

quantum electronics box 391262 Bramley 2018

E²PROM FAMILY APPLICATIONS HANDBOOK

APRIL 1981

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9). Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

BXP	Intelevision	MULTIBUS*
CREDIT	Intellec	MULTIMODULE
i	ISBC	Plug-A-Bubble
ICE	iSBX	PROMPT
ICS	Library Manager	Promware
im	MCS	RMX
Insite	Megachassis	UPI
Intel	Micromap	μScope
		System 2000

and the combinations of ICE, iCS, iSBC, MCS or RMX and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS* is a registered trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation Literature Department SV3-3 3065 Bowers Avenue Santa Clara, CA 95051

© INTEL CORPORATION, 1981

Table of Contents

CHAPTER 1 Introduction
CHAPTER 2 E²PROM Backgrounder Information E²PROM Backgrounder 2-1 AR-118A 16K Electronically Erasable Non-Volatile Memory 2-5 AR-119 16K EE-PROM Relies On Tunneling For Byte-Erasable Program Storage 2-9
CHAPTER 3 8***********************************
CHAPTER 4 Application Briefs

intel

During the past ten years, Intel has developed EPROMs to meet the needs of the most demanding customer systems. The quest for a perfect non-volatile memory has been led by Intel from ROM to PROM to EPROM and now, after intense development, to the E^2 PROM. The E^2 PROM technology promises to alter dramatically the microprocessor systems of today and offer end users greatly enhanced flexibility and system cost-effectiveness.

With regard to adding functions and benefits to your systems, only you can understand the doors that the 2816 will open. Intel is committed to the technology of electrically erasable PROMs and we see it as truly a revolution in non-volatile memory.

Within this handbook are articles, application notes, application briefs, and other data which will tell you all you need to know to design the E^2 PROM into your system today.

If you would like further information, contact one of the Intel Sales Representatives listed in the back or return the reply card.

ACKNOWLEDGEMENT

The author wishes to acknowledge the following contributors to the 2816 development and introduction: K. Armstrong, A. Baluni, B.L. Barfield, N. Boruta, R. Battat, A. Chan, V. Dham, B. Euzent, H. Fung, G. Gongwer, K. Gudger, W.S. Johnson, L.N. Jordan, D. Kijanka, P. Mareno, D. Oto, B. Pochowski, D. Schaedler, B. Shiner, and R. Wood.

Without their limitless perseverance and dedication, the 2816 would not have been possible.

INTRODUCTION

Intel Corporation, the leading manufacturer of microprocessors, semiconductor memories and microcomputer system components, has just introduced its first electrically erasable programmable read-only memory (E^2 PROM). Designated the 2816, this 16kilobit E^2 PROM is the first of a new breed of memory that will eventually become the standard storage medium for microprocessor programs.

Not only is the 2816 non-volatile, fully static and fast enough to support a high-performance microprocessor, but it can be reprogrammed electrically in the field, without removal from in-service equipment. It can even be reprogrammed remotely, via a radio or telephone link. This flexibility permits design engineers to realize applications that were either impossible to implement with less-flexible program-store devices, or prohibitively expensive due to the high cost of downtime or labor incurred by the user when changing the program.

TRENDS IN PROGRAM-STORE PERFORMANCE AND FLEXIBILITY

Since their introduction nearly a decade ago, microprocessors have become smaller, faster and much more powerful. Each new generation has been accompanied by a new class of program-store memory devices with greater flexibility—to make it easier for the original-equipment manufacturer (OEM) or end user to change its stored program—and improved performance—to match the speed of faster microprocessors.

Flexibility—From Zero to Total

The first program-store device was the masked readonly memory (ROM). Masked ROMs are custom devices programmed by the semiconductor manufacturer with instructions specified by the OEM buyer. Once programmed, they cannot be altered, so that each program change requires the purchase and manufacture of a new ROM, which may take months to obtain. ROMs are inexpensive to buy in large volumes, but they require a large initial investment by the OEM and a commitment to large quantities of each program.

Next came the programmable ROM, or PROM. PROMs can be "burned" by the OEM or end user but they can be programmed only once; however, they can be bought in advance and programmed and installed when needed. PROMs are costlier than ROMs on a per-unit basis, but they eliminate the risk and wait for delivery of a new batch of masked ROMs from the semiconductor manufacturer.

Erasable PROMs, or EPROMs, added considerable flexibility to the programming step. Like PROMs, EPROMs can be stocked and programmed by the OEM or end user, but they can be reprogrammed thousands of times. This eliminates the need to scrap expensive parts each time a program change is needed.

With regard to flexibility, the only drawback to EPROMs is that they must be removed from the equipment to be reprogrammed. EPROMs are erased optically, through exposure to ultraviolet light, and then rewritten electrically with the new program.

Despite this inconvenience, EPROMs are today the most popular program-store memory device. Originally envisioned as a development tool for designers who change programs frequently while prototyping and debugging a system, EPROMs have often been shipped in production equipment due to their potential value to the user who may wish to make a program change.

Electrically erasable (E^2) PROMs are the ultimate in program-store flexibility. They can be electrically reprogrammed by the OEM or end user, but without the inconvenience, time or expense it takes to remove an EPROM from equipment, send it to a service facility, erase and reprogram it and then reinstall it in the field.

The Intel[®] 2816 requires only the application of a 21volt pulse for 10 milliseconds to erase or write any byte of memory. The only hardware needed to interface the 2816 to a microprocessor are a programming pulse generator and a timer circuit.

Intel's 2816 E^2 PROM also features an additional degree of flexibility unmatched by other high-density E^2 PROM-type devices: individual byte-erase capability. To end users, this means that a single line program edit can be made in 20 milliseconds, or 100 times faster than it can be done on a bulk-erase part that must be completely erased and rewritten.

Performance—Ever Faster

Each new class of program-store memory must have performance comparable to that of the microprocessor it serves. Most important is access time, since a microcomputer system can only operate as fast as its slowest component. A slow program-store device can reduce the throughput and efficiency of a microprocessor which is kept waiting for its instructions. A recent trend which affects program-store memories is toward more complex systems, with multiplexed address and data lines. Program-store memories must be able to be precisely controlled by the microprocessor, to ensure that they do not read instructions onto the bus when the microprocessor is not expecting them.

The 2816 E^2 PROM has both the speed and controllability required for service in a state-of-the-art microcomputer system. It has an access time of 250 nanoseconds, which is fast enough to eliminate the need to insert so-called wait states in a highperformance microprocessor's program, just to allow for slow program memory.

The 2816 also features Two-line control, a systemcontrol function that has become essential in large, high-speed microcomputer systems. Two-line control eliminates contentions between addresses and data on bus lines. The chip has separate output-enable and chipenable pins that permit the microprocessor to control exactly when it is enabled.

In addition, the 2816 comes in a 24-pin package that conforms to the new industry-standard pinout for highdensity, byte-wide memories recently approved by the Joint Electron Device Engineering Council (JEDEC). By using the 2816 and printed-circuit boards with 28-pin sockets, system designers can be assured of future compatibility and interchangeability of microcomputersystem memory components up to 256 kilobits in density.

IMPLICATIONS AND APPLICATIONS

 E^2 PROMs will have a profound impact on microcomputer system design. As designers learn to fully use their flexibility, E^2 PROMs' cost per function will fall dramatically through greater design efficiency.

The semiconductor cost/volume learning curve will reduce E^2 PROM prices to parity with EPROMs by the mid-1980s, when they will replace EPROMs as the standard program-store medium in microprocessor-based equipment. In the interim, E^2 PROMs will be designed into those applications where their cost is offset by the functional value their flexibility adds to the end-user product.

Near-Term Applications

One market segment that will find E^2 PROMs attractive immediately is industrial process control. In large plants with distributed processing stations under control of a central computer, E^2 PROMs can improve local process monitoring and control.

In such configurations, the central computer alters the E^2 PROMs' contents remotely when a change in process occurs, to optimize local processor operation to the new conditions. The E^2 PROMs can also be used as data store devices to monitor flow rates, value closures and like information, freeing the central computer for more important duties.

Another obvious application for E^2 PROMs today is as replacements for core memory or fuse-link PROMs in military equipment and commercial aircraft. Here, the cost of an E^2 PROM is more than offset by the alternative cost of replacing expensive parts each time the user wishes to change flight coordinates or radio frequencies.

Point-of-sale (POS) terminals are an ideal application for E^2 PROMs, where they function as look-up tables whose contents—product pricing, for example—do not change frequently. The central computer can poll and update the E^2 PROMs after business hours of the retail store, to monitor sales volumes and adjust pricing to inflation.

Another application for E^2 PROMs is in programmable robots like those used in automobile manufacturing or industrial metalworking. Presently, program changes require replacing the paper or magnetic tape that controls the robot's operation. An alterable, non-volatile semiconductor memory like the 2816 has distinct advantages here, especially in light of its superior reliability in dirty industrial environments. Besides its ability to be reprogrammed quickly and remotely by a central computer, an E^2 PROM can easily pay for itself by avoiding retooling charges and by preventing failures that could destroy an expensive piece of material.

SESSION XII: ROMs, PROMs AND EROMs

THPM 12.6: A 16Kb Electrically Erasable Nonvolatile Memory

William S. Johnson, George Perlegos, Alan Renninger, Greg Kuhn and T. R. Ranganath^T

Intel Corp.

Santa Clara, CA

FLOATING GATE STRUCTURES have been highly successful as nonvolatile devices because of their compatibility with silicon gate processing and their excellent charge retentivity with applied voltage at operating temperature. The accepted method of erasure in the commercial marketplace is ultra-violet light (EPROM)¹, although proposals have been made to erase electrically by avalanche injection of holes², electron tunneling^{3,4}, or a combination of both⁵. These methods, however, have typically suffered from poor reproducibility and very fast wearout during program/erase cycling.

To realize nonvolatile devices which can be erased electrically with high program/crase endurance, many have resorted to MNOS structures⁶ which are programmed and erased by direct tunneling through a thin oxide. In this approach, charge is stored in traps within the nitride dielectric. A major problem with this approach is that the properties of the nitride/oxide dielectric are difficult to control and are adversely affected by normal silicon gate processing. Furthermore, the threshold voltages of these structures are vulnerable to disturbance by even small applied voltages and data retention is not easily guaranteed for long periods (years).

The device reported (FLOTOX, for floating gate tunnel oxide) retains the processing and the retention advantages of floating gate over MNOS while solving the traditional endurance problem. This is accomplished by utilizing an oxide less than 200Å thick between a floating poly gate and an N⁺ region, as shown in

[†]Current Address: Hughes Research, Malibu, CA *2716.

¹Salsbury, P.J., Morgan, W.L., Perlegos, G. and Simko, R.T., "High Performance MOS EPROMs Using A Stacked Gate Cell", ISSCC DIGEST OF TECHNICAL PAPERS, p. 186, Feb., 1977.

²Gosney, W.M., "DIFMOS — A Floating-Gate Electrically Erasable Nonvolatile Semiconductor Memory Technology", IEEE Transactions on Electron Devices, ED-24, p. 594; May, 1977.

³Gulterman, D.C., Rimari, I.H., Halvorson, R.D., McElroy, D.J. and Chan, W.W., "Electrically Alterable Hot-Electron Injection Floating Gate MOS Memory Cell With Series Enhancement", *IEDM Technical Digest*, p. 340; Dec., 1978.

⁴Harari, E., Schmitz, L., Troutman, B. and Wang, S., "A 256-Bit Nonvolatile Static RAM", ISSCC DIGEST OF TECH-NICAL PAPERS, p. 108; Feb., 1978.

⁵Scheibe, A. and Schulte, H., "Technology of a New N-Channel One-Transistor EAROM Cell Called SIMOS", *IEEE Transactions on Electron Devices*, ED-24, p. 600; May, 1977.

⁶Hagiwara, T., Kondo, R., Yatusuda, Y., Minami, S. and Itoh, Y., "A 16Kb Electrically Erasable Programmable ROM", ISSCC DIGEST OF TECHNICAL PAPERS, p. 50; Feb., 1979.

⁷Lenzlinger, M. and Snow, E.H., "Fowler-Nordheim Tunnelling into Thermally Grown SiO₂", J. of Applied Physics, 40, p. 278-283; Jan., 1969. Figure 1. In FLOTOX both program and erase are accomplished by tunneling⁷ of electrons through the tunnel oxide using voltages of less than 25V. A typical endurance plot for a single cell appears in Figure 2. This shows that the threshold window remains open beyond 100,000 cycles. Also by keeping voltages low during read, this structure can retain charge over 10 years under full power, at operating temperatures. There is no refresh requirement no matter how many read accesses are made.

The FLOTOX cell configuration, shown in Figure 3, uses two devices, a select transistor and a memory transistor. Cell area is 0.85mil². Clearing of the memory is accomplished by programming every device in a row. This is done by selecting a row and raising the program line to VPP, which attracts electrons to the floating gate. Writing is accomplished by erasing selected bits within a word. This is done by again selecting a row, but now the program line is held at zero volts while selected columns go to VPP. Electrons are thus removed from the floating gates of the selected devices.

Figure 4 shows the 16K chip, which is arranged as 2K/8bwords. It is packaged with 24 leads with a pinout identical to the 16K EPROM^{*}. The chip is automatically powered down until selected (CE low). Read is accomplished by selecting the part and enabling the output buffers (\overline{OE} low). On the other hand, selecting the part and taking VPP to 20V for 10ms puts the chip in write mode and writes a word. If the incoming data are all 1's, then the chip automatically goes into clear mode and clears the addressed word. Thus, a clear-write sequence requires merely two 10ms writes, first all 1s, then the data desired. If clearing of the entire chip is desired, this can be accomplished with one 10ms pulse by applying VPP to \overline{OE} as well as the VPP pin with the chip selected. This approach allows a wide variety of functions while maintaining simple control and complete EPROM compatibility.

FLOTOX utilizes a new high performance N-channel twolevel-poly silicon gate technology with channel lengths of 3.5μ . Access times for the 16K FLOTOX E²PROM are below 200ns as shown in Figure 5. This allows use of the device with the newer microprocessors which operate in the 5-8MHz range without wait states. Other features of the 16K E²PROM are listed in the table.

FIGURE 5-Access time for E²PROM.

	16K E ² PROM	16K EPROM
Configuration	2K X 8	2K X 8
Package	24 pin	24 pin
Power Supplies		
read mode	+5	+5
clear/write	+5, +20	+5, +25
Write		
method	tunnel injection	hot electron injection
time/word	10ms	50ms
Clear		
method	tunnel ejection	UV light
time/word	10ms	_
time/chip	10ms	30 min
Access Time	200ns	450ns
Power Dissipation		
active	500mW	550mW
standby	100mW	100mW
Data Retention	10 years	10 years
Refresh Requirement	None	None

TABLE 1

FIGURE 2-Program/erase endurance for single cell.

COLUMN COLUMN SELECT SELECT MEMORY PROGRAM LINE A SELECT LINE B PROGRAM LINE B

[See page 271 for Figure 4.]

AFN-01913A

The electrically erasable programmable read-only memory, or EE-PROM, will one day be the standard form of program storage in microprocessor-based systems. It will follow in the steps of the ultraviolet-light-erasable PROM, for it, too, will become available in increasingly larger byte-wide arrays and will in time share silicon with single-chip microcomputers.

As with the E-PROM, the success of the EE-PROM described in this article hinges upon the mastery of a difficult process. The floating-gate avalanche cell, also pioneered by Intel, is a tricky construction that still eludes many a memory maker. Likewise, the widespread availability of large EE-PROMs is still years off.

The EE-PROM process will be perfected, though, because the rewards go beyond the elimination of the expensive quartz window on the E-PROM package. The electrically erasable memory will usher in systems previously not practical. The microprocessor system whose programs can be altered remotely, as by phone, is one example. Another is the system that is immune to power outages, as it protects its contents in ROM. Perhaps most important, systems will be able to adjust their own program memory to environmental changes.

To be sure, there is more than one way to build an EE-PROM. The metal-nitride-oxide-semiconductor (MNOS) structure has served for years in modest-sized arrays for TV tuning applications, for example. In fact, a year ago Hitachi Ltd. announced a 2-K-by-8-bit MNOS replacement for the 2716 E-PROM. Compatibility with the 2716 is the impetus behind the device described in the following article, but it uses only silicon and its derivatives, plus metal. Also, in place of avalanche injection, which can injure a cell, electrons tunnel to and from a floating gate. -John G. Posa

16-K EE-PROM relies on tunneling for byte-erasable program storage

Thin oxide is key to floating-gate tunnel-oxide (Flotox) process used in 2,048-by-8-bit replacement for UV-light-erasable 2716 E-PROM

by W. S. Johnson, G. L. Kuhn, A. L. Renninger, and G. Perlegos, Intel Corp., Santa Clara, Calif.

□ The erasable programmable read-only memory, or E-PROM, is the workhorse program memory for microprocessor-based systems. It is able to retain data for years, and it can be reprogrammed, but to clear out its contents for new data, ultraviolet light must be made to stream through its quartz window. This works well for many applications, but the technique foregoes singlebyte—in favor of bulk—erasure and in-circuit selfmodification schemes.

Electrical erasability is clearly the next step for such memories, but like ultraviolet erasure a few years back, it is hard to achieve. In fact, the design of an electrically erasable read-only memory is paradoxical. In each cell, charge must somehow be injected into a storage node in a matter of milliseconds. Once trapped, however, this charge may have to stay put for years while still allowing the cell to be read millions of times. Although these criteria are easily met individually, the combination makes for a design with conflicting requirements.

These demands are more than met in a new EE-PROM, which is a fully static, 2-K-by-8-bit, byte- or

Electronics / February 28, 1980

chip-erasable nonvolatile memory. At 16,384 bits, this new design not only meets the goal of high density, but also has long-term retention, high performance, and no refreshing requirement, in addition to functional simplicity unmatched by present nonvolatile memories. The device need not be removed from a board for alterations, and performance is consistent with the latest generation of 16-bit microprocessors such as the 8086.

This achievement required the development of a new nonvolatile process technology, HMOS-E, as well as a new cell structure, Flotox, for floating-gate tunnel oxide.

Conflicting requirements

Nonvolatile semiconductor memories generally store information in the form of electron charge. At cell sizes achievable today, this charge is represented by a few million electrons. To store that many electrons in a 10-millisecond program cycle requires an average current on the order of 10⁻¹⁰ amperes. On the other hand, if it is essential that less than 10% of this charge leaks away in 10 years, then a leakage current on the order of

The next memory. The 16-K electrically erasable programmable read-only memory is eminently suitable for microprocessor program storage. Organized as 2,048 by 8 bits, the EE-PROM allows full-chip or individual-byte erasure using the same supply ($V_{\rm pe}$) as for programming.

10⁻²¹ A or less must be guaranteed during read or storage operations. The ratio of these currents, 1:10¹¹, represents a difficult design problem. Few charge-injecting mechanisms are known that can be turned off reliably during nonprogram periods for such a ratio.

One structure that has proven capable of meeting such stringent reliability requirements has done so for many millions of devices over the last nine years. This is the floating-gate avalanche-injection MOS (Famos) device used in the 1702, 2708, 2716, and 2732 E-PROM families. In the Famos structure, shown in Fig. 1a, a polysilicon gate is completely surrounded by silicon dioxide, one of the best insulators around. This ensures the low leakage and long-term data retention.

To charge the floating gate, electrons in the underlying MOS device are excited by high electric fields in the channel, enabling them to jump the silicon/silicon-dioxide energy barrier between the substrate and the thin gate dielectric. Once they penetrate the gate oxide, the electrons flow easily toward the floating gate as it was previously capacitively coupled with a positive bias to attract them.

Because of Famos' proven reliability, the floating-gate approach was favored for the EE-PROM. The problem, of course, was to find a way to discharge the floating gate electrically. In an E-PROM, this discharge is effected by exposing the device to ultraviolet light. Electrons absorb photons from the UV radiation and gain enough energy to jump the silicon-dioxide energy barrier in the reverse direction as they return to the substrate. This suffices for off-board program rewriting, but the object of the EE-PROM is to satisfy new applications that demand numerous alterations of the stored data without removing the memory from its system environment. What evolved was the new cell structure called Flotox (Fig. 1b).

In the quest for electrical erasability, many methods were considered, and several potentially viable solutions were pursued experimentally. One initially attractive

AFN-01913A

2. **Tunneling.** For a thin enough oxide, as shown here, under a field strength of 10⁷ V/cm, Fowler-Nordheim tunneling predicts that a certain number of electrons will acquire enough energy to jump the forbidden gap and make it from the gate to the substrate.

approach attempts to harness a parasitic charge-loss mechanism discovered in the earliest E-PROMs. Referring again to Fig. 1a, the polysilicon grains on the top surface of the floating gate tend, under certain processing conditions, to form sharp points called asperities. The sharpness of the asperities creates a very high local electric field between the polysilicon layers, shoving electrons from the floating gate toward the second level of polysilicon. This effect is purposely subdued in today's E-PROMs by controlling oxide growth on top of the floating gate because this parasitic electron-injection mechanism would otherwise interfere with proper E-PROM programming.

It was first thought that asperity injection could be used to erase the chip. In fact, fully functional, electrically erasable test devices were produced; but the phenomenon proved unreproducible and the devices tended to wear out quickly after repeated program and erase cycling. After over a year's effort, that approach was abandoned.

Tunneling solution

The solution turned out to be the one that initially seemed impossible. After investigating many methods of producing energetic electrons, it was decided to approach the problem from a different direction: to pass low-energy electrons through the oxide. This could be accomplished through Fowler-Nordheim tunneling, a well-known mechanism, depicted by the band diagram in Fig. 2. Basically, when the electric field applied across an insulator exceeds approximately 10⁷ volts per centimeter, electrons from the negative electrode (the polysilicon in Fig. 2) can pass a short distance through the forbidden gap of the insulator and enter the conduction band. Upon their arrival there, the electrons

3. Current characteristic. In Fowler-Nordheim tunneling, current flow depends strongly on voltage across the oxide, rising an order of magnitude for every 0.8 V. Charge retention is adequate so long as the difference between programming and reading is at least 8.8 V.

flow freely toward the positive electrode.

This posed two fundamental problems. First, it was commonly believed that silicon dioxide breaks down catastrophically at about 10^7 V/cm, and MOS FETs are normally operated at field strengths 10 times below this. Second, to induce Fowler-Nordheim tunneling at reasonable voltages (20 v), the oxide must be less than 200 angstroms thick. Oxide thickness below about 500 Å had rarely even been attempted experimentally, and it was feared that defect densities might prove prohibitively high.

To be weighed against these risks, however, were several advantages. Tunneling in general is a low-energy, efficient process that eliminates power dissipation. Fowler-Nordheim tunneling in particular is bilateral and can be used for charging the gate as well as discharging it. Finally, the tunnel oxide area could be made very small, which is of course consistent with the needs of high-density processing.

With these motivating factors, development was initiated to grow reliable, low-defect oxides less than 200 Å thick. The success of this effort resulted in the realization of a working cell structure called Flotox.

The Flotox device cross section is pictured in Fig. 1b. It resembles the Famos structure except for the additional tunnel-oxide region over the drain. With a voltage V_g applied to the top gate and with the drain voltage V_d at 0 v, the floating gate is capacitively coupled to a positive potential. Electrons are attracted through the tunnel oxide to charge the floating gate. On the other hand, applying a positive potential to the drain and grounding the gate reverses the process to discharge the floating gate.

Flotox, then, provides a simple, reproducible means for both programming and erasing a memory cell. But

Electronics/February 28, 1980

4. Good endurance. The endurance of the EE-PROM depends on the threshold-voltage difference between the charged and discharged states. Though repeated cycling degrades thresholds, the chip should stay within tolerable limits for 10⁴ to 10⁶ cycles.

what about charge retention and refresh considerations with such a thin oxide? The key to avoiding such problems is given in Fig. 3, which shows the exceedingly strong dependence of the tunnel current on the voltage across the oxide. This is characteristic of Fowler-Nordheim tunneling.

The current in Fig. 3 rises one order of magnitude for every 0.8-v change in applied voltage. If the 11 orders of magnitude requirement is recalled, it is apparent that the difference between the voltage across the tunnel oxide during programming and that during read or storage operations must be in excess of 8.8 v. This value, including margins for processing variations, is reasonable. Furthermore, data is not disrupted during reading or storage so that no refreshing is required under normal operating or storage conditions. Extensive experimental testing has verified that data retention exceeding 10 years at a temperature of 125°C is possible.

Another important consideration is the behavior of the electrically erasable memory cell under repeated program erase cycling. This is commonly referred to as endurance. The threshold voltage of a typical Flotox cell, in both the charged and discharged states, is shown in Fig. 4 as a function of the number of programming or erasing cycles. There is some variation in the threshold voltages with repeated cycling but this remains within tolerable limits out to very high numbers of cycles—somewhere between 10⁴ and 10⁶ cycles.

Putting Flotox to work

The Flotox cell is assembled into a memory array using two transistors per cell as shown in Fig. 5. The Flotox device is the actual storage device, whereas the upper device, called the seleci transistor, serves two purposes. First, when discharged, the Flotox device exhibits a negative threshold. Without the select transistor, this could result in sneak paths for current flow through nonselected memory cells. Secondly, the select transistor prevents Flotox devices on nonselected rows from discharging when a column is raised high.

The array must be cleared before information is entered. This returns all cells to a charged state as shown schematically in Fig. 5a. To clear the memory all the select lines and program lines are raised to 20 v while all the columns are grounded. This forces electrons through the tunnel oxide to charge the floating gates on all of the

5. Working. To clear a Flotox cell, select and program lines are raised to 20 V and columns are grounded (a). To write a byte of data, the program line is grounded and the columns of the selected byte are raised or lowered according to the data pattern (b).

AR-119

selected rows. An advantage of this EE-PROM over E-PROMs is the availability of both byte- and chip-clear operations. The byte-clear one is particularly useful for a memory of this size. When it is initiated, only the select and program lines of an addressed byte rise to 20 v.

To write a byte of data, the select line for the addressed byte is raised to 20 v while the program line is grounded as shown in Fig. 5b. Simultaneously, the columns of the selected byte are raised or lowered according to the incoming data pattern. The bit on the left in Fig. 5b, for example, has its column at a high voltage, causing the cell to discharge, whereas the bit on the right has its column at ground so its cell will experience no change. Reading is accomplished by applying a positive bias to the select and program lines of the current. A cell with a charged gate will remain off in this condition but a discharged cell will be turned on.

From the outside

EE-PROM has evolved from the 2716 E-PROM. Both are housed in 24-pin dual in-line packages, for instance, and both offer a power-down standby mode. In addition, both utilize the same powerful two-line control architecture for optimal compatibility with high-performance microprocessor systems. Referring to Fig. 6a, it is seen that both control lines, chip enable (CE) and output enable (OE), are taken low to initiate a read operation. The purpose of chip enable is to bring the memory out of standby to prepare it for addressing and sensing. Until the output-enable pin is brought low, however, the outputs remain in the high-impedance state to avoid system bus contention. In its read mode, the EE-PROM is functionally identical to the 2716.

A single + 5-v supply is all that is needed for carrying out a read. For the clear and write functions, an additional supply (VPP) of 20 v is necessary. The timing for writing a byte is shown in Fig. 6b. The chip is powered up by bringing CE low. With address and data applied, the write operation is initiated with a single are cleared with a single 10-ms pulse. Addresses and 10-ms, 20-v pulse applied to the V_{PP} pin. During the data are not all involved in a chip-clear operation.

6. Timing. The Flotox memory's operating modes are shown for In terms of its pinout and control functions, the reading (a), writing or clearing of bytes (b), and chip clearing (c). Both writing and erasing require a 10-ms program-voltage pulse. The read mode is functionally identical to that of a 2716 E-PROM.

write operation, OE is not needed and is held high.

A byte clear is really no more than a write operation. As indicated in Fig. 6b, a byte is cleared merely by being written with all 1s (high). Thus altering a byte requires nothing more than two writes to the addressed byte, first with the data set to all 1s and then with the desired data. This alteration of a single byte takes only 20 ms. In other nonvolatile memories, changing a single byte requires that the entire contents be read out into an auxiliary memory. Then the entire memory is rewritten. This process not only requires auxiliary memory; for a 2-kilobyte device it takes about one thousand times as long (20 ms vs 20 seconds).

Chip clear timing is shown in Fig. 6c. The only difference between byte clear and chip clear is that \overline{OE} is raised to 20 v during chip clear. The entire 2 kilobytes

Electronics / February 28, 1980

Flexibility, non-volatility, and a highly consistent system architecture — those attributes characterize the 2816 Electrically Erasable PROM. In this application note the electrical parameters that define the performance and operation of the device will be discussed. The concept of EPROM-like read architecture, encompassing high speed and 2-line control is detailed. In addition, the write/erase access needs some discussion as well. In the context of this discussion, the device performance, in its entirety, will be considered. In other application notes (Ap 102 and Ap 105), the system hardware and software architectural implications are discussed in detail.

INTRODUCTION

The 2816 is a 2K \times 8 bit PROM that is electrically erasable. It's contents can be changed in the system without necessary removal from a board or cabinet. Along with this dramatic flexibility, the 2816 is nonvolatile, just like the EPROM. The E² then benefits the user with EPROM-like data integrity and the additional capability to alter the memory data in-system. These two capabilities have never been possible with semiconductor memories. In addition to retaining data like the EPROM, the 2816 has very fast read access; data can be obtained from the device in less than 250 ns. This benefits system designers with high system performance to allow very competitive product entries.

The inherent flexibility that 2816 technology offers comes from the ability to alter single bytes of information. That is, just like a RAM, one byte of information can be erased and rewritten. Single-line editing of information is now possible. Direct register to memory transfer can occur without using additional and costly RAM buffer, which is unlike bulk erasable devices. In addition, if one wishes to erase the entire device at once, then a chip erase function is available. With this operation, all 2048 bytes of data can be returned to Logic 1 in 10 ms. The entire memory can be erased 300 thousand times faster than conventional EPROMs.

Because of the capability to write and erase data insystem, the 2816 architecture is designed to be very consistent. That is, the interface to the conventional microprocessor is simple and straight forward unweildy and costly interface circuits are unnecessary. In the following paragraphs the read access, erase access, and write access modes will be discussed.

READ ACCESS MODE

The 2816 pinout, shown in Figure 1, is nearly identical to that of the 2716 EPROM. In the read mode, there are 3 groups of pins that are relevant: address, data, and control. The address input pins simply direct information within the device to be placed on the data output pins. When either of the control pins, \overrightarrow{CE} or \overrightarrow{OE} is logic

"1", the data output pins are tri-stated. The combination of these control pins, called 2-line control, eliminates bus contention problems commonly encountered in microprocessor systems.

Chip enable is used as the primary device selection mechanism, and typically is obtained from address decoders. If chip enable alone is used to strobe data from the device to a common data base, then serious bus contention problems can result. Bus contention occurs. Basically, when one device on a common data bus is turned on, its outputs transition to either high or low levels. When it is deselected, there is a finite time delay before the output goes high impedance (this delay is a $T_{\rm DF}$ time which is specified in the data sheets).

Contention occurs, as shown, when one device is turning on while another is turning off. The timing overlap causes the data pins to be illegally driven from two sources. On any memory device with a single selection pin, system level bus contention can occur. Intel has pioneered the solution to bus contention through the use of the output enable pin. Output enable, as mentioned, simply strobes the output buffer. When output enable is connected to the microprocessor \overline{RD} (read) line, contention is eliminated because no timing overlap can occur (as shown in Figure 3). Note that \overline{CE} (derived from addresses) occurs far outside the \overline{OE} signal — no overlap is thus possible. The two line control architecture of the 2816 therefore eliminates bus contention problems.

	_					_		_	
A7 [1	5	24	Vcc	A7	1	5	24	Vcc
A6 🗌	2		23	A ₈	A6 🗌	2		23	A8
As [3		22	A ₉	A5 🗌	3		22	A9
A4 [4		21	Vpp	A4 [4		21	Vpp
A3 [5		20	OE	A ₃	5		20	OE
A2 [6	2816	19	A10	A2 [6	2716	19	A10
A1 [7	E2	18	CE	A1 [7	UV	18	CE
A0 [8		17 1	7/07	A ₀	8		17	07
I0/00	9		16	6/06	00	9		16	06
I1/01	10		15	15/05	01	10		15	05
I2/02	11		14	4/04	02	11		14	04
GND	12		13	13/03	GND	12		13	03

A0-A10	ADDRESSES
CE	CHIP ENABLE
ŌĒ	OUTPUT ENABLE
00.07	DATA OUTPUTS
10-17	DATA INPUTS
Vpp	PROGRAM VOLTAGE

Figure 1. 2816 Pinout

AP-101

3-3

Another important characteristic of the memory access, is the speed at which the device can respond. In contemporary microprocessor systems, when information is requested from memory, addresses emerge from the CPU and are propagated to the memory. The memory responds, and sends its information back to the CPU. This basic cycle, shown in Figure 4, dictates the speed of the memory. Typically, the system diagram of Figure 5 is common. Delay (both address and data) exists between the CPU and memory. Any delay means that the memory must respond faster, to keep the access within the CPU cycle window. With an 8088 processor in a large system, given a delay of 100 ns, the memory must have an access time of around 200 ns.

The access timing for the 2816 is shown in Figure 6. As shown, it used 2-line control architecture and offers unparalleled high speed (250 ns). High performance designs can now operate at optimum efficiency without throwing away processor performance that cannot be used because of slow memories.

The DC voltage needed during the read access is 5 volt only. The only other pin requiring a voltage input is V_{pp} . During read operations, the V_{pp} pin must be in the range of 4 to 6 volts. The broad range of this signal is appropriate because V_{pp} must be switched to a high voltage then writing. The specification allows the design of simple and low cost voltage switches. A dramatic improvement in design ease has been made over the 2716, where V_{pp} must be connected to the V_{cc} pin.

Figure 4. Basic MPU Data Read Cycle

Figure 5. Common System Architecture

AP-101

Figure 6. 2816 Read Access Timing

ERASE ACCESS MODE

The information stored in 2816 memory can be erased or changed through the application of simple electrical signals. A single, 10 ms, 21 volt pulse is all that is necessary to change any byte of information. The byte of data that needs to be altered must first be erased, then written.

The erase operation occurs automatically when certain information is presented to the 2816. In most cases, the byte must be erased prior to a data write. Whenever a bit within a byte must transition from a Logic 0 to 1, that byte must first be erased. Transitions from 1's to 0's can occur without an erase operation. Reasons behind the necessity for byte erase have been discussed in AR-118.

Mode selection for the 2816 is shown in Figure 7. The careful reader will note that the write and erase modes are basically identical with exception of the data input pins. When the input pins are all Logic Level "1", an automatic erase operation occurs. When a data pattern of ones and zeroes are presented, that data pattern is imbedded into the 2816 array. To accomplish byte erase the 2816 is selected by bringing \overline{CE} to a logic Low. The address is provided to the device as well. To erase, a data input is set to "FF" Hex. The Vpp is then pulsed, through an exponential, to 21 volts. The timing diagram for this operation is shown in Figure 8. Note that there are set-up time requirements for address and Vpp to chip enable. At the completion of the write cycle, there are hold time requirements from Vpp as well. Vpp must rise through an exponential specified by an RC time constant, and be held for a minimum of 9 ms. V_{pp} can fall as quickly as possible, in fact, V_{pp} should be driven to 4 to 6 volts immediately to allow reading from the device, after a write. V_{pp} must rise slowly to 21 volts to allow low-level cell current flow to minimize cell voltage potentials. Simple circuitry is needed to provide this rise, and is explained in AP 102. During the entire erase cycle the output enable pin is kept at a VIH level. This makes much sense from a system compatibility standpoint since \overline{OE} is an active low signal for read functions, and when high is inactive for erase/write functions.

In the erase mode \overline{CE} is brought low. Microprocessor consistancy is preserved in this case as well because \overline{CE} is derived from decoded addresses. The same address decoding circuitry — and nothing more — can be used to select the device in either READ or ERASE modes. This makes the system implementation very simple and straightforward.

PIN	CE (18)	OE (20)	Vpp (21)	INPUTS/ OUTPUTS
READ	VIL	VIL	+4 to +6	Dout
STANDBY	VIH	DON'T CARE	+4 to +6	HIGH Z
BYTE ERASE	VIL	VIH	+21	$D_{IN} = V_{IH}$
BYTE WRITE	VIL	VIH	+21	DIN
CHIP ERASE	VIL	+9 to +15V	+21	[11] D _{IN} = V _{IH}
E/W INHIBIT	VIH	DON'T CARE	DON'T CARE	HIGH Z

Figure 7. Mode Selection $V_{CC} = \pm 5V$

AP-101

Figure 8. Byte Erase Timing

WRITE ACCESS

From the standpoint of functionality, the write access mode is identical to the erase mode. All setup times, hold times, voltage and timings are the same as used to erase the device. The only difference in operation is the data that is presented to the 2816. When a write is to occur, the data that is to be written is simply supplied to the device. The $V_{\rm pp}$ pin is pulsed exactly as before, all rise times and timings are consistent with the erase mode.

The timing diagrams for the write mode are shown in Figure 9. Also noted in that Figure are the actual device timing parameters.

Figure 9. Byte Write Timing

In general, the 2816 has been designed to allow simple and straight forward mode selection and timing. In the erase/write mode, the control and functional pin designations reflect an in-system writable architecture. The design closely approximates RAM architecture to make system design easy.

The 2816 differs substantially from the 2716 EPROM in the write mode. The mode select tables for both devices are shown in Figure 10. In all cases, the 2816's functionality optimizes read and write operations above and beyond those inherent in the 2716 EPROM. All of the modes reflect a goal of simple designs in microprocessor systems.

IMPROVED					IMPROVED			
MODE	CE (18)	0E (20)	Vpp (21)	Vcc (24)	INPUTS/ OUTPUTS			
READ	VIL	VIL	+4 to +6	+5	DOUT	2816		
	VIL	VIL	+5	+5	DOUT	2716		
STANDRY	VIH	DON'T CARE	+4 to +6	+5	HIGH Z	2816		
STATUDI	VIH	DON'T CARE	+5	+5	HIGH Z	2716		
RYTE ERASE	VIL	VIH	+21	+5	DIN = VIH	2816		
DITELNASE	N/A	N/A	N/A	N/A	N/A	2716		
BYTE WRITE	VIL	VIH	+21	+5	DIN = DIN	2816		
(PROGRAM)	VIH	VIL	+25	+5	$D_{IN} = D_{IN}$	2716		
E/W (PROGRAM)	VIH.	DON'T CARE	DON'T CAR	+5	HIGH Z	2816		
INHIBIT	VIL	VIH	DON'T CARE	15	HIGH Z	2716		

Figure 10. 2716 Mode Selection

CHIP ERASE ACCESS

In order to erase all 2K bytes in 10 ms, special signalling is required. The output enable pin has been multiplexed for Chip Erase functions. To put the 2816 in that mode, \overline{OE} is set in the range of 9 to 15 volts. Once engaged, the chip erase occurs by simply pulsing V_{pp} and \overline{OE} in the same way as the write and erase modes. While a higher voltage is needed to perform chip erase, virtually no current flows into the \overline{OE} pin. A standard 10 μ A leakage current is specified over the full voltage range.

The timing diagrams and specifications for this mode are shown in Figure 11. The careful reader will notice that all of the signals (with the exception of \overline{OE}) are identical to the write/erase access modes.

DC VOLTAGE CONDITIONS

In the write and erase modes, the V_{pp} signal must be held within the 20 to 22 volts operating range. The 21 volt typical voltage is derived from Intel's patented HMOS-E processing. In the long term this will become a standard level for program voltages. If greater than the maximum of 22 volts is applied to the 2816, permanent and destructive device damage will result. If less than 20 volts is applied, then long term data retention is not guaranteed. The DC specification for the device is shown in Figure 12.

AFN-01913A

Figure 11. Chip Erase Timing

0111001	IBOL PARAMETER LIMITS UNITS	LIMITS				
STMBOL		UNITS	CONDITIONS			
Vpp	WRITE/ERASE VOLTAGE	20	21	22	v	
IPP(W)	VPP CURRENT (WRITE/ERASE)			15	mA	CE = VIL
VOE	OE VOLTAGE (CHIP ERASE)	9		15	۷	$I_{\overline{OE}} = 10 \mu A$
IPP(I)	VPP CURRENT			5	mA	$V_{PP} = 21,$ $\overline{CE} = VIH$

Figure 12. Write/Erase DC Parameters

ENDURANCE ISSUES

The 2816 has a characteristic ceiling on the number of erase/write cycles that can be endured. This ceiling exists because the cell threshold window changes (or closes) as the device is cycled.

Eventually, the device becomes permanently erased. Figure 13 shows how the single bit window changes.

Figure 13. Single Bit Endurance Window

The E^2PROM from Intel is specified to handle 20,480,000 erase/write cycles per chip. Each byte can be cycled up to 10,000 times, and each byte operates independently of any other. Given a ten year machine life, each byte can be cycled up to 3 times per day. Figure 14 shows a graph relating product life and maximum write/erase frequency. In the majority of applications, less than 3,000 cycles are required.

This makes the 2816 an ideal device for those systems.

Figure 14. Write/Erase Frequency vs Product Life

CONCLUSION

In this application note the concept of 2816 functionality has been discussed. Very fast read access, with powerful control features was detailed. The functionality of powerful automatic erase, and write, make the 2816 simple and cost-effective to use. To summarize the 2816's features offer unexcelled user benefits. Never before have EPROM retention features been merged with RAM-like flexibility.

INTRODUCTION

 E^2 —Electrically Erasable, that's the key to the new 2816. The flexibility of RAM and the non-volatility of ROM have now been merged to form E^2 . System designers can now benefit from in-circuit changes to non-volatile program and data storage. Microprocessor-based systems can be extended to a higher level of functionality and performance, while costs associated with software changes, maintenance and service can be dramatically reduced. A ROM with RAM-like flexibility—that's E^2 .

This application note will discuss the concept of microprocessor interface to the 2816. Because E^2 encompasses both RAM and ROM, the interface concepts are unique. In this note, the control interface will be discussed specifically (four of which are detailed here). The concept of V_{PP} switching, and chip erase control circuits are also presented. Finally, using multiple 2816's in-system will be shown. In previous application notes (AP-101) the component characteristics were discussed. Here we will detail the interface of the component to the processor.

The specifications of the 2816 have been discussed in detail in AP-101. The most unique characteristic of the interface with the microprocessor is the concept of the write access. The read operation is fairly straightforward in that it does not depart from traditional EPROM concepts. The read operation is very fast, allowing compatibility with current and future microprocessors, benefiting the user with highest possible throughput and system performance. Because the write cycle time is not the same as read access, a unique situation exists for the system designer.

Because the 2816 requires a write time of approximately 10 milliseconds, there is an intrinsic timing difference between the microprocessor and the memory. If one applied the 10 millisecond write time to the write cycle time of the microprocessor, one could execute approximately 50 thousand write cycles in the duration of 10 milliseconds. Additional circuitry is required to properly interface these timing differences. There are several approaches for doing this, several of which will be discussed.

BUS INDEPENDENT TRANSFER

These approaches can be broken down into two general categories: bus dependent and bus independent. The bus independent concept allows the microprocessor to run at full speed while the 2816 write operation progresses. The microprocessor sends out a write operation just as usual, except that a control interface continues the 10ms write cycle independent of the CPU. The microprocessor is notified at some later time that the write operation is finished. This can occur either

through interrupt service, or through an I/O polling operation. Thus, the microprocessor can run independently of the E^2 controller during the write time. Appropriately, it is "bus independent." Table 1 shows a partial list of appropriate applications using this controller type.

Table 1. Bus Independent Applications

CRT Terminal Control	
Navigation Computers	
Industrial Controllers	
Telecommunications	
Military Computers	

BUS DEPENDENT TRANSFER

The other approach involves dedicating the microprocessor during the E^2 write cycle. In this case wait states are inserted into the memory cycle as the write is proceeding. The disadvantage of such an approach is that the microprocessor is inhibited from doing any other operation during the 10 millisecond write time.

In many applications, however, this can be a suitable solution to the 2816 control issue. An example is the case where information is transferred into the E^2 on system power up or power down. During the power sequencing times, one expects that the system would not be executing any other instructions, or in fact, doing anything other than servicing the E^2 device. In terms of hardware, this scheme would be implemented by controlling the microprocessor's ready or wait line while the write is occurring. This approach offers the advantage of being very simple to implement and does not require any software overhead in terms of interrupt service or I/O polling. Additionally, this scheme is acceptable in many applications where erase/write is only occasional. Such an interface is termed bus dependent. Table 2 provides an applications guide for this interface.

Table 2. Bus Dependent Applications

199	Program Storage	
	Look-up Tables	
	Remote Data Collection	

We will show that the two distinct control applications dictate the amount of hardware required to interface the device to the microprocessor, as well as the efficiency at which the information transfer occurs. Above all, the individual application area for the E^2 will uniquely determine the kind of control circuitry that is required.

Based on these two distinct areas, we will discuss several different recommended interfaces that have been generated for use with the device. Though these controllers were designed to operate in an 8085/8088/8086 based system, they can be easily adapted to any kind of microprocessing environment.

INTERFACE OVERVIEW

There are five controllers at present, four of which are available for use with the 2816 Demonstration Unit. The Controller I is a small scale integration implementation which uses the microprocessor's ready line as a means of inserting wait states into the memory cycle. It is a very simple controller application; one that is dedicated to the microprocessor. For this controller, the microprocessor is inhibited from operating during the time that the 2816 is being written to. Figure 1 is a block diagram for this control interface.

Figure 1. Controller | Block Diagram

The Controller II implementation is an interrupt driven interface, which requires little software overhead. In this case, the information is sent into the interface while the microprocessor simply strobes the write line as normal. The controller then handles all the necessary latching and generation of signals for the E^2 device. At the completion of the write cycle, the controller signals the microprocessor with a restart vector to interrupt service routines. The block diagram for Controller II is shown in Figure 2.

The Controller III design is a more integrated version of II; it uses an Intel 8155 for controlling, latching, timing, and other functions. This controller, however, requires software in order to drive the 8155 and to set up the proper address/data lines to the 2816 during the write cycle. See Figure 3 for this block diagram.

Figure 3. Controller III Block Diagram

The Controller IV implementation is a more highly integrated version of III; it uses an 8155 for writing and reading of the 2816. It also requires more software for the necessary initializations. A block diagram is given in Figure 4. Controllers I through III allow the 2816 to be read at very high speeds. Controller IV, however, requires long read times as reading occurs through the 8155 I/O port.

Figure 4. Controller IV Block Diagram

Controller V is an interface using a Bipolar PROM as a state machine. In this case there are two separate addresses for the E^2 device in the system; each of which corresponds to a different controller function. The first address corresponds to reading and writing of the E^2 , the second address to chip erasure of the 2816. This controller is easily applied where a large memory space is available, as in a 16-bit microprocessing system.

CONTROLLER I DESCRIPTION

Examining the controller implementations in more detail, we find that the Controller I interface inhibits the microprocessor from operating during the write time. This controller is very useful in applications where one is to load information into the E² during power up or power down. In the case of a test system using 2816 to contain program store, one might want to store the test code and change it periodically when new devices become available or modifications to present codes are necessary. In this kind of implementation, the E² holding the program store would not be doing anything during the time that its data is being changed. One sends in serial information, perhaps from a telephone line, and alters the device during the time that the machine is not operating. In this case we are not concerned with the amount of time it takes to write the 2816 because we are totally dedicated to doing so during the machine down time. Another example would be storing daily totals or other information into E^2 at the end of a service period. In this case, when the machine is powered down it will automatically update the 2816 as a data memory. The amount of time it takes to do this is irrelevant because the machine is totally dedicated to the task during its shut down period.

The Controller I implementation discussed here uses three components in the system, shown in Figure 1. The 2816 address and data lines are connected directly onto the microprocessor bus. The chip enable line for the 2816 is connected directly to the decoded output of a memory decoder. Output enable control is handled through the V_{PP} switch, which is controlled by the 9602 timer and the NOR gate logic. When a write operation to the 2816 occurs, the following sequence transpires: Addresses and data are sent into the device just as in any other memory element. When the decoded address for the 2816 appears, the 9602 one-shot is triggered. This triggering of the timer is dependent on the chip enable of the 2816 and the presence of the microprocessor write control signal. When the 9602 timer is triggered, a full 10 millisecond pulse is timed. This pulse is applied to the V_{PP} switch. When the switch receives the 10 millisecond pulse, the VPP signal is raised to the 21 volt programming level. Also, when triggered the 9602 timer pulls the microprocessor ready line to an inactive low level. This signals the microprocessor that the memory element is not ready to relinquish the data bus, or indeed requires a long write time.

The ready line inhibits the microprocessor from incrementing the program counter and causes the processor to provide stable signals to the 2816 during the 10ms pulse. At the completion of 10ms, the timer disengages the Vpp switch, stopping the write. It also pulls the microprocessor ready line to high level. When the ready line is pulled high, it indicates that the memory element has completed its cycle and that the microprocessor can continue execution as it normally would. Because the 2816 requires a transparent clear and write, one has to send all 1's into the device, engage the VPP switch, and repeat the sequence for the proper data. The total cycle time for the write is 20 milliseconds. It takes approximately 40 seconds in order to write the entire device in this manner, 20 seconds to erase and 20 seconds to write on a byte-per-byte basis. However, if one is going to write the entire block at one time, the chip erase function of the 2816 would be implemented. Thus, one would erase the entire chip at once for 10 milliseconds, and then write the individual data at each byte location. The total cycle time would be approximately 20 seconds. Figure 5 shows the schematic diagram, and Figure 6 the PC layout for this controller implementation. Figure 7 provides a system timing diagram.

The components mentioned were chosen for Controller I more for convenience than for circuit design requirements. Conceivably, one could have other devices operating in the system to provide timing of the 10 millisecond pulse and switching of the $V_{\rm PP}$ signals. A programmable timer could exist within the microprocessing environment and could time out the 10 milliseconds more accurately than is possible with the 9602. One of the difficulties with the one-shot is the inherent variability of the RC time constant used to time 10 milliseconds. If the system is to operate over a wide range of temperatures, it would be necessary to choose the RC constant so that it is temperature compensated.

The use of this controller presents no software burden to the CPU. The E^2 device is treated as any other memory element in the system. The reason for this lack of software requirement is the fact that all the burden is placed on the system hardware during the write time.

3-13

Figure 6a. E²-Demo II Controller I

3-14

Figure 7. Controller | Write/Erase Timing

CONTROLLER II DESCRIPTION

The Controller II design falls into the second realm of E^2 control. This Controller allows writing of the 2816 independent of the microprocessor system. In this case the microprocessor is free to do other tasks during the write time and is interrupted through a restart signal at an appropriate time. The Controller II interface has been optimized for system performance. There is little software burden in writing the device other than interrupt service. Such a bus-independent controller is useful in applications where real time operation is essential. Applications such as high speed process control, CRT systems, navigation, and other real time environments can use such an interface. Generally, any system implementation that cannot tolerate 10ms bus dependency is an ideal one for use with this control implementation.

The controller is composed of two main functional segments. The first consists of latches and buffers, which provide stable signals to the 2816 during the write cycle. The other section of control is the use of a timer, a Vpp switch, and the interrupt service logic required to manage all the latching, controlling, and timing functions. In the read operation the E² device can be read at very high speed. This is similar to Controller I, the only difference being that a 8286 bidirectional data transceiver is inserted between the data bus and the 2816. This was necessary in order to isolate the E^2 from the data bus during the write operation. The latching functions for the address and data are provided through Intel 8282 latches. In addition, there is a 9602 timer (as with Controller I) which provides the 10 millisecond pulse. A similar V_{PP} switch is used in this implementation. A block of interrupt service logic, which provides write complete interrupts and illegal-access interrupts, is used to signal the microprocessor after the write is complete. The illegal-access interrupt also notifies the microprocessor should it attempt to access the device during the time that the write is in progress. A block of selection logic causes the latches and the buffers to be enabled and directed in the proper fashion and also generates the proper chip enable and output enable signals for the 2816.

The basic timing of this controller is as follows: When the microprocessor sends address, data, and control signals to the interface, it causes the data and addresses to be latched in the 8282 latches. This also causes the 8286 buffer to be disabled, isolating the 2816 from the data bus. At the time that the write and chip enable appear at the select logic block, the timer is engaged. The timer causes the Vpp switch to pulse the Vpp line, causing a write, and also engages the interrupt service logic to an initialized state. When the timer completes its 10 millisecond time out, it does several things. First, the timer disengages the Vpp switch, discontinuing the write. Secondly, the 8286 buffer is enabled and the 8282 latches are set into a state normal for read operation. When the timer finishes the controller is reinitialized into a read mode. Finally, the timer signals through the interrupt service block that a write complete has occurred. Should the microprocessor request access to the E^2 during the long write time, the timer and the interrupt service block would also signal an illegal access. Figure 8 is a schematic diagram, Figure 9 illustrates the controller timing relationships. Controller II implementation optimizes two different characteristics for the system. It optimizes the read characteristic, since E^2 can be read from at very high speed. Secondly, it does not require any system software other than interrupt service to perform a write. The software required is the transparent erasing and the actual data write. All of the necessary software functions that are associated with the Controller III and IV implementations (which will be discussed) are achieved through hardware design in Controller II.

Such a controller has applications in systems where real time data processing is necessary. In this case, the microprocessor can write to the E^2 and then continue with other tasks as if the device were a high speed RAM. This controller also requires little software from the system software bank, making it very useful in situations where code space is at a premium.

There is little software burden associated with this controller, making it an ideal solution for a system with low software overhead. All the hardware handles the generation of the timing pulses and the signaling of the interrupt service at the proper time. Figure 10 shows the printed circuit layouts.

Figure 8b. E²-Demo Controller II (Continued)

3-19

CONTROLLER III DESCRIPTION

The Controller III interface has been designed to optimize several important characteristics of the 2816. In addition, it allows real-time microprocessor control while reducing inherent hardware burdens to the system. The Controller III implementation reduces the hardware overhead of Controller II, while maintaining interrupt handling through the use of software. Much of the hardware is reduced by integrating this onto a standard Intel device; an 8155 I/O port, timer, RAM device. The 8155 is used to contain the timing and latching functions previously accomplished with the descrete devices used in Controller II.

Figure 5 details the block diagram of Controller III. The characteristics optimized in the Controller III design are read access speed and real-time processing capability. There is an 8155 device that latches the data and address during the write cycle, multiplexers which select either 8155 or system bus addressing, and an interrupt service block. The 8155 takes over most of the functions previously done with discrete latches and buffers. The read cycle is composed of sending addresses into the controller interface through the multiplexers to the 2816. After the access time delay, data appears at the 2816 outputs and is routed through a buffer to the data bus. The read path is very rapid, as address/data delays only compose the multiplexer and the buffer delay.

In the write access mode, the 8155 provides stable signals to the 2816 during the 10ms write cycle. In addition, the 8155 times out the proper write pulse width, all under software control. The internal timer within the 8155 not only controls the additional support circuitry, but the Vpp switch as well. In the write operation, address and data information is sent to the 8155 through the system bus. The addresses are propagated through port B0-7 and C0-2. These port outputs are latched during the entire write cycle and provide a stable address through the multiplexer to the 2816. The remaining bits on the ports gate the chip enable, output enable control functions, as well as multiplexer and V_{PP} switch select. The timer output of the 8155 is fed into interrupt service flip-flops and reinitialization section.

The write cycle is composed of sending address/data information to the ports and instructing the 8155 timer to time out for the full 10ms. During this time the address data signals remain stable, the V_{PP} switch is engaged, and the 2816 is written. At the completion of

this 10ms time, the multiplexers and the buffer are reinstated to a read mode and the microprocessor is interrupted. In addition to providing the interrupt on write complete, the controller interface interrupts the processor when it illegally requests information from the E^2 during the write cycle. Conceivably, one could access the E^2 during the 10ms write time. The controller disallows this through the use of an illegal access interrupt structure.

Figure 11 shows the schematic diagram of this Controller III implementation. The multiplexer elements are 2 to 1 multiplexers, which select either the address bus or the output of the 8155 ports for use in addressing the 2816. The select line, Pin 1, on these multiplexers is controlled through the additional port on the 8155 through software control. An 8286 bidirectional data transceiver is used to select either data from Port A, or data from the data bus. The direction control on the device is selected in such a fashion that data can only be driven from the E^2 device to the data bus. The buffer is enabled from a signal in the control logic, depending on whether a write is in progress. A standard VPP switch is employed in Controller III, just as I and II. In addition, a 7497 is used to reduce the clock cycle frequency provided to the 8155. In order to time out a full 10 milliseconds, the 8155 clock input must be lengthened to greater than the 320ns which the processor provides. Conceivably, a 7474 flip-flop could be used to divide the signal by a factor of 2, rather than using the 7497.

The cost of the Controller III implementation is somewhat less than a Controller II, because of the reduced hardware space. The high level of integration allowed by the 8155 yields a much more cost effective solution. The major trade-off in reducing the hardware costs and space is due to increased software burden internal to the operating system. Approximately 100 bytes of software are needed to drive the 8155 interface in the write mode and flowchart shown. In addition, there is software required for handling the interrupt service in the central processing core.

Installation of such a controller on a printed circuit board is shown in Figure 12, where the front and back layouts are shown. The main goal of the 2816 Controller III interface was to reduce hardware burden in addition to preserving the fast read access of the 2816. A higher level of integration was desired to reduce the pin and component count of the Controller II implementation. In addition, the use of the 8155 RAM section could play a considerable role in increasing the functionality of this controller. The 8155 could contain the information necessary to segment the 2816 memory.

AFN-01913A

3-24

Figure 12a. E²-Demo Controller III 3-25

CONTROLLER IV DESCRIPTION

Data collection is the key with the Controller IV implementation. The interface described here was designed to accommodate those designs in a data-logging or data-store application mode. The constraints for such a design are small size, relatively low power, and a high level of integration. Those constraints that are not of concern in a data-store application are read access time, where write time may be critical. An attempt was made to reduce the hardware burden associated with a data logging application, while maintaining a relatively efficient write access interaction. The read access time is the parameter that has been compromised for this design. In this case we use an I/O port, timer chip, as before, to cause latching of the signals for the 2816. However, the 8155 is utilized for both read and write operations. To read from the 2816, address/data information is sent into the 8155.

Addresses are sent into the 2816 through Port B and C, data is read back out from Port A. Since the I/O ports on the 8155 can be configured in either input or output modes, we can use one set for addresses and the other set for data. Data is brought back from the 2816 through the 8155 and placed on the multiplexed address/data bus. In order to write to the 2816 address, a software routine is set up which maps into the 8155 port.

Writing is accomplished by sending the address information through the address data bus into the 2816 through Ports B and C. The data is sent into Port A and is held latched while the write is in progress. Port C3 controls the chip enable function. Output enable and $V_{\rm PP}$ drive are controlled by peripheral logic circuitry. To cause a write to the 2816, after the address/data information is loaded into the ports, the timer is commanded to time out. At the completion of the 10ms the processor is interrupted from the interrupt service block. A 7497 divider is employed as the case of Controller III to reduce the clock input to the 8155 device. In addition, the interrupt service logic maintains the handling of write complete interrupts and illegal access interrupts. Should the processor request access to the controller through the 2816 during the write access, an illegal access interrupt is generated. At the completion of the 10ms write cycle an interrupt is also generated causing the processor to vector to a restart subroutine in the software bank.

A high level of integration is achieved in this design because of the lack of discrete hardware control of the operation. Most of the read and write operations are controlled through system software. We are able to achieve a compact hardware design while maintaining reduced overhead during the 2816 write access. The trade-off is the the 2816 read access which requires several instruction cycles to set up the address and remove the data through the I/O port.

The cost for this implementation is significantly less than those previously mentioned because of the lack of hardware and minimal space requirements. Power consumption is relatively low. The trade-off factor is in the amount of required code space in the central system core to achieve write and read access from the 2816. The requirement is approximately 130 bytes, the remaining bytes over the Controller III implementation are needed for the read mode.

Figure 13 shows the schematic diagram of this Controller IV interface. The block diagram for this controller is listed in Figure 4. Figure 14 shows the printed circuit layouts for both sides of the board.

The Controller IV interface is ideal for applications where read access time is not critical, but power supply and space constraints are more important. Remote data loggers and difficult-to-access data storage systems are ideal for this design type.

J1 10 WR 11 ALE 12 AD0 13 14 15 16 17 18 19 AD7 WR 1 3 TP5 DO PAO 2 D0 10 11 9 13 14 15 16 17 10 C 2 12 13 14 D7 28 PA7 D7 5V 8 17 [−]C1, 2, 3, 4 29 7 PBO AO 10/M -19 12 1 20 6 B U/C B 7497 2816 5 6 3 CLK v T1 8155 CLK
 CLK
 B
 7497
 Y

 E
 F
 A
 C
 D
 M
 M
 O

 2
 3
 4
 14
 15
 10
 11
 13
 GROUND PB7
 36
 1

 37
 23

 38
 22

 NO CONNECTION 19
 A10 CE
 OE
 VPP
 16 PCO 1 RESET 35 9 9 RD 6 TO 7404 18 20 21 4 ¥ TP7 TP2 PC WRITE COMPL 40 R3-330 R4-2K ¥ 100 CE 5 . 12 D PR 9 11 E 9 7474 Q 8 CLR -~~ 7400 8 2 R2 13, TP8 7404 7407 н R5-330 D 18 12 Z0 42 8 Z1 Q1 44 13 9 7432 R6- 2N3904 10K R7-1.2K W.C.CLR 41 CRTLEN · m 15 R10-1.2K R8- ₹ IL.ACC.CLR 39 vv.e R9-7400 4 LM358 13, ₩ D3-HP 5082-2800 11 2 D PR TP9 🗸 12 н Q 5 3 Ε J 7474 Q D 6 10 L D2-59 7400 4 R12- \$ (↓ R11-10K 7407 D1н 8 4 н TP 4 19 ILL.ACC. 38 RST 6.5 37 24V 21 OE CTRL 34 7404 3 mo C5-0.05 R13-1K NOTES 1. -- TO 5V PULLUP RESISTOR 2. 8 3. 😓 GROUND 4. TEST POINTS: 1. GROUND 2. WRITE COMPLETE 4. ILLEGAL ACCESS 5. DATA 0 7. CE 8. OE 3. CRTLEN 6. ADDRESS 0 9. VPP SWITCH 5. UNLESS OTHERWISE SPECIFIED: RESISTORS IN OHMS, 1/4W, 5% CAPACITORS IN MF. AFN-01885A

Figure 13. Controller IV Schematic Diagram

3-29

AFN-01913A

AP-102

Figure 14a. E²-Demo Controller IV

Figure 14c. E²-Demo Controller IV (Continued)

Vpp SWITCHING

Due to the "in-system" nature of 2816, the concept of Vpp switching is key to the microprocessor interface. Now, a high voltage signal must be actively present in the microprocessing environment. In addition, that signal is a dynamic one in that it must be pulsed. To make the switching task more unique, Vpp must be controlled over a wide temperature range.

To briefly review the Vpp pulse used for writing and erasing, recall that V_{PP} is pulsed from 4 to 6 volts, through an exponential to 21 volts. The exponential waveshape is specified through an RC time constant mentioned in the data sheet. On first pass, the switching circuit shown in Figure 15 could be acceptable. It provides the RC rise and the switching of VPP through a transistor.

Figure 15. Unacceptable VPP Switch

However, on closer examination, such a switch is not acceptable. Let's take a closer look at the circuit fundamentals. When the transistor switch is turned on, 24 volts is applied to the resistor which is connected to Vpp. The RC time constant present at the Vpp pin causes V_{PP} to rise through an exponential as needed.

Unfortunately, however, the resistor value must be relatively large to accommodate the needed RC contant. Therefore, any current that flows through the resistor causes a very significant voltage drop. There are two extremes that can be examined: The first is the case where the device draws no current. In this case the voltage applied to the resistor must be 22 volts. The other case is where the 2816 draws 15mA. In that arrangement the V_{PP} voltage at the 2816 must be a minimum of 20V. Only 2 volts of drop maximum is allowed across the resistor. If one examines the problem further, it is next to impossible to pick an RC combination that will accommodate only a 2 volt drop. Such a switch is then unacceptable.

These are two switch arrangements that are recommended for use with 2816 that overcome the problems of the previous design. Figure 16 shows a configuration using an operational amplifier. The op amp used is an LM358, which is an 8 pin dip, dual op amp device. The amplifier shown on the left acts as a voltage regulator with the positive input set as the 21 volt reference. The other amplifier serves as a voltage follower to provide proper drive and impedence matching. The 12K resistor and .05 μ F capacitor in the feedback path sets the proper RC constant.

Figure 16. Operational Amplifier Switch 3-33

The other switch, shown in Figure 17, uses a Darlington pair to switch V_{PP} . The resistor capacitor pair at the base emitter junction provides the proper time constant to V_{PP} . The two switches shown accomplish simple and effective V_{PP} switch control. They can be used in a variety of systems to easily solve V_{PP} switching problems.

OE SWITCHING

The 2816, in addition to byte erase functionality, can implement chip erase. All 2048 bytes can be erased in only 10ms. To accomplish this, however, requires application of a high voltage, ultra-low current signal to the $\overline{\text{OE}}$ pin. When the output enable pin is set into the range of 9-15 volts, and the V_{PP} pin is pulsed to 21 volts, the entire chip is erased.

The current required at \overline{OE} is a 10 μ A leakage, so little power is consumed. The switch shown in Figure 18 accomplishes switching \overline{OE} to a higher voltage level when necessary. The chip erase control line can be derived from a port or other circuitry in the microprocessor system.

MULTIPLE 2816's

Because of the flexibility of E^2 , the capability to easily connect multiple devices together is essential. RAM's can be simply tied together, E^2 needs a similar functionality. Figure 19 shows the mode select for the 2816's write/erase inhibit mode.

PIN	ČĒ (18)	OE (20)	¥рр (21)	OUTPUTS
READ	VIL	VIL	+4 to +6	Dout
STANDBY	VIH	DON'T CARE	+4 to +6	HIGH Z
BYTE ERASE	VIL	VIH	+21	$D_{1N} \simeq V_{1H}$
BYTE WRITE	V _{IL}	VIH	+21	DIN
CHIP ERASE	VIL	+9 to +15V	+ 21	D _{IN} = V _{IH}
E/W INHIBIT	VIH	DON'T CARE	DON'T CARE	HIGH Z

What this specification shows is that V_{PP} can be at high voltage (21V) when the 2816 is deselected. From a system perspective, V_{PP} can be bussed to multiple devices in the system. Any device that is to be written, can be, simply by TTL level control of \overline{CE} .

This allows simple and straightforward control of multiple 2816's in the system. Only one $V_{\rm PP}$ switch is needed for the entire memory array, allowing a highly compact and cost effective design. Figure 20 shows how simple such an implementation can be.

INTERFACE SOFTWARE REQUIREMENTS

As discussed, the various 2816 controllers employ various SSI and LSI devices. Each of the implementations require a varying degree of hardware and software. With Controller I, no software is necessary. Controller IV, on the other hand, needs approximately 130 bytes to handle interface to the 8155 I/O port.

The following figures deal with the software drivers for the various controllers. These are several general subroutines that can be integrated in various ways, depending on the function and performance desired. Table 3 lists the various modules shown in the figures.

Table 3.	
Overall Write Subroutine	Figure 21
Controller I Software Driver	Figure 22
Controller II Software Driver	Figure 23
Controller III Software Driver	Figure 24
Controller IV Software Driver	Figure 25
Controller II Chip Erase Routines	Figure 26
Controller III, IV Chip Erase Routines	Figure 27
Controller I/O Poll Routines	Figure 28
Controller Interrupt Driver	Figure 29

Figure 20. Multiple 2816's In System

Figure 21 shows the generalized write subroutine for all controllers. As indicated, data is passed through the 8085 A-register, and addresses passed through the HL-register pair. The routine first executes an erase, and then a write operation. The software driver that writes to the device is called WECYCL.

There is a unique WECYCL routine for each control interface. The driver for Controller I is a simple parameter pass routine, and a move to memory. This software is listed in Figure 22. The Controller II subroutine uses parameter pass, and interrupt initialization and service. The Controller II driver is listed in Figure 23. The interrupt service routine is given in Figure 29. In order to write to Controller III and IV interfaces, the 8155 I/O device must be initialized. A generalized flow chart for this operation is shown in Figure 24A. The software listings are detailed in Figures 24 and 25. Both of these routines use the same interrupt service as Controller II. The remaining routines, for chip erase and I/O polling control, are shown in Figures 27, 28.

All of the interfaces, with the exception of the Controller IV, allow transparent reads of the 2816. Controller IV isolates the E^2 from the system bus through the 8155. A flowchart for Controller IV read operations is detailed in Figure 30.

CONCLUSION

Based on the previous discussion, it is apparent that the interface to the 2816 is highly application dependent. Several interfaces have been presented, each of those optimized for a different system concern. Each of the controller implementations requires a different amount of hardware and software overhead, and provides a different throughput capability to the host processor. Each of these controllers is also appropriate for one or more design types. Controller I for program store areas, Controller IV for strict data store applications.

Controllers II and III are higher performance, and yet require a larger amount of hardware and software to service interrupts and generate 8155 timing controls. Further application notes will discuss some of the enhanced controllers, such as the bipolar state machine controller. All of these controllers are also available for test in the E^2 Demonstrator, which is a highly sophisticated tool for use with the 2816. The demonstrator is available by contacting a local Intel sales office and can be used for evaluation and test purposes of the E^2 device. Above all, the interface to the CPU has been realized in a consistent and appropriate microprocessing architecture, something that has never been possible because of prior device attributes and technology constraints. The 2816 then adds an appropriate and applicable use of non-volatile and flexible memory to the current offerings of memory devices. It will prove a useful and powerful memory supplement and yield application and system benefits never before possible through consistent, convenient, and simple microprocessor interface.

ASMSA - F1 - WRITE	SRC					
ISIG IL COOL IS				MODULE	500F 4	
1515-11 8080/80	85 MF	ICRU HSSEMBL	ER; V.S. 0	MUDULE	PHUE 1	
LOC OBJ	Ĺ	INE	SOURCE S	TATEMENT		
		1 \$DEBUG				
		2				
		4				
		5	;	***	****	
		6				
		7		2016 00	NTDOLLED LIDITE CURRONITINE	
		9	,	2010 00	ATROLLER WRITE SOBROOTINE	
		10	,			
		11	;			
		12				
		14	,	վախվովովություն դուրանդություն	անցերի վերկությունը կանությունը պետկությունը գործի գրացությունը պետկությունը պետկությունը։	
		15				
		16	EXTRN	PECYCL		
		17	PURI TP	HEITE		
		19	FODLIC	MATTE		
		20	CSEG			
		21				
		22		WRITE SUBROUTIN	F	
		24	·		15a	
		25	3	WRITES A BYTE T	0 THE 2816	
		26		NOTO DOCCEN.	A - DATA TO HATTE	
		28	;	UNIN PRODED.	HL = ADDRESS TO WRITE	
		29)	REGS DESTROYED:	NONE	
		30	2	CALLS:	PECYCL - PROGRAM/ERASE CYCLE SUBROUTINE	
· 4-		32 WRITE				
0000 F5		33	PUSH	PSN	SAVE DATA WE'RE ABOUT TO WRITE	
0001 3EFF		34	MVI	A, ØFFH	> EXECUTE A BYTE ERASE FUNCTION	
0003 CD0000	Ε	35	CALL	PECYCL	BY WRITING OFFH TO THE 2816	
0005 F1 9997 CD9999	F	35	CALL	PERVOI	NOW WRITE THE DATA	
000A C9	-	38	RET	LOTOL	AND RETURN	
		39				
		40	END			
PUBLIC SYMBOLS WRITE C 0000						
EXTERNAL SYMBOL PECYCL E 0000	S					
USER S LS PECYCL E 0000	WR	ITE C 0000				
ASSEMBLY COMPL	ETE,	NO ERRORS				AFN-01885A

Figure 21. Overall Write Subroutine 3-37

ASM80 .F1.CONT1.SRC MOD85 ISIS-II 3080/8065 MACRO ASSEMBLER, V3.0 MODULE PAGE 1 LINE SOURCE STRTEMENT LOC OBJ 1 \$DEBUG 4 CSEG 5 PUBLIC READ, MECYCL 6 8 9 CONTROLLER 1 READ SUBROUTINE 10 11 , DATA PASSED: HL = ADDRESS OF 2816 LOCATION TO READ DATA RETURNED: A = DATA READ 12 13 14 REGS DESTROYED NONE 15 16 READ MOV A.M , JUST READ FROM MEMORY 17 0000 7E 0001 09 18 RET 19 28 21 22 23 CONTROLLER I WRITE/ERASE CYCLE SUBROUTINE 24 DATH PASSED HL = ADDRESS OF 2816 LOCATION TO WRITE 25 A = DATA TO WRITE 26 OR ØFFH (ERASE) 27 DATA RETURNED NONE REGS DESTROYED : NONE 29 38 31 HECYCL MOV M/A / JUST WRITE TO MEMORY RET 0002 77 32 0003 09 34 35 36 END PUBLIC SYMBOLS READ C 0000 MECYCL C 0002 EXTERNAL SYMBOLS USER SYMBOLS RERD C 0000 WECYCL C 0002 ASSEMBLY COMPLETE, NO ERRORS AFN-01885A

Figure 22. Controller I Software Driver

AP-102		-	 ~	~
PRIC - 1 1/2	•	ω.	 о	•
	~		v	6 .

LOC OBJ	LINE	SOURCE S	STRTEMENT		
	1 \$DEBUG				
	2				
	3				
	4 4	PUBLIC	WECYCL, READ, END	WE, COLEAR	
	5				
	6	EXTRN	WEDELY		
	7				
	8	CSEG			
	9				
	10				
	11	3	CONTROLLER II R	EAD SUBROUTINE	
	12				
	13	1	DATA PASSED	HL = ADDRESS OF 2816 LOCATION TO READ	
	14		DATA RETURNED	A = DATA READ	
	15		REGS DESTROYED	NONE	
	16				
	17 READ				
8888 7F	18	MOV	A. M	: TUST READ FROM MEMORY	
0000 12	19	PET	1011	7 COT NERV FROM DEDOKT	
oper er	29	1.001			
	20				
	22				
	22				
	23		CONTROLLED IT I	INTTE PEDDEE PUPIE CHODONITINE	
	29	,	CONTROLLER II W	ANTIE/ERADE CTULE DUBRUUTINE	
	25		NATA PACCEN	UN - OPODECC OF 2016 LOCATION TO UPITE	
	20	1	UNIN PRODED.	HE = HOURESS OF 2016 LOUHITON TO WRITE	
	20	1		n - Unin (U MRIIE OD OFFU (FROCE)	
	20	*		UK OFFH (EKHDE)	
	23	i	UNIN RETURNED:	NURE	
	20	ê.	REUS DESTRUYED.	NURE	
	31	ż	CHLLS:	MEDELY (1/U FULL RUOTINE OR INTERRUPT DRIVER)	
	52		1 10 00070 USER		
	55	3	1/U PURIS USED:		
	54	;	PURT 22	CH (UUTPUT) - CUNTHINS BITS USED FOR RESETTING	
	25	7		CUNTROLLER INTERRUPT FLIP/FLOPS	
	36	;		BIT 0 = NRITE CUMPL RESET (ACTIVE LOW)	
	57	3		BIT 1 = ILL HOUESS RESET (HOTIVE LOW)	
	38				
	39	i	COMMENTS:	ENDWE (END OF WRITE/ERASE CYCLE) ROUTINE	
	40	;		IS CHLLED BY INTERRUPT DRIVER OR I/O POLL	
	41	;		ROUTINE (WEDELY) TO SHUT DOWN CONTROLLER.	
	42	ĵ		THIS SUBROUTINE IS PART OF THE DRIVER	
	43	j.		PACKAGE ROUTINES INITIATED BY A CALL TO	
	44	;		WECYCL.	
	45				
	46				
	47	;	1/0 SYMBOLS		
	48				
0022	49 CLRPRT	EQU	22H	> I/O PORT USED TO CLEAR INTERRUPT F/F'S	
RARA	58 CLRACT	FOH	9	BIT PATTERN TO ACTIVATE CLEAR EUNCTION	AEN-010

Figure 23. Controller II Software Driver

ISIS-II 0000/0005 MICRO ASSERVELER, V3.0 NOULE PME 2 LOC 08J LINE SOURCE STRTEMENT 0003 S1 LCRIM EDU 3H A BIT PATTERN TO DE-ACTIVATE CLEAR FUNCTION 0003 S2080 S3 MCVL SOURCE STRTEMENT CLEAN MRITE COMPLETE MAD ILLEGAL ACCESS F.F.F'S 0004 F3 MCVL CLEAN MRITE COMPLETE MAD ILLEGAL ACCESS F.F.F'S CLEAN MRITE COMPLETE MAD ILLEGAL ACCESS F.F.F'S 0005 CO22 S0 OUT CLEAN MRITE COMPLETE MAD ILLEGAL ACCESS F.F.F'S 0006 CO22 S0 OUT CLEAN MRITE COMPLETE MAD ILLEGAL ACCESS F.F.F'S 0006 CO22 S0 OUT CLEAN MRITE TO MEMORY 0000 CO0000 E E CLEAN MRITE TO MEMORY 0000 CO00000 E E CONTROLLER 11 CMIP CLEAR SUBROUTINE 0000 CO00000 E E CONTROLLER 11 CMIP CLEAR SUBROUTINE 71 S CONTROLLER 11 CMIP CLEAR SUBROUTINE OR INTERNET DRIVER 72 CONTROLLER 11 CMIP CLEAR SUBROUTINE E							
LINE SURCE STATEMENT 0003 51, CLRINE EOU 3H / BIT PATTERN TO DE-ACTIVATE CLEAR FUNCTION 0003 55 MP POSH SMECKEL 0003 550 POSH PSM / SMEC PATE TO WRITE 0003 550 POSH PSM / SMEC PATE TO WRITE 00047 583 FVT A CLEMPT / CLEMP 0005 522 56 OUT CLEMPT / CLEMP 00047 583 FVT A CLEMPT / CLEMPT / CLEMPT 00047 583 OVT CLEMPT / CLEMPT / CLEMPT / CLEMPT 00047 583 OVT CLEMPT / CLEMPT / CLEMPT / CLEMPT 00047 60040 F 60 OVT // CLEMPT / CLEMPT // CLEMPT 00047 COMPONENT F // OPT // CLEMPT // CLEMPT // CLEMPT // CLEMPT 000407 // CLEMPT // OPT // OPT // OPT // OPT	IS	515-11 8080/8085	MACRO ASSEMBL	.ER, V3. 0	MODULE	PAGE 2/	
9883 S1 CLRINE EQU 3H / BIT PATTERN TO DE-ACTIVATE CLEAR FUNCTION 9883 S1 MECVL: SNE CATH TO WRITE SNE CATH TO WRITE 9883 S1 MECVL: SNE CATH TO WRITE SNE CATH TO WRITE 9883 S1 MECVL: SNE CATH TO WRITE SNE CATH TO WRITE 9883 S1 MECVL: CLERK FILE COMPLETE NO LLEGAL ROCESS F/F'S 9885 S1 MECVL: CLERK FILE COMPLETE NO LLEGAL ROCESS F/F'S 9887 S1 MECVL: SNE CATH TO WRITE CLERK FILE COMPLETE NO LLEGAL ROCESS F/F'S 9887 S1 MECVL: SNE CATH TO WRITE CLERK FILE COMPLETE NEWLER NO 9887 S1 MECVL: SNE CATH TO WRITE CLERK FILE COMPLETE NEWLER NO 9888 S1 MECVL: SNE CATH TO WRITE NO NO NO 9889 S1 MECVL: SNE CATH TO WRITE CLERK FUNCTION SNE CATH TO WRITE SNE CATH TO WRITE 9889 S1 MECVL: SNE CATH TO WRITE SNE CATH TO WRITE SNE CATH TO WRITE 9889 S1 MECVL: SNE CATH FEASTHER: NNE SNE CATH FEASTHERE: 9880		LOC OBJ	LINE	SOURCE S	TRTEMENT		
Beac FS S4 PUSH SSME DATA TO LRTTE Beac FS S5 MVI R. CLARAT (CLERK MUTTE COMPLETE AND ILLEGAL ACCESS F/F'S Beac FIS S5 MVI R. CLARAT (CLERK MUTTE COMPLETE AND ILLEGAL ACCESS F/F'S Beac FIS S5 MVI R. CLARAT (DE-ACTIVATE CLERK FUNCTION Beac FIS S5 MVI R. CLARAT (DE-ACTIVATE CLERK FUNCTION Beac FIS S5 POP PSM , RESETORE DATA TO METTE Beac FIS S5 POP PSM , RESETORE DATA TO METTE Beac FIS S5 POP PSM , RESETORE DATA TO METTE Beac FIS S60 POP PSM , RESETORE DATA TO METTE Beac FIS S00 DATA PASSED: NONE FOR CLEAR SUBROUTINE BEIS CS DATA PASSED: NONE FOR CLEAR COMPUTER CLEAR (ACTIVE LOAD) FIS DATA PASSED: NONE FOR CLEAR COMOTINE SECONCERCONTINE FIS DATA PASSED: NONE FOR CLEAR CLEAR COMOTINE CLEAR (ACTIVE LOAD) FIS		0003	51 CLRINA 52 53 WECYCL	EQU	ЗH	; BIT PATTERN TO DE-ACTIVATE CLEAR FUNCTION	
0007 2001 0.0.0.0.000 2001 0.0.0.0.000 0008 022 58 0.0.1 0.0.0.0.000 2001 0.0.0.0.000 0008 022 58 0.0.1 0.0.0.0.000 2001 0.0.0.0.000 0000 0.0000000 E 61 0.0.0.0.000 2001 0.0.0.0.000 0011 0.0 0.0.0.0.000 E 61 0.0.0.0.000 2001 0.0.0.0.000 0011 0.0 0.0000 E 61 0.0.0.0.000 2001 0.0.0.0.000 0011 0.0 0.0000 E 61 0.0.0.0.000 2001 2000 2001 2000 2001 2000 2001 2000 2001 2000 2001 2000 2001 200		0002 F5 0003 3E00 0005 D322	54 55 56	PUSH MVI OUT	PSN R. CLRACT CLRPRT 2. CLRPRT	; SAVE DATA TO WRITE ; CLEAR WRITE COMPLETE AND ILLEGAL ACCESS F/F/S	
0000 CD00000 E 6.1 CALL WEDELY ; 60 TO L/O POLL ROUTINE OR INTERRUPT DRIVER 0010 C9 62 RET 63 64 64 65 66 7 CONTROLLER 11 CHIP CLEAR SUBROUTINE 65 66 7 PORT PROSED: NONE 74 2 CRLLS PEDELY (L/O POLL ROUTINE OR INTERRUPT DRIVER) 74 2 CRLS PEDELY (L/O POLL ROUTINE OR INTERRUPT DRIVER) 74 2 CRLS PEDELY (L/O POLL ROUTINE OR INTERRUPT DRIVER) 74 2 CRLS PEDELY (L/O POLL ROUTINE OR INTERRUPT DRIVER) 74 2 I/O PORTS USED: PORT 22H (OUTPUT) 75 PORT 22H (OUTPUT) BIT 1 = TLLEGHL ACCESS CLEAR (ACTIVE LOW) 76 BIT 5 = CHIP CLR (+12Y TO 0E' LINE) (ACTIVE HI) 76 BIT 5 = OHDE CLEAR (DO FWRITE/CRERSE CVLE) ROUTINE 80 2 CONVENTS: ENGLE CNO TO SHUT DOWN CONTROLLER 77 BIT 5 = OHDE CLEAR (DO FWRITE/CRERSE CVLE) ROUTINE SHO F HIS SUBROUTINE IS PART OF THE DRIVER 80 2 PORT 22H (D/OT SHUT DOWN CONTROLLER THIS SUBROUTINE IS PART OF THE DRIVER 80		0009 D322 0006 F1 0006 77	57 58 59 60	OUT POP MOV	CLRPRT PSW M. A	; RESETORE DATA TO WRITE ; JUST WRITE TO MEMORY	
66 67 ; CONTROLLER II CHIP CLEAR SUBROUTINE 63 93 DATA PASSED: NONE 70 ; DATA PASSED: NONE 71 ; REDS DESTOYED: NONE 72 ; CALLS 73 ; CALLS 74 ; L/O PORTS USED: 75 ; PORT 22H (OUTPUT) 76 ; BIT 0 = WRITE COMPLETE CLEAR (ACTIVE LOW) 77 ; I/O PORTS USED: 78 ; BIT 0 = WRITE COMPLETE CLEAR (ACTIVE LOW) 78 ; BIT 1 = 1LLEGML ACCESS CLEAR (ACTIVE LOW) 78 ; BIT 5 = CHIP CLR (+12Y TO OC' LINE) (ACTIVE HID) 78 ; BIT 5 = CHIP CLR (+12Y TO OC' LINE) (ACTIVE HID) 79 ; BIT 5 = CHIP CLR (+12Y TO OC' LINE) (ACTIVE HID) 79 ; BIT 5 = CHIP CLR (+12Y TO OC' LINE) (ACTIVE HID) 79 ; BIT 5 = CHIP CLR (+12Y TO OC' LINE) (ACTIVE HID) 79 ; ; FORTACLE (PROTINER OR I/OP CLEAR (FORTIVEL) 80 ; ; ; COLEAR 81 ; ; ;		0000 CD0000 E 0010 C9	61 62 63 64 65	CALL RET	WEDELY	; GO TO I/O POLL ROUTINE OR INTERRUPT DRIVER	
0000 0 DATA PASSED: NONE 70 0 DATA RETURNED: NONE 71 ; REGS DESTROYPE: NONE 72 ; CALLS 73 ; CALLS 74 ; L/O PORTS USED: 75 ; PORT 22H (OUTPUT) 76 ; BIT 0 = WRITE COMPLETE CLEAR (ACTIVE LOW) 77 ; BIT 5 = CHIP CLE (42V TO 0E' LINE) (ACTIVE HI) 76 ; DOMMENTS: ENAME (END OF WRITE/ERRSE CYCLE) ROUTINE HID 78 ; COMMENTS: ENAME (END OF WRITE/ERRSE CYCLE) ROUTINE 81 ; ; ROUTINE (HEDELY) TO SHOT DOWN CONTROLLER. 78 ; ROUTINE (HEDELY) TO SHOT DOWN CONTROLLER. 79 ; ; ROUTINE (HEDELY) TO SHOT DOWN CONTROLLER. 81 ; ; COLERR 83 ; L/O SYMBOLS 9023 90 CLRCOL EOU 23H ; SAVE REGISTERS 9011 F5 93 PUSH PSM SAVE REGISTERS 9012 2020 96 OUT CLEPRT ; GET BITS TO DERCTIVATE CLEAR FUNCTION AND			66 67	,	CONTROLLER II C	HIP CLEAR SUBROUTINE	
75 ; PORT 22H (OUTPUT) 76 ; BIT 0 = WRITE COMPLETE CLEAR (ACTIVE LOW) 77 ; BIT 1 = ILLEGAL ACCESS CLEAR (ACTIVE LOW) 78 ; BIT 5 = CHIP CLR (+12Y TO 0E' LINE) (ACTIVE HID) 79 ; BIT 5 = CHIP CLR (+12Y TO 0E' LINE) (ACTIVE HID) 79 ; BIT 5 = CHIP CLR (+12Y TO 0E' LINE) (ACTIVE HID) 79 ; BIT 5 = CHIP CLR (+12Y TO 0E' LINE) (ACTIVE HID) 79 ; ROUTINE (END OF WRITE/ERASE CYCLE) ROUTINE 80 ; COMMENTS: ENDME (END OF WRITE/ERASE CYCLE) ROUTINE 81 ; ROUTINE (HERRUPT DRIVER OR I/O POLL 82 ; ROUTINE (HEDELY) TO SHUT DOWN CONTROLLER 83 ; I/O SYMBOLS 9023 90 CLRCCL EQU 23H ; DATA TO DERCTIVATE CLEAR MC & IA BUT ACTIVATE 91 ; OE' = +12Y FUNCTION FOR CHIP CLEAR 92 CCLEAR ; OE' = +12Y FUNCTION FOR CHIP CLEAR 93 PUSH ; SAVE REGISTERS 941 ; OLROCL ; GET BITS TO DERCTIVATE CLEAR FUNCTION AND 942 SEQ ; GET BITS TO DERCTIVATE CLEAR FUNCTION AND 941 ; OLROCL ;			69 70 71 72 73 74	; ; ;	DATA PASSED: DATA RETURNED: REGS DESTROYED: CALLS 1/0 PORTS USED:	NONE NONE NONE PEDELY (I/O POLL ROUTINE OR INTERRUPT DRIVER)	
80 ; COMMENTS: ENDME (END OF WRITE/ERASE CYCLE) ROUTINE 81 ; IS CALLED BY INTERRUPT DRIVER OR I/O POLL 82 ; ROUTINE (HEDELY) TO SHUT DOWN CONTROLLER 83 ; THIS SUBROUTINE IS PART OF THE DRIVER 84 ; PACKAGE ROUTINES INITIATED BY A CALL TO 85 ; CCLEAR 86 ; CCLEAR 87 ; L/O SYMBOLS 88 ; L/O SYMBOLS 90 CLRCOL EOU 91 ; OE' = +12Y FUNCTION FOR CHIP CLEAR 92 CCLEAR 93 PUSH 94 PISH 95 93 9611 F5 93 92 CCLEAR 93 PUSH 94 PISH 95 MVI 9613 3E00 95 9614 R. CLRCT 9615 0322 96 97 MVI 98 ; TURN ON OE' = +12Y FUNCTION FOR CHIP CLEAR <			75 76 77 78 79	; ; ;	PORT 22	H (OUTPUT) BIT 0 = WRITE COMPLETE CLEAR (ACTIVE LOW) BIT 1 = ILLEGAL ACCESS CLEAR (ACTIVE LOW) BIT 5 = CHIP CLR (+12V TO 0E' LINE) (ACTIVE HI)	
88 ; L/0 SYMBOLS 89 90 CLRCCL EQU 23H ; DATA TO DEACTIVATE CLEAR NC & IA BUT ACTIVATE 91 ; DE' = +12V FUNCTION FOR CHIP CLEAR 91 ; 0E' = +12V FUNCTION FOR CHIP CLEAR 92 CCLEAR 93 9011 F5 93 PUSH PSM ; SAVE REGISTERS 9012 E5 94 PUSH H 9013 3E00 95 MVI A, CLRACT ; GET BITS TO RESET WRITE COMPL AND ILL ACC 9015 0.322 96 OUT CLRPRT 9017 3E23 97 MVI A, CLRCCL GET BITS TO DEACTIVATE CLEAR FUNCTION AND 98 ; ; URN ON OE' = +12V FUNCTION FOR CHIP CLEAR 9019 0.322 99 OUT CLRPRT 9019 0.322 99 OUT CLRPRT OUTPUT TO I/O PORT 9018 SEFF 100 MVI A, 0FFH WRITE 0FFH TO THE 2816 9010 3200090 181 STM 00009H AFN-01885A			80 81 82 83 84 85 86 87		COMMENTS:	ENDWE (END OF WRITE/ERASE CYCLE) ROUTINE IS CALLED BY INTERRUPT DRIVER OR I/O POLL ROUTINE (WEDELY) TO SHUT DOWN CONTROLLER THIS SUBROUTINE IS PART OF THE DRIVER PACKAGE ROUTINES INITIATED BY A CALL TO CCLEAR	
0023 96 CLRCCL EOU 23H , DATH TO DEACTIVATE CLEAR WC & IA BUT ACTIVATE 91 ; OE' = +12V FUNCTION FOR CHIP CLEAR 92 CCLEAR. 92 CCLEAR. 0011 F5 93 PUSH 0012 E5 94 PUSH 0013 32008 95 MVI 0015 0322 96 OUT 0017 3E23 97 MVI 0019 D322 99 OUT 0019 D322 99 OUT 0019 D322 99 OUT 0010 320040 101 STH 0011 532 97 MVI Active Clear GET BITS TO DEACTIVATE CLEAR FUNCTION AND 98 ; TURN ON OE' = +12V FUNCTION FOR CHIP CLEAR 9019 D322 99 OUT 9018 3EFF 100 MVI 9010 320040 101 STH 9010 320040 101 STH			88 89	1	1/0 SYMBOLS		
0011 P5 93 PUSH PSW SAVE REGISTERS 0012 E5 94 PUSH H 0013 3E00 95 MVI A, CLRACT ; GET BITS TO RESET NRITE COMPL AND ILL ACC 0015 0322 96 OUT CLRPRT ; GET BITS TO DEACTIVATE CLEAR FUNCTION AND 0017 3E23 97 MVI A, CLRCCL ; GET BITS TO DEACTIVATE CLEAR FUNCTION AND 98 ; ; TURN ON OE' = +12V FUNCTION FOR CHIP CLEAR 0019 0322 99 OUT CLRPRT ; OUTPUT TO I/O PORT 0018 3EFF 100 MVI A, 0FFH ; WRITE 0FFH TO THE 2816 0010 320040 101 STR 0R000H AFN-01865A		0023	90 CLRCCL 91 92 CCLEAR	EQU	23H	<pre>> DATA TO DEACTIVATE CLEAR WC & IA BUT ACTIVATE > OE' = +12V FUNCTION FOR CHIP CLEAR</pre>	
0013 3E00 95 MVI A, CLRACT ; GET BITS TO RESET NRITE COMPLIAND ILL ACC 0015 0322 96 OUT CLRPRT 0017 3E23 97 MVI A, CLRCCL ; GET BITS TO DEACTIVATE CLEAR FUNCTION AND 98 ; TURN ON OE' = +12V FUNCTION FOR CHIP CLEAR 0019 0322 99 OUT CLRPRT ; OUTPUT TO I/O PORT 0018 3EFF 100 MVI A, 0FFH ; WRITE 0FFH TO THE 2816 0010 320000 101 STR 00000H AFN-01885A		0011 F5 0012 E5	93 94	PUSH PUSH	PS₩ H	SAVE REGISTERS	
0017 3E23 97 MVI R. CLRCCL ; GET BITS TO DEACTIVATE CLEAR FUNCTION AND 98 98 ; TURN ON OE' = +12V FUNCTION FOR CHIP CLEAR 0019 0322 99 OUT CLRPRT ; OUTPUT TO I/O PORT 0018 3EFF 100 MVI R. WFFH ; WRITE 0FFH TO THE 2816 0010 3200R0 101 STR 0R000H AFN-01885A		0013 3E00 0015 D322	95 96	MVI OUT	A, CLRACT CLRPRT	; GET BITS TO RESET WRITE COMPL AND ILL ACC	
0019 DS22 99 DD1 CEMPRY ; DD1PD1 10 1/0 PDR1 0018 3EFF 100 MVI A 0FFH ; WRITE 0FFH TO THE 2816 0010 3200R0 101 STR 0R000H AFN-01885A		0017 3E23	97 98	HVI	R, CLRCCL	GET BITS TO DEACTIVATE CLEAR FUNCTION AND TURN ON OE' = +12V FUNCTION FOR CHIP CLEAR	
		0019 0322 0018 3EFF 0010 3200A0	99 100 101	HVI STR	CLRPR 1 A. ØFFH ORØØOH	, WRITE OFFH TO THE 2816	AFN-01885A

Figure 23. Controller II Software Driver (Continued)

	•	-4.1	n	n
A	×-		u	1
			~	-

ISIS-II 8080/808	35 MACRO ASSEMBL	.ER, V3. 0	MODULE	PAGE 3				
LOC OBJ	LINE	SOURCE ST	ATEMENT					
0020 CD0000 0023 3E03	E 102 103	CALL	WEDELY A. CLRINA) GO TO I/O) DEACTIVATE	POLL LOOP OR INT CHIP CLEAR FUNC	TERRUPT DRIVER		
0025 D322 0027 E1	104 105	POP	CLRPRT H	RESTORE RE	BISTERS			
0028 F1	106	POP	PSW					
0027 (7	109 109							
	111 112	1	CONTROLLER II E	ND-OF-WRITE/E	RASE-CYCLE ROUT	INE		
	113	1	JUMPED TO BY 1/	O POLL OR INT	ERRUPT DRIVER AF	TER WRITE COMPLE	TE	
	119 115 116 ENDUE	,	TO SHOT DOWN CO	MIRULLER.				
002A C9	110 CRUAE. 117 118	RET	; JUST	RETURN NORMALI	LY - NOTHING TO	SHUT DOWN.		
	119	END						
PUBLIC SYMBOLS								
CCLEAR C 0011	ENDWE C 002A	READ	C 0000 NECY	CL C 0002				
EXTERNAL SYMBOLS	5							
CCLEAR C 0011 WECYCL C 0002	CLRACT A 0000 NEDELY E 0000	CLRCCL	. A 0023 CLRI	NA A 0003	CLRPRT A 0022	ENDWE C 002R	READ	C 0000
ASSEMBLY COMPLET	re, no errors						AF	-N-01885A

Figure 23. Controller II Software Driver (Continued)

ASM80 F1.CONT3 S	RC MOD85				
ISIS-II 8080/8085	MACRO ASSEMBL	ER, V3.0		MODULE PRGE 1	
LOC OBJ	LINE 1 \$DEBUG	SOURCE S	TATEMENT		
	2				
	5	OCEG			
	5	0560			
	6				
	7	PUBLIC	MECYCL,	READ, ENDWE	
	8				
	9	EXTRN	WEDELY		
	10				
	11				
	12	Z.	CONTROL	LER III 1/0 PORT DEFINITIONS	
	12			NITED IN GISS DOM / 1/0 / TIMED CUTD	
	14	1	INFLERE	INTED IN 6133 RAH / 170 / TINER CHIP	
	16				
	17	;	PORT	DESCRIPTION	
	18	j.			
	19	j	OROH	PORT DIRECTION REGISTER (SET TO OFH = ALL PORTS OUTPUT)	
	20	ż			
	21	æ	0A1H	2816 DATA (OUTPUT)	
	22	;	0000	SALE LAN OFFICE ANDRESS AS AT LOUTENTS	
	23	1	UHZH	2816 LUN ONDER HODKESS, HU-HY (UUIPUI)	
	24	1	0928	2216 HIGH OPDER ADDRESS AND CONTROL LINES (OUTPUT)	
	25	1	010H	RITS R-2 AR-RIG	
	27	<u>}</u>		BIT 3: CE CTRL (0=SELECT READ,	
	28	3		WRITE ENABLE)	
	29	;		BIT 4: MUX CTRL (0=READ, 1=WRITE)	
	30	5		BIT 5. VPP CTRL (0=INACTIVE, 1=ACTIVE)	
	31	;			
	32	1	өнчн	LOW ORDER TIMER COUNT REGISTER	
	23	1	ดอรม	LIGU ODGED TIMED COUNT DEGISTED	
	75		00000	HIGH ONDER THER COORT REDISTER	
	36	1	22H	CLEAR INTERRUPT FLIP-FLOPS PORT (OUTPUT)	
	37	3		BIT 0: WRITE COMPL CLEAR (ACTIVE LOW)	
	38	7		BIT 1: ILLEGAL ACC CLEAR (ACTIVE LOW)	
	39	î		BIT 5: CHIP CLEAR MODE (ACTIVE HI)	
	40				
2022	41	FAU	0000	CODT DISCOVIDE DEGLETED	
0000	42 EEPUR	EQU	0010	2015 DIRECTION REGISTER	
0041	43 UNITE!	COU	0626	2215 UNIT YOUFULA 2215 UNIT YOUFULA 2215 UNIT YOUFULA	
0083	45 CTLPPT	EQU	BACH	2816 HIGH ORDER ADDRESS AND CONTROL (OUTPUT)	
00A4	46 TIMLOW	EQU	0R4H	LOW OPDER TIMER COUNT REGISTER	
00A5	47 TIMHI 48	EQU	0A5H	; HIGH ORDER TIMER COUNT REGISTER	
0000	49 COUNTL	EQU	BCOH	, LOW ORDER TIMER COUNT FOR 10 MSEC DELAY	
0083	50 COUNTH	EQU	83H	HIGH ORDER TIMER COUNT FOR 10 MSEC DELAY	N-01885A

Figure 24. Controller III Software Driver

5IS-II 8080/80	85 MACRO ASSEMBL	ER, V3.	0 MODULE	PAGE 2	
LOC OBJ	LINE	SOURCE	STRTEMENT		
	51				
	52				
	53 54	1	CONTROLLER III	READ SUBROUTINE	
	54		DATA PACCED	LI - ODDDECC OF 2012 LOCATION TO PEOD	
	56		DATA PETURNED	A = DATA READ	
	57		REGS DESTROYED	NONE	
	58	·		in the second seco	
	59 READ				
0000 7E	60	MON	A, M	; JUST READ FROM MEMORY	
0001 (9	61	RET			
	62				
	63				
	64				
	65				
	66	j	CUNTRULLER III	WRITE/ERHSE CYCLE SUBRUUTINE	
	57		DOTO DOCCED.	HI - ADDRESS OF 2016 LOCATION TO WRITE	
	69	3K	VHIN PRODEV.	R = DATE TO WRITE	
	70			AP BEEN (EPOSE)	
	71	-	DATA RETURNED	NINE	
	72	j.	REGS DESTROYED	NONE	
	73	;	RAM REQUIRED:	1 BYTE FOR TEMP ADDRESS/CONTROL STORAGE	
	74	;	CALLS:	PEDELY (1/0 POLL ROUTINE OR INTERRUPT DRIVER)	
	75	1			
	76	1	COMMENTS:	ENDWE (END OF WRITE/ERASE CYCLE) ROUTINE	
	77	Ĵ.		IS CALLED BY INTERRUPT DRIVER OR I/O POLL	
	78	1		ROUTINE (WEDELY) TO SHUT DOWN CONTROLLER.	
	79	2		THIS SUBROUTINE IS PHRT OF THE DRIVER	
	58	1		PHUKHUE RUUTINES INITIHTED BY H UHLL TU	
	82			PECTUE.	
	83				
0000	84 CLRACT	EQU	0H	; ACTIVE CLEAR WRITE COMPL & ILL ACC FUNCTION	
0003	85 CLRINA	EQU	3H	INACTIVE CLEAR NC & IA FUNCTION	
0022	86 CLRPRT	EQU	22H	> PORT USED TO CLEAR ILL ACC & WRT COMPL F/F	
	87				
	88				
	89 WECYCL:				
0002 F5	90	PUSH	PSW	> SAVE REGISTERS	
0003 05	91	PUSH	8	COUR BOTO TO UDITE IN & PROVETER	
0009 97	92	MUT	Di H Di CI DOCT	CLEAR WRITE COMPLETE OND THE OCC FLED FLOOP	
0000 SE00	94	OUT	CI DODT	, ULERA MALIE CONFLETE AND ILL MUC PLIP-PLOPS	
0001 0322 0009 3E03	95	MVT	A. CLRINA	: DE-ACTIVATE CLEAR FUNCTION	
000B D322	96	OUT	CLRPRT	- PE INTERINE VEED FUNCTION	
0000 3E0F	97	MYI	R. ØFH	; PUT ALL 8155 I/O PORTS IN OUTPUT MODE	
000F D3A0	98	OUT	EEPDR	; OUTPUT TO PORT DIRECTION REGISTER	
0011 78	99	MON	R, B	, FETCH DATA TO WRITE	
0012 D3A1	100	OUT	DATPRT	; OUTPUT TO 2816 DATA LINES	
0014 7D	101	MOV	A, L	GET LOW ORDER ADDRES	AFN-01885

Figure 24. Controller III Software Driver (Continued)

A .	-	-4	2	2
	۰.	- 1		1
~			~	-

1010 11 0000/00	50E .			-	0005 3	
1515-11 8080/80	980 P	HUKU HSSEMBL	ER, V.S. (a MUDULE	PHUE 3	
LOC OBJ		LINE	SOURCE S	STATEMENT		
0015 D3A2		102	OUT	ADRPRT	; OUTPUT TO ADDRESS LINES	
0017 7C		103	MOV	A, H	; GET HIGH ORDER ADDRESS	
0018 E607		184	ANI	7H	; CLEAR ALL CONTROL LINES	
001A F610		105	ORI	10H	; ADD MUX BIT TO SELECT I/O PORTS FOR WRITE	
001C D3A3		106	OUT	CTLPRT	/ OUTPUT HIGH ORDER ADDRESS AND CONTROL LINES	
001E F608		107	ORI	8H	ADD CE ACTIVE BIT	
0020 D3R3		108	OUT	CTLPRT	; OUTPUT CONTROL LINES AGAIN	
0022 47		109	MOV	B, A	SAVE HIGH ORDER ADDR/CTL LINE DATA	
9823 3EC0		118	NVI	A. COUNTL	; OUTPUT TIMER COUNT (LOW ORDER)	
0025 0384		111	OUT	TIMLÖW		
0027 3E83		112	MVI	A, COUNTH	; OUTPUT TIMER COUNT (HIGH ORDER)	
0029 0385		113	OUT	TIMHI		
0028 3ECF		114	MVI	A. ØCFH	START THE TIMER	
882D D388		115	OUT	EEPDR		
002F 78		116	MOV	A.B	, RETRIEVE ADDRESS/CONTROL BITS	
9939 F629		117	190	2004	ADD VPP ACTIVE BIT	
0032 0363		113	OHT	CTI PRT	ACTIVATE VPP	
9934 329999	Ð	119	STR	TEMCTI	SAVE HIGH ADDRESS/CONTROL BITS FOR AFTER INTR	
0037 CD0000	F	129	CALL	HEDEL Y	: WAIT FOR END OF WRITE CYCLE BY 1/0 POLL OR	
	-	121	of the be	The P late 1	INTERRIPT DRIVER ROUTINE	
6636 C1		122	POP	R	RESTORE REGISTERS	
9038 F1		123	POP	PSW	· · · · · · · · · · · · · · · · · · ·	
8830 09		124	RET	120	BACK TO CALLING ROUTINE	
		125				
		126				
		127				
		128	DSEG			
		129				
0000		130 TEMCTL.	DS	1	RAM LOCATION FOR TEMP STORAGE OF CONTROL BITS	
		131				
		132				
		133				
		134	CSEG			
		135				
		136				
		137				
		138	;	CONTROLLER III	END-OF-WRITE/ERASE-CYCLE ROUTINE	
		139				
		148	1	JUMPED TO BY I.	/O POLL OR INTERRUPT DRIVER AFTER WRITE COMPLETE	
		141	3	TO SHUT DOWN C	ONTROLLER.	
		142				
		143	;	DATA- PASSED :	TEMCTL (1 RAM BYTE) CONTAINING HIGH ORDER	
		144	;		ADDRESS (3 BITS) & CONTROL BEFORE WRITE COMPL.	
		145				
		146 ENDWE				
0030 F5		147	PUSH	PSW	> SAVE REGISTERS WE'LL DESTROY	
003E D5		148	PUSH	D		
003F 3A0000	D	149	LDA	TEMCTL	/ GET ADDRESS LINES/CONTROL BITS	
0042 E61F		150	ANI	1FH	> REMOVE ACTIVE VPP BIT	
0044 D3A3		151	OUT	CTLPRT	; DE-ACTIVATE VPP	
		152				AFN-01885A

Figure 24. Controller III Software Driver (Continued)

ISIS-II 8080/80	85 MACRO ASSEMB	LER, V3.0	MODULE PAGE 4
LOC OBJ	LINE	SOURCE STATEMENT	
0046 F5	153	PUSH PSW	; SAVE HIGH ORDER ADDRESS/CONTROL LINES
0047 110000	154 155 DELBY:	LXI 0,130	; SET UP COUNT FOR 100 USEC DELAY
004A 1B	156	DCX D	; DELAY WHILE VPP FALLS
0048 78	157	MOV A, D	; DONE COUNTING?
004C B3	158	ORA E	
004D C24R00	C 159 160	JNZ DELRY	; NO: KEEP LOOPING
0050 F1	161	POP PSW	; RESTORE ADDRESS/CONTROL LINES
0051 E617	162	ANI 17H	; REMOVE CE ACTIVE BIT
0053 D3A3	163	OUT CTLPRT	; DE-ACTIVATE CE
0055 E607	164	ANI 7H	; REMOVE MUX SELECT WRITE BIT
0057 D3A3	165	OUT CTLPRT	; LET MUX SELECT FOR READ OPERATIONS
0059 3E0E	166	MVI A, ØEH	; PUT DATA PORT BACK TO INPUT MODE
005B D3A0	167	OUT EEPDR	; SO AS NOT TO CAUSE CONTENTION W/ DATA BUS
0050 04	169	POP 0	· DECTADE DEGICTEDC
AASE E1	179	POP PCM	, RESTORE REGISTERS
005E 11	171	RET	: AND FXIT
660 C3	172 173	NET.	, no con
	174		
	175	END	
PUBLIC SYMBOLS			
ENDWE C 003D	READ C 0000	WECYCL C 0002	
EXTERNAL SYMBOL NEDELY E 0000 USER SYMBOLS	5		
ADRPRT A 00A2	CLRACT A 0000	CLRINA A 0003	CLRPRT A 0022 COUNTH A 0083 COUNTL A 00C0 CTLPRT A 00A3
DATPRT A 00A1	DELAY C 004A	EEPOR A 00A0	ENDWE C 003D READ C 0000 TEMCTL D 0000 TIMHI A 00A5
TIMLOW A 00A4	WECYCL C 0002	MEDELY E 0000	
ASSEMBLY COMPLE	TE, NO ERRORS		AFN-01885A

Figure 24. Controller III Software Driver (Continued)

Figure 24A. Controller III, IV, Flowchart

	-	~	~
•	u _	63	
100		 u	~
	-	 -	

DC OBJ	LINE	SOURCE S	TATEMEN	T	
	1 \$DEBUG				
	2				
	3	-			
	4	PUBLIC	MECYCL	, REHD, ENDWE	
	5	EVTON	UENEL U		
	7	EATRN	NEDELT		
	8	CSEG			
	9				
	10				
	11	;	CONTRO	LLER IV 1/0 PORT DEFINITIONS	
	12				
	13	j.	IMPLEM	ENTED IN 8155 RAM / I/O / TIMER CHIP	
	14				
	15		0007	DECEDIDITION	
	10		FURI	DESCRIPTION	
	18		ABBH	PORT DIRECTION REGISTER (SET TO BEH = ALL PORTS DUTPUT)	
	19	1	011011	Toki Pikeriok kensiek (sei to oli "hee tokis ository	
	20	1	ØR1H	2816 DATA (OUTPUT)	
	21	1			
	22	i	ØA2H	2816 LOW ORDER ADDRESS, A0-A7 (OUTPUT)	
	23	i			
	24	5	ØR3H	2816 HIGH ORDER ADDRESS AND CONTROL LINES (OUTPUT)	
	25	Ĵ		BITS 0-2: H8-H10	
	25	1		BIT 3: LE CIKL (0=SELECT KEHD)	
	28	-		BIT 4: MIX CTRI (0=READ, 1=WRITE)	
	29	1		BIT 5: VPP CTRL (0=INACTIVE, 1=ACTIVE)	
	30	;			
	31	i	ØR4H	LOW ORDER TIMER COUNT REGISTER	
	32	2			
	33	1	085H	HIGH ORDER TIMER COUNT REGISTER	
	34	1		CART LIPPA TO ALPAR LIPPE ANURA & THE PARK AND THEPPRINT	
	55	i	22H	PURT USED TO CLEHR WRITE CUMPL & ILLEGHL HCC INTERRUPTS	
	30				
388	38 EEPDR	EQU	ABAH	: PORT DIRECTION REGISTER	
381	39 DATPRT	EQU	ØA1H	, 2816 DATA (OUTPUT)	
3A2	40 ADRPRT	EQU	082H	; 2816 LOW ORDER ADDRESS (OUTPUT)	
9A3	41 CTLPRT	EQU	ØA3H	; 2816 HIGH ORDER ADDRESS AND CONTROL (OUTPUT)	
384	42 TIMLOW	EQU	0R4H	; LOW ORDER TIMER COUNT REGISTER	
9A5	43 TIMHI	EQU	OR5H	> HIGH ORDER TIMER COUNT REGISTER	
200	44 45. 000 M/T	CON	0000	LOU ODED TIMES COMME FOR LO WERE ART OF	
327	45 COUNTL	EQU	ULUH 07L	HIGH ORDER TIMER COUNT FOR 10 MOED DELAY	
003	47 00000	200	054	A UTON OKDER TIMER COURT FOR 10 HOEL DELIT	
	49				

Figure 25. Controller IV Software Driver

AP-102

ISIS-II 8080/8085	MACRO ASSEMBL	ER, V3.6	MODULE	PAGE 2	
LOC OBJ	LINE	SOURCE S	TATEMENT		
	51	;	DATA PASSED:	HL = ADDRESS OF 2816 LOCATION TO READ	
	52	;	DATA RETURNED	A = DATA READ	
	53		REGS DESTROYED	F1 465	
	54	-	The day to have the the the		
	55 READ				
0000 3ERE	56	MVI	A. ØEH	; PUT DATA PRT IN INPUT MODE, ALL OTHERS-OUTPUT	
8882 0388	57	OUT	FEPDR	: OUTPUT TO PORT DIRECTRION REGISTER	
8884 70	58	MOV	A.L	; GET LOW ORDER ADDRESS	
8885 D382	59	OUT	ADRPRT	; OUTPUT TO ADDRESS PORT	
0007 7C	60	MOV	A, H	; GET HIGH ORDER ADDRESS	
0008 E607	61	ANI	7H	REMOVE ALL CONTROL BITS (KEEP 3 BIT ADDRESS)	
000R F610	62	ORI	10H	; ADD DE' INACTIVE BIT	
000C D3R3	63	OUT	CTLPRT	; OUTPUT TO CONTROL PORT	
000E E607	64	ANI	07H	; REMOVE OF INACTIVE BIT (ACTIVATE OF)	
0010 F608	65	ORI	8H	; ADD CE' ACTIVE BIT	
0012 D3R3	66	OUT	CTLPRT	; OUTPUT TO CONTROL PORT	
0014 DBA1	67	IN	DATPRT	; INPUT DATA FROM 2816	
0016 95	68	PUSH	PSW	SAVE DATA	
0017 AF	69	XRA	A	; ZERO A REGISTER	
0018 D3A3	70	OUT	CTLPRT	> DEACTIVATE ALL CONTROL LINES	
0018 F1	71	POP	PSW	; RESTORE DATA	
0018 09	72	RET		, AND EXIT	
	73				
	74				
	75				
	76				
			CONTROLLER 14 #	RITE/ERASE CYCLE SUBROUTINE	
	76				
	ξ <i>ε</i>		DATA PASSED:	HL = ADDRESS OF 2226 LOCATION TO WRITE	
	88			R = DATA TO WRITE	
	81	3		UP Grif (ERHSE)	
	82		UHIH KETURNED.	Nulle	
	24		REGS DESTRUCTED.	利化	
	64		RHM REQUIRED	1 BYTE FUR TEMP PLARESS TADATED STORAGE	
	50 66		URLLS:	REDELY (I/O FOLL ROUTINE OR INTERNOR) DRIVER)	
	05		CONSTRUCT.	CHOME YEAR OF LETTE PEOGE OUT EN POUTINE	
	01		CONTRACTOR :	TO CONTENT OF ANTICIPARTOE OF UP IN DATA	
	24			CONTINE AUCTOR IN TO CHIT DOWN CONTON I CD	
	40	1		THIC CLEANNINE IS BODT AS THE NOTHER	
	20			DERVERE DOUTLASS INTITIOTES OF & TOLLAR	
	27			REPUBLICATION AND COMPANY OF THE PARTY	
	47			rite o rote.	
	94				
9922	95 CL 8907	500	22-	/ 1/0 PORT USED TO RESET INTERPLAT FUE S	
2022	96 CLRACT	EAL	ÚH.	ACTIVATE CLEAR WRITE COMPL & ILL ACC INTR	
0.043 7	97 CLRINA	EQU	28	. INACTIVE CLEAR NO & IA FUNCTION	
	38				
	99				
	198 WECKCL				
001C F5	191	FUSH	PSW	> SAVE REGISTERS	AFN-01885A

Figure 25. Controller IV Software Driver (Continued)

	-	 -	~
	-		
	-	 	
~		 •••	_
	-	 	_

		-			-				
ISIS-I	I 8080/86	985	MACRO	ASSEMBL	ER, V3.	0 MOD	ULE	PAGE 3	
LOC	OBJ		LINE	3	SOURCE	STATEMENT			
001D	05		102		PUSH	8			
001E	47		105		MOW	B, A	;	SAVE DATA TO WRITE IN B-REGISTER	
001F	3E00		184		NWI	A, CLRACT	;	CLEAR WRITE COMPLETE & ILLEGAL ACCESS F/F'S	
0021	0322		105		TUG	CLRPRT		ACTIVATE CLEAR FUNCTION	
0923	3603		106		MVI	A, CLRINA	;	DEACTIVATE CLEAR FUNCTION	
0025	D322		107		OUT	CLRPRT			
9927	TERE		188		MVT	B, ØFH		PUT ALL 8155 1/0 PORTS IN OUTPUT MODE	
0029	DRAM		189		OUT	FEPDR		OUTPUT TO PORT DIRECTION REGISTER	
992B	78		110		MON	A. R		FETCH DATA TO WRITE	
0020	0381		111		OUT	DETERT		OUTPUT TO 2816 DATE INES	
0020	70		142		MOV	8.1		GET LOW ORDER BODRES	
002E	0782		117		OUT	ADPPOT		DUTPUT TO ADDRESS I INES	
0021	70		114		MOV	A, H		GET HIGH OPDER ADDRESS	
8832	E697		115		ANT	78		CLEAR BLL CONTROL LINES	
0032	E610		115		OPT	164		ADD MUY BIT TO SELECT I/O PORTS FOR WRITE	
0034	0207		117		OUT	CTIPPT		OUTPUT HIGH OPDER ADDRESS AND CONTROL LINES	
0030	EERS		110		001	QLI KI		AND OF ACTIVE RIT	
0050	6707		140		OUT	CTI DDT		AUTOUT CONTROL I THEC GODTH	
0001	47		120		2400	P.A		SAVE HIGH OPDER ROOP/CTL LINE DATA	
0030	7500		120		NUT			OUTPUT TIMED COUNT (LOW ODDER)	
0050	D784		122		OUT	TTMI OLI		OUTOT TINER COORT (EOR DRDER)	
0031 8844	20214		107		NUT	A. COUNTH		OUTPUT TIMER COUNT (HIGH ORDER)	
0041	0385		124		OUT	TIMHI		OUTOT THER COURT (HIGH ORDER)	
0043	THEFE		105		MUT	A. ACEH		START THE TIMER	
0040	0200		400		OUT	CEDIO		211101 THE LINER	
0047	70		407		MOU	D D		DETDIEVE GAMPECC/MANTON DITC	
0042	10 6200		100		OPT	200		ADD UDD ACTIVE DIT	
0040	0202		100		OUT	CTI ODT		ACTIVATE VOD	
0040	220000	0	470		CTO	TEMOTI		COUL TURN OUNDECC YOUNTER DITC END DETED INTO	
0045	04	v	130		210	P		- DECTADE DEGISTEDE	
0001			101		POP	D		RESTORE REUISTERS	
0002	CD0000	-	132		COLL	LEVEL V		ON TO I TO DOLL LOOD OF INTERPLIET DOLUCE	
0000	: C00000	c	474		DET	MEDELT		- AND DETHEN DARY TO MAIN DOGGDAM	
00-00	1.62		125		REI			THE RETORN BOOK TO THEIR PRODUCT	
			125						
			120						
			420		DCEC.				
			120		USEU				
0000			1.40	TENCT	ne	4		DOM LOCATION COD TEMP STODAGE OF CONTROL DITE	
0000	,		140	TERCIL.	05	1		AND LOCATION FOR TEAP STORAGE OF CONTROL DITS	
			142						
			1472						
			143		0550				
			144		0360				
			145						
			147			CONTROL LED	TU EN	D-DE-URITE/ERACE-OVOLE POLITINE	
			149			CONTROLLER	14 EU	D OF MALIELENDE GIVEE NOUTINE	
			149			CALLED TO B	Y LO	POLL OR INTERRUPT DRIVER AFTER WRITE COMPLETE	
			150			TO SHIT DOW	N MAN	TRO I FR	
			151			10 2001 200			
			101						AFN-018854

Figure 25. Controller IV Software Driver (Continued)

AP-102

ISIS-II 8	080/808	5 MACRO ASSEM	BLER, V3.	0 MODULE	PAGE 4			
LOC OB	IJ	LINE	SOURCE	STATEMENT				
		152 153 154	; ;	data passed:	TEMCTL (1 ADDRESS (3	RAM BYTE) CONTAIN 8 BITS) & CONTROL	NING HIGH ORDER BEFORE WRITE COMP	L
0057 55		155 ENDWE	DIICU	DCU	. COVE DE	TOTODE LEVII NECT	rpou	
0007 F0		157	PUSH	D) SHYE KE	ITSTERS HE LE DEST	IKOT	
0059 3A	0000	158	LDR	TEMCTL	; GET ADD	ESS LINES/CONTROL	BITS	
005C E6	1F	159	ANI	1FH	; REMOVE (ACTIVE VPP BIT		
005E D3	iA3	160 161	OUT	CTLPRT	; DE-ACTI	ATE VPP		
0060 F5	;	162	PUSH	PSW	; SAVE HIC	H ORDER ADDRESS/0	CONTROL LINES	
0061 11	0000	163	LXI	D, 13D	; SET UP (COUNT FOR 100 USED	DELAY	
		164 DELAY	:					
0064 18		165	DCX	D	; DELAY W	HILE VPP FALLS		
0065 79	1	166	MOV	A, D	; DONE CO	INTING?		
0055 53	2400	167	URH IN7		NO VEE	LOOPTHIC		
0007 02	.0400	169	JNZ	VELHT	J NU. KEEP	LUUFING		
006A F1		170	FOF	PSW	RESTORE	ADDRESS/CONTROL 1	INES	
0068 E6	17	171	HNI	1/H CTI DDT	A REMUVE I	AE HUIIVE BII		
ABEE FE	013 197	173	ANT	7H	: PEMOVE)	WIX SELECT WRITE F	RIT	
0071 03	A3	174	OUT	CTLPRT	; LET MUX	SELECT FOR READ (PERATIONS	
0073 3E	ØE	175	MVI	A, ØEH	; PUT DATE	PORT BACK TO INF	PUT MODE	
0075 D3	:A0	176 177	OUT	EEPDR	; SO AS NO	TT TO CAUSE CONTEN	NTION W/ DATA BUS	
0077 D1		178	POP	D	; RESTORE	REGISTERS		
0078 F1	- 10	179	POP	PSN				
0079 C9		180 181	RET) AND EXI	ſ		
		182						
		183	CHIP					
		184	ENU					
PUBLIC SY ENDWE C	MBOLS 0057	READ C 000	0 WEC'Y	CL C 001C				
EXTERNAL NEDELY E	SYMBOLS 0000							
USER SYMB	OLS							
ADRPRT A	00A2	CLRACT A 000	0 CLRI	NA A 0003 CLI	RPRT A 0022	COUNTH A 0083	COUNTL A 00CO	CTLPRT A 00A3
TIMLON A	00A1 00A4	WECYCL C 001	4 EEPD C WEDE	R H 00A0 EN LY E 0000	DWE C 0057	RERD C 0000	TEMCTL D 0000	TIMHI A 00A5
ASSEMBLY	COMPLET	E, NO ERROR	S					AFN-01885A

Figure 25. Controller IV Software Driver (Continued)

ASM80 :F1:CCLR2	2. SRC MOD85				
ISIS-II 8080/80	185 MACRO ASSEMBL	LER, V3. 0	MODULE	PRGE 1	
LOC OBJ	LINE	SOURCE S	TATEMENT		
	1 \$DEBUG				
	2				
	3				
	4	PUBLIC	CERASE		
	5				
	6	EXTRN	WEDELY, ENDWE		
	7				
	8	CSEG			
	9				
	10				
	12			UTD EDGCE CHEDINITIME	
	12	'	CONTROLLER II C	HIF ERHDE DUDRUUTINE	
	14		DATA PASSED	NÜNE	
	15	-	DATA RETURNED	NINE	
	16	1	REGS DESTROYED	NINE	
	17	4	CALLS	WEDELY (1/0 POLL ROUTINE OR INTERRUPT DRIVER)	
	18	· ·	UTILLU .		
	19	;	I/O PORTS USED:		
	20	9	PORT 22	H (OUTPUT)	
	21	3		BIT 0 = WRITE COMPLETE CLEAR (ACTIVE LOW)	
	22	3		BIT 1 = ILLEGAL ACCESS CLEAR (ACTIVE LOW)	
	23	1		BIT 5 = CHIP CLR (+12V TO GE' LINE) (ACTIVE HI)	
	24				
	25	1	COMMENTS :	ENDWE (END OF WRITE/ERASE CYCLE) ROUTINE	
	26	Ĵ.		IS CALLED BY INTERRUPT DRIVER OR I/O POLL	
	27	÷		ROUTINE (WEDELY) TO SHUT DOWN CONTROLLER.	
	28	÷		THIS SUBRUUTINE IS PHRT OF THE DRIVER	
	29	2		PHORMSE ROUTINES INITIATED BY A CHEL TO	
	20	,		UERHJE.	
	72				
	33		1/0 SYMBOLS		
	34				
0022	35 CLRPRT	EQU	22H	CHIP ERASE OUTPUT PORT	
0000	36 CLRACT	EQU	00H	ACTIVE RESET OF CLEAR WC & ILL ACC FLIP-FLOPS	
0003	37 CLRINA	EQU	03H	; INACTIVE RESET OF CLEAR WC & IA FUNCTION	
0023	38 CLRCCL	EQU	23H	> DATA TO DEACTIVATE CLEAR WC & IA BUT ACTIVATE	
	39			> DE' = +12V FUNCTION FOR CHIP CLEAR	
	40 CERASE				
0000 F5	41	PUSH	PSW	> SAVE REGISTERS	
0001 E5	42	PUSH	Н		
0002 3E00	43	MVI	R, CLRACT	GET BITS TO RESET WRITE COMPL AND ILL ACC	
0004 0.522	44	UUT	OLKPRI 0. CLOCC	OFT DUTC TO ACCONTINUES OF COD CONSTANT OF	
0000 SE23	40	1141	ID ULKUUL	TUEN ON OF - KON SIMPLIAN FOR OUTO FROM	
0008 D722	40	GRIT	CI PPPT	A TORA ON DE - TIEV FUNCTION FOR CHIF ERHSE	
BABA REFE	49	MUT	A. OFFH	NETTE REEN TO THE 2016	
0000 320080	49	STA	คลดดอย	MUTIC OLU IO UNE 2010	AEN OLOSS
and summeries		with the			AC001003A

AP-102

Figure 26. Controller II Chip Erase Routines

A	D	4	02	
А	-	- 1	υz	

ISIS-II 8080/8085 MACRO ASSEMB	LER, V3. 0 M0	DULE PAGE 2
LOC OBJ LINE	SOURCE STATEMENT	
000F CD0000 E 50 0012 3E03 51 0014 D322 52	CALL WEDELY MVI A, CLRINA OUT CLRPRT	; GO TO I/O POLL LOOP OR INTERRUPT DRIVER ; DEACTIVATE CHIP CLEAR FUNCTION
0016 E1 53 0017 E1 54	PUP H	, REDIVRE REGISTERS
0017 F1 54 0018 C9 55 56	RET	
57	END	
PUBLIC SYMBOLS CERASE C 0000		
EVITEDNOL CURDOL C		
ENDINE E 0000 WEDELY E 0000		
USER SYMBOLS CERASE C 0000 CLRACT A 0000	CLRCCL A 0023	CLRING A 0003 CLRPRT A 0022 ENDWE E 0000 WEDELY E 0000
ASSEMBLY COMPLETE, NO ERRORS		AFN-01885A

Figure 26. Controller II Chip Erase Routines (Continued)

	~	114	~	~	
•	~	- 1	63	- 2	
~		-	υ	6	

001	1.705			-
: UBJ	LINE	SUUKLE 3	THIEREN	t size at a second s
	1 \$02500			
	2			
	3	orec		
	4	COEU		
	2			
	0		CEDOCE	
	0	FODLIC	CENTOE	
	0	EVTEN	LENE V	ENGLIE
	10	LAIRN	MEDELT	, ENDAC
	14			
	12		сомтро	LED THE TWO PORT DEFINITIONS
	17		CONTRO	Contract and Four Del Marianto
	14	1. 19	THPI FM	ENTED IN 8155 ROM / 1/0 / TIMER CHIP
	15		410 661	ANTHE ST SAVE SHITT LEV C LABOR VIAL
	16			
	17		PORT	DESCRIPTION
	18			
	19		anah	PORT DIRECTION REGISTER (SET TO DEH = ALL PORTS OUTPUT)
	20	;		
	21		OR1H	2816 DATA (OUTPUT)
	22	;		
	23	;	0A2H	2816 LOW ORDER ADDRESS, A0-A7 (OUTPUT)
	24	1		
	25	3	0A3H	2816 HIGH ORDER ADDRESS AND CONTROL LINES (OUTPUT)
	26	1		BITS 0-2: A8-A10
	27	1		BIT 3: CE CTRL (0=SELECT READ)
	28	3		WRITE ENABLE)
	29	4		BIT 4. MUX CTRL (0=READ, 1=WRITE)
	30	3		BIT 5. VPP CTRL (0=INACTIVE, 1=ACTIVE)
	31	1		
	32	,	0A4H	LOW ORDER TIMER COUNT REGISTER
	33	3		
	34	i	ORSH	HIGH ORDER TIMER COUNT REGISTER
	35	3		
	36	÷.	22H	CHIP ERASE, INTERRUPT F/F CLEAR PORTS (OUTPUT)
	37	ż		BIT 0: WRITE COMPL CLEAR (ACTIVE LOW)
	38	ž		BIT 1: ILLEGAL ACC CLEAR (ACTIVE LOW)
	39	;		BIT 5: CHIP ERASE (+12V TO DE') ACT HI
	40			
	41			
	42	Four	0000	
3	43 EEFDR	EQU	UHUH	, FURT DIRECTION REGISTER
	44 DRTPRT	EQU	URIH	, 2816 DATA (OUTPUT)
	45 HDRFRI	EQU	UH2H	2816 LUW UKDEK HDURESS (OUTPUT)
	46 LILPK!	EGU	0H3H	2816 HIGH OKDER HODKESS HND CONTROL (DUTPUT)
	47 FIMLOW	EWU	OH4H	; LOW ORDER TIMER COUNT REGISTER
1	40 11001	E60	OHOH	/ RIGH UKDEK TIMEK CUUNT KEGISTEK

Figure 27. Controller III, IV Chip Erase Routines

AP-102

ISIS-II 8080/8085	5 MACRO ASSEMBLI	ER) V3. 6	MODULE	PRGE 2	1
LOC OBJ	LINE	SOURCE S	TATEMENT		
00C0 0083	50 COUNTL 51 COUNTH	equ Equ	0C0H 83H	; LOW ORDER TIMER COUNT FOR 10 MSEC DELAY ; HIGH ORDER TIMER COUNT FOR 10 MSEC DELAY	
	53 54				
	55	1	CONTROLLER III,	IV CHIP ERASE SUBROUTINE	
	57 58	;	data passed:	HL = ADDRESS OF 2816 LOCATION TO WRITE A = DATA TO WRITE	
	59 60 61	; ; ;	DATA RETURNED: REGS DESTROYED:	NONE NONE	
	62 63	;	RAM REQUIRED: CALLS:	1 BYTE FOR TEMP ADDRESS/CONTROL STORAGE PEDELY (I/O POLL ROUTINE OR INTERRUPT DRIVER)	
	64 65 66 67 68 69	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	COMMENTS:	ENDWE (END OF WRITE/ERASE CYCLE) ROUTINE IS CALLED BY INTERRUPT DRIVER OR I/O POLL ROUTINE (WEDELY) TO SHUT DOWN CONTROLLER. THIS SUBROUTINE IS PART OF THE DRIVER PACKAGE ROUTINES INITIATED BY A CALL TO	
	70 71 72	;		NECYCL.	
0000 0023	73 CLRACT 74 CLRCCL 75	EQU EQU	0H 23H	, ACTIVE CLEAR WRITE COMPL & ILL ACC FUNCTION ; DATA TO DEACTIVATE CLEAR WC & IA BUT ACTIVATE ; DE' = +12V FUNCTION FOR CHIP ERASE	
0003 0022	76 CLRINA 77 CLRPRT 78	EQU EQU	3H 22H	; INACTIVE CLEAR WC & IA FUNCTION ; PORT USED TO CLEAR ILL ACC & WRT COMPL F/F	
	79 80 CERASE:				
0000 F5 0001 3E00 0003 D322	81 82 83	PUSH MVI OUT	PSW R, CLRACT CLRPRT	; SAVE REGISTERS ; CLEAR WRITE COMPLETE AND ILL ACC FLIP-FLOPS	
0005 3E23 0007 D322	84 85	MVI OUT	A, CLRCCL CLRPRT	; DE-ACTIVATE CLEAR FUNCTION & SET OF = +12V	
0009 3E0F 0008 D3A0 000D 3EFF	86 87 88	MVI OUT MVI	H, UFH EEPDR B, OFFH	; PUT HLL 8155 1/0 PURTS IN DUTPUT MUDE ; OUTPUT TO PORT DIRECTION REGISTER ; DATA TO WRITE IS ALL 1'S	
000F D3A1 0011 3E00	89 90	OUT MVI	DATPRT A, Ø	; OUTPUT TO 2816 DATA LINES ; LON ORDER ADDR (NE WRITE TO A000 FOR CCLR)	
0013 D3A2 0015 3E10	91 92	OUT MVI	ADRPRT A, 10H	; OUTPUT TO ADDRESS LINES ; ACTIVATE MUX FOR WRITE OPERATION	
0017 D3H3 0019 F608 0018 D3A3	94 95	ORI	SH CTLPRT	; OUTPUT HIGH OKDER HOUKESS HAD CUNIKUL LINES ; ADD CE ACTIVE BIT ; OUTPUT CONTROL LINES AGAIN	
0010 3EC0 001F D3A4	96 97	NVI OUT	A, COUNTL TIMLOW	, OUTPUT TIMER COUNT (LOW ORDER)	
0021 3E83 0023 D3A5	98 99	MVI OUT	A, COUNTH TIMHI	; OUTPUT TIMER COUNT (HIGH ORDER)	
0020 SELF	199	NAT	H, OUTH	; SIMKI INE LIMEK	AFN-01885A

Figure 27. Controller III, IV Chip Erase Routines (Continued)

	-	 -	-
•		 e n	- B -
м	_	 u	1
~	•	 ~	-

ISIS-II 8080/8085 MACRO ASSEM	BLER, V3. Ø MODULE PRGE 3
LOC OBJ LINE	SOURCE STATEMENT
0027 D3A0 101	OUT EEPDR
0029 3E38 102	MVI A.38H ; ACTIVATE VPP, CE' AND MUX
002B D3A3 103	OUT CTLPRT ; ACTIVATE VPP
002D 320000 D 104	STA TEMCTL ; SAVE HIGH ADDRESS/CONTROL BITS FOR AFTER INTR
0030 CD0000 E 105 106	CHLL NEDELY ; WHIT FOR END OF WRITE CYCLE BY 1/0 POLL OR ; INTERRUPT DRIVER ROUTINE
0033 3E03 107	NVI 8, CLRINA ; DEACTIVATE CHIP CLEAR FUNCTION
0035 0322 108	OUT CLRPRT
0037 F1 109	POP PSW
0038 C9 110 111 112 117	RET ; BACK TO CALLING ROUTINE
114	DSEG
115	0000
0000 116 TENCTU	DS 1 ; RAM LOCATION FOR TEMP STORAGE OF CONTROL BITS
117	
118	
119	
120	END
PUBLIC SYMBOLS CERASE C 0000	
EXTERNAL SYMBOLS	
ENDWE E 0000 HEDELY E 0000	
HEED CLANDAR C	
ANDER STIDUES ANDERT A MARY CERSES & AGAI	
COUNTI A GACA CTURPT A GAAT	CATERT A GART FERDE A GARA ENDUE E GARA TEMOTI D GAGA TIMUT O GARS
TIMLON A 00R4 WEDELY E 000	
ASSEMBLY COMPLETE, NO ERRORS	AFN-01885A

Figure 27. Controller III, IV Chip Erase Routines (Continued)

ASM80 :F1: IOPOLL.	SRC				
ISIS-II 8080/8085	MACRO ASSEMBL	ER, V3. 0	MODULE	PAGE 1	
LOC OBJ	LINE	SOURCE S	TATEMENT		
	2				
	3				
	4.				
	5				
	6	;	****	*********	
	7		0015.00	ATTOLET THE DOLL DOLLTING	
	8	ĵ	2816 00	NTROLLER 170 POLL RUOTINE	
	10				
	11	-			
	12	·			
	13	1	***	******	
	14				
	15				
	16	PUBLIC	PEDELY		
	17	CUTCH	0000		
	18	EATRN	ENUPE		
	20				
	21	CSEG			
	22				
	23				
	24	j	PEDELY: PROGRA	M/ERASE CYCLE DELAY ROUTINE	
	25				
	26	3	DELHYS	VIA 1/0 POLLED WAIT LOOP ON 'WRITE COMPLETE'	
	27	,	BII.		
	29		DATA PASSED	NONE	
	30	;	DATA RETURNED:	NONE	
	31	1	REGS DESTROYED:	NONE	
	32				
	33	i	I/O PORT USED:	PORT 21H	
	34	1		- BIT 1 = 'WRITE COMPLETE' (ACTIVE HIGH)	
	50				
9921	30 37 UCPORT	FOU	21H	: 1/0 PORT CONTAINING WRITE COMPLETE BIT	
	38		ter de l 3	7 TO FORT CONTINUES MALLE CONTENTE DET	
	39				
	40 PEDELY:				
0000 F5	41	PUSH	PSW	; SAVE R-REG, FLAGS	
	42 LOOP				
0001 DB21	43	IN	WCPORT	GET WRITE COMPLETE BIT	
0003 E602	44	HN1	2H	I PHSK WU BIT	
0000 CH0100 C	45	32	LUOP	/ IF NUT DET THEN KEEP WHITING	
0008 F1	47	POP	PSW	RESTORE A. FLAGS	AEN-01885A
					ALLE OLODON

Figure 28. Controller I/O Poll Routines

AFN-01913A

AP-102

Δ	D_	1	02	
~	- -		UL.	

ISIS-II 8080/8085 MACRO ASSEMBL	LER, V3. 0 MODULE	PRGE 2	
LOC LINE	SOURCE STATEMENT		
0009 ∩00000 E 48 49	CALL ENDPE	; CALL END PROGRAM/ERASE CYCLE ROUTINE TO ; SHUT DOWN 2816	
000C C9 50 51	RET	; RETURN BACK TO HOST PROGRAM.	
52 53			
54	END		
PUBLIC SYMBOLS PEDELY C 0000			
EXTERNAL SYMBOLS ENDPE E 0000			
USER SYMBOLS ENDPE E 0000 LOOP C 0001	PEDELY C 0000 WCP	ORT A 0021	
ASSEMBLY COMPLETE, NO ERRORS			AFN-01885A

Figure 28. Controller I/O Poll Routines (Continued)

AP-102

ASM80 :F1: INTER	SRC	M0085				
ISIS-II 8080/80	85 MA	CRO ASSEMBLI	ER, V3. 0	MODULE	PAGE 1	
LOC OBJ	L	INE 1 \$DEBUG	SOURCE S	TATEMENT		
		2				
		3				
		4				
		5	CSEG			
		5 7		UENELV LIGHN E		
		8	FUDLIC	NEVELT/ INTROLE		
		9	EXTRN	ENDWE		
		10				
		11	CSEG			
		12				
		13				
		14			FROM A DELON CHROONTINE	
		10	1	NEVELT - WRITER	ERASE CICLE DELAT SUBROUTINE	
		17	1	THEFT	OF DRIVER	
		18	1	CALLED TO WAIT	FOR INTERRUPT TO OCCUR WHILE WAITING OUT	
		19	1	2816 CONTROLLER	WRITE CYCLE	
		20				
		21	<i>i</i>	DATA PASSED:	NONE	
		22	3	REGS DESTROYED:	NONE	
		25	1	INTERRUPT USED:	EXPECTS CONTROLLER TO USE INTERRUPT 6.3	
		29	÷.	USED WITH	INTERRIET HANDLER SUBDLE (HENDLE)	
		26	÷	Cardo Harris	attainer i fillig san avageriens fillig sa	
		27	1	RAM REQD:	1 BYTE - 'WRTCOM' - WRITE COMPLETE INTERCOM	
		28	1		- BIT ZERO SET BY INTERRUPT HANDLER	
		29	Ŧ		WHEN WRITE COMPLETE.	
		30				
0000		ST TORMER	COLL	11010	INTERPRIET MACY ENARLING INTERPRIET & 5 ONLY	
0000		32 1000100	CSU	11010	TRIERRO P HIDE ENDEING TRIERRO F 0.0 OREF	
		34 WEDELY				
0000 F5		35	PUSH	PSW) SAVE A-REGISTER, FLAGS	
0001 AF		36	XRA	A	J ZERO WRITE COMPLETE INTERCOM REGISTER	
0002 320000	Ð	37	STR	WRITCOM		
0005 3E0D		38	MVI	H, IONAPK	; ENHBLE INTERRUPT 6.5 UNLY	
0007 30 0007 50		37 40	510 510		OLLOW INTERDURTS TO OCCUP	
0000 10		41 1 00P			The second second	
0009 300000	D	42	LDA	NRTCOM	GET WRITE COMPLETE STATUS REGISTER	
000C 1F		43	RAR		; PUT LEAST SIGNIFICANT BIT INTO CARRY	
0000 D20900	C	44	JNC	LOOP	> IF LSB NOT SET, KEEP LOOPING	
		45				
9010 F1		45	PUP	r5M	DACK TO NOCT PRODOM	
0011 05		47	REI			
		49				
		50				AFN-01885A

Figure 29. Controller Interrupt Driver

A	n	-4	n	0	
A	-	- 1	υ	2	

ISIS-II 8080/80	185 M	IACRO	ASSEMBL	ER, V3. I	3 MODULE	PAGE 2	
LOC OBJ		LINE		SOURCE :	STATEMENT		
		51					
		52		DSEG		; SAVE A RAM LOCATION	
0000		53	WRTCOM:	DS	1		
		54					
		55					
		56					
		57					
		58		ASEG			
		59					
0FE0		60		ORG	ØFEØH		
		61					
		62					
		63					
		64		;	HANDLE - 2816 C	ONTROLLER INTERRUPT HANDLER	
		65		1	UPON R	ECEIPT OF INTERRUPT, WRITE COMPLETE BIT CHECKED.	
		66		;	IF SET	, 'ENDWE' IS CALLED TO SHUT DOWN CONTROLLER.	
		67		1	IF ILL	EGAL ACCESS BIT SET, 'ILLACC' IS JUMPED TO.	
		68		;	IF NEI	THER BIT SET, 'BADINT' IS JUMPED TO INDICATING	
		69		1	BAD IN	ITERRUPT OCCURED.	
		70					
		71		5	DATA PASSED:	NONE	
		72		5	REGS AFFECTED:	NONE	
		73		1	REQUIRES:	HOST PROGRAM MUST SET UP INTERRUPT VECTOR	
		74				SO 'HANOLE' EXECUTED UPON RECEIPT OF RST 6.5	
		75		4		COMMEND	
		76		1	CODE REQUIRED:	'ENDWE' SUBROUTINE CALLED TO SHUT DOWN	
		77		1		CONTROLLER AT END OF PROGRAM/ERASE CYCLE	
		78		1	RAM USED :	1 BYTE - WRICOM - WRITE COMPLETE STATUS BYTE	
		79				- BIT 0 SET WHEN WRITE COMPLETE	
		80		1			
		81		-	1/0 PORT USED:	PORT 21:	
		82				- BIT 0 = WRITE COMPLETE (ACTIVE HI)	
		87				- BIT 1 = ILLEGEL ACCESS (ACTIVE HI)	
		84					
		85					
9996		86	IOFMSK	EOU	1010B	MASK OUT INTERRUPT 6.5	
0021		87	WCPORT	EQU	21H	WRITE COMPLETE STATUS I/O PORT	
		88					
		89	HANDLE				
0FE0 F5		90		PUSH	PSW	SAVE A-REG, FLAGS	
0FE1 0821		91		IN	WEPORT	; PICK UP CONTROLLER STATUS BITS	
0FE3 1F		92		RAR		; MOVE ILLEGAL ACCESS BIT INTO CARRY	
0FE4 081200	0	93		JC	ILLACC	; GO TO ILLEGAL ACCESS ROUTINE IF SIT SET	
ØFE7 1F		94		RAR	WANT AND	/ MOVE WRITE COMPLETE BIT INTO CARRY	
0FE8 021300	Ċ	95		JNC	BADINT	/ IF NOT SET THEN GO TO BAD INTERRUPT HANDLER	
ØFEB 3EØA		96		MVI	A, LOFMSK	/ UN-MASK 6.5 INTERRUPTS	
0FED 30		97		SIM			
OFEE CD0000	E	98		CALL	ENDINE	; SHUT DOWN CONTROLLER	
0FF1 3E01		99		NV1	A, 1H	· SET WRITE COMPLETE INTERCOM BIT	
0FF3 320000	0	100		STR	WRTCOM	AND SAVE IN RAM	AFN-01885A

Figure 29. Controller Interrupt Driver (Continued)

AP-102

LOC C)BJ	LINE		SOURCE	STATEMENT				
ØFF6 F	1	101		POP	PSW	· .	REST	TORE REGISTER	
0FF7 0	9	102		RET		1	AND	RETURN BACK TO INTERRUPTED ROUTINE	
		103							
		104							
		105							
		196							
		107							
		108							
		109		0.000					
		110		1320					
		412							
8812 (~7	117	11 ACC -	PST	. 0		. 111	ACCESS RESTART VECTOR FOR TESTING ONLY	
0012 (77	114	BADINT .	RST	9	ATTAC IN LA	BAD	INTERRIPT RESTART VECTOR FOR TESTING ONLY	
0010		115	DINE LIST .	1521	-		, cric	Internet in Restart Restart for Testing oner	
		116		END					
PUBLIC :	D ACCA		e 0000						
nnnule :	n ofeo	WEDELY	0000						
FXTERNAL	SYMBOLS								
ENDINE I	E 0000								
USER SY	MBOLS								
BADINT	0013	ENDWE	E 0000	HAN	LE A OFER	ILLAC	C C 0	012 IOFMSK A 000A IONMSK A 000D LOO	C 0009
NCPORT I	A 0021	WEDELY	C 0000	WRT	COM D 0000	1			
ASSEMBL	+ COMPLETI	E, NO	ERRORS						AFN-01885A

Figure 29. Controller Interrupt Driver (Continued)

APPLICATION NOTE

AP-103

The Intel 2816 is a new generation of non-volatile memory in which writing and erasing can be accomplished on board by providing a 21 volt pulse. Figures 1 and 2 show the wave forms for byte erase (or write) and chip erase respectively. In order to generate the V_{PP} pulse, a power supply with output voltage of +24V is needed. In a system environment where this voltage is not available, a switching regulator can be used to convert +5Vinto +24V. This Application Note will discuss the design and implementation of such a regulator.

With the advent of LSI technology, the design of a dc-to-dc converter has been greatly simplified. Figure 3 shows the circuit diagram for a voltage converter using a TL497 switching voltage regulator. The converter presented here is very low cost and is excellent for use in systems where 5 volts is the only supply available.

In order to familiarize the reader with the operation of such a converter, the following discussion is appropriate. The circuit operates as follows: the frequency at which transistor Q1 is switching is determined by capacitor C1. The converter output voltage is fedback to an internal comparator that controls the on and off time of O1. When O1 is turned off, voltage across the inductor inverts, and the blocking diode CR1 is forward biased to provide a current path for the discharge of the inductor into the load and filter capacitors (C2 and C3). During the time when Q1 is turned on, the current into the inductor increases linearly. The blocking diode CR1 will become reverse biased and the output load current is provided by the filter capacitors. Figure 4 shows the waveform of the current into the inductor when the output is drawing 80mA. As can be seen, there is no gap between the charge and discharge cycles. Therefore, any current output exceeding 80mA will cause the output voltage to start losing regulation. The switching regulator efficiency can be calculated as a ratio of output power to input power. Therefore,

$$\% \text{ efficiency} = \frac{\text{Output power}}{\text{Input power}} \times 100\%$$
$$= \frac{24\text{V X 80mA}}{5\text{V X 1160mA X 0.5}} \times 100\%$$
$$= 66\%$$

The output voltage from the switching regulator can now be used to generate the Vpp pulse required to program the 2816 E²PROM. Figure 5 shows the Vpp switch circuit diagram. CR1 is used to suppress any noise on the +24V. A2 is an open-collector gate. When its output is low, C1 and pin 5 of A1 will be shorted to ground. Therefore, Q1 will be turned off and Vpp pulse will stay at V_{CC} less one diode drop. When a write cycle is initiated, output of A2 will be high for 10mS. This would allow the capacitor to charge. The time constant is determined by R1 X C1 = 600μ sec. As soon as the voltage across the capacitor is charged up to the zener voltage, the feedback amplifier will force this voltage to remain constant. The final output voltage is adjusted by R2. Q1 provides the additional current drive capability up to 75mA and CR2 across pin 5 and 6 of A1 will ensure a glitchless Vpp pulse.

The 2816 has an inhibit mode which allows the device to be deselected during programming. It also means that the V_{PP} switch has to supply the I_{PP} standby current for the unselected devices. Table 1 shows the maximum number of devices that can be supported by the switching regulator in an 8-bit and 16-bit system. Because of the inhibit mode device selection, only one switch is needed for many devices in system.

The dc-to-dc converter and V_{PP} circuit provide an overall solution for programming the 2816 E^2 PROM using a single +5V supply. With its high current drive capability, the V_{PP} switch should satisfy over 95% of the design requirements. Therefore, it is recommended that the circuit be implemented whenever +24V is not available. This circuit has also been designed and tested to operate over the full temperature range, just like the 2816.

Figure 2. Chip Erase Waveforms

-				
10	-	-	_	
1.21	c 14	-	-	
	~ .	-		•

System	Active Programming Current	Standby Current	Devices Supported	K Bytes	
8-bit	15mA	60mA	13	26	
16-bit	30mA	45mA	10	20	

NOTE: Total current (Ipp) = 75mA.

Figure 3. Step-Up Regulator Converts +5V into +24V

Figure 4. Inductor Current Waveform

Figure 5. Vpp Switch

INTRODUCTION

Software Updates—how many times in microprocessor systems does software undergo revision? Unfortunately, many people say that it changes frequently. As we all know, such revision can be inconvenient, difficult and extremely costly. The 2816, E²PROM, from Intel, can not only eliminate these expenses, but increase the functionality of your designs as well. The 2816 combines the benefits of ROM-like non-volatility with RAM-like flexibility. This application notes discusses the costliness of in-field software updates, how 2816 can solve these problems, and some circuit design information detailing how to implement an evolutionary system that eliminates current service costs.

IN FIELD SOFTWARE UPDATES

As technology progresses, the cost of microprocessor systems will become more dependent on design and service costs rather than component costs. Service costs today average about \$100/hr. By 1985, assuming a typical inflation rate, those costs will approach \$200/hr. Any necessary maintenance to change software, or adjust non-volatile parameters, adds hundreds of dollars to a typical system cost.

To take a realistic example, let's assume a typical microprocessor system (2000 in the field), with a service time of 2 hours per system. Also assume that each system needs to be updated a minimum of 2 times during the product's life. Given such assumptions, the cost involved is at least \$400 per system. That's \$800,000 for the total retrofit! If one assumes a doubling of labor rates in the next 5 years, the new retrofit cost would be \$1.6 million. The 2816 can completely eliminate those costs.

By installing a remote software serial link, the software update can occur over telephone lines, free from service intervention. By 1985 service costs additional to each system will be as much as \$800. Adding 2816 and a remote link to the system will cost about \$50, a mere one-sixteenth the service cost. Today, a 40% savings can result. Figure 0 shows these cost trends.

It is clear that 2816 can save millions of dollars in maintenance costs. That is why it is such a cost effective solution to the many firmware update problems we face today.

In this application note, the hardware and software designs for such a solution will be discussed. First, though, let us examine the design criteria that are pertinent to the memory elements in such a system:

- NON-VOLATILITY—data must be retained even when the host system is powered down.
- 2) FAST ACCESS TIME—With today's high speed microprocessor systems (i.e., the Intel 8086-2, the Zilog Z8000, and the Motorola MC68000) full throughput is only achieved with fast memory devices. For example, a high performance 8086-2 system for zero wait state operation requires a read access time of 250 ns.
- 3) HIGH DENSITY—As software costs rise, high-level languages will be used to reduce design time. Such high-level languages are often memory intensive, requiring high density memory chips to effectively contain dedicated system programs without sacrificing printed circuit board space.
- 4) READ MOSTLY OPERATION—Program memory and certain types of data memory are mostly accessed in a read mode. There are situations, however, where it is necessary to re-load an entire program (as in the case of a software revision), or reconfigure portions of data storage (e.g., when only certain parameters need to be changed). In these cases, the ability to write to the memory in-circuit is essential.

Figure 0. Service Cost Trends

The Intel 2816 fills the need for all these user requirements. It is truly non-volatile, offering greater than 20 year data retention. Access time is 250 ns, which is compatible with today's high speed microcomputer systems. The 2816 is electrically erasable on a per byte or per chip basis—a true read mostly memory, and it offers users 16,384 bits of storage organized as 2048 8-bit bytes.

Specific topics included in this Application Note are the philosophy behind downline loading, as well as the wide spectrum of application possibilities. Included here are four configuration examples. A discussion of both receiving and transmitting functions follows the examples.

DOWNLINE LOAD PHILOSOPHY

The E^2PROM is an excellent medium for storing nonvolatile program and data information. The fact that it allows in-circuit erase and write suggests many possibilities as to the information source that the 2816 can be written from. In many instances, E^2PROM memories will be written from remote data facilities.

The telephone is an ideal means of transferring such information, since it is readily available and requires no special interface. With use of an acoustic coupler, serial binary data is converted into high and low frequency tones, which can be transmitted over a datacom link world-wide. Modems interface easily with microprocessors, and the software overhead of performing a downline load operation is minimal.

2816 REMOTE CONFIGURATION OPTIONS

Programs downline loaded to E^2 PROMs find many applications in both large and small microcomputer systems. All configurations require a modem to interface electrical signals from a central processor with the acoustically driven telephone. Automatic modems are usually dedicated to a specific telephone line and are completely operated by a host processor. Manual modems are usually portable, relying on the human operator to physically place a telephone receiver in an acoustic coupler cradle, thereby closing the communication loop. Both automatic and manual modems can be used in E^2 PROM-telephone communication systems, resulting in four possible configurations:

Manual Receiver — Manual Transmitter

This is a cost effective solution when telephone transmission is not performed often enough to warrant a dedicated telephone line and microprocessor system. Applications include infrequent field updates of program store, where a field system user would call a central factory to have 2816 memory devices reloaded.

Manual Receiver — Automatic Transmitter

Here an automatic transmitter is connected to a microprocessor system which answers the phone and transmits information to 2816s located in remote areas. Applications include field updates, as previously discussed, though a human operator on the transmitting end is not needed. This is advantageous when many field systems will be calling the central factory.

Automatic Receiver — Manual Transmitter

In this situation a microcomputer system would automatically answer the phone to receive information which will eventually be loaded in E^2 devices. This configuration could be used in remote, unattended systems, such as a microprocessor's controlling remote communications switches or repeaters. If parameters need to be changed, the remote switching processor would be telephoned and new parameters transmitted to the E^2 PROMs in the system. This application exploits the byte erase feature of the 2816. Only those E^2 locations containing parameters to be changed need be rewritten.

Automatic Receiver — Automatic Transmitter

Fully automatic systems are useful when it is desirable to eliminate the need for a human operator. Here an auto-dial modem is used (previously discussed automatic systems use auto-answer modems). A central computer could be requested to call many remote units to automatically implement program or data update in E^2 memory without human intervention.

To provide an example of one of the four configurations described above, consider a manual receiverautomatic transmitter system. Because the hardware elements of an automatic transmitter are the same as those of an automatic receiver, by considering one example system, all four configurations can be described. With the example that will be discussed, the human operator is on the receiving end and initiates transmission by dialing the transmitter and placing a telephone receiver in an acoustic coupler cradle. The transmitter answers the telephone and transmits data to the receiver which eventually is loaded into E²PROMs.

RECEIVER

A block diagram of the receiver system is shown in Figure 1. Three elements are of interest here: the modem and modem interface, the receiver CPU and associated software, and the 2816 and E^2 controller.

The receiver CPU is connected to a simple modem which converts serial binary data into acoustical tones. The standard Bell 103 modem or equivalent provides a host system with serial input/output data and various

Figure 1. Typical MPU System With E²PROM Memory and Acoustic Coupler

status indicators (such as "carrier detect" which is active when a remote modem carrier signal is detected). The hardware required is minimal since a standard modem can be readily purchased. An RS232 interface is needed to interface 5V TTL signals from a CPU I/O port (or serial data line) to the \pm 12V RS232 compatible signals of the modem. The rest of the downline load operation is handled in software.

Figure 2 shows a simple modem interface. The MC1489 converts RS232 levels to TTL levels, while the MC1488 converts TTL signals to RS232. In the circuit shown, serial data I/O lines can be passed directly to a UART (Universal Asynchronous Receiver/Transmitter) for serial-parallel data conversion. Another option is to perform the serial-parallel conversion in software. If an 8085 processor is used, the serial I/O lines can be connected to the 8085 SOD and SID ports. The software required is also simple. The receiving CPU only needs to receive data bytes (possibly after a transmitter identification message is received) and program the E²PROM.

Figure 2. A Simple Modem Interface

Figure 3 contains a flow chart outlining the process of receiving data. The processor first transmits an identifier message, then looks for a return identification message sent from the remote transmitter. This latter message may consist of a sequence of binary or ASCII data detailing the location of the transmitter, date and time of transmission, the number of bytes to be transmitted, the address in E^2PROM of where data is to be located, etc. Next, the processor receives a data byte

Figure 3. Receiver Software

which may be immediately programmed into the 2816 or saved temporarily in RAM. If serial-to-parallel data conversion is performed by software, data received must be saved in RAM. The 2816 cannot be programmed as each byte is received, since the processor must devote most of its time to receiving data bits and converting them to parallel form. However, if a UART circuit is used to perform data conversion in hardware, data bytes may be saved in E^2 memory as soon as they are received.

To illustrate this, assume data is transmitted at 300 baud (300 bits per second). Assuming each character consists of 1 start bit, 8 data bits, 1 parity bit, and 1 stop bit, then there are 11 bits per character so a character will be received every 36.7 msec. Between every character a 2816 byte must be erased (10 ms) and written (10 ms). Thus we spend 20 ms out of the 36.7 ms we have available during programming, while 16.7 ms of free time is left until the next byte is received. The final consideration in the downline load receiver is a 2816 controller circuit. (AP102 describes several different controller configurations.) Controller I is convenient to use here. Figure 4 shows a block diagram of the circuit, while Figure 5 contains the circuit diagram. The read operation for the interface is identical to that for EPROMs. To read data, \overline{CE} and \overline{OE} are taken low after addresses are set up.

To write to the 2816, the host processor simply writes to memory. The controller circuit pulls the processor "ready" line low, stalling the CPU and stabilizing addresses and data for the 10 ms write interval while $V_{\rm PP}$ is active. The controller makes the 2816 resemble a slow write RAM except for the necessity of byte erase prior to writing.

AP-107

3-72

TRANSMITTER

The transmitter consists of a dedicated microcomputer connected to an auto-answer modem which in turn is attached to a telephone line. The transmit computer software, loops, waiting for an incoming call. When a call is received the modem is signaled to answer the telephone. Information, in the form of data bytes, is received and transmitted in the same fashion as is done on the receiving end. Essentially, all the base station must do is look for a remote processor identification message, send its own identification message, transmit data serially, and hang up the telephone. Additional features may also be implemented such as keeping a log of all calls received, their origins, etc.

Figure 6 contains a block diagram of a base station system. An 8085 processor is used, with an additional 512 bytes of RAM and 4K bytes of EPROM. A modem interface is shown, in addition to a keypad and display for local user operation, and a real-time clock for logging date and time information.

The EPROM memory contains program store and transmit information; i.e., the data that is to be transmitted to remote processor sites. Note that the transmit data EPROM could be replaced by an E^2 device to allow for frequent changes in transmission data without requiring the physical replacement of the transmit data store. RAM is used to save logging information, temporary program data, and a character input buffer which is used to store received characters when looking for a specific message.

The keypad/display module enables a local base station operator to interrogate the base station and reset date or time, access a call log, etc. The clock module is used to keep track of current date and time. Such data may be transmitted to remote processors, or may be used locally as a part of the information logged pertaining to each call received.

A modem interface is very similar to the receiver modem circuit shown in Figure 2. Figure 7 contains a circuit diagram of an auto-answer modem interface. The circuit provides all signals as that of Figure 2, but additionally converts the "Data Terminal Ready" signal and the "Ring Indicator" signal. "Data Terminal Ready" is provided by the host processor and tells the modem when to answer and hang-up the phone line. "Ring Indicator" is active when the phone line is ringing, and is used here to interrupt the processor.

Figure 6. Base Station Block Diagram

Special Products Division Applications Engineering has constructed a base station similar to the one described here. It is used to transmit information to remote 2816s for demonstration purposes. In this unit, software consists of three operating modes:

- Inactive Mode is the default. The processor displays the time of day while waiting to enter one of the two modes described below.
- Dial-In Mode is entered whenever a call is received. A flow chart of Dial-In Mode software is shown in Figure 8. The processor answers the line, looks for a remote processor identification message, and transmits its own identification header, followed by a text data to be loaded in E²PROM memory. The telephone is hung up as soon as transmission is completed, and inactive mode is entered.
- Local User Mode contains software to allow a local user to reset implemented via the local keypad/ display.

Remote software changes—that's where 2816 is key. In this application note we've shown the costs involved in field software changes. The 2816 can eliminate field service and maintenance costs involved with software and constant changes. It can do this simply and cheaply through remote data links. Also discussed were typical circuit diagrams and system implementation. The bottom line is that 2816 can eliminate service costs in today's microprocessor systems.

Figure 8. Dial-In Mode

Figure 7. Auto Answer Modem Interface

intel

APPLICATION BRIEF

AB-1

A VARIABLE ATTRIBUTE CRT TERMINAL

As the proliferation of the microcomputer continues, there will be an ever increasing requirement for local CRT terminals in households, businesses, and offices. This proliferation is expected to occur throughout the world, which places a burden on the terminal designer to accomodate a wide variety of languages, processing speeds, and transmission protocols. Given memory elements and tools available today, it is difficult to achieve a cost-effective design that will deal with all these variables. The 2816 and 2808 offer an excellent alternative in the design of the CRT controller by allowing a high degree of universality and a virtually unlimited number of terminal attributes.

The E^2 family offers an excellent alternative to the system designer for use of a non-volatile Electrically Erasable memory device. The 2816 can contain both the raw program needed by the CRT terminal to perform basic functions, in addition to storage of the parameter information needed for local configuration. Some of the information that can be contained is baud rate transmission information, configuration of the terminal information such as parity detection, reverse video, and full or half duplex modes. 2816 or 2808s can contain these fundamentally basic constants which can be updated in the field by the user. This removes all of the switching components required in the past, and adds a higher degree of manufacturability and reliability to the terminal design.

In addition, the 2816 can be used as a look-up table for specific character fonts or graphic generation capabilities. This allows the terminal manufacturer to configure the font and language characteristics after manufacture, before shipment. For example, if a specific terminal is going to be shipped to a Far-Eastern nation, the font characters for that typeset can be programmed into the 2816 and shipped to that particular country. Another alternative is to allow programming of the font characters locally at the final destination of the terminal. The user can then program specific fonts and characters as required.

Even greater flexibility is possible from the graphics generation standpoint. It is simple for a user to place the terminal into a graphics mode and generate special graphics characters unique to the application. This can occur through local configuration of graphic types. The terminal could have a graphics mode, where a basic map of the character is presented on the monitor. The user then locates inside the graphic boundaries the necessary information he wishes to display. After this special graphics character is composed, the user simply pushes a command key on the terminal which loads that graphic character into E²PROM. This is an extremely powerful application for the device because it allows each user to fit the particular terminal to a particular application. Scientific users can construct scientific or calculational characters and fonts, while businesses can configure business- or table-oriented fonts.

The block diagram of the system indicates that is used 2816 as a character generator store. The microprocessor used could be a high-speed 8086-2, or perhaps a 8088 microprocessor. Within the system is a 8279 keyboard display controller, which is used to interface with a standard terminal keyboard. In addition, we can use an Intel 8275 or 8276 CRT controller to generate graphic information on the face of the CRT. Also local to the system is an E^2 controller which is used to interface the 2816 to the microprocessor.

Other than the basic components within the system, we may wish to add a serial I/O interface which will allow remote configuring of the characters and communication protocols. The terminal can have a serial load operation where the 2816 is updated after receiving a command character. Other than the basic components, much of the functional operation of the terminal is determined by software.

The 2816 adds the capability of custom graphics, userdefinable fonts and character sets, and programmable communication protocols. All this is possible because of the capabilities that the E^2 brings to system designs.

AB-1

3

intel

APPLICATION BRIEF

Parlan and the second second

A second se

April 1981

AB-2

Jon Produce Durenno Special cations Engineering

AFN-01913A

Point of Sale Point erminal
POINT OF SALE TERMINAL

Remote reconfiguration capability—that design feature can save millions of dollars in Point Of Sale Terminal service costs. With the capability of Intel's 2816 Electrically Erasable PROM, remote changes in terminal constants are now possible—no service personnel are necessary. How often have product codes and pricing information needed changes? In today's economy, one might answer "too frequently". With service costs today of over \$100 per hour, those changes can be very expensive. The 2816 benefits users of Point of Sale Terminals by eliminating service costs. In this application brief the system architecture and user benefits of a 2816-based terminal will be discussed.

Point of Sale Terminals typically use look-up tables to contain product descriptions and pricing information. These tables require several different characteristics to operate optimally in a point of sale environment. The first storage attribute is non-volatility; look-up table data must be held without power for many months or years. Secondly, a dense storage media is required because typically many products with complex encoding schemes are loaded into the look-up tables. Finally, a media that can be changed relatively easily is needed because pricing and product information changes frequently. All of these necessary features have been satisfied in the past with EPROM memory, or CMOS RAM with battery backup.

Unfortunately, these media have drawbacks. EPROMs, while low cost, dense, and non-volatile, cannot be changed in the field without the use of a service technician. CMOS and battery backup offer more flexibility at a lower density, but can suffer reliability problems if the battery and backup system aren't properly designed. The 2816 E²PROM from Intel offers users all the characteristics of EPROM with the flexible advantages of battery backed up RAMs. Look-up table data can be stored non-volatily, but can be changed while in system. Figure 1 shows the block diagram for such a system. The terminal is composed of a highperformance microcomputer, such as the 8051. In addition, 2816 memory is used as data and as look-up table storage. The typical I/O device structure for a terminal also exists in the system as shown. The most important

interface indicated on the block diagram is the serial I/O link. This datacom or telecom link provides the system with remote reconfiguration capability. The contents of the 2816 can be changed from a central location, without need for costly human service.

The look-up table contains product description and pricing information. Once the table has been written, the CPU can read from it as necessary to translate product entry codes to price information. If for some reason the table data needs to be changed for pricing or product updates, then the central computer simply sends update commands and new data to the remote POS processor. Since all remote terminals are linked together at a central location and are in periodic communication with other, such an update can occur as a part of normal inter-processor communication.

The in-system erase capability of 2816 memory allows the table data to be changed remotely, while preserving the stand alone nature of the terminals. Without E^2 capability, a service technician would be required to change the table data.

In addition to containing product description and pricing data, the 2816 can store special data unique to a particular location. If a set of locations within the memory is set aside for reorder codes, then as a location runs short of a particular item, the computer can automatically restock it. If particular information is sensitive, the 2816 can store encryption codes and software lockout mechanisms.

Another capability gained from the use of E^2 memory is that daily totals in sales volume and product quantities can be stored in the 2816 memory. This information can be accessed by both the local users as well as the central data bank.

To summarize, in the 2816-based P.O.S. terminal described here, flexibility and greatly reduced service costs are the key. The E^2 memory contains product information that can now be changed from a central location without the use of very costly service personnel. The 2816 yields an ideal solution to data table storage problems in frequently altered point of sale systems.

AB-2

intel

ALABAMA

3065 Bo 3055 Bowers Avenue Santa Clara, California 95051 Tel: (408) 987-8080 TWX: 910-338-0026 TELEX: 34-6372

Intel Corp. 303 Williams Avenue S.W. Suite 1422 Huntsville 35801 Tel: (205) 533-9300 ARIZONA Intel Corp 10210 N. 25th Avenue, Suite 11 Phoenix 85021 Tel. (602) 869-4980 BEA 4426 North Saddle Bag Trail Scottsdale 85251 Tol: (602) 994-5400 CALIFORNIA Intel Corp. 7670 Opportunity Rd. Suite 135 Suite 135 San Diego 92111 Tel. (714) 268-3563 Intel Corp.* 2000 East 4th Street Suite 100 Santa Ana 92705 Tel: (714) 835-9642 TWX: 910-595-1114 Intel Corp.* 5530 Corbin Ave Suite 120 Tarzana 91356 Tel: (213) 708-0333 TWX: 910-495-2045 Intel Corp * 3375 Scott Blvd. Santa Clara 95051 Tel: (408) 987-8086 TWX: 910-339-9279 910-338-0255 Earle Associates, Inc 4617 Ruffner Street Suite 202 San Diego 92111 Tel: (714) 278-5441 Mac-I P.O. Box 1420 Cupertino 95014 Tel (408) 257-9880 Mac-I 558 Valley Way Calaveras Business Park Milpitas 95035 Tel: (408) 946-8885 Mac-I P.O. Box 8763 Fountain Valley 92708 Tel. (714) 839-3341 Mac-I 1321 Centinela Avenue Suite 1 Santa Monica 90404 Tel. (213) 829-4797 Mac-L Mac-I 20121 Ventura Bivd., Suite 240E Woodland Hills 91364 Tel: (213) 347-5900 COLORADO Intel Corp.* 650 S. Cherry Street Suite 720 Denver 80222

Tel (303) 321 8086 TWX 910-931-2289 CONNECTICUT Intel Corp. Peacock Alley 36 Padanaram Road

Danbury 06810 Tel: (203) 792-8366 TWX: 710-456-1199 EMC Corp 48 Purnell Place Manchester 06040 Tel: (203) 646-8085

Intel Corp 1100 Cleveland Str Suite 900 Clearwater 33515 (B13) 446-4334 veland Street (b) 139 440-4534 Intel Corp. 1500 N.W. 62nd Street, Suite 104 Ft. Lauderdale 33309 Tel: (305) 771-0600 TWX: 510-956-9407

FLORIDA

GEORGIA

ILLINOIS

Intel Corp. 500 N. Maitland, Suite 205 Maitland 32751 Tel: (305) 628-2393 TWX: 810-853-9219

Intel Corp. 3300 Holcomb Bridge Rd. Norcross 30092 Tel: (404) 449-0541

Intel Corp.* 2550 Golf Road, Suite 815 Rolling Meadows 60008 Tel: (312) 981-7200 TWX: 910-651-5881

INDIANA Intel Corp. 9101 Wesleyan Road ite 204 Indianapolis 46268 Tel: (317) 875-0623

IOWA Intel Corp. St. Andrews Building 1930 St. Andrews Drive N E Cedar Rapids 52402 Tel: (319) 393-5510 KANSAS

Intel Corp. 9393 W 110th St., Ste. 265 Overland Park 66210 Tel: (913) 642-8080

MARYLAND Intel Corp.* 7257 Parkway Drive Hanover 21076 Tel: (301) 796-7500 TWX: 710-862-1944 Mesa Inc. 16201 Industrial Dr.

Gaithersburg 20760 Tel: (301) 948-4350 MASSACHUSETTS Intel Corp.* 27 Industrial Ave Cheimsford 01824 Tel (617) 256-1800 TWX: 710-343-6333

EMC Corp. 361 Elliot Street Newton 02164 Tel: (617) 244-4740 TWX: 922531

MICHIGAN Intel Corp.* 26500 Northwestern Hwy Suite 401 Suite 401 Southfield 48075 Tel: (313) 353-0920 TWX: 810-244-4915

MINNESOTA Intel Corp. 7401 Metro Blvd. Suite 355 Edina 55435 Tel: (612) 835-6722 TWX: 910-576-2867 MISSOURI Intel Corp. 502 Earth City Plaza 502 Earth City Plaza Suite 121 Earth City 63045 Tel: (314) 291-1990 NEW JERSEY

U.S. AND CANADIAN SALES OFFICES

Intel Corp.* Baritan Plaza Raritan Plaza 2nd Floor Raritan Center Edison 08837 Tel: (201) 225-3000 TWX: 710-480-6238

NEW MEXICO BFA Corporation P.O. Box 1237

Las Cruces 88004 Tel: (505) 523-0601 TWX: 910-983-0543 BFA Corporation 3705 Westerfield, N E Albuquerque 87111 Tel: (505) 292-1212 TWX: 910-989-1157

NEW YORK Intel Corp.* 300 Motor Pkwy. Hauppauge 11787 Tel: (516) 231-3300 TWX: 510-227-6236

Intel Corp. 80 Washington St Poughkeepsie 12601 Tel: (914) 473-2303 TWX: 510-248-0060 I WX: 510-248-0060 Intel Corp.* 2255 Lyell Avenue Lower Floor East Suite Rochester 14606 Tel: (716) 254-6120 TWX: 510-253-7391

Measurement Technology, Inc 159 Northern Boulevard Great Neck 11021 Tel: (516) 482-3500 T-Squared 4054 Newcourt Avenue Syracuse 13206 Tel: (315) 463-8592 TWX: 710-541-0554

T-Squared 2 E. Main Victor 14564 Tel: (716) 924-9101 TWX: 510-254-8542

NORTH CAROLINA Intel Corp. 2306 W. Meadowview Rd. Suite 206 Greensboro 27407 Tel: (919) 294-1541

OHIO Intel Corp. * 6500 Poe Avenue Dayton 45414 Tel: (513) 890-5350 TWX: 810-450-2528

Twx: 810-450-2528 Intel Corp.* Chagrin-Brainard Bldg., No. 300 28001 Chagrin Blvd. Cleveland 44122 Tel: (216) 464-2736 TWX: 810-427-9298

OREGON Intel Corp. 10700 S.W. Beaverton Hillsdale Highway Suite 324 Beaverton 97005 Tel: (503) 641-8086 TWX: 910-467-8741

Suite 175 Dallas 75234 Tel: (214) 241-9521 TWX: 910-860-5617 Intel Corp.* 6420 Richmond Ave. Suite 280 Houston 77057 Tel: (713) 784-3400 TWX: 910-881-2490 Industrial Digital Systems Corp. 5925 Sovereign Suite 101 Houston 77036 Tet: (713) 988-9421 Intel Corp. 313 E. Anderson Lane Suite 314 Austin 78752 Tel: (512) 454-3628 UTAH Intel Corp. 3519 Lexington Dr. Bountiful, UT 84010 Tel: (801) 298-2164 VIRGINIA Intel Corp. 1501 Santa Rosa Road Suite C-7 Richmond, VA 23288 Tel: (804) 282-5668

PENNSYL VANIA Intel Corp.* 510 Pennsylvania Avenu Fort Washington 19034 Tel: (215) 641-1000 TWX: 510-661-2077

Suite 301W Pittsburgh 15235 Tel: (412) 823-4970

TEXAS

Q.E.D. Electronics 300 N. York Road

Hatboro 19040 Tel: (215) 674-9600

Intel Corp.* 2925 L.B.J. Freeway

Intel Corp.* 201 Penn Center Boulevard

WASHINGTON Intel Corp. Suite 114, Bldg, 3 1603 116th Ave. N.E. Bellevue 98005 Tel: (206) 453-8086 TWX: 910-443-3002

WISCONSIN Intel Corp. 150 S. Sunnyslope Rd. Brookfield 53005 Tel: (414) 784-9060

CANADA Intel Semiconductor Corp.⁴ Suite 233, Bell Mews 39 Highway 7, Bells Corners Ottawa, Ontario K2H 8R2 Tel. (613) 829-9714 TELEX: 053-4115 Intel Semiconductor Corp Intel Semiconductor (50 Galaxy Blvd. Unit 12 Rexdate, Ontario M9W 4Y5 Tel: (416) 675-2105 TELEX: 06983574 Multilek, Inc.* 15 Grenfell Crescent Ottawa, Ontario K2G 0G3 Tel. (613) 226-2365 TELEX: 053-4585 Multilek, Inc. Tel: (416) 245-4622 Multilek, Inc. Montrea Tel: (514) 481-1350

*Field Application Location

April 1981