FUJITSU **MICROELECTRONICS**

MBM2732A MBM2732A-X

UV ERASABLE 32,768-BIT READ ONLY MEMORY

DESCRIPTION

The Fujitsu MBM2732A is a high speed 32.768-bit static N-channel MOS erasable and electrically reprogrammable read only memory (EPROM). It is especially well suited for applications where rapid turn-around and/or bit pattern experimentation are important

The MBM2732A is fabricated using N-channel double polysilicon gate technology with single transistor stacked gate cells. It is organized as 4096 words by 8-bits

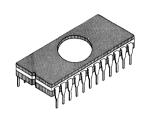
FEATURES

- Organized as 4096 words by 8-bits, fully decoded
- Simple programming requirements
- Single location programming
- Programs with one 50ms pulse
- Programming Voltage: MBM2732A-20/-25/-30: 21 volts MBM2732A-35/-35X: 21 or 25 volts • Fast Access Time:
- Low power requirement: MBM2732A-20/-25/-30: Active: 788mW

Standby: 184mW MBM2732A-35/-35X:

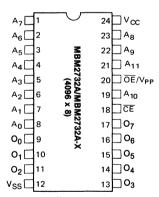
Active: 825mW Standby: 165mW

- Single +5V operation
- MBM2732A-35X: Extended temperature range of -40°C to +85°C

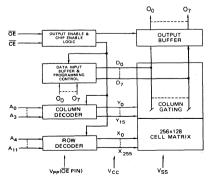

for use in microprocessor applications. Single +5V operation greatly facilitates its use in systems.

A 24-pin dual in-line package with a transparent lid is used to package the MBM2732A. The transparent lid allows the user to expose the device to ultraviolet light in order to erase the memory bit pattern previously programmed. At the completion of erasure, a new pattern can then be written into the memory.

- TTL compatible inputs and out-
- No clocks required, fully static operation
- Three-state output with OR-tie capability
- Output Enable (OE) pin for simplified memory expansion


MBM2732A-20 200 ns max. MBM2732A-25 250 ns max. MBM2732A-30 300 ns max. MBM2732A-35 350 ns max. MBM2732A-35X 350 ns max.

- Standard 24-pin DIP package
- Pin compatible with Intel 2732A


CERDIP PACKAGE DIP-24C-C02

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

MBM2732A **BLOCK DIAGRAM**

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating Temperature Under Bias		Symbol	Value	Unit
		TA	-25 to +85	°C
MBM2732A-20/-25/-30/-35		-	-65 to +125	°C
Storage Temperature	MBM2732A-35X	T _{stg}	-50 to +95	1
Inputs/Outputs (Except OE/V _{PP}) with Respect to V _{SS}		V _{IN} , V _{OUT}	-0.6 to +7	V
Output Enable/Program Input with Respect to V _{SS}		ŌĒ/V _{PP}	-0.6 to +26	V
V _{CC} with Respect to V _{SS}		V _{CC}	-0.6 to +7	V

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operations sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

FUNCTIONS AND PIN CONNECTIONS $V_{CC}(24) = +5$, $V_{SS}(12) = GND$

Function (Pin No.) Mode	Address Input (1 ~ 8,19,21 ~ 23)	Data I/O (9~11,13~17)	CE (18)	ŌĒ/V _{PP} (20)	ICC Supply (24)
Read	A _{IN}	D _{OUT}	V _{IL}	V _{IL}	I _{CC2}
Output Disable	A _{IN}	High Z	V _{IL}	V _{IH}	I _{CC2}
Stand By	Don't Care	High Z	V _{IH}	Don't Care	I _{CC1}
Program	A _{IN}	D _{IN}	V _{IL}	V _{PP}	I _{CC2}
Program Verify	A _{IN}	D _{OUT}	VIL	VIL	I _{CC2}
Program Inhibit	Don't Care	High Z	V _{iH}	V _{PP}	I _{CC1}

RECOMMENDED OPERATING CONDITIONS

(Referenced to VSS)

Parameter		Symbol	Min	Тур	Max	Unit	Operating Temperature			
Palaille	101	Symbol	IAIIII	ТУР	Wax	Oiiit	MBM2732A	MBM2732A-35X		
C	-20/-25/-30		4.75	5.0	5.25	V				
Supply Voltage(1)	-35/-35X	Vcc	4.5	5.0	5.5	1 V				
Supply Voltage		V _{SS}	_	GND	_	٧	0°C to +70°C	-40 °C to +85 °C		
Input High Voltage		V _{IH}	2.0		V _{CC} + 1	٧				
Input Low Voltage		V _{IL}	- 0.1	_	0.8	V				

Note: (1) V_{CC} must be applied either before or coincident with V_{PP} and removed either after or coincident with V_{PP}.

CAPACITANCE

 $(T_A = 25 \,^{\circ}C; f = 1MHz)$

Parameter	Symbol	Min	Тур	Max	Unit
Input Capacitance (Except OE/V _{PP} , V _{IN} = 0V)	C _{IN1}	_	4	6	pF
OE/V _{PP} Input Capacitance (V _{IN} = 0V)	C _{IN2}	_	_	20	pF
Output Capacitance (V _{OUT} = 0V)	C _{OUT}	_	8	12	pF

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter	Symbol	Min	Тур	Max	Unit
Input Load Current (V _{IN} = 5.25V)	lLi	_	_	10	μΑ
Output Leakage Current (VOUT = 5.25V)	ILO		_	10	μΑ
V _{CC} Supply Current (Standby) - 20/-25/-30	ICC1	_	_	35	mA
V _{CC} Supply Current (Active)	ICC2	T -	_	150	mA
V _{CC} Supply Current (Standby) -35/-35X	I _{CC3}		_	30	mA
Output Low Voltage (I _{OL} = 2.1mA)	VOL	_	_	0.45	V
Output High Voltage ($I_{OH} = -400\mu A$)	Voн	2.4	_	_	٧

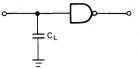
MBM2732A

AC TEST CONDITIONS (Including Programming)

Input Pulse Levels:

0.8V to 2.2V

Input Rise and Fall Time:

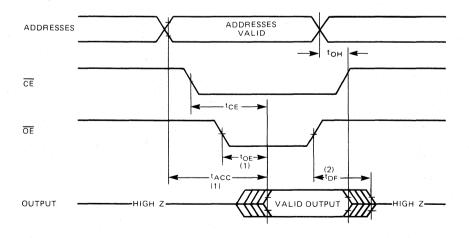

≤ 20ns

Timing Measurement Reference Levels:

1.0V and 2.0V for inputs 0.8V and 2.0V for outputs

Output Load:

1 TTL gate and C_L = 100pF



AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter	Symbol	MBM2732A-20		MBM2732A-25		MBM2732A-30		MBM2732A-35 MBM2732A-35X		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Address Access Time	tACC	_	200	-	250	_	300	_	350	ns
Chip Enable to Output Delay	tCE		200	_	250	I -	300	_	350	ns
Output Enable to Output Delay	tOE	10	70	10	100	10	150	_	120	ns
Address to Output Hold	tон	0		0	_	0	_	0	1-,	ns
Output Enable High to Output Float	t _{DF}	0	60	0	90	0	130	0	100	ns

OPERATION TIMING DIAGRAM

Note: (1) \overline{OE} may be delayed up to t_{ACC} - t_{OE} after the falling edge of \overline{CE} without impact on t_{ACC} .

(2) t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

PROGRAMMING/ERASING INFORMATION

Memory Cell Description

The MBM2732A is fabricated using a single-transistor stacked gate cell construction, implemented via double-layer polysilicon technology. The individual cells consist of a bottom floating gate and a top select gate (see Fig. 1). The top gate is connected to the row decoder, while the floating gate is used for charge storage. The cell is programmed by the injection of high energy electrons through the oxide and onto the floating gate. The presence of the charge on the floating gate causes a shift in the cell threshold (refer to Fig. 2). In the initial state the cell has a low threshold (VTH1) which will enable the transistor to be turned on when the cell is selected (via the top select gate). Programming shifts the threshold to a higher level (V_{TH0}), thus preventing the cell transistor from turning on when selected. The status of the cell (i.e., whether programmed or not) can be determined by examining its state at the sense threshold (VTHS), as indicated by the dotted line in Fig. 2.

Programming

Upon delivery from Fujitsu, or after each erasure (see Erasure section), the MBM2732A has all 32,768 bits in the "1", of high, state. "0's" are loaded into the MBM2732A through the procedure of programming.

For MBM2732A-20/-25/-30, the programming mode is entered when +21V is applied to the OE/Vpp pin. For MBM2732A-35/-35X, the programming mode is entered when +25V or +21V is applied to the OE/V_{PP} pin. A 0.1μF capacitor between OE/Vpp and VSS is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data

Fig. 1 — MEMORY CELL

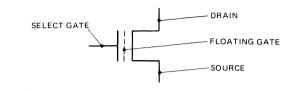
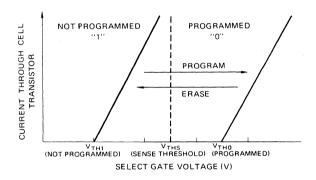



Fig. 2 — MEMORY CELL THRESHOLD SHIFT

are stable, a 50 msec, TTL Lowlevel pulse is applied to the CE input to accomplish the programming.

The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50 msec program pulse be applied at each address to be programmed. It is necessary that this program pulse width not exceed 55 msec. Therefore, applying a DC level to the CE input is prohibited when programming.

Erasure

In order to clear all locations of their programmed contents, it is necessary to expose the MBM2732A to an ultraviolet light source. A dosage of 15 W-second/cm² is required to completely erase an MBM2732A. This

dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity of 12000µW/cm² for 15 to 20 minutes. The MBM2732A should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MBM2732A and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MBM2732A, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

MBM2732A

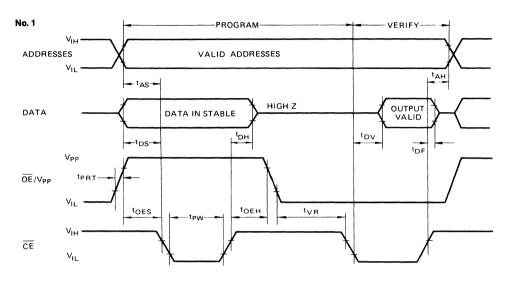
PROGRAMMING / ERASING INFORMATION (continued)

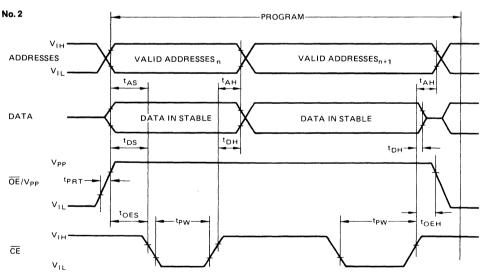
DC Characteristics

 $(T_A = 25 \pm 3 \,^{\circ}\text{C}, \ V_{CC}(1) = 5 \,^{\vee} \pm 5 \,^{\vee}, \ V_{PP} = 21 \,^{\vee} \pm 0.5 \,^{\vee}, \ V_{SS} = 0 \,^{\vee})$ (For MBM2732A-35/-35X: $V_{PP} = 21 \,^{\vee} \text{ or } 25 \,^{\vee}$)

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (VIN = 5.25V/0.45V)	lu	_		10	μΑ
V _{PP} Supply Current During Programming Pulse (CE = V _{IL} , OE/V _{PP} = V _{PP})	Ірр	_		30	mA
V _{CC} Supply Current	I _{CC2}	_	_	150	mA
Input Low Level	V _{IL}	-0.1	_	0.8	V
Input High Level	V _{IH}	2.0		V _{CC} +1	٧
Output Low Voltage During Verify (I _{OL} = 2.1mA)	V _{OL}	_	_	0.45	٧
Output High Voltage During Verify $(I_{OH} = -400\mu A)$	Voн	2.4	_	_	٧

Note: (1) V_{CC} must be applied either coincidently or before V_{PP} and removed either coincidently or after V_{PP}.


(2) V_{PP} must not be greater than 21.5 volts (26.5 Volts for MBM2732A-35/-35X) including overshoot. Permanent device damage may occur if the device is taken out or put into socket remaining V_{PP} = (21 volts for MBM2732A-20/-25/-30, 21 volts or 25 volts for MBM2732A-35/-35X). Also, during CE, PGM = V_{IL}, V_{PP} must not be switched from V_{IL} to V_{PP} volts or vise-versa.


AC Characteristics

 $(T_A = 25 \pm 3 \,^{\circ}\text{C}, \ V_{CC}(1) = 5V \ \pm 5 \,^{\circ}, \ V_{PP} = 21V \ \pm 0.5V)$ (21V $\pm 0.5V$ or 25V $\pm 0.5V$ for MBM2732A-35/-35X)

Parameter	Symbol	Min	Тур	Max	Unit
Address Setup Time	t _{AS}	2	_	_	μS
Output Enable Setup Time	toes	2	<u> </u>	_	μS
Data Setup Time	t _{DS}	2	_	_	μS
Address Hold Time	t _{AH}	0	_	_	μS
Output Enable Hold Time	toeh	2	-		μS
Data Hold Time	t _{DH}	2	_	_	μS
Chip Enable to Output Float Delay (OE = V _{IL})	tDF	0	_	130	ns
Chip Enable to Data Valid Time (CE = V _{IL} , OE/V _{PP} = V _{IL})	t _{DV}	_	_	1	μS
Program Pulse Width	tpW	45	50	55	ms
Program Pulse Rise Time	t _{PRT}	50	_	_	ns
V _{PP} Recovery Time	t _{VR}	2	_	_	μS

PROGRAMMING WAVEFORMS

Note: In PROGRAMMING WAVEFORMS No. 2, Address Hold Time t_{AH} must be more than 2 μ s.