8702A

2048 BIT ERASABLE AND ELECTRICALLY REPROGRAMMABLE READ ONLY MEMORY

 Access Time — 1.3 µsec Max.

Intal

- Fast Programming 2 Minutes for All 2048 Bits
- Fully Decoded, 256 x 8 Organization
- Static MOS No Clocks Required
- Inputs and Outputs TTL Compatible
- Three-State Output OR-Tie Capability
- Simple Memory Expansion Chip Select Input Lead

The 8702A is a 256 word by 8 bit electrically programmable ROM ideally suited for microcomputer system development where fast turn-around and pattern experimentation are important. The 8702A undergoes complete programming and functional testing on each bit position prior to shipment, thus insuring 100% programmability.

The 8702A is packaged in a 24 pin dual-in line package with a transparent quartz lid. The transparent quartz lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device. This procedure can be repeated as many times as required.

The circuitry of the 8702A is entirely static; no clocks are required.

A pin-for-pin metal mask programmed ROM, the Intel 8302, is ideal for large volume production runs of systems initially using the 8702A.

The 8702A is fabricated with silicon gate technology. This low threshold technology allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.

*THIS PIN IS THE DATA INPUT LEAD DURING PROGRAMMING.

PIN NAMES

A ₀ -A ₇	ADDRESS INPUTS
ĈŜ	CHIP SELECT INPUT
DO1- DO2	DATA OUTPUTS

PIN CONNECTIONS

The external lead connections to the 8702A differ, depending on whether the device is being programmed⁽¹⁾ or used in read mode. (See following table.)

PIN	12 (V _{CC})	13 (Program)	14 (CS)	15 (V _{BB})	16 (V _{GG})	22 (V _{CC})	23 (V _{CC})
Read	V _{cc}	V _{cc}	GND	V _{CC}	V _{GG}	V _{cc}	V _{cc}
Programming	GND	Program Pulse	GND	V _{BB}	Pulsed V_{GG} (V_{IL4P})	GND	GND

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $\dots \dots \dots 0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature
Soldering Temperature of Leads (10 sec) +300 °C
Power Dissipation
Read Operation: Input Voltages and Supply
Voltages with respect to V_{CC} +0.5V to -20V
Program Operation: Input Voltages and Supply
Voltages with respect to V_{CC}

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

READ OPERATION

D.C. AND OPERATING CHARACTERISTICS

 $T_A = 0^{\circ}C$ to 70°C, $V_{CC} = +5V \pm 5\%$, $V_{DD} = -9V \pm 5\%$, $V_{GG}^{(2)} = -9V \pm 5\%$, unless otherwise noted.

SYMBOL	TEST	MIN.	TYP. ⁽³	³⁾ MAX.	UNIT	CONDITIONS	
۱ _{L1}	Address and Chip Select Input Load Current			10	μA	V _{IN} = 0.0V	
I _{LO}	Output Leakage Current			10	μA	$V_{OUT} = 0.0V, \overline{CS} = V_{CC} - 2$	
^ו ססס	Power Supply Current		5	10	mA	$V_{GG} = V_{CC}, \overline{CS} = V_{CC} - 2$ $I_{OL} = 0.0 \text{mA}, T_A = 25^{\circ}\text{C}$	
I _{DD1}	Power Supply Current		35	50	mA	CS =V _{CC} -2 I _{OL} =0.0mA, T _A = 25 ^o C	
I _{DD2}	Power Supply Current		32	46	mA	CS =0.0 I _{OL} =0.0mA , T _A = 25°C	Continuous
I _{DD3}	Power Supply Current		38.5	60	mA	CS=V _{CC} −2 I _{OL} =0.0mA , T _A = 0°C	Operation
I _{CF1}	Output Clamp Current		8	14	mA	$V_{OUT} = -1.0V, T_{A} = 0^{\circ}C$	
I _{CF2}	Output Clamp Current			13	mA	$V_{OUT} = -1.0V, T_A = 25^{\circ}C$	J
I _{GG}	Gate Supply Current			10	μA		
VIL1	Input Low Voltage for TTL Interface	-1.0		0.65	V		
V _{IL2}	Input Low Voltage for MOS Interface	V _{DD}		V _{CC} –6	V		· .
V _{IH}	Address and Chip Select Input High Voltage	V _{CC} -2		V _{CC} +0.3	V		
I _{OL}	Output Sink Current	1.6	4		mA	V _{OUT} = 0.45V	
V _{OL}	Output Low Voltage		7	0.45	V	I _{OL} = 1.6mA	
V _{OH}	Output High Voltage	3.5			V	Ι _{ΟΗ} = -200 μΑ	

Note 1: In the programming mode, the data inputs 1-8 are pins 4-11 respectively. $\overline{CS} = GND$.

Note 2: V_{GG} may be clocked to reduce power dissipation. In this mode average I_{DD} increases in proportion to V_{GG} duty cycle. (See p. 5)

.

Note 3: Typical values are at nominal voltages and $T_A = 25^{\circ}$ C.

A.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to +70°C, $V_{CC} = +5V \pm 5\%$, $V_{DD} = -9V \pm 5\%$, $V_{GG} = -9V \pm 5\%$ unless otherwise noted

SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT
Freq.	Repetition Rate			1	MHz
t _{OH}	Previous read data valid			100	ns
tACC	Address to output delay			1.3	μs
t _{DVGG}	Clocked V _{GG} set up	1.0			μs
t _{CS}	Chip select delay			400	ns
t _{CO}	Output delay from CS			900	ns
t _{OD}	Output deselect			400	ns
t _{OHC}	Data out hold in clocked V _{GG} mode (Note 1)			5	μs

Note 1. The output will remain valid for t_{OHC} as long as clocked V_{GG} is at V_{CC}. An address change may occur as soon as the output is sensed (clocked V_{GG} may still be at V_{CC}). Data becomes invalid for the old address when clocked V_{GG} is returned to V_{GG}.

CAPACITANCE* $T_A = 25^{\circ}C$

SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT	CONDITIONS
CIN	Input Capacitance		.8	15	pF	$\underline{V_{IN}} = V_{CC}$ All
COUT	Output Capacitance		10	15	pF	$CS = V_{CC}$ unused pins
CVGG	V _{GG} Capacitance (Clocked V _{GG} Mode)			30	pF	$V_{GG} = V_{CC}$ ground

* This parameter is periodically sampled and is not 100% tested.

SWITCHING CHARACTERISTICS

Conditions of Test:

Input pulse amplitudes: 0 to 4V; t_R, t_F \leq 50 ns Output load is 1 TTL gate; measurements made at output of TTL gate (t_{PD} \leq 15 ns)

A) Constant V_{GG} Operation

NOTE 1: The output will remain valid for t_{OHC} as long as clocked V_{GG} is at V_{CC} . An address change may occur as soon as the output is sensed (clocked V_{GG} may still be at V_{CC}). Data becomes invalid for the old address when clocked V_{GG} is returned to V_{GG} .

address which clocked VGG is relative to FGG. NOTE 2: If CS makes a transition from V_{IL} to V_{IH} while clocked V_{GG} is at V_{GG}, then deselection of output occurs at t_{OD} as shown in static operation with constant V_{GG}.