8085A

MILITARY INFORMATION

dISTINCTIVE CHARACTERISTICS

- SMD/DESC qualified
- 3- and 5-MHz selections available
- On-chip system controlier; advanced cycle status information available for large system control
- Serial-in/serial-out port
- Decimal, binary, and double-precision arithmetic
- Direct addressing capability to 64 K bytes of memory
- $1.3 \mu \mathrm{~s}$ insiruction cycle (8085 A)
- $0.8 \mu \mathrm{~s}$ instruction cycle (8085A-2)
- 100% software-compalible with 8080 A
- Single +5 V power supply

GENERAL DESCRIPTION

The 2085A is a new generation, complete 8 -bit parallel central processing unit (CPU). Its instruction set is $\mathbf{1 0 0 \%}$ software compatible with the 8080A microptocessor. Specitically, the 8085A incorporates all of the features that the 8224 (clock generator) and 8228 (system controller) provided for the 80日0A. The 8085A-2 is a faster version of the 9085 A . The 8085 A is a 3 MHz CPU with 10% supply tolerances and lower power consumption.

The 8085A uses a multiplexed data bus. The address is split between the 8 -bit address bus and the 8 -bit data bus. The on-chip address latches of $8155 \mathrm{H} / 56 \mathrm{H}$ memory products allow a direct interface with 8085A. The 8085A components, inchuding various timing-compatible support chips, allow system speed optimization.

BLOCK DIAGRAM

Note: Pin 1 is marked for orientation.

MILITARY ORDERING INFORMATION

Standard Military Drawing (SMD)/DESC Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. Standard Military Drawing (SMDI/DESC products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for
a. Military Drawing Pari Number
b. Device Type
c. Case Outline
d. Lead Finish

d. LEAD FINISH
$X=$ Any Lead Finish Acceptable
c. CASE OUTLINE
$Q=40$-Pin Ceramic DIP (CD 040)
b. MILITARY DEVICE TYPE
$01=3 \mathrm{MHz}$ (8085A)
a. Military drawing part number
79010
8-Bit Microprocessor
Valid Combinations

Valid Combinations	
7901001	$Q X$

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check on newly released valid combinations.
Group A Tesis
Group A lests consist of Subgroups
1, 2, 3, 7, 8, 9, 10, 11.

MILITARY ORDERING INFORMATION (Cont'd.)

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL.STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of. a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups

1. 2, 3, 7, B, 9, 10, 11.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Voltage on Any Pin
With Respect to Ground \qquad -0.5 to +7 V
Power Dissipation .. 1.5 W
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device tailure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliabiify

OPERATING RANGES

Military (M) Devices
Temperature (T_{C})
.............. -55 to $+125^{\circ} \mathrm{C}$
...... $5 \vee \pm 10 \%$
Opering ranges
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for SMD/DESC and APL. Products. Group A, Subgroups 1, 2 3 are tested unless otherwise noted)

Parameter Symbot	Parameter Description	Test Conditions	Min.	Max.	Unit
$V_{\text {IL }}$	Input LOW Voltage	$\mathrm{V} \mathrm{CO}=5 \mathrm{~V} \pm 10 \%$	-0.5	+0.9	V
V_{IH}	Input HIGH Vollage	$V_{C C}=5 \mathrm{~V} \pm 10 \%$	O	+0.8	V
VOL	Outpul LDW Voltage			+ 045	V
VOH	Output HIGH Vollage			045	V
ICC	Power Supply Current			200	V
IIL1	Input Leakage. Except Pin 1	K-		± 10	mA
$1 \mathrm{IL2}$	Input Leakage, Pin 1 有, 复			± 70	A
LOP		$V^{*} \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, V_{\text {OUT }}=V_{C C}$ to 0.45 V		± 70	μA
VILR		$V_{C C}=5 \mathrm{~V} \pm 10 \%$		± 1	μA
$V_{\text {IHR }}$		$V_{C C}=5 V \pm 10 \%$		$+0.8$	V
$V_{H Y}$	Hyslesinsis, RESET	$V C C=5 \mathrm{~V} \pm 10 \%$	2.4	$\mathrm{VOc}+0.5 *$	\checkmark

*Guaranteed by design; not tested.
Notes: 1. $\mathrm{I}_{\mathrm{C}} \mathrm{C}$ is measured while nunning a functional pattern with no loads applied.
SWITCHING CHARACTERISTICS over operating range for SMD/DESC and APL Products, Group A,
Subgroups $9,10,11$ are tested unless otherwise noted)

Parameter Symbol	Parameter Description	$\begin{aligned} & \text { 8085A } \\ & \text { (Note 2) } \end{aligned}$		8085A-2 (Rote 2)		Unit
		Min.	Max.	Min.	Max.	
	CLK Cycle Perlod	320	2000	200	2000	ns
cres	CLK LOW Time (Standard CLK Loading)	80		40		ns
1_{1}	CLK LOW Time (Standard CLK Loading)	120		70		ns
12	CLK HKGH Time (Standard OLK Loading)	120	30		30	ns
4. t_{1}	CLK Rise and Fall Time	20	120	20	100	ns
XKR	x_{1} Fising to CLK Fising	2	150	20	110	ns
TXKF	x_{1} Rising to CLK Fading	20	150	20		ns
$t_{A C}$	A8.15 Valid to Leading Edge of Control (Note 1)	270		115		ns
${ }_{\mathrm{taCl}}$	$A_{0} .7$ Valid to Leading Edge of Control	240		115		ns
IAD	A_{0-15} Valid to Valid Data in		575		350	ns
tafR	Address Floal After Leazing Edge of READ (INTA)		0		0	ns
IAL	A8-15 Vald Before Trailing Edge of ALE (Note 1)	90		50		ns
$t_{\text {ALL }}$	A0.7 Valid Before Trailing Edge of ALE	70		50		ns
$\mathrm{tall}_{\text {Ar }}$	REAOY Valcd from Address Valid		220		100	ns
${ }_{\text {ICA }}$	Adcress ($A_{8.15}$) Valid After Control	120		50		ns
tec	Width of Control LOW (MD, WR, $\overline{\mathrm{INTA}}$) Edge ol ALE	400		230		n5
LCL	Trailing Edge of Control to Leading Edge of ALE			25		ns
tow	Data Valid to Trailing Edge of WMITE	20		230		Ms
4 HABE	HLOA to Bus Enable		21		15	年
HAABF	Bus Float Atter HLOA		210	40		ns
(HACK	HLDA Valid to Trailing Edge of CLK			0		ns
H/CH	HOLD Hold Time	170		120		ns
${ }_{H} \mathrm{HDS}$	HOLD Selup Time to Trailing Edge of CL	170		0		ns
IINH	INTR Hold Time	0		0		
tins	INTR, RST, and TRAP Selup Tis i, Falling Edge of CLK	160		150		ns
ta	Address Hold Time Atter	100		50		ns
1 LC	Trailing Edge of ALE, 10^{*} of Control	130		60		ns
${ }_{\text {t }}$	ALE LOW Dunne	100		50		$n 5$
L_D ${ }^{\text {d }}$	ALE to Valid Datan \% Read		460		270	ns
HLOW	ALE ta Valid Data Doring Write		200		120	ns
tLL	ALE Whith	140		80		ns
	ALE to READY Stable		110		30	ns
trat	Trailing Edge of $\overline{\operatorname{EEAD}}$ to Re-Enabling of Address	150		90		ns
IPD	$\overline{\text { PEAD (or }} \overline{\text { NTA }}$) to Valid Dala		300		150	ns
trv	Control Trailing Edge to Leading Edge of Next Control	400		220		ns
(fDH	Data Hold Time After AEAD INTA (Note 6)	0		0		ns
try	READY Hold Tifne	0		0		ns
tays	READY Setup Time to Leading Edge of CLK	110		100		ns
twD	Oata Valid After Trailing Edge of WRITE	100		60		ns
two	LEADING Edge of WRITE to Data Valid		40		20	ns

Noles: 1. $A_{0}-A_{15}$ address Specs appiy to iD/M, S_{0}, and S_{1}, except $A_{8}-A_{15}$ are undetmed during $T_{4}-T_{6}$ of of cycle; whereas. $10 / \bar{m}, S_{0}$. S_{1} are stable.
 $\overline{\mathrm{VOH}}=2.0 \mathrm{~V}$.
For al output timing where $C_{L}=150 \mathrm{pF}$ use the following correction factors $25 \mathrm{pF} \mathrm{z}_{\mathrm{a}} \mathrm{C}_{\mathrm{L}}<150 \mathrm{pF}:-0.10 \mathrm{~ns} / \mathrm{pF}$
$150 \mathrm{pf}<\mathrm{C}_{\mathrm{L}} \leqslant 300 \mathrm{pF}:+0.30 \mathrm{~ns} / \mathrm{pf}$
. Output timings are measured with purely capacitive toad.
To catalate timing specifications at other values of tCYC use Table 3 on page 3-191 of the MOS Microprocessors and Peripherals Data Book (Order *09067A)
6. Data hold time is guaranteed under all loading conditions.

PACKAGE OUTLINES*

Ceramic DIPs (CD)
CD 024

CD 028

* For reference only.

NOTE: Package dimensions are given in inches. To convert to millimeters, multoply by 25.4.

NOTE; Package dimenslons are given in inohes. To convert to millimelers, multiply by 25.4.

NOTE: Package cimensions are given in inches. To convert to millimeters, muitiply by 25.4 .

PACKAGE OUTLINES (Continued)

NOTE: Package dimenslons are given in inches. To convert to millimeters, multiply by 25.4.

```
ADVANCED MICRO DEVICES IbD D W 0257525 DO27005 T - 

\section*{PACKAGE OUTLINES (Continued)}

\section*{Ceramic Pin-Grid-Array Package (CG/CGX) CGX068}

BOTTOM VIEW
```

