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Foreword

The RCA CDP1802 COSMAC Microprocessor is a one-chip CMOS
8-bit register-oriented central processing unit. It is suitable for use in
a wide range of stored-program computer systems and products,
These systems may be either special or general purpose in nature.

This User Manual provides a detailed guide to the COSMAC Micro-
processor. It is written for electronics engineers and assumes only a
limited familiarity with computers and computer programming. It
describes the microprocessor architecture and provides a set of
simple, easy-to-lise programming instructions. Examples are given to
illustrate the operation and usage of each instruction.

For systems designers, this Manual illustrates practical methods of
adding external memory and control circuits. Because the processor
is capable of supporting inputfoutput (I/Q) devices in polled, inter-
rupt-driven, and direct-memory-access modes, detailed examples are
provided for the use of the I/O instructions and the use of the I/O
interface lines. The latter include direct-memory-access and interrupt
inputs, external flag inputs, command lines, processor state indica-
tors, and external timing pulses. :

This Manual also discusses various programming techniques and
gives examples. The material covers, in addition to basic guidelines,
more advanced topics such as interrupt response and subroutine link-
age and nesting.

This basic Manual is intended to help design engineers understand
the COSMAC Microprocessor and to aid them in developing simpler
and more powerful products utilizing the wide range of microproces-
sor capabilities. Users requiring information on available hardware
and software support systems for the CDP1802 Microprocessor
should also refer to the following publications:

MPM-202 Timesharing Manual for the RCA CDP1802 COSMAC
Microprocessor

MPM-203 Evaluation Kit Manual for the RCA CDP1802 COSMAC
Microprocessor

MPM-206 Subroutine Library for RCA COSMAC Microprocessors.

MPM-208 Operator Manual for RCA COSMAC Development
System
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Introduction

General

The RCA COSMAC Microprocessor architecture has
been developed for a wide variety of applications. These
applications range from replacement of S8I and MSI
integrated circuits to new applications requiring the full
flexibility of a computer-based approach.

The RCA-CDP1802 is a byte-oriented central process-
ing unit (CPU) employing the COSMAC architecture and
utilizing complementarysymmeiry MOS technology
{CMOS). _

CDP1802 operations are specified by sequences of

instruction codes stered in a memory. Sequences of

instructions, called programs, determine the specific
behavior or function of a COSMAC-based system. Sys-
tem functions are easily changed by modifying the pro-
gram stored in memory. This ability to change function
without extensive hardware modification is the basic
advantage of a stored-program computer. Reduced cost
results from using identical LSI components (memory
and microprocessor) in a variety of different systems or
products.

The CDP1802 Microprocessor includes all of the cir-
cuits required for fetching, interpreting, and executing
instructions which have been stored in standard types of
memories. Extensive input/output (I/Q) contral features
are also provided to facilitate system design.

Although Microprocessor cost is only a small part of
total system or product cost (memory, input, output,
power-supply, system-control, and design costs are also
major considerations), a unigue set of COSMAC features
combine to minimize the total system cost. For exam-
ple, the low-power, single-voltage CMOS circuitry mini-
mizes power-supply and packaging costs. A single-phase
clock drives the system and an opiional on<chip oscilla-
tor circuit works with an external crystal 1o provide this
clock signal. High noise immunity and wide temperature
tolerance facilitate use in hostile environments. In addi-

tion, compatibility with standard, high-volume memories
assures minimum memory cost and maximum system
flexibility for both current and future applications. Pro-
gram storage requirements are reduced by means of an
efficient one-byte operation code.

The 40-pin system interface of the CDP1802 is de-
signed to minimize exiernal I/O and memory control
circuitry. Four directly testable input flags, an output
flip-flop, an intemal direct-memory-access (DMA) mode,
flexible 1/0 instructions, program interrupt, program
load mode, and static circuitry are other features ex-
plicitly aimed at total system cost reduction. The
CDP1802 does not require an external bootsirap ROM.

Microprocessor programming and system design are
facilitated by the availability of a variety of support pro-
grams and support hardware. Extensive support software
and support hardware are available for use in developing
COSMAC systems. Machine-language programming is
sometimes indicated when only a few short programs
need to be developed. A series of efficient, casyto-leam

-instructions are provided for the CDP1802 which are

simple to use in machine-language programs.

Specific Features

The advanced features and operating characteristics
of the RCA Microprocessor CDP1802 include:

& static CMOS circuitry, no minimum clock fre-
quency

full military temperature range (55 to +125°C)
high noise immunity, wide operating-voltage range
TTL compatibility

single-phase clock; optional, on<hip, crystal-
controlled oscillator

® simple control of reset, start, and pause




® 8-hit parallel organization with bidirectional data
bus

& built-<in program-load facility

any combination of standard RAM’s and ROM’s
via common interface

direct memory addressing up to 65,536 bytes
fiexible programmed I/Q mode

program interrupt mode

on-chip DMA facility

four 1O flag inputs directly testable by branch
instruction

programmable output port

B one-o-three byte instruction format with two
machine cycles for each instruction®

m 9] easy-to-use instructions
® software compatibility with the CDP1801

® 16 X 16 matrix of registers for use as multiple pro-
gram counters, data pointers, or data registers

System Organization

Fig. 1 illustrates a typical computer system incor-
porating the RCA Microprocessor CDP1802. Qperations
that can be performed include:

a) control of inputfoutput (IfO) devices,

b) transfer of data or control information between

I/0 and memory (M),

¢) movement of data bytes between different mem-
ory locations,

*Except longbranch and longskip instructions which require
three machine cycies,
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d} interpretation or modification of bytes stored in
mMermory.

In such a system, the CDP1802 can, for example,
control the entry of binary-coded decimal numbers from
an input keyboard and store them in predetermined
memory locations. It can then perform specified arith-
metic operations using the stored numbers and transfer
the results to an output display or printing device.

System input devices may include switches, paper-
tapefcard readers, magnetic-tapefdisc devices, relays,
modems, analog-to-digital converters, photodetectors,
and other computers. Output devices may include lights,
relays, CRT/LEDfliquid-crystal devices, digital-to-analog
converters, modems, printers, and other computers.

Memory can comprise any combination of RAM and
ROM up to a maximum of 65,536 bytes. ROM (Read-
Only Memery) is used for permanent storage of pro-
grams, tables, and other types of fixed data. RAM
(Random-Access Memory) is required for general-
purpose computer systems which require frequent pro-
gram changes. RAM is also required for temporary
storage of variable data. The type of memory and re-
quired siorage capacity is determined by the specific
application of the system.

Bytes are transferred between IO devices, memory,
and COSMAC by means of a common, bidirectional
eight-bit data bus.

Fifteen I/O control signal lines are provided. Systems
can use some or all of these signals depending on re-
quired 1/O sophistication. A threebit N code is gener-
ated by the input/output instruction. It can be used to
specify whether an IfO byte on the bus is meant to
represent data, an IfO device selection code, an /O
status code, an IO control code, etc. Use of the N code
te specify an IfQ device directly permits simple, inex-
pensive control of a small number of I/O devices or

CLEAR WAIT
Ir=1)
ADDR BUS ADDR BUS | cpock ¥TAL NO, N1, N2
SO— D -
TPA, TPB DATA
LS L) - G
50, 5C1
-
R cru _DMATN, DMAOUT, INT CONTROL
ROM RAM —— CDP1802 K WO
WRD
Ll
S e EF7, EF2, EF3,EF4
<
e o | SERIAL
oaTA P

U

03

03

Fig. 1 — Block diagram of typical computer system using the RCA COSMAC

8-BIT BIDIAECTIONAL DATA BUS

Microprocessor COP1802,
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modes. Use of the N code to specify the meaning of the
word on the data bus facilitates systems incorporating a
large number of 1O devices or modes.

Four I/O flag inputs are provided. I/O devices can
control these inputs at any time to signal the CDP1802
that a byte transfer is required, that an error condition
input lines if desired. They can be tested by CDP1802
instructions to determine whether or not they are active.
Use of the flag inputs must be coordinated with pro-
gramns that test them.

An output fine (Q) is also available which provides a
level output whose value is controlled by COSMAC
instructions. This Q line, under program control, can
activate or signal IO devices. It can also be used in con-
nection with one of the flag inputs to form a serial IfO
interface.

A program interrupt line can be activated at any time
by IfO circuits to obtain an immediate Microprocessor
response. The interrupt causes the CDP1802 to suspend
its current program sequence and execute a predeter-
mined sequence of operations designed to respond to the
interrupt condition. After servicing the interrupt, the
CDP1802 resumes execution of the interrupted program,
The CDP1802 can be made to ignore the interrupt line
by resetting its interrupt-enzable flip-flop (IE).

Two additional 1/O lines are provided for special
types of byte transfer between memory and IfQ devices.
These lines are called direct-memory-access (DMA) lines,
Activating the DMA-in line causes an input hyte to be
immediately stored in a memory location without inter-
vention by the program being executed. The DMA-out
line causes a byte to be immediately transferred from
memory to the requesting omtput circuits. A built-in
memory pointer register is used to indicate the memory
location for the DMA cycles. The program initially sets
this pointer to a beginning memory location. Each DMA
byte transfer automatically increments the pointer to
the next higher memory location. Repeated activation of
a DMA line can cause the transfer of any number of con-
secutive bytes to and from memory independent of con-
current program execution.

I/O device circuits can cause data transfer by acti-
vating a flag line, the interrupt line, or a DMA line. The
flag lines must be sampled by the program to determine
when they become active and are used for relatively slow
changing signals. Activating the interrupt line causes an
immediate COSMAC response regardless of the program
currently in progress, suspending operation of that pro-
gram and allowing real-time response. Use of DMA pro-
vides the quickest response with least disturbance of the
program.

A twobit state code and two timing lines are pro-
vided for use by IO device circuits. These four signals
permit synchronization of /O circuits with intemal
CDP1802 operating cycles. The state code indicates
whether the CDP1802 is responding to a DMA request,
responding to an interrupt request, fetching an instruc-
tion, or executing an instruction. The timing signals

are used by the memory and IO sysiems io signal a
new processor state code, to latch memory address bits,
to take memory data from the bus, and to set and reset
1/0 controller flip-flops.

Bytes are transmitted to and from memory by means
of the common data bus. The CDP1802 provides two

lines to control memory read/write cycles. During a
memory write cycle, the byte to be written appears on
the data bus, either from the CPU or from an I/O device,
and a memory write pulse is generated by the CPU at the
appropriate time. During a memory-read cycle, a
memory read level output is generated which is used by
the system to gate the memory output byte onto the
common data bus for use by the CPU or by an 1/O
device.

The CDP1802 provides eight memory address lines,
These eight lines supply 16-bit memory addresses in the
form of two successive 8-bit bytes. The more significant
(high-order) address byte appears on the eight address
lines first, followed by the less significant (low-order}
address byte. The number of high-order bits required to
select a unique memory byte location depends on the
size of the memory. For example, a 4096-byte memory
would require a 12-bit address. This 12-bit address is ob-
tained by combining 4 bits from the high-order address
byte with the 8 bits from the low-order address byte.
One of the two CDP1802 timing pulses may be used to
strobe the required high-order bits into an address Jatch
(register) when they appear on the eight address lines.
Laich circuits are not required at all if address registers
are incorporated on the memory chips, as in the RCA
1800series ROM’s, An intemal CPU register holds the
eight low-order address bits on the address lines for the
remainder of the memory cycle.

Four additional lines complete the microprocessor
system interface. A single-phase clock input determines
operating speed. The external clock may be stopped and
started to synchronize the CDP1802 operation with
system circuits if desired. Construction of the clock
circuit is simplified by use of XTAL input. A crystal is
connected between XTAL and clock input; no active
components are needed. The clear inpnt line injtializes
the microprocessor, and its release starts instruction exe-
cution. The wait line suspends the CPU operation clean-
ly. Simultaneous assertion of clear and wait puts the
CPU in a program load mode.

COSMAC Architecture and Notation

Fig. 2 illustrates the internal structure of the
COSMAC Microprocessor CDP1802. This simple, unique
architecture results in a number of system advantages.
The COSMAC architecture is based on a register array
comprising sixteen general-purpose 16-bit scratch-pad
registers. Each scratch-pad register, R, is designated by
a 4-bit binary code. Hexadecimal (hex) notation will be
used here to refer to 4-bit binary codes. The 16 hexa-
decimat digits (0,1,2,...E,F) and their binary equivalents
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Fig. 2 — [nternal structure of the COP 1802 Microprocessor.

(0000,0001,0010,...,1110,1111) are listed in Appendix
A.

Using hex notation, R(3) refers to the 16-bit scratch-
pad register designated or selected by the binary code
0011. R(3).0 refers to the low-order (less significant)
ight bits or byte of R(3). R(3).1 refers to the high-order
{more significant) byte of R(3).

Three 4-bit registers labeled N, P, and X hold the
4-bit binary codes (hex digits) that are used to select
individual 16-bit scratch-pad registers. The 16 bits con-
tained in a selected scratch-pad can be used in several

[- |

A |

— p— W a2
P lo
AD <1 3
R
Ao | - | -
RO | - | - [ALUI—]
Ri2) | o1 | 25 [H{DF -
e 11| [F1=1

)

ways. Considered as two bytes, they may be sequen-
tially placed on the eight extemnal memory address lines
for memory read/write operations. Either byte can also
be gated to the 8-bit data bus for subsequent transfer
to the D register. The 16-bit value in the A register can
also be incremented or decremented by 1 and returned
to the selected scratch-pad register to permit a scratch-
pad register to be used as a counter.

The notation R(X), R{N), or R(P) is used to refer to
a scratch-pad register selected by the 4-bit code in X, N,
or P, respectively. Fig. 3 illustrates the transfer of a
scratch-pad register byte, designated by N, to D. The

25]

A [01 (| N} 2
P lo
B
0 v
1 |8
R | - | -
Rrny | — | - |ALUI_—I
B2y 1 gy | 25 WDF=
157 [N F'ohas e
[ N S |

25

Fig. 3 — Use of N designator to transfer data from scratch-pad register R{2) to the

D register.
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Fig. 4 — Transfer of data from memory to the D register.

left half of Fig. 3 illustrates the initial contents of vari-
ous registers (hex notation). The operation performed
can be writien as

R(N).0+D

This expression indicates that the low-order & bits
contained in the scratch-pad register designated by the
hex digit in N are to be placed into the 8-bit D) register.
The designated scratch-pad register is left unchanged.

The right half of Fig. 3 illustrates the contents of the
CDP1802 registers after this operation is completed.
The following sequence of steps is required to perform
this operation:

1) N is used fo select R. (left half of Fig. 3)
2) R(N) is copied into A.
3) AQ is gated to the bus.
4) The bus is gated to D.

Memory or 1O daia used in various COSMAC opera-
tions are transferred by means of the common data bus.
Memory cycles involve both an address and the data
byte itself. Memory addresses are provided by the con-
tents of scratch-pad registers. An example of a memory
operation is

(right half of Fig. 3)

M(R(X)~D
This expression indicates that the memory byte
addressed by R(X) is copied into the D register. Fig. 4
illustrates this operaiion. The following steps are
required:

1) X is used to select R.
2) R{X) is copied into A.
3) A addresses a memory byte.

4) The addressed memory byte
is gated to the bus.

5) The bus is gated to D.

Reading a byte from memory does not change the con-
tents of memory.

The 8-bit arithmeticdogic unit (ALU in Fig. 2) per-
forms arithmetic and logical operations. The byte stored
in the D register is one operand, and the byte on the bus

(left side of Fig. 4)

(right side of Fig. 4)

(cbtained from memory) is the second operand. The re-
sultant byte replaces the operand in D. A single-bit
register data flag (DF) iz set to “D” if no carry resvlts
from an add or shift operation. DF is set to “1" if a
carry does occur. During subtraction, DF =0 if the sub-
trahend is larger than the minuend, indicating that a bor-
row has occurred. The 8-bit D register is similar to the
accumulator found in many computers.

The iniemnal flip-flop Q can be set or reset by instruc-
tions, and can be sensed by conditional branch instruc-
tions. The state of Q is also available as a microprocessor
output.

Instruction Format

COSMAC operations are specified by a sequence of
instruction codes stored in external memory. A one-byie
instruction format is applicable for most instructions.
Two 4-bit hex digits contained in each instruction byie
are designated as I and N, as shown in Fig. 5.

For most instructions, the execution requires two
machine cycles. The first cycle fetches or reads the
appropriate instruction byte from memory and stores
the two hex instruction digits in registers I and N. The
values in I and N specify the operation to be performed
during the second machine cycle. I specifies the instruc-
tion type. Depending upon the instruction, N either
designates a scratch-pad register, as illustrated in Fig. 3,
or acts as a special code, as described in more detail
below.

8A (HEX)

It

| M

o101 101 0]

\?654} \32101

I T
High-Order  Low-Order

Digit Digit

Fig. 5 — One-byte instruction format.
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Fig. 6 — Typical instruction fetch cycle.

Instructions are normally executed in sequence. A
program counter is used to address successively the
memory bytes representing insiructions. In the
COSMAC architecture, any one of the 16-bit scratch-pad
registers can be used as a program counter. The value of
the hex digit contained in register P determines which
scratch-pad register is cumently being used as the pro-
gram counfer. The operations performed by the instrue-
tion fetch cycle are

M(R(P)) > LN;R(P)+1

Fig. 6 illustrates a typical instruction fetch cycle.
Register P has been previously set to 1, designating R(1)
as the current program counter. During the instruction
fetch cycle, the “0298” contained in R(P) is placed in A
and used to address the memory. The F4 instruction
byte at M (0298) is read onto the bus and then gated
into I and N. The value in A is incremented by 1 and
replaces the original value in R(P). The next machine
eycle will perform the operation specified by the values
in I and N. Following the execute cycle, another instruc-
tion fetch cycle will occur. R(P) designates the next in-
struction byte in sequence (56). Alternately repeating
instruction fetch and execute cycles in this manner
causes sequences of instructions that are stored in
memory te be executed.

Although most of the program instructions have a
one-byte format, some are two or three bytes in length.

The immediate and shert-branch instructions have a
two-byte format, as shown in Fig. 7. For examplie, the
instruction “30” followed by *45” will execute an
unconditional branch to the address 45 on the current
page; the instruction “FC” followed by “22% will exe-
cute an immediate add operation in which the operand
22 is added to the second operand from the D register.

| N OP CODE
OPERAND

B,B_B.B,B B B.B

7765432170 or ADDRESS

Fig. 7 — Two-byte instruction format.

The long-branch instructions have a three-byte for-
mat, as shown in Fig. 8, When the instruction “C32F9A”
is encountered, a conditional long-branch operation is
performed. In this case, if the DF flag is set, a long

1 M OP CODE
B?BBBEB4B3BQBIBO HIGH ADDRESS
3736853433823130 LOW ADDRESS

Fig. 8 — Three-byte format for long-branch instructions.

branch to the address 2F9A is executed. If DF is not set,
the next instruction in sequence is executed {the one fol-
lowing 9A).

The long-skip instructions are one byte and require
no address bytes {as the long-branch instructions do).

0P CODE

8.B B.B,B.B.B E

75050 4B48,58,5, | SKIPPEDBYTE 1

B,BgB5B, 848,88y | SKIPPED BYTE 2

Fig. 9 — Three-byte format for long-skip instructions.

However, the unconditional longskip and longskips
with test conditions met will, in effect, have the instruc-
tion format shown in Fig. 9.

If the test conditions are met, the two bytes are
skipped. If the test condition is not satisfied, execution
continues at the first byte following the operation code.
For a summary of instructions and formats, see Appen-
dix A.
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Timing

The CPU machine cycle during which an instruction
byte is fetched from memory is called state 0 (S0). The
cycle during which the instruction is executed is called
state 1 (S1). During execution of 2 program, the
CDP1802 generally alternates between SO and S1, as
shown in Fig. 10. Each machine cycle (S0 or 81} is in-
ternally divided into eight equal time intervals, as illus-
trated in the section on Timing Diagrams. Each time
interval is equivalent to one cycle (T). The rate at which
machine cycles occus is, therefore, one eighth of the
clock frequency. The instruction time is 16T for two
machine cycles, and 24T for three machine cycles.

The majority of instructions require the same fetch/
execute time. The only exceptions are the long-branch
and longskip instructions. These instructions require
two machine cycles for execution. The instruction cycle
in these cases contains three machine cycles (one fetch
and two execute). The state sequencing will then be as
shown in Fig. 11.

S0 31 ] 3 S0 1
| { ' INSTRUCTION
CYCLE

Fig. 10 — Sequence of machine states for normal
instruction cycles.

R(P) is incremented after its use. Immediate addressing
allows the user to extract data from the program stream
without setting up special constant areas in memory and
pointers to them. Operations ADD IMMEDIATE (FC)
and LOAD IMMEDIATE (F8) are examples of immedi-
ate instmctions.

In stack addressing, one specific CPU register is im-
plied as the pointer to memory. Often, R(X) is used, and
in one case R(2) is used. A “stack” is a last-in first-out
working area in memory used to store intermediate cal-
culations and to keep track of transfers of conirol be-
tween parts of a program.

50 51 St S0

51 1 S0 s1 51

| __ INSTRUCTION

CYCLE

Fig. 11 — Sequence of machine states for long-branch and long-skip instruction cycles.

Addressing Modes

There are four basic modes of addressing in the
COSMAC architecture: register, register-indirect, imme-
diate, and stack. '

In register addressing, the address of the operand is
contained in the four lower-order bits, the N-field, of
the instruction byte. This addressing mode allows the
user to directly address any of the 16 scratch-pad regis-
ters for the purpose of counting or moving data in or
out of registers. Typical instructions in this category are
DECREMENT (2N) and GET LOW (8N).

Register-indirect addressing is a variant of indirect
addressing utilizing CPU registers as pointers to memory.
In this mode, the selected register contains not data, but
the address of data. A four-bit address in register N will
specify one of the sixteen scratch-pad registers whose
contents are the address of data in memory,

Indirect addressing is the dominant mode in
COSMAC. It allows the user to address up to 65 kilo-
bytes of memory with a single one-byte instruction.

In immediate addressing, R(P) addresses memory so
that the operand is the byte folowing the instruction.

The strength of the COSMAC architecture, and its
ability to optimize program size and efficiency as com-
pared with more conventional minicomputer architec-
tures, lies in these four addressing modes and the liberat
number of CPU registers. By using stacks for working
space, immediate addressing for all constants, register
pointers for tabular and vector arrays, and the registers
themselves for miscellaneous counters and switches,
optimal use of program space is made.

Multiple Program Counters

A program counter is a register which points to the
next instruction to be fetched and executed. COSMAC
provides the unique capability to specify, in a single
instruction, any one of the 16 registers as program
counter. This feature makes it possible to maintain
pointers to several different programs simultaneously
and to transfer control quickly from one to another. A
pointer to a program which services an interrupt request
is a special and important example of this feature.
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Instruction
Repertoire

This section defines each instruction and describes it
in terms of intemal machine operation. Examples are
given throughout for iliustration. The fellowing section,
Instruction Utilization, covers many of the same instruc-
tions but from a why, when, and how point of view. For
example, this section defines operation of ADD and
ADD WITH CARRY instructions. The Instruction Utii-
zation section discusses how these instructions apply and
interact in multiple precision arithmetic.

Each CPU instruction is fetched during the 80
machine cycle and executed during the S1 state except
for long-branch and longskip instructiens which require
two S1 states for execution. The operations performed
during the execute cycle 51 are determined by the two
hex digits contained in [ and N. These operations are
divided into eight general classes:

Register Operations — This group includes seven in-
structions used to count and to move data befween
internal COSMAC registers.

Memory Reference - Seven instructions are provided
to load or store a memory byte.

Logic Operations — This group contains ten instrue-
tions for performing logic operations.

Arithmetic Operations — This group contains twelve
instructions for performing arithmetic operations.

Branching — Twenty different conditional and un-
conditional branch instructions are provided. These
instructions can be subdivided into sixteen short-branch
instructions for in-page operation and eight long-branch
instructions to any location in memory space.

Skip Operations — Nine conditional and uncondi-
tional skip instructions are provided covering both short-
and long-skip instructions.

Conirol — Ten control instructions facilitate program
interrupt, operand selection, branch and link operations,
and contyol of an output flip-flop.

I/O Byte Transfer — Seven instructions are provided
to load memory and CPU from I/O control ¢ircuits, and
seven instructions to transfer data from memory to 1/O
control circuits.

Each instruction is designated by its two-digit hex
code and by a name. A description of the operation is
provided uvsing the symbolic notation described earlier.
A two-to-fourletter abbreviated name is also given and
is used as a mnemonic for assembly language program-
ming. Examples are shown in this section for most in-
structions. Note that all the examples illustrate action
only during the instruction execute cycle, S1. A sum-
mary of the instruction repertoire is given in Appendix
A. Tt should be noted that “68”, which is unused, is
reserved for future use by RCA. It is considered an
“illegal” ¢ode and should not be vsed.
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INC

INCREMENT REG N

R{N}-1

1N

When I=1, the scratchpad register specified by the

A | o2
aol | 03
At | of
Rt2t | —
R3 | 02

FFI M= n ] 3
Folo
X |z
K
74
sli=n
- | |oF=-
= ERIERE]

»

hex digit in N is incremented by 1. Note that FFFF+1=

0000,
A ] 02 lFFJ nof3
P o
1
K
miot |03 | 74
R | o1 | 32 !ALU] - |
Ri{2) | - DF = —
Ri3) | 03 { 00 fars | D ] AB |

Fig. 12 — Example of instruction IN — INCREMENT R(N/.

DEC

DECREMENT REG N R{N}—1 2N
When I=2, the register specified by N is decremented by 1. Note that 0000-1=FFFF,
Alm 32] 1 N |1 AJol]szJ r—m 1
3 b o P |o
’ X |2 X |2
| 2 | 2
Rid) a3 7B Ri0} 02 7B
i o1 a2 g e |- | ’ R (o1 |91 fed  [a] - ]
Ri2) - - DF == RI2) - - DF = —
aiz) | 03] oo l b [ ABl Rz | 03[ 00 rn IAB ]
Fig. 13 — Example of instruction 2N — DECREMENT RiN).
IRX INCREMENT REG X R{X)}+1 60

When 1=6 and N=0, the scratch-pad register specified

A [ o] ] % | o
P | o
— X 2
i | s
R{0) | 03 | 7B
I Rl I_ALUL—]
Ri2} | 02 | 70 [w— DF = —
Rzt | 03 | oo ol -1

by the hex digit in X is incremented by I,

’ o
R{1}
i_.

I N | o
e | o
| x | 2
| -1
03 | 78

RE] Iiu.ul—l

Ri2i | 02 | 7€ pa—{ DF=—
Rz | 03 | o [n[—]

Fig. 14 — Example of instruction 60 — INCREMENT RiX}.
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GLO GET LOW REG N RIN}).O—D 8N
When 1=8, the low-order byte of the register specified by N replaces the byte in the D register.
A[m 31]"—N t Almli“'—u 1
P la P le
AD =15 AD —
1|8 I |8
Rik a3 | 7C R | 03 i
R{il | 07 31 e IALU | - ] ’ Ri1] | 31 P |ALU| - !
ra | - |- |PF=- mizt [- |- | lpF=—
Ri3) | 03 | 00 "D [ AB RI31 | p3 | 00 rn | an l‘_
n ; 31
Fig. 15§ — Example of instruction 8N — GET LOW.
PLO PUT LOW REG N D~ R{N).O AN
When I=A, the byte contained in the D register re- The contents of D are not changed.
places the low-order byte of the register specified by N.
SEESTIE NEEE=TIE
P 1o F o
x| a x |z
| A | A
R0y | 03 | 7E Rin) | 03 | 7E
R E aw | - | ’ R E IALUI - J
R{2t | 0O | OQ [ DF=— a2 | 00 | 72 aADF = -
ri2) | 72 00 o | 72 Ri3p | 72 | 00 I o l 72 J_.
72 1 72
Fig. 16 — Example of instruction AN — PUT LOW.
GHI GET HIGH REG N R{N}.1 D 9N

When [=9, the high-order byte of the register speci-

fied by N replaces the byte in the D register,

Aol v ]z a |72 ool NE
Flo Poto
Al % | 2 A1 ME )
R N IE
RIh | g3 ] 7D RIGI | 03 | 7D
R IALU | _ I ’ TR ‘ALUI - l
an | — | — | |oF-- ray | - | -] leFr=-
Ri3p | 72| 00 fa] [ o [= ] ®13) | 72 | 00 b— o |72
72 72

Fig. 17 — Example of instruction 3N — GET HIGH.
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PHI PUT HIGH REG N D+ R(N).1 BN

When I=B, the byte contained in the D register re- The contents of D are nat changed.
places the high-order byte of the register specified by N.

al-1-] ]2 a - -] ]2

r|o L
% |2 x |z
B T | B

03 | 7F Rio) |03 | 7F

o1 | = [ALu[— | ’ Ri1 |01 | 31 [ALUI— I

oo | 72 OF = — 2l | 66 | 72 ] DF = —

721 00 [[o [ o6 |-» Riz | 72 | 00 [DIGGJ—.

66 P s

Fig. 18 — Example of instruction BN — PUT HIGH.

Memory Reference

LON LOAD VIAN M{R{N}} = D; N¥+0D ON
When 1=0 and N is different from 0, the extemal specified by N replaces the byte in the D register. The
memory byte addressed by the contents of the register contents of memory are not changed.
aloJrel ladw] A loofw] fad n|:
P|o Flo
1
ADDI X2 e x | 2
| 0 I 4]
00 Rio | 01 | o0 w R | @ | 00
00 A | 00 | 19 |uerd |A|.u| - l ’ 00 At [ oo [ refert  [acu] - ]
00 Rz | 00 | 17 DF=— 00 Rz | 00 |17 DF=-
o0 R | - | - | ofrr] 00 rim | - [ - [ o | 56 ju—
56

Fig. 19 — Example of instruction ON — LOAD VIA N.

LDA LOAD ADVANCGE M(R{N}) = D; R(N}+1 an

When ]=4, the external memory byte addressed by tained in R(N) is incremented by 1. The contents of
the contents of the register specified by N replaces the memory are not changed.
byte in the D register. The original memory address con-

A ]oo|19| —| & |
P |o
X |2
ADD ADD
| 4
o0 00 mior | o1 | 0o
o0 00 Ritp | 00 | 1A p— |ALU|—|
00 |19 | 56 Ri2l | 0O | 17 DF=— 00 riz |00 | 17 OF =—
oo |1a| 78 RI3E| - | - o | g7 00 ma |- |- lD |5a—|-—
56

Fig. 20 — Example of instruction 4N — LOAD ADVANCE,
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LDX LOAD VIA X

M(R{X)} > D FO

When I=F and N=0, the memory byte addressed by
the contents of the register specified by X replaces the

byte in the D register. {This instruction does not incre-

ment the address as LOAD ADVANCE does.) The con-
tents of memory are not changed.

BEIE] N A |au [3‘2] L
P Plo
1
ADDREsS| M iy E ADDRESS g e
o0 |30 fm Ri0) | 00 | 70 LIF 00 ROl | oo | 70 L LF
o0 |21 oo Rt | oo | 23 |ALU|_. | oo R | oo | 2 [ALUl _J
o |32 |2 Rz | oo | 32 M*=DF=— 00 a2 | oo [ 32 fe—oF=—
o |33 |87 R@ f_ |- [ o] | 00 & |~ |- [0 |
)
Fig. 21 — Example of instruction FO — LOAD VIA X.

LDXA LOAD VIA X AND ADVANCE M{R{X)) = D; R(X)+1 72

When [=7 and N=2, the external memory byte ad-
dressed by the contents of the register specified by X
replaces the byte in the D register. The original memory

A | 00 1?‘ N oz
Pl o
ADD x| 2
00 Riy | 01 | 00 I z
00 R | 00 | 19 lALu] - |
0 R |00 17 fadpE=—
P R3] - | - [o]rs]

address contained in R(X) is incremented by 1. The con-
tents of memory are not changed.

Fig. 22 — Example of instruction 72 — LOAD VIA X AND ADVANCE,

LDl LOAD IMMEDIATE

M{R{P)) = D; R{P}+1 F8

When I=F and N=8, the memory byte immediately
following the current instruction byte replaces the byte
in D. Because the current program counter represented
by R(P) is incremented again by 1 during the execution
of this instruction, the instruction byte following the
immediate byte placed in D will be fetched next.

The use of immediate daia is a useful way te avoid

setting up special constant areas in memory and pointers
to them.

This instruction is one of five which load D from
memory. It uses R(P) as a pointer, while LDA and LDN
use R(N) and LDX and 1.DXA use R(X). LDI, as well as
LDA and LDXA, increments the pointer after use, but
LDX and LDN do not.
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A l 0a |28 | N8 A I 02 | 28 ] N |B
jmt P | +— P | O
ADD X |2 ADD all
o3 RiG) | 03 | 28 (e ! i 03 RO} | o3 | 25 o1 I F
03 /iy oo | 71 F:II__| 03 Ritt oo | 7 [ALul - —|
03 Ri2 oo | 32 DF = — 03 Rt2t [ oo | 33 OF = -
03 A3 - | - [o]a] 03 Ra |- | - [0 [sz |+
]
Fig. 23 — Example of instruction F& — LOAD IMMEDIATE.

STR STORE VIAN D = M{R{N)) 5N

When I=5, the byte in D replaces the memory byte

addressed by the contents of the register specified by N.
The contents of D are not changed.

A oo 1?] e—] N |2 Almlﬂ'l —| N | 2
F |0 F 1]
. x |2
ADD X 12 ADD
bl [
0 Ry | 01 | 01 00 RO [ o1 | g9
00 aimy | 00 |14 [acy] - ] 00 Rin | oo |14 [a]- ]
oo Ri2 |oo |17 M DF=— o0 Ri2y | 00 | 17 p—|DF=—
00 R@ | - |- | 0|56 = 00 ria [ - | - D |56
56 56
Fig. 24 — Example of instruction 5N — STORE.
STXD STORE VIA X AND DECREMENT D =+ M{R{X)}; R{X}—1 73

When [=7 and N=3, the byte in D replaces the
memory byte addressed by the contents of the tegister
specified by X. The original memory address contained

A l 1] I}'] N 3
p 4]
i l—{ X 2
ADD
1 7
RO |01 | oo

R{1} | 00 | 19 ‘ALIJ] - I

Rizi | 00 | §7 faed DE = —

Bg|B[(8[8

a3 | - | - [ o es [

F5

in R(X) is decremented by 1. The contents of D are not
changed.

A l Cl)l 1?] N 3
P o
p—q X 2
ADD
] 7
it} Ay | G100
on A{1} 0ol 19 |ALU| —I
v 1] Ri2} | 00 { 16 p—] DF = —
0 R{3 - - D F5

Fo

Fig. 25 — Example of instruction 73 — STORE VIiA X AND DECREMENT,
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Logic Operations

in general, R{X) or R{P) points {o one operand, D is
the other, and the result replaces the latter in the D
register. When R(X) is used as the pointer, the X register
must have been previously loaded (by an instruction
SET X described among the control instructions). If

R{F) is used as ihe poinier to the operand, it points to
the byte in memory after the instruction, called the
immediate byte. The use of immediate data is a simple
way of extracting data directly from the instruction
sequence.

OR OR M{R(X)) ORD~>D F1
When I=F and N=I, the individual bits of the two 8- |
s Xii | D
bit operands are combined according to the rules for MR X)) l Il OR
logical ‘OR as shown to the right. The byte in D is one 0 0 0
operand. The memory byte addressed by R(X) is the 0 1 1
second operand. The result byte replaces the D operand. 1 0 1
This insiruction can be used to set individual bits. 1 1 ]
A Too[as] K a | oo as] K
p| o Pl O
jo—{ X 1 X 1
ADD ADD
VL E i F
00 R |00 | 7 00 i { 00 f 71
0o Ri1} L1} 33 | lALU[ OR l-— ’ 00 R{1) 00 | 33 pu—] ]ALUI GR [
00 rz [0 @] for-— 00 o | 00|z |or-— 1
00 RG] - | - [o] ] 0 Ral | - | - lo |or]
57
Fig. 26 — Example of instruction F1 — OR.
ORI OR IMMEDIATE M(R{P}) OR D — D; R(P}+1 F9

When I=F and N=9, a logical OR operation is per-
formed similar to FI. The D byte is one operand, and

A Iua zﬂ N9
] ¢ |0
ADD X2
1|
03 /{0t | o3 | 24
03 ai oo | 71 ALu| o
03 A | oo |33 DF=—
03 R [ - |- [ o9 |

the memory byte immediately following the F9 instruc-
tion is the second operand. The result goes to D.

A Io3|2A| N|g
e ¢ |0
x |2
A00
03 |27 |68 rioy | 03 [ 28 |e—] i i
03 | 28 | 92 i | oo | 71 [au] on]
03 |20 | Fo Ri2) | 0o DF = -
03 | 2n | 82 A | - | - [o ] o7}

:

57

Fig. 27 — Example of instruction F@ — OR IMMEDIATE,
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XOR EXCLUSIVE-OR M(R{X}} XORD—+D F3
When I=F and N=3, the individual bits of the two 8- M(R(xn ‘ D | | XOR
bit operands are combined according to the mules for o 5
logical EXCLUSIVE-OR as shown to the right. The D 0
byte and M(R(X)) are the two operands. The result byte 0 1 1
replaces the D operand. This instruction can be used to 1 0 1
compare two bytes for equality since identical values 1 " 0
will result in all zeros in D.
Clel= | T e l=] | [z
P lo Plo
ADDRESS| M 1 ADD X
o3 |30 | M ROy OO T : F o0 Riy | OO | 71 ! F
oo |31 |oo RiD [ oo a3 | [aLu]xonte— 00 R [oo |20 fe—  [aLu]xof
0o | 32 |92 Ri2} | po | 32 OF = - 00 Ri2) o0 | 32 DF = —
NI R [ - |- 1 o]ez] o R3) | - |- o |cs
57
Fig. 28 — Exampie of instruction F3 — EXCLUSIVE-OR.
XRI EXCLUSIVE-OR IMMEDIATE M{R(F})) XOR D - D; R{P}+1 FB

When I=F and N=B, an EXCLUSIVE-OR operation
similar to F3 is performed. The D byte is one operand,
and the memory byte immediately following the FB

A |03 2E] N g
] e {7 1o
ADD X 2
I
03 RIOI | 03 [ 2 |
. ] | (o
03 Ry {00 {33 | |oF--
03 R | - |- o [o7 |

4

instruction is the second operand. This instruction can
be used to complement the D register when the immedi-
ate byte is “FF”.

N e
X 2
FA 03 I
ga | 2¢ | OF R {00 |71 |ALU]XDRII
1] 2D | FB Ri2) | DO 33 DF = —
03 | 2 | FO \ B |- |- ERER
{ Fo

Fig. 29 — Example of instruction FB — EXCLUSIVE-OR IMMEDIATE.

AND

AND

When I=F and N=2, the individual bits of the two 8-
bit operands are combined according to the mles for
logical AND as shown to the right. The byte in D is one
operand. The memory byte addressed by R(X) is the
second operand. The result byte replaces the D operand.
This instruction can be used to test or mask individual
bits.

M(R{X)) AND D = D F2
M(R{X) | D || AND
0 oll o
0 1 0
1 0 0
1 1 1
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A IOCI 33 | N2 I A I 00 l 13 | M 2
‘ P lo F |o
. e x |1 "
ADDRKESS| M - ADDRESS | M 1!
1

00 {30 |m rioy [ 00 | 71 0 3 |o Rior | oo b7 i
o0 i3 |oo R [00 [ 33 b 'LALUiANDi-— rRERE RO | 00 |33 e iALUiANDi
0 |32 |92 R [ap |32 DF=_ oo |32 |e2 R2 | oo |32 DE= — L
00 |3 |57 R |- | - [o]e] 00 | 33 | 57 R |- |- 1o |2]

i 57

Fig. 30 — Example of instruction F2 — AND.
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SHRC SHIFT RIGHT WITH CARRY Y LS8(01 5 bF DF o MSalol| 76
RSHR RING SHIFT RIGHT SHIFT D RIGHT; LSB(D) = DF, D (D)

When I=7 and N=6, the contents of the D register the carry bit becomes the high-order bit of the D
are shifted one bit position to the right. The low-order register.

bit of the D register becomes the cairy bit (DF), while Ejther mnemonic may be used for this instruction.
L > | ]
Belore SHRC:
Afrer SHRC:
oo | . [ ]

T | L

6 N e
P i} P D
% | 1 x | 1
| 7 | 7

rioy | - | -

Aoy fo— | - ‘ALU[—-] ’ IALUI—l

ma | - | - DF=1 i DE<D ‘

ry | - | - | o Joc] ERES

Fig. 33 — Example of instruction 76 — SHIFT RIGHT WITH CARRY.

SHL SHIFT LEFT SHIFT D LEFT; MSB(D) > DF, D~ LSB(D} FE

When I=F and N=E, the & bits in D are shifted left D bit is always “0”. This instruction can be used to test
one bit position. The original value of the high-order successively bits of the operand or to multiply by 2.
D bit is placed in DF. The final value of the low-order

I I

| - l [ 0111 1001 J
After GHL: /

Before SHL:

I o | ‘ 1117 0010 |

- N e A l-1-] K

Pl e P30

X 1 X i

| F 1 F

rRar | - | -

At F - | - |ALUI - i ’ RO | = | - IALU] _1]

Rt | - | - pF-— ¥ Rk | - | - DE-0 ‘
| -1 - s I i -1- F2 |
| 3 IERED R 16 [ F2]

Fig. 34 — Example of instruction FE — SHIFT LEFT,
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SHLC SHIFT LEFT WITH CARRY
RSHL RING SHIFT LEFT

SHIFT D LEFT; MSB(D) > DF, DF -~ L3B(D}| 7E

When I=7 and N=E, the contents of the D register
are shifted one bit position o the lefi. The high-order
bit of the I} register becomes the camry bit (DF), while

the carry bit becomes the low-order bit of the D register.

Either mnemonic may be used for this instruction.

I

| L]

Bafore SHLC:

After SHLC:

[ow ] [5]

10| B
P | o
x 1
| 7

Rol { - -

Ri1} - — [ALUI(—]

Rz | - | - DF=1

RIBL | ~ | - IEE3

» | EEE =8

T | |

P

|l =]l ]|m

X
1

Ri2 -1 - DF=0
Ri2) -1 - ] o I 19]

Fig. 35 — Example of instruction 7E — SHIFT LEFT WITH CARRY.

Arithmetic Operations

This group provides the operations ADD, SUB-
TRACT, and REVERSE SUBTRACT. The three basic
instructions are augmented with instructions to handle
immediate data, data with carry or borrow, and immedi-
ate data with carry or borrow.

In general, R(X) is the pointer to cne operand in
memory. The other operand is found in D. For immedi-
ate data, R(P) is used as the pointer and addresses the
byte in memory after the instruction, called the immedi-
ate byte.

ADD ADD

M{R{X})+D -> DF, D F4

When [=F and N=4, two 8-bit operands are added
together. The D byte and M(R(X)) are the two single-
byte operands. The 8-bit result of the binary addition
replaces the D operand. The final state of DF indicates
whether or not a carry occurred. It is independent of the
original content in DF.

Example 1: 3A+4B=85

D register contains 85, DF contains 0
Example2: 3A+F0=12A
D register contains 2A, DF contains 1

The latter example demonstrates overflow. The result is
100 big for the 8-bit register, and a carry is generated.
DF can be subsequently tested with a branch insiruc-
tion.
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=T | [
P o
e 1
ADD -
00 RO} jOOQ |71 !
o i1t | oo |33 pe—] [ALUl |+1]
00 riz) |00 |32 DF =D
o0 mar | - | - o |es
57
Fig. 36 — Example of instruction F4 — ADD,
ADI ADD IMMEDIATE M{R(P})+D = DF, D; R(P}+1 FC
When I=F and N=C, the two operands are added as in immediately following the FC instruction is the other

F4. The D byte is one operand, and the memory byte operand.

'

A ]os 30! NG
e P {0
ADD:‘ESS M X ?
o | 2 | Fc roy | g3 | 30 1 i
03 |30 | a0 TNERED [ALUI ) }-—
03 |3 |rFD r@ |0 [32] |oFe-
oa | 32 {9z R _ | — [ ]
} %
Fig. 37 — Example of instruction FC — ADD IMMEDIATE.
ADC ADD WITH CARRY M{R{X))}+D+DF > DF, D 74

When I=7 and N=4, the specified byie plus the con- operand. DF will indicate if the addition generated a
tent of DF are added to the contents of the D register. carry.
The 8-bit result of the binary addition replaces the D

EI N 4 NEE N oa
I I P10
f— X 2 o O
03 i Ry | 30 | a0 L
71 RO [oo 17 ALUI HI
22 =i DF = gizt |03 | 2 fe—DF=0
a3{m|3a ra | - | - p (20 A E - | = b }es [
34

Fig. 38 — Examnple of instruction 74 — ADD WITH CARRY.
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Example 1: Example 2:
Byte in memory: 3A = 00111010 Byte in memory: C2 = 110000
D register contains: 2D = 00101101 D register contains: 3D = 00111100
DF contains: 1 DF contains: 1
Result: £2 = 01101000 Result: 100 = 100000000
After addition: Afier addition:
D contains: 01101000 D contains: 00000000
DF contains: 0 DF contains: 1

The ADD WITH CARRY instruction is useful when
multibyte words are to be added. In the sample above,
two 8-bit words were first added (not shown) and gener-
ated a carry which musi be included in the next higher-
order byte addition as shown below. For instance add:

Similarly to Example 1, the following operations
were performed:

3AFQ C2D1
+ 2D20 + 3D33
1 1
3A FO o D1
+ 2D + 20 + 3D + 33
DF=_0J 68 DF=1] 10 DF:ﬂ -~ DF=1] o4
Final resuit: DF = 0 6810 Final result: DF = 1 0004
ADCI ADD WITH CARRY, IMMEDIATE M(R(P}}+D+DF = DE, D:R{P)+1 7¢

When [=7 and N=C, the specified byte in memory
plus the content of the carry bit is added to the con-

AlIJS 30] N c

RiOF | 03 | 30 ey

R} | o | AN

Az | o3 | 52 DF=1
REER R EIE3

tents of the D register. The final state of DF indicates
whether or not a carry occurred.

A]O3I30| N

lae—{ P

X

~inmie|o

Rigr | 03 | 31 fe—l

RiTp | 00| 71

*—[ALUI 1+ |
!

Ry | 03 | 32 OF =1

R | - | - [o ool

<2

Fig. 33 — Example of instruction 7C — ADD WITH CARRY, IMMEDIATE.

5D SUBTRACT D

M(R(X))—D - DF.D F5

When I=F and N=5, the byte in D is subtracied from
the memory byte addressed by R(X). The 8-bit result
replaces the subtrahend in the D register. Subtraction is

2’s complement: each bit of the subtrahend is comple-

mented and the resultant byte added to the minuend
plus 1. The final carry of this operation is stored in DF:
DF=0 indicates a borrow
DF=1 indicates no borrow

Example 1: 42 -0E=42+F1+1=134

D register contains 34, DF contains 1. (No borrow)
Example 2: 42 -42=42+BD+1=100

D register contains 00, DF contains 1. (No borrow)
Example 3: 42 -77=42+88+1=CB

D register contains CB, DF contains 0. {Borrow)
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A final value of “0” in DF indicates a borrow and the 2’s complement of CB and assigning a minus sign
that the subtrahend was larger than the minuend. The provides the correct answer (42 — 77 = =35).
answer is negative, but in 2’s complement form: taking

A loo SSJ N|B A Ino laﬂ N |5
P |lo F |0
ol | 4 — X (1
ADDRESS| M ADD
00|30 | o RiOI |00 | 71 - 00 RO [00 |7 LT
oo | 31 [oo RiTI oo |33 [ m 00 Rilt (g0 | 32 [ F\LUIHI
o |3z |e2 Ri2) | oo | 32 DF = - 0o Ri2) | 00 | 32 DF=0 l
NEJE Ri3 [ - |- EES 00 riar [ - | - [0 |es]
57
Fig. 40 — Example of instruction F§ — SUBTRACT D.
sol SUBTRACT D IMMEDIATE M{R{X))—D - DF,D; R{P)}*+1 ED
When I=F and N=D, the twa operands are subtracted minuend. The final value in DF indicates whether or not
as in F5. The D byte is the subtrahend, and the memory a borrow occurred.
byte immediately following the FD instruction is the
a [os [a2] n|o A Jo3 [ 2] n | D
l— P 1o jo—{ p | O
X 2 ADD‘RESS M K
Ry (03 |32 e L oz | 2¢ | Fc R0l { 03 | 33 |e—i L 1°
Rt} oo | N ALUL o 03 |30 | BO R o0 [T |ALU|l—|I
R21 [ oo |33 DF = - o3 |31 | FD Rtz | 00 | 33 DF =1
Rz} | - |- D |77 03|32 |92 a3l |- |- rD | 18 ]
* 92

Fig. 41 — Example of instruction FO — SUBTRACT D IMMEDIATE.

SbB SUBTRACT D WITH BORROW M{R(X)}—D—(NOT DF} » DF, D 75

When I=7 and N=5, the byte in D with a boirow-in mented and stored in DF. Subtraction is performed by
from a previous operation is subtracted from the mem- complementing each bit of the D register and adding it,
ory byte addressed by R{X). The 8-bit result replaces the with the carry-in from a previous operation, to the minu-
subtrahend in the D register. A final borrow is comple- end.

A l w | » | N{ S A | 00 l 32[ n| s
Pl o ' Plo
j— X 2 ba—{ X 2
ADD
1 7 | 7
0 rior | oo | 30 Rioy | 00 | 30
00 R1Y { 00 | 37 r.lALul 0 }-— RO | 00 § a7 HALU' I |
o0 ri2) | 0o | 32 ladDF=0 iz | 00 | 22 fmqDF =+ &
00 RS | - | - IERED Rim | - | - [0 {iF]
45

Fig. 42 — Example of instruction 75 — SUBTRACT D WITH BORROW.
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The SUBTRACT D WITH BORROW instruction is subtracted generating a borrow which must be included
applicable when multibyte words are subtracted. The in the next higher-order byte subtraction. Four altemna-
following examples assume that two bytes have been tives are possible in the subtraction of two words:

CONDITION 1: DF =0, i.e. Borrow =1
Borrow is present from a preceding carry

Case] M(R(X))>D Case 2 M(R(X) <D
Example: Example:

M(R(X)) = 40 M(R(X)) =4A

b=20 D=Cl

40-20-1=40+DF+0=11F 4A-Cl~-1=4A+3E+0=88
After addition: After addition:

D register contains 1F D register contains 88

DF contains 1 (Borrow =0) DF contains O (Borrow = 1)

CONDITION II: DF = 1, i.e. Borrow =0
No borrow is present from a preceding carry

Caze 3 M(R(X))>D Case 4 M(R(X))<D
Example: Example:

M(R(X)) = 64 M(R(X})) = 71

D =32 D=F2

64 ~32~0=64+CD+1=132 71-F2-0=71+0D+1=7F
After addition: After addition:

D register contains 32 D register contains 7F

DF contains 1 (Borrow =0) DF contains 0 (Borrow = 1)

In Cases 2 and 4, the answer is a negative number and in 2’s complement notation.

soBl SUBTRACT D WITH BORROW, M(R{P}}—D—{NOT DF} > DF, D; Ri{P}+1 | 7D
IMMEDIATE
When I=7 and N=D, the two operands and borrow are D plus the carry-in in DF from a previous operation. The
subtracted as in instruction 75. The memory byte imme- 8-bit result replaces the contents of the D register and a
diately following the 7D instruction is the minuend. To final borrow is complemented and stored in DF. The
the minuend is added the complement of the conients in program counter is also incremented by 1.
a|oz] 2| n| o
—d P | 1
x |2
| ¥
R{D) | 03 | 32
Rt [ o2 |22 e lacy] @ fer
iz | o3 [ 7 DF = 1
[ - | - [o]=]

Fig. 43 — Example of instruction 7D — SUBTRACT D WITH BORROW, IMMEDIA TE.
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SM SUBTRACT MEMORY

D—-M(R{X)} = DF,D F?

When I=F and N=7, the memory byte addressed by
R(X) is subtracted from the byte in D. The result byte
replaces the minuend in D). This operation is identical to

F5 with the operands reversed. A final borrow is comple-
mented and stored in DF.

ﬁl E A [m |3a| N7
P 0 [ 1]
ADD X1 DD — X |
i F | F
[74] 71 0o RO @) | 71
00 n e lawf o] ’ 00 At [ oo |38 femd  faru] o]
0 32 DF = - 00 R2) oo |32 DF=1
L1 - [¥] 82 00 Rty | ~ - ] 3B
57
Fig. 44 — Example of instruction F7 — SUBTRACT MEMORY.
SMI SUBTRACT MEMORY IMMEDIATE D—M{R(P})) = DF, D; R{P}+1 FF

When I=F and N=F, the two operands are subtracted
as in F7. The D byte represents the minuend, and the
memeory byte immediately following the FF instruction

A |oa 34] N E
i e 5 | D
x |2
| F
RiD) | g3 34 [
RV |00 |71 (aL0] =) Jo
ri2 [ oo |33 DE =
Rt |- | - | b |1a|

represents the subtrahend. (This instruction is equivalent
to FDr with the operands reversed.) A final borrow is
complemented and stored in DF.

A | 03 | 34 l N|F
| P o
L 1>
ADDRESS | M
03 |33 | FF ROl | o3 | 35 = - LF
03 | 34 | 1A RiIT | oo | 71 ALy | i1
03 |3 |82 ri2) | 00 | 33 DF=1 |
03|36 | BA Ri% | — - I D IU1 ]
! 1A

Fig. 45 — Examnple of instruction FF — SUBTRACT MEMORY IMMEDIATE.

SMEB | SUBTRACT MEMORY WITH BORROW

B-M(R{X}}—{NOT DF) > DF, D 77

When 1=7 and N=7, the byte in memory addressed by
R(X) plus the borrow (indicated by DF=0) is subtracted
from the byte in the D register. This operation is similar
to the instruction 75 but with the operands reversed.
The 8-bit result replaces the minuend in D, and DF=0

Alw|a] K
i K
P | x | 2
00 Rior | 00 | 71 17
0 R | oo [ 33 [-{ALUI ) |-—
0o Rzt | 00 | 22 fw—{DF=a T
00 RIBH| - | - | o | 4n

will indicate if a final borrow occurred. Subtraction
takes place by complementing the memory byte ad-
dressed by R(X) and adding it with the contents of DF
to the minuend in D.

A Joo] 2]

ADD

71

33 HAL”I 0 |

32 e— DF =0

R0}

R{1}

g|88

A2
33 | 64 ! B3yl - |-

I o

g(s|8]|8

Fig. 46 — Example of instruction 77 — SUBTRACT MEMORY WiTH BORROW.
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r

Sl IMMEDIATE

SUBTRACT MEMORY WITH BORROW,

D—M(R{P))—{NOT DF} — DF, D;R{P}+1 7F

When =7 and N=F, the two operands and borrow
are subtracted as in instruction 77. The immediate byte
in memory following the instruction 7F plus the borrow
i3 the subtrahend, and the contents of D is the minuend.

A | o0 22 l N F
I fa! P | 1
X |2
Rio | 00 | 32 L1’
RI1} 00 22 j— lALUl - |-—
R | oo | 7 DF =1 r
R | - | - lofn|

The 8-bit result replaces the contents of D, and again
DF=0 indicates that a final borrow was generated. The
program counter is also incremented by 1.

A ] 00 ] 22| N E
e— P | 1
x | 2
ADDRESS
| 7
&) 32

0o
R | oo | 23 fe] rlALUl |-|—|
Rzi | 00 |7 DF=0

Ri3) - -

s8|8(3|2

Fig. 47 — Example of instruction 7F — SUBTRACT MEMORY WITH BORROW,

IMMEDIATE.

Branching

Short-Branch Operations

The current program counter, R(P), normally steps
sequentially through a list of instructions, skipping over
immediate data bytes. When 1=3, a short branch instruc-
tion is executed. The N code specifies which condition is
tested. If the test is satisfied, a branch is effected by
changing R(P).

When a branch condition is satisfied, the byte imme-
diately following the branch instruction replaces the
low-order byte of R(P). The next insiruction byte will
be fetched from the memory location specified by the
byte following the branch instruction. ¥f the test condi-
tion is not satisfied, then execution continues with the
instruction following the immediate byte. This ability to
branch to a new instruction sequence {or back to the
beginning of the same sequence to form a loop) is funda-
mental to stored-program computer usefulness.

Because with this instruction only the low-order byte
of R(P) can be madified, the range of memory locations
that can be branched to is limited. Since only the low-
order 8 bits can be modified, short branching is limited
to 2% or 256 bytes. Each 256-byte memory segment is
called a page. Instructions for branching to any location
in memory are described in the next subsection headed
“Long-Branch Operations”,

The special case of a short branch instruction and its
immediate byte occupying the last two bytes in a page is
treated as follows: If a branch takes place, R(P).1 is not
changed—the branch stays on the same page. If a branch
does not take place, execution continues at the first
{0th) byte of the next page. A branch instruction on the
last byte of a page always leads into the next page, either
by branch or by increment. In other words, the address
of the immediate byte determines the page to which a
branch takes place.

BR | UNCONDITIONAL SHORT BRANCH

M({R({P))} > R(P).O 30

When I=3 and N=(, an unconditional short branch
operation is performed. The byte immediately following

the “30” replaces R{(P}.0.
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BERE) N o NEE N o
be—{ ¢ |1 le—1 P |1
X |2 X |2
ADD ADD M
[ - - 1|3
o1 Riok [ - F - at | 21 | re pn | — | -
a1 A [ or [ 23 fe  awy] - ] o1 [ 22 |30 = IALU] _ I
01 Atz oo |37 DF = — o1 | 23 | 82 Rizs | 00 [ 37 DF - -
o1 ma [~ [ - [o]-] o1 |24 | 24 r3 |- |- lo |- ]
! "
Fig. 48 — Example of instruction 30 — UNCONDITIONAL SHORT BRANCH.
NBR NO SHORT BRANCH
R{P}+1 38
SKP SHORT SKIP P}

When 1=3 and N=8, the name NO SHORT BRANCH
implies that the byte following the “38” instruction is
an address which will be skipped. This instruction ay

also be considered to be a SHORT SKIP and is so de-
scribed in the section on SKIP instructions.

BZ SHORT BRANCH IF D=0

IF D=0, M{R{P}} > R{P).0

32
ELSE R{P)+1

When I=3 and N=2, a conditional short branch opera-
tion dependent on the value of D is performed. The byte
in D is examined and if it is equal to zero a branch oper-
ation is performed. If the value of D is not zero, R{(P) is
incremented by 1. This increment causes the branch
address byte folowing the *32” instruction to be
skipped so that the next instruction in sequence is
fetched and executed.

This instruction can be used following one of the

23| 2

ADD

13}

oi

m

o1

CONDITION TRUE

ADD

o

o1
0

B2t foo | a7 DF=—
Rtat | - |-

o

ALU operations described earlier. For example, an
EXCLUSIVE-OR operation (F3 or FB) might be used to
compare an input byte with a byte representing a con-
stant. A zero result byte in D would represent equality.
The “32” instruction could then be used to branch to a
location in the program for handling this value of the
input byte when D=00, or to proceed to the next in-
struction in sequence if D#00, possibly to look for
equality with other constants.

aCD

a1

1 3
23 = |ALU| — )n—

1]}

o

[

2
1|3
Rio) | = | -
Ri1) | 01 | 23 ferd] -

A | o1 | 23 | N|2
le— P |1
X |2
Riok | — | — b
R{1] | C1 | 24 j—i IALUI _ ]
Arz) 3 0O | 37 DF=-
LEN [ D | 12 ]

CONDITION FALSE

Fig. 49 — Exarnple of instruction 32 — SHORT BRANCH IF D = 0 for both false and

true conditions.
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IF D NOT 0, M{R{P)) = R{P}.0
NZ ! 3A
B SHORT BRANCH IF D NOT 0 ELSE R{P}+1
When 1=3 and N=A, a branch is performed only if the instruction in sequence is executed.
byte in D does not equal zero; if it does, the next
Ao | 2] N oA A ]m|23| N A
b ] 5 | e P |1
x 2 x 2
ADD
1 3 1 3
o1 RO | — — ROt — -
o1 Rl | g1 | 23 e |ALU[ - | R | 01 | 97 faed |ALU| - |
01 miz) too | 37| [oF-- Rzt | oo | a7 DF=-—
01 RIBE - | - [D]12| R |- |- [D|12|
o7 4
Fig. 50 — Example of instruction 3A — SHORT BRANCH IF D NOT 0.
BOF | SHORT BRANCH IF DF=1 IF DF=1, M(R(P)] > R{PID
BPZ | SHORT BRANCH IF POS OR ZERO P11 33
BGE | SHORT BRANCH IF EQUAL OR GREATER ELSE R(P)+

When [=3 and N=3, branching occurs if DF=1. Other-
wise, the next instruction in sequence is performed.
Examples are not shown for all of the remaining branch
instructions because they differ only in the condifion

tested. The instruction has three mnemonics useful fol-
lowing a shift, subtraction, or comparison (by subtrac.
tion), respectively.

BNF SHORT BRANCH IF DF=0
BM SHORT BRANCH IF MINUS
BL SHORT BRANCH IF LESS

IF DF=0, M(R{P}) = R{P).0

ELSE R{P}+1 38

When 1=3 and N=B, a short branch occurs only if
DF=0. Otherwise, the next instruction in sequence is

fetched and executed. Again, three mnemonics may be
useful, all resulting in the same machine action.

- IF =1, M{R{P)) = R{P}.0 31
BO SHORT BRANCH IF Q=1 ELSE R(PJ+1
When 1=3 and N=1, a short branch occurs only if fetched and executed.
Q=1. Otherwise, the next instruction in sequence is
[ a]o]as] N Almlﬂ R
jm—{ P 1 f—1{ P 1
y 1 2 ! X |2
ADDRESS| M - ADD
| 3 | 3
o1 [ 21 | F6 Rol | - | - o1 rRoy | - | -
)z AN Rill | g1 23 |mien {ALU[ - ‘ ’ 01 R} a1 97— J\LU] —J
DF=2 DF—
o1 23|97 ri2t { oo | 37 01 Rrizy | 00§32
a1 |24 | 2C R | - | - 03] Ry - | -
o [ r e[

CONDITION TRUE




A|01]2:1| N1
e p | 4
x| 2
AOD
R E
ot mor | - | -
o1 Re1 | o1 | 23 bed IALU|—|
o1 Rizt | oo | 37 DF 2=
" T
o[o]

)
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A | o | 23] i ] 1
e ¢ | 1
x | 2
Ry b - | - o
rit | o1 [ 26 fe  [acul - |
mn oo jar] |PF=

CONDITION FALSE
Fig. §1 — Example of instruction 31 — SHORT BRANCH IF Q = 1 for both true and

false conditions.
IF 0=0, M(R{P}) = R(P).0
BNQ |  SHORT BRANCH IF Q=0 ELSE R{P)+1 39
When =3 and N=9, a short branch occurs only if fetched and executed.
Q=0. Otherwise, the next instruction in sequence is
IF EF1=1, M(R{P}} = R{P}.0
= ! 34
B1 SHORT BRANGCH IF EF1=1 ELSE R(P)+1
_ IF EF1=0, M{R(P}) > R(P).0
BN1 SHORT BRANCH IF EF1=0 ELSE R(PI+1 3C
IF EF2=1, M{R(P)) = R{P}.0
B2 SHORT BRANCH IF EF2=1 ¢
° ELSE R{P}+1 %
BN2 | SHORT BRANCH IF EF2=0 {F EF2-0, MIR{P)) > RiF).0 3D
ELSE R(P)+1
_ IF EF3=1, M{R{P}} > R{P).0
B3 SHORT BRANCH IF EF3=1 ELSE R(P)+1 36
' IF EF3=0, M{R{P}) > R(P).0
- - 3E
BN3 SHORT BRANCH IF EF3=0 ELSE R(P)+1
) IF EF4=1, M(R(P)) > R{P).0
B4 SHORT BRANCH IF EF4=1 ELSE R(P)+1 37
_ IF EF4=0, M{R{P}} > R(P}.0
BN4 SHORT BRANCH IF EF4=0 ELSE R(P)+1 3F

When =3 and N=4,5,6, or 7, short branching occurs
only' when the corresponding externat flag input (EFL,
EF2, EF3, or EF4) is held in its_“true” state by external
circuits (i.e., EF1, EF2, EF3, o1 EF4 = 0 or Low).

When I=3 and N=CD.E, or F, short branching occurs
onty when the corresponding external flag input (EF1,
EF2, EF3, or EF4) is held in its “false” state by external
circuits {ie., EF1, EF2, EF3, or EF4 = | or High).
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Long-Branch Operations

The long-branch instructions have a two-byte address
and allow branching to any location within the full

memory space during three machine cycles (one fetch
plus two execute).

BR

1
T

M{R{P}) -+ R{P}.1

M{R{P+1}} = R(P}).O co

When I=C and N=0, an unconditional long branch is
performed. The two bytes in memory following the
operation code replace the full 16-bit contents of R(P).

If, for instance, the instruction C0253A has been exe-
cuted, the next instruction will be found at memory
location 253A.

A l o0 | a1 l N o N|o
0 «— P | 2 e 7 | 2
L X | 1 'R E
AODRESS] M
' | ¢ 1| e
oo | 20| co Rl | 01 | 35 00
oo | 21 | 25 Rt | o1 | 78 [acul - | ’ o0 [ 31125 Al m |78 Taru] —
I E riz1 | oa | 31 fed oF-- oa |32 |2a ezt | 25 |38 fa—{ DFE--
00 33| 62 ARG - | - [o]-] 00w | & RA | — [o ] -]
§ 3A % 4
Fig. 52 — Example of instruction OO — LONG BRANCH.
NLBR NO LONG BRANCH R(PM2 c8
| SKP LONG SKIP

When EC and N=8, the program counter will be
incremented twice. For instance, in the instruction
sequence C85A2B23, the instruction to be executed
following C8 is 23. The name LONG SKIP, LSKP, may

31 ] NE
e P | 2
p
ADD %
1y c
00 36
00 75 F.ut - l
0o 3t lu—{ DF=-
o | D | - |

also be used (see SKIP instructions). NO LONG
BRANCH, NLBR, tells the assembler to expect a two-
byte branch address, while LSKP has no restrictions on
the next two bytes.

a Jooa] N
fl—{ P 2
X 1
Rioy | 01 [ 38 1 ©
ROl | 01 |75 ]Iu‘ - [
mi2h | 00 | 33 Jw—] DF=—
Ri3) {o]-]

Fig. 53 — Example of instruction C8 — NO LONG BRANCH or LONG SKIP.

LBZ LONG BRANCH IF D=0

IF D=0, M{R{P)} = R{P}.1
M{R{P}+1} = R{P).O c2
ELSE R{P)+2

When I=C and N=2, a conditional long branch is per-
formed. If D=0, the contents of the program counter
R(P) will be replaced with a specified two-byte address.
If D40, the program counter is incremented twice.

Example: When C2 is fetched from the instruction
sequence C21A3343, the next instruction to be fetched
is at memory address 1A33 if D=0. If D#0, execution
continues with 43.
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» Tw]s] | []2

ADD

Rioi § 01 | 3B

i |c
RiD) | OV | 35
Rty [ o | 78 [auy] - | '

rizt | 00 | 31 Jad o= —
RI2N[ - | - Io[uo—|

R{1} | 01 | 7% IALUl - |

A2 § 1A 33 jed DF=_
Ra | - | - [p]oo]

w ! §

g[s8|z|8|g

Bls(2]|2

COMNDITION TRUE

SEIE) v ]2 NE
P 2 f+— F 2
oD, x | 1 'BE
bl e
00 A | 01| 35
0 At | o | s [ALUl - ’ F‘LUI _J
00 riz) [ 00 | 31 lador-— DF -
00 R [ - | - IDIFal |D|F3|

CONDITION FALSE

Fig. 54 — Example of instruction C2 — LONG BRANCH IF D = 0 for both true and
false conditions.

IF D NOT 0, M{R(PH = R(P).1
LBNZ LONG BRANCH |F D NOT O M{B(P}+1) = R{P}.0 ca
ELSE R{P}+2

IF BF=1, M(R(P)) = R{P).1
LBDF LONG BRANCH IF DF=1 M(R(P}+1) = R(P).0 C3
ELSE R{P)+2

IF DF=0, M{R{P)) ~ R{P).)
LBNF LONG BRANCH IF DF=0 M(R(P}+1} = R(P).0Q CB
ELSE R{P)+2

IF Q=1, M{R{P}} — RIP).1

LBQ LONG BRANCH IF Q=1 M{R{P)+1} » R(P}.0 C1
ELSE R(P)+2

IF Q=0, M(R{P}} = R{P).1
LBNQ LONG BRANCH IF Q=0 M{R({P)+1) - R{P).0 co
ELSE R(PI+2
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Skip Instructions

The SHORT SKIP is unconditional and skips the byte
following the operation code. The LONG SKIP is also
unconditional but skips two bytes following the opera-

o

tinn rada T thar inctrintt 1 i
tion code. The other instructions are long slips if test

conditions for D, DF, or Q are satisfied. The longskip
instructions require three machine cycles, one fetch and
two execute, as do the long-branch instructions.

5KP SHORT SKIP
NBR NO SHORT BRANCH

R(P}+1 38

When [=3 and N=8, the byte following the “38” in-
struction is skipped. The name SHORT SKIP implies

nothing about the following byte, but the alternative
name NO SHORT BRANCH implies a branch address.

LSKP
NLBR

LONG SKIP
NO LONG BRANCH

R(P)+2 cs8

When I=C and N=8, the two bytes following the “C8”
instruction are skipped. The alternative name NG LONG

BRANCH implies that these two bytes represent an un-
used branch address.

Lsz LONG SKIP IF D=0 ;g:%g‘hﬂ?ﬁ% CE
Algol:ﬂ N E A.|DO|31l N|E
. P 2 j— P ?
X 1 X 1
Rl o1 | 38 1 ° rov | o1 | 38 e
R | o1 | 75 [ALUl - | Ry | o1 | 78 ]ALU| - |
R(2} (a1} 31 jJa— OF = — Ri2} [0 4] 33 |
R3E| - | - [o] o] R | - | - [0 [ ]
CONDITION TRUE
N E [ | nfE
v P Z f— 7 2
X 1 X 1
ADD ADDRESS
0 rie 0o o1 |35 I
m [ALUl - I 00 ol Fil |ALU| - |
o0 DF=— 00 0 | 3t fa—{DF-—
oo I D ] F?l 0o I n | F7 I

CONDITION FALSE
Fig. 55 — Example of instruction CE — LONG SKIP IF D = Q for both true and false conditions.

IF D NOT 0, R{P)+2
C6
LSNZ LONG SKIP IF D NOT D IF DNOT 0. RiP)
LSDF LONG SKIP IF DF=1 IF DF=1, R{P)+2 o
] ELSE CONTINUE
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LSNF LONG SKIP IF DF=0 :EFng E%ST“;L*SE c7
LsQ LONG SKIP IF Q=1 lEFLgI: 1“38:“?:&5 cD

LSNQ |  LONG SKIF IF Q=0 lEFLSEO égl\{I?:EfU.E | cs
LSIE LONG SKIP IF IE=1 :EFL'S?ébiﬁ:;i c cc

When I=C and N=E, 6, F, 7,D, 5, or C, a conditional
long skip is performed. If the test conditions for I, DF,
Q, or IE are satisfied, the two bytes {following the opera-
tion code are skipped. If the test condition is not met,
normal program execution continues. For instance, if

instruction “CD™ is fetched from the sequence
CD5525F2, the Q bit is examined and if Q=1, the next
instruction to be executed is F2_If Q=0, execution con-
tinues with instruction “55”.

Control Instructions

DL IDLE

WAIT FOR DMA OR INTERRUPT

00
M{R{0}} -~ BUS

When IF0 and N=0, the microprocessor repeats exe-

cute (S1) cycles until an /O request (INTERRUPT,
UT)

DMA-IN, or DMA-O is asserted. When the request is

acknowledged, the IDLE cycle is terminated and the

IO request is serviced, whereupon normal operation is
resumed.

NOP NO OPERATION

CONTINUE C4

When I=C and N=4, no operation occurs. Execution
proceeds with the next sequential instruction (A3 in the

A ] o0 lau] (Y
e— P 2
x| 3
ADD
| C
00 R{0} oo {3
00 RI1)} no | 722 ]ALUI —~|
oo Ri2) | 00 | 30 b— DF=_
w0 Rzt [ ~ | - i o IAAI

example below). This instruction requires three machine
cycles, as do the other I=C instructions.

& | 00 l 30 ] N 4
e p | 2
X 3
ﬁio! LU 3 : c
Riti oo | 72 lALUI -
a2y ! DO ) D ke ODF=s-
Riz | - | - [ 0 |4a]

Fig. 56 — Example of instruction C4 — NO OPERATION.
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SEP SETP

NP DN

When I=D, the digit contained in N replaces the digit
in P. This operation is used to specify which scratch-pad
register is 10 be used as the program counter. This in-
struction causes a jump to the instruction sequence
beginning at M(R(N)). It facilitates “branch and link™

T | [
P 1 |g
x |2
T |o
RO |- |-
Rl | | 23 lau{ _ |
Rz |oo [37 | [oF--
| m@ - ]- |D|—|

)

functions and subroutine nesting. (These topics are dis-
cussed in the section on Instruction Utilization and in

tha gactinn on Proures
i SCCLUICIL U I I0gial

ing “Subroutine Techniques™.)

mming Technignes under the head-

T | M
P -] 1
X |2
| »]
CII I
B0 |01 | 23 [ALU[— I
Rizi |00 | 37 DF=-
Ri3y |- |- |D|_ l

Fig. 57 — Example of instruction DN — SET P.

SEX SET X N—>X EN
When I=E, the N digit replaces the digit in X. This in- byte transfer operations.
struction is used to designate R(X) for ALU and I/O
1 | e T |
P 1 N P 1
X |2 |3 Xx |3 |
1 E I E
Ry | — |- mon |- |-
RO o1 | 23 lat- | . Ry (o1 | 23 faw]- |
R2) | oo | 37 DF = - ri2i o0 |37 DE= -
Riat | _ o [o|-] Rim |- - [oT-]
Fig. 58 — Example of instruction EN — SET X.
SEQ SETQ 1=+0Q 7B

When 1=7 and N=B, the Q output -ﬂip-ﬂop is set. Q
was initially reset 10 “0” in the RESET mode and can

al-1-1 (~]e
B -
X -
| 7
RO - -
Ri1) - - |ALU | - l
R2) | — | -
T
o []

»

later be tested by the branch instructions BQ and BNQ,

af-1-1 v s
P —
x —_
I

rop | - | -

Ry | - | = IALUl—]

Rzl | - | -

e

Fig. 59 — Example of instruction 78 — SET Q.
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REQ

RESET Q

0—=0 74

When I=7 and N=A, the output flip-flop Q is reset. Q
is initially reset to “0" in the RESET mode and can later

A

-1 v | A
P | -
x| -
HE
RiOI - - -~
Ry | - | - [ALUI—I
RiZ) - -
TBE
a
]

)

be tested by the two branch instructions BQ and BNQ,

T L
e | -
N e
T

R{O} - -

R | - | = IALUl—J

Rz | - | -

A
a [o]

Fig. 80 — Example of instruction 7A — RESET Q.

Interrupt and Subroutine Handling

The special interrupt servicing instructions can best
be understood by examining COSMAC’s response to an
interrupt. When an interrupt occurs, it is necessary to
save the current configuration of the machine by storing
the values of X and P, and to set X and P to new values
for the interrupt service program. The interrupt forces
X and P to be automatically transferred into a tempo-
rary tegister T (P goes into the lower 4 bits, while X goes

into the higher 4 bits), and forces a value of “1” into P
and “2” into X. In addition, further interrupts are dis-
abled by resetting the interrupt enable flip-flop (E) to
“07. Also, a specific code is provided on the COSMAC
state code line. Details of the interrupt servicing are dis-
cussed in the section on Interfacing and System Opera-
tions under the heading “IfO Interface”.

INTERRUPT ACTION

XP=T:1—=P;2+>X;0—>IE

T | ] WE G | ] |6
’ P 3 - P —
¥ FI X |2 e
R |- |- - ROl | = | - i
Al op B& IQLU l - -| RI11 0 =3 IALUI - l
RiZ} m 24 BF=— Ri2t 13} 24 DF = =
Ri3+ [ o2 | 3c fol-1 Rizt |02 | 3c M- ]
IE=1 IE=D
Fig. 61 — Example of ——— INTERRUPT ACTION.
SAV SAVE T M{R(X)) 78

When 1=7 and N=8, a SBAVE operation is performed.
This operation stores the byte contained in the T register
at the memory location addressed by R(X). Subsequent

execution of a RETURN or DISABLE instruction can
then replace the original X and P values to resume (or
retusn (u} normal program execution.
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MAaRK

PUSH X, P TO STACK

(X.P} > T; (X,P) ~ M(R{2]}
THEN P X; R{2)—1

79

When I=7 and N=9, another save operation is per-
formed. The current contents of the X and P registers

are stored through the temporary register T and into the

714] N

esssg

byte in memory addressed by R(2). The contents of P
are sot into X and R(2) is decremented by 1.

[ 7 [ ]

HE

A | | 7 I _ N
e |3
ADDRESS X °
00 Rio | oo | = I
00 R{1} oo | 36 lALUl - |
® R{z) | 00 | 70 La—DF = -
00 Rigby — | — lo]-|

Fig. 62 — Example of instruction 79 — PUSH X, P TO STACK.

RET

RETURN

M{R({X)} = (X,P}; R(X)+1;1 > IE

70

When 1=7 and N=0, a RETURN operation is per-

formed. The digits in X and P are replaced by the
memory byte addressed by R(X), and R(X} is incre-

mented by 1. The 1-bit Interrupt Enable (IE) flip-flop is

set.

NEIE N o
3 P
L
ADDHESS] M 12 ADDRESS
o121 | oo R | - |- L7 a1
01 |22 | oo Rl | oo [ 86 fa] - | o1
01|23 | a3 mizl | o1 | 23 e ge - a1
01|24 |0 Ri3: 102 |3 ] [ |- ] [
IE=—
Fig. 63 — Example of instruction 70 — RETURN.
DIS DISABLE MIR{X}) = {X,P}, R(X)+1;0> IE rA

When I=7 and N=1, an instruction similar to
RETURN is execuied, except that in this case IE is reset.
While IE=0, the interrupt line is ignored by the proces-

S0T.

Either the RETURN or DISABLE instruction can be
used to set or reset IE, respectively, as explained in the
section on Programming Techniques under the heading

“Interrupt Service”.
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Input/Output Byte Transfer

ouT OUTPUT

6N

M(R(X)} > BUS; R(X}+1 N=1-7

When I=6 and N=1,2,3.4.5,6, or 7, the memory byte
addressed by R{X) is placed on the data bus. The three
lower-order bits of N are simultaneously sent from the
CPU to the 1O system. These three N lines are low at
all times except when an Input/Outpui instruction is
being executed (I=6). The IfO system recognizes these
conditions and reads the output byte from the lines.

The N lines may be decoded with MR} to select or

control 7 output devices. For more complex systems, see
“IfO Interface” in the section Interfacing and System
Operations.

R(X} is incremented by 1 so that successively exe-
cuted output instructions can transfer bytes from suc-
cessive memory locations. If X is set to the same value as
P, then the byte immediately following the output
instruction is read out as immediate data.

r’ M2, N1, NO{11%) N2, N1, NO I—.‘[”'I]
ﬂ R E; A oo |33 NE
P lo Plo
ADDRESS I 2 ADD X 2
[i.1] 36 l i 1] Ri0y | 03 36 I 6
o0 7 lALUl - | 90 Ay oo |71 IALUl - |
00 33 M—DE=~ 00 A{ZI {00 | 34 [ DFa_—
00 _ [o[-] 00 Rz |~ |- [o]_ |
56 o5
Fig. 64 — Example of instruction 6N (N = 1 - 7} — QUTPUT.
INP INPUT BUS - M(R(X)}; BUS - D o

When i=6 and N=9,A,B.C,D.E, or F, an input byte re-
places the memory byte addressed by R{X). The input
byte is also placed in the D register. R(X) is not modi-
fied. The three bits of N are simultaneously sent from
the CPU to the IfO system during execution of the

A]—- N2, N1, NO (G101

insiruction. The 1/O circuits should gate an input byte
onto the data lines during the execute cycle. The N lines
may be decoded with MRD to select or control 7 input
devices. For more complex systems, see “1/0 Interface™
in the section Interfacing and System Operations.

A N2, N1, NO {010}

A on]ss] N A 1‘ A | 0 I 34] N A
] 1o Pl
jo—{ X% 2 fa—] X 2
ADDRESS ) W
1| 6 I |6
R}t 03 {36 oo 11 12 R{0) 03 a6
R | oo |7 lin.ul - | go | 32 | 34 Ry | oo | 7 IALU[ - |
R[2} 00 | 34 e—DF=-— e 33 56 {2 1.4] 24 i DF= -
RIaH | - ] — [o]-] oo | 34 | 27 Riz | - | - EEl
27 27 ? 27 f 77

Fig. 65 — Example of instruction 6N (N =8 - F} — INPUT.

DMA Servicing

DMA-IN ACTION

BUS —» M{R(D)};R{0}+1

DMA—OUT ACTION

M{R{D)) = BUS; R(0}+1

During DMA operation, R{0) points to a memory
location for data transfer. After each byte transfer, R(0)
is incremented by 1. For concurrent DMA and Interrupt

requests, DMA-IN has priority, then DMA-QUT, and
then Interrupt. For further details, refer to “1/0 Inter-
face” in the section Interfacing and System Operations.



Instruction Utilization

In this section, the basic usage of some of the instruc- given in the subsections on “Subroutine Techniques”
tions defined in the preceding section is described from and “Interrupt Service” in the section on Programming
the user’s point of view. Additional information on in- Technigues.

structions applicable to subroutines and intermpts is

Stack Handling Instructions

These instructions are provided for data movement to Mnemonic Op Code
and from memory, and are well suited for stack han-
dling. The further use of these instructions in subrouiine IRX 60
linkages is discussed in the subsection on “Subroutine LDX Fo
Techniques” in the section Programming Techniques.

LDXA 72
STXD 73
Example 1. Pushing data onto a stack, saving a register
GHI R3 ..Load R(3}.1into D
STXD . . Store it onto stack (push)
GLO R3 .. Load R{3}.0 into D
STXD .. Store it onto stack (push}
K-2 K-2 free location R {X)
K—-1 K-1 from R{3).0
K free location -1 (X)) K from R{3}.1
K+1 other data K+1 other data

Stack at start up Stack after second STXD
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Example 2. Retrieving data from a stack, restoring a register

I{RX . . Advance pointer to data
LDXA . . Load data and advance pointer (pop)
PLC R3 .. Move D to R(3).0
LDX . . Load data, no advance of pointer {pop}
PHI R3 .~ ..Move D to R(3}.1
K-2 free location m- R{X} ¥K-2
K—-1 to R{3).0 K—-1
K to R{3).1 K free location  [e-R{X}
K+1 other data K+1 other data
Stack at start up Stack after using LDXA and LOX

Shift Instructions

Shift instructions are used for division, multiplica- Mnemonic Op Code
tion, bit and byte manipulation, and tesiing. A multipli-
cation by 2 is accomplished by instruction SHL, whereas SHR F6
a division by 2 is done by SHR. Bit shifting in either
direction can be performed either by using the basic SHRC 76
shift instructions SHR and SHL or by using the SHRC SHL FE
and SHLC instructions. For the basic shift instructions,
zeros are shifted approprately into the D register; bits SHLC 7E

shifted out of the DF are lost. The shift with carry or
ring shift instructions retain all bits by shifting them
through the DF and back into the D register.

Example, Shifting the contents of the 16-bit register R{5) one bit to the right

initially
RIS) [ 1A | 75 [ooo1 1010 | o111 o101
shift
SuB1: GHI R5 .. Load #1A into D
SHR . . Bhift it one hit to the right
PH! BB .. Store the result {#00D} in R{5).1
GLO RS .. Load #75 into D
SHRC . . Shift it one bit to the right
. Shifting in carry from SHR
PLO RSB .. Store the result (#3A) in R(5).0
finally

R(5) ap 3A {0000 1101 | 0011 1010
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Arithmetic Instructions

Multiple Precision Addition
Multiple precision addition is used to add two oper-

ands of multiple byte leagth. The multiple precision
addition is performed by adding the two least significant
bytes and then adding the next two bytes to the carry
created by the preceding addition. This operation is re-
peated for each subsequent byte in an operand. Finally,
the two most significant bytes are added together with
the carry from the preceding addition. The DF will be
set to “1” if there is a carry from the two most signifi-
cant bytes.

The ADC instruction together with ADD is used for
adding two operands of multiple byte length. Consider
the addition of two numbers each 2 bytes long.

1, The two least significant bytes are added first by
using the ADD instruction. The 8-bit sum will be

Mnemaonic Op Code

ADD F4
ADC 74

stored in the D register, and the 1-bit DF (which
represents the output carry) will be set to “17 if
there is a carry out from the most significant bit.
If there is no carry, the DF is reset.

. Next, the two most significant byies are added

using the ADC instruction. The state of DF, which
represents the output carry from step 1 and the
input carry 1o step 2, will be taken into considera-
tion. The 8-bit sum will be stored in the D register,
and the 1-hit DF will be set to “1” if there is a
carry from the most significant bit.

Example 1. Adding two operands #313A and #F BEOQ — arithmetic

913A
+ FBEOD

Sum: 8D 1ADF=1 DF =
output carry

+ 111

input carry
1
1001 0001 0011 1010
1011 1110 0000
1000 1101 DF =[1] 0001 1010
Use ADC Use ADD

Example 2. Adding two opeérands each 2 bytes Jong — assembly code

Register MA contains the address of the first operand, while the second

operand is found in register AC.

ADDX: INC MA .. Point to low 8-bit memory location
SEX MA .. Set X to MA
GLO AC . Fetch AC low B bits
ADD . Add the two low-order bytes
PLO AC .. Store the result in (AG).0
DEC MA . . Point to high 8-bit memory location
GHI AC . . Fetch AC high B bits
ADC . Add the two high-order bits with carry
PHI AC . Store the result in {AC}1

.. AC contains 16-bitsum
. DF = 1 denotes onerflow



Multiple Precision Subtraction

The concept of multiple precision for subtraction is
analogous to that for addition. It is performed by suc-
cessive subtractions starting with the two low-order
bytes and ending with the two high-order bytes. The
borrow from each step is included in the next higher-
order subtraction,

The SDB instruction together with SD is used to sub-
tract two operands of any byte length. Consider the sub-
traction of two numbers each 2 byteslong.

1. The least significant byte of the subtrahend in D
is subtracted from the least significant byte of the
minuend in M(R{X)) by using the 8D instruction.
The 8-bit result will be stored in the D register,
and the 1-bit DF (which represents the borrow)
will be set to 1 if there is no borrow out or to 0 if
there is a borrow out from the most significant
bit.

2. Next, the most significant byte of the subtrahend
is subtracted from the most significant byte of the

User Manual for the RCA CDP1802 COSMAC Microprocessor

Mnemonic Op Code
SD F5
SDB 75

minuend using the SDB instruction. The state of
DF, which represents the output borrow from step
1 and the input carry to step 2, will be taken into
consideration. The 8-bit result will be stored in the
D register and the 1-bit DF will be set to *1” if
there is a carry from the most significant bit, i.e.
no borrow.

Note that upon completion of subtraction:

DF = 0 means a borrow (the minuend is less than the
subtrahend).

DF = 1 means a non-negaiive result (the minuend is
greater than or equal to the subtrahend).

In case of DF = 0, the result is negative; the corre-
sponding value can be obtained by complementing each
bit and adding *““1” to the result.

Example 1. Subtracting #FA92 from #8179 — arithmetic

M{R{X)): 8179 M{(R{X)):

—D: FA92

Difference: BBE7, DF =0 DF =
autput borrow

input carry forced by
hardware
0 1
1000 0001 0111 1001
+D: 0000 0101 o110 1101
1000 0110 DF=[0] 1110 0111 DF=
Use SDB Use SD

(D denotes that the D values are complemented}

Example 2. Subtracting one 2-byte operand from another 2-byte operand — assembly code

The operand contained in register AC is subtracted from the operand the

address of which is in register MA,

SDX: INCMA . Point to the low B bits
SEX MA . Set X to MA
GLO AC . Fetch AC low B bits
sD . Subtract D from M{R{MA}}
PLO AC . Store result in [AC)LO
DEC MA . . Pgint to the high 8 bits
GHI AC . . Fetch AC high B birs
SDB . Subtract D from M{R{MA)) with
. Borrow
PHI AC . Store result in (ACH1

. AC contains 16-bit result
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Interpretation of DF — A Summary

The four shift instructions and the twelve arithmetic
instructions are the only ones that can alter the content
of DF.

ADD. Executing 74 or 7C ailows a carry4n from a
previous addition, thus facilitating multibyte addition,
Executing F4 or FC, on the other hand, ignores the
original conteni of DF. After any of the four add in-
structions F4, FC, 74, or 7C, the content of DF will
indicate if a carry occurred.

DF =0 indicates a carry did not occur.

DF =1 indicates a carry did occur. In unsigned binary
representation, DF =1 also signals an overflow condition.

SUBTRACT. Subtraction is doae in 2's complement
arithrmetic. Each bit of the subtrahend is complemented,
and the resultant byte plus 1 is added to the minuend.

Executing 75, 7D, 77, or 7F allows a borrow-in from
a previous subtraction, thus facilitating multibyte sub-
traction. Again, execution of F5, FD, F7, or FF ignores
the initial state of DF. After any of the eight subtract
insiructions above, the conient of DF will indicate if a
borrow occurred.

DFE =1 indicates no borrow occurred.

DF = 0 indicates a borrow did occur and that the
magnitude of the subitrahend was larger than the minu-
end. The negative answer is then in 2’s complement
representation.

Branch and Skip Instructions

SKP: When the SKP instruction is used, the byte fol-
lowing it will be unconditionally skipped.

SKP .. SKIP the next instruction
UP: INC R1 .-INC R1 if a BRANCH to UP
GLOR1 ..Alwaysdo R(1}.0—=D

In this case, the INC R1 instruction will be skipped
and execution continues at the instruction following
INC R1, which is GLO R1.

The SKP instruction can be used in a subroutine with
more¢ than one entry point. Depending on the selected

Mnemonic Op Code
SKP 38
NBR
LSKP
NLBR ca

entry, the code for the other entries to the subroutine
will be skipped.

Example:
TYPES » LDARS
TYPEE }|———m LDARG [——
TYPE L  ——a GHIRG I ———
TY1 code
em————
™ starts here
TYPES: LDA RS . SKP ..Skipto TY1
TYPE6: LDA R6 ; SKP .. Skipto T¥Y1
TYPE: GHI R6
TY1: .. Subroutine code starts here
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In the above example the subroutine TY1 has multi-
ple entries. When an entry is selected, the other entries
will be skipped. For example, if TY1 is called via
TYPES, the LDA R5 will be executed first, and then
execution continues at the first instruction in TY] sub-
routine, skipping over the two entries TYPE6 and TYPE,

NBR: When the NBR instruction is used, the branch
to the specified address following the NBR jnstruction
will not be taken.

NBR LABEL

In this-case; 2 short branch to the address LABEL will
not occur, and execution continues at the instruction
following the skipped byte. This instruction may be con-
sidered a conditional SHORT BRANCH to LABEL, the
condition for which is never met.

The SKP instruction is a different syntactic form of
the same machine operaticn code as for NBR. This form
does not require an argument,

LSKP: When an unconditional long skip is executed,
the two bytes following the instruction will be skipped.

LSKP; ADD; INC RA

In this case, the two one-byte instructions ADD; INC
RA will be skipped, and execution continues at the in-
struction following INC RA.

The conditional long skip is used to skip on specific
conditions of the two bytes following the instruction.

LSDF .. I[fDF=1,RSHR
ANI #01 .. Else AND #)1
MA: RSHR . . Always ring shift

In this example, the two-byte instruction ANT #01 will
be skipped if DF = 1 and execution continues at label

NLBR: When the NLBR instruction is used, the long
branch to the specified two-byte address following the
instruction will not be taken.

NLBR LABEL

This instruction may be considered a conditional long
branch to LABEL, the condition for which is never met.

The NLBR and LSKP, and NBR and SKP pairs, have
the same machine operation code. The two assembler
syntaxes for each pair exist for the convenience of the
user and to aid program debugging,

Control Instructions

NOP: The NOP instruction causes only the program
counter to be incremented; it has no additional effects.
This instruction is useful in timing loops to provide a
time delay or wait function until, perhaps, a certain
operation has been completed.

LDI 50 . Load number of loops
PLO R6 . Into RS

MA: DEC - Reduce count
NOP . . Belay one instruction
GLO R6 . Test for done
BNZ MA . If not done, branch

. Time expired; continue,

The NOP instruction can also bre used to reserve space
for other code which may be unknown at the time the
program is prepared. Additionally, it can be used to rte-
place an instruction in a program, thus removing its
effect, a useful debugging technique.

SEP: The SEP instruction is used to specify which
scratch-pad register is to be used as the program counter.
This instruction causes an immediate jump to the in-
struction sequence beginning at M(R{N)} and R{N) be-
comes the program counter. The instruction facilitates
branch and link functions and subroutine nesting (refer
to subsection on “Subroutine Techniques™ in the section
Programming Techniques).

SEX: This instruction is vsed to designate R(X) used
by some logic, arithmetic, register, or IfO byte transfer
operations. Setting X to a new value assigns a register

Mnemonic Op Cade
NOP Cc4
SEP DN
SEX EN
SEQ 7B
REQ 7A
SAV 78
MARK 79
RET 70
DIS 1

R(X) to be used as a pointer to the data byte,

Example: Designating an R(X) can be used to advantage
when two bytes stored at different memory locations are
compared. The first byte is stored at M(R(7)), and the
second is stored at M{R(8)).

COMPAR: SEXR7 . R{X} points to byte one
LDX .. Load the first byte into D
SEX R8 .. R(X)points to byte two
sM . . Compare the two bytes
BNZ XYZ .. Branch to XYZ if no match

. Eise continue here

WHEN X = P: There are three instructions which
have particular usefulness when X is set equal to P: the
OUTPUT instructions (61-67), the RETURN instruction
(70), and the DISABLE instruction (71). Because each
of these instructions increments the R(X) register, when
X = P the R{PY/R(X) register will be incremented once
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for the fetch cycle when it acts as a program counter and
once for the execute cycle when it acts as R(X). As a
result, the byte immediately following the instruction
byte is the operand byte. For example, if P = 3, the
sequence will cutput the byte AD by means of the data
bus.

E3 SEXR32 .SetX=3
&1 ouT . . Qutput a byte from memory
AD #AD .. Immediate byte

_ .. Next instruction

This technique is also useful with the RETURN and
DISABLE instructions, as discussed in the subsection on
“Interrupt Service” in the section Programming Tech-
niques.

SEQ and REQ: Q is a {lip flop brought out of the
CDP1802 as a single output line. Q can be set (SEQ) or
reset (REQ) under program control and later tested in
the program by the conditional branch instructions BQ
and BNQ. Depending upon the outcome of the test, the
program can decide upon a course of action. Note that
at start_up, the Q line is reset (Q = 0) by the RESET
mode (CLEAR = L and WAIT = H).

For example, the SEQ and REQ instructions can be
used to send serial bits of data to an output device (TTY
for example). The length of each bit is determined by a
time delay subroutine. See Fig 66.

Another application is the control of an external
relay or lamp.

SAV: When an interrupt occurs, X and P are auto-
matically transferred into the temporary register T. The

iy SEQ rREQ

SAV instruction is used in the interrupt subroutine to
store the byte contained in the T register onto the stack.
It is usually preceded by a DEC R2 instruction to make
sure that R(2) is pointing to a free memozy location,
Subsequent execution of a RETURN or DISABLE
instruction can replace the original X and P values to
return to ihe interrupied program for normal execution
(refer to subsection “Interrupt Service” in the section
Programming Techniques).

MARK: A primary use of the MARK instruction is
to facilitate nested subrouiine linkage when multiple
program counters are employed. This use is exemplified
in the subsection on “Subroutine Techmiques” in the
section Programming Techniques.

A secondary use of the MARK instruction is simply
to determine X and P by storing their values in memory
for subsequent analysis. This capability is useful in the
design of debugging aids.

RET and DIS: Because the interrupt mechanism
stores X and P in the temporary register T and is typi-
cally followed by the execution of SAV instruction,
M(R(2)) contains the value of X and P at the time of
interrupt. The DIS and RET instructions are used to
restore the machine status (X,P) from M(R(2)) and give
control back to R(P). The DIS instruction also resets the
interrupt enable flip-flop (IE=0), while RET seis the
interrupt enable flip-flop (IE=1). Thus, a return from an
interrupt program or subroutine may be made with
either interrupt processing enabled or disabled.

The two instructions RET and DIS can also be used
in nested subroutine calls in conjunction with the
MARK instruction (See subsection “Subroutine Tech-
niques” in the section Programming Techniques).

COSMAC J

TTY

CPU

INTERFACE

Fig. 66 — Sending serial data from microprocessor fo TTY interface.
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Programming Techniques

The purpese of this section is to discuss basic pro-
gramming concepts especially as they relate to the writ-
ing of COSMAC programs.  is intended for engineers
new to programming. Experienced programmers, how-
ever, are also encouraged to read this section to get a
feeling for the differences between COSMAC and more
conventional computer architectures.

Resource Allocation

Before detailed programming can begin, decisions
must be made as to which functions are to be executed
by software and which are to be implemented in the
inputfoutput hardware. The layout of data in memory
must be planned and the utilization of registers worked
out.

The hardware/software tradeoff is often the most
difficult but rewarding phase of designing a micro-
processor-based product. On the basis of previous farmnili-
arity, engineers may tend to favor incorporation of hard-
ware timers, decoders, rate multipliers, etc. when these
functions might be done more economically in software.
Generally, the system designer should attempt initially
io do everything in software (except jobs requiring sub-
microsecond response), pushing functions out to special
I/O hardware only when the CPU cannot keep up. He
may find, even then, that a second CPU/ROM subsystem
is more cost-effective than special-purpose hardware.

Allocation of the various built-in 1/O capabilities of
COSMAC is difficult to discuss in general terms because
applications are so varied. The DMA channel can clearly
be used for CRT refresh from memory and for block
transfers such as between a floppy disc and memory.
The decision whether to use the DMA or the Interrupt

chanmels for a slow communication line is more difficult
and depends on what other I/O interfacing is required.
More subile uses of DMA include simply using R(0) as a
counter {ignoring the data transfer), and using DMA to
cycle through a sequence of AfD conversions, for
example. The input flags are obvicusly appropriate for
slow-varying binary real-world inputs, but can also be
used by IfO circuits to signal status o the CPU. The Q
Jevel cutput may be used as the system output, to signal
I/O circuits, or even to select banks of memory.

Often, the most basic system design issue is deciding
what functions to carry out in response to one or more
interrupt signals. Generally, the less done in servicing
interrupts, the better. In this way the amount of book-
keeping overhead is minimized each time an inierrupt
comes in. It also minimizes the problems of contention
among multiple interrupt signals. Fusthermore, it makes
the system easier to design, debug, and more likely to be
error-free.

RAM and Register Allocation for Data

Registers must be allocated among program counter
usage, data pointing, storage usage, and general utility
usage. This allocation many vary dynamically as a pro-
gram execuies, but generally it is more efficient to assign
fixed functions to most registers. The utility registers
may be used differenily by different parts of the pro-
gram. Allocation as program counters will be discussed
later.

Data may be considered as: 1) isolated variables,
parameters, or switches which are referred to at many
different parts of a program, 2) temporary, intermediate
results obtained in the process of a computation and then
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thrown away, 3) constants used as masks or for compari-
sons, for example, and 4) strings, blocks, or tables of
data which relate possibly to 1/O operations or are stored
in ROM. These types of data are respectively best han-
dled 1) by direct use of registers to hold the random iso-
lated variables, 2) by use of a memory “stack” {defined
below) for intermediate results, 3) by use of data inter-
mediate instructions for constants, and 4) by use of
register pointers into memory for strings, tables, etc.

The advantage of using register storage directly is that
simple 1-byte instructions are used to bring data to and
from the D repister, saving time and program space com-
pared with storing them in RAM. Furthermore, a param-
eter which needs to be incremented or decremented can
be stored in the low half of a register and incremented or
decremented in place without using the D register.

A stack is a last-in first-out storage mechanism. It is
best implemented in COSMAC by dedicating a block of
RAM and using one register R{(2) to point at the “top”
of the stack, i.e., the space where the next byte should
be put. The programmer “pushes” intermediate results
onto the stack for storing using R(2) as the pointer and
then decrementing the pointer (so that the block of
RAM wused starts at the highest address). Later, he
“pops”™ them off when he is ready to use them by a load
or ALU instruction, incrementing the pointer before he
does so. Users of certain Hewlett Packard calculators will
be familiar with the idea that a stack can be used to
organize a very complicated calculation.

(A Programming Note: Often, a programmer knows
1e will be using a piece of data pushed onto the stack
soon with no intervening further use of the stack. In
such cases he will omit the decrement of the pointer
after pushing data and the increment before using data,
thus saving one or two instructions. Such deviations
from standard usage should be well marked by com-
ments in the program to avoid problems in case the code
is changed later.)

There are many good reasons to use a stack mechan-
ism, some of which are discussed subsequently in the
material en program structure and subroutines. For now,
the main reason is efficiency of resource vse. First, only
one register pointer R(2} is required to work with a
potentialty large number of pieces of data. Second, RAM
is used efficiently because the allocation of space re-
quired must match the maximum number of interme-
diate bytes stored at any given time, rather than the
total required over the duration of the program (The
maximum “depth” of a stack is generally very small).
Third, the stack is efficiently addressed by 1byte
COSMAC instruciions, thus saving program space.

The data immediate mode of addressing is the best
COSMAC practice when constanis are needed in a pro-
gram. This mode provides best economy of resources in
most cases (no need for a special pointer to memory),
and a 1-byte Joad or ALU instruction suffices to address
it. Furthermore, this mode makes code easiest to “read”
because each constant used is found at the peint in the

program where it is needed and its value is immediately
obvious. Constants can readily be located and changed
during the programming process. With this approach, a
constant which is used at several different places in a
program will be stored several times. In exireme cases it
may be better to set up a pointer to such a constant. In
most cases, however, the data immediate mode is usually
best.

Data which appears as a string of bytes is best stored
in RAM and addressed by setting up a register pointer to
it. Multiple strings usually should have multiple address
pointers. The COSMAC instructions are desipned to
work efficiently with such data, allowing the pointer to
be incremented and decremented as the bytes of data are
accessed. Sometimes, the programmer will share a few
pointers between several different strings of data not
being simultaneously accessed. In this case, it is good
practice to allocate all strings to one 256-hyte page of
memory so that a peinter can be moved from one data
item to another simply by loading the lower byte of the
pointer register.

ROM tables, when frequently used, may also justify
a dedicated pointer.

Writing a Program

Structure is the essence of programining. The better a
programmer organizes the program’s structure, the
quicker the design, the more efficient the result, and the
more likely it is to be correct or “bug-free.”

Loops

The most characteristic structure in programming is a
stmple loop. A loop consists of an initialization section,
a main body of steps to be executed, and a test section
to determine whether and how often to “loop” through
the main body. As a simple example, consider a routine
which implements a delay. Fig. 67 shows such a routine
in three forms: flow chart, symbolic, and numeric. The
programmer should become familiar with all three of
these representations.

The flow chart (Fig. 67a) shows the program struc-
ture explicitly and says in words what happens at each
point in the structure.

The symbolic form, shown in Fig. 67b, specifies the
instructions to be executed and includes the movement
of data among the various COSMAC registers. The delay
constant, which is assumed to be stored in a memory
location, is loaded inte D and then moved to the lower
half of a utility register UTIL. The expression “LOOP:”
labels the next part of the program for future use. Three
“NOP” instructions are specified. These instructions are
the main body of the lcop. Then, the utility register is
decremented. Finally, the lower half of UTIL is loaded
into the D register and a conventional branch instruction
is executed. Control keeps going back to the “LOOP”
until the count goes to zero.
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¢

a. Flow chart form

b. Symbolic form

LDX .. Load defay constant G103 FO
LQAD DELAY
CONSTANT PLOUTIL ..intoUTILO 0104 AB
% ‘ LOOP: NOP . Kilt time 0105 C4
EXECUTE SOME NOP .. Kill time 0106 C4
NO-GFSTO
KH.L TIME NOP .. Kill time 0107 C4
‘ DEC UTIL .. Decrement 0108 23
DECREMENT DELAY
CONSTANT GLO UTIL .. Examing current value 0100 88
DOME YET?
BNZ LOOF .. Branch ifnot @ 010A 3A05
[vo g vES G .
. . Elze continug

¢. Nurméric form

Fig. 67 — Simple loop exarnple: delay function.

This same program is also shown in Fig. 67¢ in
numeric form, which is as it might appear in hexadeci-
mal code. Note that UTIL is assumed to be R(8).

Conditional Branches

A second characteristic structure in programs em-
ploys the conditional branch. In the conditional branch,
a comparison or test of some kind is made, and one of
two different bodies of code is executed, depending on
the outcome. Fig. 68 illustrates a simpie example where
the intention is to fix a lower bound to a variable Z and
substitute a constant 03 if Z is less than 03. Note that
once the appropriate action is carried out, the iwo
branches of the program come back together.

By defining steps in a loop io be themselves loops or
conditional executions, and by building up a hierarchy
of nesied loops and conditionals, any function can be
programmed. Structures of this type are the most effi-
cient fo generate, the most efficient to check out, and
the least likely to contain undetected bugs. More compli-
cated structures are very common (they appear in RCA
utility programs, for example), because programmers
like to play “tricks™ such as branching from one part of
a program inte another, sharing a common part for a
while, and then branching back to the original part con-
ditionally on some obscure characteristic that distin-
guishes the two program parts. These practices, however,
lead to problems. A simple change in the one part of

code may have unfortunate consequences for another
part which is “borrowing” a piece of it in the above
manner. The optimum flow chart is usually one without
odd4ooking branches from one part to another.

Subroutines

Very often, however, a piece of program is useful in
many different place in the total program—a multiply
routine, for example. To avoid the dangerous practices
teferred to above, but still io need have only one copy
of such a routine preseni in memory, the programmer
should use the concept of a subroutine. A subroutine is
a generalized form of instruction, a subprogram which
does something that might have been implemented in
the original CPU as an instruction. It should be exactly
defined so far as the function it performs, where it gets
its data and puts its results, and what resources it uses—
registers and RAM. Subroutines may have the structure
of aloop or of a conditional branch, and in either case
may themnselves use other subroutines within the body
of their code. The main design effort in a large program
is in the building up of a set of subroutines suitable for a
given application.

COSMAC offers many different ways to handle sub-
routine structure, representing different tradeoffs among
efficiency in execution time, efficiency in program size,
and efficiency in use of register resources. These ways
are described in the next part of this section. COSMAC
also offers more direct mechanisms for treating subrou-

. . Assume R{X} points to 2

COMPARE Z, 3 LDX ..FetchZ 0213 FO
7%03 7 <03 5MI 03 .. Compare with 03 0214 FF 03
Y BGE EXIT 021633 1B
SET 2=03 LDI 503 .. Load 03 0218 F8 03
| STXD .. and store at £ 021A 73
; EXIT: 0218

a. Flow chart form.

h. Symbahc form.

¢. Numeric farm.

Fig. 68 — Simple conditional branch example: limiting a variable.



tines as extensions of the basic instruction set. These
interpretive techniques are described in the last part of
this section on Programming Technigues.

Subroutine Techniques

In large programs, a particular sequence of instruc-
tions is often used many times. For example, a code
conversion from one data format to another might be
required several places in 2 communications program. A
straightforward approach to programming the code con-
version is to insert the proper sequence of instructions
each place in the program where the needed function is
to be performed. This duplication of instructions, how-
ever, would consume much memory storage space, espe-
cially if the sequence is long. An alternative method is to
write the sequence only once and reuse it each time it is
needed. This shared usage of the same code is accom-
plished by writing the function as a subroutine which
can be called each time it is needed. When the subrou-
tine has completed its function, it returns to the pro-
gram that called it. A subroutine may be called many
times from different places in the main program. Most
programs will contain several subroutines.

If subroutines are required frequently, the most
efficient technique for entering and exiting from the
subroutine should be used. The COSMAC aichitecture
provides several techniques for calling and retuming
from subroutines. The particular technique or combina-
tion of techniques to be used is determined by the com-
plexity and requirements of the function to be per-
formed. In the following material, each of three tech-
niques is described along with application examples.
Although the techniques are described independently,
they are not mutually exclusive and features of each can
be combined.

SEP Register Technique

The SEP register technique is the fastest and yet the
most basic subroutine call and retura convention. It util-
izes the COSMAC architecture to rapidly change pro-
gram counter assignments from one register to another.
The procedure is as foilows:

STEP 1. Point one of the 16 registers to the sub-
routine that the program will call. This step is typically
accomplished by executing the following code:

LDl A.Q{sub) . .replace “sub” with subroutine name
PLO Rn . .replace “'n’" with a register number
LDl A.1{sub} . ."sub” isthe entry point to the subroutine
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This four-instruction sequence will load the address
of the first instruction in the subroutine into a register.
Thus, the register “n™ will point tc the entry point of
the subroutine. If the programmer does not use this
register for any other purpose than to point to the sub-
routing, the initialization procedure need be done only
once. If, however, the same register is to be used various-
ly in the program to point to another subroutine or to
hald data, then, before additional calls, the register must
be reinitialized.

(Note: In many of the examples to follow it will be
necessary te initialize pointers using the four-instruction
sequence given above. As a shorthand notation, this
instruction sequence will be represented by a statement
such as:

LOAD ‘RN’, 'SUB'".
This statement happens to conform to that required of
an assembler macro cail, but for present purposes its use
is intended for saving space.)

STEP 2. A call to the subroutine is performed by
making R(n) the program counter. This change is done
by executing the instruction SEP to register “n”. Execu-
tion of the subroutine will then begin with R{n} as the
program counter. Because the initial value of Pis O at
program start up, this technique is also used to change
program counters from R{0) to any other register as
shown in Example 1 below.

STEP 3. A retumn from the subroutine is performed
by making R(p) the program counter where p was the
tegister used as the program counter by the calling pro-
gram at the time of the call to the subroutine. This
change is done by executing the instruction SEP to regis-

r “p”. The execution of the calling program will re-
resume with R(p) the program counter. Examples 2 and
3 illustrate this SEP Register Technique.

The procedure above in basic and expanded forms is

illustrated in the following three examples.

Example 1. Change the Program Counter from R{0) to
R{N).

Any COSMAC program always starts with R(0) as the
program counter. Changing from R(0) to any arbitrary
register (R(3) in this example) may be necessary to free
R(0) for later use as a DMA pointer.

The address of the first instruction in the main pro-
gram is loaded into R{3). Then, a SEP R3 instruction
will cause the main program to use R(3) as the program
counter thereby freeing R(0) for DMA use. The register
assignment table is given in Fig. 69.

PHI Rn ..”n" is the register to point to “sub”
Register Function
R{D) Initial program counter
Later, DMA pointer
R{3 Program counter

Commenit
Defined by hardware

Register # is arbitrary

Fig. 69 — Register assignment table for Example 1.
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Programming Technique:
.. Execution begins at location 0000 with R(0) as the program counter.

.. Load the address of “MAIN” program into R(3):

LOAD ‘R, 'MAIN'

. Load AIMAIN; into R{3)

>

—— PC = RID}

.. Change program counter to R(3) to effect an immediate call to the main program:

SEP A3

. PC becomes R{3}
.. Execution starts at label “MAIN"

MAIN:

END

. “MAIN" program code starts here

.. Mare code in the *MAIN™ program

.. End of source program

#—+—— PC = R(3}

A typical assembly listing for Example 1 is givenin Fig. 70.

Program counter | M Address | M Byte | Assembly program Comment

RiO) 0000 F834 | LDI A1 {MAIN} |..Point R3to
0002 A3 PLO R3 . "MAIN" program
0003 F812 | LDI A0 (MAIN)
0005 B3 PHI R3 ..
0006 D3 SEP R3 .. Change PC to R3

R(3} 1234 MAIN: ORG ™ .. "MAIN" program

starts here

Fig. 70 — Assembly listing for Example 1.

Example 2. Main Program Calling a Subroutine.

In this example, a subroutine is called by loading its
address into a register and using “SEP register” to do the
call. The subroutine is called from two places in the
main program. When it has performed its function, the
subroutine does a return by doing a SEP back to the

register of the main program. This returning SEP instruc-
tion is performed just in front of the entry point to the
subroutine. This siep leaves the subroutine’s program
counter as it was originally (ie., pointing to the same
location as at initialization). Thus, the initialization need
be done only once in this example. The register assign-
ment table is given in Fig. 71.

Register Function Comment
R{3) The “MAIN’' program pointer Arbitrary
R{7) “Subroutine’ entry pointer Arbitrary

Fig. 71 — Register assignment table for Example 2.
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- . Execution staris with R(0) as the program counter.
.. Load the address of “MAIN” program into R(3):

&—— FC = R{0}
LOAD "R, ‘MAIN" .. Load AIMAIN} into R{3)

.- Load the address of subroutine “SUBI™ into R(7):

1 fAc-RiO}
LOAD 7", ‘SUBTY .. Load AISUB1] into R{T)

. . Change program counter to R(3) to give control to “MAIN” program:

P o #———— PC becormes Ri3)
To "MAIN
SEP R3 . Exgcution resumes at label “MAIN™
.. GENERAL PURPOSE AREA
.. Place data or subroytines here
i #—— PC = A{3}
MAIN: . .. "MAIN" program execution starts here
. More cotle in “MAIN" program
To “SUBT" - PC hecomes RIT)
SEP R7 . CalrsuBp1T
Erom “SUB1" . .. "SUB1" returns here
. . "MAIN program code
1 ]
To “SUBT™ * PC becomes R{7)
SEPR7 .- Can call “SUB 1" again
Erom "SUB1" . .. MSUBTY returns here
B .- TMAINT program code
¥
ER MAIN .. Start "MAIN" again
Return
' t i #——1- P restored as Ri3)
EXITt: SEPR3] - . Return to the mainling code
From CALL L PC = RITH
L e« SUBI: . .. "SBUB1"” execution starts here

. . More code in “SUB1"
B8R EXIT1 .. Branch 1o entry point
.. of "SUB1" minus one byte
.. This leaves R{7] pointing
.. to “SUB1 aliowing fallowing

.. repeated calls

END .. Endd &3l program source
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Example 3. Main Program Calling Two Subroutines.

This is an example of a source program containing
two subroutines (SUB1 and SUB2). These two subrou-
tines are called from several places in the mainline. A
separate tegister is assigned to each subroutine entry
point permitting rapid subroutine cails and requiring no
reinitialization of pointers before successive calls. The
register assignment table is given in Fig. 72.

.. Execution starts with R(0) as the program counter.
. . Load the address of “MAIN” program into R(3):

Register Function

R(3) "MAIN" program counter
R{7) “SUB1” pointer
R (B} "SUBZ" pointer

Comment

Arbitrary
Arbitrary
Arbitrary

Fig. 72 — Register assignment tabie for Example 3.
Programming Technique:

LCAD 'B3', '"MAIN’

o—|—PC=R{0}

.. Load AIMAIN} into Ri3)

.. Load the address of subroutine “SUB1” into R{7}:

LOAD "R7, 'SUB1"

»——PC = R{0Y

.. Load AISUB1] into RI7}

..Load the address of subroutine “SUB2” into R(8):

LOAD "RE", "SUB2'

#—1—FC = R0y

.. Load & [SUB2) into R{8)

. .Change program counter to R(3) to give control to “MAIN™ program:

To "MAIN™
SEP R3

.. Execution resurnes at label “MAN""

- PC becomes R3]

.. GENERAL PURPOSE AREA

.. Place data or subroutines here

MAIN:

.. MAIN" program execirtion starts hera

.. More code in “MAIN'" program

To “SUB1™

SEP R7

.. Call “gUB1"

»—PC =R(3

From
“sup1”

v

.. "SUBT™ returng here

.. Mote code in “MAIN" program

To “SUBZ"
SEF RE

.. Call “SUB2™

From
“SURZ”

]

.. *"SUB2*" returns here

.. More eode in “MAIN" program

To “SUBT"
SEP RY

.. Can call "SUB1™ agai'n

- PC becomes B{?
- PCb Rig
PCL R{?

From
"SuB”

¥ I—_.

B8R MAIN

.. "SUB1" returns here
.. Mere code in “MAIN" program
.. Program

.. Start “MAIN" again
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#—————1—PC restared as RI3)

.. Return to the mainline sall

&——FPC=Ri{7

.. SUB1"” execution starts here

. . More code in “5UB1""

.. Branch up 1o before entry

- . to restorg R{7}

®———PC restored a3 R{3}

.. Return to the mainline cal!

——1-PC = R(B)

.. "SUB2" execution starts here

.. More code in "SUB2"
. Brarch up to before entry

.. to restore RI8]

EXITI: SEP R2
S5UB1:

BR EXITY
EXIT2: SEP R3
SUB2:

BR EXIT2
END

.. End of program source

Fig. 73 is a pictorial representation of Example 3.
The “MAIN™ program is running in R(3)
“SUB1™ runs in R(7)
“SUB2" runs in R(8)
To call “SUB1”, SEP R7
To call “SUB2”, SEP R8
To retumn to the “MAIN™ program, SEP R3

Note that the subroutines “SUB1” and *SUB2" are
matually exclusive in that “SUB1” cannot call “SUB2”,
or vice versa, because “SUB2” always returns to the
caller with a SEP R3. In order for “SUB2” to return to
“SUB1”, if would have to do a SEP R7. Caution must be
exercised to assure that a subroutine “knows™ the pre-
vious program counter for the return.

MARK Subroutine Technique

In each of the preceding examples, every subroutine
had to know the program counter of the calling program
in order to do the proper SEP for the return. In large
complicated programs where subroutines call other sub-
routines, a given subroutine may have to return to differ-
ent program counters at different times. This problem
may be overcome with the use of the “MARK Subrou-
tine Technique,” a technique which is required only
when subroutines are nested (call one another), and the
order of nesting varies dynamically.

The MARK instruction is used to save the current
value of X and P in an area of memory called a stack. In
a COSMAC based system, this stack consists of any num-
ber of jocations in RAM pointed to by a 16-bit user-
specified register. The pointer contains an address which
enables the CPU to find the current “top™ of the stack.
The stack provides for temporary storage and retrieval of
successive bytes of information in a last<in first-out man-

MAIN PROGRAM
PC = Ri3
SEP R3 suBt
SEP RV PC=RI7
SEPR3
SuBZ
SEFP RB—..l PC = R{&)
Fig. 72 — Pictorial representation of program counter
assignments.

ner. When a byte of information is stored in the stack, it
is stored at the address which is specified by the con-
tents of the stack pointer. The stack pointer is then
decremented by one, enabling another byte to be
“pushed” onto the stack “on top” of the Last one stored.
Hence, the stack pointer points to a free memory loca-
tion. Conversely, to retrieve information from the stack,
the pointer is incremented by one and the byte is
“popped’ from the stack by loading it into a register.
The top of the stack is then free for other “push™ opera-
tions. The programmer must make sure that the stack
pointer is initialized to an appropriate high address
memory location before an instruction that uses the
stack is executed.

In the COSMAC architecture, R(2) is the most
natural regjster to use as a stack pointer because of the
way interrupts are handled (X is set to 2).

The use of the MARK instructions also provides
another benefit. The calling program may pass data
(parameters) to the subroutine via “inline” data lists.
An inline data list is a block of immediate constant data
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supplied by the calling program to the subroutine. This
data is adjacent to (jnline with) the call statement. In
Example 4, SUB] passes an inline #24 to SUB2.

The MARK Subroutine Technique works as follows:

1. The calling program executes a MARK instruction.
This instruction pushes the values of X and P onto
the stack pointed io by R(2} and then copies P
into X. The current value of X is now the same as
the old value of P. P remains the same.

. The calling program calls the subroutine via a SEP
instruction to a register thai points to the sub-
routine, The execution of the subroutine then
begins. '

. If the calling program has provided inline parame-
ters to the subroutine, then the subroutine picks
up these parameters by executing LDXA instruc-
tions. This procedure will load the next parameter
to the D register and automatically advance the
caller’s program counter (R(X)) to the next byte.
There should be as many LDXA instructions as
there are inline data bytes. Thus, the passing of
data is accomplished without the subroutine
knowing the old program counter (X designator).

4, After the subroutine performs its task, it returns

to the caller by setiing X to 2, incrementing R(2)
(preparing R(X) for a return), and exgcuting z

RET instruction. These instructions will load the
contents of memory byte pointed to by R(2) 1o
the X and P registers. Processing continues with
the calling program running with its original X and
P.

5. Upon return of control from the subroutine to the
calling program, the calling program must decre-
ment R(2) to compensate for the increment in the
RET instruction.

Example 4. Main Program Calling Nested Subroutines.

This example illustrates a program that has iwo sub-
routines. Both subroutines are called by the main pro-
gram. One of the snbroutines is also called by the other
subroutine. The register assignment table is given in
Fig. 74.

Register Function Comment
R(2) Stack pointer

R{3) “MAIN" program counter Arbitrary
R(7) “SUB1" pointer Arbitrary
R(8) “SUB2" pointer Arbitrary

Fig. 74 — Register assignment table for Exampie 4.

Programming Technique:

. Load the address of “MAIN" program into R(3):

. . Execution starts at location 0000 with R(0} as the program counter.

LOAD ‘R3", ‘MAIN'

.. Load AIMAIN] into f{3}

——PC=RI0}

.Load the address of subroutine “SUB1” into R{7):

LOAD "A7", "5UB1T"

.. Load A{SUBT) into R(7}

&——1—PC = A0}

..Load the address of subroutine “SUB2” into R{(8):

LOAD ‘RE"'SUB2”

.. Load A{SUB2) into R (8}

#———PC= R0

. Set stack pointer R(2) to a RAM area:

LOAL "R2°,'STACK®

.. Load AISTACK] into RIZ}

———PC= R0

Ta "MAIN"
SEP R3

. . Execution resumes at labe! “MAIN®

&——1— PC becarnes R(3)

.. GENERAL PURPOSE AREA

. . Place data or subroutines here
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#—— PC becomes Ri3)
MAIN: . .- "MAINY program execution starts here

A=2

. More code in "“MAIN program

MARK .. Save tha state of the machine
L IX.PY = (2,3) onto stack
. MNote that X = F = 3 row.

To “SUB1™ [ 2 PCH Ri7
SEPR7 .. Call “SUB1™
From
"SuUB1™

[——. DEC R2 . . Fix stack pointer
‘ . .. "MAIN" program continues

. . More code in “MAIN" program

BR MAIN .- Start “MAINT again
———— PC =RI7}
EXIT1: RET .. Retwrn ta “MAIN™ program
sUg1: . . SUB1Y execution starts here
. Code in “SUB1™

. More code in "SUB1™
. Prepare tw call “SUB2"
MARK .. Bave {X P} = (3,7} onto stack

.Motethat X =P - 7 now.

Ta “SUR2" SEP RE .. Call “SUB2” . PC becomes Ri8)
J24 .. Pass a data byte to “SUB2"
From
Tsuez

DEC R2 .. Fix stack pointer on return
. from "SUBZ2"
. More code in "SUBT™

SEX R2 .. Point RiX} to stack for return

INC R2 .. Point 1o old [X P}

BR EXIT1 . Branch to the entry point

. to "SUB 1" minus one byte
. This leaves R{7} painting

Cto "SUBLT
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EXITZ: RET

suB2:

LOXA

S5EX R2

INC RZ

BR EXIT2

.. Return to "SLB1”
.. “SUB2" exerution starts here
.. Pick up inline parameter

.. from caller

. . More code in “5082"

.. Point R{X] 1o stack for return
. .Point to cid {X,P)

.. Eranch to entry paint

.. to “SUB2 minus ane byte

.. This leaves RI8) pointing

.. ta "SUB2”

e—— 1 PC=REA

END

.. End of program source

Standard Call and Return Technique

The Standard Call and Return Technique (SCRT) is
the most advanced technique described in this material.
It has several advantages over the preceding techniques
in that:

1. There is unlimited subroutine nesting capability.

3. There is no confusion over program counter assign-
menis.

3. The passing of parameters to subroutines is well
defined,

4. Yi has a maximum of flexibility in storing working
registers.

SCRT is not without its disadvantages, however. They
are:

1. It requires additional execution time in calling and
returing.
2. Tt reserves three registers for linkage.

The specific implementation discussed here may also be
tailored to suit the preferences of the programmer in
that additional registers may be saved or restored.

The SCRT centers around the register assignments
given in Fig. 75.

Register R{2) must point to a free memary area for vse
as a stack. This stack must be large enough to hold two
bytes for each level of nesting that might occur plus any
additional bytes that the programmer might choose to
push onto the stack. Thus, for a program that contains
five subroutines and the possibility exists that the main
program might call a subroutine which calls another
which in turn calls another, then the last subroutine is
said to be three levels deep.

Register R(3) is the basic program counter for both
the main program and the subroutine. So long as the
proper SCRT call and return conventions are main-
tained, the programmer is assured that R(3) is the pro-
gram counter.

The SCRT uses iwo linking subroutines: one when
the call operation is to be performed and the other when
the return from the subroutine is io be performed.
Registers R(4) and R(5) must be initialized once in the
program to point to the linking cail subroutine and the
linking retusn subroutine, respectively.

Calling a Subroutine

A call to a subroutine is performed by executing a
SEP R4 instruction. The two bytes following this SEP
instruction must coniain the address of the subsoutine

Register Function

R{2) Stack painter

R{3) Program counter

Ri4) Dedicated program counter for call routine

R{5} Dedicated program counter for return routine

R{6} Painter to the return location and arguments passed by the
calling program

Fig. 78 — Register assignment table for standard call and return technigue (SCRT}.
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to be called. For example, to call the subroutine labeled
MULT, the following assembly language statement could

be emnployed:
SEP R4 . . Call multiply subroutine
AIMULTY . . Call multiply subroutine

For those subroutines that expect a constant to be
passcd to it as an inline parameler, the following call
could be used:

SEP R4 . . Call type program

AITYPE) . . Call type program

T Text for Typing’

00 . . Denote end of string with null

Other methods for passing parameters to a subroutine
involve the use of a register, a memory area pointed fo
by a register, a reserved area of memory, DF, or Q. Data
may not be passed via the D register, however, because
the D register is used by the linking subroutines.

After a SEP R4 instruction is executed, the following
events take place:

1. R(4) becomes the program counter.
2. The call subroutine starts running in R{4),

3. The current contents of R(6) is pushed onto the
stack.

4. The contents of R(3) is copied into R(6).

5. The address of the subroutine being called is
loaded into R(3).

6. A SEP R3 starts execution of the called sub-
routine.

As a result of the register manijpulations, (a) the sub-
routine being called will run in R(3), (b) register R(6)
will point back to the data list of inline parameters pro-
vided by the caller or to the return address for the retumn
operation, and (c) because R(6) was saved, the stack will
have “grown” by two bytes.

If the subroutine is expecting inline parameters to be
passed to it, it should execute as many LDA R6 instruc-
tions as there are bytes in the data list. This execution
will load the successive data bytes into the D register for
use by the subroutine and increment R(6) up to the
proper address for a return operation. If the subroutine
needs to call other subroutines, it may call by executing
a SEP R4, etc. As many subroutines in succession as are
required may be called.

Returning from a Subroutine

Once 2 subroutine has been called and has completed
its function, control should be returned to the caller by
executing @ SEP R5 instruction:

SEP RS . . Return to caller
After the SEP RS instruction is executed, the following
events take place:

L. R(5) becames the program counter.

2. The return subroutine starts running.
3. The contents of R(6) is moved to R(3).
4

- The saved R(6) contents is reloaded from the stack
into R(6).
5. The execution of the calling program is resumed
with a SEP R3 from the linking program.

Example 5. Main Program Calling for Unlimited
Subroutine Nesting.

This example illustrates the Standard Call and Return
Technique (SCRT) capable of handling an unlimited
number of nested subroutines. The register assignments
are given in Fig. 75.

Programming Technique:

. Execution starts at location 0000 with R(0} as the program counter,

- Lead the address of “MAIN” program into R(3);

LOAD ‘R3'.'MAIN

- PC =R
.. Load A{MAIN} into R{3)

- Load the address of the call routine into R{(4):

LOAD ‘R4’ “CALL"

.. Load A{CALL) inta R{4)

&——— 1 FC = R{0}

- Load the address of the return routine into R{5):

LOAD “R5'RETPGM' . .

~ FC = RIO
Load A{RETPGM) into A|5}

. Set stack pointer R(2) to 2 RAM area:

LOAD ‘A2, 'STACK"

.- Load AISTACK] into Ri2)

— PC = Ri0)
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R{4}

R4

R{5}

Ta “MAIN" &——PC becomes RI3)
SEP R2 .. Expcution resumes at label "MAIN"
.. GENERAL PURPOSE AREA
.. Place data or subroutines here
¥
o—1 FC=R{3
MAIN: .. "MAIN" prograt code
To “'SUB1" . PC
SEP R4; LAISUB1) .. Cal *SUB1”
via “CALL™ .
.. “BUB1” returns here
.. More code in "MAIN™
¥ . program
from “'SUB1”
via “RETPGM"” L PCh
SEPR4; ,A{SUB2| #11 .. Call “SUE2", and pass the
To “BUBZ"
via “CALL”" . inling argument [#11)
.. 'SUB2™ returns here
.. More code in "MAIN"
¥ . . program
From “SUB1""
via “RETPGM" BR MAIN .. Start "MAIN" again
*———PC - R[3}
SuUB1 .. "SUB1" execution starts bere
.. More code n “SUB T
Return vig - P becomes RIS
SEP RS . RI5I is pointing 10 "RETPGM™
l RETPGM"
»—— FC = RI3)
suB: .. "SUB2" execution starts here
LDA RE . . Get parameter from caller
M in "SLIBZ"”
To "SUB1" ore coda in "SUBZ
via “CALL™ L o PC becomes RS
l SEP R4: AISLET) .. Call “SUBT”
.. More code in “SUB1™
Return via
“RETPGM™ L PC b
l SEF RS .. RI5} is pointing to “RETPGM'’
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To called program

w--——1 EXITA: SEPR3

Entar "CALL"

————— CALL: SEX R2

GHI R6
§TXD

GLO RG
STXD

GHI R3
PHI A§
GLO R3
FLO ARG
LDA RG
PHI R3
LDA RS
PLO R3

BR EXITA

— 1 pPCc-Ri)

.. R{3} is pointing to tha first
. . instruction in subroutine,
.. Paint ter stack

. . Push R(6] onto stack 1o

.. prepare it for painting

- - to arguments, and decrament

. - to fres location,

.. Copy R(3} into RiG) to

.. save the teturn address,

. . save the return address.

. . save the return address,

.. Load the address of subroutine
.. into R{3I

. .into RI3)

.. into A3

. . Branch to entry point of “SUB1"
.. minus one byte. This leaves A{d)
. . painting to "CALL" allowing

. . following repeated calls,

Ta return
“———+ EXITA:

Enter “ACTPGM"
——— & RETPGM: GH! AG

SEP R2

PHI R3
GLO RE
PLOR3
SEX 2
INC A2
LDXA
FLO RE
LDX
PHI RB

BR EXITR

—

- . Return to "MAIN" program,

.. Copy R{&)] into R{3}

.. R3] contains the return

. . address

.. address

.. Paint to stack

. . Point to saved old A|6)

. . Restare the contents

.. of R{6}.

.. of R{8).

..ot AiB).

.. Branch 10 entry point of "RETPGM*’
- . minus one byte. This leaves RI5)
.. painting ta “RETPGM” for

.. foliowing repeated calls.

1— PC = RS}

Interrupt Service

The use of the COSMAC interrupt line involves
special programsming considerations. The user should be
aware of the fact that an interrupt may occur between
any two instructions in a program. Therefore, the se-
quence of instructions initiated by the interrupt routine
must save the values of any machine registers it shares

with the original program and restore these values before
resuming execution of the interrupted program.

R(1) must always be initialized to the address of the
interrupt service program before an interrupt is allowed.
Fig. 76 illustrates a hypothetical interrupt service rou-
tine. R(1) is initialized to 0055 before permitting inter-
rupt. R(2} is a stack pointer, ie., it addressed the free
topmost byte in a variablesize data storage area. This
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stack area grows in size as the pointer moves upward
(lower memory addresses), much like a stack of dishes
on a table. Also like the dish stack, it shrinks as bytes
are removed from the top. In the interrupt service
example of Fig. 76, the stack grew by two bytes as
X.P, and D were stored on it, and then decreased to its
original size when D and X.P were restored. Such a stack
is sometimes referred to as a “LIFO” {Last-in-First-Out)
because the first item removed from the stack is the last
one placed en it.

When bytes are to be stored onto the stack by the
interrupt toutine the pointer R(2) is first decremented
to assure that it is pointing to a free space. In the exam-
ple shown, location 00FQ may have been in use when
the interrupt occurred, so the pointer decrements to
QOEF to store X.P. When bytes are no longer needed,
they are removed from the stack and the pointer is
incremented.

The stack in Fig. 76 is used to store the values of X,P, -
and D associated with the interrupted program. If the

Fig. 76, program execution branches to location
M(0053). R(2) points at M(OOEE). The LDA (42) in-
struction at M(0053) restores the original value of D and
R(2} advances to M(OOEF). The RETURN instruciion
(70) sets 1E=1 and restores the original, interrupted X
and P register values. The next instruction executed will
be the one which would have been executed had no
interrupt occurred (unless the interrupt is still present, in
which case the whole process is repeated). Note that
R(1) is left pointing at M(0055) and R(2) is pointing at
M(00FO), as they were before the interrupt.

When IE is reset to O by the 83 interrupt response
cycle, further interrupis are inhibited regardless of the
INTERRUPT line state. This setiing prevents a second
interrupt response from occurring while an interrupt is
being processed. The instruction (70} that restores origi-
nal program execution at the end of the interrupt rou-
tine sets IE=1 so that subsequent interrupis are pet-
mitted. _ _

Sometimes the programmer needs to control IE

START
HERE
ADDRESS BYTE OPERATION COMMENTS
o053 az EXIT: LDAR2 RESTORE D
0054 70 RET RESTORE X, ® AND
R{2); ENABLE
N (NTERRUPTS
0055 22 DEC R2 DEC STACK POINTER
0056 78 SAV QLD X, P ONTOQ STACK
0057 22 DEC R2 DEC STACK POINTER
0058 52 STR R2 OLD D ONTO STACK
- SAVE OTHER REGIS-
TERS IF REQUIRED
- PERFORM “REAL
WORK’ REQUESTED
BY INTERRUPT
- RESTORE OTHER
REGS-
- PREPARE TO RETURN
0 BR EXIT
53
- STORAGE FOR OTHER
. REG.
00EE STORAGE FOR D
QOEF STACK STORAGE FOR T, i.s.
oLD X, P
0OFD $TACK TOP WHEN
INTERRUPTED
- OTHER STACK ENTRIES
|

Fig. 76 — Interrupt service routine.

interrupting program will modify any other registers
(scratchpad or DF), their contents must also be saved.

After these “housekeeping” steps have been com-
pleted, the “real work” requested by the interrupt signal
can be performed. This work may involve such tasks as
transferring 1/O bytes, initializing the DMA pointer
R(D), checking the status of peripheral devices, incre-
menting or decrementing an internal timerfcounter Tegis-
ter, branching to an emeIgency powershut-down
sequence, etc.

Upon completion of the “real work”, return house-
keeping must be performed. The contents of registers
saved on the stack are now restored. In the example of

directly. For example, he may want to permit new inter-
rupts to interrupt the servicing of old interrupts, Or, he
may want to shut off interrupts during a critical part of
the main program.

The RETURN and DISABLE instructions can be used
to set or reset iE without changing P and performing a
branch. A convenient method is to set X equal to the
current P value and then perform the RETURN (70) or
DISABLE (71) instruction, using the desired X P for the
immediate byte. For example, if IE=0, X=5, and P=3,

the sequence
E3 SEXR3 ..SetX=3
70 RET . Return X to 5, Pt 3, 1~ IE,
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R(3) + 1.
63 ,#53 - - Immediate byte
would have no effect other than setting the interrupt
enable IE. A similar sequence with a 71 instruction can
be used to disable interrupts during a critical instruction
sequence.

Interpretive Techniques

An interpretive system offers the advantages of a
“higher-level” language without the disadvantages of
complex translation programs. The idea is to define a
set of psendo imstructions which are more powerful
than basic CPU instructions and, consequently, easier
to program with. Each pseudo instruction is imple-
mented by a corresponding subroutine. In the simplest
interpretive system, each subroutine ends with a
mechanism which passes control on to the next sub-
routine (ie., pseudo instruction) to be executed. The
sequence of pseudo instruction is defined by a pseudo
program, analogous to the way a program defines a
sequence of instructions. A pseudo program counter is a
register which is generally pointing at the next pseudo
instruction to be executed. Just as with a real program
counter, pseudo branch instructions may affect the nor-
mal sequencing of the pseudo program counter.

Specifically, let PPC be the pseudo program counter—
one of the COSMAC registers. Let PC be the normal
program counter. Suppose that all subroutines begin and
end on the same page in memory. They may branch to
other pages, but they eventuaily come back. Then, a

pseudo program is nothing more than a series of ad-
dresses—the low-byte address of each successive sub-
routine to be executed. Bach subroutine ends with the
same two instructions:

LDA PPC .. fetch next address

PLOPC . into PC low.

These instructions give control over to the next sub-
routine. )

Just as with subroutine calls (which they closely
resemble), pseudo instructions may be followed by argu-
ments or argument addresses. For example, a (long)
branch pseudo subroutine would be:

{BR: LDA PPC . Put first address byte
STR STACK . into the stack.
LDA PPC . Put second hyte
PLO PPC . into PPC low.
LDN STACK . Put first byte
PHI PPC . . into PPC high,
LDA PPC .. Go
PLO PC . to next pseudo instruction.

A typical set of pseudo instructions might include
muliiple-precision or floating-point arithmetic functions,
IO handling instructions, multi-way branches on arith-
metic comparisons, subroutine linkage routines, and a
mechanism to drop into standard COSMAC instructions
whenever necessary. The programmer should choose and
program a set of instructions suitable to his specific
application.

More details and a discussion of alternative interpre-
tive systems may be found in COSMAC Application
Notes to be provided.
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Interfacing and
System Operations

This ‘section describes some circuits and suggested
techmiques for interfacing the COSMAC Microprocessor
CDP18072 with external memories, control circuits, and
inputfoutput devices in various system configurations.
Reference to the section on Timing Diagrams will be
helpful in reading this material.

Memory Interface and Timing

The use of memory interface lines is best described
by specific examples. Fig. 77 shows the direct intercon-
nection of a static 32-byte RAM to the CPU. No ex-
ternal parts are required. The same simplicity in interfac-
ing is evident in Fig. 78 for a 256-byte static RAM. For
memories requiring more than eight addressing bits, Fig.
79 illustrates the interconnections of a static 1024-byte
RAM to the CPU. The 1024-byte read-write memory
comprises eight 1024-word by 1-bit CDP1821 RAM’s.
These static RAM’s, requiring only a single power sup-
ply, are easy to use. Ten memory address bits are re-
quired to select 1 out of 1024 memory byte locations.

The high-order byte (A.1) of a 16-bit memory address
appears on the memory address lines MAO-7 first. The
two least significant bits of A.1 are strobed into the 2-bit
address latch by timing pulse TPA. Fig. 80 shows the
memory read and write timing. For a more detailed tim-
ing diagram including set-up and settling time delays,
refer to the data bulletin for the CDP18G2.

memory address appears on the MA 0-7 lines after the
high-order bits have been strobed into the address latch.
Latching all eight A.l bits would permit memory expan-
sion to 65,536 bytes. Chip select decoding would have
to be added to the latch output for memory expansion.
The MA 0-7 lines may also tequire buffer circuits to
reduce the load on them to achieve high speed.

The state of the MWR and MRD lines determines
whether a byte is to be read from the addressed memory
location, written into it, or neither operation performed.
Fig. 81 tabulates the operation of the memory control
lines. Note that the MRD and MWR lines are active low.
The CPU controls the destination of the memary output

5
TYYY pe——— L
STATIC RAM
MWR [ MWR
3ZBYTES CPU
COP 1824 CDP1802
{32 X 8)
s—n
MRD MRD Vee
DATA DATA
?? BUS PULL UP
8 8 : |  RESISTORS
. § DATABUSQ? | [ (22K
< [

-

Fig. 77 — Interface for the COP1824 static RAM to the CDP1802 microprocessor in a

32-byte RAM system.
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FO—
B MADT
MA MA
STATIC RAM
MWR WA
256 BYTES
cPu
TWO COP1822's
1256 X 4) Cs2 fm—0 *V¥er CDP1802
st —n
MRD ¥R
4 omw  pour DATA vee
§ @ @ BUSPULLUP
] T | | RESISTORS
8 2 8 1 (22K
U DATA BUS 0.7 ﬁ } 2k
>

Fig. 78 —Interface for the CDP1822 static RAM to the COP1802 microprocessor in a

256-byte RAM systemn.

byte when it appears on the data bus. The byte may be
strobed into an internal CPU register or into an external
I{O register. During a WRITE cycle, the memory output
is in a high-impedance state. The CPU or IfO circuits can
then place a byte to be stored in memory on tha bus. A
negative-going MWR pulse will cause the data byte to be
written into the addressed memory location. Eight bus
pull-up resistors should be provided to place the bus in a
knowan state when it is not being driven.

Figs. 82 and 83 show interfacing for the CDP1802
with various other memories in the 1800 series of parts.
Other industry standard RAM’s and ROM’s are readily
accommodated by the CDP1802’s general-purpose inter-
face lines. Access time, however, must be consisient with
clock frequency. The data bulletin for the CDP1802
gives curves relating access time, clock frequency, and
instruction cycle. For example, a2 4-MHz clock will re-

quire a memory having a maximum access time of 900
nanoseconds. The time required by the CPU and internal
gating is also specified on the data sheet.

If a memory does not have a 3-state high-impedance
output, MRD is useful for driving memory-bus separator
gates; otherwise, it is used to control 3-state outputs
from the addressed memory. A low on MRD indicates a
read cycle; the low MRD line enables the n1emory-
output-bus gates during the read cycle. For various
memory systems, the MRD signal and the MWR pulse
polarity and width may require modification by external
circuitry.

Segments of ROM’s can be attached in the same man-
ner as RAM’s but with the write controls omitted. The
CDP1831 ROM is especially easy to use because address
laiching is provided on chip to latch the 8 most signifi-
cant bits of a 16bit address. The on<chip decoder is

CD4042 A 89
LATCH
2 2
8 ]
MA 0-9 — "MA 07
10 - 8
1
. |
L MA
MA 09
TPA
STATIC RAM
1024 BYTES
EIGHT CDP1821's cPy
11024 % 1} CDP1802
MWR -] WWR
i CS ( WRD
U oo D ouT DATA Yet  gus
Q@9 PuLLue
3 8 5 | | RESISTORS
DATA BUS 67 !z
4 >

»

Fig. 79 — Interface for the CDP1821 static RAM to the CDP1802 microprocessor in a

1024-byte RAM system.
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T
we__ T - 1
1 f
1
[}
: |
! 26T 1 |
MA Z ar | a0
MWR

I |
?S%:SY SUTPUY W A’]// A vallD BYTE

DATA LATCHED INTO CPU

ALLOWABLE MEMORY ACCESS TIME = 8T — 1, tsertling time)

CPL QUTPUT
ot VALD YT 355
! | 1
L READ CYCLE o WRITE CYCLE
~ 1 -
[/7] unpEFiNED DATA

@ OFF - High-Impedance State
Fig. 80 — Memory read and write timing diagram.

P mask programmable which enables placement of a 512-

CPU MEMORY MEMORY NON-MEMORY > B :
LINES READ WRITE OPERATION byte memory block anywhere within 65 kilobytes of
e - " " memory space. Note that the chip enable output signal
R H L H goes high when the device is selected. It is intended as a
chipselect control for small (up to 256-byte) RAM
. ) ) systems.
Fig. 81 — Operation of the memory controf lines. Dynamic RAM’s can be used with appropriate refresh
circuits. Because the CDP1802 circuitry is static, the
_ MA 07
L] — MA
STATIC RAM 8
256 BYTES cPU
EIGHT CDP1827's COP1802
(256X 1]
Rw MWR
1] & WAD
el
LL oN oot Véc Us PULL UP
B L
Ug 5 % ) ? RESISTORS
1
. 5 DATA BUS 07 L Eim]
< g T—2

Fig. 82 — Interface for the CDP1827 static ARAM to the CDP1802 microprocessor in a
256-hyte RAM system.
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clock may be stopped and restarted for asynchronous
memory operation if required, or the WAIT inpit may
be used to signal a Data Ready condition. For additional
information on this subject, refer to the following sub-
section on “Control Interface.”

Control Interface

The COSMAC Microprocessor CDP1802 has an
internal oscillator that works with a crystal connected
between th¢ CLOCK and XTAL terminals. If desired,
however, an external oscillator may be used and fed into
the CLOCK input. If an external oscillator is used, no
connection is required at the XTAL terminal. (Note:
care must be taken not to load the XTAL.) Any type of

If the WAIT line is brought low (with CLEAR high},
the CPU stops operation cleanly on the next negative-
going transition of the clock (Pause mode). Output sig-
nals are held at their values indefinitely. This state is
useful for several purposes. Using the WAIT line, the
CPU can be easily single-stepped for debugging purposes
or, if stopped early in the machine cycle, the CPU can
be held off the data bus to allow for multiprocessor
systems, etc. Also, the WAIT line can be used as a data-
ready signal from a slow memory or peripheral, or
signals TPA and TPB can be stretched. When the WAIT
line is returned high, the machine resumes running on
the next negative-going transition of the clock input.
The WATT signal does not inhibit the on<chip crystal
osciltator. DMA’s and Interrupts are not acknowledged
in the Pause mode.

N 8 MA 0-7
{1
US ! !8 B
MA Ma MA
TPA — — —_—— TPA
STATIC RAM
ROM
512 BYTES 255 BYTES —
TWO CDP1822's o
CDP1831 1255 % 4) S MWR WA R CPU
{512 X B} COP1802
CEQ , cs1
Vg O 52 WRD MRD
MRD - = veo
D ouT O IN o ouT DATA ?9 BUS PULL UP
8 a 8 s i | RESISTORS
DATA BUS 07 1] rezke
< >

Fig. 83 —Interface for a mixed ROM/RAM system.

single-phase clock may be used so long as the rise and
fall times of the clock pulse are less than 15 micro-
seconds. Each machine cycle consists of eight clock
pulses, and each instruction requires two or three
machine cycles. Thus, with a 6.4-MHz clock frequency,
amachine cycle of 1.25 microseconds could be achieved,
and instructions would be executed in 2.5 to 3.75 micro-
seconds depending on the instruction.

During normal operation, the CLEAR and WATT lines
are both held high. A low level on the CLEAR line will
put the machine into the reset mode with I, N, X, P, Q,
Data Bus = 0, and IE = 1. Actually, X, P, and R(0) are
reset during a special S1 cycle (not available to the pro-
grammer) immediately following transition from the
reset mode to any of the other modes (foad, run, or
pause). The clock must be running to effect this cycle.

If the CLEAR and WAIT lines are both heid low, the
machine enters the load mode. This mode allows input
bytes to be sequentially loaded into memory beginning
at M(0000). Input bytes can be supplied from a key-
board, tape reader, etc., by way of the DMA facitity.
This feature permits direct program loading without the
use of external “bootstrap™ programs in ROM’s.

Fig. 84 shows one circuit using standard devices from
the CD4000 series for controlling the run and load
modes of the CDP1802. Note the power-on reset
feature. To load and start a program, the sequence of
operations would be as follows: First, depress the reset
and then the load buttons. The CPU is pow ready to
load by means of the DMA channel. When loading is
completed, depressing the reset and then the run buttons
will start program execution at M(0000) with R(0) as
the program counter (after one machine cycle). If a
DMA request is present when the run switch is turned
on, the machine will go into the DMA state immediately
with R(0) as the program counter. The user should
therefore inhibit DMA externally until the program has
changed to a program counter different from R(0).
Interrupts, however, are disabied until the first instruc-
tion or DMA request is executed. This delay allows the
programmer to place instruction 71 and 00 in the first
twoe memory bytes to inhibit interrupts until he js ready
for them. The combined effect of the two instructions is
to set IE = 0. Interrupts must not occur, however, when
the machine is in the load mode because they will force
the machine into an snomalous running state. Fig. 85
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Fig. 84 — Simple controf interface for CDP1802 microprocessor.

shows the sequence of events and states involved in
lpading and running a program.

Another circuit that can be used for single-stepping
the microprocessor {one machine cycle per switch de-
pression) is shown in Fig. 86. This capability is often
useful as a debugging aid.

Fig. 87 provides a summary of the modes discussed,
the control levels, and the characteristic features of these
modes. It is evident that the run mode can be entered
from either the reset or the pause mode.

I/O Interface

The three basic ways in which the CPU can com-
municate with /O devices are programmed [/O, inter-
rupt 1/O, and Direct Memory Access (DMA). In the
programmed [/O mode, all data transfer is controlied
and timed by the program. In the interrupt I/O mode,
the CPU responds to an /O generated signal. In the

CLEAR [ - [
WAIT i _J
NOTE 1
P 1 I
CPUCUTRUT . rees—coooooososo v e o e oo e w e w oy v v '
TO DATA B o R AR A B
BUS
N
ma 777 M {0000} _ M {0000]
DMAIN | [ -

el Y.

WORD TO M (0000]

LOAD MODE

RUN meseT_ |,
MODE MODE |
UNDEF INED
B8 oFF - High-impedance state

Note 1 — In the Load Maode, TPA pulses are ganerated oy during DMA cycles.

Fig. 85 — Timing diagram for load and run sequences.
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Fig. 86 — Circuit for single-stepping the CDOPT802 microprocessor.
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RESET 0 1 ILN,X,P=0,R{0}=0,Q=0,BUS =0,
IE = 1; TPA and TPB are suppressed;
CPU in 81,
RUN 1 1 CPU starts running one machine cycle after

CLEAR is released. Execution starts at
M{D000}, or an 52 cycle follows if DMA
was asserted. Internal sampling of interrupt
is inhibited during initialization cycle.

RESET 0 1 As above,
LOAD 0 0 CPU in IDLE. An 1/Q device can load memory
withaut “bootstrap” loader.,
PAUSE 1 0 Clock:_|~ % 4= stops internal operation,

CPU outputs held indefinitely, Permits
stretching of machine cycle to match slow
devices or memory cycles. DMA and
INTERRUFTS not acknowledged.

RUMN 1 1 Cloek: % _ _ _ ___ _ __ =

Resume operatic;ﬁ'

Fig. 87 — Truth table for mode contro! of CDP1802 microprocessar.
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Fig. 88 — Summary of interface lines provided by CDP1802 microprocessor.
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DMA mode, a direct high-speed data channel- is estab-
lished between memory and IfO device. The I/O device
“steals” execution cycles from the CPU and transfer
data during these time slots.

Fig. 88 gives a summary of the interface lines pro-
vided by the CDP1802 microprocessor. The large
number of dedicated lines availabie offers both economy
and flexibility in 1fO system designs.

The following paragraphs indicate a few ways in
which T/O data transfer can be accomplished under the
three basic modes of operation. Throughout these exam-
ples, IC’s from the CDP1800 and CDA4000 series of stan-
dard parts are used. Devices from the 1800 series belong
to a growing family of dedicated parts designed specifi-
cally to interface with each other and with the CDP1802
Microprocessor for optimum system design. A broad
choice of standard parts from the 4000 series is also
available for flexible and inexpensive system operations.
For detailed information on these devices, the reader
should refer to the latest RCA Integrated Circuits
DATABOOK.

Programmed 1/O — Direct Selection of 1/O
Devices

One input port only. When I =6 and N=9, A, B,C,
D, E, or F, a byte on the data bus is writien jinto the D
register and the memory location addsessed by R(X).

The simplest form of input to the microprocessor
utilizes one of the four extemal flag lines: EF1, EFZ,
TF3, or EF4. A low on a flag line places it in its true
state. The short branch instructions 34, 35, 36, 37, 3C,
3D, 3E, and 3F allow programs to determine the states
of these flag lines.

Fig. 89 illustrates one method of using a flag line
(EF1 in this case) to signal the CPU and initiate a byte
transfer into memory and D register. In this circuit,
turning the switch on sets EF low and turning it off
sets EF1 high. The flip-flop eliminates switch bounce.
Assume firsi that the switch is off and, therefore, EF1 =
1. The short branch instruction 3C will test the siatus of
the EF1 flag. The 3C instruction executes a short branch

if EF1 = 0 (i.e., EF1 = 1), in this case to the branch
address XXO0A. So long as the switch is off, the program
will continue to test the EF1 flag and execuie a branch
to XXOA during every instruction cycle. Assume next
that the switch is activated so that EF1 becomes true
(i.e.. EF1 = 0). Execution of 3C now requires that the
next instruction EA be executed. Thie instruction sets
up R(A) as a data pointer and, in this example, it has
been preloaded with address XX1A. Instruction 69 is an
input command and loads the byte on the bus into D

‘and the memory location addressed by R(A), (XX1A).

The switch of Fig. 89 might be replaced by a Tele-
type* output relay. The opening and closing of this relay
contact represent the bit-serial teletype character code.
A . COSMAC program could interpret the sequential
states of the EF1 line to provide an extremely simple
bit-serial interface. (The Terminal Interface card and the
Utility Program described in Manual MPM-203 give a
practical illustration.)

Fig. 90 also shows how input bytes can be read into
memory in conjunction with a flag line, but the byte is
now entered under CPU control. In this example, the
user’s strobe asserts one of the EF flags which is being
monitored by a branch instruction in the program. A
byte is latched into the register in a high to low transi-
tion of the strobe pulse and generates a service request.
When a low is detected on EF1, the program branches to
an input instruction 69 (I =6 and N = 9). During execu-
tion of 69, the three N bits available at the interface are
valid. The NO line, which was low, is active high during
the execute cycle. When the CPU responds with an input
instruction and the NO line goes high, the input byte is
enabled onto the data bus,

During this machine cycle, the CPU generates a low
MWR pulse which writes the valid byte on the bus into
memory. For further details on input instruction tim-
ing, refer to the section on Timing Diagrams. Note that
the EF1 line is forced high (the service request is reset)
at the end of the valid NO bit fo assure that only one
byte is entered per strobe pulse.

The input byte might be the byte cutput of a paper-

tape reader, keyboard, or other input device. The input-
*Registered trademark, Teletype Corporation.

NOTE: FF SET/RESET = LOW
MEMORY
ADDRESS BYTE voo
XXO0A 3C >
XX OB oA CpP1802 1/2 CDaD11 :: on
XX0C EA
g - -
XX00 63 a (
XX1A XX EF1 a =& O’e—_L
OFF -
k MIRIKI @ INPUT BYTE

-~

DATA BUS

Fig. 89 ~ Use of a flag line (EFT) as an input command.
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Fig. 90 — Direct selection of 1/0 devices — one input port.

byte-transfer rate should be consistent with the speed
the program samples the flag line and execules input-
byte-transfer instructions.

One output port only. When [ =6and N=1,2,3 4,
5, 6, ar 7, the memory byte addressed by R(X) is placed
on the data bus. The three N bit lines are valid during
the execution cycle and indicate that an I/O operation
is performed. The M(R(X)} byte appears on the data
bus before the timing pulse TPB occurs and remains on
the bus until after the TPB line returns to its low state.

Fig. 91 shows simple logic for transferring a byte
from memory to an output register under program con-
trol. If a 61 instruction js executed, the NO line becomes
high during the execute cycle and can be used with the
timing pulse TPB to strobe a valid data byte into the
output register. The user is then free to enable the out-
put of the register. For more information on output
instruction timing, refer to the section on Timing Dia-
grams.

Fig. 92 shows how an output instruction, in this case
€1, might be used to set a byteinto a two-hex-digit out-

put display device. Each HP5082-7340 display chip con-
tains a 4-bit register, a decoder, and a hex LED display.
During the execution cycle of instruction 61, when the
NO bit is valid, TPB will strobe valid data into the two-
digit hex display.

A COSMAC program can be written to simulate a
free-running two-digit decimal counter. Each two-digit
count can be placed in the output display of Fig. 92.
The switch in Fig. 89 can be used to start and stop the
counter. If the switch is in the “ON” position, counting
proceeds (00-99). When the switch is turned off, count-
ing stops and the current value of the count is displayed.
Turning the switch “ON” again will re-initiate counting,
starting at the value displayed. A portion of a possible
“counter program” is shown in Fig. 93. In this example,
the logic in Fig. 92 must be modified with the MRD
line to distinguish between input and output instruc-
tions, as discussed in the material following,

One input and one output port. Fig, 94 shows how
the logic in Figs. 90 and 91 can be combined to provide
byte transfers in either direction. The level of the MRD

DATA
READY
TPE = L ﬂa T
_13_—- CLOCK SR
MwR ! COP1852
SYSTEM cPu u cs2
MEMORY T copr1802 L MODE CLEAR
Voo &
k IR @ ) ;
<= >
DATA BUS 0.7

Fig. 81 - Direct selection of 1/0 devices — one autout port.
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Fig. 92 — Direct sefection of 1/0 devices — one pair of output display digits.
M address M byte operation comments
T ]
1 : Initialize registers
: 1 ar:d display
| i |
0018 3c BN1 Loap here until
: 18 [ switch “ON**
' ' } i.e., EF1 goes low.
}
| |
| : Code to perform
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| ] ]
| | 1 .
| 61 Output 1 Qutput the counter byte to display.
: 30 BR Branch to M(0018).
i 18
Fig. 93 — Partion of a two-digit decimal counter program.
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CPU ND
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Fig. 84 — Direct selection of 1/0 devices — one input and one oulput port.
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line determines direction of data flow. During an input
instruction execute, the CPU is in 2 memory write cycle
with MRD high, i.e., the input register is enabled to the
bus and the input byte is read into memory when MRD
is high. During an output instruction execute, the CPU
is in 2 memory read cycle with MRD low and, hence, the
input register is diszbled from the bus. At TPE, valid
data is strobed from the bus into the output register.

More than one I/O device — Input ports only. The
simple byte logic in Fig. 90 can be expanded up to three
I/O ports with direct selection of the devices, as shown
in Fig. 95. The three N bits are valid during 1/O opera-
tion; hence, instruction 69 selects port I, 6A selects port
I, and 6C selects port II1. The user’s strobe will activate
an EF flag and enter a byte into the register.

More than one [/O device — Qutput ports only. The
simple fogic described in Fig. 92 can be similarly ex-
panded to handle three pairs of display digits, as shown
in Fig. 96. Each digit pair is selected by one of the N
lines, depending on the chosen instruction. lnstruction
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61 selects digit pair DO, 62 selects pair DI, and 64
selects pair D2.

More than one 1/O device — Both input ports and
output ports. The circuits in Figs. 95 and 96 were de-
signed for data flow in or out, respectively. Three I/O
ports under control of the N lines can easily be wired up
by expanding the logic in Fig. 94.

Another simple three-port I/O system but with a
CD4000-series register is shown in Fig. 97. In this
circuit, the 1/O device has master-slave flip-flops. Both
input and oulput data can be disabled, and data is
strobed in on a leading edge of the clock pulse when the
input is enabled. NO and a read level on MRD will enable
dafa from the bus inio output register #1 while the
input register #1 is disabled from the bus. A valid byte is
strobed from the bus into the output port at TPB. Dus-
ing an input instruction, a high level on MRD enables the
input port #1 to the bus. Similarly, N controls /O
ports #2, and N2 controls 1/O ports #3.

69 SELECTS PORT I PORT (H PORT f1 PORT(
6A SELECTS PORT Il STROBE 1N QBE 1N IN
B0 SELECTS PORT 11) STR STROBE
I l 8 *_ Ju il ’__ Ju 2 .
CLOCK SR CLOCK SR CLOCK SR
v [ cs1 s
—_ - c§2 CDPI8s2 CSZ COP1gs2 Cs2z CDPIBSZ
MWR
SYSTEM cpPu MODE CLEAR MCDE _CLEAR MODE CLEAR
— DP1802 N
weon | g | comte E S T T[T
No - = =
EF3
EF2
8 EF1
8 8 4 ]
L MRXH @ JV Jdvr J \4
< ™
5 DATABUS 07

Fig. 95 — Direct selection of 1/0 devices — three input pors.

INSTRUCTION €1 SELECTS DIGIT PAIR D40
INSTRUCTION 62 SELECTS DIGIT PAIR DV

INSTRUCTION 64 SELECTS DIGIT PAIR D2

I\ e
wiR | cpU Loy
COP1802 — — —
e P ] i TR
N2 cD4050 | | coanso cpaose | | coaoso
8 T::_ Tat 4 4 a 4 4
|
L MR} @s |} 4 4 § |J‘ JJ

DATA'BUS 0-7

8

4

Fig. 96 — Direct selection of 1/0 devices — three pairs of output display digits.
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Pragrammed 1/0 — One-Level 1/0 System

The 1O interface systems described so far are appli-
cable for small systems (up to three /O ports) where the
N lines can be used directly to select or control IfO de-
vices. If more than three I/Q devices are required, the N
Yines can be decoded to specify up 1o 1 of 7 different
1/0 ports or channels. Fig. 98 illustrates this approach. If
line 1 is selected from the decoder, for instance by exe-
cuting input instruction 69, the input register is enabled
to the bus because MRD is high during memory write

cycle. Decode line 1 will also be active high during an
output instruction, 61, but MRD is low during memory
read cycle, disabling the input register from the bus. At
TPB, the valid byte from memory is strobed into the
output register.

As discussed earlier, the user’s strobe or write signal
can be used to activate an EF flag or the interrupt line.
An 1fO request can be acknowledged by OR-ing the N
lines. If the interrupt is asserted, the two state-code lines
SCO and .SC1 are both high, acknowledging an interrupt
(583) cycle.

DISABLE ouT #1 DISABLE DUT #2 DISABLE OuT #3
o A 4
oo E 8] oD
o 2x 2 2%
PG CL  cpaore L cpaors CL  cpaove
MR —--—0—4> 1o - E o D
NO —- N T\ [\
N1 et
NZ ——— ]‘,
< >
| . DATA BUS 07 \ {\
)a T oD oD oD
2x 2x 2%
CL  codove cL CD4076 €L cpaore
o iaY 0
N o el R el Ry
5TE 1N 21 8TB I #2 11 IN 73
Fig. 97 — Direct selection of 1/ devices — one of three input ports or one of three
output Ports.
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Fig. 98 — Selection of 1/0 devices by one-level decoding — one of seven input ports or

one of seven output ports.
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Programmed 1/0 — Two-Level 1/0 System

The COSMAC architecture imposes no theoretical
limits on the number of I/O ports which the CPU can
accommodate. Systems larger than those discussed up
till now, however, require an additional level of de-
coding.

Fig. 99 shows one possible implementation of a large
I/O system which handles 256 input and 256 output
ports. A 61 instruction is first executed to place an 8-bit
device-selection code in the T/O deviceselect register.
Subsequent éxecution of a 62 instruction will send an
8-bit control code to the selected output port or chan-
nel. Control codes can be used to start or stop electro-
mechanical devices, set up specific modes of operation,
etc. When the 8-bit 1/O device-select register specifies an
output device, execution of a 63 instruction will cause
the transfer of an output data byte to the selected
device.

User Manual for the RCA CDP1802 COSMAC Microprocessor

After an input device is selected, a 6A instruction
could be executed to obtain a status byte from a
selected device. Subsequent execution of a 6B instruc-
tion could store an input byte in memory. The remain-
ing 1/O instructions could be used to control other sys-
tem functions either directly or under control of the
device-select register.

Note that the I/O register has two chip-select inputs;
hence, an output register is selected only when both the
address decode line and MRD are true. A byte can only
be strobed into the selected output register during TPB
when a command decode line is true. In order to select
the input register, both the address decode line and the
command decode line must be asserted when MRD is
1ot true.

In summary, a bytc on the data bus can be a device-
select code, a control byte, a status byte, read data,
write data, etc. To describe or interpret the byte on the
bus, the decoded outputs of the three N bits are used.

The above examples under “IfO Interface” indicate
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Fig. 93 — Selection of 1/0 devices by two-level decoding — one of 256 input ports or one of 256 output ports.
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only a few of the ways in which /O instructions can be
implemented. The IfO interface lines can be used in a
great variety of ways, limited only by the ingenuity of
the system designer. :

DMA Operation

The I/O examples described above require that a pro-
gram periodically sample [/O device status. These tech-
niques also Tequire several instruction executions for
gach 1/O byte transfer. In many cases it is desirable to
have /O byte transfers occur without burdening the
program or to transfer data at higher rates than possible
with programmed [/O. A built-in direct-memory-access
(DMA) facility permits high-speed IfO byte transfer
operations independent of normal program execution.

During DMA operation R(0) is used as the memory
address register and should not be used for other pur-
poses. Two lines, DMA-IN and DMA-OUT, are used to
request DMA byte transfer to and from the memory.
Also, a specific code is provided on the state code lines
(S0, SC1) to indicate a DMA cycle (52).
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mal fetch-execute sequences. If the DMA-IN line goes
low during an instruction fetch cycle (80), then the
normally following execute cycle (S1) will still be per-
formed. Following this execute cycle {S1), a special
DMA cycle (82) occurs. If the DMA-IN line goes low
during an instruction execute cycle (81), then the DMA
cycle {82) will follow immediately after S1. If the
DMAIN line is reset to its high state during the DMA
cycle (52), then the deferred next instruction fetch
cycle (SO) will be performed following the 82 cycle, as
shown on Fig. 100.

An 82 cycle is indicated by a low 8CO line and a high
SC1 line. This condition is used to place a DMA input
byte onto the bus, as shown. For further details on
timing, see the section Timing Diagrams. The S2 cycle
siores the input byte in memory at the location ad-
dressed by R(D). R{0) is then incremented by 1 so that
subsequent S2 cycles will store input bytes in sequential
memory locations. S2 cycles do not alter the sequence
of program execution. The program will, however, be
slowed down by the 82 cycles that are “stolen™. The
concurrent program must, of course, properly use R(Q)

DMA-IN ACTION

BUS - M{R(0)}; R{0)+1

DMA-QUT ACTION

M{R(0}} — BUS; R{0)+1

DMA-IN

Fig. 100 illustrates the manper in which DMA-IN
might be implemented. The leading edge of an enter
pulse will clock an input byte into the register and acti-
vate the DMA-IN request.

A low DMA-IN line automatically modifies the nor-

and memory areas in which inpui bytes are being stored.
It may examine R(0) and the memory area involved to
observe the course of the data transfer, The program
must also set R{0) to the address of the desired first
input byte location in memory before permitting a DMA
input operation.

CLEAR WAIT ENTER IN
P tz |l
CPU © ot
CDP1802 cL ;‘EG
MWR 5CO0 p—to op  CD%076
SYSTEM SCI——.—% J_
"MEMORY m
1/2 CD4013
D_OVDD
DMAIN o oc
R
l\ In?n:on ﬁg :E ' J‘ }3
<= - 2
J— E DATA BUS -7
DMA-IN
stares [ [s1 [0 fey 0[] =

Fig. 100 — Implementation of DMA-IN operation.
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So far, single byte transfer per enter request has been
discussed. If the DMA-IN remains low, 82 cycles will be
performed until the DMA-IN goes high. In this mode of
block transfer, the reset logic in Fig. 100 must be modi-
fied. The DMA mode permits a maximum I/Q byte
transfer rate of one byte per machine cycle which, with
two microseconds per instruction cvele time, amounts to
a transfer rate of one megabyte per second.

The DMA-IN feature, in conjunction with CLEAR
and WATT signals, provides a builtin program load
mechanism. A low on CTLEAR and a high on WATT puts
the CPU in the RESET mode. The CPU now idles (S1
state} with R(0) = 0008, The LOAD mode is next
entered by bringing the WAIT line low (CLEAR = L and
WATT = L). This mode allows input bytes to be sequen-
tially loaded into memory beginning at M(0000). Input
brytes can be supplied from a keyboard, tape reader, etc.
via the DMA-IN facility and circuitry similar to Fig. 100.
For details on timing refer to the material in this section
on “Control Interface.”

DMA-OUT

A low on the DMA-OUT line causes 82 cycles to
occlr in a similar manner as a low on the DMA-IN line.
The 82 cycle caused by a low on the DMA-OUT line
places the memory byte addressed by R(0) on the bus
and increments R{0) by 1. DMA ouiput bytes can be
strobed into an output device by TPB, as shown in Fig.
10}, The program must set R(0) to the address of the
first output byte of the desired memory sequence before
the DMA transfer request oceurs. For details on DMA-
OUT timing, refer to the section on Timing Diagrams.

Note: In the event of concurrent DMA and INTER-
RUPT requests, DMA-IN has priority followed by DMA-

Interrupt 1/0

The interrupt mechanism permits an extemal signal
to interrupt program execution and transfer control to a
program designed to handle the interrupt condition. This
function is useful for responding to system alarm condi-
tions, initializing the DMA memory pointer, or, in
general, responding to real-time events less urgent than
those handled by DMA but more urgent than those
which can be handled by sensing external flags.

A low on the line causes an interrupt
response cycle (S3) to occur following the next S1 cycle,
provided the IE flip-flop is set. Execution of an §3
cycle is indicated by a high on both the SCO and the
8C1 lines.

Fig. 102 shows a typical interrupt circuit. The flip-
flop is reset during the S3 eycle. During the 83 cycle, the
current values of the X and P registers are stored in the
T register. P is then set to 1, X to 2, and IE to 0. Follow-
ing $3, a normal instruction fetch cycle (S0) is per-
formed. The S3 cycle, however, changed P to 1 so that,
next, the sequence of instructions starting at the
memorsy location addressed by R(1) will be executed.
This sequence of instructions is called the interrupt serv-
ice program. It saves the current state of the COSMAC
registers such as T, D, and possibly some of the scratch-
pad registers, by storing them in reserved memory loca-
tions. DF must also be saved if the interrupt service pro-
gram will disturb it. The service program then performs
the desired functions, restores the saved registers to their
original states, and returns control to execution of the
original program. Special instructions RETURN, DIS-
ABLE, and SAVE (70, 7i, and 78) facilitate interrupt
handling, These insiructions are described in the sections

OUT and then INTERRUPT. on Instruction Repertoire and Instrnction Utilization.
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Fig. 101 — Implementation of DMA-CUT operation.
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MWR cDhP1802
D f—0 Yoo
SYSTEM
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5C0 ™ L INTERRUPT
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INTERRUPT | I
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STATES [sost]so] st fssfse]s]

Fig. 102 — Typical circuit for implementation of interrupt op eration.

Their use is illustrated in the section on Programming
Techniques under the heading “Interrupt Service.”

The COSMAC Microprocessor also provides a special
one-bit register called Interrupt Enable (IE). When IE is
set to “0”, the state of the interrupt line is ignored. IE is
set to “1” in the reset mode. IE can be set 10 “1” or “0”
by RETURN and DISABLE instructions, respectively. it
is automatically set to “0” by an 83 cycle, preveniing
subsequent interrupt cycles even if the
line stays low. The program must set IE to “1™ to permit
subsequent interrupts. Setting IE to “17 takes place
automatically when the program executes the RETURN
instruction. Sharing the INTERRUPT line with a
number of interrupt signal sources is possible.

When the interrupt facility is used in a system, R(1)
must be reserved for use as the interrupt service program

AAA
vV

L gl v=lo ]
1 ] )

VoD

L.

l

counter, and R{2) is normally used as a pointer to a
storage area. The latter may be shared with the main
program if appropriate conventions are employed, as
described in the section on Programming Techniques.

System Configurations

Parallel 1/Q Interface

Fig. 103 shows the CPU interfaced to other parts
members of the 1800 family. Only five parts plus a
crystal are required to interface directly in a simple and
efficient systern configuration. The RC network con-
nected to CLEAR is optional and provides power-on
reset. This basic system implementation can easily be
expanded for larger memory capacity as shown in this

ouUT pata IN

WMEMORY ADDRESS BUS 8 ———
CLEAR CLOCK XTAL WAIT READY STROBE
8 IE TPA TPE e 8 1 l -] I—_—
ROM AM crock - ot SR
J . ©s)
" — —_— %' coprssz cOP1852
CE 5 p— MWR
512 BYTES = Mwh 22:02 o cs2
COP1821 l—C57| 32BYTES €D MODE CLEAR MODE CLEAR
(512 8 CDP1824 7S
fe-— 52| (2x8) -~ - RS T £ T
MRD pa-g— MRD N1 v —
oD
MRD INTA
{} DmMa
EF
8 8 8 8 8
) DATABUSO7  § A4

Fig. 103 — System configuration for parallel 1/0 interface.
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section under the heading “Memory Interface and
Timing.”

More I/O ports can be added by following one of the
approaches outlined under *Programmed 1/0.” Several
N bits can be used directly for I/O control, or they can
be decoded for either one- or twolevel I/O systems.

The byte IO register can be configured as either
input or output port by the level on the MODE control.
When the register is used as an input port, data is latched
into it by a low level on the clock line. The negative
transition of clock sets SR = 0, which can be used as a
service request to the microprocessor. Data is read out
of the port onto the data bus when the chip is selected
(CS1 - CS2 =1), and the negative transition of CS1 - CS2
resets the service request (SK = 1).

When the byte I/O register is used as an output port,
i.e., MODE control = H, data is strobed into the register
from the bus by CS1.CS2.TPB = 1. In the output mode,
data is enabled out of the port at all times.

Serial 1/O Interface
Using EF input and Q output. Fig. 104 shows a sim-
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ple, serial interface for a COSMAC-based computer
system. The sequential logic states of one of the EF lines
may represent a bit-serial character. A software program
can then interpret these logic levels and assemble the bits
into one-byte data words in memory.

In an anziogous manner, SEQ and REQ instructions
in the program can generate high and low levels on the Q
output line for serial transmission of a byte from mem-
ory. This method can be used for interfacing a Teletype,
printer, or any peripheral with a serial interface. A typi-
cal interface circuit between the peripheral and the CPU
is shown in the Terminal Board for the Prototyping
Development System described in Manual MPM-203.

Another illustration of Q as an output under program
control is given in Fig. 105, This minimum system con-
figuration shows a 4-bit digital combination lock. The
status of the four manual switches or buttons represent-
ing a combination is tested by short branch instructions.
If the combination is correct, the program sets Q = 1,
thereby activating the solenoid of an electric lock.

The basic program with sixteen possible combinations
can be enhanced by various additions. For instance, the
correct combination must be entered in a certain

MEMORY ADDRESS BUS

F=1

Fig. 105 — System configuration for a 4-bit combination lock.

’Nj‘_ E CLOCK TTaL
i U* e
INTERFACE PR!rNTER,
I CART,
ROM RAM o N CIRCUIT cAT,
CE = MWR MR
g e csy| ZENTES CPU
512x8) Comsas CDP1802
{3Zx 8
je— 52 - -
— MrD [ MRD
MRD .—i
U DATA BUS 0-7 @ -
A -
Fig. 104 — System configuration for serial I/0 interface.
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sequence, or the code must be set within a minimum
time period.

Discussed earlier were IfO systems of varying com-
plexities in which the IfO ports were selected either
directly or through one or two levels of decoding. In this
context, the digital combination lock represents the
lowest order of complexity. No selection is required and
no input or output register is necessary.

Using universal asynchronous receiver-transmitter. A
more sophisticated and powerful approach to serial
interfacing than the one shown in Fig. 104 is outlined
below. The program itself is relieved of the task of for-
matting and control, and these functions are taken over
by a dedicated hardware cireuit.
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(optional), and stop bits (1, 1%, or 2}, as illustrated in
Fig. 107. The receiver converts a serial input word with
start, data, parity, and stop bits into parallel data. It veri-
fies proper code by checking parity and the receipt of a
valid stop bit. Both the receiver and transmitter are
double buffered.

Although the receiver and transmitier can operaie
with separate data buscs, if the MODSEL line is high, the
UART is directly compatible with COSMAC and bidirec-
tional data transfer on a common bus.

There are four registers under program control in the
UART. One is loaded from the bus in the transmii
mode, one is read to the bus in the receive mode, a Con-
trol register is loaded from the bus at initialization, and a

ﬁs TELEPHOME LINE

DAA
[ ¢
1 MODEM
77 0
CLEAR Tl #r so RiscTs st mMoDE
SELECT
rCS‘l
BAUD
Al I B UART e RATE
WRl cpy M= MRD COP1854 AC GEN.
SYSTEM CDP1802 o [— RSEL
MEMORY e e
MRD * "' (FrOm
INTERRUPT (NTERRUPT - \p2 PERIPHERALS)
EF _
=
TOEF
or s
TeRRUPT |t
8 Hs FTHR
a 8
<~ - . —
DATA BUS 0-7

Fig. 106 — System configuration for asynchronous serial data communication interface.

Fig. 106 shows the CDP1854, a CMOS Universat
Asynchronous Receiver-Transmitter (UART), interfaced
to the CPU in a typical data communication application.
The UART consists of a receiver and transmitter de-
signed to provide the necessary formatting and control
for interfacing serial asynchronous data to and from
peripheral devices. The receiver-transmitter is capable of
full duplex operation and is externally programmable.

The transmitier converts parallel data to a serial word
containing the data {5-8 bits), a start bit, a parity bit

Status regjster is read in the receive mode. The two-bit
code on MRD and RSEL determines which register is
selected and the direction of data flow. Refer to the
truth table in Fig. 108,

The UART is enabled to the data bus when the three
chip selects are asserted. Therefore, by decoding, a large
number of UART’s can operate in a system on the same
bus.

Fig. 106 illustrates one possible way of interfacing
the UART and the CPU. One of the N bits selects the

W NSNS N

L

START
BIT

S8 DATA BITS

STOP BITS
1, 1%, 0R 2

PARITY
BIT

—

]._

Fig. 107 — Word format in asynchronous serial data communication.
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chip, and the two other N bits select register and receive/
transmil mede. A typical operation might be as follows:

The control register is first loaded from memory
under program control, for instance, through executing
output instruction 65. The individual bits in the control
byte set up the sysiem mode according to the bit pat-
temn. The bit assignments are listed in Fig. 109, The pro-
gram determines if the system operates with parity or
not; if parity, odd or even; how many stop bits; the
number of bits in the data word; etc. For instance, a
high in bit position 0 will inhibit parity generation; or,
if transmit break is present, the serial-data-out line is
held low.

Transmitting a character is initiated by executing, for
instance, output insiruction 64. During the execute
cycle, N2 selecis the chip and N1 and NO select the
Transmitter Holding Register (THR), which is loaded
from the bus at TPB. When the byte has been transferred
to the Transmitter Shift Register (TSR) for eventual
serial transmission {on S0), the Interrupt line is asserted
to indicate that THR is empty and a new character rmay
be loaded. Reading the Status Register will also provide
this information. )

In the receive mode, a serial character is entered on
the SI line and shifted into the Receiver Shift Register.
When this register is full, the byle is transferred to the
Receiver Holding Register (RHR) and a Data Available
flag is generated, which is one of the status bits. Before
accepting the character, the program would typically
read the Status Register. The bit assignments of the lat-
ter are shown in Fig. 110. The program can therefore
determine if, for instance, there is parity error or if a
complete character has been received and is ready for

User Manual for the RCA CDP1802 COSMAC Microprocessor

CHIP ASYNCHRONOUS
INSTRUCTIONS [SELECT | WRD | RSEL | RECEIVER/
| TRANSMITTER

ouT IN N2 N1 NG | REGISTER QPERATION

&1 89 0 0 1 - _

&2 BA o 1 n |- _

63 68 o 1 1 — -

64 6L 1 o 0 Transmit Data BUS -~
Tr.Data

&5 6E [+ 1 | Contral BUS —~
Contral

66 60 1 ‘F a Feceive Data Rec. Data +
BUS

i1 BF 1 1 1 Status Status
BUS . ...

Fig. 108 — Truth table for selecting chip and registers
with the N bits.

transfer over the bus to memory.

Some of the status bits, if set, will also generate an
interrupt condition. The Status Register in this example
is read by executing input instruction 6F. If the received
character is acceptable, the input instruction 6D will en-
able the byte onto the bus, and MWR writes it into
memory. Upon reading of data from the UART, the DA
status bit is automatically reset, If another character is
received before the previous one is read out, an overrun
condition is signaled.

Flexibility in system operation is enhanced by a few
additional signal lines. The DA and RTHR flags are
brought out separately and could, for instance, signal the
CPU over the EF lines. Clear to Send (CTS) and Request
to Send (RTS), in addition to the two peripheral status
lines IPL and IP2, facilitate “hand-shaking” with
modems and peripherals,

1 qQ

I $— PARITY INHIBIT
EVEN FARITY ENABLE

STOPBIT SELECT
WORE LENGTH SBELECT 1

WORD LENGTH EELECT 2

INTERRUPT ENABLE

TRANSMIT BREAK

TRANSMIT REQUEST

Fig. 109 — Bit assignments for control register.

? L 5 4 3 2

T

o}

| L=

DATA AVAILABLE
OVERRUN ERROR
PARITY ERROR

FRAMING ERROA

PERIPHERAL STATUS BIT 1

PERIPHERAL STATUS BIT 2

TRANSMITTER SHIFT REG. EMFTY

TRANSMITTER HOLDING REG. EMRTY

Fig. 110 — Bit assignments for status register.
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Timing Diagrams

The following topics illustrated with timing diagrams
are covered in this section.

1. Input instruction timing.
2. Output instruction timing.
3. DMA-IN timing.

4. DMA-OUT timing.

5. Instruction set fimings.

Input Instruction Timing

Fig. 111 provides the timing relationships for input
instructions. An input instruction will permit a hyte

from an external device to be written into memory and
the D register:

BUS -+ M(R{X}),D

The instruction 69, for instance, will be fetched from
memory during state SO when the CPU asserts MRD and
reads the instruction into the I and N registers. The in-
struction will be executed during the next machine
cycle, state S1, which is a memory write cycle. The CPU
generates an active low MWR pulse during this cycle
which will strobe an input byte from the data bus into
memory. A high MRD level dering the memory write
cycle will also disable the memory output during this
petiod.

o 1 2 3 a s & 7 B 1 2 3 4 & & 7 0 1
cock L LI LU ||| My Uy gy
TPA
TPB 1B 1
MACHINE CYCLE GYCLE b GHCLE Jn+ 1)
INSTRUCTION FETCH (b EXKECUTE {$1).
MRD l
NO=-NZ Br-15680 | N=¢—F
MWR
DATABUS.* OF F R MaLID baTa FROM)NPUT[DEVL ‘OFF
N !qunv EMO&
EAD QYCLE WRITE CYCLE

m High-impedance state

*User-generated signal

Fig. 111 — Input instruction timing.
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During the execute cycle whenI=6and N=9, A, B,
C, D, E, or F, the three low-order N bits are available
and can be used for enabling a byie onto the data bus
from the input device.

Output Instruction Timing

Fig. 112 provides the timing relationships for output
instructions. An output instruction will permit a stored
byte in memory to be read out to an external device:

M(R(X)) - BUS; R(X) + 1

The instruction 61, for instance, will be fetched from
memory during state SO when the CPU asserts MRD and
reads the instruction into the I and N registers. The in-
struction will be executed during the next machine
cycle, state S1, which is now a memory read cycle.

MRD is during the latter cycle once more asserted
and enables the output from the memory onto the bus.
Data is valid after the access time has elapsed. The valid
data from memory can next be strobed into the output
device by a user-generated strobe. Data will always be
valid when TPB, the N bits, and MRD signals are true.

The three N bits are valid during the execute cycle
whenI=6and N=1,2,3,4, 5,6, or 7and can be used
for enabling a byte from the data bus into the output
device.

DMA-IN Timing

Fig. 113 provides the timing relations for DMA-IN
operation. When DMA-IN is asserted, a byte on the data
bus from an external device is written into memory at
the locaticn specified by the register R(0):

BUS - M(R(0)), R(0) + 1

a ¥ 2 3 4 5 ]

DMA-IN is a user-generated signal that can be asserted
any time, but the CPU will always complete its current
instruction cycle before it enters the DMA cycle or state
52. The DMA-IN request is sampled internally during
TPB and the end of an S1, 82, or 83 state. Note that the
last execute cycle before the DMA cycle can be either a
memory read, 2 memory write, or a non-memory cycle.
When the CPU enters the DMA state following DMA-IN,

. it enters a memory write cycle. Memory output is dis-

abled by a high MRD level, and a low MWR pulse is
generated which will write valid data on the bus supplied
from the input device into memory.

During $2, MRD is high and will disable memory out-
put to the data bus. If the DMA-IN request goes away
during 82, the CPU will next execute a fetch cycle and
complete the next instruction cycle which had been de-
ferred.

DMA-OUT Timing

Fig. 114 provides the timing relations for the DMA-
OUT operation. When DMA-OUT is asserted, a byte
stored in memory at the location specified by register
R(0) is read out to the data bus and can be strobed into
an external device:

M(R(0)) > BUS,R(0) + 1

DMA-OUT is a user-generated signal and can be
asserted any time, but the CPU will always complete its
current instruction cycle before it enters the DMA cycle
or state $2. The DMA-OUT request is sampled intemnally
during TEB and the end of an 81, 82, or $3 state. Note
that the last execute cycle before the DMA cycle can be
either a memory read, a memory write, or a non-
memory cycle. When the CPU enters the DMA state fol-

0 1 2 3 4 5 6 ¥ o -~

TPA i | E 5 P
TPE E l_| ; i 1
"c":gL“E'”E EYCLE CYCLE (n+ 1
i
INSTRUCTION ! i ( FETCH i EX?CU“'T
w1 L | ;
o . I
NO-NZ I 16 N=1-7 |
DATA BUS ./Z'////Z//Z ///7//// A A A R R %
. : . : VALID DATE FROM MENORY
DATA STROBE* : - : 1|
IMRD - TPB - Ni ’ _ oo :
: - ! MEMDRY EMORY
r""“"""“‘_"“ READ FYCLEE nq‘m CYCLE {

m "Don't Care” or miernai delays

“User-genarated signal

Fig. 712 — Gutput instruction timing.
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Timing Diagrams
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Fig. 113 — DMA-IN timing.

lowing DMA-OUT, it goes into a memory read read cycle.
The memory is enabled to the bus when MRD is low
and, after the necessary access time, valid data appears
on the data bus and can be strobed into the output de-
vice. An appropriaie data strobe can be generated by the
user during S2 when TPB is true.

If the DMA-OUT request goes away during 52, the
CPU will revert to a fetch cycle and complete the next
instruction cycle.

Interrupt Timing

Fig. 115 provides the timing relations for interrupt
service. INTERRUPT is a user-generated signal which

can be asserted any time. However, the request is not
recognized until the end of the current instruction cycle.
Ii is recognized then only if the INTERRUPT ENABLE
flip-flop in the CPU is set. Interrupt is sampled internally
at the end of each execute cycle. The execute cycle can
be either a memory read, a memory write, or a non-
memory ¢ycle.

The interrupt state, 83, is a non-memory cycle. Dur-
ing this period the contents of X and P are stored in the
temporary register T, and X and P are sei to new values:
2 in X and 1 in P. The interrupt enable flip-flop is auto-
matically deactivated to inhibit further interrupts. The
inferrupt routine is now in control, and the next
machine cycle is a fetch operation.

Note: DMA has priority over Interrupt.
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INSTRUCTION : FETCH 150 EMECUTE (51} Onh, 153 FETCH NSO
: : T H
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Fig. 174 — DMA-OUT timing.
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Fig. 115 — Interrupt timing,

Instruction Set Timing

The timing diagram in Fig. 116 itlustrates various
timing relationships for the instruction repertoire. They
show, for instance, whether the CPU is in a memory
read, memory write, or non-memory cycle during the
different states of machine cycles. The diagrams also
show what the output from memory is during fetch or
execute, or what the output from CPU to memory is.
From this point of view, the whole instruction set can
be classified in five groups as follows:

Group 1. Memory cycles:
Read/Non-memory.

Operation Code Operation Code
iN 8N
2N 9N

31-37 } . AN
39 -3F BN
60 DN
76 EN
TA F6
78 FE
7E
Group 2. Memory cycles:
Read/Write.
Operation Code
5N
69 - 6F
73
78
79

*If test conditions are not met.
¢If test conditions are met.

H I READ CTGLE!
Group 3. Memory cycles:
Read/Read.
Operation Code Operation Code
ON (N % 0) 75
30 77
31-37 7C
30 -3F { ¢ 7D
4N 7F
61 - 67 cs-C71,
70 CC-CF
71 FO -F5
72 F7 - FD
74 FF
Group 4. Memory cycles:
Read/Read/Read.
Openation Code

co
Cl1-C3
c9-CBf?
Group 5. Memory cycles:
Read/Non-memory/Non-memory.

Operation Code

cr-c3),
€9 -CB

C4

C5 - C7

cCc-cFr(®
c8

By way of illustration consider, for instance, the in-
struction DECREMENT N (2N} in Group 1. During the
instruction feich cycle, the operation code 2N is read
from memory and is transferred via the data bus to the
CPU. During the next machine cycle (execute), the CPU
generates a non-memery cycle and the memory output is
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Fig. 116 — Instruction set timing.
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disconnected from the bus. R(N) is decremented inter-
nally in the CPU in the execute cycle after the I and N
Tegisters have decoded the instruction.

The sequence of action is similar for a short branch
instruction, if the test condition is not satisfied. In this
case the program counter R(P} is simply incremented by
1, a non-memory cycle.

The STORE VIA N instruction (5N) is representative
of Group 2. During the fetch cycle, the byte 5N is read
from memory and transferred over the bus to the I and
N registers for interpretation. During the execute cycle,
the CPU is in a memory write cycle. The memory output
is held off the bus, and the contents of the D register are
written into memory during the MWR pulse at the loca-
tion addressed by R{N).

In Giroup 3, consider instruction LOAD ADVANCE
{(4N) as an example. This instruction is complementary
to 5N above. The operation code 4N is first fetched
during a memory read cycle. Subsequently during execu-
tion, the byte in memory addressed by R{N)} is rcad and
transferred over the bus to the D register during another
memory read cycle. R(N) is also incremented during
state S1, but this operation is internal to the CPU.

Some of the short branch instructions, for instance
31-37 and 39-3F, belong in this group if the test condi-

tions are met. In the latier case, the branch address is
read from memory during the 81 state and transferred
aver the bus to R(P).0 in the CPU.

Group 4 may be illustrated by LONG BRANCH in-
struction CO. As discussed previously, all C instructions
require two machine cycles for execution. During the
SO state the operation code is first read from memory.
Then, the high-order branch address is read during the
first execute cycle and loaded into R(P).I. During the
second execute cycle, the low-order branch address is
tead and transferred over the bus to R(P).0. Hence, the
insiruction cycle represenis a memory readfread/read
sequence.

‘Group 5 represents a memory cycle sequence of read/
non-memory/non-memory operations. If, for instance,
the NO OPERATION (C4) instruction is fetched, it
requires two machine cycles for execution which are
both non-memory cycles.

The IDLE instruction (00) represents a special case.
After the CPU fetches the instruction from memory, it
will “idle™ in a sequence of execute states (S1) until
DMA or Interrupt is asserted. During the idle mode, the
memory byte addressed by R(0) is present on the data
bus during each machine cycle. The CPU is in 2 memory
read/read/read — — — — sequence.
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Applications -
Sample Programs

Two sample programs are included in this section to
illustrate the use of some of the preceding instructicns
and techniques and to demonstrate the ease with which
they can be used to develop programs. The examples
show programs for processing itwo input bytes and for
controlling a2 microcomputer-driven scale.

Processing Two Input Bytes

This program inputs two bytes from two different
devices. These devices might be the outputs from two
analog-to-digital converters or mechanical position re-
solvers. The program compares the digital inputs and, if
they are equal, sets the Q flag to “1.” In the event the
two bytes are unequal, the Q flag is set to “0” and the
larger of the two values is outputted to a third device. A
minor change to this program could have it outputting
the difference between the two bytes, an indication per-
haps of the degree of mechanical “error.”

The overview operation of this program is given in the
flow chart in Fig. 117. A more detailed flow chart cor-
responding to the actual implementation is given in Fig.
118. This flow chart more closely corresponds to the
assembled program listing shown in Fig. 119.

A few programming techniques used in this program
warrant special attention.

1. The INITIALIZATION block in Fig. 117 becomes
two blocks in Fig. 118. A portion of the original
initialization block is done only once during the
execution of the program. The other part is done
every time the program loops back to the label
GO. This arrangement was done to save memory at
the expense of execution time, a common trade-
ofi. The output instruction increments R(X) each

time it is executed. To maintain R(X) pointing to
the same memory location, it could be followed
by a DEC R2. However, the execution of the LDI

INITIALIZATION

¢

INFUT
15T OPERAND

'

INPUT
2ND QPERAND

NO

OUTPUT
THE LARGER

i

SETQ RESET

t '

Fig. 117 — Program flow chart for processing two input
bytes: inputting two bytes, comparing them,
outputting the larger, and setting @ to “’17 if
equal.
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START
M{00) : MIO3}

RESETQ
MI04) : MiD7)
POINT RZ TO
STORAGE AREA
i MI0B) : MID9)
(NPT 157
DPERAND
{A) = R3.0
) MIOA)
iNPUT 2ND
OPERAND
{B) ~ MEMORY
M{0B) : M(DE}
E>A
M{18) ; MT17)
AIS LARGER,
STORE INTO
MEMORY
Mi18)
OUTPUT BYTE
IN MEMORY
M9}
SETO RESETG
‘M{MI : MUIS) J vaar: mos

Fig. 118 — Detailed program flow chart for processing two input bytes.

and PLO (lines 4 and 3), which are already in the
program, serve the same purpose, The decremeit
instruction, therefore, is purposely omitted.

2. Lines 8 through 10 use the characteristics of the
input instruction to advantage. Because the data
byte goes into both memory and D, the first input
instruction is followed by the storing of the data
from D into a scratch-pad register. The second in-
put instruction utilizes the feature that the data
byte also goes into memory. After the retrieval of
the first byte from the scratch pad, the contents of
D and memory are ready for comparison.

Microcomputer Scale

This example shows a program for a price-calculating
scale. It reads the unit price from an input device such as
a keyboard, reads the weight of the weighed item from
the scale mechanism, multiplies the numbers to produce

the total price, and then displays the total price to the
customer. An overall flow chart for this program is given
in Fig. 120. This flow chart illusirates an effective ap-
proach to the solution of moderate to large program-
ming tasks. Fach of the basic actions (initialization, in-
put, calculation, and display) is treated as an indepen-
dent block of code and coded as a subroutine. The final
application program is then a collection of the subrou-
tines flowcharted in this figure.

The flow charts for the individual subroutines are
shown in Figs. 121, 122, 123, and 124. In addition, the
flow chart of the calculation subroutine is done in suffi-
cient detail for comparison with its assembly-language
listing, part of which is shown in Fig. 125. The calcula-
tion subroutine is implemented with the RCA COSMAC
Arithmetic Subroutine Package that contains indepen-
dent 16-bit addition, subtraction, multiplication (giving
32 bits), division (from 32 bits), and¢ BCD conversions to
and from binary. Further details on this package are
available in Manual MPM-206.
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0000 TA:
0001 FBOO;
003 BZ:
oo FBiIG;
o0 A2;
007 EZ
0008 &8
DOuo A3
o008 BA;
ODOB
QooB - 83;
ac  FT;
oor 3818
Q00F
o0OF
ODOF  B3;
0010 F3;
aot1 H
o1 MG,
1) RO
w3
a3 I8
0014 3004,
0oME
w6 83;
0017 B2
0018
ao18 61
00 A
001A  3004;
0oic
0oic
ooic
e

L+ 1) [
onc
omc
oooo

o00a1

GO:

RES2:

STORE:

REQ .. RESETQ TO "0~ -
L0l A.1{STORE) .. SET STORAGE POINTER R(2}

PHI R2 .... TO POINT AT A FREE LOCATICN

LDl A0{STORE}.... N AAM MI{STORE}

PLO RZ P

SEX R2

NP 1 .. READ 15T INPUT BYTE INTO D

FLO R2 .. SAVE THE 15T INPUT

INP 2 . READ ZND INFUT BY1E INTQ
... MEMORY

GLOR2 .. LOAD THE 15T INPUT INTC D

SM .. 1ST INPUT MINUS 2ND INPUT

BNF RES2Z . BRANCH TO RESZ IF 2ND INPUT
. ... 1S GREATER THAN 18T INPUT;
. ... OTHERWISE:

GLOR3 .. LOAD THE 1ST INPUT INTOO

XOR .. MIR(21).X0R .0, TO CHECK IF THE
.... TWQ INPUTS ARE EQUAL

BNZ RES1 . BRANCH TO RES1 \F NOT EQUAL

. ... [1ST INPUT 1S GREATER THAN
... 2ZND INPUT); CTHERWISE:
SEQ .. EQUAL; SET Q FLAG

BR GO .. GO BACK TO BEGINNING
GLOR3 . LOAD 15T INPUT INTO D
STR AZ . STORE IT AT M{STORE)
ouT1 .. DUTPUT LARGER VALUE
REQ .. REBET Q FLAG

BR GO .. GO BACK TO BEGINNING
DRG + .. STORAGE AREA

END .. END OF PROGRAM SOURCE

Fig. 119 — Assembly listing for two-byte processing program.

START

INITIALIZATION

SURROUTINE ‘

READ PAICE PER LB
IN BCD INTQ
"PRICE"”

SUBROUTINE

READ WEIGHT
IN BCD INTD
LBS"

SUBROUTINE

CALCULATE
TOTAL PRICE

SUBROUTINE ‘

DISPLAY RESULT

Fig. 120 — Over-all program flow chart for

microcomputer scale.

READ KEYBOARD

l ENTRY ’

IKITIALIZATION

3

READ NEXT
BCD DIGIT

RETURN

Fig. 121 — Program flow chart for keyboard subroutine.

TELL OFERATOR
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READ SCALE
ENTRY

CONVERT PRICE TO BINARY

HOLD PRICE IN STACK

- 1

READ WEIGHT
IN BCD

INITIALIZATION

CONVERT WEIGHT TO BINARY

§

HOLD WEIGHT IN STACK

¥

CALL MULTIPLY SUBROUTINE
TAKE VALUES FROM STACK

1

DIVIDE BY 100 TO REMOVE

DELAY

EXTRA DIGITS
MATCH
"ERROR"
. . NO
Fig. 122 — Pragram flow chart for scale subroutine.
ROUND QFF
CONVERT TOTAL PRICE
TO DECIMAL
ENTRY
—
INITIALIZATION Fig. 124 — Subroutine flow chart for calculating total
price.
} 3

OUTPUT NEXT
8CD DIGIT

RETURN

Fig. 123 — Program Fflow chart for display subroutine,
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0216
0215 D4;
o216 07GE;
0218 027Dy
01A 05
D21
one
e
DZiG D4
021C  06E9;
021E
025E D4,
021F  O76E;
o221 0282,
0223
0223 D5
4722 S
0224
0224
orza 32;
0225 AD;
0226  iD;
0227
0227 D4;
Q228 0476
e
0228
Q2A
0z2A  12;
0zeB  12;
oc
0ZC  FBB4;
022E 5%
o22F  22;
0230  F800;
0232 52;
0233 82;
0234 AD;
az35  22;
0236 D4;
0237 O51E;
0236 333A;
o023
023 .
0238 .
0238 BE:
023C FF32;
023E 3841
0220
0240 1F;
o241

o2 H
0241 12;
0242 1Z;
0243
0242  D4;
0244 DE4b;
246 0W7
D248  06;
o9
0249 ;

0038
0039

0041

0043
0044
045
0046
D047

0049
0050
051

0053
0054
D055

0057

DOG1
DOEZ
D03

Q0E6
2067

Q069
0070
1orh]
0072
0073
0074
0075
0078
0a7?
0078
0079

0081

LABT:

SEPCALL .. DO DECIMAL TO BINARY CONVEFISIDN
AICOBE .7
AIPRICE] . . CONVERT PRICE INTO BINARY
#06 . PAICE IS5 CHARS LONG
.. AC NOW CONTALNS BINARY YALUE
.. OF PRICE FER POUND

[ELSn T

SEP CALL . DD DECIMAL TO BENARY CONVERSION
JAICDB) ..
,AILBS) .. CONVERT QUANTITY {LBS)
. INTO BINARY

#06 .. QUANTITY IS 5 CHARS LONG

.. AC NOW CONTAINS BINARY VALUE

.. OF QUANTITY (LES)
GLOSP . COPY STACK POINTER TO 'MA
PLO MA ..
INCMA . . POINT TO AC. 3
SEPCALL .. DO THE MULTIFLICATION
AMPY) L

. DIVIDE BY 100 TO REMQOVE LAST WO
.. DECIMAL DIGITS

INC  SP .. MOVE SP TWO BYTES

INC SP ... BELOW TOP OF STACK, POP PRICE
... OFF STACK

LD 100 .. LOAD 100 INTO STACK WITH

STR SP ...SPPQINTNG TO THE HIGH BYTE

DEC SF L

Lol 00 P

5TR 5P L

GLD SP  ..COPY STACK PCINTER TO MA
PLO MA . POINT TO HIGH BYTE OF 100
DEC SP .. POINT TO FREE SPACE
SEP CALL
ALDIYY .. DIVIDE PROCUCT BY 100
BDF LAB3 .. IFQOVERFLOW GO TO LAB3
.. CHECK IF REMAINDER IS GREATER
.. THAN 5O, IF SO, ROUND UP
GLO MQ . . MO CONTAINS THE REMAINDER
SMI 50
BNF LAB1 . IF NO ROUND UP
... GOTO LA
INC AC ..IF ROUND UP ADLC 1 TO
.. THE LEAST SIGHIFICANT HGIT
INCSP .. MOVE SP DOWN TWO BYTES
INC 5P ... BELOW TOP DF STACK
SEPCALL .. DO BINARY TO DECIMAL CONVERSION
ACBDY L.
JAITPR) .. CONVERT TOTAL PRICE INTO DEGIMAL
#06 . . TOTAL PRICE IS & CHARS LONG
.. TOTAL PRICE I5 STORED IN MITPR)

Fig. 125 — Partial assembly-language listing of the calcula tion subroutine.
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Appendix A —
Instruction Summary

The COSMAC instruction summary is given in Tables
I and II. Hexadecimal notation is used o refer to the
4-bit binary codes.

In all registers bits are numbered from the least sig-
nificant bit (LSB) to the most significant bit (MSB})
starting with Q.

R(W): Register designated by W, where W=N or X,

R(W).0: Lower-order byte of R(W)
R(W).1: Higher-order byte of R(W)

NO = Least significant Bit of N Register

Operation Noetation
M(R(N)) >D;R(N) +1

This notation means: The memory byte pointed to by

orP R(N) is loaded into D, and R(N) is incremented by 1.
TABLE | — INSTRUCTION SUMMARY
by Class of Operation
Register Operations
oP
INSTRUCTION MNEMONIC | CODE OPERATION
INCREMENT REG N INC N R{N] +1
DECREMENT REG N DEC 2N R{N) -1
INCREMENT REG X IRX 60 R{X) +1
GET LOW REGN GLO anN R{N).0~D
PUT LOWREGN PLO AN D-R{N}.D
GET HIGH REG N GHI 9N Ri{N).1=D
PUT HIGH REGN PHI BN D—+R{N)_1
Memory Reference
oP
INSTRUCTION MNEMONIC | CODE OPERATION
LOAD VIA N LDN ON M{R{N}))—-D; FOR N NOT D
LOAD ADVANCGE LDA 4N M{R{N))—=D;R{N} +1
LOAD VIA X LDX FO M{R{X))-D
LOAD VIA X AND ADVANCE | LDXA 72 M{R{X))-D;R{X) +1
LOAD IMMEDIATE LDI F8 M{R{P}}=~D;R(P) + 1
STORE VIAN STR BN D-M([R(N})
STORE VIA X AND STXD 73 D-+M(R(X}}; R(X} -1
DECREMENT
Logic Operations®®
orP
INSTRUCTION MNEMONIC | CODE OPERATION
OR OR F1 M{R{X}} OR D-D
OR IMMEDIATE ORI F9 M(R(P)} OR D-D; R{P) +1
EXCLUSIVE OR XOR £3 M{R(X}} XOR DD
EXCLUSIVE OR IMMEDIATE XRI FB M{R{P}) XOR D~D;R(P] +1
AND AND F2 M{R{X}} AND D-D
AND IMMEDIATE ANI FA M{R{P}) AND D—=D; R{P) +1
SHIFT RIGHT SHR F& SHIFT D RIGHT, LSB{D)—DF,
0->MSB(D)
SHIFT RIGHT WITH SHRC 76* SHIFT D RIGHT, LSB{D)}~DF,
CARRY DF-MSB{D)
RING SHIFT RIGHT RSHR
SHIFT LEFT SHL FE SHIFT D LEFT, MSB{D)—~DF,
0—+LSB(D}
SHIFT LEFT WITH SHLC 7c¢ SHIFT D LEFT, MSB{D}=DF,
CARRY DF—+LSBI{D)
RING SHIFT LEFT RSHL
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oP
INSTRUCTION MNEMONIC | CODE OPERATION
ADD ADD Fa M{R{X}) +D~DF, D
ADD IMMEDIATE ADI FC M{R(P) +D-DF, D; R{P} +1
ADD WITH CARRY ADC 74 M(R(X)} +D +DF—DF, D
ADD WITH CARRY, ADCI 7C M(R{P) +D +DF—DF, D
IMMEDIATE R{P} +1
SUBTRACT D ) F5 M{R(X))—-D~DF, D
SUBTRACT D IMMEDIATE o] FD M(R{P}}—D-DF, D; R(P} +1
SUBTRACT D WITH SDB 75 M(R(X)}—D—{NOT DF}~>DF:D
BORROW
SUBTRACT D WITH SDBI 7D M{R{P))~D—(NOT DF}~>DF, D;
BORROW, IMMEDIATE R(P) +1
SUBTRACT MEMORY SM F7 D—M{R{X)}-»DF, D
SUBTRACT MEMORY SMI FF D-M{R(P})»DF, D;
IMMEDIATE R(P) +1
SUBTRACT MEMORY WITH SMB 77 D-M(R(X))—(NOT DF)=DF, D
BORROW
SUBTRACT MEMORY WITH SMBI 7F D—M(R{P})—(NOT DF)~DF, D
BORROW, IMMEDIATE R(P} +1
Branch Instructions — Short Branch
oP
INSTRUCTION MNEMONIC | CODE OPERATION
SHORT BRANCH BR 30 M{R{P)}=R{P}.0
NO SHORT BRANCH NBR 38* | R(P) +1
{SEE SKP)
SHORT BRANGCH IF D=0 BZ 32 IF D=0, M{R{P})~R(P).0
_ ELSE R{P) +1
SHORT BRANCH IF BNZ 3A IF D NOT 0, M{R(P})=R(P).0
D NOT 0 ELSE R{P) +1
SHORT BRANCH IF DF =1 BDF
SHORT BRANCH IF POS BPZ 33% | IF DE=1, M{RIPH~R{P).0
OR ZERO ELSE R{P) +1
SHORT BRANCH IF EQUAL BGE
OR GREATER
SHORT BRANCH IF DF=0 BNF 38*% | IF DF=0, M{R(P})~RI{P).0
SHORT BRANCH IF MINUS BM ELSE R{P} +1
SHORT BRANCH IF LESS BL
SHORT BRANCH IF Q=1 BQ 31 IF Q=1, M{R(P}}~>R(P).0
ELSE R{P} +1
SHORT BRANCH IF Q=0 BNQ 39 IF 0=0, M(R{P}}-R{P}.0
ELSE R{P} +1
SHORT BRANCH IF EF1=1 B1 34 IF EF1=1, M{R{P})=R(P).0
ELSE R{P} +1
SHORT BRANCH IF EF1=0 BN1 3C IF EF1=0, M{R{P})—~R(P).0
ELSE R{P) +1
SHORT BRANCH IF EF2=1 B2 35 IF EF2=1, M{R{P}}>R({P).0
ELSE R(P) +1
SHORT BRANCH IF EF2=0 BN2 3D IF EF2=0, M{R{P}}=R{P}.0
ELSE R(P) +1
SHORT BRANCH IF EF3=1 B3 36 IF EF3=1, M{R{P)}~R{P).0
ELSE R{P} +1
SHORT BRANCH IF EF3=0 BN3 3E IF EF3=0, M{R{P}))~R(P).0
ELSE R{P) +1
SHORT BRANCH IF EF4=1 B4 37 IF EF4=1, M{R(P}))=>R{(P}.0
ELSE R{P} +1
SHORT BRANCH iF EF4=0 BN4 3F IF EF4=0, M{R{P}}~R(P).0

ELSE R(P) +1
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Branch Instructions — Long Branch

oP
INSTRUCTION MNEMONIC | CODE OPERATION
LONG BRANCH LBR co M{R{P}->R(P}.1
M(R{P} +1)-R(P}.O
NO LONG BRANCH NLBR cs* |[RP)+2
{SEE LSKP)
LONG BRANCH IF D=0 LBZ c2 IF D=0, M{R{P})->R(P}.1
M{R{P} +1)=>R{P}.0
ELSE R{P) +2
LONG BRANCH IF D NOT 0 LBNZ CA IF D NOT 0, M{R(P}}—
R{P).1
M{R{P} +1)>
R(P).O
ELSE R{P) +2
LONG BRANCH IF DF=1 LBDF C3 IF DF=1, M{R{P)}-R(P).1
M{R{P) +1)—
R{P).0
ELSE R{P) +2
LONG BRANCH IF DF=0 LBNF CB IF DF=0, M{R{P)}~R{P).1
' M{R{P) +1)—
R(P).O
ELSE R{P) +2
LONG BRANCH {F Q=1 LBQ c1 IF O=1, M{R{P))=>R{P}.1
M{R{P} +1}->R(P}.0
ELSE R{P) +2
LONG BRANCH IF Q=0 LBNQ co IF Q=0, M{R{P})=R(P).1
M{R(P) +1)—~>
R{P).0
ELSE R(P) +2
Skip Instructions
oP
INSTRUCTION MNEMONIC | CODE OPERATION
SHORT SKiP SKP 38% [ RiP) +1
{SEE NBR)
LONG SKIP LSKP c8® | R{P) +2
{SEE NLBR)
LONG SKIP IF D=0 LSZ CE IF D=0, R{P} +2
ELSE CONTINUE
LONG SKIP IF D NOT 0 LSNZ C6 IF D NOT O, R{P} +2
ELSE CONTINUE
LONG SKIP IF DF=1 LSDF CF tF DF=1, R(P) +2
ELSE CONTINUE
LONG SKIP IF DF=0 LSNF c7 |F DE=0, R(P) +2
ELSE CONTINUE
LONG SKIP {F Q=1 LSO cD IF Q=1, R(P) +2
ELSE CONTINUE
LONG SKIP IF Q=0 LSNQ c5 IF Q=0, R(P) +2
ELSE CONTINUE
LONG SKIP IF IE=1 LSIE cC IF IE=1, R(P} +2
£LSE CONTINUE
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Control Instructions

OoP
INSTRUCTION MNEMONIC | CODE OPERATION
IDLE IDL 00 WAIT FOR DMA OR
INTERRUFT ; M{R{0})=»BUS
NO OPERATION NOP C4 CONTINUE
SETP SEP DN N—P
SET X . SEX EN N—>X
SETO SEQ 7B 1=
RESET Q REQ TA 00
SAVE SAV 78 T=M{R{X)}
PUSH X,P TO STACK MARK 79 (O P1>T; (X PI=M(R{2})
THEN P-X; R{2] -1
RETURN RET 70 M{R{X))={X,P);: R(X) +1
1—IE
DISABLE DIS 71 M{R{X))=>{X P); R(X]} +1
0-—IE
Input—Qutput Byte Transfer
op
INSTRUCTION MNEMONIC | CODE OPERATION
QUTPUT 1 OuUT 1 61 MIR{X}}=BUS; R(X) +1;
N LINES =1
CUTPUT 2 OouT 2 62 M{R{X))--BUS; R{X} +1;
N LINES =2
OUTPUT 3 ouUT 3 63 M{R{X})=BUS; R{X} +1;
N LINES =3
QUTPUT 4 ouT 4 64 M{R{X))=BUS; R{X) +1;
N LINES =4
OUTPUT b QuT s 65 M{R{X}}=BUS; R{X} +1;
N LINES =5
OUTPUT 6 : QUT 6 66 M{R{XD-BUS: R{X) +1;
N LINES =6
QUTPUT 7 QuUT 7 67 M{R({X))=BUS; R{X) +1;
N LINES =7
INPUT 1 INP 1 89 BUS-M(R(X)}; BUS~D;
N LINES =1
INPUT 2 INP 2 6A BUS-M(R(X)); BUS-D;
N LINES =2
INPUT 3 INF 3 6B BUS->M(R{X)); BUS-D:
N LINES=3
INPUT 4 INP 4 6C BUS-M(R{X)): BUS-D;
N LINES =4
INPUT 5 INP 5 6D BUS—=M(R{X)}; BUS-D:
N LINES =5
INPUT & INP & 6E BUS-M(R(X}}; BUS-D;
N LINES = 6
INPUT 7 INP 7 6F BUS—=MI[R({X}); BUS~D;
NLINES =7

#NOTE: THIS INSTRUCTION IS ASSOCIATED WITH MORE THAN ONE
MNEMONIC. EACH MNEMONIC IS INDIVIDUALLY LISTED.
#NOTE: THE ARITHMETIC OPERATIONS AND THE SHIFT INSTRUCTIONS
ARE THE ONLY INSTRUCTIONS THAT CAN ALTER THE DF.
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TABLE Il — INSTRUCTION SUMMARY
By Numerical Order

NUMBER OF
OPERATION MACHINE | PROGRAM
CODE OPERAND [MNEMONIC NAME CYCLE BYTES
00 — IDL IDLE 1
oN REGN LDN LOAD VIA N 1
iN REGN INC INCREMENT 1
REG N
2N REGN DEC DECREMENT
: REG N
30 ADDRESS BR SHORT
BRANCH
K] ADDRESS BO SHORT
BRANCH
IF Q=0
32 ADDRESS BZ SHORT 2 2
BRANCH
: IF D=0
33 ~ | ADDRESS BDF SHORT 2 2
BRANCH
IF DF=1
- < ADDRESS BPZ SHORT 2 2

1

M k3 8] LSS I N

BRANCH
IF POS
OR ZERO
- ADDRESS BGE SHORT 2 2
- BRANCH
IF EQUAL
OR
GREATER
34 ADDRESS B1 SHORT 2 2
BRANCH
IF EF1=1
35 ADDRESS B2 SHORT 2 2
BRANCH
IF EF2=1
36 ADDRESS B3 SHORT 2 2
BRANCH
IF EF3=1
37 ADDRESS B4 SHORT 2 2
BRANCH
IF EF4=1
38 {ADDRESS NBR NO SHORT 2 2

BRANCH
— SKP SHORT SKIP 2 1
39 ADDRESS BNCQ SHORT 2 2
BRANCH
IF Q=0
3A ADORESS BNZ SHORT 2 2
BRANCH
IFDNOTO
3B ADDRESS BNF SHORT 2 2
BRANCH
IF DF=0
- ADDRESS BM SHORT 2 2
BRANCH
IF MINUS
- ADDRESS BL SHORT 2 2
BRANCH
IF LESS
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INSTRUCTION SUMMARY (CONT'D)

NUMBER OF
OPERATION MACHINE | PROGRAM
CODE OPERAND | MNEMONIC NAME CYCLES BYTES
3c ADDRESS BN1 SHORT 2 2
BRANCH
IF EF1=0
30 ADDRESS BN2 SHORT 2 2
BRANCH
IF EF2=0
3E ADDRESS BN3 SHORT 2 2
BERANCH
IF EF3=0
3JF ADDRESS BN4 SHORT 2 2
BRANCH
IF EF4=0
4N REG N LDA LOAD 2 1
ADVANCE
BN REGN STR STORE VIAN 2 1
60 - IRX INCREMENT 2 1
REG X
61 DEVICE 1 ouT1 OUTPUT1 2 1
62 DEVICE 2 ouT2 OUTPUTZ2 2 1
63 DEVICE 3 ouT3 CUTPUT3 2 1
64 DEVICE 4 ouT4 OUTPUT4 2 1
65 DEVICE 5 OouUTh OUTPUTS 2 1
66 DEVICE 6 ouTe OuUTPUTE 2 1
67 DEVICE 7 OUT7? OQUTPUT? 2 1
68 DEVICE 1 INP1 INPUT1 2 1
B6A DEVICE 2 INP2 INPUT2 2 1
68 DEVICE 3 INP3 INPUT3 2 1
6C DEVICE 4 INP4 INPUT4 2 1
6D DEVICE S INP5 INPUTS 2 1
6E DEVICE 6 INP6 INPUTS 2 1
6F DEVICE 7 INP7 INPUT? 2 1
70 - RET RETURN 2 1
71 - DIS DISABLE 2 1
72 - LDXA LOAD ViIA X, 2 1
ADVANCE
73 - 5TXD STORE VIA X 2 1
AND
DECREMENT
74 - ADC ADD WITH 2 1
CARRY
75 - sDB SUBTRACT 2 1
D WITH
BORROW
76 - SHRC SHIFT RIGHT 2 1
WITH
CARRY
- - RSHR RING SHIFT 2 1
RIGHT
77 - sSmB SUBTRACT 2 1
MEMORY
WITH
BORROW
78 - SAV SAVE 2 1
79 - MARK PUSH X.,P 2 1
TO STACK
TA — SEQ SET Q 2 1
7B - REQ RESET Q 2 1
7C DATA ADDI ADD WITH 2 2
CARRY
IMMEDIATE




Appendix A — Instruction Summary

INSTRUCTION SUMMARY {CONT'D)

NUMBER OF
OPERATION MACHINE| PROGRAM
CODE OPERAND | MNEMONIC NAME CYCLES BYTES

7D DATA SDBI SUBTRACT 2 2
D WITH
BORROW
IMMEDIATE

7E - SHLC SHIFT LEFT 2 1
WITH CARRY

- RSHL RING SHIFT 2 1

LEFT

7F DATA SMBI SUBTRACT 2 2
MEMORY
WITH BOR-
ROW,
IMMEDIATE

8N REGN GLO GET LOW REG 2 1
N

SN REGN GH! GET HIGH 2 1
REG N

AN REGN PLO PUT LOW 2 1
REG N

BN REG N PHI PUT HIGH 2 1
REG N

Cco ADDRESS LBR LONG BRANCH 3 3

c1 ADDRESS LBQ LONG BRANCH 3 3
iF G=1

c2 ADDRESS LBz LONG BRANCH 3 3
IF D=0

C3 ADDRESS LBDF LONG BRANCH 3 3
IF DF=1

c4 — NOP NO OPERATION 3 1

Ch - LSNQ LONG SKIP IF 3 1
Q=0

Cé - LSNZ LONG SKIP IF 3 1
DNCTO

c7 - LSNF LONG SKIP IF 3 1
DF=0

c8 - LSKP LONG SKIP 3 1

- ADDRESS NLBR NO LONG 3 3
BRANCH

c9 ADDRESS LBNG LONG BRANCH 3 3
IF Q=0

CA ADDRESS LBNZ LONG BRANCH 3 3
IFDNOTO

cB ADDRESS LBNF LONG BRANCH 3 3
IF DF=0

cC — LSIE LONG SKIP 3 1
IF 1E=1

cD — LSO LONG SKIP 3 1
IF O=1

CE - LSZ LONG SKIP 3 1
IF D=0

CF - LSDF LONG SKIP 3 1
IF DF=1

DN REG N SEP SETP 2 1

EN REGN SEX SET X 2 1

FO - LOX LOAD VIA X 2 1

F1 - OR OR 2 1

F2 - AND AND 2 1
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INSTRUCTION SUMMARY (CONT'D)

NUMBER OF
OPERATION MACHINE! PROGRAM
CODE OPERAND | MNEMONIC NAME CYCLES BYTES
F3 - XOR EXCLUSIVE 2 1
OR
F4 - ADD ADD 2 1
F5 - 5D SUBTRACTD 2 i
F6 — SHR SHIFT RIGHT 2 i
F7 — SM SUBTRACT 2 i
: MEMORY
F38 DATA LDI LOAD 2 2
IMMEDIATE
Foa DATA ORt OR 2 2
IMMEDIATE
FA DATA ANI AND 2 2
IMMEDIATE
FB DATA XRI EXCLUSIVE 2 2
OR
IMMEDIATE
FC DATA ADI ADD 2 2
IMMEDIATE
FD DATA sDI SUBTRACT D 2 2
IMMEDIATE
FE — SHL SHIFT LEFT 2 1
FF DATA SMI SUBTRACT 2 2
MEMORY
IMMEDIATE
) Hexadecimal Code
Interpretation of DF HEX | BINARY | [HEX | BINARY
Carry Borrow 0 0000 8 1000
DF [ Generated | Generated D 1 aa01 g 1001
After 1 Yes 2 0010 A 1010
o 3 0011 B 1011
Addition
0 No 4 0100 c 1100
After 1 No Positive Number 5 0101 n} 1101
Subtraction [ g Yes Negative Number 6 0110 E 1110
2’'s complement 7 011 F 111
COSMAC Register Summary
D 8 Bits | Data Register N 4 Bits | Holds Low-Order | nstr.
{Accumulatar) Digit
DF | 18it | Data Flag {ALU Carry} | 4 Bits | Holds High-Order Instr.
R [16Bits | 1 of 16 Scratchpad Digit
Registers T 8Bits | Holds old X, P after
p 4 Bits | Designates which register Interrupt {X is high
is Program Counter byte}
X 4 Bits | Designates which register IE 1Bit | Interrupt Enable Flip Flop
is Data Pointer Q 1Bit | Output Flip Flep
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Appendix B —
State Sequencing

DA - INT
S0 DMA
(OCE -OWA -TNT | FETCH  f———————
CYCLE
State Code Lines
v State Type 5CT | 56
52 51 OMA - INT 3 Co
oma ot | EXECUTE [ |NTERRUPT S0 (Fetch) L L
- YCLE
_‘> CYCLIE oA C]C;- ‘ CYCLE $1 {Execute) L H
’\_!] I | I SZ (OMA]} H L
DMA GLE - DWA - INT 53 (Interrupt} H H
INT - DMA
DMA

The CDP1802 state transitions when in the RUN mode. two or three machine cycles, 30 followed by a single 51
Each cycle requires the same period of time—8 clock cycle or by two 81 cycles. 82 is the response to a DMA
pulses. The execution of an instruction requires either request and 83 is the interrupt response.

CLEAR =1
{ CLEAR =0 Initiatization cycle
WAIT = 1 15t Instruction Ferch from M{0000)
RESET
i MODE '
STATE s1 | ——-S1—-=| 1} 51 s0* | & 50 s1
STATE CODE
e lH=——
oC1.$CO LH LH | tH | LL | LK LL LH
INTERAUPTS INSTRUCTION
DISABLED TIME
. SOME HAVE TWO
52, if DMA, was asserted, but never 53 S1STATES
RUN —~ PAUSE -+ RUN MODE:
\Irm =0 WAIT =1
RUN -——taept—— PAUSE - RUN
H T
MACHINE no | oml | 1) m2 nt3
CYCLES .
STATE 50,51,520r 53
DMA AND INTERRUPT MODE:
DMA N INTERRUPT DMA OUT
STATE R - 51 S0 81 s2 50 s1 53 S0 51 50 s1 52 S0 51

STATE CODE

_ L LH LL LH HL LL LH HH LL LH LL LH HL Ly LH
B0, SC0
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Appendix C —
Terminal Assignments for the
RCA CDP1802 COSMAC Microprocessor

SIGNAL NAME SIGNAL NAME

—» CLOCK 18 q0— VDD_‘-;-"_:
CONTROL | WAIT 2 39— XJTAL —_
_— | —— [
CLEAR 3  3a— DMA TN
«— 4 | GMA OUT 1/0
Q 37 REQUESTS
SobE |sci —{5 36— INTERRUPT] —
+— 50 —8 35— MWR —
+— MRD — 7 34— TPn TIMING
BUS7T — 8 33— TPB PULSES
BUSE —— 9 32— MAT )
BUSS —— |0 3| |_ MA& &
DATe—BUSa —11 30— MAS
BUS3 —2 29— MA4 MEMORY
BUS2 — I3 pgb— MA3 ADDRESS
e
BUS| —14 27— MA2Z
- \BUS O ——15§ 26— MA]I
- vee — 16 25— MAD |
. :
N2 —7 24— EF1
/o | JE— 1/0
COMMANDS | ! 18 23 Fe FLAGS
LNO e ppl— EF 3 -—
¥ag —i20 21— EF
O
TOP VIEW

FACS5-27467



Appendix D
COSMAC Dictionary

Access Time: Time between the instant that an address is
sent to a memory and the instant that data returns. Since
the access time to-different locations (addresses) of the
memory may be different, the access time specified in
a memnory device is the path which takes the longest time.

Accumblator: Register and related circuitry which holds one
operand for arithmetic and logical operations.

Additional Hardware: Microprocessor chips differ in number
of additional 1Cs required to implement a functioning
computer. Generally, timing, IfO control, buffering, and
interrupt control require external components.

Address: A number used hy the CPU to specify a location
in memory.

Addressing Modes: See Memory Addressing Modes

ALU: Arithmetic-Logic Unit. That part of a CPU which
executes adds, subtracts, shifts, AND’s, OR’s, ete.

Architecture: Organizational structure of a computing
system, mainly referring to the CPU or microprocessor,

Assembler: Software that converts an assembly-language
program inta machine language. The assembler assigns
locations in storage to successive instructions and re-
places symbolic addresses by machine language equiva-
lents. If the assembler runs on a computer other than
that for which it creates the machine language, it is a
Cross-Assembler,

Assembly Language: An English-like programming language

which saves the programmer the trouble of remembering
the bit patterns in each instruction; also relieves him of
the necessity to keep track of locations of data and in-
structions in his program.
The assembler aperates on a “one-for-one’” basis in that
each phrase of the language translates directly inio a
specific machine-language word, as contrasted with High
Level Language.

Assembly Listing: A printed listing made by the assembler
to document an assembly. 1t shows. line for line, how the
assembler interpreted the assembly language program.

Asynchronous Operation: Circuit operation without reliance
upon a cammon timing source. Each circuit operation is
terminated (and next operation initiated) by a retum
signal from the destination denoting completion of an
operation. (Contrast with Synchronous Operation).

Baud: A communications measure of serial data transmission

rate; loosely, bits per second but includes character-
framing START and STOP bits.

Benchmark Program: A sample program used to evaluate
and compare computers. In general, two computers will
not use the same number of instructions, memory words,
or cycles to solve the same problem.

Bit: An abbreviation of “binary digit"”. (Single characters in
a binary number.)

Bootstrap (Bootstrap Loader): Technique or device for
loading first instructions (usually only a few words) of a
roufine into memory; then using these instractions to
bring in the rest of the routine.

The bootstrap loader is usually entered manually or by
pressing a special console key. COSMAC does not need
one. See Load Facility.

Branch: Sze Jump.

Branch Instruction: A decision-making instruction which,
on appropriate condition, forces a new address into the
program counter. The conditions may be zero result,
overflow on add, an external flag raised, etc. One of two
alternate program segments in the memory are chosen,
depending on the results obtained.

Breakpoint: A location specified by the user at which
program cxecution (real or simulated) is to terminate.
Used to aid in locating program errors.

Bus: A group of wires which allow memory, CPU, and [/O
devices to exchange words.

Byte: A sequence of n bits operated upon as a unit is called
an n-bit byte. The most frequent byte size is § bits.

Call Routine: See Subroutine

Clock: A device that sends out timing pulses to synchronize
the actions of the computer.

Compiler: Software to convert a program in a high-level
{anguage such as FORTAN into an assembly language or
machine tanguage program.

COSMAC: Generic description for the RCA family of
compatible microprocessor products (1800 series). Based
on a unique architecture, the COSMAC family includes
CPU’s, memories, 1fQ’s, prototyping systems, and soft-
ware.

COSMAC Development System (formerly “Microkit™):
Microcomputer used for software development and sys-
tem prototyping. Uses the COSMAC 1800 family of
microprocessor products.

COSMAC Software Development Package (CSDP): An
assembler and interactive debugger/simulator for COS-
MAC microcomputer systems. The debugger is a power-
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ful “software oscilloscope™ that allows the user to start
and stop the simulator, examine and modify the program
variables, and dump and restore the entire simulated
machine at will. CSDP is available either on the General
Electric Mark IIf Service or as a Fortran IV program that
can be easily installed on a host computer.

Cross Assembler: A symbolic language translator that runs
on one type of computer to produce machine code for
another type of computer. See Assembler.

CPU (Central Processing Unit): That part of a computer
system that controls the interpretation and execution of
instructions. In general, the CPU contains the following
elements:

Arithmetic-Logic Unit (ALL)
Timing and Control

Accumulator

Scratch-pad memory

Program counter and address stack
Instruction register and decode
Parallef data and 10O bus

Memory and 1/O control

Cycle Stealing: A memory cycie stolen fram the normat CPU
operation for a DMA operation. See DMA.

Cycle Time: Time interval at which any set of operations is
repeated regularly in the same sequence.

D} Register: The accumulator in the COSMAC micro-
processor.

Data Pointer: A register holding the memory address of the
data {operand} to be used by an instruction. Thus the
register “points” to the memory location of the data.

Data Register: Any register which holds data, In the
COSMAC microprocessor, any one of the 16 x 16
scratch-pad registers can be used 1o hold two bvies of
data.

Debug. Te eliminate programming wniistakes, including
amissions, from a program.

Debug Programs: Debug programs help the programmer to
find errors in his programs while they are running on the
computer, and aflow him to replace or patch instructions
inte (or out of} his program,

Designator: The three 4-bit registers P, X, and N in the
COSMAC microprocessor are called designators, P and
X are used to designate which one of the sixteen 16-bit
scratch-pad registers is used as the current program
counter and the data pointer, respectively.

N can designate: one of the scratch-pad registers; an 1/0
device or command; 1 new value in P or X; and a
further definition of an instruction.

Diagnostic programs: These programs check the various
hardware parts of z system for proper operation; CPU
diagnostics check the CPU. memory diagnostics check
the memory, and so forth.

Direct Addressing: The address of an instruction or operand
is completely specified in an instruction without reference
to a base register or index register,
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DMA: Direct Memory Access. A mechanism which allows an
input/output device to take control of the CPU for one
or moie memory c¢ycles, in order to write to or read
from memery. The order of executing the program steps
{instructions) remains unchanged,

Editor: As an aid in preparing source programs, certain
programs have been developed that manipulate text
material. These programs, called editors, text editors, ot
paper tape editors make it possible to compose assembly
language programs on-line, o1 on 4 stand-alone system,

Execute: The process of interpreting an instruction and
performing the indicated operation(s).

Fetch: A process of addressing the memory and reading
into the CPU the information word, or byte, stored at
the addressed location. Most often, fetch refers ta the
reading out of an instruction from the memory,

Firmware: Software which is implemented in ROM’s.

Fixed-instruction Computer {Stored-Instruction Computer):
The instruction set of a computer is fixed by the
manufacturer. The users will design application programs
using this instruction set (in contrast to the Micro-
programmable Computer for which the users must design
their own instruction set and thus customize the com-
-puter for their needs.)

_Fixed Memory: See ROM

Flag Lines: Inputs to a microprocessor controlled by IO
devices and tested by branch instructions.

Fortran: A high-level programming language generally for
scientific use, expressed in algebraic notation. Short for
“Formuia Transtator”.

Guard: A mechanism to terminate program execution (real
or simulated} upon access to data at a specified memory
location. Used in debugging.

Hardware: Physical equipment forming a computer system.

Hexadecimal: Number system using 0,1,.. .., A, B, C,
D, E, F to represent all the possible values of a 4-bit
digit. The decimal equivalent is O to 15. Two hexa-
decimal digits can be used to specify a byte.

High-Level Language: Programming language which gener-
ates machine codes from problem- or function-oriented
statements, FORTRAN, COBOL, and BASIC are three
commonly used high-leve] languages. A single functional
statement may translate into a series of instructions or
subroutines in machine language, in contrast to a low-
level (assembly) language in which statements translate
on 3 one-for-one basis.

Immediate Addressing: The method of addressing an
instruction in which the operand is located in the
instruction itself ot in the memory location immediately
following the instruction.

immediate Data: Datz which immediately follows an
instruction in memory, and is used as an operand by
that insteuction.

Indexed Addressing: An addressing mode, in which the
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the address part of an instruction is modified by the
contents in an auxiliary (index)} register during the
execution of that instruction.

Index Register; A register which contains a quantity which
may be used to modify memory address.

indireci Addressing: A means of addressing in which ihe
address of the operand is specified by an auxiliary register

or memory location specified by the instruction rather
than by bits in the instruction itself,

Input-Outpui (1/0): General term for the equipment used to
communicate with a computer CPU; ar the data involved
in that communication,

Instruction: A set of bits that defines a computer operation,
and is a basic command understood by the CPU, It may
move data, de arithmetic and logic functions, control
1/O devices, or make decisions as to which instruciion to
execute next.

Instruction Cycle: The process of fetching an instruction
from memory and executing it.

Instruction Length: The number of words needed to store
an instruction. [t is one word in most computers, but
some will use multiple words 1o form one instruction.
Multiple-word instructions have different instruction

execution times depending on the length of the instruction.

Instruction Repertoire: See Instruction Set

Instruction Set: The set of general-purpose instructions
available with a given computer. 1n general, different
machines have dilferent instruction seis.

The number of instructions only partially indicates the
quality of an instruction set. Some instruclions may
anly be slightly different from one another; others
rarely may be used. Instruction sets should be compared
using benchmark programs typical ol the application. to
determine execution times, end memory requirements.

Instruction Time: The time required to feich an instruction
from memory and then execute it.

Intetpreter: A program which feiches and executes “in-
structions™ (pseudo instructions) writien in a higher
level language. The higher-evel language program is a
pseude progeam. Contrast with Compiler.

Interrupt Request: A signat to the computer that tempo-
rarily suspends the normal sequence of a routine and
transfers contral to a special routine. Operation cun he
resumed from this point later. Ability 1o handle inter-
rupts is very useful in communication applications where
it allows the micraprocessor to service many channels.

Interrupt Mask (Interrupt Enable): A mechanism which
aliows the program 10 specify whether or not interrupt
requests will be accepted.

Interrupt Service Routine: A routine (program) to properly
store away Lo the stack the present status of the machine
in order to respond 10 an interrupt request; perform the

“real work™ required by the interrupt; restore the saved
status of the machine; and then resume the operation of
the interrupted program.

/0 Control Electronics (/O Controller): The control
electronics required to interface an O device to a
nnnnnn tar (DI

CONNPULET v,

The powerfulness and usefulness of a CPU is very closcly
associated with the range of 1/O devices which can be
connected to it. One can not usvally simply plug them
into the CPU. The [;O Control Electronics will do the
“matchmaking”. The complexity and cost of the Control
Electronics are very much determined by both the hard-
ware and software [/Q acchitecture of the CPU.

I/O Interface: See 1/O Contrel Electronics

10 Port: A connection to a CPU which is configured (or
programmed) to provide a data path between the CPU
and the external devices, such as keyboard, display,
reader, etc. An [/Q port of a microprecessor may be an
input port or an output port, or it may be bidirectional.

Jump: A departure from the normal one-step incrementing
of the program counter. By forcing a new value (address)
into the program counter the next insiruciion can be
fetched from an arbitrary location (either further ahead
or back).

For example, a program jump can be used to go from
the main program to i subrouting, from a subroutine
back to the main program, or from the end of a short
routine back 1o the heginning of the same routine to
form aloop. See also the Branch Instruction. If you
reached this point frem Branch, you have executed a
Jump. Now Return.

Linkage: See Subroutine

Load Facility: A hardware facility to allow program loading
using DMA. [t makes booistrap unnecessaty.

Loader; A program o read a program from an input device
into RAM. May be part of a package of utility programs.

Loop: A selicontained series of instructions in which the
last instruction can cause repetition of the series until a
terminal condition is reached. Branch instructions are
used to test the conditions in the loop to determine if
the loop should be continued or terminated.

Low-Level Language: See Assembly Language
Machine: A term for a computer (of historical origin).
Machine Code: Sez Machine Language

Machine Cycle: The basic CPU cycle. In one machine cycle
an address may be sent to memory and one word (data
or instruction) read ot written, or, in one machine cycle
a fetched instruction can be executed. One machine
cycle in the COSMAC microprocessor consists of eight
clock pulses.

Machine Langwage: The numeric form of specifying in-
structions, ready for loading into memory and execution
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by the machine. This is the lowestlevel language in
which to write programs. The value of every bit in every
instruction in the program must be specified (e.g., by
giving a string of binary, octal, or hexadecimal digits for
the contents of each word in memory).

Machine State: See Siate Code

Macro (Macroinstruction): A symbolic source language
statement which is expanded by the assembler into one
or mote machine language instructions, relieving the
programmer of having to write out frequently oceuring
instruction sequences.

Manufacturer’s Support: 1t includes application information,
software assistance, components for prototyping, availa-
bility of hardware in all configurations from chips to
systems, and fast response to requests for engineering
assistance.

Memory: That past of a computer which holds dzta and
instructions. Each instructions or datum is assigned a
unique address which is used by the CPU when fetching
or storing the information.

Memory Address Register: The CPU register which holds
the address af the memaory location being accessed.

Memory Addressing Modes: The method of specifying
the memory tocation of an aperand. Common addressing
modes are —— direct, immediate, relative, indexed, and
indirect. These modes are important factors in program
efficiency.

Microcomputer: A computer whose CPU is a micro-
processoi. A microcompuier is an entice system with
microprocessos. memory, and input-cutput controlless.

Microprocessor: Frequently called “a computer on s chip™.
The mictoprocessor is. in reality, a set of one, or a few,
LS| circuils capable of performing the essentiat functions
of a computer CPU.

Microprogrammable Computer: A computer in which the
internal CPU  control signal sequence for perfurming
instruclions are generated from 2 ROM. By changing the
ROM contents, the insiruction set can be changed. This
contrasts willk a Fixed-Instruction Computer in which
the instruction set can not be readily charged.

Microtutor: Inexpensive microcomputer for first-level hands-
an experience with microprocessor hardware and pro-
gramming. Comes complete with CPU, memory, input
and output devices, and power supply.

Mnemonics: Symbolic names or abbreviations for instruc-
tions, registers, memory localions, etc. A technique for
improving the efficiency of the human memory.

Multiple Processing: Configuring two or more processors in
a single system, operating out of a2 common memory.
This arrangement permiis execution of as many pro-
grams as there are processors.

Nesting: Subroutines which are called by subroutines are
said to be nested. The nesting level is the number of
times nesting can be repeated.
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Nibble: A sequence of 4 bits operated upon as a unit. Also
see Byte.

Object Program: Program which is the output of an auto-
matic coding systern, such as the assembler. Often the
object program is a machine-language program ready for
execution.

On-Line System: A system of I/O devices in which the
operation of such devices is under the control of the
CPU, and in which information reflecting current ac-
tivity is introduced into the data processing or con-
trollirg system as soon as it oceurs.

Op Code {Operation Code): A code that represents specific
operations of an instruction.

Operating System: System software controlling the overall
operation of a multi-purpose computer system, including
seich tasks as memory allocation, input and output distri-
bution, interrupt processing, and job scheduling.

Page: A natural grouping of memory locations by higher-
order address bits, In an 8-bit microprocessor, 28 = 256
consecutive bytes often may constitute a page, Then
words on the same page only differ in the lower-order
8 address bits.

PLA (Programmable Logic Array); A PLA is an zrray of
logic elements which can be programmed to perform a
specific logic function. In this sense, the array of logic
elements can be as simple as a gate or as complex as a
ROM. The artay can be programmed (normally mask
progiammable} so that a given input combination
produces a known output function,

Pointer: Registers in the CPU which contain memory
addresses. See Programn Counter and Data Pointer.

Program: A collection of instructions properly ordered to
perform some particular task.

Program Counter: A CPU register which specifies the
address of the next imstruction to be fetched and
executed. Normally it is incremented automatically each
time an instruction is fetched.

PROM (Programmable Read-Only Memory): An integrated.
circuit memory array that is manufactured with a pattern
of either all logical zeros or ones and has a specific pattern
written intc i1 by the user by a special hardware pro-
grammer. Some PROMs, called EAROMSs, Electrically
Alterable Read-Only Memory, can be erased and repro-
grammed.

Prototyping System: A hardware system used to breadboard
a micruprocessor-based product. Contains CPU, memory,
basic 1/0. power supply, switches and [amps, provisions
for custom [/O controllers, memory expansion, and
often. a utility program in fixed memory (ROM). See
COSMAC Development System,

Pseudo Instruction: See Interpreter

Pseudo Program: See Interpreter

RAM (Random Access Memory): Any type of memory
which has both read and write capability. It is randomly
accessible in the sense that the time required to read
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from or to write info the memory, is independent of the
location of the memory where data was most recently
read from or written into. Incontrast,ina Serial Access
Memory, this time is variable.

Register: A fast-access circuit used to store bits or words in
a £PU. Registers play a key role in CPU opesations. In
most applications, the efficiency of programs is related
to the number of registers.

Relative Addressing: The address of the data referred to is
the address given in the instruction plus some other
number, The “other number” can be the address of the
instruction, the address of the first location of the cur-
rent memory page, of a number stored in a register.
Relaiive addressing permits the machine to relocate a
program or a block of data by changing only one number.

Resident Software: Assembler and editor programs incor-
porated with a prototyping system 1o aid in user program
writing and development. See Software.

Return Routime: See Subroutine

ROM: Read-Only Memory (Fixed Memory) is any type of
memory which cannot be readily rewritten; ROM
requires a masking operation during production to per-
manently record program or dala patterns in it. The
information is stored on a permanent basis and used
repetitively. Such storage is useful for programs or tables
of data that remain fixed and is usually randomly
accessible,

Routine: Usually refers 10 a sub-program, i.e., the task per-
formed by the routine is less complex. A program may
include routines. See Program.

Scratch-Pad Memory: RAM or registers which are used to
store temporary intermediate results (data). or memory
addresses {pointers).

Serial Memory (Serial Access Memory): Any type of
memory in which the time required to read from .or
write into the memory is dependent on the location in
the memory. This type of memory has to wait while
nondesired memory locations are accessed. Exampies
are paper tape, disc, magnetic tape, CCD, etc. In a
Random Access Memory. gccess time is constant,

Simulators: Software simulators are sometimes used in the
debug process to simulate the execution of machine-
language programs using another computer (often a
timesharing system). These simulators are especiaily
useful if the actual computer is not available. They may
facilitate the debugging by providing access to internal
registers of the CPU which are not brought out to
external pins in the hardware. See COSMAC Software
Development Package.

Snapshots: Capture of the entire state of a machine
(real or simulated) —— memory contents, registers,
flags, etc.

Software: Computer programs. Often used to denote
generai-purpose programs provided by the manufacturer,
such as assernbler, editor, compiler, etc.

Source Program: Computer program written in a language
designed for ease of expression of a clzss of problems or
procedures, by humans: symbolic or algebraic.

Stack: A sequence of registers and/or memory locations
used in LIFOQ fashion {last-in-first-out). A stack pointer
specifies the last-in entry (or where the next-in eniry
will go).

Stack Pointer: The counter, or rtegister, used to address a
stack in the memory. See Stack.

Stand-Alone System: A microcomputer software develop-
ment system which runs on 2 microcomputer without
connection to another computer or a timesharing system.
This system includes an assembler, editor, and debugging
aids. It may include some of the features of a prototyping
kit.

State Code: A coded indication of what state the CPU is
—- responding to an interrupt, servicing a DMA réquest,
executing an 1/Q) instruction, etc.

Subroutine: A subprogram (group of instructions) reached
from more than ane place in 2 main program. The process
of passing control from the main program to a sub-
routine is a subroutine call, and the mechanism is a
subroutine linkage. Often data or data addresses are
made available by the main program to the subroutine.
The process of returning control from subroutine to
main program is subroutine return. The linkage auto-
matically returns control to the original position in the
main program or to another subroutine. See Nesting.

Subroutine Linkage: See Subroutine
Support: See Manufacturer’s Support

Synchronous Operation: Use of a common timing source
{clock) to time citeuit or data transfer operations.
(Contrast with Asynchronous operation)

Syntax: Formal structure. The rules governing sentence
structure in a language, or statement structure in a
Janguage such as assembly language or Fortran.

Terminal: An Input-Output device at which data leaves or
enters a computer system, e.g., teletype terminal, CRT
terminal, etc.

Test and Branch: See Branch Instruction

Unbundling: Pricing certain types of software and services
separately from the hardware.

Universal Asynchronous Receiver/Transmitter (UART): A
device that translates serial data bits from two-wire lines
to parallel format (receive mode} or parallel data bits to
serial format for transmission over two-wire lines {trans-
mit mode).

Utility Program: A program providing basic conveniences,
such as capability for loading and saving programs, for
observing and changing values in a computer, and for
initiating program execution. The utility program elimi-
nates ihe need for “re-inventing the wheel™ every time a
designer wants to perform a common function.

Word: The basic group of bits which is manipulated (read
in, stored, added, read out, etc.} by the computer in a
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single step. Two types of word are used in every Word Length: The number of bits in the computer word.
computer: Data Words and Instruction Words. Data The longer the word, length, the greater the precision
words contain the information to be manipulated. (number of significant digits). In general, the longer the
Instruction words cause the computer to execute 3 word length, the richer the instruction set, and the more
particular operation. varied the addressing modes.
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