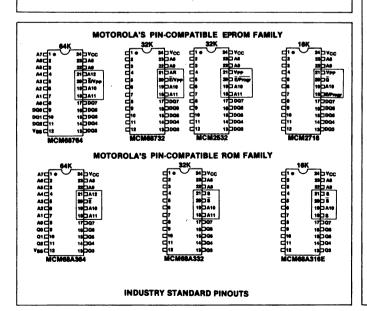


MCM68732 MCM68L732

4096 × 8-BIT UV ERASABLE PROM

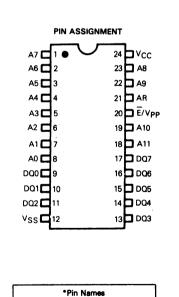

The MCM68732/68L732 is a 32,768-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically, or for replacing 32K ROMs for fast turnaround time. The transparent window on the package allows the memory content to be erased with ultraviolet light.

For ease of use, the device operates from a single power supply and has a static power-down mode. Pin-for-pin compatible mask programmable ROMs are available for large volume production runs of systems initially using the MCM68732/68L732.

- Single +5 V Power Supply
- Automatic Power-down Mode (Standby) with Chip Enable
- Organized as 4096 Bytes of 8 Bits
- Low Power Dissipation
- Fully TTL Compatible
- Maximum Access Time = 450 ns MCM68732 350 ns MCM68732-35
- Standard 24-Pin DIP for EPROM Upgradability
- Pin Compatible to MCM68A332 Mask Programmable ROM
- AR Selects the Operational 32K Portion of the Die MCM68732-1 AR = 1 = HIGH MCM68732-0 AR = 0 = LOW
- Pin Compatible With the MCM2532 32K EPROM in the Read Mode
- Low Power Version

MCM68L732 Active 60 mA Maximum Standby 15 mA Maximum

MCM68L732-35 Active 100 mA Maximum Standby 25 mA Maximum


MOS

(N-CHANNEL, SILICON-GATE)

4096 × 8-BIT **UV ERASABLE PROGRAMMABLE** READ ONLY MEMORY

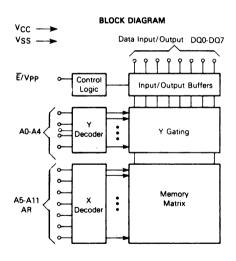
L SUFFIX SIDEBRAZE CERAMIC PACKAGE ALSO AVAILABLE - CASE 716

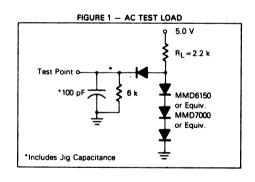
Address AR Address Reference DQ Data Input/Output E/VPP . . . Chip Enable/Program

*New industry standard nomenclature

MCM68732 • MCM68L732

ABSOLUTE MAXIMUM RATINGS (1)


Rating	Value	Unit
Temperature Under Bias	- 10 to +80	°C
Operating Temperature Range	0 to +70	°C
Storage Temperature	-65 to +125	°C
All Input or Output Voltages with Respect to VSS	+6 to -0.3	Vdc
Vpp Supply Voltage with Respect to VSS	+ 28 to - 0.3	Vdc


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MODE SELECTION

		Pin Number					
Mode	9-11, 13-17, DQ	12 VSS	20 Ē/Vpp	24 VCC			
Read	Data out	VSS	VIL	Vcc			
Output Disable	High Z	٧ss	VIH	Vcc			
Standby	High Z	VSS	ViH	Vcc			
Program	Data in	٧ss	Pulsed VILP to VIHP	Vcc			

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, periodically sampled rather than 100% tested.)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (V _{in} = 0 V) Except E/Vpp	Cin	4.0	6.0	pF
Input Capacitance E/Vpp	C _{in}	60	100	pF
Output Capacitance (V _{Out} = 0 V)	Cout	8.0	12	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta_1/\Delta V$.

DC OPERATING CONDITIONS AND CHARACTERISTICS

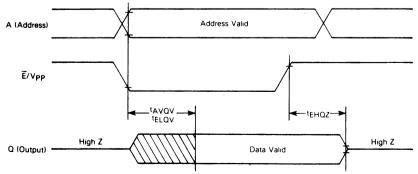
(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS

	Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	MCM68L732/MCM68732 MCM68L732-35/MCM68732-35	Vcc	4.75 4.5	5.0 5.0	5.25 5.5	V
Input High Voltage		VIH	2.0	_	V _{CC} +1.0	
Input Low Voltage		VIL	-0.1	_	0.8	٧

RECOMMENDED DC OPERATING CHARACTERISTICS

Characteristic	Condition	0	MCM68732			MCM68L732			Units
	Condition	Symbol	Min	Тур	Max	Min	Тур	Max	Unite
Address Input Sink Current	V _{in} = 5.25 V	lin	-	_	10		_	10	μА
Output Leakage Current	V _{out} = 5.25 V	1 _{LO}	-	_·	10	-	_	10	μΑ
E/Vpp Input Sink Current	$\overline{E}/V_{PP} = 0.4$	EL	-	-	100	-	_	100	μА
	E/Vpp = 2.4	IEH = IPL	-	-	400		_	400	μА
VCC Supply Current (Standby) MCM68732	E/Vpp = ViH	ICC1	_	_	25	-	_	15	mA
VCC Supply Current (Standby) MCM68732-35	E/Vpp = ViH	ICC1	-	Γ-	25	_		25	mA
VCC Supply Current (Active) MCM68732 (Outputs Open)	E/Vpp=VIL	ICC2		_	120	_		60	mΑ
VCC Supply Current (Active) MCM68732-35 (Outputs Open)	E/Vpp = VIL	ICC2	_	-	160	_		100	mA
Output Low Voltage	IOL = 2.1 mA	VOL	-	_	0.45	_	-	0.45	٧
Output High Voltage	I _{OH} = -400 μA	Voн	2.4	-	-	2.4	_	_	V


AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

Input Pulse Levels	0.8 Volt and 2.2 Volts	Output Timing Levels	0.8 Volt and 2 Volts
Input Rise and Fall Times	20 ns	Output Load	See Figure 1
Input Timing Levels	1.0 Volt and 2 Volts		

	0 - 4'0'			35		35 MCM68		35		68732	
Characteristic	Condition	Symbol	Min	Max	Min	Max	Units				
Address Valid to Output Valid	E=V _{IL}	†AVQV		350	_	450	ns				
E to Output Valid	_	tELQV	-	350	-	450	ns				
E to Hi-Z Output		tEHQZ	0	100	0	100	ns				
Data Hold from Address :	E = VIL	†AXDX	0	-	0	-	ns				

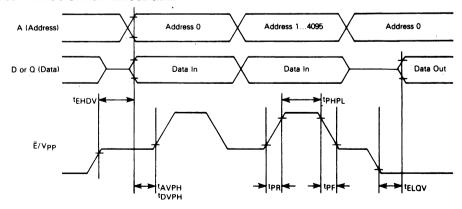
READ MODE TIMING DIAGRAM

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS $(T_A = 25 \pm 5^{\circ}C)$

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	V _{CC}	4.75	5.0	5.25	٧
Input High Voltage for All Addresses and Data	ViH	2.2	_	VCC + 1	٧
Input Low Voltage for All Addresses and Data	VIL	-0.1	-	0.8	٧
Program Pulse Input High Voltage	VIHP	24	25	26	٧
Program Pulse Input Low Voltage	VILP	2.0	Vcc	6.0	V

PROGRAMMING OPERATION DC CHARACTERISTICS


Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address Input Sink Current	$V_{in} = 5.25 V$	ILI	-	-	10	μΑ
Vpp Program Pulse Supply Current (Vpp = 25 V ± 1 V)		IРН	-	-	30	mA
Vpp Supply Current (Vpp = 2.4 V)		IPL = IEH	-		400	μΑ
VCC Supply Current (Vpp = 5.0 V)	. –	lcc	-	-	160	mA

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	†AVPH	2.0	_	μS
Data Setup Time	†DVPH	2.0	-	μS
Chip Enable to Valid Data	tELQV	450	-	ns
Chip Disable to Data In	tehdy	2.0	_	μS
Program Pulse Width	tPHPL	1.9	2.1	ms
Program Pulse Rise Time	tpR	0.5	2.0	μS
Program Pulse Fall Time	tpF	0.5	2.0	μS
Cumulative Programming Time Per Word*	tCP	12	50	ms

^{*}Block mode programming must be used. Block mode programming is defined as one program pulse applied to each of the 4096 address locations in sequence. Multiple blocks are used to accumulate programming time (tcp).

PROGRAMMING OPERATION TIMING DIAGRAM

PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for Program Mode, the \overline{E}/Vpp input (Pin 20) should be between +2.0 and +6.0 V, which will three-state the outputs and allow data to be setup on the DQ terminals. The V_{CC} voltage is the same as for the Read operation. Only "0's" will be programmed when "0's" and "1's" are entered in the 8-bit data word.

After address and data setup, 25-volt programming pulse (VI_H to VI_{HP}) is applied to the E/Vpp input. A program pulse is applied to each address location to be programmed. The maximum program pulse width is 2 ms and the maximum program pulse amplitude is 26 V.

Multiple MCM68732s may be programmed in parallel by connecting like inputs and applying the program pulse to the \overline{E}/Vpp inputs. Different data may be programmed into multiple MCM68732s connected in parallel by selectively applying the programming pulse only to the MCM68732s to be programmed.

READ OPERATION

After access time, data is valid at the outputs in the Read mode. A single input (\bar{E}/Vpp) enables the outputs and puts the chip in active or standby mode. With $\bar{E}/Vpp="0"$ the outputs are enabled and the chip is in active mode; with $\bar{E}/Vpp="1"$ the outputs are three-stated and the chip is in standby mode. During standby mode, the power dissipation is reduced.

Multiple MCM68732s may share a common data bus with like outputs OR-tied together. In this configuration the E/Vpp input should be high on all unselected MCM68732s to prevent data contention.

ERASING INSTRUCTIONS

The MCM68732 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UV-intensity X exposure time) is 15 Ws/cm². As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM68732 should be positioned about one inch away from the UV-tubes.

TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

Waveform Symbol	WAVEFORMS Input	Output
	Must Be Valid	Will Be Valid
	Change From H to L	Will Change From H to L
	Change From L to H	Will Change From L to H
XXXXX	Don't Care: Any Change Permitted	Changing: State Unknown
		High Impedance