FOUNDATION DOCUMENT

A Technical Guide to the General pro-
gram structure and File Handling

Routines used by Peachtree Softwaretm.

Copyright 1978, 1979 RETAIL SCIENCES, INC.

Revision 2.1

m/TIn

II.

III.

IVv.

VI.

VI

FOUNDATION DOCUMENT

TABLE OF CONTENTS

INErOTUCELON: « v ¢ # v swswisintaemen 5 s ¢ & & s R —
Hardware/Software RequirementS.....ecceeeecees. PP
Disk File Conventions...... S W § @ e SR B e e .
Program BASIC Subroutine MapPiecscescccscssssasasancses
Peachtree Software SkeletOn.....ieeeeeeercceeecannnnns
MARTS. cess s P b e B eREREE S e eeE s S 8§ s eeEe e P T
MIRKSBEMow s & v 3 ¢ wamaree e esam@e S W e R e T e W e e e

I. Intrecduction

This Foundation Document describes in detail the general
structure and file handling routines used within the Peachtree
SoftwaretM packages.

Although there are variations in programming techniques
from package to package, this document serves to inform the
user of the basic philosophies and mechanisms used specifi-
cally within the accounting, inventory packages, and other
Peachtree packages.

Particular attention is given to the two ISAM file man-
agers used within most Peachtree packages. The first of these
managers, MARIS (Multi ARay ISam) is a single key ISAM written
entirely in BASIC and appended to the end of each program. -
MARIS is used by each of the four accounting packages. The
second file manager is MIKSAM (Multi Index Keyed Sequential
Access Method). MIKSAM is incorporated within the Inventory,
Timekeeping, and Mailing Address packages. MIKSAM is a so-
phisticated multi-keyed ISAM supporting variable length records.
It is written in assembly code (for effeciency) and interfaced
to the BASIC packages through subroutine calls.

Necessary adjuncts to the Foundation Document are the
individually packaged system documentation which describe each
of the application packages. Each of these documents narrate
the particular programs which comprise the application system
along with the files used and reports produced by each program.

II. Hardware/Software Reguirements

Hardware Requirements Any 8080-type microcomputer

I

- 132 column printer

- CRT Terminal (24 lines, 80 characters
per line)

- 2 flexible disk units
- 48K bytes of RAM

Software Requirements Microscfttm Disk BASIC language

- CP/Mt¢ Operating System, or equivalent

The packages of Peachtree Softwaretm are designed to be
virtually machine-independent; i.e., any proper hardware
configuration which will fully support Microsoft BASIC should
execute the Peachtree packages. Other than the programs which
use the USR function to interface with the MIKSAM file routines,
no device-dependent BASIC statements (PEEKS, POKES, IN, OUT,
ETC.) are incorporated within the Peachtree programs.

III. Disk File Conventions

Peachtree Software packages are delivered on a single
flexible diskette for sales, demo and customer training
purposes. However, for general system use, two flexible
drives and two diskettes are required. System programs
reside on drive @/A while customer data resides on drive
1/B. Instructions are provided with each package to convert
from a single-disk to a two-disk system.

There are two types of files on each package diskette-
program files and data files. All program and data files
are prefixed by a two-character code unique to each package;
e.g., GL for the General Ledger package, PR for the Payroll
package, and so on. All program files are suffixed by .BAS
and all data files are suffixed by .DAT. For example, the
Master File Maintenance program file in the General Ledger
package is named GLMF.BAS. The General Ledger Master File
itself is named GLMST.DAT. '

The specific file names for each package are listed
within that packages particular package document.

IV. Program BASIC Subroutine Map

Statement Range Range Contents

7 Program file name, title, author's
initial's, creation date, date last
modified.

1 CLEAR required string space, copyright
statement.

2 ON ERROR GOTO 545¢4 'ERROR TRAP SETUP

3 PN$ = "Program Name" 'PROGRAM NAME
ASSIGNMENT

4 GOSUB 590449 '"GET SYSTEM PARAMETERS
FROM SYSTEM FILE

49098 - 49999 Package File Handler and Interface
Routines.

54093 - 59899 Get system info, date; verify diskette

; assignments; define functions.

5@9¢@B - 53999 Print Heading to Screen.

5190@ - 510899 Alphanumeric string input (Query String)

51288 - 51399 Numeric string input (Query Number)

514098 - 51499 Date string input (Query Date)

51688 - 51799 Dollar amount input (Query Dollar)

51898 - 51899 Yes - No input (Query Yes-No)

51908 - 51999 Top of page input (Query Page)

52088 - 53999 (Not currently allocated)

54038 - 5449 INVALID ENTRY message subroutine

54358 - 54499 System error test subroutine

541@% - 54199 SYSTEM ERROR message subroutine

5420@ - 54299 NUMBER OUT OF RANGE message subroutine

54399 - 54399 INCORRECT DATE message subroutine

54497 - 54499 (Not currently allocated)

54504 - 54599 BASIC Error Trap subroutine

54609 - 54699 SYSTEM File Assignment message subroutines

54788 - 59999 (Not currently allocated)

60338 - 65508 MARIS or MIKSAM File Subroutines

SECTION V

PEACHTREE SOFTWARE

SKELETON

Open and Read System Parameter File

The system parameter file is opened and read. Drive "A"
will be accessed first. If the file is not there, then the
variables will be erased and MD$ will point to the appropriate
drive.

G000 ON ERROR GOTO S012023 BELLS=CHRS (7) +CHRS (7Y +CHRE ()

SOOLD OFEN "Iy Ly "AtGLEYELAT" DTHFUT 4L o NG

0020 DIM VS VAL (NE) 3 IVS 0 =NSIFOR T=1 TO VaL (NS STNFUTEL » DS COY INEXT THOLOSE
0030 MDE=UE CLL) ISCE=VE (8 TW=Ual. OJE(7))

SO0HB0 TF O MDE-Erar anD MDSCEEYOTHEN GOSURE S445020 G0TO 19900

Si0an TF Mhs="a" GOTO S0110

S0F0 DeNLIERAEE Vi

S00%0 0FER T Ly MDE+H" TELEYSLDET " JXNPUT ALy b

G09S DIM Ve OSALCNE) 3 TV CO =G SFORT=1TOVEL CHEY TTRFUT Lo VS D SHEXT TI0LOSE
CEOLOO MDE=UECLLY S IF MDSCCEY THEN GOSUE 545008 GOTO 19900

CSE0LLDON BERROR GOTO 5435003 GOTO S0140

G0120 IF ERR=53 O0R ERR=5S THEM GOEUE 544003 GOTO 19900

S0130 TF ERR=5S OR ERR=SE QR ERR=4T THEN GOSUE 5445080070 19900

G050 GOTO 343500

BELLS$ (CRT terminal alarm)

SC$ - (CRT terminal clear screen and home cursor command)
MD$ - Any system drive designator e.g. (B,C,D...)

W (CRT terminal/printer width)
vsS() will be defined within each system's internal docu-
mentation.

w0140

50141

S01A5

0170

N L W

DEFINED FUNCTIONS

Initialize variables to perform pack double precision number
into 4 byte strlng.

:H'F—-q..ﬂ ‘;’0")‘3‘ T"“” CT-RE Hv R? b“-=f“ |is.‘l‘«(0ol “{ MRS 0D 3 }(’3 Bl TE QY } r("Hl\‘I's(1 e*;f?_) 3
-,-,tJ‘iL] ,nf.l1 70

Subroutine to convert double precision number (DD#) into 4
byte string (IIS).

.:.Iﬁﬁlﬁ’:IE‘===i'-’ifIi;ﬁ}'!lS RS CREEDDER L O 04D » By 40 SRETURN

Subroutine to convert 4 byte string (II$) into double pre-
cision number (DD#).

ﬁmﬁm(QUD(XQ$+II$+KG$)“INT(H#)}%+Dld.nu1UhN

Defined function to convert 8 character date string
"MM/DD/YY" into single precision number in reverse order
YYMMDD and stripped of "/" is

DEFEHSD (S =UAL CRIGHTE (S5 20+ LEFTE (S5 23 +1LDE e ’rv :‘ } 3

Defined function to convert single precision number into
character string in the form of "MM/DD/YY".

BEFFHMDSE D) =MIDBCSTREWD I) o4 204"+ TN (STRECD ! 2 o &3

S SN WH R 1-\ B2 00

Open System File Subroutine

Open system file and read DATE (VD$), System Name (vs),
Company Name (ve) . SCS$=(CLEAR SCREEN + HOME CURSOR COMMAND) .

G0L80 OFEN “I“vﬂv“ﬁiSLDﬁ+DﬁT“IINPUT E3 VDS ICLOSE 3 "DATE

S0190 VSgaUEl) 3 VMEB=UHE(20) 'EYSTEM» COMPANY NaME

GOLYS FOR Is=1 TO VAL (VE (23) ¢ DHK(I)WUAL(U$(23+EXI}31 NIEZXT

SUZ00 FRINT SO82G0SUR SOFO0IFRINT S FRINT DISFLAY HEADERS

CB0ELO PRINT SFRINT® ONE MOMENT FOR PROGRAM STﬁRTUPp..+“3PHINT1RETURN

Heading

‘o
H
-
o)
t

W
VCs
VS$
PN§
VD$

S0Ean PHINTT&HC(HWLEH(UG$))/2)FUC$:PWINTTQB((HmLEN(Uﬂ&E}/2)$U$$
0210 PRINTT&E{(HMLEN(PN$))/2)$PN$
S0E20 PHINTT&B((HwaN(UD$))/Ki?Uﬁm

G09S0 RETURN

WIDTH
COMPANY NAME
SYSTEM NAME
PROGRAM NAME
DATE

| T I |

Alphanumeric String Input (QUERY)

Q$ - The query prompting message or null ("") if no such
message is to be given.

RS - The user's response is first compared with "END" to
test for program exit.

RL$ - The leftmost character of the user's response (RS).

This subroutine is used to query the user and obtain a
response. The programmer provides the prompt in Q$, and RS
is returned with the user's response. Only Control C will
thwart this subroutine.

51000 FRINT Q65 JLUINE TNFUT R

GLOST Rl =l EFTE gy 1)

GA0AE TF RE=tENDY O THEN GOTD 19900 EL&E RETURN
. ; : S . i

Numeric String Input (QUERY NUMBER)

Q$ - The prompting message or null ("") if no such message
is to be given.

UB! - The upper bound allowed for N!
LB! - The lower bound allowed for N!

N! - The value returned by this subroutine in the range
LB !<=NI<=UB! _

This subroutine uses the Alphanumeric string input subroutine
to prompt the user for a number. The input string RS is
checked to insure of a valid number. If RS is null then

N! = #. R$ is scanned for allowable blanks followed by an
optional "+" or "-" followed by 1 or more digits in which
there may be an optional ".". If R$ can be converted to

a valid number, it's value is checked to see if it is in the
range of LB! and UB!. If it is not in range, an "OUT OF RANGE"
message is printed and a new number is requested. IF UB! = LB!
then this range checking is omitted. No error conditions may
arise.

GOSUSSL 000 SN b0 FRs i s THENRETURNELSEDF =0 3 0 G
ZILF-'I.. Frdgdrmhe L " THENRE=MTIE (P 20 $EOTOSL220

TFLEN GRS =0 G0THESLE2Y0
ORGSR TOLEM CRE) §DHs=0E0 (lﬂ];‘u

PRy Jde 13D

L S RO B | ! IH; G I :-1 S0 00 3 GOTIE L 200 SEGITON) 28T
A3 Jf"ful\i SLRTHENGDESLESS000 2 G0THELE00
FEET O]a I H; B THET & f‘i“dfll‘ SEOTIELE00

e : A I O o B R ’_ Baidlabd U D OB b LR DT E R T LR
SO0GOTOSLE00

Date String Input (QUERY DATE)

MO - The Resulting Month
DA - The Resulting Day
YR - The Resulting Year

This subroutine uses the Alphanumeric String Input Subroutine
to prompt the user for a date. The string RS returned from
query is parsed to see if is a correct date, i.e., R$ is null
in which case MO=DA=YR=0 or RS is in the form MM/DD/YY where
1<=MM<=12 and 1<=DD<=31 and 50=Y¥<=99. The slashes between
MM, DD, and YY can be any symbol. R$ contains the string
value from which MO, DA, and YR are derived.

CAELON0Y TF LENC Ii'IS)) THER M= D6=03 Y0 RETURN
D D R (!iw~ LSO D 8 GOTO S1450

RGPS UIF i‘i{,]w 0 GOTO S1450 ELSE IF MO=2 THEN R$="0"+Rs

ISTR O » R /") CTF D0 GOTO SL4%0

H14246 TF i"‘ln =0 THEN FlLckE=LEFT 'B(R‘iiy G0 RE O ERIGHTE RS 4) TRb=RLE+RE

G1AE0 MO=Val CLEFTS (RE &) 3 100VUAL (MIDSECRE » 4y 20) SYR=UAL CRTGHTS (REs 23)
G0 TF OO0 3 END OO 13 A ri‘JI;(I"'n O AND CDAEE Y AMND CYRG0) ARND VRSP) THENRE TURN
G450 GOSUBS4A300IG0TOS1400

Q

51400
51 G20
51640

T ELEED
S1EGS
Hlaa0
H1A70
S1680
S1a&%0
L1700
S1L710

51800
GLEOs
51807
EH1B10
G100
G190

GHLEED

Dollar Amount Input (QUERY DOLLAR)

D# - The dollar value returned

This subroutine uses the Alphanumeric String Input Subroutine
to prompt the user for a value. The string R$ returned from
guery is parsed to see if it is a correct dollar value, i.e.,
R$ is null in which case D#=0 or R$ is a valid number (See
QUERY NUMBER for number definition) or is a number preceeded
by a "$". Any commas are ignored. No error conditions can
arise. RS contains the string value from which D# is derived.

GOSUESLO0D IGP=03DG=0
TFLEFTE RSy L= "THERRGE=MIDSG (RE 20 00TOS 1620

GOTOSLA40
TFLEFTE RSy L= THEMRG=MIDS (RS 20
TFLEN CRS e 0 THEMND == 0 3 RETLIRN
FORJ=LTOLEM CRE) T OH=ASC CMIBE (R S 13
TFCHE7 NS5 ETHERDG=1 1 GOTOE L7 00
TFCH=aS THENDF =D L PIFDF L THENGOSURSA0 00 1 COTOSL&00ELSEGOTOS 1700
TF COHA00 AN COHA 3 0 DR JZHLTHENGOSURESS00 0 1 GOTOS 14600
NEXT U ETFDGE=0THERGOSURSA0 00 :GOTOS 14600
Crafle==t sl O+ "1 " 3 SRETURN

Yes—-No Input (QUERY YES/NO)

(=% Y OFR NP "

YRS GOELESL 000 CTFRL Y T HERNY R Sl SRETUIRN
TFOLENORE) =0 THEN RETURN

TFRL & W THERNGOSUESA00 0 160TOS1805 ELSE RETURN

FRINT S FRINT " FOSTTVLION THE PaPeER &7 THE TOR OF & FPaGE.
(s READY " SGOSUE S18003 XF LEMRE =0 THEN RETURN

TFONOT YES GOTO S1910 ELSE RETURN

The parameters Q$, Q, and QT are described in the query
subroutine. Yes - set true (-1) if answer is yes, set false
(0) if answer is no. :

This subroutine uses the Alpha Numeric String Input Subroutine
to prompt the user for "yes" or no". Only the leftmost char-

acter (RLS$) is checked for a "Y" or "N". If neither of these

occur, the question is reasked.

Basic Error Trap Location

SAS00 PRINTIPFRINT® EaSTO ERROR NMUMEER "JERRS " LINE NO. "3$ERL
SN0 PRINT CONGLILT BASTC MaMUAL. FOR EXFLANATION, *
SAGZ0 PRINT IFPRINT " ANORMSL END OF JOB " SPRINT

S4530 FORT=LTO400 $PRINTEELLS : INEXT IRESUME 19%00

Top-of-forms Subroutine

This subroutine will print from the current line (LC) to 65
and then. set LC to 4.

SoHde FOR TT=L0 TO &5 LPRINTTD NEXT TI: LO=03 RETURN

Invalid Entry Subroutine

BELLS-CRT terminal audible alarm command

ﬁﬂdﬂﬂ PRINT"mmm'INvﬁLXD ERTRY . FLEASBE REENTER., *%x*§BELLS IRETURN

System Error Test

CEADE0 TFERSsOTHERPOL TURN

System Error Subroutine

SAL00 FRINT xxx SYSTEM ERROR "FERY . PLEASE CONSULT MANUAL . 00x" 3 BELL 4%
S4110 GOTH 199

Number Qut of Range Subroutine

S4700 FRINT sk NUMBER TS OUT OF RANGE. 000" 3 EELLS $RETURN

Incorrect Date Subroutine

GAE00 PRINT "ok TNCORRECT DATE. HMUST BE FORM Mﬁ/DDK?‘. mmm"?ﬁﬂLL%:RETURH“h

10

_Svstem File Not Found
_5%&00 FROTNT S FRIONT "aneok PROPER SYSTEM FILE NOT FOUND.

CaN' T CONTTNUE. ook SRETURN — e

System File Initializéd Improperlv

.5%EEU-PHINT3FRINT ek SYSTEM FILE INITIALIZED ITHPROPERL.

CaAN'T CONTINUE. o™ JRETURN

LIST VARIABLES FOR THE PEACHTREE SOFTWARE SKELETON

BELLS$

CH

Ul
o#
DA
JRpuk 2
G
OKZ(

op

IIs
Jd

LLE!
MI$

MO

N#

N$

FNE

Q%

-54000,

-31240,

-30173
=916539,
=-91400,
-30161,
-51200,
-350195

"'512001

-50030,
-51400,
-51200,
-50160,

~-50010,

-50910
=-51000,
-31000,

-31420,
-514660,

51710
951424,

50165

91260,

91800,

291060,

w1422,

91710,

S4200,

91260,

21280,

31600,

201935,

91280,

20060,

51430,

o0165

50090,

919210

51065,
51424,
91807,

94300,

S1270,

91430,

.9514600,

91680

516490,

30090,

214490

50095

91200,
51426,
31910

1.2

54530

091660,

91440

31670,

51660,

20100

=4 2
GL Ll

91430,

51670,

51700

01690,

51230,
31620,

31680,

91700

91240,
515640,

914690 .

91290,
91650,

31400

91655

LIST VARIABLES

RL$

S$

SC$

UE!

Vs

Vsl

VC%

VL$

XB8%

X9%

YES

YR

FOR THE PEACHTREE SOFTWARE SKELETON

-50190,

-30180,

-50170,

-30030,

-50160,

-30160,

—-31400,

51426, 51805, 51810

20200

50030, 50095, 50100, 501920, 50195

90900

50900

30900, 50910, 50920

50165

31430, 51440

13

SECTION VI

MARTS

MARTIS
Multi ARray ISam

Steve Mann
_(Revised 1/24/79)

MARIS OVERVIEW

MARIS is a Multiple ARray Indexed Sequential method used
to map Key values to record addresses in a file. 1In the dia-
gram below, OI is the index which MARIS uses to point to the
Key in array OK$. The Key is found using a binary search.
aAppended as the last two bytes of each Key is 0S, which contains
a pointer to the Master Sector. The Key is KL% bytes long,
where KL% is defined by the programmer. Any element of the
array OK$ is therefore KL% + 2 bytes long. The master sector
can be linked to none, one, or more extent sectors, and together,

they make up a data record.

OK$ —

Master
o1 — KEYS$. 0s 2 sosigtiw

T

Extent >_Data
Sector Record

‘_'"_'v'_'_""—"‘-—‘-‘\f""'"—"—'
KL% bytes 2 bytes Y \L

Extent
Sector]

14

To explain MARIS more effectively,

the following example

problem will serve as a guide for illustrating the interaction

between a program and its file structure using MARIS.

Assume the tasks laid out before the programmer include
maintaining a Membership Roster for the neighborhood Country
Club. This roster must contain the names and address of each

family belonging to the club.
who belongs to the Club must be kept on file.

Furthermore,

arrange the file would be to allow the family last name to

serve as a key for referencing:

each family member
One way to

(1) the family street address,

and (2) each family member's full name along with their "prefer-

red" name.

A schematic representation of the file for the two records
or families Jones and Smith might be:

o
3 [Tones >

KEY
EXT 1%l EXT 2 EXT 1 Wast

. Rsvd
Jones 1870 Ridgewood Atlanta, GA | 30329|Maris
Rsvd
Jones Hamilton Wesley Wes Maris
Rsvd
Jones Lucille Marie Lucy | Maris
i ; Rsvd
Smith 4210 Briar Dr. Atlanta, GA | 40243| Maris
Rsvd
Smith Thomas Randolph Tom Maris

15

KEY

KEY

Notice that Jones and Smith can be used to find their
respective families (they are keys). The Jones key points to
the first record by specifically pointing to the sector which
contains a duplicate of the key (Jones) and an address. MARIS
refers to this first sector of the set as the Master Sector or
simply as the Master. In this sector, a duplicate of the key
was inserted by MARIS, while the programmer inserted the address
information. The two sectors which extend downward from the
Master Sector, are the sectors which hold each family member's
name in the form of last name, first name, middle name, and
preferred name. In MARIS, these sectors are referred to as
Extent sectors. The collection of one Master Sector and (none,
one, or more) Extent Sectors comprise a record. The last field
RSVD
MARIS
five bytes of every sector are reserved for use by MARIS.

show how the last

associated with each sector, labeled

Add Family

The following is a schematic representation of adding a
new Family to the Roster; and then deleting one. There is just
one member in the newly joined Lawson Family. So a Master and
one Extent are created for this record.

The file before addition:

% Rsvd
fay
[Jones € | Jones 1870 Ridgewood Atlanta, GA | 30329|Maris
—~ —
-t . " |Rsvd
7y |LJones Hamilton Wesley Wes Maris
g Rsvd
é Jones Lucille : Marie " | Lucy | Maris
g : Rsvd
Z | smith 4210 Briar Dr. Atlarita, GA | 40243|Maris
;' Rsvd
% | .Smith Thomas Randolph Tom | Maris

16

The files after addition:

iy
0
[Jones 2> = | Jones
L
>
5 Jones
e
< | Jones
(53]
[Lawson l
4J
9
= | Smith
—
H
% LSmith
0
%>§ Lawson
—
Sz
% awson

Note how the keys are kept sorted in ascending order and point
to the corresponding Master sector.

17

The file after deletion of the Smith Family.

q
e 0

o]
) o
o] 0
5

Law

Cea

MAsT

g‘}r{ Mﬂﬂ'

Exre

e+
Wl Jones

=
l’f" Jones

Jones

s A
A,
Y/ S

18

The shaded area which oncecontained the Smith family's
record is now placed on an available list for later use by
MARIS when new file space is needed.

The following is a detailed look into the characteristics
of a Master sector:

KEY SECTOR DATA OMS$ OE OL

KL% bytes 123-KL% bytes 1 byte 2 bytes 2 bytes

MARIS will LSET the key value into a file buffer having
a size of KL% (key length). The sector data must be LSET by
the programmer into a file buffer having a maximum size of
123-KL% bytes. The space difference between 128 bytes (the
size of a sector) and 123, is the 5 bytes MARIS reserves for
storing OM$, OE and OL. OM$ will contain "M" for Master
sector, or "E" for Extent sector, or "F" to indicate the sector
is "free" for re-use. OE and OL contain sector pointers. OE
points to the sector location of the "next Earlier" ordered
sector in the record, while OL points to the sector location
of the "next Later" ordered sector in the record. In most
operations, MARIS will return the value (0S), which is the
current sector location.

Sector X3
H \ 13
1z) ¥
13 ﬂ 1z

Through the use of these pointers, a programmer can always
determine the locations of the current sector (0S), and of its
adjacent sectors (OE), (OL). Notice how MARIS closes a loop by
having the MASTER (which has no Earlier sector) poigt to the
last extent. By the same logic the last Extent (which ?as no
later sector) points to the MASTER. When a record is first
created, there are no Earlier or Later sectors to which the
MASTER'&E (OE) and (OL) can point. So, they point to (os),

the sector number in which they reside. (0s) = (OE) = (OL)

oM$¢ OE Ol

M i i

 Sector

I] |4

This also becomes true when all Extent sectors become deleted.

The Extent structure differs from the Master only in the
fact that MARIS does not store a duplicate of the key wvalue
within the sector. However, it is advisable to maintain the
kevy in each Extent f{as shown in the examples), for recovery in
the event that file integrity is lost.

An extent can be deletedfrom any record by specifying
(0S), (the sector number of the extent to be deleted) and
performing a DELETE ENTENT SECTOR function. MARIS will alter
the adjacent sectors to point to each other: OE (pointer to
nexst "earlier" sector) is set to the sector proceeding the
deleted extent and OL)pointer to next later sector) is set to
the sector following the deleted sector.

DELETE EXTENT

After first accessing the Master, its adjacent "Latest"
record, (OL), becomes known. Setting OS to OL and performing
a DELETE EXTENT SECTOR results in:

o 20

Sector - /,\ oM$ OF o
" f ml| ' “ 13 43

N
1z YA REaara F =, =
/3 { | £ | E "ot

Extent 1 is deleted, and the two adjacent records now point to
each other, Extent 2's (OE) now points to the Master and the
Master's (OL) points to Extent 2.

To add a new Extent, pointers OE and OL must be set to the
value the sector should have after creation.

ADD EXTENT 3

OE must be set to point to the new extent's predecessor,
(OL) must be set to new extent's successor. To add Extent 3,
(OE) must point to Extent 2, and (OL) will point to the Master.
After first accessing the MASTER, the last Extent sector
(pointed to by OE) becomes known. Setting OL to OS and leaving
OE alone will arrange the pointers for the new extent (the new
sector's OE field points to the old last extent and the OL
field points to the master). Performing ADD EXTENT SECTOR will
cause MARIS to calculate a new 0OS, and later the pointers of its
adjacent records. The Extent is not actually saved until the
programmer LSETS the appropriate fields and the statement "PUT
FI%, 0OS" is performed.

Sectey oMt 9 oL
") 1M] M 4 13
1z Ve LR A e Foos °=
3] [eT T

E 13 "

1 § [& |

Note that deletion of sector followed by creation of a
sector without changing pointers results in an unchanged
structure. Similarly, creation followed by deletion leaves the

structure unchanged.

Should the last extent be deleted, the error code will be
set to 1, implying that the end of the extent list has been

T 1. . _ 8. maflkaw AATlardAn

IE. "MARIS" Operations

The following operation codes and their corresponding file
procedures are described in order of operation number:
oP FUNCTION PERFORMED

1 CREATE MARIS FILE (FI%, NAS, DI%, DAS, KL%, OCS,
RETURNS: ER%)

The operation performed is to create a MARIS file
with name NAS, on drive DI%, with creation date

DAS, with key length KL%, and comment OC$. FI%

is used as a temporary file number. ER% is set

to 4 if the file already exists otherwise ER%

is set to 0. The file is not opened after creation.

2 OPEN MARIS FILE (FI%, NAS, DI%, RETURNS: DA$, EX%, NR%,
KL%, OC$, OI, ER%)

The file NAS$ on drive DI% is opened as file number
FI%. The wvariables DAS, EX%, NR%, OA, KL%, and

OCS$ are set to the creation date, the current extent
of the file, the current number of records in the
file, the key length, and the comment information
respectively.

ER% is set to 5 if the file does not exist, to 1
if the file is emp+q, or to 0 if no error holds.
If ER% = 0, a side effect of opening the file is
that the file is rewound and OI is set to f4.
(The first index in the file.)

The key values and pointers are read from the file
into an internal array for fast access. If the
file had not been properly closed then this array
was not saved in the file; the open function
rebuilds the array by scanning the entire file and
by sorting the keys. Hence, if the file was not
properly closed, a longer time must pass before
opening can be accomplished. 1If the file had not
been closed properly, then the CLOSED flag will be
set to 0, otherwise it will be set to 255. The
CLOSED flag is in byte 6 of header record.

22

3 CLOSE MARIS FILE (RETURNS: ERX%)

The MARIS file currently opened is closed and

the key pointer array is written out at the end

of the file. ER% is set to 6 if there is not enocugh
room on the disk to hold these pointers. (Subsequent
re-opening of the file will work properly although

a longer time must pass. See Section V). ER% is
set to 0 if the file is closed properly.

4 CREATE A MASTER RECORD (KE$, RETURNS: OI, OS, ERY%)

The key/pointer array is searched for the key KES.
If found ER% is set to 3 and no action is performed;
if the key is not found, one is created. OI is set
to the key/pointer array index, 0OS is set to the
master sector created, the buffer is set to receive
information, and ER% is set 0. If ER% is set to

6 then the disk is out of room.

5 DELETE RECORD (KE$, RETURNS: KE$,0I, OS, ER%)

The key/pointer array is searched for the key KES.
If not found then ER% is set to 2 and no action is
performed. If the key is found, the key is deleted
from the array and the master and any extent sectors
are placed on the available list for future use.

If the end of the file is not reached, KES$ is set to -~
the next key in the file, OI is set to the next array
indexXx, and 0OS is set to the sector of the next master
record. ER% is set to 0 if no error occurs.

6 REWIND (RETURNS: OI, ER%)

The file is rewound so that the master sector of the
first logical record in the file is the next record

to be read. If the file is empty, ER% is set to 1,

otherwise ER% is set to g. OI is set to f#.

.

7 SEARCH (KES$, RETURNS: OI, 0S, ER%)

The key/pointer array is searched for the key KES.
If found then ER% is set to 3, OI is set to the
array index, and OS is set to the sector containing
the master sector of the corresponding record. If
the key KE$ is not found then ER% is set to 2.

8 GET RECORD (KE$, RETURNS: OI, OS, OE, OL, ERX%)

The file is searched for a record with key KES$. If
not found then ER% is set to 2 and no record is ob-
tained. If ER% is zero then the record was found;

OI is set to the array index, OS is set to the sector
of the master area, OE is set to link to the end

10

11

12

13

FUNCTION PERFORMED (Cont.)

GET

extent, OL is set to link to the first extent, and
the buffer holds the master sector of the record.

NEXT RECORD (RETURNS: KE$, OI, OS, OE, OL, ERX%)

The next logical record in the file is obtained.

If ER%¥ = 0, then KE$ holds the key of the next
record, OI holds the array index, OS holds the sector
number of the master sector, OE is the link to the
end extent, OL is the link to the first extent, and
the buffer holds the master sector. If ER% = 1,

then the end of the file was reached.

GET PREVIOUS RECORD (RETURNS: KE$, 0OI, OS, OE, OL, ER%)

The record preceding the current logical record in
the file is obtained. If ER% = 1 then there is no
preceding record (i.e., the front of the file was
reached). If ER% = 0 then KE$ holds the key of the
previous record, OI holds the .array index, OS holds
the sector number of the master sector, OE is the
link to the first extent, and the buffer holds the
master sector of the previous record.

CREATE EXTENT SECTOR (OE, OL, RETURNS: OS, ER%)

If ER% = 0, a new extent record is created. OS

is changed to point to the new extent sector.

The earlier extent field in the new extent is set to
OE, the later extent field in the new extent is set

to OL, and the buffer is set to receive information.

ER% is set to 6 if no room is available on the disk.

DELETE EXTENT SECTOR (OS RETURNS: OE, OL, ERX%)

If ER%¥ =@ , then an existing extent sector OS

is deleted. The result of this operation is that OE
is set to the earlier extent before the deleted
extent OL is set to the later extent after the
deleted extent and the deleted sector is placed on
+he available list for future use. IF ER% =1, then
the end of the extent has been reached.

GET NEXTENT SECTOR (OS, RETRUNS: OE, OL, ER%)

If ER%Y = 0), then the sector 0S is obtained. OE

is set to the earlier extent, OL is set to the later
extent, and the buffer is set to hold the next
extent sector. If ER% = 1, then the end of extents
has been reached.

24

FUNCTION PERFORMED (Cont.)

PUT MASTER OR EXTENT RECORD (OS):

There is no OP subroutine to write the record
contents of a sector; rather the programmer should
use the following BASIC statement:

PUT FI%, OS
Where FI% is the file number and OS contains the
sector number, usually determined by MARIS.

25

ITI. Variables and Their Use

Name USE

DAS File creation date

DI% Disk drive file is mounted on

ER% Error indication

EX% Extent of file

FI% File number

KES Key value

KL% Key length

NAS Name of file

NR% Number of records in the file _

09$-078 Header field descriptions for "MARIS", CLOSEDFLAG,
DAS, EX%, NR%, OA KL%, and OCS respectively.

OA Available sector

OB Temporary - indicates bottom of search list

oCcsS User comment

OD Drive file is mounted on

OE Link to earlier extent

OES Field for earlier extent pointer.

oI Index in key array - indicates current position

0oJ Temporary

OK Temporary

OKS Field for key value

OKS () Key array index and pointer values

oL Link. value to later extent

OLS Field for later extent pointer

OMS$S Field to indicate sector type: M= Master, E = Extent,

F = Free.

oP Operation to be performed in MARIS system

0S Sector Value

oT Temporary

oTS Temporary

IV. Error Numbers and OP Codes

The following error numbers are also condition numbers,

usually ER%¥ = 1 is not an.error.

ER% Meaning OP Codes of routines where
error_can occur

0 No error All routines

i End of file 2; B, 9; 10, 5

1 End of extent v 12,313

2 Key not found 5,7:8

3 Key found 4,7

4 File already exists 1

5 File does not exist 2

6 out of space 3,4,11

7 Invalid OP code

oP MARIS Function Performed

1 CREATE MARIS FILE (FI%, NA$, DI%, DA$, KL%, OCS,
RETURNS: ERY%)

2 OPEN MARIS FILE (FI%, NAS, DI%, RETURNS: DAS$, EX%,

NR%, KL%, OCS$, OI, ERX%)
3 CLOSE MARIS FILE (RETURNS: ER%)
4 CREATE RECORD (KE$, RETURNS: OI, OS, ER%)
5 DELETE RECORD (KE$, RETURNS: KE$, OI, OS, ER%)
6 REWIND (RETURNS: OI, ER%)
7 SEARCH (KE$, RETURNS: OI, OS, ER%)
8 GET RECORD (KE$, RETURNS: OI, OS. OE, OL, ER¥)

9 GET NEXT RECORD (RETURNS: KE$, OI, OS, OE, OL, ERX%)

10 GET PREVIOUS RECORD (RETURNS: KE$, OI, O0S, OE, OL, ER¥%)
1k CREATE EXTENT SECTOR (OE, OL, RETURNS: 0S, ER%X)

12 DELETE EXTENT SECTOR (0S, RETURNS: OE, OL, ER%)

13 GET EXTENT SECTOR (0S, RETRUNS: OE, OL, ER%)

GOSUB 62000 SETUP (NR%)

21

V. General Comments

Should out-of space occur, no data is lost except the
last record entered or the key/pointer array. Deletions from
the file will work properly and new additons can be added up
to the number of sectors deleted. If out-of-space occurs while
closing the file and writing out the array, the file cannot be
closed properly even though deletions may have been performed.
This is because the array is saved at the physical end of the
file and logical deletions do not allocate physical space. The
file should be backed up (End-of-Period should be run) and the
resulting new file will be packed (i.e., all unused space
will be deallocated). A file closed improperly can be opened
although this will require time to rebuild the key/pointer
array.

Traversing a record (obtaining the master and all extent
sectors) may be accomplished in the following fashion:
100 GET RECORD (KE$, RETURNS: OI, OS, OE, OL, ER%)

110 IF ER% # § THEN GO TO 999 'record was not found
'operate on master sector

200 OS = OL: GET EXTENT SECTOR (OS, RETURNS: OE, OL, ER%)

210 IF ER% # 0 THEN GO TO 999 ' No link sector found
'operate on master sector
300 GO TO 200 '

999 'record was traversed
Traversing a file (obtaining the first and all succeeding

records in a file) is accomplished by:
100 REWIND (RETURNS: OI, ER%)

110 GET NEXT RECORD (RETRUNS: KE$, OI, 0OS, OE, OL, ER%)

120 IF ER # @ THEN GO TO 999 'end of file reached
'operate on record

200 GO TO 110

999 'file was traversed

Putting information in a sector requires first obtaining
or creating the sector, LSETing information into the sector, and
saving the sector.

To create information in a NEW master sector:

100 CREATE RECORD (KES, RETURNS: OI, OS, OE, OL, ER%)
'LSET information into the buffer if ER% = O

200 PUT FI%, OS'save the sector out

To update information in an EXISTING extent:
100 GET RECORD (KES, RETURNS: OI, 0OS, OE, OL, ERY%)
'ILSET information inte the buffer if ER% = 0

200 PUT FI%, OS 'save the sector out

All programs that use the MARIS file system must allocate

enough string space to handle program needs and key/pointer
array space. If the key length is KL% and the maximum number

of records in the file is NR%, then there must be at least

(KL% + 5) * NR% + C

bytes allocated for string space. C is a constant dictated

by the program needs; usually 1000 to 3000 bytes is enough.

For example, if there are at most 300 records with key length of
6 bytes, then (6+5) * 300 = 3300 bytes are needed for the key/
pointer array. A CLEAR 5000 should suffice for program needs.

29

COMPARISONS BETWEEN MARIS AND ISAM

The MARIS file system is a replacement for the existing
ISAM file system whenever the file structure to be implemented
consists of a set of records with each record being comprised
of a master area and a variable number of extent areas. Thus
the General Ledger, Accounts Receivable, Accounts Payable, and
Payroll Systems can be implemented with a MARIS file system.
For example, the General Ledger in ISAM consists of two indexed
files, the MASTER file and the JOURNAL ENTRIES file. In MARIS
these two files become one file, the master area holds the
MASTER account record and the extent area holds the JOURNAL
ENTRIES records.

Unlike ISAM, all MARIS calls are GOSUB 60000 with an
operation code, OP, set to a value between 1 and 13 depending
on what operation is to be performed. The only exception to
this is the SETUP MARIS call. This is .one by setting NR% to
the maximum number of records and by performing a GOSUB 62000.
This sets up the key/pointer array space.

LIST OF

OE
OEs
OH

OH(

o1

0J

oK

OKs$

DK$(

oL

OLs$

OMs

ar

0s

oT

0Ts

aTs$(

VARIABLES FOR MARIS

-450800,

~60250,

-60283,

~-460281,

-4602460,
-460520,

-40260,

-60260,

-60250,

-60270,
-50520,

""60510:

=-60250,
-52200

-460250,

-460000,

"60420}
_612001

—-602460,
-60710,

—602350,
=-60720

-60260,

60900,

60420,

60284,

60282,

60270,
50500,

60270,

60283,

60280,

60280,
60710,

60300,

460420,

60280,

60280,

60500,
61300,

60281,
50720

602460,

60270,

61000,

60800,

60283,
50710,

60283,

60420,

60283,
60730,

50200,

608090,

60420,

60281

60510,

62100,

60282,

60270,

60310

61100,

+

60700,

60284,
60720,

60289,

60308,

60200,

60284,
50700,

61000,

60200,

61100,

60520,
62200

60283,

60283,

31

61210,

61000,

60283,
60730,

60310,

60310

51000

60285,
51000,

51100,

61000,

61200,

60730,

60308,

60284,

61300,

61100,

603190,
60900,

60320,

60310,
62000

61210,

61100,

61300,

60800,

60310,

60320,
41000

60410,

60410,

61300,

61210,

60900,

60500,

60310,

61300,

60420,

60420,

2200

61300,

61000,

60510,

60320,

62200

603500

62100

61100

60700

60710

LIST OF VARIABLES FOR MARIS

BE$

IIAS

niz

ERZ

KE$

KL%

NA$

NRZ

00%

01is%

03%

Q4%

0&%

07%

08%

0A

OB

0C¢

oD

-460280

"601401
-460100,
-4600290,
~-460304,
"60800)
"60250:
-60130,

-60310,
-61210;,

-40420,

-460140,

-460100,

-4602350,
-60410,

~462000

-60130,
-50130,
-60130,
-60130.,
-460130.,
~-60130,
-60130,
~-460130,
-460130,
-60250,
~460260,
-60140,

-460290

60120,
60400,
61000,
60280,
60230,

60330,
62100,

60700,

60260,

60200,

60280,
60500,

60230,
60230,
60230,
60230,
60230,
60230,
60230,

60230,

62100,
60410,

60330

60150,
60420,
61100,
60310,
60240,

60420,
62110,

60720,

60308,

60281,
50520,

62110,

60420,

60210,
60500,
61200,
60330,
602350,

60800,
62200

60200,

60282,
50400,

60290,

60330,

60330

60330,

50330

40700,

60220,
60520,
61210,

62100,

60260,
60200,

61000

60700,

60283,
50700,

60330
62110

62110

60710,

60240,
60600,
61300,
62110

60280,
61000,

60710

60308,
50900,

60720

60300,
60710,
62110

60290,
61100,

60310,

52000

60302
50730

60300
61200

50330

w9 '10/30/78
MULTI ARRAY I&AM - MARIS (OF)

000 ONE R!"\ﬂl'\lzl'lTDéDD‘?O DNDF‘E‘D*‘SUE &0100 ;éﬂ"’ﬂﬂ v (‘.30"300 rc’:D‘}UO »&05009460600560700
&08005609005610009611005,61200561300
010 ONERRORGOTODS4S00IRETURN
070 TFERR=&1THENERZ=&IRESUMESDD LOELSEONERRORGOTOSAS500 I RESUMES4S00
097 '
CREATE MARIS FILE (FIX» NA%, DIX» DA%Ey KiLZ» 0C%y RETURNS: ERZD

100 ONERRORGOTOSOLLO ENAS=CHRG(DTH+65+ § " +NASE I NAMENSEASNAS
110 ERZ=FERRIRESUMES0120
120 OMERRORGOT (15: 0070 ¢ TFERZ=58THENERZ =4 t RETURN
130 OFEN"R" s FIXsNABINAE=MIDS (HOG,3) 3
FIELDFXXy uMSUU$ » 1ASD1E4,34502%» 248035y ZA809%y ZAES0ES » 263064y L00AED7 S y HAS02E

140 LSETOO4="MARIS" ILSETO1$=CHR$ (255 ILSETOZ%= Dl"‘:‘l‘: LOSETO3%=MKIHS (L)

LSETO4$=mMHIE(0) ILSETOSS=04% 1 LSETO&ES=MHI S (KILLZOD I LSETOZ$=0C: LLSETOES="103078"
150 FUTFIXy LiCLOSEFTIXZIERY=0 I RETURN

199
OFEN MARIS FILE (FIZy MNa$s DIZ»
RETURNS: DASs EX%s NRYy OBy KL%y OCSy 0Ly ERY)
71 OMERRORGOTO&021 0 NAS=CHRS (DTH+ES) +" 1 "+ NAS I NAMENATASNAS -

o ERZE=ERRIRESUMESDZZ20

e OHERRORGOTOAHB0%0 $ TFERZ--58THENER =5 RETURN

230 OFEN"R" » FIO N&E S NSs hTD$ MAGe3) 8
FIELDFTZ y 55500% 1AG0LS » S8AS02% » Z0805% » 2050494 » 2A505% » 205044 » 1L 00AS07 S

240 GETFYIXy L LFO0%H-0 " MARIS " THENCLOSEF T §ERZ =0T RETURN

25900 D=2 EXX=CVT (03%) I NRZ=CVT 0494) 1 0a=CVT (054) S E=CVI046%) $O0E=0741
PTFIﬁFT?r(h A) ASOREy CLEZB-HLEYASOTS » LAB0ME » 2AE0ES » ZASB0L% 3
TFOLE-0HRE CESS) THENGIZBIELSETFNRZ=0THENS0Z20

2460 0= tLAERtUT”LRB\UlethﬂDTi1.FFTII/rlﬁf DIMOTH COT) e0B=03
FORDX=0T00T 3 FTELDTX y COEISEOTE » (O AE0TS (0L 2 0RO I NEXT ¢
FOROT=1TONRY I TFOJ0TTHENGJ=0 L GETIFTX

270 OREOD=0TE(0J2 0J=0J+1L INEXTOTL IERSESEOTEIGOTOL0Z50

280 FPRINTIFRINT "o FILE WS NOT CLOSED PROPERLY. ONE MOMENT FOR FIX...“:
FRINTEES SNRZ=0 : GETFIZy 12 TFERE-CETHENAOZZ 0ELSEFOROP=2TOEXX s GETFIX
TFOMb="M" FHINNRV R S ORS CRIRGL) =0 E-+ MK XE (QF)

281 RMEXTOR S TFNRZZZTHENGIZ20ELSEDTHOM 23 30H (L) =11 0H(23=4 1 0H(3 =13 1 0T=1

232 YFOHCOT+2)NRITHENOT=0T+1 : O (OT+2) =3x0HM0T+1)+1 :GOTO6 0282

283 FOROH=0TTOLSTEF-1 2 0H=0H (0K 1 FOROJ=0DH+1LTONRY 0T=0J--0H $ SWAFOTS » OS5 (OU)

<849 TFOTR-C0RE COXY THENSWAFORS COT+0R Y » QS COL) 2 OL=0T-0H TFOTH0THENL 0284

785 SWARDKS (DT+0H) » 0TS ENEXTOJy 0K ERASEOH

290 GETFIN, LiLSETOL4=CHRGC0) $FUTFIZy L30D=DIX GOTOAN400

50300
50302
50304
50208
50310

503420
50330
36399
50400

0410
0420

0499

20510

L0

a2 U \..'2 U
0597

)[E(C)GD
A1 EFF

0700
0710
072

0730

0759

0800

(B899

{9

CLOSE MARIS FILE (RETURNSS ER)

ONERRORGOTD40B02 tGETFIXy L IERZ=41G0TO60304

ERX=0IRESUME&0304

ONERRORGOTO&S00%0 $ TFERYZ=0THENRETURN

IFNRZ=0THENG0330ELSEOK=KLZ+2:0T=128\0K~-1

OJ=0 :GETFIZy EXXIDIMOTS(OT) t0E=02
FOROI=0TOOT:FIELDFIZy (OE)ASOTS » COKIASOTS (DI :0E=0E+0H INEXT
FOROL=1TONRZ SLLSETOTS (0J) =0K$ (OX) 1 QJ=0J+ 1L I TFOJ0TTHENFUTFIZ $ 0J=0

NMEXTOILIERASEOT® I TFOJ-H0THENFUTF I '

AMETFIZy LILBETOLG=CHRG (255 (LSETOS%:=MHIS CEXYX) LSETO4E=MII S (R ¢
LSETOS$=MKI$ (0A) . SBETOZ ¢=0Cs : FUTF I » 1 I CLLOSEF XA L ERXZ=0 t RETURN

CREATE RECORD (KE$» RETURNSG: 0I» 08y ERX)

GOSUES0700 ¢ TFERX=3THENRETURNELSEGOSUESZ1.00

IFMNRZ=0ETHENF ORDJ=NRATOORSTER~1 : SWAFOKS (0J+1) » OK$ (0J) $NEXT

NRZ=NRZ+1 1 0T=0E8 OK$ (01 =KE$+MKI$ (085) tLSETOKS=KES $LLSETOM%="M" ¢
LSETOES=MKI® (08) ILSETOL $=MKT${0S5) IFUTFIZy DS IERY=0 IRETURN

DELETE RECORD (KE$r RETURNS: KE$y OXy 05 ERX)

GOSLESOZ00 L TFERA=ZTHENRETURNEL SEGOSUBSZZ200 I NFE=NRYZ-1 10T=08¢
LFOT-=NRETHENFOROJ=0TTONRS SHAFO:S (00U » OHE (OJ+1) SREXT
OS=0L. S TFOS<0TTHENGDSUEAZZ20 01 6G0TO0A0510
TF O NRE THENER Y= 13 RE TURNEL SEOS=CUT (RIGHTE (OKE (0T » 23) 3
FE =L BT C QRS COT Y » KLZD SERZ0 CRETURN

REWIND (RETURNSS 0Ly ERXD
O 0 S TFNRE = 0 THEMERZ =1 3 RETLIRNEL SEERZ =0 3 RETURN
SEARCH (KE$, RETURNS: 0Ly 05y ERYD

OT=NRL L 0E=L S TFLEN CKES) < HLATHENKES =LEF TS (KES+ STRINGS (KL% ™ "2 KL
TFOE-=0TTHENOL=(0T+OEDNZ 10T H=LEF TS (OK$ (0L » KLZOELSEERZ=2 L REETURN
TFOTEHKESTHENOT=0T-1 (COTOLH07 L OEL.SETFOTS-CHES THENOE=0T+1 tGOTOLH07 10
OS=CVT(RIGHTHCOKECOTY »2) 3 TERT=3IRETURN

GET RECORD (KE®» RETURMNS: OXy 03y OEy Oy ERX)

GOSUES07 00t TFERZ=2THENRETURN
ELSEGETFIN D81 0E=CVI (OE%) I0L=CVT (0% $ER=0 $ RETURN

GET MNEXT RECORD (RETURNS: KE®y 00Xy 08y OEs Ol ERY)

TFOL=NRATHENERZ =1 RETURNELSEOT=0T+1 { 08S=CVT(RIGHTS (OKS (0T » 2) LGETFIN OS¢
KE$=0K% I OE=CVT (0ES) $0L=CVT (0LS) $ERY=0 RETURN

4

GET FREVIOUS RECORD (RETURNS: KE%®, 0Ly 0S» OE» Ol.y ERXZ)

1999

000 IFOI<=1THENERYZ=1RETURNELSEOTI=0X~1308=CVI(RIGHTS (OKE (DT 23) tGETFIZ 05
HE$=0K%$ 3 OE=CVIL(OES) :0L=CVT(0L%) $ERX=0IRETURN
Qe !
CREATE EXTENT SECTOR (0OE» OlLy RETURNE: 0Ss ERZD

100 GOSUBAZ100ICETFINy OF LSETOLS=MKI$ (08 IFUTFIZ,0E?
GETFIZyOLLSETOE$=MKI$ (0S) tFUTFXXy QL iGETFIN y OS5 L LEETOES=MKT % (OE) 3
_H§5TOL$=MHI$(UL):LSETUN$=“E'tPUTFIX;GS:ERZﬂD:RETURN

1199
DELETE EXTENT SECTOR (0Sr RETURNS: OEs Ol ERY)

L1200 GETFIZ,083IFOME-"E* THENERZ=1 I RETURNELSEGOSURS6ZZ00
1210 GETFI%y0E:LSETOLS=MKI$ (DL SFUTFIX, 02
GETFIZrﬂL3L5ETUE$ﬂMHI$(UE):PUTFIZrUL:ERKmﬂtﬁETURN
1259 °
CET EXTENT SECTOR (0S5y RETURNS: OEr Ol ERZ) -

LA SETETY » 06 3 TF OM$- * £ THENER=1ELSEOE=CVL(0E$) 0L=CVI(0L%) TERZ=0
"4 RETURN

GETUR (NRZD

2000 DEFINTOSDIMOKS (NRYY $RETURN
2099
SET NEW SECTOR (RETURNSS 08)

2100 IFGAi?UTHENGETFIZ;DﬁtUSﬁOﬁtOﬁﬂGUI(UL%)ELEEEXX%EXK+1:OB%EX%
2110 GETFIZ» LILSETO3E=MIKI$S (EXH) 2I,,.E_-.":lEZTE]E?EI‘»fzijI{I!t~ COAY SFUTFIZ L3 ERV=0 CRETURN
2199 °

FREE OLD SECTOR (08y RETURNS: OEy Ol.y ERZ)

22010 CETETYy 063 0E=CUT (DES$)Y $OL=CVUT0L%) $LSETOME="F " {LSETOL$=MKI$ (0A) :0A=081
FUTFIZ»y061GOTO62110

SECTION VII

MIKSAM

PEACHTREE SOFTWARETM
MIKSAM

Multi Indexed Keyed Sequential Access Method

. 9/25/78

[PEACHTREE
SOF T WARE

36

MIKSAM is a general purpose file access program written

PEACHTREE SOFTWARE ™™

MIKSAM

Multi Indexed Keyed Sequential Access Method

in Assembly Language to be used as a co-routine with Altair
or Microsoft BASIC. MIKSAM is called from BASIC whenever
MIKSAM file access is to be performed; BASIC is called from
MIKSAM whenever BASIC file access is to be performed.

MIKSAM requires about 7.5K of RAM, which includes about
1K for file buffers.

MIKSAM is distinguished by nine characteristics:

1)
2)

3)
4)
5)

6)
7)
8)

9)

It allows for variable 1ength keys (up to 26 bytes each).
Records are of .fixed length (up to 251 bytes each).

There may be up to 255 orders of keys.
There may be up to 255 keys per record.

There may be multiple records per key (limited by
file space).

Records may be accessed randomly from any of its keys.
Records may be accessed randomly via its record pointers.
Records may be sequentially accessed.

Files are dynamically self-policing; no extra update
or optimization programs are required,

There are ten BASIC commands that allow the user access
to MIKSAM:

BASIC Line Command
60000 SETUP
60100 CREATE FILE
61000 OPEN FILE
61100 CLOSE FILE
61200 SEEK KEY
61300 CREATE KEY RECORD
61400 CREATE KEY
61500 DELETE KEY
61600 GET RECORD
61700 PUT RECORD

61800 FILE STATUS

60000
60100
61000

61100
61200
61300

61400
61500
61600
61700
61800

MODE

R S

MIKSAM QUICK REFERENCE

SETUP

CREATE FILE (NA$, DA$, FI%, DR%, FL%, NO$, ER%)

OPEN FILE (NA$, FI%, DR%, RA3(FI%), KE$(FI%),

PT! (FI%), ER%) _

CLOSE FILE (FI%, ER%) . :

SEEK KEY (FI%, RA%(FI%), KE$(FI%),PT!(FI%), MO%, ER%)
CREATE KEY RECORD (FI%, RA%(FI%), KE$(FI%), PT!(FI%),
RE$ (FI%), ER%) : :
CREATE KEY (FI%, RA%(FI%), KE$ (FI3), PT!(FI%), ER%)
DELETE KEY (FI%, RA%(FI%), KE$(FI%), PT!(FI%), ER%)
GET RECORD (FI%, PT!(FI%), RE$(FI%), ERS)

PUT RECORD (FI%, PT!(FI%), RE$(FI%), ER%)

FILE STATUS (FI%, RS$, ER%)

SEEK_KEY MODES

DESCRIPTION

"Rewind to first of RA% keys

Seek key on RA% and KE$

Seek next key

Seek next set

Seek Key Pointer on RA%, KE$ and PT!

Page

Offset

Key

Record Pointer

Node Pointer

Record

Node

1

MIXKSAM TERMINOLOGY

A 256 byte area in logical file space comprised
of two BASIC records.

A byte value in the range § = Offset < 255.

An area of variable length from two to twenty-
eight bytes long. The first byte of this area i
is the length of the area (including itself

in the length count). The second byte of this
area is the rank number (RA%) of the Key
(1=primary, 2=secondary, etc.) up to 255 Ranks.
The remaining bytes comprise the key value
(KE$) as specified by the user.

A three byte (Page, Offset) pair which refers
to a Record in the file.

A three byte field containing a BASIC Record
number and §, used to reference a Node or Leaf.

An area containing data indexed by one or more
Keys. The first three bytes of the Record's
data area is reserved for future use. The
fourth byte of the Record's data area is a
reference count used to indicate how many

Keys refer to this Record. (§ ~ reference
count = 255. A reference count of § implies
the Record is celeted. Upon creation of a
file the Record's length is specified. This
length includes the four bytes of overhead
mentioned above, leaving length-4 bytes for
the user. These four bytes are automatically
skipped in the GET REC and PUT REC subroutines.
Within a BASIC program the user can assume

the Record length is four less than specified
at file creation time.

A 128 byte area containing a one byte length
followed by alternating Node Pointers and

Keys followed by a final Node Pointer. Node
Pointers refer to Node or Leafs containing
Keys lexigraphically less than or equal to the
right-adjoining Key; the final Node Pointer
refers to a Node or Leaf containing Keys which
are lexigraphically greater than the last Key.

Leaf

Tree Structure

A 128 byte area similar to a Node except that
all pointers refer to the Record associated
with the right-adjoining Key. The final
Pointer refers to the Record associated with
the Leaf's parent Key. The last pointer in
the file is a null pointer.

MIKSAM data structure. The tree structure is
comprised of the "Root'" Node or Leaf. Each

- pointer from a Node refers to a lower level

Node or Leaf. All Leafs are on the same level
of the tree (equal to TREEHEIGHT) and pointers
from the Leaf refer to Records.

For further reference as to how the actual keys and

records are manipulated, see The Art of Computer Science,

Volume III Sorting and Searching, p471-48 by E.D. Knuth

and Organization § Maintenance of Larger Ordered Indexes,

Acta Informatica 1, 173-189 (1972) by R. Bayer & E. McCreight.

a0

MULTI- INDEXED KEYED SEQUENTIAL ACCESS METHOD

(MIKSAM)

QHARACTERISTICS

00~ &~ (TS]
. e « 8.

. . .

Variable length keys (up to 26 bytes each).

Fixed length records (up to 252 bytes each).
Multiple-orders of keys (primary, secondary, etc.,

up to 255 order levels). -

Multiple keys per record (up to 255).

Multiple records per key (limited by file space only).
Random access to a record via any of its keys.

Random access to a record via its record pointer.
Sequential access to a record.

COMMAND SUMMARY

Line

60000
60100
61000

61100
61200
61300

61400
61500
61600
61700
61800

SETUP

CREATE FILE (NA$, DA$, FI%, DR%, FL%, NO$, ER%)

OPEN FILE (NA$, FI%, DR%, RA%(FI%), KE§(FI%),

PT! (FI%), ER%)

CLOSE FILE (FI%, ER%)

SEEK KEY (FI%, RA%(FI%), KE$(FI%),PT!(FI%), MO%, ER%)
CREATE KEY RECORD (FI%, RA%(FI%), KE$(FI%), PT!(FI%),
RE$ (FI%), ER%) -

CREATE KEY (FI%, RA%(FI%), KE$(FI%), PT!(FI%), ER3)
DELETE KEY (FI%, RA%(FI%), KE$(FI%), PT!(FI%), ER3)
GET RECORD (FI%, PT!(FI%), RE$(FI%), ER%)

PUT RECORD (FI%, PT!(FI%), RE$(FI%), ER%)

FILE STATUS (FI%, RS$, ER%)

DESCRIPTION OF USER FUNCTIONS

60000 - SETUP

This routine initializes the variables, allocates space
for the MIKSAM variables, and sets up the MIKSAM buffers.
No parameters are nceded.

41

DESCRIPTION OF USER FUNCTIONS

60100 -

61000 -

61100 -

CREATE FILE (NA$, DAS, FI%, DR%, RL%, NO$, ER%)

Create a MIKSAM file on the disk. The file is not
opened after creation and must be explicitly opened
before use. There are seven parameters.

NA$ - the name of the MIKSAM file to be created, up
to eight bytes long. '

DA$ - an 8 character string representing the date in
‘the form MM/DD/YY.

FI% - a temporary file number.

DR% - the disk drive the file is to be created on

RL% - the fixed record length for this file, including
a 4 byte overhead for each record

NO$ - a string of up to 64 characters saved with the
file for user use only (e.g., user name, version,
system name, etc.)

ER% - an error number having the value:

0 - no error]
111 - a file with name NA$ aleadt exists on
drive DR%.

OPEN FILE (NA$, FI%, DR%, RAS(FI%), KE$(FI%), PT!(FI%),
ER%)

Open a MIKSAM file on the disk. Initialize header
information and buffer. If ER%=§ the key index is
set to the first rank and key in the file. The key
index is undefined otherwise. There are seven para-
meters:

NAS - the name of the MIKSAM file to be opened.
FI% - the file number for this file while opened.
DR% - the disk drive the file resides on.

RA% (FI%) the rank of the key to be created.

KE$ (FI%) - the key of the record to be created.
PT! (FI%) - pointer value to created record.
ER% - an error number having the value:

0 - no error
112 - MIKSAM file with name, NAJ does not
exist on drive, DR%
103 - file is empty.
CLOSE FILE (FI%, ER%)

Close the opne file FI% and clear out any buffers
associated with this file. The header record is saved,

There are two parameters:

FI% - the file number of the file to bé closed

ER% - an error number having the value:
0 - no error
110 = no file FI% is currently opened.

: 42

61200 - SEEK KEY (FI%, RAS%(FI$), KES (FI%), PTI(FI%), MO3, ERS)

Set the key index to a new value determined by the RA%

KE§, MO%,

FI%
RA%(FI%)

KE$ (FI1%)
PT! (FI$)
MO$%

ER%

parameter. There are six parameters:

- the file number of the file to be sought
depending on MO$% this Parameter specifies
the rank of the key to be found

depending on MO%, this parameter specifies
the key of the record to be found

the pointer of the key found or (if MO%=4)
the pointer of the key to be found

- set the key index according to:

If MO%=f then rewind to the first of the
rank RA% keys. KE$ is set to the name
of this key.

If MO%=1 then set the key index to the
order specified by RA% and the key
specified by KE$. (SEEK KEY)

If MO%=2 then set the key index to the
next key in the file. RA% and KE$ are
set to this rank and key. (SEEK NEXT KEY)

If MO%=3 then set the key index to the next
record set, i.e., the next key different
from the current key. (Used when there
are multiple records per key in the file.)
RA% and KE$ are set to this order and key.
(SEEK NEXT SET)

If MO%=4 then set key index to RA%, KE§$, PT!.
(SEEK KEY POINTER)

T an error number having the value:

" 0 - no error.
101

- end of Set
10Z - end of Rank reached
103 - 1imit of File reached
105 - MODE%=1 and there is no rank=RANKS

with key=KEY$ in the file

61300 - CREATE KEY RECORD (FI%, RA%(FI%), KES(FI%), PT!(FI%),

61400 -

RES, ER% '

Create a new record having the value RE$ with rank RA%
and key KE$}. The key index is set to the key of the
record created. The key index is undefined if ER%#0.
There are six parameters:

FI% - the file number of the‘file in which the
record is to created.

RA%(FI%) - the rank of the key to be created.

KE§ (FI%) - the key of the record to be created.

PT! (FI%) - pointer value to created record.

RES$ - a string of length RL%-4 (Record Length)
containing the value of the record

ER% - an error number having the value:

0 - no error
120 - invalid key (parameter)
121 - no room in file

CREATE KEY POINTER (FI%, RAS%(FI%), KE$(FI3%), PT!(FI%), ER$%)

Create a new key for the current record and leave the
pointer at the created key. The current record is
pointed to from the key index set by a previous command.
The key index is set to the key created is ER%=0. The
key index is undefined if ER%#0. There are five para-
meters:

FI% - the file number of the file in which the key
is to be CREATEAd.

RA% (FI%) the order of the key to be created

KE$ (FI%) - the key of the record to be created
PT! (FI1%) - pointer value to created record
ER% - an error number having the value

0 - no error
115 - Key Index not set
120 - invalid Key or parameter
121 - no room in file

b 44

61500 - DELETE KEY POINTER (FI%, RA%(FI%), KE$S(FI$), PT!(FI%), ER%)

Delete the key pointer to form the current key index from
the file. If this is the last key referring to a record,
the record is also deleted. The key index is set to the
next key after the deleted key. There are five parameters:

FI% - the file number of the file in which the key .
is to be deleted

RA% (FI%) - the order of the key to be deleted

KE§ (FI%) - the key of the record to be deleted

PT! (FI%) - the pointer value of the record to be deleted
ER% - an error number having the value:

0~ no error
103 - end of file (last key in file deleted)
115 - Key Index not set

61600 - GET RECORD (FI%, PT!(FI%), RE$(FI%), ER%)

Using the key index set by the SEEK command, get the
corresponding record and assign it to the string RESJ.
The length of RE§ must be RL%-4 (the fixed record
length for the file). The key index is unmodified by
this command. There are four parameters:

FI% - the file number of the file from which the
record is to be obtained

the pointer value to created record

a string which will contain the record value
obtained from the file

ER% - an error number having the value:

PT! (FI%)
RE$ (FI%)

0 - no error
115 - Key Index has not been set

61700 - PUT RECORD (FI%, PT!(FI%), RE$(FI%), ER%)

Using the key index, put into the corresponding record
the value of RE§. The length of RE$ must be RL%-4.

The key index is unmodified by this command. There are
three parameters:

FI% - the file number of the file into which the
record is to be placed

PT! (FI%) - the pointer value to created record

RE$§ (FI%) - a string which contains the record value
placed into the file.

ER% - an error number having the value:

0 - no error)
115 - Key Index has not been set

45

61800 - FILE STATUS (FI%, FS$, ER%)

Obtain the status of the file with file number FI% as
of the last time the file was closed. Place the infor-
mation in the string FS§. The file must be opened to
use this command. There are three parameters:

FI% - the file number of the file whose status is to
be obtained

FS$§ - a string containing the header 1nf0rmat10n with
the following value:

BYTE

0-5 "MIKSAM"

6-7 Root of Tree
8-9 Extent of file

10-11 Record Length

12-13 Tree Height

14-15 First available node

16-17 First available record

18-19 First available record offset
20-27 Creation data (MM/DD/YY)
28-35 MIKSAM version date

36-63 Undefined

64-128 NO$ - user defined area

ER% - an error number having the value:

0 - no error
110 - no file FI% is currently opened

DAS
DR%
ER%
FI%
FS$
KE$ (FI%)
MO%
NA$S
NO$
PT! (FI$%)
RA% (FI%)
RE$ (FI%)
RLS%

199 -
101 3
102 -
103 -
1P = =

110 =
111 -
112 -
115 =
120 "
121 =

RESERVED VARIABLE NAMES

Date in the form MM/DD/YY

Drive the file is mounted on

Error number

File number

File status when file was last closed
Key value for file FI% '
Mode for seek command

Name of file

Note (optionally user defined)
Pointer value to record in file FI%
Rank of key for file FI%

Record value for file FI%

Record length (includes 4 bytes overhead)

(8 alpha characters)
(integer)
(integer)

(integer)

(128 byte string)
(0-30 byte string)
(0-4 integer)

(0-8 byte string)
(64 byte string)

(4 byte number)
(0-255 integer)
(0-251 byte string)
(4-255 integer)

ERROR NUMBER MEANINGS

No error

BASIC defined errors

End of record set reached

End of rank reached

End of file reached

In the SEEK KEY commands; MODE=1 and there is no rank=RA%,
key=KE$ in the file or MODE=4 and there is no rank=RA%,
key=KE$, pointer=PTR! in the file.

No file FI% is currently opened

A file with name NA§ already exists on drive DR%

File NA$ is not a MIKSAM file or does not exist

Key index not set

Invalid parameter

File length exceeds disk capacity

LIST OF VARIABLES FOR MIKSAM

DAS -60140

ER% _60000, 60110, 60120, 61010, 61020, 61030, 61040, 61110,
~61300, 61400, 62010

FI% _60000, 60130, 60150, 61030, 61040, 61050, 61100,
_61300, 61400, 61800, 62010, 63020, 63030, 63040

FS$ -61800

KES (-60000, 61300, 61400, 62010, 63040

MO% -60000, 61050, 62010

NAS -60100, 60130, 61000, 61030

NO$ ~60140

0$ (~60000, 61030, 61040, 61800

o _60000, 61040, 61050, 61100, 62010, 63000, 63020, 63030,
-63040

ops -60130, 60140, 60150, 61030, 61040, 61100

01$ 60130, 60140, 60150

02$ ~60130, 60140

03$ -60130, 60140

04$ _60130, 60140

05$ ~60130, 60140

06$. -60130, 60140

07$ ~60130, 60140

08$ ~60130, 60140

09$ ~60130, 60140

0B _60000, 60010, 61040, 62000, 63000

o1 ~60010, 61040, 62000

oJ ~60010, 61040, 62000

LIST OF VARIABLES FOR MIKSAM

oT

oT$
PT! (
RA% (
RES (

RL%

-61040,
-61700,

~60130,
~60000,
~60000,
-60000,

-60140

61050,
62010,

61030,
62010
61050,

61050,

61100,
63000

61100
!

62010

62010,

61200, 61300,

63040

51

61400,

61500,

61600,

QY V2721779
= MULTI-INDEXED KEYED SEQUENTIAL ACCESS METHOD - MIKSAM

000 DEFINT 0f OE=KHPCI0: DEFUSRZ=0E?
DIM 0% sRAXIS) yKES (S yFTI(S) yRES(5) ,0(9) ¢ FI¥=1:! ERZ=0: MOZ=0

010 FOR OL=RH8C T0O &HP3! FOKE OT+0E,2553 MEXTS
FOR OI=&H?4 TO &HA3: FOKE OI+0E»0$ NEXTS
OJd=1¢ FOR OI=&M83 TO &HS8A: FOKE OI+0E»0J: 0OJ=0J+1% NEXT: FOKE OIL+0B»0Q
RIETURN

ineoe !
CREATE FILE (NasyDASyFIZyRLEyNOSyERZD

L00 ON ERROR GOTO &0110: NAME NAs AS NAS

110 ERV=ERRI HESUﬁE 60120

120 ON ERROR GOTO 545003 IF ER%Z=58 THEN ERX=111: RETURN
ELSE IF ERX<>53 THEN ERROR ERYZ ELSE ERY=0

130 OFEN"R®"sFIZyNASS FIELD FI%r6 AS 0D0%s2 AS 01%,2 AS 02%y2 AS (O3%»2 As D4d%s
2 A5 05%+9 AS D6F8 A5 074,88 AS D728 AS O0TE,649 AS DB%

1140 LSET 00%="MIKSAM®"$ LSET O1l$=MKI$(2): LSET 02¢%=01$3 LSET O3F=MKTH (RLZY 3
LSET 04%=MHIs<03 2 LSET 03%= D4$' LSET 0&6%3=04%+04%¢ LSET 07¢=DA%:
LSET 08%=N0%: LSET 094="01167

1150 FUT FI¥,1: FIELD FIX»1 AS 00%s3 a’—‘l 01%: LSET 00%=CHR$(4)3
LSET OLl$=MIs 0 +CHRSC0Y ¢ FUT FIX%,23 CLOSE FIX: RETURN
OFEN FILE (NAS » FTYy RAY y KES y FT 1 p ERZ)

00 ON ERROR GOTO 610103 NAME NAS A5 Nas

010 ERZ=ERR: RESUME 61020

020 0N ERROR GOTO S45003 IF ERY=593 THEN ERX=112% RETURN
FLSE IF ERZCH58 THEN ERROR ERZ ELSE ERX=0

030 OFEN "R"yFIXyNASGS FTFLD FI%y128 AS OB(FIX): FIELD FIXsé& A8 OT%y14 A5 00%3
GET FI¥y13 IF OT$<H*MIKSAM® THEN ERY=113% CLOSE FIZX: RETURN

040 0Ny =R E6 LFOROT=]IU? OCOTY=CVTMIDS (006 »QTR2-1 9 2) 3 INEXT S
OCE) =VERFTROOS CFIMY) 0 (2 =VARFTR (ERY) $ OT=&H32&+0E 0J=&H348-+0k 3
FOKEOT y DJAND2SS I FOKEQOT+1 » ((OJ/256) AND2ES) :0T=&H350+0E OJ=&8H3G2+0E 2
FOKEOT y OJANDZES S FOKEQT+1 » ((OJ/256) ANDZES) GOSUES3000

050 RES(FIXN)=SFACES$CO(3)) RAX(FIZ)=0% MOZ=03% QT=2: GOTO 42000

070

CLLOSE FILE (FIXsERX)

100 ON ERROR GOTD 611103 FIELD FIXeyé AS O0TE»14 A8 Q0% ON ERROR GOTO 354350032
OT=1: GOSUE &2000¢ GET FIXs1: OT%="": FOR OT=1 TO 73
OTE=0TH+MKIS0OTIYS NEXT: LSET 00$=0T%$: FUT FIX,1: CLOSE FIZI: RETURN

110 ERZ=1102 GOTO &3010

52

61190
SEEK KEY (FI%»RAZsKESsFT!»MO%yERZ)
61200 OT=2% GOTO 42000
61290
_ CREATE KEY RECORD (FIZyRAZsKESFT!»RESyERY)
61300 IF LEN(KES(FI%))>26 THEN ERZ=120: RETURN ELSE O0T=3¢ GOTO 42000
&£1390
CREATE KEY FOINTER (FIXZyRAY>KES,FT!vERY)
61400 IF LENCKES(FI%))26 THEN ER%=120% RETURN ELSE OT=4: GOTO 42000
651490
PDELETE KEY FOINTER (FIXyRAZyKESyFT!ERYL)
61500 0T=5¢ GOTO 462000
61590
GET RECORD (FIXsFT!sRE$sERY)
61600 OT=6¢ GOTO 42000
61690
FUT RECORD (FIXsFT!yRE$yERY)
461700 OT=7: GOTO 62000
61790
FILE STATUS (FIXrFSH,ERY)
61800 GET FIZ»1: FS$=08$(FI%): RETURN
51990
CALL MIKSAM
0 OT=RHB2A+0E 0J=&H348+0E { FOKEOT y DJANDZSS § FOKEDT+1 y ((0J/256) AND2ZES) 3
OT=&H3%0+0E 2 QJ=RHBS2+0E FOKEOT » OJANDZS5 $ FOKEOT+1 » ¢ (OJ/ 758 ANDZHS)
2010 00 =0T+ TERZSE 0L =NARFTRORAK (FIX)) $002) =VARFTR(KES (FT¥%)) 3
0¢3) =VARFTROPT L CETE) Y $004) =UARF TR CRES CELX)) 10 (5) =VaRFTRCERE) 10 (6) =M0Y
63000 OT=USRT (VARFTR(DC0)) 3
ON FEEK(OE+&HL1)+1 GOTO 630105630205 630305 463040463050
63010 RETURN
63020 GET FIX,000): GOTO 43000
&3030 FUT FIZs0¢0)¢ GOTO 43000
63040 KES(FIX)=SPACES(0(0)) 3
0¢2) =VARFTR(KES (FIX)) ¢ 0D =VARFTR(RE$(FI%)) ¢ GOTO 43000
43050 GOTO 62000 0CLY= <FREE SFACE ON DISK:: GOTO 43000

