Programmable -100% factorytested (1601/1701, 1602/1702)

- Inputs and outputs DTL and TTL compatible
- Static and Dynamic Operation (1601, 1701, 1301)
- Static Only Operation $(1602,1702)$
- OR-tie capability
- Simple Memory Expansion Chip Select input lead
- 24 pin dual-in-line hermetically sealed ceramic package $(1601,1602,1301)$
- 24 pin dual-in-line, quartz lid ceramic package $(1701,1702)$

The Intel 1601, 1602, 1701, and 1702 is a 256 word by 8 bit electrically programmable ROM ideally suited for uses where fast turnaround and pattern experimentation are important such as in prototype or in one of a kind systems. The 1601, 1602, 1701, and 1702 is factory reprogrammable which allows Intel to perform a complete programming and functional test on each bit position before delivery.

The four devices 1601, 1602, 1701, and 1702 use identical chips. The 1601 and 1701 is operable in both the static and dynamie mode while the 1602 and 1702 is operable in the static mode only. Also, the 1701 and 1702 has the unique feature of being completely erasable and field reprogrammable. This is accomplished by a quartz lid that allows high intensity ultraviolet light to erase the 1701 and 1702. A new pattern can then be written into the device. This procedure can be repeated as many times as required.

The 1301 is a direct replacement part which is programmed by a metal mask and is ideal for large volume and lower cost production runs of systems initially using the 1601/1701 or the static only 1602/1702.

The dynamic mode of the 1601/1701 and 1301 refers to the decoding circuitry and not to the memory cell. Dynamic operation offers higher speed and lower power dissipation than the static operation.

The $1601,1602,1701$, and 1702 is fabricated with silicon gate technology. This low threshold technology allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.

To operate the $1601 / 1701,1602 / 1702,1301$ in either a static, dynamic, or programming (1601/1701, 1602/1702) mode ${ }^{(1)}$, the following external lead connections are required in addition to those shown by the pin configuration diagram on page 1.

PIN	$13^{(2)}$ $($ Program $)$	$15^{(2)}$ $\left(\mathrm{V}_{\mathrm{BB}}\right)$	16 $\left(\mathrm{~V}_{\mathrm{GG}}\right)$	22 $\left(\phi_{2}\right)$	23 $\left(\phi_{1}\right)$
Static	V_{CC}	V_{CC}	V_{GG}	V_{CC}	V_{CC}
Dynamic (1601/1701,1301)	\emptyset_{1}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	\emptyset_{2}	\emptyset_{1}
Programming (1601/1701,1602/1702)	Program Pulse	V_{BB}	Pulsed $\mathrm{V}_{\mathrm{GG}}\left(\mathrm{V}_{\mathrm{IL4P}}\right)$	GND	GND

Absolute Maximum Ratings*

Case Temperature Under Bias
Storage 1601/1701, 1602/1702
Temperature: 1301
Soldering Temperature of Leads (10 sec)
Power Dissipation

Static and Dynamic Operation: Input Voltages and Supply Voltages with respect to $V_{C C}$ Program Operation: Input Voltages and Supply Voltages with respect to $V_{C C}$
+0.5 V to -20 V
$-50 \mathrm{~V}$

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

STATIC OPERATION FOR 1601/1701, 1602/1702 AND 1301 D.C. and Operating Characteristics for Static Operation

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{G G}^{(3)}=-9 \mathrm{~V} \pm 5 \%$, unless otherwise noted.

SYMBOL	TEST	MIN.	TYP. ${ }^{(4)}$	MAX.	UNIT	CONDITIONS
I_{L}	Address and Chip Select Input Load Current			1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}$
ILO	Output Leakage Current			1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{V}_{\text {CC }}-2$
' DDo	Power Supply Current		5	10	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{IDD1}^{(5)}$	Power Supply Current		35	50	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$1 \mathrm{DD}^{(5)}$	Power Supply Current		32	46	mA	$\begin{aligned} & \overline{\overline{\mathrm{CS}}=0.0} \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{l}_{\mathrm{DD}}{ }^{(5)}$	Power Supply Current		38.5	60	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$
I_{GG}	Gate Supply Current			1	$\mu \mathrm{A}$	
V_{IL}	Address and Chip Select Input Low Voltage	$\mathrm{V}_{\mathrm{CC}}-10$	V	$\mathrm{V}_{\mathrm{cc}}{ }^{-4.2}$	V	
V_{IH}	Address and Chip Select Input High Voltage	$\mathrm{V}_{\mathrm{CC}}{ }^{-2}$		$\mathrm{V}_{\mathrm{CC}}+3$	v	
l_{OL}	Output Sink Current	1.6	4		mA	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
${ }^{\text {CF }}$	Output Clamp Current		8	13	mA	$\mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}$
$\mathrm{IOH}^{\text {O}}$	Output Source Current	-2.0			mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
V_{OL}	Output Low Voltage		-. 7	0.45	V	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
V_{OH}	Output High Voltage	3.5	4.5		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$

Note 1: In the programming mode, the data inputs $1-8$ are pins $4-11$ respectively. $\overrightarrow{\mathrm{CS}}=\mathrm{GND}$.
Note 2: This external lead connection is only necessary on the $1601 / 1701$ and $1602 / 1702$. It may be unconnected on the 1301 .
Note 3: $\quad V_{G G}$ may be clocked to reduce power dissipation. In this mode average loD increases in proportion to $V_{G G}$ duty cycle. (See p. 5)
Note 4: Typical values are at nominal voltages and $T_{A}=25^{\circ} \mathrm{C}$.
Note 5: Measured under continuous operation.

IDD CURRENT VS. TEMPERATURE

OUTPUT CURRENT VS. TEMPERATURE

OUTPUT CURRENT VS. $V_{D D}$ SUPPLY VOLTAGE

OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE

A.C. Characteristics for Static Operation
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 5 \%$ unless otherwise noted

NOTE 1: The output will remain valid for $\mathrm{t}_{\mathrm{OHC}}$ as long as clocked V_{GG} is at V_{CC}. An address change may occur as soon as the output is sensed (clocked $V_{G G}$ may still be at $V_{C C}$). Data becomes invalid for the new address when clocked $V_{G G}$ is returned to $V_{G G}$.

Switching Characteristics for Static Operation

Conditions of Test:

Input pulse amplitudes: 0 to $4 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}} \leq 50 \mathrm{~ns}$
Output load is 1 TTL gate; measurements made at output of TTL gate ($\mathrm{t}_{\mathrm{PD}} \leq 15 \mathrm{~ns}$)

A) Normal Operation (Constant V_{GG})

B) Clocked V_{GG} Operation

NOTE 1: The output will remain valid for toHC as long as clocked $V_{G G}$ is at VCC. An address change may occur as soon as the output is sensed (clocked $V_{G G}$ may still be at $V_{C C}$). Data becomes invalid for the new address when clocked $V_{G G}$ is returned to $V_{G G}$.
NOTE 2: If $\overline{C S}$ makes a transition from $V_{I L}$ to $V_{I H}$ while clocked $V_{G G}$ is at $V_{G G}$, then deselection of output occurs at $t_{O D}$ as shown in static operation with constant V_{GG}.

ACCESS TIME VS. LOAD CAPACITANCE

ACCESS TIME VS. TEMPERATURE

AVERAGE CURRENT VS. DUTY CYCLE FOR CLOCKED VGG

DYNAMIC OPERATION FOR 1601/1701 AND 1301 ONLY D.C. and Operating Characteristics for Dynamic Operation

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{GG}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%$, unless otherwise noted

[^0]
A.C. Characteristics for Dynamic Operation

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%$ unless otherwise noted

SYMBOL	TEST	1601, 1701			1301			UNIT
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
$\mathrm{t}_{\chi \text { ¢ }}$	ϕ_{1} Clock Pulse Width	0.260		2	0.260		2	$\mu \mathrm{s}$
${ }_{\text {t }}^{\text {d2PW }}$	ϕ_{2} Clock Pulse Width	0.140		2	0.140		2	$\mu \mathrm{s}$
${ }_{\square}{ }_{\square D 1}$	ϕ_{2} delay from ϕ_{1}	0.150		2	0.150		2	$\mu \mathrm{s}$
${ }_{\square}{ }_{\square D 2}$	ϕ_{1} delay from ϕ_{2}	0.05			0.05			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Clock Pulse Transition			50			50	ns
$\mathrm{t}_{\mathrm{ACC1}}$	Address to Output Access		450	650		450	650	ns
$\mathrm{t}_{\text {ACC2 }}$	Output Access from ϕ_{2}			130			130	ns
${ }^{\text {t }}$ CD	Chip Select to ϕ_{1} Overlap	0			0			ns
$\mathrm{t}_{\text {DES }}$	Deselection of Data Output			150			150	ns
C	Capacitance	See	e 10		See	ge 10		

Switching Characteristics for Dynamic Operation

DYNAMIC OPERATION

Conditions of Test:
Input pulse amplitudes: 0 to 4 V , Input pulse rise and fall times ≤ 50 nsec
Output load is 1 TTL gate; measurements made at output of TTL gate ($\mathrm{t}_{\mathrm{pd}} \leq 15 \mathrm{nsec}$)
A) Normal Operation

B) Deselection of Data Output In OR-tie Operation

Note 1: An output low transition occurs for every ϕ_{1} period independent of memory information.
Note 2: Output will remain valid for $2 \mu \mathrm{sec}$ as long as ϕ_{1} does not occur.

ACCESS TIME VS. LOAD CAPACITANCE

ACCESS TIME VS. TEMPERATURE

PROGRAMMING OPERATION FOR THE 1601/1701 AND 1602/1702 ONLY

D.C. and Operating Characteristics for Programming Operation
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=0 \mathrm{~V}, \mathrm{~V}_{B B}=+12 \mathrm{~V} \pm 10 \%, \overline{C S}=0 \mathrm{~V}$ unless otherwise noted

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
$\mathrm{I}_{\text {LIIP }}$	Address and Data Input Load Current	10			mA	$V_{\text {iN }}=-40 \mathrm{~V}$
$\mathrm{I}_{\text {LI2P }}$	Program and V_{GG} Load Current	10			mA	$\mathrm{V}_{\mathrm{IN}}=-48 \mathrm{~V}$
$I_{B B}$	$V_{B B}$ Supply Load Current		. 05	1	mA	
$\mathrm{l}_{\text {DDP }}{ }^{(1)}$	Peak I ID Supply Load Current		750		mA	$\begin{aligned} & V_{D D}=V_{\text {prog }}=-50 \mathrm{~V} \\ & V_{G G}=-35 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{1 H \mathrm{P}}$	Input High Voltage			0.3	V	
$V_{\text {ILIP }}$	Pulsed Data Input Low Voltage	-40		-48	V	
$V_{\text {IL2P }}$	Address Input Low Voltage	-40		-48	V	
$V_{\text {IL3P }}$	Pulsed Input Low $V_{D D}$ and Program Voltage	-48		-50	V	
$V_{1 L 4 P}$	Pulsed Input Low V_{GG} Voltage	-35		-40	V	

Note 1: IDDP flows only during program period t^{ϕ} PW.
Average power supply current ${ }^{1}$ DDP is typically 15 mA at 2% duty cycle.

A.C. Characteristics for Programming Operation

$\left(T_{\text {AMBIENT }}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=+12 \mathrm{~V} \pm 10 \%, \overline{\mathrm{CS}}=0 \mathrm{~V}\right.$ unless otherwise noted

SYMBOL	TEST	MIN. \quad TYP. \quad MAX.	UNIT	CONDITIONS	
	Duty Cycle		2	$\%$	
$\mathrm{t}_{\varnothing \mathrm{PW}}{ }^{(1)}$	Program Pulse Width		20	ms	$\mathrm{~V}_{G G}=-35 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\text {program }}=-48 \mathrm{~V}$
t_{DW}	Data Set Up Time	1	$\mu \mathrm{~s}$		
t_{DH}	Data Hold Time	1	$\mu \mathrm{~s}$		
t_{VD}	Pulsed $\mathrm{V}_{G G}$ and V_{DD} Supply Overlap	1	$\mu \mathrm{~s}$		
C	Capacitance	See page 10			

Note 1: Maximum duty cycle of $\mathrm{t} \phi \mathrm{PW}$ should not be greater than 2% of cycle time so that power dissipation is minimized. To guarantee long term memory retention the program cycle should be repeated five times with ${ }^{t} \phi \mathrm{PW}=20 \mathrm{msec}$ or the equivalent thereof, e.g. 10 cycles of ${ }^{\mathrm{t}} \phi \mathrm{PW}=10 \mathrm{msec}$.

Switching Characteristics for Programming Operation

PROGRAM OPERATION
Conditions of Test:
Input pulse rise and fall times ≤ 250 nsec
$\overline{\mathrm{CS}}=\mathrm{OV}$

PROGRAM WAVEFORMS

Programming Operation of the 1601/1701 and 1602/1702

When the Data Input for the Program Mode is:	Then the Data Output during the Read Mode is:
$V_{\text {IL1P }}=\sim-40 \mathrm{~V}$ pulsed	Logic $1=V_{\mathrm{OH}}=$ ' P^{\prime} on tape
$\mathrm{V}_{\mathrm{IHP}}=\sim 0 \mathrm{~V}$	Logic $0=\mathrm{V}_{\mathrm{OL}}=$ ' N^{\prime} on tape

ADDRESS WORD	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
		1	1	1	1	1	1	1
		1	1	1	1	\|	1	1
255	1	1	1	1	1	1	1	1

Address Logic Level During Read Mode:
Address Logic Level During Program Mode:

Logic $0=V_{\mathrm{IL}}(\sim .3 \mathrm{~V})$
Logic $1=V_{1 H}(\sim 3 V)$
Logic $0=V_{\text {IL2P }}(\sim-40 \mathrm{~V}) \quad$ Logic $1=V_{1 H P}(\sim 0 \mathrm{~V})$
*The Logic Levels for the address inputs are inverted from the Logic Levels for the data inputs during the Program Mode.

CAPACITANCE*
 A.C. Characteristics , $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	TEST	1601/1701, 1602/1702		1301			UNIT	CONDITIONS	
		MIN. TYP.	MAX.	MIN.		MAX.			
$\mathrm{C}_{\text {IN }}$	Input Capacitance	8	15		5	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	
$\mathrm{C}_{\text {out }}$	Output Capacitance	10	15		5	10	pF	$\underline{V}_{\text {out }}=V_{c c}$	All unused
$\mathrm{C}_{\phi 1}$	ϕ_{1} Clock Capacitance (includes pin 13)	35	55		20	30	pF	$V_{\varnothing_{1}}=V_{c c}$	pins are at A.C.
$\mathrm{C}_{\phi_{2}}$	ϕ_{2} Clock Capacitance	9	15		7	15	pF	$V_{\varnothing 2}=V_{c c}$	ground
$\mathrm{C}_{\mathrm{V}_{\mathrm{GG}}}$	$\begin{aligned} & V_{G G} \text { Capacitance } \\ & \text { (Clocked } V_{G G} \text { Mode) } \end{aligned}$		30			30	pF	$V_{G G}=V_{C C}$	

[^1]

1 of 8 Output Circuits 1301

Application Information

I. OPERATION OF THE 1601/1701 AND 1602/1702 IN PROGRAM MODE

Initially, all 2048 bits of the ROM are in the " 1 " state (output high). Information is introduced by selectively programming " 0 "'s (output low) in the proper bit locations.

Word address selection is done by the same decoding circuitry used in the READ mode (see table on page 10 for logic levels). The eight output terminals are used as data inputs to determine the information pattern in the eight bits of each word. A low data input level (-40 V) will leave a " 1 " and a high data input level (ground) will allow programming of " 0 " (see table on page 10). All eight bits of one word are programmed simultaneously by setting the desired bit information patterns on the data input terminals. The duty cycle of the Program pulse (amplitude and width as specified on page 10) should be limited to 2%. The address should be applied for at lease $1 \mu \mathrm{sec}$ before application of the Program pulse.

During the programming, $\mathrm{V}_{\mathrm{GG}}, \mathrm{V}_{\mathrm{DD}}$ and the Program Pulse are pulsed signals.
II. MANUAL PROGRAMMING OF THE 1601, 1602, 1701, AND 1702

The 1601, 1602, 1701, or 1702, may be programmed by a machine such as the 7600 programmer or manually using a circuit similar to the one on pages 14 and 15. A parts list (pages 16 and 17) and the circuit board layout (pages 16 and 17) is also given. The circuit is capable of programming as well as reading the ROM. Programming takes approximately one hour.

Circuit Operation

1. In the read mode, the $1601,1602,1701$, or 1702 , is operated with $V_{C C}=0$ and $V_{D D}=-14 V$ (rather than +5 and -9 V). The ROM is biased for static operation, and the sensed output signals from the ROM are used to drive transistors which in turn drive LED display devices. Input addresses are biased at levels of 0 V and -5 V for logic 1 and logic 0 respectively.
2. In the write mode, the $1601,1602,1701$, or 1702 , is operated in a pulsed mode. An astable multivibrator, running at about 2 pulses per second, drives a transistor which normally biases the negative regulator off. At each pulse, the negative regulator is allowed to apply -48 to -50 volts to the $V_{D D}$ terminal of the ROM. Address and data voltages are derived using a simple emitter follower circuit as a regulator. $V_{G G}$ during programming is derived using a zener diode and a resistive divider. In read mode, this circuit causes $V_{G G}$ to equal $V_{D D}$. During each $V_{D D}$ pulse, the program pulse is held off for about $2 \mu \mathrm{sec} u \operatorname{sing}$ a 100 pF capacitor, 47 K resistor and 1 N 914 diode at the input of the program pulse driver circuit. The program pulse driver is biased to turn off prior to turn off of the $V_{D D}$ pulse.

The entire circuit can be operated from a single -60 V to -80 V unregulated source. The $+12 \mathrm{~V} \mathrm{~V}_{\mathrm{BB}}$ needed during programming is derived using a capacitive coupled circuit with a 12 V zener regulator.

Program pulses average about 10 msec in length. At two per second, the circuit must be operated for 5 seconds to achieve a total of 100 msec of program pulses. The rate of 10 msec of program pulse every .5 second insures that a 2% programming duty cycle will not be exceeded.

Circuit Checkout (to be done before plugging in a Unit)

1. Set the read/write, 4PDT switch ($\mathrm{S} 1_{A}$ through $S 1_{D}$) to the $R($ Read) position:
(a) Adjust the ($\mathrm{V}_{\mathrm{DD}}, \mathrm{RD}$) resistor so that V_{DD} reads -14 volts (T.P.1)
2. Set the read/write, 4PDT switch to the W(Write) position. Depress the "Write" push button and hold for the following sequence of adjustments. They must be done in the order shown:
(a) Adjust the ($\mathrm{V}_{\mathrm{DD}}, \mathrm{PR}$) resistor so that V_{DD} reads -49 volts (T.P.1).
(b) Adjust the $\left(\mathrm{V}_{\mathrm{GG}}, \mathrm{ADJ}\right)$ resistor so that V_{GG} reads -36 volts (T.P.2).
(c) Adjust the $\left(V_{A D R}, A D J\right)$ resistor so that $V_{A D R}$ reads -40 volts (T.P.3).
3. While the read/write switch is in the write position, the shorts indicator should be checked to see if there are any shorts on the data or address input pins. This would be indicated by the shorts indicator flashing when the "write" push button is depressed.

See page 18 for Programming Instructions For Manual Programmer

1601/1701 BASIC MANUAL PROGRAMMER

Socket Mounted on This Side.

Programming Instructions For Manual Programmer

1. Insert the device into the socket.
2. Turn on power.
3. Set the read/write, 4PDT switch ($\mathrm{S1}_{\mathrm{A}}$ through $\mathrm{S} 1_{\mathrm{D}}$) to the $\mathrm{W}(\mathrm{Write})$ position.
4. Check for shorts in the data and address input pins by depressing the "write" push button and monitoring shorts indicator. If the indicator is flashing,attempts at writing should be discontinued until the problem is located. The first thing to be checked is to insure that the device has been correctly inserted in the socket.
5. Set the address inputs (toggle switches S_{AO} through S_{A}) to the desired address (generally starting with address 00000000). The correct position for Logic " 0 " and Logic " 1 " is shown in the schematic.
6. Set the data inputs (toggle switches $\mathrm{S}_{\mathrm{D} 1}$ through S_{D7}) to the desired inputs for the selected address. The correct position for the Logic " 0 " and Logic " 1 " for the data input switches is shown in the schematic.
7. Then press the write push button and hold it for at least 5 seconds. Data has now been written.
8. To verify the data, set the read/write 4PDT switch to the $R(R e a d)$ position. The data that has been written into the selected address will then be displayed on the LED's. A Logic "1" will be represented by a lit LED. A Logic " 0 " will be represented by a blank LED.
9. To write the next word, set the read/write, 4PDT switch to the W position and repeat steps 5 through 8 .
10. The remaining words are then written into the device following the outlined sequence until the device is completely written into.

III. PROGRAMMING OF 1601/1701 AND 1602/1702 USING INTEL 7600 PROGRAMMER.

The 1601/1701 and 1602/1702 have been designed to facilitate rapid turnaround of custom patterns. Patterns supplied on paper tape are electrically programmed into the ROM by the 7600 programmer. Programmers are located at Intel, major distributors, and at many of our representatives in the U.S., Europe, and Japan. Programmers will also be available for sale to customers.

Programmer Description

The paper tape containing the custom pattern is loaded into the programmer which verifies the format and length of the data field. After loading, the programmer will write the data from the paper tape into the ROM (1601, 1701, 1602, or 1702).

To insure that the ROM has been properly programmed, it is read out for every address and compared with the data of the paper tape. Reading is done in both the dynamic and static mode. An error will stop the read cycle at the bad word location. The displays on the programmer will indicate the bad word location and the 8 output bits of the ROM. For comparison the 8 input bits are also displayed.

A 1601, 1701, 1602, or 1702 is loaded again into the programmer and the programming cycle is repeated.

Tape Format

The 7600 programmer accepts $1^{\prime \prime}$ wide paper tape using 7 or 8 bit ASCII code, such as a model 33 ASR teletype produces. These programmers can also be used with the narrower 5 bit Telex tape. For such a tape to correctly program a $1601 / 1701$ or $1602 / 1702$, it must follow exactly the format rules below.

The format required by the 7600 is as shown below:

NOTE: Intel cannot assume responsibility for the programming circuit described in this data sheet.

ERRATA SHEET

(To replace Programming Instructions for Manual Programmer given on the top of Page 18 of the $1601 / 1701,1602 / 1702,1301$ Data Sheet)

PROGRAMMING INSTRUCTIONS FOR MANUAL PROGRAMMER

1. Insert the device into the socket.
2. Turn on power
3. Set the read/write, 4PDT switch (Sl_{A} through Sl_{D}) to the W (Write) position.
4. Set the address inputs (toggle switches $\mathrm{S}_{\mathrm{A}_{0}}$ through $\mathrm{S}_{\mathrm{A} 7}$) to the desired address (generally starting with address 00000000). The correct position for Logic "0" and Logic "1" is shown in the schematic.
5. Set the data inputs (toggle switches $S_{D 1}$ through $S_{D 7}$) to the desired inputs for the selected address. The correct position for the Logic "0" and Logic "1" for the data input switches is shown in the schematic.
6. Then press the write push button and hold it for at least 5 seconds. Data has now been written.

Note: If the shorts indicator begins to flash, writing should be discontinued until the problem is located. The first thing to be checked is to insure that the device has been correctly inserted in the socket.
7. To verify the data, set the read/write 4PDT switch to the R (Read) position. The data that has been written into the selected address will then be displayed on the LED's. A logic "l" will be represented by a lit LED. A Logic "0" will be represented by a blank LED.
8. To write the next word, set the read/write, 4PDT switch to the W position and repeat steps 5 through 8.
9. The remaining words are then written into the device following the outlined sequence until the device is completely written into.

The format requirements are as follows:

1. There must be exactly 256 word fields in consecutive sequence, starting with word field 0 (all address lines low - refer to the table shown on page 10).
2. Each word field must consist of 10 consecutive characters, the first of which must be the start character B. Following the start character, there must be exactly 8 data characters (P's or N's) and ending with the stop character F. NO OTHER CHARACTERS, SUCH AS RUBOUTS, ARE ALLOWED ANYWHERE IN A WORD FIELD. If in preparing a tape, an error is made, the entire word field, including the B and F, must be rubbed out. Within the word field, a P results in a high level output, an N results in a low level output. The first data character corresponds to the desired output for data bit 8 (pin 11), the second for data bit 7 (pin 10), etc.
3. Preceding the first word field and following the last word field, there must be a leader/trailer length of at least 25 characters. This should consist of rubout punches (letter key for Telex tapes).
4. Between word fields, comments not containing B's or F's may be inserted. It is recommended that carriage return and line feed characters be inserted (as a "comment") just before each word field or at least between every four word fields. When these carriage returns, etc., are inserted, the tape may be easily listed on the teletype for purposes of error checking. The customer may also find it helpful to insert the word number (as a comment) at least every four word fields.
5. Included in the tape before the leader should be the customers complete Telex or TWX number and if more than one pattern is being transmitted, the ROM pattern number.
```
INTEL Telex No. }34637
INTEL TWX No. 910-338-0026
Japan's Telex No. }2636
Europe Telex No. }2106
```


IV. PARALLEL PROGRAMMING OF 1601/1701 AND 1602/1702.

When programming several ROMs in parallel, $\overline{C S}$ and $V_{C C}$ should be at 0 V for all 1601/1701 or 1602/1702 while the program pulse is applied only to the ROM being programmed. Pulsed $V_{D D}$ and $V_{G G}$ may be applied to all ROMs (both selected and unselected chips). However, if $V_{D D}$ and $V_{G G}$ are individually de coded, so that $V_{D D}$ and $V_{G G}$ are applied only to the ROM being programmed, multiplexing techniques may be used to permit programming an entire array in the same time that one part is programmed.
v. MASK PROGRAMMING OF 1301.

Tape Format

The custom patterns may be sent in on a Telex or submitted as a paper tape in a 7 or 8 bit ASCII code from model 33 teletype or TWX. The paper tape format is exactly the same as for the 1601/1701 and 1602/1702.

Truth Table

The custom patterns may be sent in on a truth table. Blank custom truth table forms are available upon request from Intel.

VI. 1701, 1702 ERASING PROCEDURE.

The 1701 and 1702 may be erased by exposure to a high intensity ultraviolet light source. A 1701 or 1702 placed 1 to 1.5 inches from a light source with an ultraviolet wavelength of $2537 \AA$ at an intensity of $10 \mathrm{~mW} / \mathrm{cm}^{2}$ (i.e. a dosage of $6 \mathrm{~W} \mathrm{sec} / \mathrm{cm}^{2}$) will be erased in 10 minutes. An example of a light source which is capable of producing the required ultraviolet wavelength and intensity is the Model R51 manufactured by Ultraviolet Products (San Gabriel, California).

Application Information

POWER DISSIPATION CONSIDERATIONS

Peak power dissipation in the dynamic mode occurs when the ϕ_{1} clock is low. At other times, two sources of power dissipation must be considered: A fixed current flow (from V_{CC} to V_{DD}) which corresponds to $\mathrm{I}_{\mathrm{DDO}}$, and the current flowing through the output terminals. These output currents continue to flow after the end of the cycle. To prevent these currents from flowing when the memory is inactive (yet has V_{DD} applied), the chip must be deselected before the clocks are deactivated. Deselection can be accomplished only by executing a memory cycle with $\overline{\mathrm{CS}}$ in the deselect condition.

256 WORD BY 16 BIT ROM

In this example the 8 bit address bus $A_{0}-A_{7}$ and $\overline{C S}$ lines are connected in parallel. A full 16 bit word is made up of 8 bits from each 1601/1701, 1602/1702 and 1301 package.

INTEL CORP. 3065 Bowers Avenue, Santa Clara, California 95051 • (408) 246-7501

[^0]: ${ }^{*}{ }^{\text {DD }}$ flows mainly during $\mathrm{t}_{\phi 1 \mathrm{PW}}$. I DD is directly proportional to ϕ_{1} clock duty cycle.

[^1]: *This parameter is periodically sampled and is not 100% tested

