INTEL 8008 Instructions

CPU control group

| binary | old | new |
| :--- | :--- | :--- | :--- |
| $0000000 x$ | HLT | HLT |
| 111111111 | HLT | HLT |

Input and output group

binary $0100 \mathrm{MMM1}$	old INP	new IN	Description port MMM
01RRMMM1	OUT	OUT	port RRMMM (RR <> 0)
Jump group			
binary	old	new	Description
$01 \times \times \times 100$	JMP	JMP	unconditionally jump
01000000	JFC	JNC	JMP if carry $=0$
01001000	JFZ	JNZ	JMP if result <> 0
01010000	JFS	JP	JMP if sign $=0$ (positive)
01011000	JFP	JPO	JMP if parity $=$ odd
01100000	JC	JC	JMP if carry $=1$
01101000	JZ	JZ	JMP if result $=0$
01110000	JS	JM	JMP if sign $=1$ (negative)
01111000	JP	JPE	JMP if parity $=$ even

Call and return group

binary	old	new	Description
$01 \times \times \times 110$	CAL	CALL	unconditionally call subroutine
01000010	CFC	CNC	CALL if carry $=0$
01001010	CFZ	CNZ	CALL if result $<>0$
01010010	CFS	CP	CALL if sign $=0$ (positive)
01011010	CFP	CPO	CALL if parity $=$ odd

01100010	CC	CC	CALL if carry $=1$
01101010	CZ	CZ	CALL if result $=0$
01110010	CS	CM	CALL if sign = 1 (negative)
01111010	CP	CPE	CALL if parity = even
00 xxx 111	RET	RET	unconditionally return
00000011	RFC	RNC	RET if carry $=0$
00001011	RFZ	RNZ	RET if result <> 0
00010011	RFS	RP	RET if sign $=0$ (positive)
00011011	RFP	RPO	RET if parity = odd
00100011	RC	RC	RET if carry = 1
00101011	RZ	RZ	RET if result $=0$
00110011	RS	RM	RET if sign = 1 (negative)
00111011	RP	RPE	RET if parity = even
00 AAA 101	RST	RST	call subroutine at adrs AAA000

Load group

binary	old	new	Description
11 DDD S S S	Lds	MOV d,s load d with content of s	
11 DDD 111	LdM	MOV d,M load d with content of Mem	
11111 s s s	LMs	MOV M,s load M with content of s	
00 ddd110	LdI	MVI d	Load register d with data
00111110	LMI	MVI M	Load Memory M with data b

Arithmetic group

binary	old	new	Description
10000 ss s	ADs	ADD s	add contents of s to A
10000111	ADM	ADD M	add contents of M to A
00000100	ADI	ADI b	add constant b to A

	001	S S S	ACs	ADC s	add contents of $\mathrm{s}+\mathrm{CY}$ to A
10	001	111	ACM	ADC M	add contents of $\mathrm{M}+\mathrm{CY}$ to A
00	001	100	ACl	ACI b	add constant $\mathrm{b}+\mathrm{CY}$ to A
10	010	s s s	SUs	SUB s	sub contents of s from A
10	010	111	SUM	SUB M	sub contents of M from A
00	010	100	SUI	SUI b	sub constant b from A
10	011	s s s	SBs	SBB s	sub contents of $s+C Y$ from A
10	011	111	SBM	SBB M	sub contents of $M+C Y$ from A
00	011	100	SBI	SBI b	sub constant $b+C Y$ from A
10	100	s s s	NDs	ANA s	logical AND of s and A to A
10	100	111	NDM	ANA M	logical AND of M and A to A
00	100	100	NDI	ANI b	logical AND of const b and A to A
10	101	s s s	XRs	XRA s	logical XOR of s and A to A
	101	111	XRM	XRA M	logical XOR of M and A to A
00	101	100	XRI	XRI b	logical XOR of const b and A to A
10	110	s s s	ORs	ORA s	logical OR of s and A to A
	110	111	ORM	ORA M	logical $O R$ of M and A to A
00	110	100	ORI	ORI b	logical OR of const b and A to A
	111	S S S	CPs	CMP s	compare s with A, set flags
	111	111	CPM	CMP M	compare M with A, set flags
00	111	100	CPI	CPI b	compare const b with A, set flags
	d d d	000	INd	INR d	increment register d (d<>A)
	d d d	001	DCd	DCR r	decrement register d ($\mathrm{d}<>\mathrm{A}$)
Rotate group					
bina	ary		old	new	Description
00	000	010	RLC	RLC	rotate content of A left

$00001010 \quad$ RRC RRC rotate content of A right
$00010010 \quad$ RAL RAL rotate content of A left through CY
$00011010 \quad$ RAR RAR rotate content of A right through CY

