$ raqure that clock $=0 \mathrm{y}$ and SD$)$ be momentarily grounded.
12. This test guarantees ojperation free of injut latch-up over the apectfied operathg power supply voltage range.
13. Since lestic "lock-out" occurs on the positive going transitlon of the clock pulae, the logic level present prior to that edge of the clock need only remaln present for an adeitional (ons (typ.). The loglo mputs need not be stabilized again untsl lons (typ.) prlor to the noxi positive transition of the elook. The clonk skew colerance is therefor typically the clock pulse width minuu 10 ms .
14. Manwacturer reserves the right to :nake design and process chabies and improvements.
15. Detailed tout conditions ior AC testing are in Section 3.

8840 DUAL EXPANDABLE AND-OR-INVERT GATE

The 8840 Expandable AND-OR-INVERT Gate may be used to implement the Exclusive-OR, NOR, or any AND-OR-INVERT function. It is designed for highest switching speed while maintaining high fan-out and noise margin.

Nodes are provided at the collcetor and emitter of the second stage pair. This allows expansion of the number of input AND terms and hence increased system usefulness.

The compatibly characterized 8806 Expander is recommended for expansion of the 8840 . See correlation table, opposite page.

Low output impedance in the " 1 " and " 0 " output states ensures maximum AC noise immunity at the output.

General areas of application for the 8840 include half and full adders, digital comparators, and ANDOR control logic for inputs to binary clock steering lines.

Detailed usage rules and specific applications are provided in Section 4 of this handbook.

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 19)

$\begin{gathered} \text { ACCEPTANCE } \\ \text { TEST } \\ \text { GQB-GROUY } \end{gathered}$	CHARACTERISTIC	LIMITS				TEST CONDITIONS						
		MIN,	l'YP.	MAX.	UNITS	$\begin{aligned} & \text { TEMP. } \\ & \text { S } 8840 \end{aligned}$	TEMP. N8810	$V_{\text {ce }}$	DRIVF.N AND INPUTS	$\begin{aligned} & \text { OTHFR } \\ & \text { AND } \\ & \text { INPLTS } \end{aligned}$	OL'C'PuTs	NOTES
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	"1. OUTPET VOLTAGE	$\begin{aligned} & 2.6 \\ & 2.8 \\ & 2.6 \end{aligned}$			V V	$\begin{aligned} & -55^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & 1125^{6} \mathrm{C} \end{aligned}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	$\begin{aligned} & 4.75 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & 4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 0.8 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$		$-500 \mu \mathrm{~A}$ $-500 \mu \mathrm{~A}$ $-500 \mu \mathrm{~A}$	$\begin{array}{lll} 8, & 14, & 21 \\ 8, & 11, & 21 \\ 8, & 14, & 21 \end{array}$
$\begin{aligned} & A-5 \\ & A-3 \\ & A-1 \end{aligned}$	'0' output voltage			$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$	v v v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$00^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	2.0 V 2.0 V 2.0 V	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	16 mA 16 mA 16 mA	$\begin{array}{lll} 9, & 12, & 14 \\ 9, & 12, & 14 \\ 9, & 12, & 14 \end{array}$
C-1 A-3 $C-1$	"0' mpt'r current	-0.1 -0.1 -0.1		-1.6 -1.6 -1.6	$m A$ $m A$ $m A$	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.40 \mathrm{~V} \\ & 0.40 \mathrm{~V} \\ & 0.40 \mathrm{~V} \end{aligned}$			13. 14 13, 14 13, 11
A-3	"1" INPU' CURHENT			25	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$+73^{\circ} \mathrm{C}$	5.0v	4.5 V	OV		14. 15
A-6	TI:HN-ON OELAY			13	ns	$+25^{3} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C. F.O. $=20$	10, 22
A-6	TIRN-OFF DELAY			13	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C. F.O. $=\mathbf{2 0}$	10, 22
$\mathrm{C}-2$	OU'TPCT FALL TIME			50	n_{5}	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C. F.O. $=6$	11, 22
C-2	INPUT CAPACITANCE			3.0	pf	$125^{\circ} \mathrm{C}$	$425^{\circ} \mathrm{C}$	5.0 V	2.0 Y			7
$\begin{aligned} & \mathrm{A}-2 \\ & \mathrm{~A}-2 \end{aligned}$	POWER CONSUMPTION '0" (Per Gate)			$\begin{aligned} & 37.3 \\ & 17.9 \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & 125^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} -2 \sigma^{\circ} \mathrm{C} \\ 125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 v \end{aligned}$	0V			14, 18
C-1	INPUT LATCH VOLTAGE RATINC	6.0			V	$+25^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	5.0 v	10 mA	0v		14, 18
A-2	OUTPUT SHOHT CARCUIT CURREKT	-20		-70	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	OV		0V	

J PACKAGE

CORRELATION TABLE (8806)

$\begin{aligned} & \text { ACCEFTANCE } \\ & \text { TEST } \\ & \text { SUB-GROUP } \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \text { No. } \end{aligned}$	CHARACTERISTIC	L.LMITS				TEST CONDITIONS					
			MIN.	ГүР.	MaX.	UNIT'S	$\begin{aligned} & \text { TEMP. } \\ & \text { S8806. } \\ & \text { N8806 } \end{aligned}$	V_{ce}	${ }^{\mathrm{V}} \mathrm{C}$	${ }^{\mathrm{V}}$ E	OUTPUTS	NOTES
A-2	1	"0' input current at V_{C}	-2.2		-3.6.5	mA	$-25^{\circ} \mathrm{C}$	4.75 V	1.25 V			20
A-2	2	TURN-ON VOLTAGE AT V E			0.88	v	$+25^{\circ} \mathrm{C}$	4.75 V	1. 255 V	2.5 mA	16 ma	9. 21
A-2	3	'00' OUTPCT VOLTAGE			0.40	v	$+25^{\circ} \mathrm{C}$	4.75 V	1.25 V	2.5 mA	16 mA	9, 20
A-2	1	'1" outplet voltage.	2.8			v	$125^{\circ} \mathrm{C}$	5.0 V	$-200 \mu \mathrm{~A}$	15004.4	-500\%A	8. 21
A-2	5	"1" outplet voltage	2.8			V	$+25^{\circ} \mathrm{C}$	5.0 V	$-200 \mu \mathrm{~A}$	0.59 v	$-500 \mu \mathrm{~A}$	8, 21

Notes:

1. All voltage and capacitance measurements are referenced to the ground terminal. 'refminals not specifically referenced are left electrically cpen.
2. All meas surements are taken with ground pin thed to zero volts.
3. Yopitive NAND Logic definition: "UP" Level $=$ " 11 ", "DOWN" Leypl $=$ " 0 ".
b. Precautionary measures should be taken to ensure current limitlng in accordance with Absolute Maximum Ratings thould the fsolation diodes become forward biased Winhbsolute Maximum Ratings abould the isolation diodes
4. Capacitance as meabured on Boonton Efectronic Corporation Model 75A-sB Capacitance Bridge or equivalent. $f=1 \mathrm{MHz}, V_{a c}=25 \mathrm{~m} V_{T m s}$. All pins not specifically referenced are tied to guard for capacitance tests. Output pins are left open.
5. Output source current is supplied through a resistor to ground
6. Output aink current is supplied through a regiator to Hee-
7. One DC $\operatorname{tan-out}$ is defined as 0.8 mA .
8. AC fan-out is defined as 50 pf .
9. To measure "0" output voltage, apply 2.0 V to the Input terminals of one of the imput AND gates and apply zero volts to the input terminals of the as sociat ed input AND gate. Reversa the imput conditions and repeat the measurement.
10. To test " 0 " input current apply 0.4 V to terminal uuder test and apply 5.25 V to the remaining terminal of that input AND gate. Apply 5.25 V to the input terminals of the assoctated input AND gate.
11. Expander terminals are left electrically open.
12. To test " 1 " Enput current apply $\mathbf{q . 5 V}$ to one input terminal of the input AND rate and apply zero volts to the other input terminal of that input AND gate. Apply of to the lopat terminals of the agsocisted imput AND gate
13. To test output " 1 " power consumption, spply zero volts to hoth input terminsls of each input AND gate.
14. To test input latch voltage rating, apply 10 mA to one input terminal of the triput AND pate and apply zero volts to the other input berminal of the input AND gate. Apply zero volts to the input terminals of the associated input AND gate.
15. This teat guarantees operation frec of input latch-up over the specified operating voltage supply range.
16. Manufacturer reserves the right to make design and process changes and iruprovemeuts.
17. Apply zarg volte to broth input terminals of the assoctated input AND gates
18. Apply 0.8 V to both input terminals of the associated input AND gates.
19. Detalled test conditions for AC testing ane in Sertion 3 .

8848

The 8848 Expandable AND-OR-INVERT Gate is designed for the highest switching speed while maintaining high fan-out and noise margin.

Nodes are provided at the collector and emitter of the second stage. This allows expansion of the number of input AND terms and hence increased system usefulness.

The compatibly characterized 8806 expander is recommended for expansion of the 8848 . See correlation table, opposite page.

Low output impedance in the " 1 " and " 0 " output states ensures maximum AC noise immunity at the output. General areas of application for the 8848 include half and full adders, digital comparators and AND-OR control logic for inputs to binary clock steering lines.

Detailed usage rules and specific applications are provided in Section 4 of this handbook.

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 19)

$\begin{gathered} \text { ACCEFTANCE } \\ \text { 'TE'S' } \\ \text { SUG-GROUP } \end{gathered}$	CHARACTERISTIC	1.IMITS				TEST CONDITIONS						
		MIN.	TYP.	MAX	UNITS	$\begin{aligned} & \text { TEMF } \\ & \text { S\& } 848 \end{aligned}$	TEMP. N⿵人ิิิ4	$V_{\text {ee }}$	$\begin{aligned} & \text { DRIVEN } \\ & \text { AND } \\ & \text { INPLTS } \end{aligned}$	$\begin{aligned} & \text { OTHER } \\ & \text { AND } \\ & \text { INPT'TS } \end{aligned}$	CUTPUTS	SOTES
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	'1" OUTPUT VOLTAGE	2.13 2.8 2.6			V V V	$-652^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	$\begin{gathered} 4.75 y \\ 5.04 \\ 4.75 \mathrm{~V} \end{gathered}$	0.8 V 0.8 V 0.8 V			3, 14, 21 8, 14, 21 8, 14, 21
A-5 $\mathrm{A}-3$ $\mathrm{~A}-4$	'0" OUTPUT VOLTAGE			0.40 0.40 0.40	V V V	$-55^{\circ} \mathrm{C}$ $1255^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ 175^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 4.75 v \\ 5.0 v \\ 4.75 v \end{array}$	$\begin{aligned} & \text { 2. 0V } \\ & 2.0 \mathrm{~V} \\ & 20 \mathrm{OV} \end{aligned}$	2.00 2.0 V 20 V	16 mA 16 mA 16 ma	$\begin{array}{lll} 9, & 12, & 14 \\ 9, & 12, & 11 \\ 9, & 12, & 14 \end{array}$
$\mathrm{C}-1$ $\mathrm{~A}-3$ C 1	'0' LNPU'T CURRENT	-0.1 -0.1 -0.1		-1.6 -1.6 -1.6	$m A$ $m A$ $m A$	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+1255^{\circ} \mathrm{C}$	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ -75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 5.25 \mathrm{v} \\ & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{y} \end{aligned}$	0. 40 Y 0. 40 y 0.40 y			$\begin{array}{ll} 13, & 14 \\ 14, & 14 \\ 13, & 14 \end{array}$
A -4	"1" infut curkent			25	$\mu \mathrm{H}$	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.0 V	4. 5 V	0 V		19, 5.5
A-6	TURN-ON DELAY			13	ns	$+25^{\circ} \mathrm{C}$	$+25{ }^{\circ} \mathrm{C}$	5.0 V			D.C. F.O. 20	10, 22
A -6	TURN-OFF DELAY			13	ns	-25 ${ }^{\circ} \mathrm{C}$	125%	509			D.C. F.O. $=20$	10, 22
$\mathrm{C}-2$	OUTPCT FALL TIME			50	56	$-5.33^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C. F.O $=6$	11, 22
C-2	WPlit capacitance			3.0	pf	$+25^{\circ} \mathrm{C}$	-25 $5^{\circ} \mathrm{C}$	5.0 v	2.0 v			7
A-2 A -2	POWEH CONSUMPTION OUTPLT " 0 " (Per Gate) OUTPUT "1"			4.4 .8 35.7	mw	$+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	0 V			14, 10
$\mathrm{C-1}$	INPITT LATCH VOLTAGE RATING	6.0			v	$+25^{\circ} \mathrm{C}$	- $215^{\circ} \mathrm{C}$	5.0 V	loma	0 V		14, 17, 1 A
A-2	OUTPET SHORT CIRCLIT CUHRENT	-20		-70	m.	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	ov		OV	

8848

CORRELATION TABLE (8806)

$\begin{gathered} \text { ACCEPTANCE } \\ \text { TGST } \\ \text { SUB-GROUP } \end{gathered}$	TES'I No.	CHARACTERISTIC	LIMITS				TEST CONTITSONS					
			MIN.	TYP.	MAX.	UNITS	$\begin{aligned} & \text { TEMP. } \\ & \text { S8606 } \\ & \text { NB806 } \\ & \hline \end{aligned}$	Vec	${ }^{5} \mathrm{C}$	v_{E}	ourputs	Notes
A-2	1	"O" WnPUT CURRENT AT V C_{C}	-2.2		-3.65	m.A	$+25^{\circ} \mathrm{C}$	4.75Y	1.25 V			20
A-2	2	TURN-ON VOLTAGEAT VE			0.85	v	$-25^{\circ} \mathrm{C}$	4.754	1.25v	2.5 rat	16 mA	9. 21
A-2	3	"0" OUTPUT voltace			040	v	$+25^{\circ} \mathrm{C}$	4.75 V	1. 25 y	$2{ }_{2} 5$	16 mA	8.20
A-2	4	"1" OUTPUT VOLTAGE	2.8			V	$+25^{\circ} \mathrm{C}$	5.0V	$-2004 \mathrm{~A}$	+500\%. 4	-500us	8, 21
$\mathrm{A}-2$	5	"I" OUTPUT VOLTAGE	2.8			v	$+25^{\circ} \mathrm{C}$	5. 0 V	$-20 \mu \mathrm{~A}$	0.59 V	-5004A	8, 21

Notes:

All voltage and capaclcance measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open
All measercments are taken with ground pin tled to zero volta,
Positlve current now is defined as moto the terminal referenceri,
Jositive NAND I.ogic defjnition: "up" Level $" 1$ ", "JOWN" Level $=$ " 0 "
Precautionary measures should bet taken to ensure current limiting in accordance with Alisolule maximitm Ratings should the isolation diodes become lorward biased.
(i. Measurements apply to each gate elemant independenlly.

Capacivion Model 75A-S8 Capaciance Bridge or equivalent. if $1 \mathrm{MHz}, V_{0 c}=25 \mathrm{~m} V$ rms. 211 pint not specifically are left open.
8. Output source curront is supplied through a resistor to ground
9. huput sink current is supplied through a reaistor to V_{cc}
10. Ome 1 BC fan-out is defined as 0.8 ma .

1. 1 AC fan-out is defined as sopt.
2. To measure " 0 " output voltage, apply 2.0 V to the Input terminats of one of the input AND gates and apply zere volts to the input terminals of the associated input AND gutes. Revarse the input conditions and repeat the measurement.
3. To test " 0 " input curreni agply $0.4 V$ to terminal under lest and apply 5.2 .5 y to the remaining terminal of that input AND gate. Apply 5.25% to the input terminals of the aнногjated input AND sates.
4. F.xpander terminalo are left electrically open.
5. 'T'a test " 1 " input current apply $4.5 y$ to one input terminal of the input A.NJ) aate and apply zero volts to the other input terminal of that innut asin are Apply ov to to the input terminals of the associated jnpit AND gates.
18, To best output "1-1 power consumption, apply zero volts to botl) input terminals of pach imput ANs gates.
6. To test imput latch voltage rating, apply 10 mA to one input terminal of the imput AND gate and apply zerovolts to the other inpuc terminal of the saput AND gate. Apply zero volts to the input terminala of the associatest input AND gates.
7. This test guarantees operation free of input latch-up over the spentficd operating voltage supply range.
Manulacturer reserves the right to make design and process changes and improvements.
. Apply zero volts to the input terminals of the associated inpul AND gates
8. Apply 0.8 y to the input terminals of the assoclater input AND gater.
9. Detailed tert conditions for AC testing are in Section 3 .

8855 DUAL 4-INPUT DRIVER

The 8855 is a Dual 4-Input Driver designed specifically for use in applications requiring high fan-out to either AC or DC loads. This device implements the NAND function for positive logic (highest voltage level - " 1 ") and the NOR function for negative logic (lowest voltage level $=$ " 1 ") .

An active output structure provides high AC noise immunity due to its low output impedance in both the "1" and " 0 " output states. This output configuration is particularly suited for driving high capacitive loads such as those encountered in high fan-out situations and line driving applications.

Output short circuit protection is provided by a current limiting resistor.

Section 4 of this handbook provides usage rules and applications information for this element.

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 13)

ACCEPTANCE TEST St:R-GROUP	CIAARACTERISTIC	LIMJTS				TEST CONDITIONS						
		MIN.	TYP.	MAX.	LNITS	$\begin{aligned} & \text { TEMP. } \\ & \text { S8855 } \end{aligned}$	$\begin{aligned} & \text { TEMP. } \\ & \text { N8855 } \end{aligned}$	V_{Cc}	$\begin{aligned} & \text { DRIVEN } \\ & \text { INPUT } \end{aligned}$	OTHER inputs	OLTPUTS	NOTES
A-5	${ }^{\prime} 1{ }^{\prime}$ OUTPPUT VOLT AGE	2.6			V	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75v	0.84		-1.5mA	8
A-3		2.8			v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	0.8 V		-1, 3 mm A	8
A-4		2.6			v	$-125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	4.75 V	0.8 V		-1. 5 mm	g
A-5	"0" OUTPUT VOLTAGE			0.40	V	-55 ${ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V	2.04	2.0 V	4 EmA	\mathfrak{y}
A-3				0.40	v	$125^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	2.0V	2.00	48 cmA	9
A-4				0.40	v	$-125^{\circ} \mathrm{C}$	+75 ${ }^{\circ} \mathrm{C}$	4.75 V	2.0 V	2.0V	48 mA	9
C-1	"0"INPUT CURREN'	-0.1		-1.6	mA	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25 V	0.40 V	5, 25V		
A-3		-0.1		-1.6	$\mathrm{m} A$	$+25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	5.25V	0.40 V	5.25 V		
C-1		-0.1		-1.6	mA	$-125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.25 V	0.40 V	6, 25V		
A-1	"1"INPUT CURRENT			25	${ }_{\mu} \mathrm{A}$	$-125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.0 V	4.5V	0 V		
A-6	TURN-ON DELAY			15	ns	$125^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C. F.O. $=60$	10,14
A-6	TURN-OFF DELAY			15	ns	+ $25^{6} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V			D.C. F.O. $=60$	10,14
C-2	OUTPUT FALL TIME			50	ns	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C. F.O. $=10$	12, 11
C-2	INPUT CAPACITANCE			3.0	pf	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0V	2.0 V			7
A-2	POWER CONSUMPTION ${ }^{101}$			5 sc .8	mW	- $25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V				
A-2	(Per Gate) '1'			14.7	In W	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 y	$0 \vee$			
C-1	INPLT LATCH VOLTAGE RATING	6.0			\checkmark	$+25^{6} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	10 mA	0 V		12
A-2	OUTPUT SHORT CIRCUIT CURRENT	-20		-80	mA	$125^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	0V		0 V	

Notes:

1. All yoltage and capacitance measurements are referenced to the ground torminal, Terminals not spectically refarenced are left tlectrically open.
All measurements are taken with ground pin tied to zero volts.
2. Positive current flow is deitined as into the terminal referenceal.
3. Posilive NAND Logie definition: "UP" Level = " 1 ", "DOWN" Level $=10$ "
4. Precautionary measures should be taken to ensure current limiting in aocordareo with Absolute Maximum Ratings should the isolation diodes become forward blased.
5. Measurements apply to each gate clement independenlly
6. Capacitance as measured on Boonton Electronie Corporation Model 75 A -S8 Capacitance Bridge or equivalent, $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{ac}}=25 \mathrm{mV}$.ms. All pins not specifically referenced are tied to guard for capacitance tests. Output pins are left open.
7. Output source current is supplied through a resistor to gromnd
8. Output sink current is supplied through a resistor to $V_{c c}$
9. One DC fan-out is defined as $0.8 \mathrm{~m} A$
10. One AC far-out is defined an 50 pro.
11. This tent guaranteet operation free of mput latcb-up over the specifled operating supply voltage range.
12. Manufacturer reserves the right to make design and process changea and improvements.
13. Detafled test conditions for AC testing are in Section 3

The 8881 is a Quad 2-Input NAND Gate with bare output collectors. Absence of an output pull-up structure allows the user complete freedom in the use of the 8881 in collector-logic (wired-AND) and similar applications. Proper pull-upresistor selection will allow as many as 50 outputs to be tied together.

Collector-logic, using the 8881, can provide increased system flexibility and lower system cost due to reduced can count.

Section 4 of this handbook provides detailed usage rules and collector-logic information for this element.

BASIC CIRCUIT SCHEMATIC

NOTE: $1 / 4$ of unit showis. Component values sre typical.

- Isolation diode

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6)

$\begin{gathered} \text { ACCEPTANCE } \\ \text { TEST } \\ \text { SUB-GROUP } \end{gathered}$	Characteristic	LIMITS				TEST CONDITIONS						
		MLN.	TYP.	MAX.	UNIT5	$\begin{gathered} \text { TEMP } \\ 85881 \end{gathered}$	$\begin{aligned} & \text { TEMP. } \\ & \text { NBB81 } \end{aligned}$	$V_{c c}$	$\begin{aligned} & \text { DRIVEN } \\ & \text { INPUT } \end{aligned}$	$\begin{aligned} & \text { OTHER } \\ & \text { INPUTS } \end{aligned}$	OLTPUTS	NOTES
A-4	'1' OUTPUT LEAKAGE CURRENT			25	$\mu \mathrm{A}$	$4125^{\circ} \mathrm{C}$	*75 ${ }^{\circ} \mathrm{C}$	5.0 V	0.6 V			8
A-5 A-3	'or' OUTPUT VOLTAGE			0.4	V	-55 ${ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	4.75 y	2.0 V	2.0 V	17 mA 17 ma	9
A-4				0.4	v	$+125^{*} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	4.75 V	2.0 V	2.0 V		9
C-1	${ }^{11} 0$ * INPUT CURHENT	-0.1		-1.6	m.	$-65^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25 V	0.4 y	5.25 V		
A-3 $C-1$		-0.1 -0.1		-1.6	mat	$+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$4.25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25 V 5.25 V	0.4 y 0.4 V	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$		
A-4	'I' INPCT CUREENT			25	UA	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.04	4.5 V	0V		
A-6	TURN-ON DELAY			20	ns	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 y			D.C.F.O. $=20$	10.14
A-6	TURN-OFF DELAY			30	ns	$+25^{\circ} \mathrm{C}$	$+26^{\circ} \mathrm{C}$	5.09			D.C.F.O. -20	10,14
C-2	OUTPUT fall time			50	ns	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C.F.O. $=8$	11,14
C-2	INPUT CAPACITANCE			3.0	pif	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0v	2.0 V			7
A-2	POWER CONSUMPTION OUTPUT "0" (Per Gate) OUTPUT "1"			${ }^{31} 8.9$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	0V			
C-1	INPUT LATCH VOLTAGE RATING	6.0			v	$425^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	5.0 V	10 mA	0 V		12

NOTES:

1. All voltage and eapacitance measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open. All measurements are taken with ground pin tied to zero volts. All measurements are taken with ground pin tied to zero yolts.
Positive NAND Logic definition: "џP" Level $=$ " 1 ", "Down" Level $=$ "0".
Precautionary measures should he taken to ensure current limiting in accordance with Absolutc Maximum Ratings should the isolation diones hecome forward blased.
2. Mcasurements apply to each gate element independently.
3. Capacilance as measured on Hoonton Electronic Corporation Model 75A-S5 Capacitance Bridge or equivalent. $f=1 \mathrm{MHz}, v_{f e}-25 \mathrm{mV} \mathrm{V}_{\text {rms }}$. All pins not specifically referenced are tied to guard for capactance tests. Output pins are left open.
4. Connectan external $1 \mathrm{~K} 1 \mathrm{I}_{\%}$ resistor from V_{cc} to the output terminal for this (est,
5. Gotpul sink current is supplied through a resistor v_{ce}
6. One BC fan-mat ia detined as 0.8 ma .
7. One AC fan-out is defined as 50 pi .
8. This test guarantess operation free of input latch-up over the specified operating supply voltage range.
9. Manufacturer reserves the right tomakedesign and propess changes and improvements.
10. Detalled lust conditions for AC testing are In Section 3.

8H16 DUAL 4-INPUT NAND GATE 8H70 TRIPLE 3-INPUT NAND GATE 8H80 QUAD 2-INPUT NAND GATE

These gate elements are all designed for ultra-high switching speed while maintaining high fan-out and noise margin. All of the 8 H 00 gates perform the NAND function for positive logic (highest voltage Ievel $=$ " 1 ") and the NOR function for negative logic (lowest voltage level = " 1 ").

The output structure utilizes a totem-pole arrangement which employs a Darlington Pair for active pull-up. This configuration provides extremely low output impedance for the " 1 " output state. As a result, switching times are relatively insensitive to capacitive loads when compared to single transistor active pull-ups. The saturating output switching transistor provides a low impedance driving source in the output " 0 " state, enhancing turn-on times and providing high fan-out capability.

ELECTRICAL CHARACTERISTICS (NOTES: $1,2,3,4,5,6,13$)

$\begin{gathered} \text { ACCEPTANCF } \\ \text { TEST } \\ \text { SLB-GROL'P } \end{gathered}$	Chanacterisplo	Limits				TEST CONDITIONS						
		MIN.	TYP,	MAX,	UNITS	TEMP. SאH16 S81470 SEH80	TEMP. NHİIf N81730) 	${ }^{\text {¢ }}$ ec	DRIVEN INPLTT	(OTHER INPOTS	OUTPUTS	NOTES
$\begin{aligned} & A-5 \\ & A-3 \\ & A-4 \end{aligned}$	"1" OUTIU'T VOLTAGE	2.6 2.4 2.4			v v v	$\begin{array}{r}3.3{ }^{\circ} \mathrm{C} \\ +2.50 \\ +12.5 \\ \hline 3^{\circ} \mathrm{C}\end{array}$	$10{ }^{\circ} \mathrm{C}$ $-2.50{ }^{\circ} \mathrm{C}$ $+7.5{ }^{\circ} \mathrm{C}$	4.75 V -7.00 V 4.75 Y	0.8 V 0.8 y 0.8 V		$\begin{gathered} -750 \mu \mathrm{~A} \\ .750 \mu \mathrm{~A} \\ -750 \mu \mathrm{~A} \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$
A-- $\mathrm{A}-\mathrm{i}$ $\mathrm{A}-\mathrm{H}$	"0"OUTPCT yoltage			0.4 0.1 0.4	v v v	$-i, 3^{\circ} \mathrm{C}$ $+2.55^{\circ} \mathrm{C}$ $-145^{\circ} \mathrm{C}$	$\begin{array}{r}0^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \\ \hline 15^{\circ} \mathrm{C}\end{array}$	4.75 V 5.00 V 4.75 V	2.0 V 2.08 2.04	2.0 V 2.0 V 2.0 V	24 moh 34 mA 24 mA	9 9 9
C-1 A-3 c-1	" 0 " INPIPT CLRHENT	-0.1 -0.1 -0.1		-2.4 -2.4 -2.4	$m A$ $m A$ $m A$	$-5.5{ }^{\circ} \mathrm{C}$ +2.5 $+12.3^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+23^{\circ} \mathrm{C}$ $.755^{\circ} \mathrm{C}$	5.25 V 5.25 V 5.25 V	$0 .+V$ 0.4 0.4	$\begin{aligned} & \overline{2} .25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$		
A-4	" 1 " In HLT Cl:AREN'			50	$\mu \mathrm{A}$	$+123^{\circ} \mathrm{C}$	+75 ${ }^{\circ} \mathrm{C}$	5.00 V	4,5v	0 V		
A-6	TLRNGON DELAY		7.0	10	ns	$12.3{ }^{\circ} \mathrm{C}$	$\cdot 25^{\circ} \mathrm{C}$	5.00 V			D.C. F.O. 30 1.C.	10,14
	TURN-ON DELAY		5,0		ns	$+2.5{ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	3.00v			$\begin{aligned} & \text { F.O. }=3 \\ & \text { D.C. } \end{aligned}$	10. 14
A-(i)	TTRN-GFF DELAY		7.0	10	ns	$+2.3^{\circ} \mathrm{C}$	$+2 \hat{0}^{\circ} \mathrm{C}$	5.00 v			F.O. -30 D.C.	10.14
	TLTANOFF JELAY		5.0		ns	+25cc	$+25^{\circ} \mathrm{C}$	5.00 v			F.O. 3	10,14
$\mathrm{C}-2$	OLPrut fall time			10	ns	$-5.5{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C F.O. -6	11,14
	INPLTC CAPACTITANCE		2.0		pf	$-25^{\circ} \mathrm{C}$	$12.5{ }^{\circ} \mathrm{C}$	5.00 V	2.08			7
A-2	POWER CONSUMPTION OUTPUT "0" (Per Gatc)			$\begin{aligned} & 46.2 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{mw} \\ & \mathrm{~mW} \end{aligned}$	$\begin{aligned} & -23^{\circ} \mathrm{C} \\ & -2 . .^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	OV			
A-2	inplit latch voltage rating	6.0			v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V	1 mma	0 V		12
$\mathrm{A}-\mathrm{Z}$	OUTPLT SHORT CIRCLIT CERRENT	-40		-90	mA	$+20^{\circ} \mathrm{C}$	$.25^{\circ} \mathrm{C}$	5.00 V	ov		0 V	

NOTES:

1. All voltage and capacitance measurements are referenced to the ground terminal. Terminals not specifically referenced are left etectrically open.
2. All measurenients are taken with ground ple tied to zero volts.
3. Positive current flow is defined as into the lerminal referenced,
4. Pobitive NAND Logle definition: "UP" Level - "], "DOWN" Level "0".

Prech alo meardance with Absolute Maximum Ratings showld the isnlation diodes become forward hiased
6. Mpasurementa apply to each gate element independently.

Capanstance 25 measured on Sioonton Electronic Corporation Moxiel $75 A-S 8$ Capacitance Brige or equvalent. $I=1$ Minz, $V_{a t}=2, s m \mathrm{~V}_{\text {rms. }}$. All pins not specitically referenced are tied to guard for capceitance tepats. Outpul pint are left open.
B. Output source current is suppled through a resistar to ground.
9. Outpout sink current is supplied through a resistor to $\mathrm{y}_{\text {ec }}$.
10. One UC fan-out is defined as 0.8 mA .
11. One AC tan-out is defined ab 50 pf .
12. This teat guarantees operation froc of input latch-up over the specified operating supply voltage range.
13. Blanufatturer reserves the right to make dealgn and process changes and improvernents.
14. Detalled test conditions for AC testing are in Section III.

DESCRIPTION

The 8890 HEX INVERTER provides high switching speed while maintaining high fan-out and noise margin.
The Totem-Pole output structure provides extremely low output impedance which provides high $A C$ noise imnunity. The saturating output switching transistor provides a low impedance driving source in the "0" output state enhancing turnoon times and providing high fanout capability.

Output short-circuit protection is provided by a current limiting resistor.
The 8891 HEX INVERTER provides high switching speed while maintaining high fan-out and noise margin.

The bare collector output allows collector logic (WIRED-AND) to be easily implemented.

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: $1,2,3,4,5, \& 10$)

ACCEPTANCE TEST SUBGROUP	CHARACTERISTICS	LIMITS				TEST COND:TIONS					NOTES
		MIN	TYP	max	UNIT			$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{Volts}) \end{aligned}$	DRIVEN INPUT	OUTPUTS	
A. 5	"1*Output Vottagr	2.6	-	--	\checkmark	- 55	0	4.75	0.8 V	-500 ${ }^{\text {a }}$	6
A. 3		2.8	-	-	V	+25	+25	5.00	0.8 V	-500رA	6
A. 4		2.6	-	-	v	+125	+75	4.75	0.8 V	. $500 \mu \mathrm{~A}$	6
A. 5	"0" Output Voitage	-	-	0.4	v	55	0	4.75	2.0 V	16 mA	7
A-3		-	."	0.4	v	+25	+25	5.00	2.0 V	16 mA	\dagger
A. 4		-	-	0.4	\checkmark	+125	+75	4.75	2.0 V	16 mA	7
C. 1	* 0 ' tnput Current	-0.1	-	$\cdot 1.6$	ma	-55	0	5.25	0.4V	-	-
A. 3		-0.1	-	1.6	mA	+25	+25	5.25	0.4 V	-	-
C. 1		-0.1	-	-1.6	mA	+125	+75	5.25	0.4 V
A. 4	"1" Input Current	-	-	25	$\mu \mathrm{A}$	+125	- 75	5.00	4.5 V	-	-
A 6	Turn-On Delay	-	-	15	ns	+25	-25	5.00	-	DCFO $=20$	8. 13
A. 6	Turn Off Delay	-	-	22	ns	+25	+25	500	-	OCFD $=20$	8. 13
C.2	Output Fall Time	-	-	50	ns	. 55	0	4.75	-	ACFO $=6$	9.13
A. 2	Power/Current Consumption Per Inverter: Output " 0 "	-	-	31/6	mW/mA	-25	+25	5.25	--	-	-
A. 2	Per Inverter: Output "1"	-	-	9/1.7	mW/riA	-25	+25	5.25	OV	-	-
A. 2	Input Latch Vollage	6.0	-	-	\checkmark	+25	+25	5.00	10 ma	-	11
A. 2	Output Short Circuit Current	. 20	-	. 70	mA	+25	+25	5.00	OV	ov	-
A. 2	Input Clamp Voltage			1.5	v	+25	+25	5.00	. 12 mA	-	-

A. 4	"1"Oulput Leakage Current	-	-	250	$\mu \mathrm{A}$	+125	+75	5.00	0.8 V	-	12
A. 5	"0'0utput Voltage	-	-	0.4	V	. 55	0	4.75	2.0V	16 mA	7
A. 3		-		0.4	v	+25	+25	5.00	2.0V	16 mA	7
A. 4		-	-	0.4	V	+125	+75	4.75	2.0V	16 ma	7
C-1	"0"Input Current	-0.1	-	-1.6	mA	. 55	0	5.25	0.4 V	-	-
A-3		0.1	-	. 1.6	mA	+25	+25	5.25	0.4 V	-	-
C. 1		0.1	..	1.6	mA	+125	+75	5.25	0.4 V	-	-
A. 4	"1." Input Current	-	-	25	$\mu \mathrm{A}$	+125	+75	500	4.5 V		
A-6	Turn-On Delay	-	-	15	${ }^{15}$	+25	+25	5.00	-	OCFO $=20$	B, 13
A. 6	Turn-Off Delay	-	-	45	ns	+25	+25	5.00	-	DCFO $=20$	B. 13
A. 2	Power Current Consumption Per Inverter: Output " 0 "	-	-	31/6	mW/mA	+25	+25	5.25	-	-	-
	Per Inverter:Output "1"	-	-	$9 / 1.7$	mW/mA	+25	+25	5.25	OV	-	-
A. 2	Input Lateh Voltage	6.0	-	-	\checkmark	+25	+25	5.00	10 mA	-	11
A. 2	Inpur Clamp Voltage	-	-	1.5	\checkmark	+25	+25	5.00	12 mA	-	-

The 8 H 20 is a high speed J-K Binary which uses stored charge techniques to effect the toggling action. This type of clocking technique provides all the advantages of level sensitive binaries and retains all the speed/power advantages of rate sensitive binaries. This binary is designed to toggle at frequencies from near DC to greater than 50 MHz .

The change of state is caused by the negative logic transition of the clock input and is effectively carried out with a clock pulse width of 7 ns minimum and up to a maximum 200 ns fall time.

There is no hold time requirement for the inputs. This means that logic transistions to a logic " 1 "or " 0 " can occur coincidentally with the logic "1" transition of the clock input.

The logic states of the J and K inputs must be stable when the clock input reaches 2.0 V . These must re-
main stable until the clock falls if maximum utilization of the binary speed is desired.

Clocking transitions should be avoided when the asynchronous lines are activated and the J and K inputs are at logic " 1 " levels. If this condition exists, a positive transient will be generated on the output which is normally at the logic " 0 " state. The duration of this transient may be about 20 ns .

The 8 H 21 features common clock and common $\overline{\mathrm{R}}_{\mathrm{D}}$ lines.

The 8 H 22 provides scparate inputs for clock, J, K, $\overline{\mathrm{R}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ on each binary and is available only in the 16-pin dual-in-line package.

Applications information and usage rules for these devices are included in Section 4 of this handbook.

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: $1,2,3,4,5,6,14$)

ACCEPTANCE	Characteristic	L1317S				TEST CONDITIONS									
TEST SUB-GROUP		MIN.	TYP.	max.	UNITS	T EMP S8H21 58 H 22 $\mathbf{S 8 H} 20$ S8H20	TEMP. NSH21 N3H22 N8H20	${ }^{\text {cec }}$	$\overline{\mathbf{R}}_{\mathrm{D}}$	$\bar{s}_{\text {D }}$	J	K	CLOCK	OUTPUT	NOTES
A-5 $A-3$ $A \rightarrow 4$	"I" OUTPUT VOLTAGE (Q)	2.6 2.8 2.6	3.0 3.2 3.0		V V V	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$00^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	2.0 V 2.0 V 2.0 V	0.8 v 0.8 v 0.8 V	2.0 V 2.0 V 2.0 V	0.8 V 0.8 V 0.8 V	$\begin{array}{\|l\|} \hline \text { PU1SE } \\ \text { PLLSF } \\ \text { PULSE } \end{array}$	1.0 mA 1.0 mA 1.0 mA	$7,10,17$ $7,10,17$ $7,10,17$
A-5 A-3 $\mathrm{A}-1$	" 1 " OUTPUT VOLTAGE	2.6 2.8 2.6	3.0 3.2 3.2 3.0		V V V	$-65^{\circ} \mathrm{C}$ $+26^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.0 V 4.75 V	0.8 V 0.8 V 0.8 V	2.0 V 2.0 V 2.0 V				1.0 mA 1.0 mA 1.0 mA	7 7 7
A-5 A-3 A-4	"O" OUTPUT VOLTAGE		0.3 0.3 0.3	0.4 0.4 0.4	V	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+76^{\circ} \mathrm{C}$	4.75V	0.8 V 0.8 Y 0.8 Y	2.0 V 2.0 V 2.0 V				24 mA 24 mA 24 mA	8 8 8
A-5	"0" OUTPUT VOLTAGE (Q)		0.3 0.3	0.4 0.4	V	-5.5 $+25^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	4.75 V 5.0 V	2.04 2.0 V	0.8V	2.0 V 2.0 V	0.5 V 0.5 V	PUI.SE	24 mA	$8,10,17$ $8.10,17$
A-4			0.3	0.4	v	$4185^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	4.75 V	2.0 V	0.8 V	2.0 V	0.8 V	PULSE	24 mA	8,10,17
C-1 A-2 c-1	"0" INPUT CUREENT (CLOCK, 8H2i only)	-0.1 -0.1 -0.1		-4.8 -4.8 -4.8	mA ma ma	$-55^{\circ} \mathrm{C}$ $+25^{\text {c }}$ ($+125^{\circ} \mathrm{C}$	$0 . \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	($\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V}\end{aligned}$			5.25 V 5.25 V 5.25 V	5.25 V 5.25 V 5.25 V	0.4 V 0.4 V 0.4 V		
C-1 A-3 $C-1$	(CLOCK, 8 H 20 and 8 H 22 only)	-0.1 -0.1 -0.1		-2.4 -2.4 -2.4	mi mA mA	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25V			5.25 V $\mathbf{5 . 2 5 V}$ 5.25 V	5.29 V 5.25 V 5.25 V	0.4 V 0.4 V 0.4 V		
C-1 $\mathrm{A}-3$ $\mathrm{C}-1$	(J)	-0.1 -0.1 -0.1		-2.4 -2.4 -2.4	$m A$ $m A$ $m A$	$-55^{\circ} \mathrm{C}$ +2.50 $+125^{\circ} \mathrm{C}$	$0+\mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-75^{\circ} \mathrm{C}$	($\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V}\end{aligned}$	OV ov OV	5.25 V $\mathbf{5 . 2 5 V}$ $\mathbf{5 . 2 6 \%}$	0.4 V 0.4 V 0.4 V	6.25 V 5.25 V 5.25 V	5.25 V 5.25 V $\mathbf{5 . 2 5 v}$		
C-1 A-3 C-1	(K)	-0.1 -0.1 -0.1		-2.4 -2.4 -2.4	$m A$ $m A$ $m A$	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-1255^{\circ} \mathrm{C}$	$0 * \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25V	5.25 V 5.25 V $\mathbf{5 . 2 5 V}$	OV 0 V ov	5.25 V 5.25 V 5.25 V	0.4 V 0.4 V 0.4 V	5.250 $5.25 v$ 5.250		10
C-1 $\mathrm{A}-3$ $\mathrm{C}-1$	($\overline{\mathrm{T}}_{\mathrm{D}}$ BH21 only)	-0.1 -0.1 -0.1		-4.8 -4.8 -4.8	mA $m A$ $m A$	$-55^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	0\% +8 $+75^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	($\begin{aligned} & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V} \\ & 5.25 \mathrm{~V}\end{aligned}$	0.4 V 0.4 V 0.4 V	ov ov OV			5.25 V $\mathbf{5 . 2 5 V}$ 5.25 V		
C-1	($\overline{\mathrm{B}}_{\mathrm{D}}$ 日H22 ©nly	-0.1 -0.1 0.1		-2.4	ma $m A$	$-55^{\circ} \mathrm{C}$ $+25^{*} \mathrm{C}$	+ $\begin{array}{r}0+\mathrm{C} \\ +26^{*} \mathrm{C}\end{array}$	5.25v	0.4 V 0.4 V	ov			5.25 v 5.25 V 5.25 V		
C-1				-2.4	$\underline{m A}$	-125* ${ }^{\circ} \mathrm{C}$	+75* ${ }^{\text {c }}$	5.25 V	0.1 V				5.25 V		
C-1				-2.4 -2.4 -2.4	ma ma	$-65^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{c}$ $+125^{*} \mathrm{C}$	$0 * \mathrm{C}$ $+25^{*} \mathrm{C}$ $+755^{-} \mathrm{C}$	5.25 V 5.25 V 5.25 V	0.4 V 0.4 V 0.4 V				5.25 V $\mathbf{5 . 2 5 V}$ 5.25 V		
C-1				-2.4	mA	* $125^{*} \mathrm{C}$	+75'C	5.25v							
C-1 A-d c-1	($\overline{\mathrm{S}}_{\mathrm{D}} 8 \mathrm{H} 2 \mathrm{l}$ and 8H22 only)	-0.1 -0.1 -0.1		-2.4 -2.4 -2.4	mA	$-55^{\circ} \mathrm{C}$ $+25{ }^{\text {c }}$ +185	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25 V 5.25 V 5.25 V	OV	0.4 V 0.4 V 0.4 V			$5.25 v$ $5.25 v$ $5.25 v$		
C-1	"1" INPUT CURAENT			-2.4	mA	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.25 V	OV				5.25 V		
$A \rightarrow$	(J)			50	\#A	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.0 V			4.5 V		0.4 v		
$\xrightarrow{\text { A- }} \mathrm{A}$	${ }^{(\mathrm{K}} \mathrm{F}^{(1)} 8 \mathrm{H} 21 \mathrm{only}$			500	\%A	+135*	$+735^{\circ} \mathrm{C}$ +75	3.00 y				4.5 v	0.4 V		
A -4				100 50	${ }_{\mu \mathrm{A}}^{\text {A }}$	$+125^{\circ} \mathrm{C}$ $+125^{*} \mathrm{C}$	$+75{ }^{\circ} \mathrm{C}$.75	5.0 V 5.0 V	4.5 V 4.5 V	OV			0.4 V	$\bar{Q}=" 0 "$ $\bar{Q}=\sim 00$	10
A-4	(S_{D} 8H21 and 8H22 only)			50	$\mu \mathrm{A}$	+125	+75'C	5.00V	0v	4.5 V				$Q=$ "0"	10
A-4	(CLOCK 8H21 only)			400	A	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.0V			0 V	ov	4.5 V		
$\mathrm{A} \rightarrow \mathrm{A}$	(CLOCK 3H20 and 8H22 only)			200	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$	5.0 V			0 V	ov	4.5 v		
C-1	input latch voltage rating (CLOCK 8H21 only)	6.0			V	$+25{ }^{\circ} \mathrm{C}$	+25* ${ }^{\circ}$	5.5V			0 V	ov	10 mm		12
$\mathrm{C}-1$	(CLOCK 8H20 and 8 H 22 only)	6.0			V	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.50		0 V	OV	OV	10ma		12
C-1	(J)	6.0			v	$+25^{\circ} \mathrm{C}$	$+25^{*} \mathrm{C}$	5.5 V		0 V	10 mA		0.4 V		12
C-1	(K)	6.0			v	$+25^{\circ} \mathrm{C}$	$+25^{*} \mathrm{C}$	5.54	0 V			20\%7A	0.4v		12
C-1		6.0			V	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.5 V	10 mA				0.4 V		10
$\mathrm{C}-1$		9.0			v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.5 V	10 mA				0.4 V	$\bar{Q}={ }^{\prime} 0^{\prime \prime}$	10
C-1	(8) 8H21 and 8H22 only	6.6			v	$+25^{\circ} \mathrm{C}$	$\cdot 25^{\circ} \mathrm{C}$	5.5 V	0v	10 mA			0.4 V	$Q=\times 0$ '	
A-2	OUTPUT SHOHT CLRCUIT CURRENT (G)	-40		-90	ma	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0V		0 V				OV	11
A-2	(ब)	-40		-90	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	0 V					ov	11
A-2	YOWER CONSUMPTION (Fer Binary) TURN-ON DELAY		65	90	m^{W}	$+26^{\circ} \mathrm{C}$	-25'c	5.25 V			ov	0 V			
	(ClOCK to Q, $\overline{\text { \% }}$		10		$n 8$	$125{ }^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	5.0v						C.F.O. $=30$	9,13
	$\mathbb{R}_{D} D$		10		n8	$+25^{\circ} \mathrm{C}$	$* 25 *$ -25	$5.0 \mathrm{v}$						t.C.F.O. $=30$ D.C.E. $=30$	9,13
	(E_{D} to क) TURN-OFF DELAY		10		n	$-25^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	$5.0 \mathrm{~V}$						D.C.F.O. $=30$	9.13
	(CLOCK to $\mathrm{Q}_{1}, \stackrel{\text { \% }}{ }$		8		ns	$+25^{\circ} \mathrm{C}$	+25* ${ }^{\circ}$	5.0v						D.C.F.O. -30	9, 13
	$\left(\bar{R}_{D}{ }^{\text {ta }} \overline{\text { ¢ }}\right.$		8		$n 8$	+25* ${ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V						D.C.F.O. $=30$	9, 13
	(\bar{S}_{D} to Q)		8		ns	+25* ${ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V						D.C.F.O. $=30$	9, 13
A-6	TOGGiLE Rate	50	75		MHz	$425^{\circ} \mathrm{C}$	+ $25^{\circ} \mathrm{C}$	5.0 V						D.C.F.O. $=3$	9,13
C-2	MINIMUM CLOCK PULSE WIDTH		3.0	7	na	$+25^{*} \mathrm{C}$	${ }^{+25}{ }^{\circ} \mathrm{C}$	5.0 V						D,C.F. $0=3$	9, 13
c-2	OUTTPUT FALL TIME			50	**	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V						A, C $\mathbf{F}, \mathbf{O}=6$	13,15
C-2				3.0	pf	$125^{\circ} \mathrm{C}$	$\cdot 25 *$ C	5.0 V			2.0 V	2.0 V			16
C-2	S_{D} (8K21, 8H22)			3.0	pf	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V		2.0 V					16
C-2	$\overline{\mathrm{F}}_{\mathrm{D}}{ }^{\text {(}}$ (8H20, 8H22)			3.0	pr	$+25^{*} \mathrm{C}$	$125^{\circ} \mathrm{C}$	5.0 V	2.0 V						16
C-2				3.0	pf	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V					2.0 V		16
C-2	C, $\overline{\mathbf{R}}_{\mathrm{D}}{ }^{(3 \mathrm{H} 21)}$			6,0	pI	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0y	2.0V				2.0 V		16
	CLOCX MODE SWITCHING TEST		200		${ }^{18}$	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V					PULSE		

8 H 20

8 H 20		
J_{n}	K_{n}	$\mathrm{Q}_{\mathrm{n}+1}$
0	0	Q_{n}
1	0	1
0	1	0
1	1	\bar{Q}_{n}
$\bar{R}_{\mathrm{D}}=$	$0 \Rightarrow \mathrm{Q}-0$	

${ }^{\mathrm{J}}$	8 H 2 l and 8 822			
	K_{n}	Q_{n+1}	$\bar{S}_{\text {D }}$	$\overline{\mathrm{R}}_{\mathrm{D}}$
0	0	Q_{n}	0	0
1	0	1	1	0
0	1	0	0	1
1	1	\bar{Q}_{n}	1	1

Notes:

1. All voltage and capacilance mepaturements are referenced to the ground terminal, Terminals not specifically referenced are left electrically open.
All measurements are taken with ground pin thed to zero volte
2. Positive current flow is defined an into the terminal referenced
. Posltive NAND Logic definition: "UP" Level $=$ " 1 ", "DOWN" Levet $=$ " $(1$ "
. Precautionary measures should be taken to ensure current dimiting in accordance with Absolute Maximum RatIngs should the isotation diodes become forward biased.
3. Measurements apply to cach element indeperdently.
4. Output source current is supplied through a resistor to ground.
5. Output sink current is supplied through in resistor to V_{cc} -
6. One DC fan-out is definecl as the input of an 8480 or 0.8 mA

When testlng the 81320, apply a clock pulse prior to measurement to ensure $Q=" 1$ " and $\bar{Q}=$ " 0 ". Clock pulse characteriatice are; $P W=100 \mathrm{~ns}$; Pulse Amplitude $=: 3,0 Y$ $\mathrm{t}_{\mathrm{r}}=10 \mathrm{~ns} ; \mathrm{tf}=10 \mathrm{~ns}$.
11. For output short circuit current, test one oulput at at time. For 8H20, test \bar{Q} only, 12. This test quarantees operation free of input latch-up over the specifted operating power supply voltage range.
13. Detailed test conditions Ior ac testing are In Section il.
14. Manufacturer reserves the right to make desikn ant process changes and improvements.
15. One AC fun-cut is deflned us jupi.
16. Capacitance as measured on Boonton Electronic Corporation Miviel 7ina-8u Capaci tance Bridge or equivalent. $f=1 \mathrm{MHz}, V_{a \leq}=2 G \mathrm{~m} \mathrm{~V}_{\text {rins }}$, All pins not specifically referenced are tied to grarcl for capacitance tests. Outpul plna are felt open
17. Conditions shown umier J, K, and clock apply to $\mathrm{E} / \mathrm{N} 8 \mathrm{H} 20$ only.

The 8 H 90 Hex Inverter is designed for ultra-high switching speed while maintaining high fan-out and noise margin.

The output structure utilizes a totem-pole arrangement which employs a Darlington Pair for active pull-up. This configuration provides extremely low output impedance for the " 1 " output state. As a result, switching times are relatively insensitive to capacitive loads when compared to single transistor active pull-ups. The saturating output switching transistor provides a low impedance driving source in the output " 0 " state, enhancing turn-on times and providing high fan-out capability.

Because of the low output impedance of this element, it exhibits high AC noise immunity at the output which is extremely important in high speed systems in eliminating erroneous cross-coupled signals.

Output short circuit protection is provided by a current limiting resistor.
(Package drawings are on the reverse side.)

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6, 13)

$\begin{gathered} \text { ACCEPTANCE } \\ \text { TEST } \\ \text { SUB-GROUP } \end{gathered}$	CHARACTERISTIC	LDMITS				TEST CONDITIONS						
		SIN.	TYP.	MAX.	UNITS	TEMP.的H26 S8H70 S8H80	TEMP. N8H16 N8H70 N8H80	$V_{0 c}$	DRIVEN INPUT	OTHER INPUTS	OUTPLTS	NOTES
A-5 A-3 A -4	"i" outrut voltage	2.6 2.8 2.6			v v v	$-\frac{1}{*} 5^{*} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+2.55^{*} \mathrm{C}$ $+75 . \mathrm{C}$	4.75 V 5.00 V 4.75 V	0.8 V 0.8 V 0.8 V		$-750 \mu \mathrm{~A}$ $-760 \mu \mathrm{~A}$ $-750 \mu \mathrm{~A}$	8 8 8
A-5 A-3 A-4	"0" output voltage			0.4 0.4 0.4	v v v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.00 V 4.76 V	2.0 V 2.0 V 2.0 V		24 mA 24 mA 24 mA	9 9 9
C-1 A-3 C-1	" $0^{\prime \prime}$ INPUT CURRENT	-0.1 -0.1 -0.1		-2.4 -2.4 -2.4	m A $\mathrm{~mA} A$ mA	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $-25{ }^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25 V 5.25 v 5.25 V	0.4 V 0.4 V 0.4 V			
A -4	"1" INPUT CURHENT'			50	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5,00V	4.5 V			
	TURN-ON DELAY		7.0		n8	$\cdot 25^{\circ} \mathrm{C}$	${ }^{+25}{ }^{\circ} \mathrm{C}$	5,00\%			D. F.O. D.C.	10, 14
	TURN-ON DELAY		5.0		ת8	$+25^{\circ} \mathrm{C}$	+25 ${ }^{\circ} \mathrm{C}$	5.00 V			F.O. ${ }^{-3}$	10.14
	TURN-OFF DELAY		7.0		ns	$+25^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	5.00%			F.O. $=30$	10,14
	TURN-OFF 刀ELAY		5.0		ns	$+25^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	5.00 V			F.O. $=3$	10,14
$\mathrm{C-2}$	OUTPUT FALL 'TME			50	nB	$-50^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V			A.C F.O. $=6$	11, 14
	INPUT CAPACITANCE		2.0		pf	$425^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5,00v	2.0 y			7
A-2	POWER CONSUMPTION OUTPUT "pr" (Per Gate) OUTPUT " 1 "			$\begin{aligned} & 46.2 \\ & 21.0 \end{aligned}$	$\begin{gathered} \mathrm{m} w \\ \mathrm{~mW} \end{gathered}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.26 \mathrm{~V} \\ & 5.25 \mathrm{~V} \end{aligned}$	0 V			
C-1	INPUT LATCH VOLTAGE RATING	6.0			v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V	10 mA			12
A-2	OUTPUT SHORT CIRCUIT CURRENT	-40		-90	mA	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V	0 V		0 V	

NOTES:

1. All voltage and capacitance meagurements are referenced to the ground terminal. Terminals not gpecifically referenced are left electrieslly open
2. All measurements are taken with ground pin tied to zero volts,
3. Poalitive current flow is defined an into the terminal referenced.
4. Pobitive NAND Logic definition: "UP" Level - "1". "DOWN" Level - " 0 ",
5. Precautionary measures should be taken to enaure current limiting in accordance
6. Precautonary measures ghould be taken to ensure current lomining in accondance
7. Measurements apply to each gate elernunt independently.
8. Capacitance as messured on Boonion Electronic Corporation Model 75A-SS Capacitanec Bridge or equivalent. $f=1 \mathrm{MHz}, V_{a c}=25 \mathrm{mV}$ rms. All pins not specifically referenced are tied to guard for capacitance tests. Ontput plime are left open.
B. Cutput source current is supplied through a resistor to ground,
9. Output sink current is supplied through a resistor to $V_{\text {ec }}$.
10. Cme DC lan-out is defined as 0.8 BA .
11. One AC fan-vut is detlned as sopf.
12. This test guarantees operation free of tngut latch-up over the apeciffed operating supply voltage range.
13. Manufacturer reserves the right to makederign and process changes and improvements,
14. Test conditions for AC testing are the same as for aHso. See Section 3 of Signetics DCL Handbook.

BASIC CIRCUIT SCHEMATIC

The 8T18 is a Dual 2-Input NAND Interface Gate. It is a high to low voltage interface gate which provides translation from up to $30-\mathrm{volt}$ logic levels to standard logic levels of 5 volts.

The basic gate operates from two power supplies. The input structure functions from a high voltage supply between 20 V and 30 V and the second stage transistors and output structure operate from a standard 5 V power supply.

The output structure features active pull-up and pull-down, providing a low impedance driving source in both " 1 " and " 0 " output states. This configuration is particularly suited for driving the high capacitance loads encountered in high fan-out and line driving applications.

Section 4 provides usage rules and applications information for the 8 T 18 .

ELECTRICAL CHARACTERISTICS (NOTES: 1, 2, 3, 4, 5, 6)

ACOEPTANCE TEST SUB-GROUP	CHARACTERISTIC	Lidits				TEST CONDITIONS							
		MiN.	TYP.	MAX.	LNTTS	$\begin{aligned} & \text { TEMP. } \\ & \text { SST18. } \end{aligned}$	TEMP. Natis	$\mathrm{V}_{\mathrm{cc}}^{1}$	$\mathrm{v}_{\mathrm{cc}}^{2}$	$\begin{aligned} & \hline \text { DRIVEN } \\ & \text { INPUT } \end{aligned}$	OTHER iNPUTS	outputs	NOTES
A-5 $\mathrm{A}-3$ $\mathrm{~A}-4$	" 1 " OUTPUT VOLTAGE	3.4 3.6 3.4			V v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	4.75 V 5.00 V 4.75 V	24.0 V 24.0 V 24.0 V	6.5 V 6.5 V 6.5 V		$-2254 \mathrm{~A}$ $-285 \mu \mathrm{~A}$ $-2254 \mathrm{~A}$	7 7 7
A-5 $\mathrm{A}-3$ $\mathrm{~A}-4$	"0" OUTPUT VOLTAGE			0.35 0.35 0.35	v v v	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $-125^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$ $+2.5{ }^{\circ} \mathrm{C}$ $+755^{\circ} \mathrm{C}$	4.75 V 5.00 V 4.75 V	20.0 V 20.0 V 20.0 V	9.0 V 9.0 V 9.0 V	$\begin{aligned} & 9.0 \mathrm{~V} \\ & 9.0 \mathrm{~V} \\ & 9.0 \mathrm{~V} \end{aligned}$	7.2 mA 7.2 mA 7.2 mA	8 8 8
A-5 $\mathrm{A}-3$ $\mathrm{C}-1$	"0" InPUT CURRENT	-0.1 -0.1 -0.1		-1.8 -1.8 -1.8	$m A$ $m A$ $m A$	$-55^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.25 V 5.25 V 5.25 V	24.0 V 21.0 V 24.0 V	0.35 V 0.35 V 0.35 V	$\begin{aligned} & 30 \mathrm{y} \\ & 30 \mathrm{~V} \\ & 30 \mathrm{y} \end{aligned}$		
A-4	"1" INPUT CI:RRENT			50	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.00 V	24.0 V	30 V	0 V		
A-6	TURN-ON DELAY		12	20	ne	+25 ${ }^{\circ}$	$+25^{\circ} \mathrm{C}$	5.00 V	2 4 .0 V			$\begin{aligned} & \text { L. C. } \\ & \text { F.O. }=0 \end{aligned}$	9,11
A-6	TLIEN-GFF DELAY		35	70	n8	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.00 V	24.0 V			$\begin{aligned} & \text { n.c. } \\ & \text { F.O. - } \end{aligned}$	9,11
C-2	OLTPUT FALL TiME			75	ns	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 v	24.0 V			$\begin{aligned} & \text { A.C: } \\ & \text { F.O. } 2 \end{aligned}$	10,11
A-2	PGWEL CONSUMPTION (V ve_{1} OUTPUT " 0 " ${ }^{\circ}$) (Pe : Gate)			44.0	mW	$+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	5.25 V 5.25 V	24.0 V 24.0 V				
	(Vec_{1} oUTPUT " I^{1}) ($\mathrm{Vec}_{\mathbf{2}}$ oUTPUT "0")			1.0 38.9	mw'	+25 $+2{ }^{\circ} \mathrm{C}$	$+255^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	5.25 V 5.25 V	24.0 V 24.0 V	ov			
	$\left(v_{\mathrm{cc}_{2}}\right. \text { ontput "I") }$			37.2	mW	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.25 V	24.0V	0v			
A-2	INPLIT VOLTAGE RATDNG	50			v	$+25^{\circ} \mathrm{C}$	$125{ }^{\circ} \mathrm{C}$	5.00 V	24.0v	100, A	0 V		
	OUTPLT SHORT CRRCUTV CURKENT		-75		mA	$125^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	5.00 V	24,0v	0 v		0V	

Notes:

6. Mieasurements apply to cach gate element independently.
7. Output source current is supplled through a resistor to grounul.
8. Output sipk current is supplied through a resistor to $V_{\text {ec }}$.
9. Ome DC fan-out is defined as 0.5 ma
10. One $A C$ fat-out is defined as 50 pf,
11. Detailed test conditions for AC testing are in Section 3 ,

QUAD 2-INPUT NAND INTERFACE GATE HEX INVERTER INTERFACE ELEMENT

The 8T80 Quad 2-Input NAND Interface Gate and the 8 T 90 Hex Inverter Interface Element are low to high voltage elements which provide translation from standard logic levels of 5 volts to voltage levels of up to 30 volts.

The $8 T 80$ performs the NAND function for positive logic (highest voltage level $=$ " 1 ") and the 8 T 90 performs the inverting function.

The outputstructure of each element features a high voltage transistor with bare collector which allows Logic swings up to 30 volts. The bare collector allows collector Iogic or wired-AND to be easily implemented.

Usage and applications information for these devices is included in Section 4 of this handbook.

BASIC CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (NOTES: $1,2,3,4,5,6,10,12$)

ACCEPTANCE	CHARACTERISTIC	LimjTs				TEST CONDITJONS						
$\begin{gathered} \text { TEST } \\ \text { SUD-GROLP } \end{gathered}$		MIN.	TYP.	MAX.	UNITS	$\begin{aligned} & \text { TEMP } \\ & \text { S8T80 } \\ & \text { S8T90 } \end{aligned}$	TEMP. NOT80 N8T90	${ }^{\text {coc }}$	DRIVEN INPET	OTHER INPUTS	oltputs	NOTES
A-4	"נ" OUTPLT LEAKAGE CURRENT			100	$\mu \mathrm{A}$	$-126^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.0 V	0,6V			7
A-5	"0" OUTPUT VOLTAGE			1.0	V	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 y	2.0 V	2.04	20 mA	8
A-3 $\mathrm{A}-4$				1.0	V	$+25^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$ $+75^{\circ} \mathrm{C}$	5.0 y 1.75 y	2.0 y 2.0 y	2.0 V	20 mA	8 8
C-1	'0'י' OUTPC゙T VQLTAGE			0.35	V	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	4.75 V	2,0v	2.0 V	7.2 ma	8.9
C-1				0.35	v	+25*	- $25^{\circ} \mathrm{C}$	5.0 V	2.0 V	2.0 V	7.2 mA	8.9
C-1				0.35	V	$-125^{\circ} \mathrm{C}$	$-75{ }^{\circ} \mathrm{C}$	4.76 V	2.04	2.0 V	7.2 mA	8.9
$\mathrm{C}=1$	"0" INPUT CURRENT	-0.1		-1.6	mA	$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	5.25 V	0.35V	5.25 V		
A-3		-0.1		-1.6	mA	$425^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	5.25 V	0.35 V	5.25 V		
C-1		-0.1		-1.6	ma	$+125^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	5.25 V	0.35 V	5.25 V		
A-4	"i" INPUT CURAENT			25	$\mu \mathrm{A}$	$+125^{\circ} \mathrm{C}$	-75* ${ }^{\circ} \mathrm{C}$	5.0 V	4,5V	0V		
A-6	TURN-ON DELAY		35	55	ns	$125^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 y				13
A-6	STORAGE TIME		40	95	ns	$+25^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$	5.0 V				13
A-2	POWER CONSUMPTION OUTPUT " 0 "			20.0	mW	$+25^{\circ} \mathrm{C}$	+25* C	5.25 V				
A-2	(Per Gate) OLTTPLT "l"			7.9	mw	$+25^{\circ} \mathrm{C}$	$+25^{*} \mathrm{C}$	5,25V	0v			
A-2	INPUT VOLTAGE RATING	6.0			V	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	50 A	OV		
A-2	OHTPUT VOLTAGE RATING	40			v	$+25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	5.0 V	0 V			11

Notes:

1. All woltage and capacitance measurements are referenced to the ground terminal. Torminals not apecifically referenced are left electrically open
2. All measurements are taken with ground pln tied to zero volts.
3. Positive current flow is defined ass into the terminal referenced.
4. precautionary measures should be taken to ensure current limitling in accordance with

Absolute Maximun Ratings shoult the isolation diodes become forward blased.
6. Beasurcments apply to each gate olement independently.
2. Output leakege current is supplied through a $2 \mathrm{~K} \Omega$ resistor to 30 V ,
8. Output sink cur rent is supplied through a resistor to 50 V .
8. Output sink cur rent is supplied
9. This test applies to 8 Tyo only.
10. "OTHER INPUTS" applios to BTBO only.
II. For this teet, connect a aKn resistor from output under test to 41 V and a 10 pf capacitor from output to ground.
12. Manufacturer rezerves the right to make deaign and process changes and faprovements. 1i. Detailed test condifions for AC testing are in Section 3.

A PACKAGE

J PACKAGES

8780

8 890

SECTION 3-AC TESTING

Verification of the AC parameters guaranteed in the Electrical Characteristics tables in Section 2 can be obtained by using the test circuits and loading conditions specified in this section. The test circuit and loading conditions appropriate to each device in the 8000 -series can be determined from Table 3-1. Please note that the test limits guaranteed apply only when the specific circuits and loading conditions indicated in this section are used.

TABLE 3-1 - AC TEST CIRCUITS AND LOADING INFORMATION

ELEMEN'T	$\mathrm{T}_{\text {ON }}-\mathrm{T}_{\text {OFF }}$							PAIR DELAY					$\begin{gathered} \text { TOGGLE } \\ \text { RATE } \end{gathered}$	OUTPUT FALL TIME		SWTTCHING AND HOLDING LEVEL FIGURE NUMBER
	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$	LOADING VALUES						FIG. NO	LOADING VALUES				FIGURE NUMBER	FIG. NO.	LOADENG VALUES C1	
		$\mathrm{T}_{\text {ON }}$			$\mathrm{T}_{\text {OFF }}$											
		R1	H2	C1	R1	R2	C1		R1	R2	C1	C2				
8162	2 J		NOTE 4											5A	150	
8415	2B	11 K	210	27	11 K	1.91 K	18	18	15 K	210	47	44		5B	100	
8416	2A	16K	210	27	16 K	1.91K	18	1A	15K	210	47	44		5 C	100	
8417	2B	11K	210	27	11K	1.91 K	18	1B	15K	210	47	44		5B	100	
8424	2 K	16K	226	24	16 K	1.91 K	18						4A	5 F	100	3A
8425	2K	16K	226	24	16 K	1.91K	18						4A	5 F	100	3A
8440	2 C	16 K	210	27	16 K	1.91 K	18	1C	15K	210	47	44		5D	100	
8455	2 A	5K	70	75	5 K	1.91 K	18	1A	5 K	70	95	92		5C	450	
8470	2 A	16 K	210	27	16 K	1.91 K	18	1A	15 K	210	47	44		5 C	100	
8471	2B	11K	210	27	11K	1.91K	18	18	15K	210	47	44		5B	100	
8480/90	2A	16 K	210	27	16 K	1.93 K	18	1A	15K	210	47	44		5C	100	
8481	2B	11K	210	27	11K	1.91 K	18	13	15K	210	47	44		5B	100	
8806	2 D	5 K	84.5	30	5K	84.5	30									
8808	2A	5 K	84.5	3 c	5 K	84.5	30							5 C	300	
8815	2A	5 K	84.5	30	5K	84.5	30							5 C	300	
8816	2 A	5 K	84.5	30	5 K	84.5	30							5 C	300	
8821	2 P	5K	84.5	30	5 K	84.5	30						4 D	5G	300	
8822	2 P	5 K	84.5	30	5K	84.5	30						4B	5G	300	

TABLE 3-1 - AC TEST CIRCUITS AND LOADING INFORMATION (Cont.)

ELEMENT	$\mathrm{T}_{\mathrm{ON}}-\mathrm{T}_{\text {OFF }}$							PAIR DELAY		$\begin{aligned} & \text { TOGGLE } \\ & \text { RATE } \end{aligned}$	OUTPUT FALL TIME		SWITCHING AND HOLDING LEVEL FIGURE NUMBER
	Fig. NO.	LOADING VALUES						FIG. NO.	LOADING VALUES	FIGURE NUMBER	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$	LOADING VALUES	
		T_{ON}			$\mathrm{T}_{\text {OFF }}$								
		R1	R2	C1	R1	R2	C1					C1	
8824	2P	5K	84.5	30	5K	84.5	30			4B	5G	300	
8825	2 F	5 K	84.5	30	5 K	84.5	30			4 E	5 C	300	
8826	2 G	5 K	169	18	5 K	169	18			4 B	5G	100	3 A
8827	2G	5 K	169	18	5 K	169	18			4D	5G	100	3A
8828	2 I	5K	84.5	30	5K	84.5	30				5 H	300	
8829	2 H	5 K	84.5	30	5 K	84.5	30			4E	5G	300	
8840	2 C	5 K	84.5	30	5K	84.5	30				5D	300	
8848	2 M	5K	84.5	30	5 K	84.5	30				5 E	300	
8855	2 A	5 K	24.9	90	5 K	24.9	90				5 C	500	
8870	2 A	5K	84,5	30	5 K	84.5	30				5 C	300	
8875	2A.	5K.	84.5	30	5 K	84.5	30				5 C	300	
8880	2A	5K	84,5	30	5 K	84.5	30				5C	300	
8881	2B	1M	84.5	30	1M	84.5	30				5B	300	
8885	2A	5 K	84.5	30	5 K	84.5	30				5 C	300	
$8 \mathrm{H16}$	2A	5K	56	18	5K	56	18				5 C	300	
8H20	2G	1.6 K	56	18	1.6 K	56	18			4D	5G	300	
8H21	2 G	1.6 K	56	18	1.6 K	56	18			4.D	5 G	300	
8H2;2	2G	1.6 K	56	18	1.6K	56	18			4D	5G	300	
8H70	2A	5 K	56	18	5 K	56	18				5 C	300	
8H80	2 A	5 K	56	18	5K	56	18				5 C	300	
8T18	2 L	16 K	210	27	16K	210	27				5 I	100	
8 T 80	2 E	Open	1.43 K	30		OTE 5							
8 T 90	2 E	Open	1.43 K	30		TE 5							

FIGURE A - MEASURING POINTS: t_{r}, t_{f} and PW
NOTE: Input pulse notations apply thru this section

FIGURE 1 - PAIR DELAY

Notes: 1. All resistor values are in ohms.
2. All capacitance values are in plcofarads and include ifig and probe capacitance. Capacitance as measured on Boonton Electronic Corparation Model 75A.S8 Capacitance Bridge or equivalent. $f=1 \mathrm{MHz}, ~ V a c=25 \mathrm{mV}$ rms.
3. All diodes are 1N916.
4. Fig . 2 J also contains pulse width test conditions.
5. Fig. 2E also contalns storage time test conditions.

FIGURE 2 - TURN-ON AND TURN-OFF DELAY
2 A

Notes: 1. All resistor values are in ohms.
2. All capacitance values are in picofarads and include jig and probe capacitance. Capacitance as measured on Boonton Electronic Corporation Model 75A-S8 Capacitance Bridge or equivalent. $f=1 \mathrm{MHz}, \mathrm{Vac}=\mathbf{2 5} \mathbf{m V} \mathrm{rms}$.
3. All dlodes are 1 NS 16 .
4. Input measuring points are per Figure A, Page 3-2.

Noses: 1. All resistor values are in onms.
2. All capacitance values are in plcofarads and include jig and probe capacitance. Capacitance as measured on Boonton Electronic Corporation Model 75A.S8 Capacitance Bridge or equivalent. $f=1 \mathrm{MHz}, \mathrm{Vac}=25 \mathrm{mV} \mathrm{rms}$.
3. All diodes are 1N916.
4. Input measurling points are per Figure A, $\boldsymbol{P}_{\text {age }}$ 3-2.

Notes: 1. All resistor values are in ohms.
2. All capacitance values are in picofarads and include jig and probe capacitance. Capacitance as measured on Boonton Electronic Corporation Model $75 \mathrm{~A}-\mathrm{SB}$ Capacitance Bridge of equivaient. $f=1 \mathrm{MHz}, \mathrm{Vac}=25 \mathrm{mV}$ rms.
3. All diodes are 1N916.
4. Input measuring points are per Figure A, Page 3-2.

Notes: 1. All resistor values are in ohms
2. All capacitance values are in picofarads and include jig and probe capacitance. Capacitance as measured on Boonton Electronic Corporation Model $75 \Delta-58$ Capacitance Bridge or equivalent. $f=1 \mathrm{MHz}, \mathrm{Vac}=25 \mathrm{mV} \mathrm{mm}$.
3. All diodes are 1 N916.
4. Input measuring points are per Figure A, Page 3-2,

Notes: 1. All resistor values are in ohms.
2. Alt capacitance values are in picofarads and include iig and probe capacitance. Capacitance as measured on Eonton Electronic Corporation Model 75A-S8 Capacitance Bridge or equivalent, $f=1 \mathrm{MHz}$, Vac $=25 \mathrm{mV}$ rms.
3. All diodes are 1 N 916 .
4. Input measurling points are per Figure A. Page 3-2.

FIGURE 3 - CLOCKED MODE SWITCHING AND HOLDING LEVEL
3A

SWITCHING TEST FOR 8424 and 8425
Appiy Step 1 S1 Pasition 2
SWITCHING TEST FOR 8826 and 8827
Apply Step 1 S1 Position 1
HOLDING TEST
Apply Step 2 only.
Si Position $1(84248$
\& 8425$)$
Si Position $2(8826 \&$
$8827)$

STEP 1
Apply a single pulse: Amplltude $=3.4 \mathrm{~V}$,
P. W. $=200 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=75 \mathrm{~ns}$.

Outputs shall change state.
STEP 2
Apply input pulses: Amplitude $=4.5 \mathrm{~V}$,
P.W. $=200 \mathrm{~ns}, t_{r}=t_{f}=10 \mathrm{~ns}$.

Output shall not change state.

Notes: 1. Alt resistor values are in ohms.
2. All capacitance values are in picofarads and include ig and probe capacitance. Capacitance as measured on Boonton Efac-

3. All diodes are 1 N916.
4. Input measuring points are per Figure A, page 3-2.

FIGURE 4 - TOGGLE RATE

Notes: i. All resistor values are in ohms.
2. All capacitance values are in picofarads and include jig and probe capacitance. Capacitance as measured on Boonton Electronic Corporation Model 75A-S8 Capacitance Bridge or equivalent. $f=\mathbf{1 M H z}, \mathrm{Vac}=\mathbf{2 5} \mathrm{mV} \mathrm{rms}$.
3. All diodes are 1N916.

Notes: 1. All resistor values are in ohms.
2. All capacitance values are in picofarads and include jig and probe capacitance. Capacitance as measured on Boonton Electronic Corporation Model 75A.S8 Capacitance Bridge or equivalent $f=\mathbf{1 M H z}, \mathrm{Vac}=\mathbf{2 5} \mathbf{m V} \mathrm{rms}$,
3. All diodes are 1 N 916.

FIGURE 5 - OUTPUT FALL TIME

Notes: 1. All resistor values are in ohms.
2. All capacitance values are in picofarads and include jig and probe capacitance. Capacitance as measured on Boonton Electronic Corporation Model 75A.S8 Capacitance Bridge or equivalent. $\mathbf{f = 1} \mathbf{M H z}, \mathrm{Vac}=\mathbf{2 5} \mathbf{m V} \mathbf{~ r m s .}$
3. All diodes are 1 N 916 .

Notes: 1. All resistor values are in ohms.
2. All capacitance values are in picofarads and include jig and probe capacitance. Capacitance as measured on Boonton Electronic Corporation Model 75A.S8 Capacitance Elidge or equivalent. $f=1 \mathrm{MHz}, \mathrm{Vac}=\mathbf{2 5} \mathrm{mV} \mathrm{ms}$.
3. All diodes are 1 N 916.
4. Input measuring points are par Figure A, Page 3-2.
5 IL

Notes: 1. All resistor values are in ohms.
2. All capacitance values are in picofarads and incłude iig and probe capacitance. Capacitance as measured on Boonton Electronic Corporation Model 75A-S8 Capacitance Bridge or equivalent. $f=\mathbf{1 M H z}$, Vac $=\mathbf{2 5 m V} \mathrm{mm}$.
3. All diodes are 1 N916.
4. Inout measuring points are per Figure A, Page 3-2.

SECTION 4 - APPLICATIONS GATES

This part of Section IV is devoted to 8000 Series gates. Input structures, output structures, collector logic and AND-OR-INVERT gates are discussed. For quick reference, a table of typical propagation delays and power consumptions for the 8000 Series gates is given here:

Group	Typical Propagation Delay	Typical Power Consumption
$8400^{\prime} \mathrm{s}$	25 ns	7 to 9 mW
$8800^{\prime} \mathrm{s}$	8 ns	17 to 19 mW
$8 \mathrm{H} 00^{\prime} \mathrm{s}$	6 ns	25 mW

INPUTS

TTL Input Structure

The TTL input features the multiple emitter input structure $\left(\mathrm{Q}_{1}\right)$ with a phase-splitting transistor $\left(\mathrm{Q}_{2}\right)$ as shown in Figure 4-1.

Figure 4-1
The only difference between the TTL input structures of the 8400,8800 and 8 H 00 gates is the value of the input resistor R1 (shown in Figure 4-1). Thus the " 0 " level input current for the 8400 's is $1 / 2$ that of the $8800^{\circ} \mathrm{s}$, and $1 / 3$ that of the $8 \mathrm{H} 00^{\prime} \mathrm{s}$.

The phase-splitting transistor, Q2, serves two functions: first, it supplies sufficient base drive to Q_{3}
to cause Q_{3} to turn on rapidly and saturate. Second, it ensures that the upper transistors, Q_{4} and Q_{5}, and the lower transistor, Q_{3}, remain in opporite states. This prevents the large power supply current drain which would result if they all happened io be on at the same time -- in such a case, the only impedance in the power-supply-to-ground path would be the $80-$ ohm current limiting resistor, R_{4}.

DTL Input Structure

The DTL input, whose structure is shown in Figure $4-2$, is available in the 8415,8416 and 8417 gates.

Figure 4-2

The 8416 and the 8417 allow for input expansion with either diodes or diode arrays. Input expansion influences both DC noise margins and switching times. Therefore, allowable maximum fan-ins may be set by switching speed requirements in one application, and by DC noise margins in another. Turn-on delays for the expanders increase about 3ns per picofarad of capacitance on the expansion input; this is because the input resistor of the gate must charge this additional capacitance before the gate may be switched. The capacitance of the expanders (8706/8731) is lpf per input plus 3 pf per diode cluster. Turn-off time is not appreciably influenced by the capacitance, since it will be discharged through the input diode and low output impedance of the driving gate.

Fan-in will be limited by the leakage current of the expanders (8706/8731). This current will decrease the "1" DC noise margin as a function of number of expander diodes as shown in Figure 4-3.

Figure 4-3-" 1 " Level DC Margin as a Function of Number of Expander Diodes

Unused Inputs

It is recommended that all unused inputs of 8000 Series gates be connected to driven inputs. This not only provides the best switching speed, by virtue of the shunted capacitance, but also facilitates board layout, since shorting of adjacent pins is all that is necessary. The "l" level input current will increase by a maximum of $25 \mu \mathrm{~A}$ for each input which is connected to a driven input, but the " 0 " level input current is not affected.

Unused inputs may also be tied to $V_{c c}$. Connecting unused inputs to Vec gives the best noise immunity and results in some speed improvement over open inputs. If unused inputs of the 8400 gates are connected to V_{cc}, the connection should be made through a resistor (5 K to 20 K).

OUTPUTS

8000 Series gates have two kinds of outputs: active pull-up and bare coilector. Bare collector devices are primarily intended for collector logic applications. Among the active pull-up outputs there are five types, each of which will be treated separately.

It should be kept in mind that, at interfaces where non-operating (V_{cc} off) gates may be connected to an operating system, due regard must be given the isolation diode associated with the resistor at the output of the gate. Power supply outputs frequently become a low impedance to ground when the input power is removed. In this case, gate outputs will be clamped positive (one diode drop) with respect to ground by virtue of diode R. (See Figure 4-4.) In the case of the 8855 power buffer (F'igure 4-8), the resistor which is tied to the output acts as a reversed bias diode to ground. This resistor diode in conjunction with the collector isolation diode of the output pull-down transistor provides an effective diode clamp to negative excursions at the output.

Figure 4-4

8416, $8440,8470,8480$ Outputs (Active Pull-Up)

The outputs of these types have a 500 -ohm series current-limiting resistor, as shown in Figure 4-5.

Figure 4-5

This output structure enables these elements to achieve DTL performance (speed) at lower than normal DTL power levels. The effective output impedance of Iess than 600 ohms results in rise times which are much faster than in conventional DTL (2 K to 6 K -ohm output impedance). However, when the gate is in the " 0 " state, the upper stage is off and the power consumption is less than would result if a passive 600 -ohm resistor were used.

The curve of power vs, frequency for the 8480 is almost flat, which means that virtually the same low power is used at all frequencies. This characteristic is typical of 8400 gates. The "flat" characteristic is achieved through the special design of the output structure.

8455 Output (Active Pull-Lp)

The second type of active pull-up has a diode by-pass around a $200-0 \mathrm{hm}$ resistor. This structure results in higher fan-out, with fast rise-times into heavy capacitive loads such as the 8424 clock input. (See Figure 4-6.)

Figure 4-6

8800° s Output (Active Puil-L"p)

The third type of active pull-up output structure is the classical TTL design and is found in the 8800 gates. The Darlington configuration provides a low output impedance.

Figure 4-7

The low impedance output structure of the 8800 s results in fast turn-off even when driving capacitive loads. Elements will not be damaged if their outputs are momentarily shorted to ground.

The 8855 has a lower current-limiting resistor value (namely 60 ohms) and a 4.4 K -ohm resistor to ground.

Figure 4-8

The '11" level output impedance of one of the 8800 gates may be determined from the slope of the curves below. The output impedance (slope) is dependent upon the output current. Note that there are two regions of constant slope. The output impedance is essentially that of an emitter-follower in the lower current region. In the higher current region the output impedancc is primarily that of the collector resistor (80 ohms).

Figure 4-9

The equivalent voltage source may be determinca from the " Y " intercept of the curves for a given power supply voltage (V_{cc}). A " 1 " level equivalent output circuit for a typical case is shown in Figure 4-9.

8H00 Outputs (Active Pull-Up)

The output structure of these gates is essentially the same as that for the $8800^{\prime} \mathrm{s}$, except for the lower resistor values and the 4 K resistor to ground. These changes provide the higher speeds of the 8 H 00 gates.

Figure 4-10

8415, 8417, 8471, 8481, 8881 Outputs (BareCollector or Passive Pull-Up)

The second general class of 8000 Series outputs is the bare collector type. Five gates, the 8415, 8417, 8471,8481 and 8881 provide this output structure. The bare collectors permit the elements to be paralleled (i.e. collector logic) with other bare collector elements. The 8417 also has an optional $4.4 \mathrm{~K}-$ ohm pull-up resistor available. A detailed explanation of collector logic and its implementation follows.

Figure 4-11

Expansion of 8000 Series Outputs (Collector Logic)

"Wired-AND" is the nomenclature used by Signetics to indicate the collector logic function formed by connecting two or more passive pull-up elements. The significant advantage of collector logic is that it provides a new "free" logic function, as illustrated below:

Figure 4-12
Because the new function, $\mathrm{f}_{3}=\overline{\mathrm{AB}+\mathrm{CD}}$ is equivalent to the AND-NOR gate, it is also frequently known as "wired-OR."

Allowed Values of R_{L} for Collector Logic Elements

Collector logic can be implemented using the bare collector elements $8415,8417,8471,8481$ and 8881 . The 8417 element contains an optional 4.4 K ohm pull-up resistor.

1. The maximum value of load resistance ($\mathrm{R}_{\text {L MAX }}$) is determined by the maximum voltage drop across R_{L} caused by the total leakage current which will still ensure a minimum logical " 1 " at the common collector node.

Total leakage current I (1) total $=\mathrm{nI}(1)_{\mathrm{o}} \div \mathrm{m} \mathrm{I}(1)_{\mathrm{i}}$
$\mathrm{n}=$ Number of commoned collectors (driving gates)
$\mathrm{m}=$ Number of fan-outs (driven gates)

Figure 4-13
2. The minimum value of load resistance (R_{L} MIN) is determined from the worst case maximum logical " 0 " state in which only one element is sinking current. This condition is illustrated below:

Figure 4-14
3. Knowledge of the range of possible values of R_{L} for any combination of commoned collectors and total fan-outs (F.O.'s) is of extreme importance in any collector logic oriented system. Figures 4-15 through -17 for the bare collector gates $8415 / 17$, the $8471 / 81$ and the 8881 , respectively, will enable the system designer to choose R_{L} for any combination of commoned collectors, number of fan-outs, speed and power consumption.

The maximum load resistance minimizes power consumption, but at the expense of decreased AC noise immunity and slow switching specds. The choice of the minimum load resistance produces maximum AC noise immunity and minimum switching speed or minimum propagation delay. The guaranteed DC noise margins are not effected if the value of R_{J}, is within its absolute limits.

To use the curves in Figures 4-15 through -17, draw a horizontal line out from the vertical axis at the level of the required number of fan-outs (m). Extend the line until it intersects the RL_{L} MAX line for the required number of commoned collectors (n). The line will also intersect the R_{L} MIN curve. Drop a vertical from where it intersects the R_{L} MIN curve and another from where it intersects the R_{L} MAX curve. The range of values between these verticals on the Load Resistor axis is the full range of $\mathbf{R}_{\mathbf{L}}$ for those n and m values. (Example: for the 8415 , Figure 4-15, if $m=5$ and $n=4, R_{L}$ ranges from $1.1 \mathrm{~K} \Omega$ to $4.9 \mathrm{~K} \Omega$.)

Figure 4-15 - Allowed Values of R_{L} for the 8415 and 8417

Figure 4-16 - Allowed Values of R_{L} for the 8471 and 8481

Figure 4-17 - Allowed Values of R_{L} for the 8881

8440, 8840,8848 AND-OR-INVERT Gates

These gates provide the collector logic function, that is, they give an output $f=\overline{\mathrm{AB}}+\mathrm{CD}$. The 8806 input expander may be used with the 8840 and the 8848 (but not the 8440) to expand logic capability. Input expansion of these devices will decrease the "0" input threshold voltage in accordance with this curve.

Figure 4-18

Care should be taken when laying out the lines for the 8840 and 8848 expansion points to minimize capacitance and noise pick-up.

The elements can be paralleled, as shown in Figure 4-19 below. Because of the capacitance pick-up and the current gain of the elements, it is recommended that only one additional 8840 and 8848 be connected to another 8840 or 8848 .

Figure 4-19

BINARIES

8000 SERTES BINARY REFERENCE TABLE

NO.	FUNCTION	ORGANIZATION	CLOCK		SYNC INPUTS **	ASYNC INPUTS ***	USAGE
			$\begin{gathered} \text { TRTGGER- } \\ \text { ING } \\ \text { SLOPE } \end{gathered}$	SEPARATE/ COMMON			
8424	RS/T	Dual AC	Negative	Separate	$\overline{\mathrm{R}}_{c} \overline{\mathrm{~S}}_{\mathrm{c}}$	$\overline{\mathrm{R}}_{\mathrm{D}}$	General Purpose
8425	RS/T	Dual AC	Negative	Common	$\overline{\mathrm{R}}_{\mathrm{c}} \overline{\mathrm{S}}_{\mathrm{c}}$	$\overline{\mathrm{R}}_{\mathrm{D}}$ (common), S_{D}	General Purpose
8821	JK	Dual M-S	Negative	Common	J K	\bar{R}_{D} (Common), $\overline{\mathrm{S}}_{\mathrm{D}}$	Sync Counters Control F/F
8822	.JK	Dual M-S	Negative	Separate	J K	$\overline{\mathrm{R}}_{\mathrm{D}}$	Sync Counters Control F/F
8824	JH	Dual M-S	Negative	Scparate	J K	$\bar{R}_{D} \bar{S}_{D}$	Sync Counters Control F/F
8825	JK	Single DC	Positive	-	JJЈ̄ KK「్	$\overline{\mathrm{R}}_{\mathrm{D}} \overline{\mathrm{S}}_{\mathrm{D}}$	Control F/F
8826	JK	Dual AC	Negative	Separate	d K	$\overline{\mathrm{r}}_{\mathrm{D}}$	High Speed Syne Counters
8827	JK	Tual AC	Negative	Common	J K	$\bar{R}_{D}\left(\right.$ Common), \bar{S}_{D}	High Speed Sync Counters
8828	D	Dual DC	Positive	Separate	D	$\overline{\mathrm{R}}_{\mathrm{D}}, \bar{s}_{\mathrm{D}}$	Shift Reg Sync Reg
8829	JK	Single DC	Negative	-	WIJ KKK	$\overline{\mathrm{R}}_{\mathrm{D}}, \overline{\mathrm{S}}_{\mathrm{D}}$	Control F/F
8H20	JK	Dual SC	Negative	Separate	JK	$\overline{\mathrm{R}}_{\mathrm{D}}$	Very Iffgh Speed
8 H 21	JK	Dual SC	Negative	Common	JK	$\overline{\mathrm{R}}_{\mathrm{D}}$ (Common) \bar{S}_{D}	Very High Speed
8H22	JK	Dual SC	Negative	Separate	J K	$\overline{\mathrm{R}}_{\mathrm{D}}, \overline{\mathrm{S}}_{\mathrm{D}}$	Very High Speed

NOTES:

> * Dual - Two Binaries per pkg.
> Single - One Binary per pkg.
> AC - Capacitive Coupled Input
> DC - Gated Input (Threshold)
> M-S - Master Slave
> SC - Stored Charge

```
** Unused J-K, RS, D Inputs should be handled the same as unused gate inputs, except \(8825 \bar{J}\) and \(\bar{K}\) should be tied to ground.
*** Unused \(\overline{\mathrm{S}}_{\mathrm{D}}\) and \(\overline{\mathrm{R}}_{\mathrm{D}}\) inputs should be handled the same as unused gate inputs.
```


RELATIONSHIP OF BINARY TYPES

The various binaries can be thought of as an evolution of the original RS / T which subsequently resulted in the $\mathrm{J}-\mathrm{K}$, the D, and the T, in that order. Each successive type is produced through the addition of NAND gates and connections as shown below:

CLOCKING

8424,84.25

The 8424 and 8425 binaries (shown in Figure 4-20) respond to the negative-going edge of the clock pulse. The recommended clock pulse waveform is a normally low-riding, positive-going pulse of 2.5 volts amplitude, 100 nanoseconds wide, with a fall time of less than 75 nanoseconds. A protective diode is included at the clock input to limit positive excursions of the clock line to about 0.5 volts above the power supply, and to limit negative excursions to about -30 volts. The current in this diode should be limited to 10 mil liamps on positive excursions and 1 milliamp on negative excursions.

In counters and shift registers, the 8424 and 8425 will typically operate to frequencies of 12 MHz .

Figure 4-20 - Binary Logic Equivalent 8821, 8822, 8824
These binaries (shown in Figure 4-21) are DC coupled, master-slave J-K binaries which respond to the negative-going edge of the clock pulse. The clock pulse should be a minimum ow 20 ns wide. Triggering is independent of clock pulse fall time. The master section of the binary is enabled when the clock is high and will accept the J and K information at its inputs which must remain stabIe while the clock line is high. The information is transferred from the master to the slave when the clock pulse falls.

B821-8822-8824
NOTE: The direct set input not available on 8822 .
8825,8828
Figure 4-21
The 8825 (Figure 4-22) and 8828 (Figure 4-23) respond to the positive-going edge of the clock pulse. The logic inputs are locked out once the clock is high, thus preventing more than one transition of the binary per clock pulse.

Figure 4-22

Figure 4-23

8826, 8827
The 8826 and 8827 (Figure 1-24) respond to the negative-going edge of the clock input. The recommended clock pulse waveform is a positive-going pulse that is at least 10 nanoseconds wide at the 2.4volt level, and has a fall time of less than 50 nanoseconds. If the amplitude is 3.6 volts, the fall time should be less than 75 nanoseconds. The clock pulse width must be limited to 1.0 microseconds maximum when the J and/or K inputs are a logical " 0 ". For example, there is no restriction on the maximum pulse width of the 8826 when it is being used as a ripple counter, since the J and K inputs are both at a logical " 1 " level.

Figure 4-24

8829

The 8829 binary (Figure $4-25$) responds to the negative-going edge of the clock pulse. J-K information is locked out of the master once the clock has risen, thus preventing system errors due to ciock skew. The recommended clock pulsc waveform is a positive-going pulse at least 15 nanoseconds wide at the 2 volt level with rise and fall times less than 150 nanoseconds.

Figure 4-25
$8 \mathrm{H} 20,8 \mathrm{H} 21,8 \mathrm{H} 22$
These binaries are triggered on the negative-going edge of the clock puise. The recommended waveform is a positive-going pulse at least 10 nanoseconds wide at the 2.4 volt level, with a maximum fall time of 200 nanoseconds. A typical logic diagram for these devices is shown in Figure 1-26.

Figure 4-26

SYNCHRONOUS INPUTS

8124, 8425

The logic levels to $\overline{\mathrm{R}}_{\mathrm{c}}$ and $\overline{\mathrm{S}}_{\mathrm{c}}$ inputs should be at their final values before the clock pulse rises and should remain stable while the clock pulse is high. (For logic diagram, see Figure 4-20.)

If the $\overline{\mathrm{R}}_{\mathrm{C}}$ and $\overline{\mathrm{S}}_{\mathrm{C}}$ logic is to be changed when the clock is high (refer to Figure 4-27), two factors must be considered: the device driving the clock must have a low enough source impedance to supply sufficient charging current so that changing the \bar{S}_{C} and \bar{R}_{C} inputs will not cause false triggering through the capacitors. (Devices in the 8000 Series with active pull-up outputs are recommended.) Second, if the clock line is normally high, the logic lines should be stable for at least 1.5 microseconds before the fall of the clock.

Because the 8424 and 8425 have inverting logic synchronous inputs, the AND function is available at the NAND gate outputs, and the AND-OR functions are directly available at the AND-NOR gates, as canbe seen from the figure below.

Figure 4-28
8821, 8822, 8824
The J and K inputs must remain stable while the clock is high, but they may change coincidentally with the rise and fall of the clock pulse. (For logic diagram see Figure 4-21.)

8825,8829
Logic levels at the J and K inputs should be stabilized at a logical " 1 " or " 0 " level at least 10 nanoseconds before and after the clock pulse rises. Logic levels at the $\overline{\mathrm{J}}$ and $\overline{\mathrm{K}}$ inputs should be stabilized at the logical " 1 " or " 0 " level 25 nanoseconds before the clock pulse rises and should remain stable for 10 nanoseconds after the clock pulse rises. Unused $\overline{\mathrm{J}}$ and $\overline{\mathrm{K}}$ must be tied to ground. (For logic diagram, see Figure 4-22 and 4-25.)

8826, 8827

Logic levels at the J and K inputs should be stabilized at a logical " 1 " or " 0 " level before the clock pulse rises and should remain stable until the clock pulse falls. (For logic diagrams see Figure 4-24.)

8828
Logic levels to the D input must be stabilized at a logical "1" or "0" 20 nanoseconds before the clock pulse rises. The D input is locked out approximately 10 ns (one gate delay) after the clock pulse exceeds the clock input threshold. The D input must therefore remain stable for 10 nanoseconds after the clock pulse rises. (For logic diagram see Figure 4-23.)

$8 \mathrm{H} 20,8 \mathrm{H} 21,8 \mathrm{H} 22$

The logic states of the δ and K inputs must be stable when the clock input rises, and must remain stable until the clock falls.

ASYNCHRONOUS IN PUTS

8424, 8425

The direct SET (S_{D}) and RESET (R_{D}) inputs are activated by the "0" logic level. (For logic diagram see Figure 4-20.) If the clock falls when S_{C} and R_{D} are both low, a positive-going spike of approximately 120 nanoseconds and 2.6 volts amplitude will appear on the Q output. Conversely, if the clock falls when both R_{C} and S_{D} are low, a positive-going spike will appear on \bar{Q}. When not used the R_{D} or S_{D} input should be tied to $V_{c c}$. The R_{D} input may also be connected to the Q output if this is more convenient. This connection must be considered a loss of 1 for the ' 1 " level fan-out and negates the output isolation.

8821, 8822, 8824

Asynchronous inputs are activated by a " 0 " level and are independent of the state of the clock. (For logic see Figure 4-21.)

8825

A logical " 0 " on the S_{D} line sets the Q output to a logical "I". (For logic diagram see Figure 4-22.) A logical " 0 " on the R_{D} line resets the Q output to logical " 0 ". The clock input must be low when activating S_{D} and R_{D}. If the clock is high when activating these two inputs, both outputs may go to logical " 0 ". In addition, when S_{D} or R_{D} are subsequently reactivated, the binary will return to its original state (prior to R_{D} or S_{D} activation).

8826,8827
A logical " 0 " on the RESET (R_{D}) line resets the Q output to a logical " 0 ". (For logic diagram see Figure 4-24.) For the 8827, the SET (S_{D}) line sets the Q output to a logical " 1 ". The R_{D} and S_{D} Iines may be activated regardless of the state of the clock. If the clock falls while R_{D} is a logical " 0 " and J is a logical ' 1 '", a positive-going spike approximately 150 nanoseconds wide will appear at the Q output. If the clock falls when K is a logical " 1 " and S_{D} is a logical " 0 ", the positive-going spike occurs on \bar{Q}.

8828,8829

A logical " 0 " on the SET line sets the Q output to a logical " 1 ". (Logic diagrams in Figures $4-23$ and

4-25.) A logical " 0 " on the RESET line sets the Q output to a logical " 0 ". The SET and RESET lines may be activated regardless of the state of the clock or the J and K inputs.

8H20, 8H21, 8H22

The S_{D} and R_{D} inputs are activated by logical " 0 "'s. They may be activated when the clock line is high or low; if the J and K inputs are at a logical " 1 " (both or either), a positive-going spike will occur at the output. The duration of this spike will normally be about 20 nanoseconds.

MONOSTABLE MULTIVIBRATOR

8162 MULiTIVIBRATOR

The 8162 is a one-shot multivibrator with complementary outputs and optional 500 -ohm load resistors. The output pulse width can be conveniently adjusted to conform to most one-shot application requirements. The 8162 provides high output duty cycle (75%) and complete isolation of the timing stage and the output stage, resulting in good fall time even with wide pulse width.

Figure 4-29

The 8162 's clock can be driven by an 8000 Series element; the input is considered to be 2 AC loads (100 picofarad). The clock pulse width should be at least 50 nanoseconds wide, with a fall time of less than 75 nanoseconds.

When the gate input is $10 w$, the clock line is enabled. The clock is inhibited whenever the gate input is more positive than the clock input. Therefore gate input driver must have a higher output voltage than the clock driver.

The 8162 provides complementary outputs with passive 3 K -ohm pull-up resistors. This allows collector logic with the DCL bare collector gates (see discussion of $8415,8417,8471,8481$ and 8881 gates).

An optional 500 -ohm pull-up resistor is provided at each output, to be used when driving heavy capacitance loads where rise times must be maintained.

The 8162 design employs a 30 picofarad timing capacitor and an optional 1.5 K -ohm timing resistor. The output pulse width may be varied by appropriate connections at the $\mathrm{C}_{\mathrm{t}}, \mathrm{R}_{\mathrm{t}}, \mathrm{R}_{\mathrm{y}}$ and K_{y} terminals.

Use the following equations to obtain a desired pulse width:
A. with internal resistor R_{X} connected to $V_{c c}$:
$\mathrm{PW} \approx(0.85)\left(\mathrm{C}_{\mathrm{X}}+\mathrm{C}_{\text {int }}\right)\left(10^{-3} \mathrm{sec} / \mu \mathrm{f}\right)$
B. with external resistor $R_{x}^{\gamma}(>1 K \Omega)$ paralled with internal resistor R_{X} connected to $V_{c c}$:
$\mathrm{PW} \approx \frac{\left.(0.85)\left(\mathrm{C}_{\mathrm{X}}+\mathrm{C}_{\text {int }}\right)\left(\mathrm{R}_{\mathrm{X}}{ }^{\prime}\right) \mathrm{msec} / \mu \mathrm{f}\right)}{1.5 \mathrm{~K}+\mathrm{R}_{\mathrm{X}}^{\prime}}$
C. with external resistor $R_{X}^{\prime}\left(0.5 \mathrm{~K} \Omega<R_{X}^{\prime}<4.7 \mathrm{~K} \Omega\right)$ connected between K_{T} and V_{ce}, internal resistor R_{X} not connected:
$\mathrm{PW} \approx \frac{(0.85)\left(\mathrm{C}_{\mathrm{x}}+\mathrm{C}_{\mathrm{int}}\right)\left(\mathrm{R}_{\mathrm{x}}^{\prime}\right) \mathrm{msec} / \mu \mathrm{f}}{1.5 \mathrm{~K}}$
where:

PW = pulse width. Pulse width tolerance using the internal resistor R_{x} is about $\pm 25 \%$ (unit to unit variations). Using external timing resistor R_{X}, a tolerance of less than $\pm 10 \%$ may be obtained.
$C_{\text {int }}$ - internal capacitance, typically 30 pf.
$\mathrm{C}_{\mathrm{X}}=$ external capacitance in microfarads connected between C_{T} and R_{T}.
$\mathrm{R}_{\mathrm{X}}^{\prime}=$ external resistor connected between R_{T} and V_{cc}.

INTERFACE ELEMENTS

8 T18 Interface Element

The 8 T18 provides an interface from high level ($30-$ volt) inputs to low level (5 -volt) outputs, and thus complements the 8 T 80 and 8T90. A typical application is shown below:

Figure 4-35*

The V_{CC} is returned to a power supply of 20 volts or more. If V^{++}voltage exceeds 30 volts, a series current limiting resistor (to limit current to less than 2 milliamps) or a 20 to 30 -volt Zener diode (shunt) must be used. The inputs of the 8 T 18 are rated at 50 volts reverse breakdown. The threshold voltage of the 8 T 18 (6.5 volt minimum) is independent of temperature since the various internal junctions are equal in number and opposite in polarity. Thus the 8 T 18 can be used as an accurate high-level threshold detector.
*Figures 4-30 through 4-34 have been deleted.

8T80, 8 T90 Interface Element

The 8T80 Quad 2-Input NAND Gate and the 8T90 Hex Inverter provide low level (5-volt) inputs and high level (30 -volt) outputs. A curve of typical output currents vs. saturation voltages at three temperatures is shown below:

Figure 4-36
In designing for maximum current, the maximum device dissipation rating of 167 milliwatts at $125^{\circ} \mathrm{C}$ must not be exceeded. Each gate draws 20 milliwatts from the V_{ec} power supply when turned on with " 0 " level collector current. If all six inverters are on at the same time, the device is dissipating 6 times $20=120$ miliiwatts. Therefore 167 minus 120 or 47 milliwatts are available for collector circuit dissipation. The sensitivity is typically 5 mA /volt at a 1 volt collector saturation level. Additional applications may be found in the "Sub-Systems" portion of this section.

SUB-SYSTEMS

Following are some typical sub-systems which can be implemented with 8000 Series elements. Further information on sub-systems may be obtained from Signetics Applications Department.

COUNTERS

Synchronous BCD Decade Up Counter

This design (shown in Figure 4-38) utilizes the built-in AND gates of the 8825 . The first stage is implemented with one-half 8828 (D) binary as a part
saving. Both the 8825 and 8828 are positive edge triggered binaries.

Synchronous BCD Decade Up-Down Counter

Any J-K binary may be used in this design (shown in Figure 4-39), although dual binaries are recommended in order to minimize part count.

Asynchronous BCD Decade Up Counter (Low Power)
8400 elements can be used for low-power BCD decade counters. This one (shown in Figure 4-40) incorporates 8424 Dual RS/T Binaries and an 8480 Quad 2-Input NAND Gate.

TRUTH TABLE			
A	B	C	D
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	0
0	0	0	1
1	0	0	1
0	0	0	0

Figure 4-38

Figure 4-39

Asynchronous Divide-By-16 Up Counter

This counter (shown in Figure 4-41) makes use of the 8828 Binary which is leading edge triggered. The clock must therefore be driven by the \bar{Q} output of the previous stage to perform the up count. If a down count is required, the clock must be driven by the Q output of the previous stage. This applies to all leading edge triggered systems. Speeds of this 8828 counter are typically 25 MIIz .

Synchronous Divide-By-32 Up Counter

In this counter (see Figure 4-42), the first two stages are implemented with dual J-K flip-flops as a part savings. The third and fourth stages utilize the 8829 , which requires no external gating because of its built-in AND gates. The fifth stage, another 8829 , requires only one external NOR gate.

Figure 4-40

Figure 4-41

Figure 4-42

Binary Up-Down Counter

This counter (see Figure 4-43) is a modified ripple type counter which can be switched from up to down, or down to up, without causing incorrect counts. Whenever the clock line is logical " 0 ", all flip-flop clock inputs are unconditionally logical "0". The gating structure for each flip-flop is the same, hence it is very simple to add stages to the counter.

Dual J-K, or RS/T, binaries may be used. They must be connected in the T configuration discussed under "Binaries."

5-Bit Ring Counter, Self-Starting and Correcting

This ring counter (see Figure 4-44) features low package count, high speed operation, and selfstarting and correcting. Self-starting and correcting is accomplished by the gating structure in the feedback loop. The gates enter " 0 "s into the A binary until all inputs to the 8816 gate are " 1 "s. At that time, all binaries are in the " 0 " state except the binary that is not connected in the feedback loop. The next clock pulse loads a " 1 " into the A binary which is the first state in the truth table. The counter can be implemented with any dual J-K or RS/T binaries.

Figure 4-43

Figure 4-44

Figure 4-45

Twisted Ring Counters

Twisted ring counters provide a count of 2 N for N binary bits. This is generally accomplished by feeding back Q to K and \bar{Q} to J. In some instances, the counter may have sub-loop conditions other than those shown in the truth table. To avoid these conditions, a self-correcting configuration such as that shown in Figure 4-45 should be used.

To arrive at this configuration, use the following procedure:

1. Run one feedback loop from the last bit \bar{Q} to the first bit J.
2. Take the next largest integer above $\frac{N}{3}$, where N is the number of binary bits, and run that many feedback loops from \widehat{Q} to the NOR gate. The loops are connected by starting with the last bit and working back. In Figure $4-45, \mathrm{~N}$ is 5 , so $5 / 3$ is $1-2 / 3$, and the number of feedbacks requiredis 2 . Hence, feedback loops arc connected from the last and next to the Iast $\bar{Q} s$. If N were 6 , the number would be 3 .

Counters in Cascade

The cascade configuration is applicable for either the 8280 or the 8281 (BCD mode shown in Figure 446). Some applications require a counter which counts a foreshortencd sequence on the first cycle, but on subsequent cycles counts the full sequence. The 8280 and 8281 are well suited to these applications: the starting count is simply preset, then the normal modulus feedback is allowed to occur for modulus counting.

Figure 4-46

Count, Store and Decode

The count, store, and decode operation illustrated in Figure 4-47 shows the suitability of the 8280, 8281, 8270,8271 , and the 8T01 for these purposes. The parallel transfer to the storage element can be made synchronous with the clock and accomplish a parallel transfer during the normal counting interval of the counter. This technique is sometimes used to obtain time differences since the count stored can later be subtracted from the final count of the counter; or it can be decoded and displayed as shown.

Variable Modulus Counter

Both the counting and the unique parallel entry capabilities of the 8280 and 8281 counters are utilized in the variable modulus counter as shown in Figure 448. A variable modulus counter is one which can be made to count by any number. For the counter shown, any modulus between 1 and 160 may be used. Larger moduli require only an increase in the number of counting elements.

Figure 4-47

The variable modulus is attained by using the last count in the natural sequence of the counter to force the counter to a state corresponding to the first count in the sequence of the desired length. For example, if we want to divide (count) by 17 , we would have to detect the 159 th count and force the counter to reset to 142 before the next clock. To do this, we make use of the parallel inputs by simply coding the desired starting number into them. The specific operation is as follows: As indicated earlier, the
natural sequence length of the counter shown in 160 (i.e., modulo 10 times modulo 16). Gates W and X constitute a detector for state 159, their output going low on that count. This causes the latch formed by Y and Z to be set. The output of the latch drives the strobe inputs of the 8280 and 8281 permitting the levels that were coded into the parallel inputs (corresponding to the number 142) to enter. The next clock pulse resets the latch and the counter picks up its natural sequence starting in this example with 142. Maximum speed is typically 4 MHz .

Figure 4-48

SHIFT REGISTERS

Serial-In, Parallel-Out

In Figure 4-49, shift registers are implemented with RS/T, J-K, or D binaries. This function may also be implemented with the 8270 or 8271 shift register.

Left-Right, Paxallel Entry

Figure 4-50 shows a left-right shift register, with parallel entry that is implemented with the 8270 and 8271 shift registers, and 8840 and 8880 gates.

Figure 4-49

Figure 4-50

PARALLEL BINARY ADDER

The carry propagation delay is minimized by alternating between Carry and Carry in the carry propagation delay path as shown in Figure 4-5l. It is necessary to alternate the polarity of inputs A and B from stage to stage to do this. The carry propagation delay is determined by the 8840 . The 8840 delay is equivalent to one level of logic; therefore, the carry propagation per stage is one gate delay. Alternating the Q and Q of the 8828 flip-flop eliminates the need for inverting Sum outputs.

PARALLEL COMPARATOR

The parallel comparator (Figure 4-52) is most useful in high speed systems. All bits are compared
simultaneously and the speed is limited only by two propagation delays per stage. The appropriate output (less than, equal to, greater than) will be a logical " 1 ", and the other two outputs will be a logical " 0 " upon completion of the comparison.

DECODERS

Serial and Paralle1 Gray-To-Binary Decoders

In Figure 4-53, the serial gray-to-binary conversion must begin with the most significant bit. Also a Clear pulse must be provided prior to the first serial bit.

Figure 4-51

Figure 4-52

Figure 4-53

LINEAR

The Signetics Linear Product Line provides all of the most frequently required circuit functions.
Linear products are generaliy available in both Military and Commercial temperature ranges and in a wide variety of package types.

SECTION V-SURE*PROGRAM

The Signetics SURE* Program consists of a combination of 100 percent and statistical sample tests designed to assure specified performance, continuing uniformity, and long term reliability in Signetics products. These tests are made regularly at no extra cost to the user and are performed in addition to the 17 quality assurance inspections and tests to which every circuit is subjected before final seal. The tests, tabulated below for the specifier's convenience, are performed in accordance with the following conditions, sequence, and schedules on equipment calibrated to meet all requirements of MIL-Q-9858A and MIL-C-45662A.

Every circuit of every lot is processed to the environmental screens shown in Table I. These screens are performed in production, subsequent to assembly and just prior to 100 percent final production electrical tests. Any unit failing either the environmental screens or the final production electrical tests is rejected and removed from the lot.

After completion of Table I tests, each manufacturing lot is sampled and tested by Quality Assurance for conformance to the requirements of Table II. The unsampled portion of the lot is held pending acceptance of the lot sample. Detailed electrical test limits and conditions applicable to each subgroup are shown in the Electrical Characteristics table of the individual part type data sheets.

Group B Inspection shown in Table III is a complete environmental series in accordance with MIL-S-19500 and MIL-STD-750. These tests are performed once in every 28 -day manufacturing period on a production lot of a representative circuit type. The circuit type selected each period is changed routinely and is representative of all structurally similar devices produced on the same line by the same processes during that period. A summary of these test results is available on request at the time of order placement.

Group C tests (Table IV) are intended to verify design parameters that are not specifically measured in Group A or B but are guaranteed by consideration of related measurements in those two series. These tests are performed every 90 days on at least one lot of every circuit type produced during that period.

For those with ultra-high reliability requirements, an additional preconditioning series, including operating burn-in and X-Ray, applicable to every circuit to be shipped, is available at extra cost. Details are given under Optional Preconditioning Series (Table V).
*Sysle:natic Uulformicy and Reliabluity Evaluation

TABLE I-100\% PRODUCTION SCREEN TESTS

Thermal Shock: Centrifuge: Hermeticity;	5 cycles; 60 seconds at $0^{\circ} \mathrm{C}, 60$ seconds at $100^{\circ} \mathrm{C}$, transfer time 5 seconds (J, Q, and \mathbf{R} packages only) y_{1} axis; $30,000 \mathrm{~g}$ minimum (J, Q, and R packages only) Gross leak test (J, Q , and R packages only) eries performed prior oo FINAL ELECTRICAL TESTS

TABLE $\|$ - GROUP A. PRODUCT ACCEPTANCE TESTS

$\begin{aligned} & \text { SUB- } \\ & \text { GROUP } \end{aligned}$	TEST	CONDIT IONS	LIMITS	AQL	INSPECTION LEVEL
A-1	Visual and Mechanjeal Inspection	Per MIL-STD-750, Method 2071	Note 2	1.0\%	Π
A-2	DC Parameters	T ${ }^{-125^{\circ} \mathrm{C} \text {; Note } 1}$	Note 2	1.0 \%	II
A-3	DC Parameters	$\mathrm{T}=+25^{\circ} \mathrm{C}$; Notes 1, 3	Note 2	1.0\%	II
A-4	DC Parameters	T $-+125^{\circ} \mathrm{C}$; Note 1	Note 2	1.0%	II
A-6	DC Parameters	$\mathrm{T}=-55^{\circ} \mathrm{C}$; Note 1	Note 2	1.0 \%	II
A-6	AC Parameters	T $=+25^{\circ} \mathrm{C}$; Note 1	Note 2	1.0 \%	II

TABLE 111-GROUP B, ENVIRONMENTAL QUALIFICATION TESTS PER MIL•S•195000

$\begin{aligned} & \text { SUB- } \\ & \text { GROUP } \end{aligned}$	TEST	CONDITIONS	$\begin{gathered} \text { MIL-STD-750 } \\ \text { ME:THOD } \end{gathered}$	LIMTTS	LTPD	MAX. ACCEPTANCE NLMBER
B-1	Physical Dimensions		2066		15	1
B-2	IC Parameters Solderability Temperature Cycling Thermal Shock Moisture Fesistance Electrical End Points FAILURE CRITERIA	Per GROUP A, SUB-GROUP 3 All terminals 10 cycles, $\mathrm{T}_{\mathrm{max}}{ }^{-1755^{\circ}} \mathrm{C}$ $\mathrm{T}_{\mathrm{min}}=-70^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{max}}-100^{\circ} \mathrm{C}$ 5 cycles, 1 minute at each extreme Transfer time $=5 \mathrm{sec}$. max. Omit initial conditioning Per GROUP A, SUR-GROUP 3 "1" Input Current "1" Output Voltage "0" Input Current "0" Output Voltage Expansion Node Current (as applicable)	2026 1051 1056 1021	Notes 2, 3 Notes 2, 3 10X Initial Value for DTL 5X Initial Value for TTM. $\pm 20 \%$ Initial Value $\pm 20 \%$ Inltial Value $\pm 0.1 \mathrm{~V}$ $+20 \%$ Initial value	15	1

$\begin{aligned} & \text { SUB- } \\ & \text { GROUP } \end{aligned}$	TEST	CONDITIONS	$\begin{array}{\|c} \hline \text { MIL-STD-750 } \\ \text { METHOD } \\ \hline \end{array}$	LIMITS	LTPD	$\begin{gathered} \text { MAX ACCEPTANCE } \\ \text { NUMPER } \end{gathered}$
B-3	DC Parameters Shock Vibration Fatigue Vibration, Var. Freq. Acceleration Electrical End Points FAILURF CRITERIA	Per GROUP A, SUB-GROUP 3 $1500 \mathrm{~g} ; 5$ blows ea. $x_{1}, y_{1}, z_{1} ; 0.5 \mathrm{~ms}$ 30 g ; bon-operating 30 g : $30,000 \mathrm{~g}: 1 \mathrm{mln}$. ea. $\mathrm{x}_{1}, \mathrm{yl}_{1}, \mathrm{z}_{1}$ Per GROUP A, SUB-GROUP 3 Same as B-2	$\begin{aligned} & 2016 \\ & 2046 \\ & 2056 \\ & 2006 \end{aligned}$	Notes 2, 3 Notes 2, 3	15	1
B-4	Terminal Strength Hermeticity Small Leak Large T.eak	Test Condition E; weight $=4 \mathrm{oz}$, Per MIL-STD-202, Method 112C Condition C; Procedure 111A Condition A: Ethylene Glycol	2036	$5 \times 10^{-8} \mathrm{cc} / \mathrm{sec}$. max	15	1
B-5	Salt Atmosphere		1041		15.	1
B-6	DC Parameters Storage Life Electrical End Points FALLURE CRITERIA	$\begin{aligned} & \text { Per GROUP A, SUB-GROUP } 3 \\ & 1000 \text { hours at TMin }=+150^{\circ} \mathrm{C} \\ & \text { Per GROUP A, SUB-GROUP } 3 \\ & \text { Same as B-2 } \end{aligned}$	1031	Notes 2, 3 Notes 2, 3	$\lambda=1.5$	
B-7	DC Parameters Operating Life Electrical End Points FAILURE CRITERIA	Per GROUP A, SUB-GROUP 3 1000 bours at $\mathrm{T}_{\mathrm{min}}=+125^{\circ} \mathrm{C}$; Dynamic operating at 100 KIIz Per GROUP A, SUB-GROUP 3 Same as B-2	1026	Notes 2, 3 Notes 2, 3	$\lambda=10$	

TABLE IV-GROUP C, DESIGN TESTS

SLB- GROUP	TEST	CONDITIONS	LIMITS	AQL	INSPECTION LEVEL
C-1	DC Parameters	Note 1	Note 2	1.0%	II
C-2	AC Parameters	Note 1	Note 2	1.0%	I

OPTIONAL HIGH RELIABILITY SCREENING

To maximize reliability in critical applications the Optional High Reliability Screening Series of Table V provides for 100 percent screening at extra cost. This series eliminates the necessity for special specifications, minimizes cost and provides the shortest possible delivery time. This series is applied after the normal GROUP A acceptance tests. Circuits subjected to this PRECONDITIONING SERIES are clearly distinguishable from standard products in the following ways:
2. First letter of part number is R, i.e., RE180J.
3. Individual device variable parameter test data supplied with each shipment.

Consult your local representative for price information. Device types should be specified with R prefixes when ordering.

1. Individual serial number on each circuit.

TABLE V - OPTIONAL HIGH RELIABILITY SCREENING

\left.| TEST | CONDITIONS | MIL-STD-750 |
| :--- | :--- | :--- | :--- | :--- |
| METHOD | | |$\right]$

Notes:

1. All test equipment calibrated to meet requirements of MIL-Q-9858A and MIL-C-45662A
2. Detalled tests, conditions, and limits applicable to each sub-group art given in data sheet ELECTRICAL Charactrristics table
3. These specific tests are used to determine Electrical End Points as required in GROUP B and OPTIONAL PRECONDITIONING SERIES.
4. Applicable only to device types incorporatiry MoS capacitors.

* For fillicane noldexl package integrated cireuits, the MIL-STib-303. Methokl 112 bermeticity tests are not emploved due to the produrt's solal
 Tesi methods are being cyaluated in orvier to determine a suitable nondestructive seal fintegrity test for inclusion inter the Table V loor: screening serics.

SIGNETICS SALES OFFICES

FIELD SALES OFFICES

- New England Regional Sales Ottice: Miller Building, Suite 11.

594 Marrett Road, Lexington, Massachusetts 02173
Phone: (617) 861-0840 TWX: (710) 326-6711
Upetate New York: 2102 Euclid Ave., Syracuse, 13224
Phone: (315) 437-6634 TWX: (710) 541-0410

- Allantic States Regional Salet OHice: 2460 Lemoine Ave., Fort Lee New Jersey 07024
Phone: (201) 947-9870 TWX: (710) 991-9794
FlorIda: 3267 San Mateo. Clearwater, 33515
Phone: (813) 726-3469 TWX: (810) 866-0437
Maryitend: Silver Springs
Phone: (301) 946-6030
Pennaylvanla and Southern New Jersey: Oakwood Drive, Medford.
New Jersey 08055
Phane: (609) 665-5071
Virghias: 12001 Whip Road, Reston. 22070
Phone: (301) 946-6030
- Central Aeglonal Sales Offlce: 5105 Tollview Drive. Suite 209. Rolling Meadows, tlilinols 60008
Phone: (312) 259-8300 TWX: (910) 687-0765
- Northwest Reqional Salen Otfice: 811 E. Arques, Sunnyvale, Ca. 94086 Fhone: (408) 739-7700 TWX: (910) 339-9220
(408) 736-7565 (910) 339-9283
- Southwest Regionad Sales Ollice: 540 Hollywood Way.

Burbank, Calif. 91505
Phone: (213) 846-1020 TWX: (910) 499-2228
Calfornia: P.O. Box 788, Del Mar, 92014
Phone: (714) 453-7570
Calitomia: P.O. Box 1236, Huntington Beach, 92647
Phone: (714) 540-9420 (213) 846-1020

REPRESENTATIVES

ALABAMA

Huntsville 35801: Compar Corp., 904 Bob Wallace Ave., Room 114 Phone: (205) 539-8476

ARIZONA

Scotisedale 85252: Compar Corp., 84 West 1st Street
Phone: (602) 947-4336 TWX: (910) 950-1293

CALIFORNIA

Palo Atho 94303: Componant* Unilmited, 1020 Corporation Way Phone: (4+5) 961-9064
San Dlogo 92123: Ceftec Company, Inc., a799 Balboa Avenue
Phone: (714) 279-7961 TwX: (910) 335-1512

CANADA

Toronto 150, Onlario: Canadian General Electric Company, Ld.
Electronics Components Department, 189 Dufferin Street
Phone: (416) 537-4481 TELEX: 0221360

COLORADO

Denver 80216: Elcom, 4783 South Quebec
Phone: (303) 771-6200 TWX: (910) 935-0710

CONNECTICUT

Hamden 06518: Compar Corp., P.O. Box 5204
Phone: (203) 288-9276 TWX: (710) 465-1540
FLORIDA
Altamonte Springe 32701: WMM Ansociater Inc., 515 Tivoli Ct.
Phone: (305) 831-4645
Clearwaler 33516: WMM Aamociates Ine., 1260A S. Highland Ave.
Phone: (813) 446-0075
Pompano Beach 33080: wMm A*noetiates Inc., 721 South East 6th Terrace Phone: (305) 943-3095
INDIANA
Indiantipolis 46250: R. H. Newsom Associeten, 6320 Woburn Dr Phone: (317) 849-4442

KANSAS

Overiand Park B6207: Penzner-Mmankus Aseociates, Ine., P.O. Box 6264
Phone: (913) 381-0004 TWX: (910) 749-5473
MAAYLAND
Boftimore 24207: Dons Electronics Inc., 6660 Security Blyd.
Phone: (301) 944-1900 TWX: (710) 862-9162

MASSACHUSETTS

Nowton Hightende 02161: Compar Corp., 88 Needham Streel
Phone: (617) 969-7140 TWX: \{710 395-1696

MICHIGAN

Detroit 48224: Skip Greiner Astoclates, 15318 Mack Avenue
Phone: (313) 882-7570, (313) 882-1880 TWX: (810) 221-5157
GANNESOTA
MInneapolis 55416: Compar Corp. P.O. Box 16095
Phone: (612) 922-7011
MISSOURI
Hazalwood 63042: Penzne-Mankus Associales, Inc., 400 Brookes Lane Phane: (314) 731-4334 TWX: (910) 762-0602

SOUTHERN NEW JERSEY AND PENNSYLVANIA
Haddanfleld, N.S. 08033: Compar Corp., 15 Potter Street
Phone: (609) 429-1526 TWX: (710) 896-0679
NEW MEXICO
Albuquerque a7110: Compar Corp., 2129 San Mateo. N.E.
Phone: (505) 265-1020 TWX: (910) 989-1659

METROPOLITAN NEW YORK

Manhassal 11030: Win-Cor Electronics Sales Corp., 75 Plandome Road
Phone: (516) 627-9474 TWX: (510) 223-0807

UPSTATE NEW YORK

Hochester 14618: Fowler Beach Corp., 3700 East Avenue
Phone: $\{716$) 586-0468 TWX: (510) 254-2939

NORTH CAROLINA

Winston-Salem 27104: Compar Corp., 1106 Burke Streel
Phone: (919) 723-1002 TWX: (510) 931-3101
OHIO
Dayton 45405: Compar Corp., P.O. Box 57. Forest Park Branch
Phone: (\$13) 878-2531
Fairview Park 44126: Compar Corp., P. O. Box 4791
Phone: (216) 333-4120 TWX: (810) 421-8386

TEXAS

Richardaon 750a0: Semiconductor Sales Associaten
312 North Central Expressway. Suite 213
Phone: (214) 231-6181 TWX: (910) 867-4737
UTAH
Salt Lake City 84111: Elcom, 445 East 2nd South
Phone: (801) 355-5327 TWX: (910) 925-5607

WASHINGTON

Bollavus 98004: Wastern Techolcad Sales,
10843 N.E. 8th Street, Room 210, Fraser Eldg.
Phone: (206) 454-3906 TWX: (910) 443-2309

DISTRIBUTORS

CALIFORNIA

Burbenk 91504: Compar Corp., 2908 Naomi Avenue
Phone: (213) 843-1772 TWX: (910) 498-2203
Burlingame 94010: Compar Corp., 820 Airport Blvd.
Phone: (415) 347-5411 TWX: (910) 374-2366
Culver City 90230: Hamilton Electra Sates, 10912 W . Washington
Phone: (213) 870-7171 TELEX: 677-100. 674-381. 674-354
EF Monte 91731: O.S. Marshal, 9674 Telslar Avenue
Phone: (213) 686-1500 TWX: (910) 587-1565
Los Angeles 90022: KT/Wesco Electronics, 5650 dillson Street Phone: (213) 685-9525 TWX: (910) 580-1980

Mountaln Yiow 90230: Mamilton/Avmet Electronics, 340 East Middlefield Rd
Phone: (415) 961-7000 TELEX: 348 -201
Palo Alto 94303: Wesco Electronics, 3973 East Bayshore Road
Phone: (415) 968-3475 TWX: (910) 379-6488
San Diego 92111: G.S. Marshall, 7990 Engineer Road, Suite 1
Phone: (714) 278-6350 TWX: (910) 587-1565
San Diego 92123: Kiprullt Electronics, 8799 Balboa Avenue
Phone: (714) 278-21t2 TWX: (910) 335-1182

CANADA

Downewlew, Ontarlo: Coteo Electronica, Lld., 24 Marlin Ross Avenue
Phone: (416) 638-5250
Monireal, Quebec: Cesco Elecironlcs, Lid., 4050 Jean Talon West
Phone: (544) 735-5511 TWX: (610) 421-3445
Ottawa, Onlarlo: Cesco Electronicn, Ltd., 1300 Carling Avenue
Phone: (613) 729-5118
Quebec: Casco Electronice, Ltd., 12B St. Vallier Street
Phans: (418) 524-351B

COLORADO

Denver Bo2te: Hamillon/Aynet Elpcironics, 1400 W. 46th Avenue
Phone: (303) 433-8551 TELEX: 45872

FLORIDA

Holtywood 33021: Hamilton/Avnet Electronics, 4020 No. 29th Avenue Phone: (305) 925-5401 TELEX: 51-4328
Oriando 32B05: Hammond Electronica, 911 West Central Blva.
Phone: (305) 241-6601 TWX: (810) 850-4121

ILLINOIS

Eimhurat 80126: Semiconductor Spacialiois, Inc., 195 Spangler Avenue
Elmhurst Industriat Park
Phone: (312) 279-1000 TWX: (910) 254-0169
Schiller Park 60176: Hamilton/Avnet Eletironica, 3901 Pace Court
Phone: (312) 678-6310 TELEX: 728-330

MARYLAND

Hanover 21076: Hamihon/Aynel Electronics, 7255 Standard Drive
Phone: (301) 796-5000 TELEX: 879-68
Aockville 20850: Ploneer Washington Electronice, Inc., 1037 Taft Street
Phone: (301) 427-3300

Massachusetts

BurNington D1803: Hamilton/Avnet Eboctronics
207 Cambridge Streel
Phone: (617) 272-3060 TELEX: 9494-61
Needham Heights 02194: Klerulf/Sichley. 14 Charles Streel
Phone: (617) 449-3600 TWX: (710) 325-1179

MICHIGAN

Detroit 48239: Hamilton/Avnel Electronics, 8900 Telegraph Road
Phone: (313) 528-1000
Oefroit 48240: Semiconductor Speciaksts, Inc., 25127 W . Six Mile Road Phone: (313) 255-0300 TWX: (910) 254-0169

MHNESOTA

Minnoepolis S5420: Semiconductor Specialists, Inc., 8030 Cedar Ave., S.
Phone: (612) 884-8132

MISSOURI

Hazelwood 63042: Hamition/Arnal Electronics, 400 Brockes Lane
Phone: (314) 731-1144 TELEX: 442348

NORTHERN NEW JERSEY

Cadar Grove 07009: Hamition/Avnet Elecironics, 220 Little Falls Rcad Phone: (201) 239-0800 TELEX: 138313

SOUTHERN NEW JERSEY AND PENNSYLVANIA

Cherry HIII, N.J. 08034: Hamilton/Avnet Electronies, 1608 -10 W. Marlton Pike
Phone: (609) 662-9337 TELEX: 134737
Cherry Hill, N.J. 08034: Milgray-Delaware Valley, 1165 Marlkress Road Phone: N.J. (608) 424-1300 Phila. (215) 228-2000 TWX: (710) 696-0405

NEW YORK

Buftalo 14202: Summil Distributors, Inc., 916 Main Stree
Phone: (716) 884-3450 TWX: (710) 522-1692
Hauppsuge, L.I, 11787: Semitonductor Concepls, Inc., Engineer Road
Phone: (516) 273-1234 TWX: (510) 227-6232
Woodbury, L. I. 11797: Harvey Radlo, 60 Crossways Park West
Phone: (516) 921-8700 TWX: (510) 221-2184
New York 10011: Terminal-Hudson Electronics, 236 West 171h Street Phone: (212) 243-5200 TWX: (710) 581-3962

OHIO

Clevaland 44103: Pioneer Slandard Electronics, 5403 Prospect Avenue
Phone: (216) 432-0010 TWX: (810) 421-8238
Kettering 45429: Atrow Electronics ${ }^{4}$ 3100 Plainlield Road
Phone (513) 253-9176 TWX: (810) 459-1611

TEXAS

Dallas 75207: Hamilton/Avnet Electronics, 2403 Farrington Ave. Phone: (214) 638-2850 TELEX: 732359
Dallas 75220: Solid State Electronics Company, F O. Bcx 20299
Phone: (214) 352-2601
Houston 77019: Hamilton/Avonst Elecironics, 1216 Wesl Clay Street
Phone: (713) 526-4661 TELEX: 762589
Howsion 77036: Universol Electronics, 5723 Savoy Street Phone: (713) 781-0421

WASHINGTON

Seattle 98121: Hamilton/Avnet Electronics, 2320 Sixth Avenue
Phone: (206) 624-5930 TELEX: 32249

INTERNATIONAL SALES

EUROPEAN HEADCUARTERS:
Signetics International Corp., Zugerstrasse. 57
CH6340 Baar/Zug, Swizerland
Phone: 042/315544 TELEX: 78752

UNITED KINGDOM:

Signetics International Corp., Trident House. Stalion Road. Hayes Middlesex. England Phone: (011848-0202 TELEX: 262349

FRANCE:

Signetica S.A.RL., 90 Rue Baudin. F 92 Levallois-Perret. France Phone: 739-85-80/739-96-40 TELEX: 62014

WEST GERMANY:

Signetics GmbH, Ernsthaldensirasse 17. D 7 Stuttgatı 80. West Germany Phane: (0711) 73-50-61 TELEX: 7255798

STOCKING DISTRIBUTORS

AUSTRALIA

Pye Indusuries Lid., Technico Electronics Division. 53 Carrington Rd Marrickville. Sydney. N.S.W.
Phone: 55-0411 TELEX: 790-21490
Pye Industries LId., Technico ElecIronics Division. 2-18 Normanby Fid
South Melbourne. Vic
Phone: 69-60-61 TELEX-31240

WEST GERMANY

EBV Elektronik GmbH. Auqusteristrasse 79 0-8 Munchen 2 Phonte । $1081 \mathrm{I}+52.43-40,48$
EBV Elakironik Gmb4, Mytiusstrasse 54, D-6 Frankluri/Main 1
Phone (0611 72.04-16i8 TELEX 413590
EaV Elekironik GmbH. Scheurenslrasse 1, D-4 Dusseldori
Phone: (0211) 8-48-46/7 TELEX: 8587267
"Mütron" Müller \& Co. KG, Postfach 164. Bornstrasse 65, D-28 Bremen
Phone: (0421) 31-04-8S TELEX: 245-325
Dima-Elektronik, Karl Manger KG, Postfach 800744
Robert-Leichtsirasse 43, D-7 Stuttgart-Vaihingen 80
Phone: (0711) 73-40-50/9 TELEX: 255-642
Dialron GmbH, 1000 Berlin 31, Wilhelmsaue
Phone: 0311/870144 TELEX:18-27-58

SWITZEALAND

Dewald AG, Sepstrasse 561. CH 8038, Zurich
Phone: (051) 45-13-00 TELEX: 52012

FRANCE

S.A. Gallec Electronique, 78, Avenue des Champs-Elysées, Paris Be

Phone. 359-58-38/255-67-10/255-67-11
Elic 38, If Bureau farision S.A.R.L., \&-10 Avenue du Grand Sablon,
38-La Tronche
Phone: (76) 87-67-71 TELEX: 32-739

ITALY

Metroelettronica S.A.S., Viale Cirene 18, I-20135 Milano
Phone: 546-26-41 TELEX. 33-168 Metronic

UNITED KINGDOM

Quarndon Electranics Lid., Slack Lane, Derby. Derbyshire
Phone: (0332) 3265 TELEX: 37163
S.D.S. (Portsmouth) Ltd., Hilsea !ndustrial Estaio, Portsmouth, Hampshite

Phone: 65311 TELEX: 86114
Semicomps Ld.., 5 Northlield Industrial Estate, Beresford Ave., Wembiey Middlesex Phone: (01) 903-3161 TELEX: 935243

SCOTLAND

Semicomps Northern Litd, 44, The Square, Kelso. Raxburghshire
Phone: 2366 TELEX: 72692

SWEDEN, NORWAY, FINLAND

A.B. Kuno Källman, Järntorget 7. S-413 04 Gotheriburg. Sweden

Phone: 17-01-20 TELEX-21072

DENMARK

E. Frils-Mikkelsen A/S, Krogshojvel 51, DK-2880 Bagsvaerd

Phone: (01) 986333 TELEX: 2350

THE NETHERLANDS

Mulder-Hardenberg, 10 Michelangelostraat. P.O. Box 7256, Amsterdam Phone: (020) 761002 TELEX: 13131

JAPAN

Asahl Glass Co., Ltd., 1-2. Marunouchi, 2 Chome. Chiyoda-ku. Tokyo
Phone: 211-0411 TELEX: 4616

SOUTH AFRICA

Indentronics Proprielary, L.td., Sheerlire House, 24 Webber Streel,
Selby, Johannesburg
Phore: 834-4971/2/3 TELEX: 43-7660JH

REPRESENTATIVES

SWEDEN, NORWAY, FINLAND

A.B. Kuno Kähman, Järntorgel 7, S-413 04 Gothenburg. Sweder

Phone. 17-01-20 TELEX: 21072

AUSTRALIA

Coming Australia, Technical Products Division, Room 13. Barden House.
Fetherston Street. Bankstown, N.S.W. 2200
Phone: 602-9011 TELEX: 21539

ISRAEL

Talviton Electronics Lld., 43 Ben-Jehuda Rd., P.O. Box 3282. Tel-Ayiv Phone: 444572 CABLE: Talvitko

JAPAN

Asahl Glast Co., Ltd., 1-2, Marunouchi, 2 Chame. Chiyoda-ku. Tokyo Phone: 211-0411 TELEX: 4616

SWITZERLAND

Dewald AG, Seestrasse $561, \mathrm{CH} 8038$. Zürich
Phone: $\{051$) 45-13-00 TELEX: 52012

INDIA

Semiconductors Limiled, Nagar Rd. Mile 4/5.
Ramawadi, Poona 14. Maharashira
Phone: 25186 CABLE: Transducer

SOUTH AFRICA

Indentronics Proprietary, Ltd., Sheerlina House. 24 Webber Street
Selby, Johannesburg
Phone: $834-487 / / 2 / 3$ TELEX: 43 -7660Jh

811 east arques avenue
SUNNYVALE, CALIFORNI 94086
TEL: (408) 739-7700
TWX: (910) 339-9283

[^0]: * Systematic Uniformity and Reliability Evaluation

[^1]: * Times include 8840 gate delay.
 ** All times are in nanoseconds.
 * Toggle rates are in megahertz.

[^2]: 1. All voltage ankl capacitance measurements are referenced to the ground terminal, Terminals not specifically referenecd are left electrically open
 2. All measurements are taken with ground pin thed to zero volts.
 3. Positive cerrent flow is defined as into the terminal refercheed.

 4. Premationary measurcs should be caken to ensure current limiting in accorciance with Absolute Maximum Ratings should the isolation diodes become forward blaged.
 5. Measurements apply we each gate element independently.
 6. Capacitance as measured on Boonton Electronic Corporation Model 7JA-sb Capact tance Bridge or equivalent. f $=13 \mathrm{~Hz}$, Vac -25 mV rms. All pins not speciflcally referenced ure lied to guard for capacitance teste. Oulput pins are lelt open.
