
microsoft
basic compiler
docu mentation

microsoft
basic compiler
docu mentation

The Microsoft BASIC Compiler and associated software are accompanied by the following
documents:

1. BASIC-80 REFERENCE MANUAL
provides syntax and detailed explanations of all Microsoft BASIC statements and functions.

2. BASIC COMPILER USER'S MANUAL
gives the BASIC compiler command format, error messages, and general directions for the use
of the compiler.

3. MICROSOFT UTILITY SOFTWARE MANUAL
describes the command formats for the MACRO-80 Assembler and L1NK-80 Linking Loader,
and provides a reference for MACRO-80 pseudo-operations.

Microsoft BASIC Compiler Release 5.2

ADDENDUM TO: BASIC Compiler User's Manual
Section 1.1.1
BASIC Compilation Switches

September, 1980

The /Z switch tells the compiler to use ZBO opcodes whenever possible. The generated
code is listed using BOBO opcodes except in those cases where ZBO opcodes ha ve been used.

The /T switch tells the compiler to use BASIC-BO Release 4.51 execution conventions in
the f ollowin g cases:

1. FOR/NEXT loops are always executed at least one time.

2. TAB, SPC, POS, and LPOS perf orm accordin g to 4.51 conventions.

3. Automatic floating point to integer conversions use truncation instead of
rounding except in the case where a floating point number is being converted
to an integer in an INPUT statement.

4. The INPUT statement now leaves the variables in the input list unchanged if
only a carriage return is entered. If a "?Redo from start" message is issued,
then a valid input list must be gi ven. A carriage return in this case will
generate another "?Redo from start" message.

basic-80
reference
manual

basic-80
reference
manual

This manual is a reference for Microsoft's BASIC-80 language, release 5.0 and later.

There are significant differences between the 5.0 release of BASIC-80 and the previous releases
(release 4.51 and earlier). If you have programs written under a previous release of BASIC-80,
check Appendix A for new features in 5.0 that may affect execution.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is
furnished under a license agreement or non-disclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

(C) Microsoft, 1979

To report software bugs or errors in the documentation, please complete and return the
Problem Report at the back of this manual.

8101-520-06

INTRODUCTION

CHAPTER 1

CHAPTER 2

CHAPTER 3

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

APPENDIX K

APPENDIX L

APPENDIX M

BASIC-SO Reference Manual

CONTENTS

..
General Information About BASIC-80

BASIC-SO Commands and Statements

BASIC-SO Functions

New Features in BASIC-SO, Release 5.0

BASIC-80 Disk I/O

Assembly Language Subroutines

BASIC-SO with the CP/M Operating System

BASIC-SO with the ISIS-II Operating System

BASIC-SO with the TEKDOS Operating System

BASIC-SO with the Intel SBC and MDS Systems

Standalone Disk BASIC

Converting programs to BASIC-SO

Summary of Error Codes and Error Messages

Mathematical Functions

Microsoft BASIC Compiler

ASCII Character Codes

Introduction

"BASIC-80 is the most extensive implementation of BASIC
available for the 80S0 and Z80 microprocessors. In its
fifth major release (Release 5.0), BASIC-80 meets the ANSI
qualifications for BASIC, as set forth in document
BSRX3.60-1978. Each release of BASIC-80 consists of three
upward compatible versions: 8K, Extended and Disk. This
manual is a reference for all three versions of BASIC-80,
release 5.0 and later. This manual is also a reference for
Microsoft BASIC-86 and the Microsoft BASIC Compiler.
BASIC-86 is currently available in Extended and Disk
Standalone versions, which are comparable to the BASIC-80
Extended and Disk Standalone versions.

There are significant differences between the 5.0 release of
BASIC-80 and the previous releases (release 4.51 and
earlier). If you have programs written under a previous
release of BASIC-80, check Appendix A for new features in
5.0 that may affect execution.

The manual is divided into three large chapters plus a
number of appendices. Chapter I covers a variety of topics,
largely pertaining to information representation when using
BASIC-80. Chapter 2 contains the syntax and semantics of
every command and statement in BASIC-SO, ordered
alphabetically. Chapter 3 describes all of BASIC-80~s
intrinsic functions, also ordered alphabetically. The
appendices contain information pertaining to individual
operating systems; plus lists of error messages, ASCII
codes, and math functions; and helpful information on
assembly language subroutines and disk I/O.

CHAPTER 1

GENERAL INFORMATION ABOUT BASIC-SO

1.1 INITIALIZATION

The procedure for initialization will vary with different
implementations of BASIC-SO. Check the appropriate appendix
at the back of this manual to determine how BASIC-SO is
initialized with your operating system.

1.2 MODES OF OPERATION

When BASIC-SO is initialized, it types the prompt "Ok".
"Ok" means BASIC-SO is at command level, that is, it is
ready to accept commands. At this point, BASIC-SO may be
used in either of two modes: the direct mode or the

. indirect mode.

In the direct mode, BASIC statements and commands are not
preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may
be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for using BASIC as a
"calculator" for quick computations that do not require a
complete program.

The indirect mode is the mode used for entering programs.
Program lines are preceded by line numbers and are stored in
memory. The program stored in memory is executed by
entering the RUN command.

1.3 LINE FORMAT

Program lines in a BASIC program have the following format
(square brackets indicate optional):

nnnnn BASIC statement[:BASIC statement ...] <carriage return>

GENERAL INFORMATION ABOUT BASIC-SO Page 1-2

At the programmer~s option, more than one BASIC statement
may be placed on a line, but each statement on a line must
be separated from the last by a colon.

A BASIC program line always begins with a line number, ends
with a carriage return, and may contain a maximum of:

72 characters in SK BASIC-SO
255 characters in Extended and Disk BASIC-SO.

In Extended and Disk versions~ it is possible to extend a
logical line over more than one physical line by use of the
terminal~s <line feed> key. <Line feed> lets you continue
typing a logical line on the next physical line without
entering a <carriage return>. (In the SK version, <line
feed> has no effect.)

1.3.1 Line Numbers

Every BASIC program line begins with a line number. Line
numbers indicate the order in which the program lines are
stored in memory and are also used as references when
branching and editing. Line numbers must be in the range 0
to 65529." In the Extended and Disk versions, a period (.)
may be used in EDIT, LIST, AUTO and DELETE commands to refer
to the current line.

GENERAL INFORMATION ABOUT BASIC-SO Page 1-3

1.4 CHARACTER SET

The BASIC-SO character set is comprised of alphabetic
characters, numeric characters and special characters.

The alphabetic characters in BASIC-SO are the upper case and
lower case letters of the alphabet.

The numeric characters in BASIC-SO are the digits a through
9.

The following special characters and terminal keys are
recognized by BASIC-BO:

Character

=
+

*
/ ,...

(
)
%
if
$

[
]

. ,

;

&
?
<
>
\
@

<rubout>
<escape>

<tab>

<line feed>
<carriage

return>

Name

Blank
Equal sign or assignment symbol
Plus sign
Minus si9n
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenth~sis
Percent
Number (or pound) sign
Dollar sign
Exclamation point
Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon
Ampersand
Question mark
Less than
Greater than
Backslash or integer division symbol
At-sign
Underscore
Deletes last character typed.
Escapes Edit Mode subcommands.
See Section 2.16.
Moves print position to next tab stop.
Tab stops are every eight columns.
Moves to next physical line.

Terminates input of a line.

GENERAL INFORMATION ABOUT BASIC-SO Page 1-4

L.4.1 Control Characters

The following control characters are in BASIC-SO:

Control-A

Control-C

Control-G

Control-H

Control-I

Control-O

Control-R

Control-S

Control-Q

Control-U

1.5 CONSTANTS

Enters Edit Mode on the line being typed.

Interrupts program execution and returns to
BASIC-SO command level.

Rings the bell at the terminal.

Backspace. Deletes the last character typed.

Tab. Tab stops are every eight columns.

Halts program
continues. A
output.

output
second

while
Control-O

execution
restarts

Retypes the line that is currently being
typed.

Suspends program execution.

Resumes program execution after a Control-S.

Deletes the line that is currently being
typed.

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric.

A string constant is a sequence of up to 255
characters enclosed in double quotation marks.
string constants:

alphanumeric
Examples of

"HELLO II
11$25,000.00 11
IINumber of Employees"

Numeric constants are positive or negative numbers. Numeric
constants in BASIC cannot contain commas. There are five
types of numeric constants:

1. Integer constants

2. Fixed Point
constants

Whole numbers between -32768 and
+32767. Integer constants do not
have decimal points.

Positive or negative real numbers,
i.e., numbers that contain decimal
points.

,

GENERAL INFORMATION ABOUT BASIC-80 Page 1-5

3. Floating Point
constants

4. Hex constants

5. Octal constants

Positive or negative numbers repre
sented in exponential form (similar
to scientific notation) • A
floating point constant consists of
an optionally signed integer or
fixed point number (the mantissa)
followed by the letter E and an
optionally signed integer (the
exponent). The allowable range for
floating point constants is 10-38
to 10+38.
Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double precision floating point
constants use the letter D instead
of E. See Section 1.5.1.)

Hexadecimal numbers with the prefix
&H. Examples:

&H76
&H32F

Octal numbers with the prefix &0 or
&. Examples:

&0347
&1234

1.5.1 Single And Double Precision Form For Numeric Constants

In the 8K version of BASIC-80, all numeric constants are
single prec~s~on numbers. They are stored with 7 digits of
precision, and printed with up to 6 digits.

In the Extended and Disk versions, however, numeric
constants may be either single precision or double precision
numbers. with double precision, the numbers are stored with
16 digits of precision, and printed with up to 16 digits.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-6

A single precision constant is
has:

1. seven or fewer digits,

2. exponential form using

3. a trailing exclamation

A double precision constant is
has:

1. eight or more digits,

2. exponential form using

3. a trailing number sign

Examples:

Single Precision Constants

46.8
-1.09E-06

3489.0
22.51

1 • 6 VARIABLES

any numeric constant that

or

E, or

point (1)

any numeric constant that

or

D, or

(#)

Double Precision Constants

345692811
-1.09432D-06

3489.0#
7654321.1234

Variables are names used to represent values that are used
in a BASIC program. The value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable is
assigned a value, its value is assumed to be zero.

1.6.1 Variable Names And Declaration Characters

BASIC-80 variable names may be any length, however, in the
8K version, only the first two characters are significant.
In the Extended and Disk versions, up to 40 characters are
significant. The characters allowed in a variable name are
letters and numbers, and the decimal point is allowed in
Extended and Disk variable names. The first character must
be a letter. Special type declaration characters are also
allowed -- see below.

A variable name may not be a reserved word. The Extended
and Disk versions allow embedded reserved words; the 8K
version does not. If a variable begins with FN, it is
assumed to be a call to a user-defined function. Reserved
words include all BASIC-80 commands, statements, function

GENERAL INFORMATION ABOUT BASIC-80 Page 1-7

names and operator names.

Variables may represent either a numeric value or a string.
String variable names are written with a dollar sign ($) as
the last character. For example: A$ = "SALES REPORT". The
dollar sign is a variable type declaration character, that
is, it "declares" that the variable will represent a string.

In the Extended and Disk versions, numeric variable names
may declare integer, single or double precision values.
(All numeric values in 8K are single precision.) The type
declaration characters for these variable names are as
follows:

% Integer variable

Single precision variable

Double precision variable

The default type for a numeric variable name is single
precision.

Examples of BASIC-80 variable names follow.

In Extended and Disk versions:

PI#
MINIMUM!
LIMIT%

declares a double precision value
declares a single precision value
declares an integer value

In 8K, Extended and Disk versions:

N$ declares a string value
ABC represents a single precision value

In the Extended and Disk versions of BASIC-80, there is a
second method by which variable types may be declared. The
BASIC-80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL may be
included in a program to declare the types for certain
variable names. These statements are described in detail in
Section 2.12.

1.6.2 Array Variables

An array is a group or table of values referenced by the
same variable name. ,Each element in an array is referenced
by an array yariable that is subscripted with an integer or
an integer expression. An array variable name has as many
subscripts as there are dimensions in the array. For
example V(lO) would reference a value in a one-dimension
array, T(1,4) would reference a value in a two-dimension
array, and so on. The maximum number of dimensions for an

GENERAL INFORMATION ABOUT BASIC-80 Page 1-8

array is 255. The maximum number of elements per dimension
is 32767.

1.7 TYPE CONVERSION

When necessary, BASIC will convert a numeric constant from
one type to another. The following rules and examples
should be kept in mind.

1. If a numeric constant of one type is set equal to a
numeric variable of a different type, the number
will be stored as the type declared in the variable
name. (If a string variable is set equal to a
numeric value or vice versa, a "Type mismatch"
error occurs.)
Example:

10 A% = 23.42
20 PRINT A%
R~

23

2. During expression evaluation, all of the operands
in an arithmetic or relational operation are
converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result
of an arithmetic operation is returned to this
degree of precision.
Examples:

10 Df = 6#/7 The arithmetic was performed
20 PRINT D# in double precision and the
RUN result was returned in Df

.8571428571428571 as a double precision value.

10 D = 6#/7
20 PRINT D
RUN

.857143

The arithmetic was performed
in double precision and the
result was returned to D (single
precision variable), rounded and
printed as a single precision
value.

3. Logical operators (see Section 1.8.3) convert their
operands to integers and return an integer result.
Operands must be in the range -32768 to 32767 or an
"Overflow" error occurs.

GENERAL INFORMATION ABOUT BASIC-SO Page 1-9

4. When a floating point value is converted to an
integer, the fractional portion is rounded.
Example:

10 C% = 55.SS
20 PRINT C%
RUN

56

5. If a double precision variable is assigned a single
prec~s~on value, only the first seven digits,
rounded, of the converted number will be valid.
This is because only seven digits of accuracy were
supplied with the single precision value. The
absolute value of the difference between the
printed double precision number and the original
single precision value will be less than 6.3E-S
times the original single precision value.
Example:

10 A = 2.04
20 Bt = A
30 PRINT A;B#
RUN

2.04 2.03999996lS53027

1.S EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or
a variable, or it may combine constants and variables with
operators to produce a single value.

Operators perform mathematical or logical operations on
values. The operators provided by BASIC-SO may be divided
into four categories:

1. Arithmetic

2. Relational

3. Logical

4. Functional

GENERAL INFORMATION ABOUT BASIC-SO Page 1-10

1.S.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator

*,/

+,-

Operation

Exponentiation

Negation

Multiplication, Floating
Point Division

Addition, Subtraction

Sample Expression

X"'Y

-x
X*y
X/Y

X+y

To change the order in which the operations are performed,
parentheses are
usual order of

use parentheses. Operations within
performed first. Inside parentheses, the
operations is maintained.

Here are some sample algebraic expressions and their BASIC
counterparts.

Algebraic Expression

X+2Y
Y X--
Z

XY
Z
X+y
--Z
(X2) Y
yZ

X

X(-Y)

BASIC Expression

X+Y*2

X-y/z

X*Y/Z

(X+Y)/Z

(X"'2)"'Y

X'" (y'" Z)

X*(-Y) Two consecutive
operators must
be separated by
parentheses.

1.S.l.l Integer Division And Modulus Arithmetic -
Two additional operators are-available in Extended and Disk
versions of BASIC-SO: Integer division and modulus
arithmetic.

Integer division is denoted by the baskslash (\). The
operands are rounded to integers (must be in the range
-3276S to 32767) before the division is performed, and the
quotient is truncated to an integer.

GENERAL INFORMATION ABOUT BASIC-80

For example:

10\4 = 2
25.68\6.99 = 3

The precedence of integer division is
multiplication and floating point division.

Page 1-11

just after

Modulus arithmetic is denoted by the operator MOD. It gives
the integer value that is the remainder of an integer
division. For example:

10.4 MOD 4 = 2 (10/4=2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer
division.

1.8.1.2 Overflow And Division ~ Zero -
If, during the evaluation of an expression, a division by
zero is encountered, the "Division by zero" error message is
displayed, machine infinity with the sign of the numer.ator
is supplied as the result.of the division, and execution
continues. If the evaluation of an exponentiation results
in zero being raised to a negative power, the "Division by
zero" error message is displayed, positive machine infinity
is supplied as the result of the exponentiation, and
execution continues.

If overflow occurs, the "Overflow" error message is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues. ,

1.8.2 Relational Operators

Relational operators are used to compare two values. The
result of the comparison is either "true" (-1) or "false"
(0). This result may then used to make a decision regarding
program flow. (See IF, Section 2.26.)

GENERAL iNFORMATION ABOUT BASIC-BO Page 1-12

°Eerator Relation Tested EXEression

= Equality x=y

<> Inequality x<>y

< Less than x<y

> Greater than x>y

<= Less than or equal to X<=y

>= Greater than or equal to X>=y

(The equal sign is also used to assign a value to a
variable. See LET, Section 2.30.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y < (T-l)/Z

is true if the value of X plus Y is less than the value of
T-l divided by Z. More examples:

IF SIN(X)<O GOTO 1000
IF I MOD J <> a THEN K=K+l

1.B.3 Logical 0Eerators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either "true" (not zero)
or "false" (zero). In an expression, logical operations are
performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of
precedence.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-13

NOT
X NOT X
1 a
a 1

AND
X y X AND Y
1 1 1
1 a a
a 1 a
a a a

OR
X y X OR y
1 1 1
1 a 1
a 1 1
a a a

XOR
X y X XOR Y
1 1 a
1 a 1
a 1 1
a a a

IMP
X y X IMP Y
1 1 1
1 a a
a 1 1
a a 1

EQV
x y x EQV y
1 1 1
1 a a
a 1 0
0 0 1

Just as the relational operators can be used to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
value to be used in a decision (see IF, Section 2.26) • For
example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<O THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to
sixteen bit, signed, two~s complement integers in the range
-32768 to +32767. (If the operands are not in this range,
an error results.) If both operands are supplied as 0 or -1,
logical operators return 0 or -1. The given operation is

GENERAL INFORMATION ABOUT BASIC-SO Page 1-14

performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in
the two operands.

Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator may be used to "mask" all but one of the bits of a
status byte at a machine I/O port. The OR operator may be
used to "merge" two bytes to create a particular binary
value. The following examples will help demonstrate how the
logical operators work.

63 AND 16=16

15 AND 14=14

-1 AND S=S

4 OR 2=6

10 OR 10=10

-lOR -2=-1

NOT X=- (X+1)

63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

-1 = binary 1111111111111111 and
S = binary 1000, so -1 AND S = 8

4 = binary 100 and 2 = binary 10,
so 4 OR 2 = 6 (binary 110)

10 = binary 1010, so 1010 OR 1010 =
1010 (10)

-1 = binary 1111111111111111 and
-2 = binary 1111111111111110,
so -lOR -2 = -1. The bit
complement of sixteen zeros is
sixteen ones, which is the
two~s complement representation of -1.

The two~s complement of any integer
is the bit complement plus one.

1.S.4 Functional Operators

A function is used in an expression to call a predetermined
operation that is to be performed on an operand. BASIC-SO
has "intrinsic" functions that reside in the system, such as
SQR (square root) or SIN (sine). All of BASIC-SO~s
intrinsic functions are described in Chapter 3.

BASIC-SO also allows "user defined" functions that are
written by the programmer. See DEF FN, Section 2.11.

GENERAL INFORMATION ABOUT BASIC-SO

1.S.5 String Operations

Strings may be concatenated using +. For example:

10 A$="FILE" : B$="NAME"
20 PRINT A$ + B$
30 PRINT "NEW .. + A$ + B$
RUN
FILENAME
NEW FILENAME

Page 1-15

Strings may be compared using the same relational operators
that are used with numbers:

= <> < > <= >=

String comparisons are made" by taking one character at a
time from each string and comparing the ASCII codes. If all
the ASCII codes are the same, the strings are equal. If the
ASCII codes differ, the lower code number precedes the
higher. If, during string comparison, the end of one string
is reached, the shorter ·string is said to be smaller.
Leading and trailing blanks are significant. Examples:

"AA" < "AB"
"FILENAME" = "FILENAME"
"X&" > "Xi"
"CL " > "CL"
"kg" > "KG"
"SMYTH" < "SMYTHE"
B$ < "9/l2/7S" where B$ = "S/12/7S"

Thus, string comparisons can be used to test string values
or to alphabetize strings. All string constants used in
comparison expressions must be enclosed in quotation marks.

1.9 INPUT EDITING

If an incorrect character is entered as a line is being
typed, it can be deleted with the RUBOUT key or with
Control-H. Rubout surrounds the deleted character(s) with
backslashes, and Control-H has the effect of backspacing
over a character and erasing it. Once a character(s) has
been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type
Control-U. A carriage return is executed automatically
after the line is deleted.

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
BASIC-SO will automatically replace the old line with the
new line.

GENERAL INFORMATION ABOUT BASIC-SO Page 1-16

More sophisticated editing capabilities are provided in the
Extended and Disk versions of BASIC-SO. See EDIT, Section
2.16.

To delete the entire program that is currently residing in
memory, enter the NEW command. (See Section 2.41.) NEW is
usually used to clear memory prior to entering a new
program.

1.10 ERROR MESSAGES

If BASIC-SO detects an error that causes program execution
to terminate, an error message is printed. In the SK
version, only the error code is printed. In the Extended
and Disk versions, the entire error message is printed. For
a complete list of BASIC-SO error codes and error messages,
see Appendix J.

CHAPTER 2

BASIC-80 COMMANDS AND STATEMENTS

All of the BASIC-80 commands and statements are described in
this chapter. Each description is formatted as follows:

Format:

Versions:

Purpose:

Remarks:

Example:

Shows the correct format for the instruction.
See below for format notation.

Lists the versions of BASIC-80
in which the instruction is available.

Tells what the instruction is used for.

Describes in detail how the instruction
is used.

Shows sample programs or program segments
that demonstrate the use of the instruction.

Format Notation
Wherever the format for a statement or command is given, the
following rules apply:

1. Items in capital letters must be input as shown.

2. Items in lower case letters enclosed in angle
brackets (< » are to be supplied by the user.

3. Items in square brackets ([]) are optional.

4. All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

5. Items followed by an ellipsis (•••) may be repeated
any number of times (up to the length of the line).

BASIC-SO COMMANDS AND STATEMENTS Page 2-2

2.1 AUTO

Format:

Versions:

Purpose:

Remarks:

Example:

AUTO [<line number>[,<increment>]]

Extended, Disk

To generate a line number automatically after
every carriage return.

AUTO begins numbering at <line number> and
increments· each subsequent line number by
<increment>. The default for both values is 10.
If <line number> is followed by a comma but
<increment> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the
number to warn the user that any input will
replace the existing line. However, typing a
carriage return immediately after the asterisk
will save the line and generate the next line
number.

AUTO is terminated by typing Control-C. The
line in which Control-C is typed is not saved.
After Control-C is typed, BASIC returns to
command level.

AUTO 100,50

AUTO

Generates line numbers 100,
150, 200 •••

Generates line numbers 10,
20, 30, 40 •••

BASIC-SO COMMANDS AND STATEMENTS Page 2-3

2.2 CALL

Format:

Version:

Purpose:

Remarks:

Example:

CALL <variable name>[«argument list»]

Extended, Disk

To call an assembly language subroutine.

The CALL statement is one way to transfer
program flow to an assembly language subroutine.
(See also the USR function, Section 3.40)

<variable name> contains an address that is the
starting point in memory of the subroutine.
<variable name> may not be an array variable
name. <argument list> contains the arguments
that are passed to the assembly language
subroutine. <argument list> may not contain
literals.

The CALL statement generates the same calling
sequence used by Microsoft~s FORTRAN, COBOL and
BASIC compilers.

110 MYROUT=&HDOOO
120 CALL MYROUT(I,J,K)

BASIC-SO COMMANDS AND STATEMENTS Page 2-4

2.3 CHAIN

Format:

Version:

Purpose:

Remarks:

CHAIN [MERGE] <filename>[,[<line number exp>]
[,ALL] [,DELETE<range>]]

Disk

To call a program and pass variables to it from
the current program.

<filename> is the name of the program that is
called. Example:

CHAIN"PROGl"

<line number exp> is a line number or an
expression that evaluates to a line number in
the called program. It is the starting point
for execution of the called program. If it is
omitted, execution begins at the first line.
Example:

CHAIN"PROGl",lOOO

<line number exp> is not affected by a RENUM
_ command.

With the ALL option, every variable in the
current program is passed to the called program.
If the ALL option is omitted, the current
program must contain a COMMON statement to list
the variables that are passed. See Section 2.7.
Example:

CHAIN"PROGl",lOOO,ALL

If the MERGE option is included, it allows a
subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation is
performed with the current program and the
called program. The called program must be an
ASCII file if it is to be MERGEd. Example:

CHAIN MERGE"OVRLAY",lOOO

After an overlay is brought in, it is usually
desirable to delete it so that a new overlay may
be brought in. To do this, use the DELETE
option. Example:

CHAIN MERGE"OVRLAY2",1000,DELETE 1000-5000

The line numbers in <range> are affected by the
RENUM command.

BASIC-SO COMMANDS AND· STATEMENTS Page 2-5·

NOTE:

NOTE:

NOTE:

The Microsoft BASIC compiler does not support
the ALL, MERGE, and DELETE options to CHAIN. If
you wish to maintain compatibility with the
BASIC compiler, it is recommended that COMMON be
used to pass variables and that overlays not be
used.

The CHAIN statement with MERGE option leaves the
files open and preserves the current OPTION BASE
setting.

If the MERGE option is omitted, CHAIN does not
preserve variable types or user-defined
functions for use by the chained program. That
is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN
statements containing shared variables must be
restated in the chained program.

BASIC-SO COMMANDS AND STATEMENTS Page 2-6

2.4 CLEAR

Format:

Versions:

purpose:

Remarks:

NOTE:

Examples:

CLEAR [,[<expressionl>] [,<expression2>]]

SK, Extended, Disk

To set all numeric variables to zero and all
string variables to null; and, optionally, to
set t~e end of memory and the amount of stack
space.

<expressionl> is a memory location which, if
specified, sets the highest location available
for use by BASIC-SO.

<expression2> sets aside stack space for BASIC.
The default is 256 bytes or one-eighth of the
available memory, whichever is smaller.

In previous versions of BASIC-SO, <expressionl>
set the amoun t of str ing space,' and
<expression2> set the end of memory. BASIC-SO,
release 5.0 and later, allocates string space
dynamically. An "Out of string space error"
occurs only if there is no free memory left for
BASIC to use.

CLEAR

CLEAR ,32768

CLEAR ,,2000

CLEAR ,32768,2000

BASIC-SO COMMANDS AND STATEMENTS Page 2-7

2.5 CLOAD

Formats:

Versions:

Purpose:

Remarks:

NOTE:

Example:

CLOAD <filename>

CLOAD? <filename>

CLOAD* <array name>

SK (cassette), Extended (cassette)

To load a program or an array from cassette tape
into memory.

CLOAD executes a NEW command before it loads
program from cassette tape. <filename> is
string expression or the first character of
string expression that was specified when
program was CSAVEd.

the
the
the
the

CLOAD? verifies tapes by comparing the program
currently in memory with the file on tape that
has the same filename. If they are the same,
BASIC-BO prints Ok. If not, BASIC-SO prints NO
GOOD.

CLOAD* loads a numeric array that has been saved
on tape. The data on tape is loaded into the
array called <array name> specified when the
array was CSAVE*ed.

CLOAD and CLOAD? are always entered at command
level as direct mode commands. CLOAD* may be
entered at command level or used as a program
statement. Make sure the array has been
DIMensioned before it is loaded. BASIC-SO
always returns to command level after a CLOAD,
CLOAD? or CLOAD* is executed. Before a CLOAD
is executed, make sure the cassette recorder is
properly connected and in the Play mode, and the
tape is possitioned correctly.

See also CSAVE, Section 2.9.

CLOAD and CSAVE are not included
implementations of BASIC-SO.

CLOAD "MAX2"

Loads file "M" into memory.

in all

BASIC-80 COMMANDS AND STATEMENTS Page 2-8

2.6 CLOSE

Format:

Version:

Purpose:

Remarks:

Example:

CLOSE[[#]<file number>[,[#]<file number ••• >]]

Disk

To conclude I/O to a disk file.

<file number> is the number under which the file
was OPENed. A CLOSE with no arguments closes
all open files.

The association between a particular file and
file number terminates upon execution of a
CLOSE. The file may then be reOPENed using the
same or a different file number; likewise, that
file number may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command always
CLOSE all disk files automatically. (STOP does
not close disk files.)

See Appendix B.

BASIC-SO COMMANDS AND STATEMENTS Page 2-9

2.7 COMMON

Format:

Version:

Purpose:

Remarks:

Example:

COMMON <list of variables>

Disk

To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with
the CHAIN statement. COMMON statements may
appear anywhere in a program, though it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending "()" to the variable name. If all
variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

100 COMMON A,B,.C,D () ,G$
110 CHAIN "PROG3",lO

BASIC-SO COMMANDS AND STATEMENTS Page 2-10

2.S CaNT

Format:

Versions:

Purpose:

Remarks:

Example:

CaNT

SK, Extended, Disk

To continue program execution after a Control-C
has been typed, or a STOP or END statement has
been executed.

Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (? or prompt
string).

CONT is usually used in conjunction with STOP
for debugging. When execution is stopped,
intermediate values may be examined and changed
using direct mode statements. Execution may be.
resumed with CaNT or a direct mode GOTO, which
resumes execution at a specified line number.
With the Extended and Disk versions, CaNT may be
used to continue execution after an error.

CONT is invalid if the program has been edited
during the break. In SK BASIC-SO, execution
cannot be CONTinued if a direct mode error has
occurred during the break.

See example Section 2.61, STOP.

BASIC-SO COMMANDS AND STATEMENTS Page 2-11

2.9 CSAVE

Formats:

Versions:

Purpose:

Remarks:

NOTE:

Example:

CSAVE <string expression>

CSAVE* <array variable name>

SK (cassette), Extended (cassette)

To save the program or an array currently in
memory on cassette tape.

Each program or array saved on tape is
identified by a filename. When the command
CSAVE <string expression> is executed, BASIC-SO
saves the program currently in memory on tape
and uses the first character in <string
expression> as the filename. <string
expression> may be more than one character, but
only the first character is used for the
filename.

When the command CSAVE* <array variable name> is
executed, BASIC-SO saves the specified array on
tape. The array must be a numeric array_ The
elements of a multidimensional array are saved
with the leftmost subscript changing fastest.

CSAVE may be used as a program statement or as a
direct mode command.

Before a CSAVE or CSAVE* is executed, make sure
the cassette recorder is properly connected and
in the Record mode.

See also CLOAD, Section 2.5.

CSAVE and CLOAD are not included
implementations of BASIC-SO.

CSAVE "TIMER"

Saves the program currently in memory on
cassette under filename "T".

in all

BASIC-SO COMMANDS AND STATEMENTS Page 2-12

2.10 DATA

Format:

Versions:

Purpose:

Remarks:'

Example:

DATA <list of constants>

SK, Extended, Disk

To store the numeric and string constants that
are accessed by the program~s READ statement(s).
(See READ, Section 2.54)

DATA statements are nonexecutable and -may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
fit on a line (separated by commas), and any
number of DATA statements may be used in a
program. The READ statements access the DATA
statements in order (by line number) and the
data contained therein may be thought of as one
continuous list of items, regardless of how many
items are on a line or where the lines are
placed in the program.

<list of constants> may contain numeric
constants in any format, i.e., fixed point,
floating point or integer. (No numeric
expressions are allowed in the list.) String
constants in DATA statements must be surrounded
by double quotation marks only if they contain
commas, colons or significant leading or
trailing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or string) given in
the READ 'statement must agree with the
corresponding constant in the DATA statement.

DATA statements may be reread from the beginning
by use of the RESTORE statement (Section 2.57).

See examples in Section 2.54, READ.

BASIC-SO COMMANDS AND STATEMENTS Page 2-13

2.11 DEF FN

Format:

Versions:

Purpose:

Remarks:

DEF FN<name>[«parameter list»]=<function definition>

SK, Extended, Disk

To define and name a function that is written by
the user.

<name> must be a legal variable name. This
name, preceded by FN, becomes the name of the
function. <parameter list> is comprised of
those variable names in the function definition
that are to be replaced when the function is
called. The items in the list are separated by
commas. <function definition> is an expression
that performs the operation of the function. It
is limited to one line. Variable names that
appear in this expression serve only to define
the function; they do not affect program
variables that have the same name. A variable
name used in a function definition mayor may
not appear in the parameter list. If it does,
the value of the parameter is supplied when the
function is called. Otherwise, the current
value of the variable is used.

The variables in the parameter list represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call.
(Remember, in the SK version only one argument
is allowed in a function call, therefore the DEF
FN statement will contain only one variable.)

In Extended and Disk BASIC-SO, user-defined
functions may be numeric or string; in 8K,
user-defined string functions are not allowed.
If a type is specified in the function name, the
value of the expression is forced to that type
before it is returned to the calling statement.
If a type is specified in the function name and
the argument type does not match, a "Type
mismatch" error occurs.

A DEF FN statement must be executed before the
function it defines may be called. If a
function is called before it has been defined,
an "Undefined user function" error occurs. DEF
FN' is illegal in the direct mode.

BASIC-SO COMMANDS AND STATEMENTS

Example:

410 DEF FNAB(X,Y)=XA 3/yA 2
420 T=FNAB(I,J)

Line 410 defines the function
function is called in line 420.

Page 2-14

FNAB. The

BASIC-SO COMMANDS AND STATEMENTS Page 2-15

2.12 DEFINT/SNG/DBL/STR

Format:

Versions:

Purpose:

Remarks:

Examples:

DEF<type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR

Extended, Disk

To declare variable types as integer, single
precision, double precision, or string.

A DEFtype statement declares that the variable
names beginning with the letter(s) specified
will be that type variable. However, a type
declaration character always takes precedence
over a DEFtype statement in the typing of a
variable.

If no type declaration statements are
encountered, BASIC-SO assumes all variables
without declaration characters are single
precision variables.

10 DEFDBL L-P All variables beginning with
the letters L, M, N, 0, and P
will be double precision
variables.

10 DEFSTR A All variables beginning with
the letter A will be string
variables.

10 DEFINT I-N,W-Z
All variable beginning with
the letters I, J, K, L, M,
N, W, X, Y, Z will be integer
variables.

BASIC-SO COMMANDS AND STATEMENTS Page 2-16

2.13 DEF USR ---
Format:

Versions:

Purpose:

Remarks:

Example:

DEF USR[<digit>]=<integer expression>

Extended, Disk

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit from 0 to 9. The"digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is
omitted, DEF USRO is assumed. The value of
<integer expression> is the starting address of
the USR routine. See Appendix C, Assembly
Language Subroutines.

Any number of DEF USR statements may appear in a
program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary.

.
200 DEF USRO=24000
210 X=USRO(Y~2/2.S9)

BASIC-SO COMMANDS AND STATEMENTS Page 2-17

2.14 DELETE

Format:

Versions:

Purpose:

Remarks:

Examples:

DELETE[<line number>] [-<line number>]

Extended, Disk

To delete program lines.

BASIC-SO always returns to command level after a
DELETE is executed. If <line number> does not
exist, an "Illegal function call" error occurs.

DELETE 40

DELETE 40-100

DELETE-40

Deletes line 40

Deletes lines 40 through
100, inclusive

Deletes all lines up to
and including line 40

BASIC-80 COMMANDS AND STATEMENTS Page 2-18

2.15 DIM

Format:

Versions:

Purpose:

Remarks:

Example:

DIM <list of subscripted variables>

8K, Extended, Disk

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

If an array variable name is used without a DIM
statement, the maximum value of its subscript(s)
is assumed to be 10. If a subscript is used
that is greater than the maximum specified, a
"Subscript out of range" error occurs. The
minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE
statement (see Section 2.46).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

10 DIM A(20)
20 FOR I=O TO 20
30 READ A(I)
40 NEXT I

BASIC-80 COMMANDS AND STATEMENTS Page 2-19

2.16 EDIT

Format:

Versions:

Purpose:

Remarks:

EDIT <line number>

Extended, Disk

To enter Edit Mode at the specified line.

In Edit Mode, it is possible to edit portions of
a line without retyping the entire line. Upon
entering Edit Mode, BASIC-80 types the line
number of the line to be edited, then it types a
space and waits for an Edit Mode subcommand.

Edit Mode Subcommands ----
Edit Mode subcommands are used to move the
cursor or to insert, delete, replace, or search
for text within a line. The subcommands are not
echoed. Most of the Edit Mode subcommands may
be preceded by an integer which causes the
command to be executed that number of times.
When a preceding integer is not specified, it is
assumed to be 1.

Edit Mode subcornmands may be categorized
according to the following functions:

1.

2.

3.

4.

s.

6.

Moving the cursor

Inserting text

Deleting text

Finding text

Replacing text

Ending and restarting Edit Mode

NOTE

In the descriptions that follow, <ch>
represents any character, <text>
represents a string of characters of
arbitrary length, [i] represents an
optional integer (the default is 1), and
$ represents the Escape (or Altmode)
key.

BASIC-SO COMMANDS AND STATEMENTS Page 2-20

1. Moving the Cursor

Space Use the space bar to move the cursor to the
right. [i]Space moves the cursor i spaces to
the right. Characters are printed as you space
over them.

Rubout In Edit Mode, [i]Rubout moves the cursor i
spaces to the left (backspaces). Characters are
printed as you backspace over them.

2. Inserting Text

I I<text>$ inserts <text> at the current cursor
position. The inserted characters are printed
on the terminal. To terminate insertion, type
Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing
Escape and then Carriage Return. During an
Insert command, the Rubout or Delete key on the
terminal may be used to delete characters to the
left of the cursor. If an attempt is made to
insert a character that will make the line
longer than 255 characters, a bell (Control-G)
is typed and the character is not printed.

X The X subcommand is used to extend the line. X
• moves the cursor to the end of the line, goes

into insert mode, and allows insertion of text
as if an Insert command had been given. When
you are finished extending the line, type Escape
or Carriage Return.

3. Deleting Text

D [i]D deletes i characters to the r~ght of the

H

cursor. The deleted characters are echoed
between backslashes, and the cursor is
positioned to the right of the last character
deleted. If there are fewer than i characters
to the right of the cursor, iD deletes the
remainder of the line.

H deletes all characters to the
cursor and then automatically
mode. H is useful for replacing
the end of a line.

right of the
enters insert
statements at

4. Finding Text

S The subcommand [i]S<ch> searches for the ith
occurrence of <ch> and positions the cursor
before it. The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor will stop at the end of

BASIC-80 COMMANDS AND STATEMENTS Page 2-21

the line. All characters passed over during the
search are printed.

K The subcommand [i]K<ch> is similar to [i]S<ch>,
except all the characters passed over in the
search are deleted. The cursor is positioned
before <ch>, and the deleted characters are
enclosed in backslashes.

5. Replacing Text

C The subcommand C<ch> changes the next character
to <ch>. If you wish to change the next i
characters, use the subcommand iC, followed by i
characters. After the ith new character is
typed, change mode is exited and you will return
to Edit Mode.

6. Ending and Restarting Edit Mode

<cr>

E

Q

L

A

Typing Carriage Return prints the remainder of
the line, saves the changes you made and exits
Edit Mode.

The E subcommand has the same effect as Carriage
Return, except the remainder of the line is not
printed.

The Q subcommand returns to BASIC-80 command
level, without saving any of the changes that
were made to the line during Edit Mode.

The L subcommand lists the remainder of the line
(saving any changes made so far) and repositions
the cursor at the beginning of the line, still
in Edit Mode. L is usually used to list the
line when you first enter Edit Mode.

The A subcommand lets you begin editing a line
over again. It restores the original line and
repositions the cursor at the beginning.

N~E

If BASIC-80 receives an unrecognizable
command or illegal character while in
Edit Mode, it prints a bell (Control-G)
and the command or character is ignored.

BASIC-SO COMMANDS AND STATEMENTS Page 2-22

Syntax Errors

When a Syntax Error is encountered during
execution of a program, BASIC-SO automatically
enters Edit Mode at the line that caused the
error. For example:

10 K = 2 (4)
RUN
?Syntax error in 10
10

When you finish editing the line and type
Carriage Return (or the E subcommand), BASIC-SO
reinserts the line, which causes all variable
values to be lost. To preserve the variable
values for examination , first exit Edit Mode
with the Q subcommand. BASIC-SO will return to
command level, and all variable values will be
preserved.

Control-A

To enter Edit Mode on the line you are currently
typing, type Control-A. BASIC-SO responds with
a carriage return, an exclamation point (1) and
a space. The cursor will be positioned at the
first character in the line. Proceed by typing
an Edit Mode subcommand.

NOTE

Remember, if you have just entered a
line and wish to go back and edit it,
the command "EDIT." will enter Edit Mode
at the current line. (The line number
symbol "." always refers to the current
line.)

BASIC-BO COMMANDS AND STATEMENTS Page 2-23

2.17 END

Format:

Versions:

Purpose:

Remarks:

Example:

~D

BK, Extended, Disk

To terminate program execution, close all files
and return to command level.

~D statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a BREAK message to
be printed. An END statement at the end of a
program is optional. BASIC-BO always returns to
command level after an END is executed.

520 IF K>1000 THEN END ELSE GOTO 20

BASIC-80 COMMANDS AND STATEMENTS Page 2-24

2.18 ERASE

Format:

versions:

Purpose:

Remarks:

NOTE:

Example:

ERASE <list of array variables>

Extended, Disk

To eliminate arrays from a program.

Arrays may be redimensioned after they are
ERASEd, or the previously allocated array space
in memory may be used for other purposes. If an
attempt is made to redimension an array without
first ERASEing it, a "Redimensioned array" error
occurs.

The Microsoft BASIC compiler does not support
ERASE.

450 ERASE A,B
460 DIM B(99)

BASIC-SO COMMANDS AND STATEMENTS Page 2-25

2.19 ERR AND ERL VARIABLES

When an error handling subroutine is entered,
the variable ERR contains the error code for the
error, and the variable ERL contains the line
number of the line in which the error was
detected. The ERR and ERL variables are usually
used in IF ••• THEN statements to direct program
flow in the error trap routine.

If the statement that caused the error was a
direct mode statement, ERL will contain 65535.
To test if an error occurred in a direct
statement, use IF 65535 = ERL THEN •••
Otherwise, use

IF ERR = error code THEN •••

IF ERL = line number THEN •••

If the line number is not on the right side of
the relational operator, it cannot be renumbered
by RENUM. Because ERL and ERR are reserved
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement.
BASIC-SO~s error codes are listed in Appendix J.
(For Standalone Disk BASIC error codes, see
Appendix H.)

BASIC-SO COMMANDS AND STATEMENTS Page 2-26

2.20 ERROR

Format:

Versions:

Purpose:

Remarks:

ERROR <integer expression>

Extended, Disk

1) To simulate the occurrence of a BASIC-SO
error; or 2) to allow error codes to be
defined by the user.

The value of <integer expression> must be
greater than 0 and less than 255. If the value
of <integer expression> equals an error code
already in use by BASIC-SO (see Appendix J), the
ERROR statement will simulate the occurrence of
that error, and the corresponding error message
will be printed. (See Example 1.)

To define your own error code, use a value that
is greater than any used by BASIC-SO~s error
codes. (It is preferable to use the highest
available values, so compatibility may be
maintained when more error codes are added to
BASIC-SO.) This user-defined error code may then
be conveniently handled in an error trap
routine. (See Example 2.)

If an ERROR statement specifies a code for which
no error message has been defined, BASIC-SO
responds with the message UNPRINTABLE ERROR.
Execution of an ERROR statement for which there
is no error trap routine causes an error message
to be printed and execution to halt.

Example 1: LIST
10 S = 10
20 T = 5
30 ERROR S + T
40 END
Ok
RUN
String too long in line 30

Or, in direct mode:

Ok
ERROR 15
String too long
Ok

(you type this line)
(BASIC-SO types this line)

BASIC-80 COMMANDS AND STATEMENTS Page 2-27

Example 2:

.
110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET"iB
130 IF B > 5000 THEN ERROR 210

400 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL = 130 THEN RESUME 120

BASIC-80 COMMANDS AND STATEMENTS Page 2-28

2.21 FIELD

Format:

Version:

Purpose:

Remarks:

Example:

NOTE:

FIELD[i]<file number>,<field width> AS <string variable>

Disk

To allocate space for variables in a random file
buffer.

To get data out of a random buffer after a GET
or to enter data before a PUT, a FIELD statement
must have been executed.

<file number> is the number under which the file
was OPENed. <field width> is the number of
characters to be allocated to <string variable>.
For example,

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$,
the next 10 positions to ID$, and the next 40
positions to ADD$. FIELD does NOT place any
data in the random file buffer. (See LSET/RSET
and GET.)

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was OPENed.
Otherwise, a "Field overflow" error occurs.
(The default record length is 128.)

Any number of FIELD statements may be executed
for the same file, and all FIELD statements that
have been executed are in effect at the same
time.

See Appendix B.

Do not use a FIELDed variable name in an INPUT
or LET---statement. Once a -viriable--name is
FIELDed, it points to the correct place in the
random file buffer. If a subsequent INPUT or
LET statement with that variable name is
executed, the variable~s pointer is moved to
string space.

BASIC-SO COMMANDS AND STATEMENTS Page 2-29

2.22 FOR ••• NEXT

Format:

Versions:

Purpose:

Remarks:

FOR <variable>=x TO y [STEP z]

NEXT [<variable>] [,<variable> •••]

where x, y and z are numeric expressions.

SK, Extended, Disk

To allow a series of instructions to be
performed in a loop a given number of times.

<variable> is used as a counter. The first
numeric expression (x) is the initial value of
the counter. The second numeric expression (y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter is incremented by the amount
specified by STEP. A check is performed to see
if the value of the counter is now greater than
the final value (y). If it is not greater,
BASIC-SO branches back to the statement after
the FOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. This is
a FOR ••• NEXT loop. If STEP is not specified,
the increment is assumed to be one. If STEP is
negative, the final value of the counter is set
to be less than the initial value. The counter
is decremented each time through the loop, and
the loop is executed until the counter is less
than the final value.

The body of the loop is skipped if the initial
value of the loop times the sign of the step
exceeds the final value times the sign of the
step.

Nested Loops
FOR ••• NEXT loops may be nested, that is, a
FOR ••• NEXT loop may be placed within the context
of another FOR ••• NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be used for
all of them.

The variable(s) in the NEXT statement may be

BASIC-SO COMMANDS AND STATEMENTS Page 2-30

Example 1:

omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR" error message is issued and execution is
terminated.

10 K=lO
20 FOR I=l TO K STEP 2
30 PRINT I;
40 K=K+10
50 PRINT K
60 NEXT
RUN

1 20
3 30
5 40
7 50
9 60

Ok

Example 2: 10 J=O

Example 3:

20 FOR I=l TO J
30 PRINT I
40 NEXT I

In this example, the
because the initial
the final value.

10 I=5
20 FOR I=l TO I+5
30 PRINT I;
40 NEXT
RUN

1 2 3 4 5 6 7
Ok

S

loop does not execute
value of the loop exceeds

9 10

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the ini tial value is set. (Note:
Previous versions of BASIC-SO set the initial
value of the loop variable before setting the
final value; i.e., the above loop would have
executed six times.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-31

2.23 GET

Format:

Version:

Purpose:

Remarks:

Example:

NOTE:

GET [#]<file number>[,<record number>]

Disk

To read a record from a random disk file into a
random buffer.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
next record (after the last GET) is read into
the buffer. The largest possible record number
is 32767.

See Appendix B.

After a GET statement, INPUT# and LINE INPUT#
may be done to read characters from the random
file buffer.

-
BASIC-SO COMMANDS AND STATEMENTS Page 2-32

2.24 GOSUB ••• RETURN

Format:

Versions:

Purpose:

Remarks:

Example:

GOSUB <line number>

RETURN

SK, Extended, Disk

To branch to and return from a subroutine.

<line number> is the first
subroutine.

line of the

A subroutine may be called any number of times
in a program, and a subroutine may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory.

The RETURN statement(s) in a subroutine cause
BASIC-SO to branch back to the statement
following the most recent GOSUB statement. A
subroutine may contain more than one RETURN
statement, should logic dictate a return at
different points in the subroutine. Subroutines
may appear anywhere in the program, but it is
recommended that the subroutine be readily
distinguishable from the main program. To
prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO
statement that directs program control around
the subroutine.

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT" IN";
60 PRINT " PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-33

2.25 GOTO

Format:

Versions:

Purpose:

Remarks:

Example:

GOTO <line number>

8K, Extended, Disk

To branch unconditionally out of the normal
program sequence to a specified line number.

If <line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered after <line number>.

LIST
10 READ R
20 PRINT "R =" iR,
30 A = 3.l4*R~2
40 PRINT "AREA =" iA
50 GOTO 10
60 DATA 5,7,12
Ok
RUN
R = 5 AREA = 78.5
R = 7 AREA = 153.86
R = 12 AREA = 452.16
?Out of data in 10
Ok

BASIC-SO COMMANDS AND STATEMENTS Page 2-34

Format:

Format:

Versions:

NOTE:

Purpose:

Remarks:

IF <expression> THEN <statement{s)>

[ELSE <statement{s)> I <line number>]

<line number>

IF <expression> GOTO <line number>

[ELSE <statement{s)> I <line number>]

SK, Extended, Disk

The ELSE clause is allowed only in Extended and
Disk versions.

To make a decision regarding program flow based
on the result returned by an expression.

If the result of <expression> is not zero, the
THEN or GOTO clause is executed. THEN may be
followed by either a line number for branching
or one or more statements to be executedG GOTO
is always followed by a line number. If the
result of <expression> is zero, the THEN or GOTO
clause is ignored and the ELSE clause, if
present, is executed. Execution continues with
the next executable statement. (ELSE is allowed
only -in Extended and Disk versions.) Extended
and Disk versions allow a comma before THEN.

Nesting of IF Statements

In the Extended and Disk versions,
IF ••• THEN ••• ELSE statements
Nesting is limited only by the
line. For example

may be nested.
length of the

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.

If an IF .•• THEN statement is followed by a
number in the direct mode, an "Undefined
error results unless a statement with
specified line number had previously
entered in the indirect mode.

line
line"

the
been

BASIC-SO COMMANDS AND STATEMENTS Page 2-35

NOTE: When using IF to test equality for a value that
is the result of a floating point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ASS (A-l.0)<1.OE-6 THEN •..

This test returns true if the value of A is 1.0
with a relative error of less than 1.OE-6.

Example 1: 200 IF I THEN GETil,I

This statement GETs record number I if I is not
zero.

Example 2: 100 IF(I<20)*(I>10) THEN DB=1979-l:GOTO 300
110 PRINT "OUT OF RANGE"

In this example, a test determines if I is
greater than 10 and less than 20. If I is in
this range, DB is calculated and execution
branches to line 300. If I is not in this
range, execution continues with line 110.

Example 3: 210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of a variable (IOFLAG).
If IOFLAG is zero, output goes to the line
printer, otherwise output goes to the terminal.

BASIC-SO COMMANDS AND STATEMENTS Page 2-36

2.27 INPUT

Format:

Versions:

Purpose:

Remarks:

INPUT[;] [<"prompt string">;]<list of variables>

SK, Extended, Disk

To allow input from the terminal during program
execution.

When an INPUT statement is encountered, program
execution pauses and a question mark is printed
to indicate the program is waiting for data. If
<"prompt string"> is included, the string is
printed before the question mark. The required
data is then entered at the terminal.

A comma may be used instead of a semicolon after
the prompt string to suppress the question mark.
For example, the statement INPUT "ENTER
BIRTHDATE",B$ will print the prompt with no
question mark.

If INPUT is immediately followed by a semicolon,
then the carriage return typed by the user to
input data does not echo a carriage return/line
feed sequence.

The data that is entered is assigned to
variable(s) given in <variable list>.
number of data items supplied must be the
as the number of variables in the list.
items are separated by commas.

the
The

same
Data

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPUT
statement need not be surrounded by quotation
marks.)

Responding to INPUT with too many or too· few
items, or with the wrong type of value (numeric
instead of string, etc.) causes the messsage
"?Redo from start" to be printed. No assignment
of input values is made until an acceptable
response is given.

In the SK version, INPUT is illegal in the
direct mode.

BASIC-SO COMMANDS AND STATEMENTS Page 2-37

Examples: 10 INPUT X
20 PRINT X "SQUARED IS" X 2
30 END
RUN
? 5 (The 5 was typed in by the user

in response to the question mark.)
5 SQUARED IS 25

Ok

LIST
10 PI=3.14
20 INPUT "WHAT IS THE RADIUS"iR
30 A=PI*R 2
40 PRINT "THE AREA OF THE CIRCLE IS"iA
50 PRINT
60 GOTO 20
Ok
RUN
WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

BASIC-SO COMMANDS AND STATEMENTS Page 2-38

2.2S INPUT#

Format:

Version:

Purpose:

Remarks:

Example:

INPUT#<file number>,<variable list>

Disk

To read data items from a sequential disk file
and assign them to program variables.

<file number> is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must
match the type specified by the variable name.)
With INPUT#, no question mark is printed, as
with INPUT.

The data items in the file should appear just as
they would if data were being typed in response
to an INPUT statement. With numeric values,
leading spaces, carriage returns and line feeds
are ignored. The first character encountered
that is not a space, carriage return or line
feed is assumed to be the start of a number.
The number terminates on a space, carriage
return, line feed or comma.

If BASIC-SO is scanning the sequential data file
for a string item, leading spaces, carriage
returns and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first
character is a quotation mark (tI), the string
item will consist of all characters read between
the first quotation mark and the second. Thus,
a quoted string may not contain a quotation mark
as a character. If the first character of the
string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage or line feed (or after 255 characters
have been read). If end of file is reached when
a numeric or string item is being INPUT, the
item is terminated.

See Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-39

2.29 KILL

Format:

Version:

Purpose:

Remarks:

Example:

KILL <filename>

Disk

To delete a file from disk.

If a KILL statement is given for a file that is
currently OPEN, a "File already open" error
occurs.

KILL is used for all types of disk files:
program files, random data files and sequential
data files.

200 KILL "DATAl"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-40

2.30 LET

Format:

Versions:

Purpose:

Remarks:

Example:

[LET] <variable>=<expression>

8K, Extended, Disk

To assign the value of an expression to a
variable.

Notice the word LET is optional, i.e., the equal
sign is sufficient when assigning an expression
to a variable name.

110 LET D=12
120 LET E=12"'2
130 LET F=12"'4
140 LET SUM=O+E+F

or

110 0=12
120 E=12"'2
130 F=12"'4
140 SUM=O+E+F

BASIC-80 COMMANDS AND STATEMENTS Page 2-41

2.31 LINE INPUT

Format:

Versions:

Purpose:

Remarks:

Example:

LINE INPUT[:] [<"prompt string">:] <string variable>

Extended, Disk

To input an entire line (up to 254 characters)
to a string variable, without the use of
delimiters.

The prompt string is a string literal that is
printed at the terminal before input is
accepted. A question mark is not printed unless
it is part of the prompt string. All input from
the end of the prompt to the carriage return is
assigned to <string variable>.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a
carriage return/line feed sequence at the
terminal.

A LINE INPUT may be escaped by typing Control-C.
BASIC-80 will return to command level and type
Ok. Typing CONT resumes execution at the LINE
INPUT.

See Example, Section 2.32, LINE INPUTi.

BASIC-SO COMMANDS AND STATEMENTS Page 2-42

2.32 LINE INPUT#

Format:

Version:

Purpose:

Remarks:

Example:

LINE INPUT#<file number>,<string variable>

Disk

To read an entire line (up to 254 characters),
without delimiters, from a sequential disk data
file to a string variable.

<file number> is the number under which the file
was OPENed. <string variable> is the variable
name to which the line will be assigned. LINE
INPUT# reads all characters in the sequential
file up to a carriage return. It then skips
over the carriage return/line feed sequence, and
the next LINE INPUTI reads all characters up to
the next carriage return. (If a line
feed/carriage return sequence is encountered, it
is preserved.)

LINE INPUTI is especially useful if each line of
a data file has been broken into fields, or if a
BASIC-SO program saved in ASCII mode is being
read as data by another program.

10 OPEN "O",l,"LIST"
20 LINE INPUT "CUSTOMER INFORMATION? " ~C$
30 PRINT II, C$
40 CLOSE 1
50 OPEN "I",l,"LIST"
60 LINE INPUT II, C$
70 PRINT C$
SO 'CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-43

2.33 LIST

Format 1:

Versions:

Format 2:

Versions:

Purpose:

Remarks:

LIST [<line number>]

8R, Extended, Disk

LIST [<line number>[-[<line number>]]]

Extended, Disk

To list all or part of the program currently in
memory at the terminal.

BASIC-80 always returns to command level after a
LIST is executed.

Format 1: If <line number> is omitted, the
program is listed beginning at the lowest line
number. (Listing is terminated either by the
end of the program or by typing Control-C.) If
<line number> is included, the 8K version will
list the program beginning at that line; and
the Extended and Disk versions will list only
the specified line.

Format 2: This format allows the following
options:

1. If only the first number is specified, that
line and all higher-numbered lines are
listed.

2. If only the second number is specified, all
lines from the beginning of the program
through that line are listed.

3. If both numbers are specified, the entire
range is listed.

BASIC-SO COMMANDS AND STATEMENTS Page 2-44

Examples: Format 1:

LIST

LIST 500

Format 2:

Lists the program currently
in memory.

In the 8K version, lists
all programs lines from
500 to the end.
In Extended and Disk,
lists line sao.

LIST 150- Lists all lines from 150
to the end.

LIST -1000 Lists all lines from the
lowest number through 1000.

LIST 150-1000 Lists lines 150 through
1000, inclusive.

BASIC-SO COMMANDS AND STATEMENTS Page 2-45

2.34 LLIST

Format:

Versions:

Purpose:

Remarks:

NOTE:

Example:

LLIST [<line number>[-[<line number>]]]

Extended, Disk

To list all or part of the program currently in
memory at the line printer.

LLIST assumes a 132-character wide printer.

BASIC-SO always returns to command level after
an LLIST is executed. The options for LLIST are
the same as for LIST, Format 2.

LLIST and LPRINT are not included in
implementations of BASIC-SO.

See the examples for LIST, Format 2.

all

BASIC-SO COMMANDS AND STATEMENTS Page 2-46

2.35 LOAD

Format:

Version:

Purpose:

Remarks:

Example:

LOAD <filename>[,R]

Disk

To load a file from disk into memory.

<filename> is the name that was used when the
file was SAVEd. (With CP/M, the default
extension .BAS is supplied.)

LOAD closes all open files and deletes all
variables and program lines currently residing
in memory before it loads the designated
program. However, if the uRn option is used
with LOAD, the program is RUN after it is
LOADed, and all open data files are kept open.
Thus, LOAD with the "R" option may be used to
chain several programs (or segments of the same
program). Information may be passed between the
programs using their disk data files.

LOAD "STRTRKII,R

BASIC-SO COMMANDS AND STATEMENTS Page 2-47

2.36 LPRINT AND LPRINT USING

Format:

Versions:

Purpose:

Remarks:

NOTE:

LPRINT [<list of expressions>]

LPRINT USING <string exp>i<list of expressions>

Extended, Disk

To print data at the line printer.

Same as PRINT and PRINT USING, except output
goes to the line printer. See Section 2.49 and
Section 2.50.

LPRINT assumes a l32-character-wide printer.

LPRINT and LLIST are not included in
implementations of BASIC-SO.

all

BASIC-80 COMMANDS AND STATEMENTS Page 2-48

2.37 LSET AND RSET

Format:

Version:

Purpose:

Remarks:

Examples:

NOTE:

LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

Disk

To move data from memory to a random file buffer
(in preparation for a PUT statement).

If <string expression> requires fewer bytes than
were FIELDed to <string variable>, LSET
left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to
pad the extra positions.) If the string is too
long for the field, characters are dropped from
the right. Numeric values must be converted to
strings before they are LSET or RSET. See the
MKI$, MKS$, MKD$ functions, Section 3.25.

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC($)

See also Appendix B.

LSET or RSET may also be used with a non-fielded
string variable to left-justify or right-justify
a string in a given field. For example, the
program lines

110 A$=SPACE$(20)
120 RSET A$=N$

right-justify the string N$ in a 20-character
field. This can be very handy for formatting
printed output.

BASIC-80 COMMANDS AND STATEMENTS Page 2-49

2.38 MERGE

Format:

Version:

Purpose:

Remarks:

Example:

MERGE <filename>

Disk

To merge a specified disk file into the program
currently in memory.

<filename> is the name used when the file was
SAVEd. (With CP/M, the default extension .BAS
is supplied.) The file must have been SAVEd in
ASCII format. (If not, a "Bad file mode" error
occurs.)

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as "inserting" the program lines on
disk into the program in memory.)

BASIC-80 always returns to command level after
executing a MERGE command.

MERGE "NUMBRS"

BASIC-SO COMMANDS AND STATEMENTS Page 2-50

2.39 MID$

Format:

Versions:

Purpose:

Remarks:

Example:

MID$«string expl>,n[,m])=<string exp2>

where nand
<string expl>
expressions.

Extended, Disk

m are integer expressions and
and <string exp2> are string

To replace a portion of one string with another
string.

The characters in <string expl>, beginning at
position n, are replaced by the characters in
<string exp2>. The optional m refers to the
number of characters from <string exp2> that
will be used in the replacement. If m is
omitted, all of <string exp2> is used. However,
regardless of whether m is omitted or included,
the replacement of characters never goes beyond
the original length of <string expl>.

10 A$="KANSAS CITY, MO"
20 MID$(A$,14)="KS"
30 PRINT A$
RUN
KANSAS CITY, KS

MID$ is also a function that returns a substring
of a given string. See Section 3.24.

BASIC-SO COMMANDS AND STATEMENTS Page 2-51

2.40 NAME

Format:

Version:

Purpose:

Remarks:

Example:

NAME <old filename> AS <new filename>

Disk

To change the name of a disk file.

<old filename> must exist and <new filename>
must not exist; otherwise an error will result.
After a NAME command, the file exists on the
same disk, in the same area of disk space, with
the new name.

Ok
NAME "ACCTS" AS "LEDGER"
Ok

In this example, the file that was
formerly named ACCTS will now be named LEDGER.

BASIC-SO COMMANDS AND STATEMENTS Page 2-52

2.41 NEW

Format:

Versions:

Purpose:

Remarks:

NEW

SK, Extended, Disk

To delete the program currently in memory and
clear all variables.

NEW is entered at command leyel to clear memory
before entering a new program. BASIC-SO always
returns to command level after a NEW is
executed.

BASIC-80 COMMANDS AND STATEMENTS Page 2-53

2.42 NULL

Format:

Versions:

Purpose:

Remarks:

Example:

NULL <integer expression>

8K, Extended, Disk

To set the number of nulls to be printed at the
end of each line.

For 10-character-per-second tape punches,
<integer expression> should be >=3. When tapes
are not being punched, <integer expression>
should be 0 or 1 for Teletypes and
Teletype-compatible CRTs. <integer expression>
should be 2 or 3 for 30 cps hard copy printers.
The default value is o.

Ok
NULL 2
Ok
100 INPUT X
200 IF X<SO GOTO 800

Two null characters will be printed after each
line.

BASIC-SO COMMANDS AND STATEMENTS Page 2-54

2.43 ON ERROR GOTO - -
Format:

versions:

Purpose:

Remarks:

NOTE:

Example:

ON ERROR GOTO <line number>

Extended, Disk

To enable error trapping and specify the first
line of the error handling subroutine.

Once error trapping has been enabled all errors
detected, including direct mode errors (e.g.,
Syntax errors), will cause a jump to the
specified error handling subroutine. If <line
number> does not exist, an "Undefined line"
error results. To disable error trapping,
execute an ON ERROR GOTO O. Subsequent errors
will print an error message and halt execution.
An ON ERROR GOTO a statement that appears in an
error trapping subroutine causes BASIC-SO to
stop and print the error message for the error
that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for
which there is no recovery action.

If an error occurs during execution of an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error
trapping does not occur within the error
handling subroutine.

10 ON ERROR GOTO 1000

BASIC-80 COMMANDS AND STATEMENTS Page 2-55

2.44 ON ••• GOSUB AND ON ••• GOTO

Format:

Versions:

Purpose:

Remarks:

Example:

-- ----
ON <expression> GOTO <list of line numbers>

ON <expression> GOSUB <list of line numbers>

SK, Extended, Disk

To branch to one of several specified line
numbers, depending on the value returned when an
expression is evaluated.

The value of <expression> determines which line
number in the list will be used for branching.
For example, if the value is three, the third
line number in the list will be the destination
of the branch. (If the value is a non-integer,
the fractional portion is rounded.)

In the ON ••• GOSUB statement, each line number in
the list must be the first line number of a
subroutine.

If the value of <expression> is zero or greater
than the number of items in the list (but less
than or equal to 255), BASIC continues with the
next executable statement. If the value of
<expression> is negative or greater than 255, an
"Illegal function call" error occurs.

100 ON L-l GOTO 150,300,320,390

BASIC-80 COMMANDS AND STATEMENTS Page 2-56

2.45 OPEN

Format:

Version:

Purpose:

Remarks:

NOTE:

Example:

OPEN <mode>, [#]<file number>,<filename>,[<reclen>]

Disk

To allow I/O to a disk file.

A disk file must be OPENed before any disk
operation can be performed on that file.
allocates a buffer for I/O to the file
determines the mode of access that will be
with the buffer.

<mode> is a string expression whose
character is one of the following:

o specifies sequential output mode

I specifies sequential input mode

I/O
OPEN

and
used

first

R specifies random input/output mode

<file number> is an integer expression whose
value is between one and fifteen. The number is
then associated with the file for as long as it
is OPEN and is used to refer other disk I/O
statements to the file.

<filename> is a string expression containing a
name that conforms to your operating system~s
rules for disk filenames.

<reclen> is an integer expression which, if
included, sets the record length for random
files. The default record length is 128 bytes.
See also page A-3.

A file can be OPENed for sequential input or
random access on more than one file number at a
time. A file may be OPENed for output, however,
on only one file number at a time.

10 OPEN "I",2,"INVEN"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-57

2.46 OPTION BASE

Format:

Versions:

Purpose:

Remarks:

OPTION BASE n
where n is 1 or a

8K, Extended, Disk

To declare the
subscripts.

minimum value for

The default base is O. If the statement

OPTION BASE 1

array

is executed, the lowest value an array subscript
may have is one.

BASIC-80 COMMANDS AND STATEMENTS Page 2-58

2.47 OUT

Format:

Versions:

Purpose:

Remarks:

Example:

OUT I,J
where I and J are integer expressions in the
range a to 255.

8K, Extended, Disk

To send a byte to a machine output port.

The integer expression I is the port number, and
the integer expression J is the data to be
transmitted.

100 OUT 32,100

BASIC-BO COMMANDS AND STATEMENTS Page 2-59

2.4B POKE

Format:

Versions:

Purpose:

Remarks:

Example:

POKE I,J
where I and J are integer expressions

BK, Extended, Disk

To write a byte into a memory location.

The integer expression I is the address of the
memory location to 'be POKEd. The integer
expression J is the data to be POKEd. J must be
in the range 0 to 255. In the BK version, I
must be less than 3276B. In the Extended and
Disk versions, I must be in the range 0 to
65536.

With the BK version, data may be POKEd into
memory locations above 32768 by supplying a
negative number for I. The value of I is
computed by subtracting 65536 from the desired
address. For example, to POKE data into
location 45000, I = 45000-65536, or -20536.

The complementary function to POKE is PEEK. The
argument to PEEK is an address from which a byte
is to be read. See Section 3.27.

POKE and PEEK are useful for efficient data
storage, loading assembly language subroutines,
and passing arguments and results to and from
assembly language subroutines.

10 POKE &H5AOO,&HFF

BASIC-SO COMMANDS AND STATEMENTS Page 2-60

2.49 PRINT

Format:

Versions:

Purpose:

Remarks:

PRINT [<list of expressions>]

SK, Extended, Disk

To output data at the terminal.

If <list of expressions> is omitted, a blank
line is printed. If <list of expressions> is
included, the values of the expressions are
printed at the terminal. The expressions in the
list may be numeric and/or string expressions.
(Strings must be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined
by the punctuation used to separate the items in
the list. BASIC-SO divides the line into print
zones of 14 spaces each. In the list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. A
semicolon causes the next value to be printed
immediately after the last value. Typing one or
more spaces between expressions has the same
effect as typing a semicolon.

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly.
If the list of expressions terminates without a
comma or a semicolon, a carriage return is
printed at the end of the line. If the printed
line is longer than the terminal width, BASIC-SO
goes to the next physical line and continues
printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 10A(-6) is output as
.000001 and 10~(-7) is output as lE-7. Double
prec~s~on numbers that can be represented with
16 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 10A(-16) is output as
.00.00000000000001 and lOA (-17) is output as
10-17.

BASIC-80 COMMANDS AND STATEMENTS Page 2-61

Example 1:

A question mark may be used in place of the word
PRINT in a PRINT statement.

10 X=5
20 PRINT
30 END
RUN

10
Ok

X+5, X-5, X*(-5) , XA 5

o -25 3125

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

Examp;te 2: LIST

Example 3:

10 INPUT X
20 PRINT X "SQUARED IS" XA 2 "AND"i
30 PRINT X "CUBED IS" XA 3
40 PRINT
50 GOTO 10
Ok
RUN
? 9

9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this example, the semicolon at the end of
line 20 causes both PRINT statements to be
printed on the same line, and line 40 causes a
blank line to be printed before the next prompt.

10 FOR X = 1 TO 5
20 J=J+5
30 K=K+lO
40 ?JiKi
50 NEXT X
Ok
RUN

5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (Don~t
forget, a number is always followed by a space
and positive numbers are preceded by a space.)
In line 40, a question mark is used instead of
the word PRINT.

BASIC-SO COMMANDS AND STATEMENTS Page 2-62

2.50 PRINT USING

Format:

Versions:

Purpose:

Remarks
and
Examples:

PRINT USING <string exp>i<list of expressions>

Extended, Disk

To print strings or numbers using a specified
format.

<list of expressions> is comprised of the string
expressions or numeric expressions that are to
be printed, separated by semicolons. <string
exp> is a string literal (or variable) comprised
of special formatting characters. These
formatting characters (see below) determine the
field and the format of the printed strings or
numbers.

String Fields

When PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

"1" Specifies that only the first character in the
given string is to be printed.

"\n spaces\" Specifies that 2+n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters will be printed;
with one space, three characters will be
printed, and so on. If the string is longer
than the field, the extra characters are
ignored. If the field is lonnger than the
string, the string will be left-justified in the
field and padded with spaces on the right.
Example:

10 A$=nLOOK":B$="OUT"
30 PRINT USING n!"iA$;B$
40 PRINT USING"\ \";A$;B$
50 PRINT USING"\ \";A$;B$;"!I"
RUN
LO
LOOKOUT
LOOK OUT !!

BASIC-80 COMMANDS AND STATEMENTS Page 2-63

"&" Specifies a variable length string field. When
the field is specified with "&", the string is
output exactly as input. Example:

10 A$="LOOK":B$="OUT"
20 PRINT USING "!"iA$;
30 PRINT USING "&";B$
RUN
LOUT

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to
format the numeric field:

A number sign is used to represent each digit
position. Digit positions are always filled.
If the number to be printed has fewer digits
than positions specified, the number will be
right-justified (preceded by spaces) in the
field.

A decimal point may be inserted at any position
in the field. If the format string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as 0 if
necessary). Numbers are rounded as necessary.

PRINT USING "ii.il";.78
0.78

PRINT USING "1#1.1#";987.654
987.65

PRINT USING "il.11 ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line.

+ A plus sign at the beginning or end of the
format string will cause the sign of the number
(plus or minus) to be printed before or after
the number.

BASIC-80 COMMANDS AND STATEMENTS Page 2-64

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRINT USING "+11.11 ";-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING "11.#1- ";-68.95,22.449,-7.01
68.95- 22.45 7.01-

** A double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies positions for two more digits.

PRINT USING "**1.1 ";12.39,-0'.9,765.1
*12.4 *-0.9 765.1

$$ A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with $$.
Negative numbers cannot be used unless the minus
sign trails to the right.

PRINT USING "$$111.11";456.78
$456.78

**$ The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number.
**$ specifies three more digit positions, one of
which is the dollar sign.

,

PRINT USING "**$11.11";2.34
***$2.34

A comma that is to the left of the decimal point
in a formatting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
position. The comma has no effect if used with
the exponential (AAAA) format.

PRINT USING "111#,.11";1234.5
1,234.50

PRINT USING "1111.#1,";1234.5
1234.50,

BASIC-80 COMMANDS AND STATEMENTS Page 2-65

Four carats (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carats allow space
for E+xx to be printed. Any decimal point
position may be specified. The significant
digits are left-justified, arid the exponent is
adjusted. Unless a leading + or trailing + or -
is specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign.

PRINT USING "##.##~~~~";234.56
2.35E+02

PRINT USING ".###i~~~~-";888888
.8889E+06

PRINT USING "+.##~~~~";123

+.12E+03

An underscore in the format string
next character to be output as
character.

PRINT USING "_1##.##_1";12.34
112.341

causes the
a literal

The literal character itself may be an
underscore by placing " __ " in the format string.

% If the number to be printed is larger than the
specified numeric field, a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, a percent
sign will be printed "in front of the rounded
number.

PRINT USING "##.##":111.22
%111.22

PRINT USING ".##";.999
%1.00

If the number of digits specified exceeds 24, an
"Illegal function call" error will result.

BASIC-SO COMMANDS AND STATEMENTS Page 2-66

2.51 PRINTt AND PRINTt USING

Format:

Version:

Purpose:

Remarks:

PRINTt<filenumber>,[USING<string exp>i]<list of exps>

Disk

To write data to a sequential disk file.

<file number> is the number used when the file
was OPENed for output. <string. exp> is
comprised of formatting characters as described
in Section 2.50, PRINT USING. The expressions
in <list of expressions>. are the numeric and/or
string expressions that will be written to the
file.

PRINTt does not compress data on the disk. An
image of the data is written to the disk, just
as it would be displayed on the terminal with a
PRINT statement. For this reason, care should
be taken to delimit the data on the disk, so
that it will be input correctly from the disk.

In the list of expressions, numeric
should be delimited by semicolons.

PRINTtl,AiBiC;X;Y;Z

expressions
For example,

(If commas are used as delimiters, the extra
blanks that are inserted between print fields
will also be written to disk.)

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use explicit
deli~iters in the list of expressions.

For example, let A$="CAMERA" and B$="93604-l".
The statement

PRINTtl,A$;B$

would write CAMERA93604-l to the disk. Because
there are no delimiters, this could not be input
as two separate strings. To correct the
problem, insert explicit delimiters into the
PRINTt statement as follows:

PRINTtl,A$;",";B$

The image written to disk is

CAMERA, 93604-l

BASIC-80 COMMANDS AND STATEMENTS

which can be read back
variables.

into

Page 2-67

two string

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, write them to disk
surrounded by explicit quotation marks,
CHR$(34) •

For example, let A$=" CAMERA , AUTOMATIC" and
B$=" 93604-1". The statement

PRINT#l,AiB

would write the following image to disk:

CAMERA, AUTOMATIC 93604-1

and the statement

INPUT#l,A$,B$

would input "CAMERA" to A$ and
"AUTOMATIC 93604-1" to B$. To separate these
strings properly on the disk, write double
quotes to the disk image using CHR$(34). The
statement

PRINT#1,CHR$(34) iA$;CHR$(34) ;CHR$(34) ;B$;CHR$(34)

writes the following image to disk:

"CAMERA, AUTOMATIC"" 93604-1"

and the statement

INPUT#l,A$,B$

would input "CAMERA, AUTOMATIC" to
.. 93604-1" to B$.

A$ and

The PRINT# statement may also be used with the
USING option to control the format of the disk
file. For example:

PRINT#l,USING"$$#**.i#,";J;K;L

For more examples using PRINT#, see Appendix B.

See also WRITE#, Section 2.68.

BASIC-80 COMMANDS AND STATEMENTS Page 2-68

2.52 PUT

Format:

Version:

Purpose:

Remarks:

Example:

NOTE:

PUT [i]<file number>[,<record number>]

Disk

To write a record from a random buffer to a
random disk file.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
record will have the next available record
number (after the last PUT). The largest
possible record number is 32767. The smallest
record number is 1.

See Appendix B.

PRINTi, PRINTi USING, and WRITE# may be used to
put characters in the random file buffer before
a PUT statement.

In the case of WRITEi, BASIC-80 pads the buffer
with spaces up to the carriage return. Any
attempt to read or write past the end of the
buffer causes a "Field overflow" error.

BASIC-80 COMMANDS AND STATEMENTS Page 2-69

2.53 RANDOMIZE

Format:

Versions:

Purpose:

Remarks:

Example:

RANDOMIZE [<expression>]

Extended, Disk

To reseed the random number generator.

If <expression> is
program execution
printing

omitted, BASIC-80 suspends
and asks for a value by

Random Number Seed (-32768 to'32767)1

before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers every time
the program is RUN, place a RANDOMIZE statement
at the beginning of the program and change the
argument with each RUN.

10 RANDOMIZE
20 FOR I=l TO 5
30 PRINT RNDi
40 NEXT I
RUN
Random Number Seed (-32768 to 32767)1 3 (user
types 3)

.88598 .484668 .586328 .119426 .709225
Ok
RUN
Random Number Seed (-32768 to 32767)1 4 (user
types 4 for new sequence)

.803506 .162462 .929364 .292443 .322921
Ok
RUN
Random Number Seed (-32768 to 32767)1 3 (same
sequence as first RUN)

.88598 .484668 .586328 .119426 .709225
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-70

2.54 READ

Format:

Versions:

Purpose:

Remarks:

Example 1:

READ <list of variables>

8K, Extended, Disk

To read values from a DATA statement and assign
them to variables. (See DATA, Section 2010.)

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a "Syntax
error" will result.

A single READ statement may access one or more
DATA statements (they will be accessed in
order), or several READ statements may access
the same DATA statment. If the number of
variables in <list of variables> exceeds the
number of elements in the DATA statement(s), an
OUT OF DATA message is printed. If the number
of variables specified is fewer than the number
of elements in the DATA statement(s), subsequent
READ statements will begin reading data at the
first unread element. If there are no
subsequent READ statements, the extra data is
ignored.

To reread DATA statements from
the RESTORE statement (see
2.57)

the start, use
RESTORE, Sect ion

80 FOR I=l TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values
DATA statements into the array
execution, the value of A(l) will be
so on.

from the
A. After
3.08, and

BASIC-80 COMMANDS AND STATEMENTS

Example 2: LIST
10 PRINT "CITY", "STATE", n ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80211
Ok

Page 2-71

This program READs string and numeric data from
the DATA statement in line 30.

BASIC-SO COMMANDS AND STATEMENTS Page 2-72

2.55 REM

Format:

Versions:

Purpose:

Remarks:

Example:

REM <remark>

SK, Extended, Disk

To allow explanatory remarks to be inserted in a
program.

REM statements are not executed but are output
exactly as entered when the program is listed.

REM statements may be branched into (from a GOTO
or GOSUB statement), and execution will continue
with the first executable statement after the
REM statement.

In the Extended and Disk versions, remarks may
be added to the end of a line by preceding the
remark with a single quotation mark instead of
: REM.

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=l TO 20
140 SUM=SUM + V(I)

or, with Extended and Disk versions:

120 FOR I=l TO 20
130 SUM=SUM+V (I)
140 NEXT I

~CALCULATE AVERAGE VELOCITY

BASIC-SO COMMANDS AND STATEMENTS Page 2-73

2.56 RENUM

Format:

Versions:

Purpose:

Remarks:

NOTE:

Examples:

RENUM [[<new number>] [,[<old number>] [,<increment>]]]

Extended, Disk

To renumber program lines.

<new number> is the first line number to be used
in the new sequence. The default is 10. <old
number> is the line in the current program where
renumbering is to begin. The default is the
first line of the program. <increment> is the
increment to be used in the new sequence. The
default is 10.

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ON ••• GOTO,
ON ••• GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number
appears after one of these statements, the error
message "Undefined line xxxxx in yyyyy" is
printed. The incorrect line number reference
(xxxxx) is not changed by RENUM, but line number
yyyyy may be changed.

RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when the
program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529.
An "Illegal function call" error will result.

RENUM Renumbers the entire program.
The first new line number
will be 10. Lines will
increment by 10.

RENUM 300,,50 Renumbers the entire pro
gram. The first new line
number will be 300. Lines
will increment by 50.

RENUM 1000,900,20 Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.

"

BASIC-80 COMMANDS AND STATEMENTS Page 2-74

2 • 57 RESTORE

Format:

Versions:

Purpose:

Remarks:

Example:

RESTORE [<line number>]

8K, Extended, Disk

To allow DATA statements to be reread from a
specified line.

After a RESTORE statement is executed, the next
READ statement accesses the first item in the
first DATA statement in the program. If <line
number> is specified, the next READ statement
accesses the first item in the specified DATA
statement.

10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79

BASIC-80 COMMANDS AND STATEMENTS Page 2-75

2.58 RESUME

Formats:

Versions:

Purpose:

Remarks:

Example:

RESUME

RESUME a

RESUME NEXT

RESUME <line number>

Extended, Disk

To continue program execution after an error
recovery procedure has been performed.

Anyone of the four formats shown above may be
used, depending upon where execution is to
resume:

RESUME
or

RESUME a

RESUME NEXT

Execution resumes at the
statement which caused the
error.

Execution resumes at the
statement immediately fol
lowing the one which
caused the error.

RESUME <line number> Execution resumes at
<line number>.

A RESUME statement that is not in an error trap
routine causes a "RESUME without error" message
to be printed.

10 ON ERROR GOTO 900

900 IF (ERR=230) AND (ERL=90) THEN PRINT "TRY
AGAIN" : RESUME 80

BASIC-SO COMMANDS AND STATEMENTS Page 2-76

2.59 RUN

Format 1:

Versions:

Purpose:

Remarks:

Example:

Format 2:

Version:

Purpose:

Remarks:

Example:

RUN [<line number>]

SK, Extended, Disk

To execute the program currently in memory.

If <line number> is specified, execution begins
on that line. Otherwise, execution begins at
the lowest line number. BASIC-SO always returns
to command level after a RUN is executed.

RUN

RUN <filename>[,R]

Disk

To load a file from disk into memory and run it.

<filename> is the name used when the file was
SAVEd. (With CP/M and ISIS-II, the default
extension .BAS is supplied.)

RUN closes all open files and deletes the
current contents of memory before loading the
designated program. However, with the "R"
option, all data files remain OPEN.

RUN "NEWFIL",R

See also Appendix B.

BASIC-SO COMMANDS AND STATEMENTS Page 2-77

2.60 SAVE

Format:

Version:

Purpose:

Remarks:

Examples:

SAVE <filename>[,A I ,P]

Disk

To save a program file on disk.

<filename> is a quoted string that conforms to
your operating system~s requirements for
filenames. (With CP/M, the default extension
.BAS is supplied.) If <filename> already exists,
the file will be written over.

Use the A option to save the file in ASCII
format. Otherwise, BASIC saves the file in a
compressed binary format. ASCII format takes
more space on the disk, but some disk access
requires that files be in ASCII format. For
instance, the MERGE command requires and ASCII
format file, and some operating system commands
such as LIST may require an ASCII format file.

Use the P option to protect the file by saving
it in an encoded binary format. When a
protected file is later RUN (or LOADed), any
attempt to list or edit it will fail.

SAVE"COM2",A
SAVE"PROG",P

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-78

2.61 STOP

Format:

Versions:

Purpose:

Remarks:

Example:

STOP

8K, Extended, Disk

To terminate program execution and return to
command level.

STOP statements may be used anywhere in a
program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement
does not close files.

BASIC-80 always returns to command level after a
STOP is executed. Execution is resumed by
issuing a CONT command (see Section 2.8).

10 INPUT A,B,C
20 K=AA2*5.3:L=BA3/.26
30 STOP
40 M=C*K+100:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT L

30.7692
Ok
CONT

115.9
Ok

BASIC-SO COMMANDS AND STATEMENTS Page 2-79

2.62 SWAP

Format:

Versions:

Purpose:

Remarks:

Example:

SWAP <variable>,<variable>

Extended, Disk

To exchange the values of two variables.

Any type variable may be SWAPped (integer,
single precision, double precision, string), but
the two variables must be of the same type or a
"Type mismatch" error results.

LIST
10 A$=" ONE n : B$=" ALL n : C$="FORn

20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
RUN
Ok

ONE FOR ALL
ALL FOR ONE

Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-80

2.63 TRON/TROFF

Format: TRON

Versions:

Purpose:

Remarks:

Example:

TROFF

Extended, Disk

To trace the execution of program statements.

As an aid in debugging, the TRON statement
(executed in either the direct or indirect mode)
enables a .trace flag that prints each line
number of the program as it is executed. The
numbers appear enclosed in square brackets. The
trace flag is disabled with the TROFF statement
(or when a NEW command is executed).

TRON
Ok
LIST
10 K=lO
20 FOR J=1 TO 2
30 L=K + 10
40 PRINT JiKiL
50 K=K+10
60 NEXT
70 END
Ok
RUN
[10] [20] [30] [40] 1 10 20
[50] [60] [30] [40] 2 20 30
[50] [60] [70]
Ok
TROFF
Ok

BASIC-SO COMMANDS AND STATEMENTS Page 2-Sl

2.64 WAIT

Format:

Versions:

Purpose:

Remarks:

CAUTION:

Example:

• WAIT <port number>, I[,J]
where I and J are integer expressions

SK, Extended, Disk

To suspend program execution while monitoring
the status of a machine input port.

The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read
at the port is exclusive OR'ed with the integer
expression J, and then AND'ed with I. If the
result is zero, BASIC-SO loops back and reads
the data at the port again. If the ~esult is
nonzero, execution continues with the next
statement. If J is omitted, it is assumed to be
zero

It is possible to enter an infinite loop with
the WAIT statement, in which case it will be
necessary to manually restart the machine.

100 WAIT 32,2

BASIC-80 COMMANDS AND STATEMENTS Page 2-82

2.65 WHILE ••• WEND

Format:

Versions:

Purpose:

Remarks:

Example:

WHILE <expression>

[<loop statements>]

WEND

Extended, Disk

To execute a series of statements in a . loop as
long as a given condition is true.

If <expression> is not zero (i.e., true), <loop
statements> are executed until the WEND
statement is encountered. BASIC then returns to
the WHILE statement and checks <expression>. If
it is still true, the process is repeated. If
it is not true, execution resumes with the
statement following the WEND statement.

WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE. An
unmatched WHILE statement causes a nWHILE
without WEND" error, and an unmatched WEND
statement causes a nWEND without WHILE n error.

90 ~BUBBLE SORT ARRAY A$
100 FLIPS=l ~FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLIPS=O
120 FOR I=l TO J-l
130 IF A$(I»A$(I+l) THEN

SWAP A$(I) ,A$(I+l) :FLIPS=l
140 NEXT I
150 WEND

BASIC-80 COMMANDS AND STATEMENTS Page 2-83

2.66 WIDTH

Format:

Versions:

Purpose:

Remarks:

Example:

WIDTH [LPRINT] <integer expression>

Extended, Disk

To set the printed line width in number of
characters for the terminal or line printer.

If the LPRINT option is omitted, the line width
is set at the terminal. If LPRINT is included,
the line width is set at the line printer.

<integer expression> must have a value in the
range 15 to 255. The default width is 72
characters.

If <integer expression> is 255, the line width
is "infinite," that is, BASIC never inserts a
carriage return. However, the position of the
cursor or the print head, as given by the POS or
LPOS function, returns to zero after position
255.

10 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ok
WIDTH 18
Ok
RUN
ABCDEFGHI JKLMNOPQR
STUVWXYZ
Ok

BASIC-SO COMMANDS AND STATEMENTS Page 2-S4

2.67 WRITE

Format:

Version:

Purpose:

Remarks:

Example:

WRITE[<list of expressions>]

Disk

To output data at the terminal.

If <list of expressions> is omitted, a blank
line is output. If <list of expressions> is
included, the values of te expressions are
output at thee terminal. The expressions in the
list may be numeric and/or string expressions,
and they must be separated by commas.

When the printed items are output, each item
will be separated from the last by a comma.
Printed strings will be delimited by quotation
marks. After the last item in the list is
printed, BASIC inserts a carriage return/line
feed.

WRITE outputs numeric values using the same
format as the PRINT statement, Section 2.49.

10 A=80:B=90:C$="THAT~S ALL"
20 WRITE A,B,C$
RUN

SO, 90,"THAT~S ALL"
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-85

2.68 WRITEi

Format:

Version:

Purpose:

Remarks:

Example:

WRITE#<file number>,<list of expressions>

Disk

To write data to a sequential file.

<file number> is the number under which the file
was OPENed in "0" mode. The expressions in the
list are string or numeric expressions, and they
must be separated by commas.

The difference between WRITE# and PRINT# is that
WRITEi inserts commas between the the items as
they are written to disk and delimits strings
with quotation marks. Therefore, it is not
necessary for the user to put explicit
delimiters in the list. A carriage return/line
feed sequence is inserted after the last item in
the list is written to disk.

Let A$="CAMERA"
statement:

WRITE#l,A$,B$

and B$="93604-l".

writes the following image to disk:

"CAMERA", "93604-l"

A subsequent INPUTi statement, such as:

INPUTil,A$,B$

The

would input "CAMERA" to A$ and "93604-1" to B$.

CHAPTER 3

BASIC-SO FUNCTIONS

The intrinsic functions provided by BASIC-SO are presented
in this chapter. The functions may be called from any
program without further definition.

Arguments to functions are always enclosed in parentheses.
In the formats given for the functions in this chapter, the
arguments have been abbreviated as follows:

X and Y

I and J

X$ and Y$

Represent any numeric expressions

Represent integer expressions

Represent string expressions

If a floating point value is supplied where an integer is
required, BASIC-SO will round the fractional portion and use
the resulting integer.

NOTE

with the BASIC-SO and BASIC-S6
interpreters, only integer and
single precision resullts are
returned by funtions. Double
precision functions are
supported only by the BASIC
compiler.

BASIC-80 FUNCTIONS Page 3-2

3.1 ASS

Format:

versions:

Action:

Example:

3.2 ASC

Format:

Versions:

Action:

'Example:

ABS (X)

8K, Extended, Disk

Returns the absolute value of the expression X.

PRINT ABS(7*(-5»
35

Ok

ASC (X$)

8K, Extended, Disk

Returns a numerical value that is the ASCII code
of the first character of the string X$. (See
Appendix M for ASCII codes.) If X$ is null, an
"Illegal function call" error is returned.

10 X$ = "TEST"
20 PRINT ASC (X$)
RUN

84
Ok

See the CHR$ function
conversion.

for ASClI-to-string

BASIC-80 FUNCTIONS Page 3-3

3.3 ATN

Format:

Versions:

Action:

Example:

3.4 CDBL

Format:

Versions:

Action:

Example:

ATN (X)

8K, Extended, Disk

Returns the arctangent of X in radians. Result
is in the range -pi/2 to pi/2. The expression X
may be any numeric type, but the evaluation of
ATN is always performed in single precision.

10 INPUT X
20 PRINT ATN(X)
RUN
? 3
1.24905

Ok

CDBL(X)

Extended, Disk

Converts X to a double precision number.

10 A = 454.67
20 PRINT A:CDBL(A)
RUN

454.67 454.6700134277344
Ok

BASIC-80 FUNCTIONS Page 3-4

3.5 CHR$

Format:

versions:

Action:

Example:

3.6 CINT

Format:

Versions:

Action:

Example:

CHR$(I)

8K, Extended, Disk

Returns a string whose one element has ASCII
code I. (ASCII codes are listed in Appendix M.)
CHR$ is commonly used to send a special
character to the terminalo For instance, the
BEL character could be sent (CHR$(7» as a
preface to an error message, or a form feed
could be sent (CHR$(12» to clear a CRT screen
and return the cursor to the home position.

PRINT CHR$ (66)
B
Ok
See the ASC function
conversion.

CINT(X)

Extended, Disk

for ASClI-to-numeric

Converts X to an integer by rounding the
fractional portion. If X is not in the rang~
-32768 to 32767, an "Overflow" error occurs.

PRINT CINT(45.67}
46

Ok

See the CDBL and CSNG functions for converting
numbers to the double precision and single
precision data type. See also the FIX and INT
functions, both of which return integers.

BASIC-SO FUNCTIONS Page 3-5

3.7 COS

Format:

Versions:

Action:

Example:

3.S CSNG

Format:

Versions:

Action:

Example:

COS (X)

SK, Extended, Disk

Returns the cosine of X
calculation of COS (X) is
precision.

10 X = 2 *COS (.4)
20 PRINT X
RUN
1.S4212

Ok

CSNG(X)

Extended, Disk

in radians. The
performed in single

Converts X to a single precision number.

10 Ai = 975.3421#
20 PRINT Aii CSNG(Ai)
RUN

975.3421 975.342
Ok

See the CINT and CDBL functions for converting
numbers to the integer and double precision data
types.

BASIC-80 FUNCTIONS Page 3-6

3.9 CVI, CVS, CVD

Format:

Version:

Action:

Example:

3.10 EOF

Format:

Version:

Action:

Example:

CVI«2-byte string»
CVS«4-byte string»
CVD«8-byte string»

Disk

Convert string values to numeric values.
Numeric values that are read in from a random
disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to
an integer. CVS converts a 4-byte string to a
single precision number. CVD converts an a-byte
string to a double precision number.

70 FIELD #1,4 AS N$, 12 AS B$, •••
80 GET #1
90 Y=CVS (N$)

See also MKI$r MKS$, MKD$, Section 3.25 and
Appendix B.

EOF«fi1e number»

Disk

Returns -1 (true) if the end of a sequential
file has been reached. Use EOF to test for
end-of-fi1e while INPUTting, to avoid "Input
past end" errors.

10 OPEN "I",l,"DATA"
20 c=o
30 IF EOF(l) THEN 100
40 INPUT #l,M(C}
SO C=C+1:GOTO 30

BASIC-80 FUNCTIONS Page 3-7

3.11 EXP

Format:

Versions:

Action:

Example:

3.12 FIX

Format:

Versions:

Action:

Examples:

EXP (X)

8K, Extended, Disk

Returns e to the power of X. X must be
<=87.3365. If EXP overflows, the "Overflow"
error message is displayed, machine infinity
with the appropriate sign is supplied as the
result, and execution continues.

10 X = 5
20 PRINT EXP (X-l)
RUN

54.5982
Ok

FIX (X)

Extended, Disk

Returns the truncated integer part of X. FIX (X)
is equivalent to SGN(X)*INT(ABS(X». The major
difference between FIX and INT is that FIX does
not return the next lower number for negative X.

PRINT FIX(58.75)
58

Ok

PRINT FIX(-58.75)
-58
Ok

BASIC-SO FUNCTIONS Page 3-S

3.13 FRE

Format:

Versions:

Action:

Example:

3.14 HEX$

Format:

Versions:

Action:

Example:

FRE(O)
FRE (X$)

SK, Extended, Disk

Arguments to FRE are dummy arguments. FRE
ret~rns the number of bytes in memory not being
used by BASIC-SO.

FRE("n) forces a garbage collection before
returning . the number of free bytes. BE
PATIENT: garbage collection may take 1 to 1-1/2
minutes. BASIC will not initiate garbage
collection until all free memory has been used
up. Therefore, using FRE{"") periodically will
result in shorter delays for each garbage
collection.

PRINT FRE{O)
14542

Ok

HEX$ (X)

Extended, Disk

Returns a string which represents
hexadecimal value of the decimal argument.
rounded to an integer before HEX${X)
evaluated.

10 INPUT X
20 A$ = HEX$ (X)
30 PRINT X "DECIMAL IS n A$ " HEXADECIMAL"
RUN
? 32

32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCT$ function for octal conversion.

the
X is

is

BASIC-80 FUNCTIONS Page 3-9

3.15 INKEY$

Format:

Action:

Example:

3.16 INP

Format:

Versions:

Action:

Example:

INKEY$

Returns either a one-character string containing
a character read from the terminal or a null
string if no character is pending at the
terminal. No characters will be echoed and all
characters are passed through tto the program
except for Control-C, which terminates the
program. (With the BASIC Compiler, Contro1-C is
also passed through to the program.)

1000 ~TIMED INPUT SUBROUTINE
1010 RESPONSE$=''''
1020 FOR I%=l TO TIMELIMIT%
1030 A$=INKEY$: IF LEN(A$)=O THEN 1060
1040 IF ASC(A$)=13 THEN TIMEOUT%=O : RETURN
1050 RESPONSE$=RESPONSE$+A$
1060 NEXT I%
1070 TIMEOUT%=l : RETURN

INP (I)

SK, Extended, Disk

Returns the byte read from port I. I must be in
the range 0 to 255. INP is the complementary
function to the OUT statement, Section 2.47.

100 A=INP (255)

BASIC-SO FUNCTIONS Page 3-10

3.17 INPUT$

Format: INPUT$(X[,[#]Y])

Version: Disk

Action: Returns a string of X characters, read from the
terminal or from file number Y. If the terminal
is used for input, no characters will be echoed
and all control characters are passed through
except Control-C, which is used to interrupt the
execution of the INPUT$ function.

Example 1: 5 ~LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL

Example 2:

10 OPEN"I",l,"DATA"
20 IF EOF(l) THEN 50
30 PRINT HEX$(ASC(INPUT$(l,#l»);
40 GOTO 20
50 PRINT
60 END

100 PRINT "TYPE P TO PROCEED OR S TO STOP II

110 X$=INPUT$(l)
120 IF X$="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100

BASIC-80 FUNCTIONS Page 3-11

3.18 INSTR

Format:

Versions:

Action:

Example:

NOTE:

INSTR ([I,] X$, Y$)

Extended, Disk

Searches for the first occurrence of string Y$
in X$ and returns the position at which the
match is found. Optional offset I sets the
position for starting the search. I must be in
the range 1 to 255. If I>LEN(X$) or if X$ is
null or if Y$ cannot be found, INSTR returns O.
If Y$ is null, INSTR returns I or 1. X$ and Y$
may be string variables, string expressions or
string literals.

10 X$ = "ABCDEB"
20 Y$ = "B"
30 PRINT INSTR(X$,Y$) jINSTR(4,X$,Y$)
RUN

2 6
Ok

If I=O is specified, error message "ILLEGAL
ARGUMENT IN <line number>" will be returned.

BASIC-SO FUNCTIONS Page 3-12

3.19 INT

Format:

Versions:

Action:

.Examples:

3.20 LEFT$

Format:

Versions:

Action:

Example:

INT(X}

SK, Extended, Disk

Returns the largest integer <=X.

PRINT INT(99.S9}
99

Ok

PRINT INT(-12.ll}
-13
Ok

See the FIX and CINT functions which also return
integer values.

LEFT$(X$,I}

SK, Extended, Disk

Returns a string comprised of the leftmost I
characters of X$. I must be in the range 0 to
255. If I is greater than LEN(X$}, the entire
string (X$) will be returned. If 1=0, the null
string (length zero) is returned.

10 A$ = "BASIC-SO"
20 B$ = LEFT$(A$,5}
30 PRINT B$
BASIC
Ok

Also see the MID$ and RIGHT$ functions.

BASIC-80 FUNCTIONS Page 3-13

3.21 LEN

Format:

Versions:

Action:

Example:

3.22 LOC

Format:

Version:

Action:

Example:

LEN (X$)

8K, Extended, Disk

Returns the number of characters in X$.
Non-printing characters and blanks are counted.

10 X$ = "PORTLAND, OREGON"
20 PRINT LEN (X$)

16
Ok

LOC«file number»

Disk

With random disk files, LOC returns the next
record number to be used if a GET or PUT
(without a record number) is executed. With
sequential files, LOC returns the number of
sectors (128 byte blocks) read from or written
to the file since it was OPENed.

200 IF LOC(l) >50 THEN STOP

BASIC-80 FUNCTIONS Page 3-14

3.23 LOG

Format:

Versions:

Action:

Example:

3.24 LPOS

Format:

Versions:

Action:

Example:

LOG (X)

8K , Extended, Disk

Returns the natural logarithm of XO X must be
greater than zero.

PRINT LOG (45/7)
1.86075

Ok

LPOS (X)

Extended, Disk

Returns the current position of the line printer
print head within the line printer buffer. Does
not necessarily give the physical position of
the print head. X is a dummy argument.

100 IF LPOS{X} >60 THEN LPRINT CHR${13}

BASIC-SO FUNCTIONS Page 3-15

3.25 ~

Format:

Versions:

Action:

Example:

MI D $ (X $, I [, J])

SK, Extended, Disk

Returns a string of length J characters from X$
beginning with the Ith character. I and J must
be in the range 1 to 255. If J is omitted or if
there are fewer than J characters to the right
of the Ith character, all rightmost characters
beginning with the Ith character are returned.
If I>LEN{X$), MID$ returns a null string.

LIST
10 A$="GOOD "
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$iMID$(B$,9,7)
Ok
RUN
GOOD EVENING
Ok

Also see the LEFT$ and RIGHT$ functions.

NOTE: If I=O is specified, error message "ILLEGAL
ARGUMENT IN <line number>" will be returned.

3.26 MKI$, MKS$, MKD$

Format:

Version:

Action:

Example:

MKI$«integer expression»
MKS$«single precision expression»
MKD$«double precision expression»

Disk

Convert numeric values to string values. Any
numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integer
to a 2-byte string. MKS$ converts a single
precision number to a 4-byte string. MKD$
converts a double precision number to an S-byte
string.

90 AMT= (K+T)
100 FIELD il, 8 AS D$, 20 AS N$
110 LSET D$ = MKS$(AMT)
120 LSET N$ = AS
130 PUT *1

See also CVI, CVS, CVD, Section 3.9 and Appendix
B.

BASIC-80 FUNCTIONS Page 3-16

Format:

Versions:

Action:

Example:

3.28 PEEK

Format:

Versions:

Action:

Example:

3.27 OCT$

aCTS (X)

Extended, Disk

Returns a string which represents the octal
value of the decimal argument. X is rounded to
an integer before aCT${X) is evaluated.

PRINT OCT$ (24)
30

Ok

See the HEX$
conversion.

PEEK (I)

8K, Extended, Disk

function for hexadecimal

Returns the byte (decimal integer in the range 0
to 255) read from memory location I. with the
8K version of BASIC-80, I must be less than
32768. To PEEK at a memory location above
32768, subtract 65536 from the desired address.
With Extended and Disk BASIC-80, I must be in
the range a to 65536. PEEK is the complementary
function to the POKE statement, Section 2.48.

A=PEEK (&H5AO 0)

BASIC-80 FUNCTIONS Page 3-17

3.29 POS

Format:

Versions:

Action:

Example:

3.30 RIGHT$

Format:

Versions:

Action:

Example:

POS (I)

8K, Extended, Disk

Returns the current cursor position. The
leftmost position is 1. X is a dummy argument.

IF POS(X»60 THEN PRINT CHR$(13)

Also see the LPOS function.

RIGHT$(X$,I)

8K, Extended, Disk

Returns the rightmost I characters of string X$.
If I=LEN(X$), returns X$. If 1=0, the null
string (length zero) is returned.

10 A$="DISK BASIC-80"
20 PRINT RIGHT$(A$,8)
RUN
BASIC-80
Ok

Also see the MID$ and LEFT$ functions.

BASIC-SO FUNCTIONS Page 3-1S

3.31 RND

Format:

Versions:

Action:

Example:

3.32 SGN

Format:

Versions:

Action:

Example:

RND [(X)]

SK, Extended, Disk

Returns a random number between 0 and 1. The
same sequence of random numbers is generated
each time the program is RUN unless. the. random
number generator is reseeded (see RANDOMIZE,
Section 2.53). However, X<O always restarts the
same sequence for any given X.

X>O or X omitted generates the next random
number in the sequence. x=o repeats the last
number generated.

10 FOR I=l TO 5
20 PRINT INT(RND*lOO):
30 NEXT
RUN

24 30 31 51 5
Ok

SGN(X)

SK, Extended, Disk

If X>O, SGN(X) returns 1.
If X=O, SGN(X) returns O.
If X<O, SGN(X) returns -1.

ON SGN(X)+2 GOTO 100,200,300 branches to 100 if
X is negative, 200 if X is 0 and 300 if X is
positive.

BASIC-80 FUNCTIONS Page· 3-19

3.33 SIN

Format:

Versions:

Action:

Example:

3.34 SPACES

Format:

Versions:

Action:

Example:

SIN (X)

8K, Extended, Disk

Returns the sine of X in
calculated in
COS(X)=SIN(X+3.14159/2) •

PRINT SIN (1. 5)
.997495

Ok

SPACE$(X)

Extended, Disk

radians.
single

SIN (X) is
precision.

Returns a string of spaces of length X. The
expression X is rounded to an integer and must
be in the range a to 255.

10 FOR I = 1 TO 5
20 X$ = SPACE$(I)
30 PRINT X$jI
40 NEXT I
RUN

1

Ok

2
3

4
5

Also see the SPC function.

BASIC-80 FUNCTIONS Page 3-20

3.35 SPC

Format:

versions:

Action:

Example:

3.36 SQR

Format:

Versions:

Action:

Example:

SPC (I)

8K, Extended, Disk

Prints I blanks on the terminal. SPC may only
be used with PRINT and LPRINT statements. I
must be in the range a to 255.

PRINT "OVER" SPC(15) "THERE"
OVER THERE
Ok

Also see the SPACE$ function.

SQR (X)

8K, Extended, Disk

Returns the square root of X. X must be >=0.

10 FOR X = 10 TO 25
20 PRINT X, SQR(X)
30 NEXT

STEP 5

RUN
10
15
20
25

Ok

3.16228
3.87298
4.47214
5

BASIC-80 FUNCTIONS Page 3-21

3.37 STR$

Format:

Versions:

Action:

Example:

STR$(X)

8K, Extended, Disk

Returns a string representation of the value of
X.

5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER";N
20 ON LEN(STR$(N») GOSUB 30,100,200,300,400,500

Also see the VAL function.

3.38 STRING$

Formats:

Versions:

Action:

Example:

STRING$(I,J)
STRING$(I,X$)

Extended, Disk·

Returns a string of length I whose characters
all have ASCII code J or the first character of
X$.

10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN
----------MONTHLY REPORT---------
Ok

BASIC-SO FUNCTIONS Page 3-22

3.39 TAB

Format:

Versions:

Action:

Example:

3.40 TAN

Format:

Versions:

Action:

Example:

TAB (I)

SK, Extended, Disk

Spaces to position I on the terminal. If the
current print position is already beyond space
I, TAB goes to that position on the next line.
Space 1 is the leftmost position, and the
rightmost position is the width minus one. I
must be in the range 1 to 255. TAB may only be
used in PRINT and LPRINT statements.

10 PRINT "NAME" TAB (25) "AMOUNT" : PRINT
20 READ A$,B$
30 PRINT A$ TAB (25) B$
40 DATA "G. T. JONES","$25.00"
RUN
NAME ~OUNT

G. T. JONES
Ok

TAN (X)

SK, Extended, Disk

$25.00

Returns the tangent of X in radians. TAN (X) is
calculated in single prec~s~on. If TAN
overflows, the "Overflow" error message is
displayed, machine infinity with the appropriate
sign is supplied as the result, and execution
continues.

10 Y = Q*TAN(X)/2

BASIC-SO FUNCTIONS Page 3-23

3.41 USR

Format :

Versions:

Action:

Example:

3.42 VAL

Format:

Versions:

Action:

Example:

USR[<digit>] (X)

SK, Extended, Disk

Calls the user~s assembly language subroutine
with the argument X. <digit> is allowed in the
Extended and Disk versions only. <digit> is in
the range 0 to 9 and corresponds to the digit
supplied with the DEF USR statement for that
routine. If <digit> is omitted, USRO is
assumed. See Appendix x.

40 B = T*SIN(Y)
50 C = USR(B/2)
60 D = USR(B/3)

VAL (X$)

8K, Extended, Disk

Returns the numerical value of string X$. The
VAL function also strips leading blanks, tabs,
and linefeeds from the argument string. For
example,

VAL (" -3)

returns -3.

10 READ NAME$,CITY$,STATE$,ZIP$
20 IF VAL(ZIP$) <90000 OR VAL(ZIP$) >96699 THEN
PRINT NAME$ TAB(25) "OUT OF STATE"
30 IF VAL(ZIP$) >=90801 AND VAL(ZIP$) <=90815 THEN
PRINT NAME$ TAB (25) "LONG BEACH"

See the STR$ function for numeric to string
conversion.

BASIC-80 FUNCTIONS Page 3-24

3.43 VARPTR

Format 1:

Versions:

Format 2:

/ Version:

Action:

NOTE:

Example:

VARPTR«variable name»

Extended, Disk

VARPTR(i<file number»

Disk

Format 1: Returns the address of the first byte
of data identified with <variable name>. A
value must be assigned to <variable name> prior
to execution of VARPTR. Otherwise an "Illegal
function call" error results. Any type variable
name may be used (numeric, string, array), and
the address returned will be an integer in the
range 32767 to -32768. If a negative address is
returned, add it to 65536 to obtain the actual
address.

VARPTR is usually used to obtain the address of
a variable or array so it may be passed to an
assembly language subroutine. A function call
of the form VARPTR(A(O» is usually specified
when passing an array, so that the
lowest-addressed element of the array is
returned.

All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.

Format 2: For sequential files, returns the
starting address of the disk I/O buffer assigned
to <file number>. For random fles, returns the
address of the FIELD buffer assigned to <file
number>.

In Standalone Disk BASIC, VARPTR(i<file number»
returns the first byte of the file block. See
Appendix H.

100 X=USR(VARPTR(Y»

APPENDIX A

New Features in BASIC-SO, Release 5.0

The execution of BASIC programs written under Microsoft
BASIC, release 4.51 and earlier may be affected by some of
the new features in release 5.0. Before attempting to run
such programs, check for the following:

1. New reserved words: CALL, CHAIN, COMMON, WHILE,
WEND, WRITE, OPTION BASE, RANDOMIZE.

2. Conversion from floating point to integer values
results in rounding, as opposed to truncation.
This affects not only assignment statements (e.g.,
I%=2.S results in I%=3), but also affects function
and statement evaluations (e.g., TAB(4.S) goes to
the 5th position, A{1.5) yeilds A(2), and X=ll.5
MOD 4 yields 0 for X).

3. The body of a FOR ••• NEXT loop is skipped if the
initial value of the loop times the sign of the
step exceeds the final value times the sign of the
step. See Section 2.22.

4. Division by zero and overflow no longer produce
fatal errors. See Section 1.8.1.2.

5. The RND function has been changed so that RND with
no argument is the same as RND with a positive
argument. The RND function generates the same
sequence of random numbers with each RUN, unless
RANDOMIZE is used. See Sections 2.53 and 3.30.

6. The rules for PRINTing single precision and double
precision numbers have been changed. See Section
2.49.

7. String space is allocated dynamically, and the
first argument in a two-argument CLEAR statement
sets the end of memory. The second argument sets
the amount of stack space. See Section 2.4.

Page A-2

8. Responding to INPUT with too many or too few items,
or with non-numeric characters instead of digits,
causes the message "?Redo from start" to be
printed. If a single variable is requested, a
carriage return may be entered to indicate the
default values of 0 for numeric input or null for
string input. However, if more than .one variable
is requested, entering a carriage return will cause
the "?Redo from start" message to be printed
because too few items were entered. No assignment
of input values is made until an acceptable
response is given.

9. There are two new field formatting characters for
use with PRINT USING. An ampersand is used for
variable length string fields, and an underscore
signifies a literal character in a format string.

10. If the expression supplied with the WIDTH statement
is 255, BASIC uses an "infinite" line width, that
is, it does not insert carriage returns. WIDTH
LPRINT may be used to set the line width at the
line printer. See Section 2.66.

11. The at-sign and underscore are no longer used as
editing characters.

12. Variable names are significant up to 40 characters
and can contain embedded reserved words. However,
reserved words must now be delimited by spaces. To
maintain compatibility with earlier versions of
BASIC, spaces will be automatically inserted
between adjoining reserved words and variable
names. WARNING: This insertion of spaces may
cause the end of a line to be truncated if the line
length is close to 255 characters.

13. BASIC programs may be saved in a protected binary
format. See SAVE, Section 2.60.

APPENDIX B

BASIC-80 Disk I/O

Disk I/O procedures for the beginning BASIC-80 user are
examined in this appendix. If you are new to BASIC-80 or if
you~re getting disk related errors, read through these
procedures and program examples to make sure you~re using
all the disk statements correctly.

Wherever a filename is required in a disk command or
statement, use a name that conforms to your operating
system~s requirements for filenames. The CP/M operating
system will append a default extension .BAS to the filename
given in a SAVE, RUN, MERGE or LOAD command.

B.l PROGRAM FILE COMMANDS

Here is a review of the commands and statements used in
program file manipulation.

SAVE' <filename> [,A]

LOAD <filename>[,R]

Writes to disk the program that is
currently residing in memory.
Optional A writes the program as a
series of ASCII chatacters.
(Otherwise, BASIC uses a compressed
binary format.)

Loads the program from disk into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes
all files before 'LOADing. If R is
included, however, open data files are
kept open. Thus programs can be
chained or loaded in sections and
access the same data files.

RUN <filename>[,R]

MERGE <filename>

KILL <filename>

NAME <old filename>
AS<new filename>

B.2 PROTECTED FILES

Page B-2

RUN <filename> loads the program from
disk into memory and runs it. RUN
deletes the current contents of memory
and closes all files before loading
the program. If the R option is
included, however, all open data files
are kept open.

Loads the program from disk into
memory but does not delete the current
contents of memory. The program line
numbers on disk are merged with the
line numbers in memory. If two lines
have the same number, only the line
from the disk program is saved. After
a MERGE command, the "merged" 'progr am
resides in memory, and BASIC returns
to command level.

Deletes the file from the disk.
<filename> may be a program file, or a
sequential or random access data file.

To change the name of a disk file,
execute the NAME statement, NAME
<oldfile> AS <newfile>. NAME may be
used with program files, random files,
or sequential files.

If you wish to save a program in an encoded binary format,
use the "Protect" option with the SAVE command. For
example:

SAVE "MYPROG",P

A program saved this way cannot be listed or edited. You
may also want to save an unprotected copy of the program for
listing and editing purposes.

B.3 DISK DATA FILES = SEQUENTIAL AND RANDOM I/O

There are two types of disk data files that may be created
and accessed by a BASIC-aO program: sequential files and
random access files.

Page B-3

B.3.l Sequential Files

Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to
accessing the data. The data that is written to a
sequential file is stored, one item after another
(sequentially), in the order it is sent and is read back in
the same way.

The statements and functions that are used with sequential
files are:

OPEN

CLOSE

PRINT#
PRINT# USING

EOF LaC

INPUT# WRITE#
LINE INPUT#

The following program steps are required to create a
sequential file and access the data in the file:

1. OPEN the file in "0" mode.

2. Write data to the file
using the PRINT# statement.
(WRITE# may be used instead.)

3. To access the data in the
file, you must CLOSE the file
and reOPEN it in "I" mode.

4. Use the INPUT# statement to
read data from the sequential
file into the program.

OPEN "0", #1, "DATA"

PRINT#l,A$;B$iC$

CLOSE #1
OPEN "I",#l,"DATA"

INPUT#l,X$,Y$,Z$

Program B-1 is a short program that creates a sequential
file, "DATA", from information you input at the terminal.

10 OPEN "O",tl,"DATA"
20 INPUT "NAME"iN$
25 IF N$="DONE" THEN END
30 INPUT "DEPARTMENT";D$
40 INPUT "DATE HIRED";H$
50 PRINTtl,N$i",";D$;",";H$
60 PRINT:GOTO 20
RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.

PROGRAM B-1 - CREATE A SEQUENTIAL DATA FILE

Page B-4

Page B-5

Now look at Program B-2. It accesses the file "DATA" that
was created in Program B-1 and displays the name of everyone
hired in 1978.

10 OPEN "I",il,"DATA"
20 INPUTil,N$,D$,H$
30 IF RIGHT$(H$,2)="78" THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

PROGRAM B-2 - ACCESSING A SEQUENTIAL FILE

Program B-2 reads, sequentially, every item in the file.
When all the data has been read, line 20 causes an "Input
past end" error. To avoid getting this error, insert line
15 which uses the EOF function to test 'for end-of-file:

15 IF EOF(I) THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can also write
formatted data to the disk with the PRINTi USING statement.
For example, the statement

PRINTil,USING"iiii.i#,";A,B,C,D

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string
serves to separate the items in the disk file.

The LOC function, when used with a sequential file, returns
the number of sectors that have been written to or read from
the file since it was OPENed. A sector is a l28-byte block
of data.

B.3.l.l Adding Data To A Sequential File -
If you have a sequential file residing on disk and later
want to add more data to the end of it, you cannot simply
open the file in "0" mode and start writing data. As soon
as you open a sequential file in "0" mode, you destroy its
current contents. The follow~ng procedure can be used to
add data to an existing file called "NAMES".

Page B-6

1. OPEN "NAMES" in "I" mode.

2. OPEN a second file called "COPY" in "0" mode.

3. Read in the data in "NAMES" and write it to "COpy".

4. CLOSE "NAMES" and KILL it.

5. Write the new information to "COPY".

6. Rename "COPY" as "NAMES" and CLOSE.

7. Now there is a file on disk called "NAMES" that
includes all the previous data plus the new data
you just added.

Program B-3 illustrates this technique. It can be used to
create or add onto a file called NAMES. This program also
illustrates the use of LINE INPUTi to read strings with
embedded commas from the disk file. Remember, LINE INPUTi
will read in characters from the disk until it sees a
carriage return (it does not stop at quotes or commas) or
until it has read 255 characters.

10 ON ERROR GOTO 2000
20 OPEN "I",il,"NAMES"
30 REM IF FILE EXISTS, WRITE IT TO "COPY"
40 OPEN "O",i2,"COPY"
50 IF EOF(l) THEN 90
60 LINE INPUT#l,A$
70 PRINTi2,A$
80 GOTO 50
90 CLOSE il
100 KILL "NAMES"
110 REM ADD NEW ENTRIES TO FILE
120 INPUT "NAME"iN$

Page B-7

130 IF N$="" THEN 200 ~CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT "ADDRESS? "iA$
150 LINE INPUT "BIRTHDAY? niB$
160 PRINTi2,N$
170 PRINTi2,A$
180 PRINT#2,B$
190 PRINT:GOTO 120
200 CLOSE
205 REM CHANGE FILENAME BACK TO "NAMES"
210 NAME "COPY" AS "NAMES"
2000 IF ERR=53 AND ERL=20 THEN OPEN "O",i2,"COPY":RESUME 120
2010 ON ERROR GOTO 0

PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

The error trapping routine in line 2000 traps a "File does
not exist" error in line 20. If this happens, the
statements that copy the file are skipped, and "COPY" is
created as if it were a new file.

B.3.2 Random Files

Creating and accessing random files requires more program
steps than sequential files,' but there are advantages to
using random files. One advantage is that random files
require less room on the disk, because BASIC stores them in
a packed binary format. (A sequential file is stored as a
series of ASCII characters.)

The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk -- it is not
necessary to read through all the information, as with
sequential files. This is possible because the information
is stored and accessed in distinct units called records and
each record is numbered.

The statements and functions that are used with random files
are:

OPEN FIELD

PUT CLOSE

MKI$ CVI
MKS$ CVS
MKD$ CVD

LSET/RSET

LOC

GET

Page B-8

B.3.2.1 Creating A Random File -
The following program steps-aFe required to create a random
file.

1.

2.

3.

4.

OPEN the file for random
access ("R" mode). This example
specifies a record length of 32
bytes. If the record length is
omitted, the default is 128
bytes.

Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be written to the random
file.

Use LSET to move the data
into the random buffer.
Numeric values must be made
into strings when placed in
the buffer. To do this, use the
"make" functions: MKI$ to
make an integer value into a
string, MKS$ for a single
precision value, and MKD$ for
a double precision value.

Write the data from
the buffer to the disk
using the PUT statement.

OPEN "R",#1,"FILE",32

FIELD #1 20 AS N$,
4 AS A$, 8 AS p$

LSET N$=X$
LSET A$=MKS$(AMT)
LSET P$=TEL$

PUT #l,CODE%

Look at Program B-4. It takes information that is input at
the terminal and writes it to a random file. Each time the
PUT statement is executed, a record is written to the file.
The two-digit code that is input in line-30 becomes the
record number.

Do not use a
variable in
statement.
pointer for
point into
instead of
buffer.

10 OPEN "R",ll,"FILE",32

NOTE

FIELDed string
an INPUT or LET

This causes the
that variable to
string space

the random file

20 FIELD 11,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE"iCODE%
40 INPUT "NAME"iX$
50 INPUT "AMOUNT"iAMT
60 INPUT "PHONE"iTEL$:PRINT
70 LSET N$=X$
80 LSET A$=MKS$(AMT)
90 LSET P$=TEL$
100 PUT Il,CODE%
110 GOTO 30

PROGRAM B-4 - CREATE A RANDOM FILE

B.3.2.2 Access A Random File -

Page 8-9

The following program steps are required to access a random
file:

1.

2.

OPEN the file in "R" mode.

Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be read from the file.

NOTE:
In a program that performs both
input and output on the same random
file,' you can often use just one
OPEN statement and one FIELD
statement.

OPEN "R",ll,"FILE",32

FIELD II 20 AS N$,
4 AS A$, 8 AS P$

3.

4.

Use the GET statement to move
the desired record into the
random buffer.

The data in the buffer may
now be accessed by the program.
Numeric values must be converted
back to numbers using the
"convert" functions: CVI for
integers, CVS for single
precision values, and CVD
for double precision values.

GET il,CODE%

PRINT N$
PRINT CVS(A$)

Page B-lO

Program B-5 accesses the random file "FILE" that was created
in Program B-4. By inputting the three-digit code at the
terminal, the information associated with that code is read
from the file and displayed.

10 OPEN "R",il,"FILE",32
20 FIELD iI, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
40 GET iI, CODE%
50 PRINT N$
60 PRINT USING "$$iii.ii";CVS(A$)
70 PRINT P$:PRINT
80 GOTO 30

PROGRAM B-5 - ACCESS A RANDOM FILE

The LOC function, with random files, returns the "current
record number." The current record number is one plus the
last record number that was used in a GET or PUT statement.
For example, the statement

IF LOC(l) >50 THEN END

ends program execution if the current record number in
fileil is higher than 50.

Program B-6 is an inventory program that illustrates random
file access. In this program, the record number is used as
the part number, and it is assumed the inventory will
contain no more than 100 different part numbers. Lines
900-960 initialize the data file by writing CHR$(255) as the
first character of each record. This is used later (line
270 and line 500) to determine whether an entry already
exists for that part number.

Lines 130-220 display the different inventory functions that
_ the program performs. When you type in the desired function

number, line 230 branches to the appropriate subroutine.

Page B-11

120 OPEN"R",i1,"INVEN.OAT",39
125 FIELDil,1 AS F$,30 AS 0$, 2 AS Q$,2 AS R$,4 AS P$
130 PRINT:PRINT "FUNCTIONS:":PRINT
135 PRINT 1,"INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRY"
150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
160 PRINT 4,"ADD TO STOCK"
170 PRINT 5,"SUBTRACT FROM STOCK"
180 PRINT 6, "DISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRINT:PRINT:INPUT"FUNCTION"jFUNCTION
225 IF (FUNCTION<1)OR(FUNCTION>6) THEN PRINT

"BAD FUNCTION NUMBER" :GO TO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$} <>255 THEN INPUT"OVERWRITE"jA$:

IF A$<>"Y" THEN RETURN
280 LSET F$=CHR$(O)
290 INPUT "OESCRIPTION"jOESC$
300 LSET D$=OESC$
310 INPUT "QUANTITY IN STOCK"jQ%
320 LSET Q$=MKI$(Q%}
330 INPUT "REORDER LEVEL"jR%
340 LSET R$=MKI$(R%}
350 INPUT "UNIT PRICE"jP
360 LSET P$=MKS$(P}
370 PUTi1,PART%
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$}=255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER ii#"jPART%
430 PRINT D$
440 PRINT USING "QUANTITY ON HAND iiiii" j'CVI (Q$)
450 PRINT USING "REORDER LEVEL iiiii"jCVI(R$}
460 PRINT USING "UNIT PRICE $$i#.ii"jCVS{P$}
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
510 PRINT D$:INPUT "QUANTITY TO ADD "jA%
520 Q%=CVI(Q$)+A% ,
530 LSET Q$=MKI$(Q%}
540 PUTi1,PART%
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$}=255 THEN PRINT "NULL ENTRY":RETURN
590 PRINT 0$
600 INPUT "QUANTITY TO SUBTRACT"jS%
610 Q%=CVI(Q$)
620 IF (Q%-S%)<O THEN PRINT "ONLY"jQ%j" IN STOCK":GOTO 600
630 Q%=Q%-S%

640 IF Q%=<CVI(R$) THEN PRINT "QUANTITY NOW":Q%:
" REORDER LEVEL" :CVI (R$)

650 LSET Q$=MKI$(Q%)
660 PUT#I,PART%
670 RETURN
680 DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR I=1 TO 100
710 GET#I,I
720 IF CVI(Q$} <CVI(R$) THEN PRINT D$:" QUANTITY":

CVI(Q$) TAB (50) "REORDER LEVEL"iCVI(R$)
730 NEXT I
740 RETURN
840 INPUT "PART NUMBER"iPART%

Page B-12

850 IF(PART%<1}OR(PART%>100) THEN PRINT "BAD PART NUMBER":
GOTO 840 ELSE GET#I,PART%:RETURN

890 END
900 REM INITIALIZE FILE
910 INPUT "ARE YOU SURE"iB$:IF B$<>"Y" THEN RETURN
920 LSET F$=CHR$(255)
930 FOR I=1 TO 100
940 PUTtl,I
950 NEXT I
960 RETURN

PROGRAM B-6 - INVENTORY

APPENDIX C

Assembly Language Subroutines

All versions of BASIC-aO have prov1s10ns for interfacing
with assembly language subroutines. The USR function allows
assembly language subroutines to be called in the same way
BASIC~s intrinsic functions are called.

NOTE

The addresses of the DEINT,
GIVABF, MAKINT and FRCINT
routines are stored in
locations that must be
supplied individually for
different implementations of
BASIC.

C.l MEMORY ALLOCATION

Memory space must be set aside for an assembly language
subroutine before it can be loaded. During initialization,
enter the highest memory location minus the amount of memory
needed for the assembly language subroutine(s). BASIC uses
all memory available from its starting location up, so only
the topmost locations in memory can be set aside for user
subroutines.

When an assembly language subroutine is called, the stack
pointer is set up for a levels (16 bytes) of stack storage.
If more stack space is needed, BASIC~s stack can be saved
and a new stack set up for use by the assembly language
subroutine. BASIC~s stack must be restoredi however, before
returning from the subroutine.

Page C-2

The assembly language subroutine may be loaded into memory
by means of the system monitor, or the BASIC POKE statement,
or (if the user has the MACRO-SO or FORTRAN-SO package)
routines may be assembled with MACRO-SO and loaded using
LINK-SO.

C.2 USR FUNCTION CALLS - SK BASIC

The starting address of the assembly language subroutine
must be stored in USRLOC, a two-byte location in memory that
is supplied individually with different implementations of
BASIC-SO. With SK BASIC, the starting address may be POKEd
into USRLOC. Store the low order byte first, followed by
the high order byte.

The function USR will call the routine whose address is in
USRLOC. Initially USRLOC contains the address of ILLFUN,
the routine that gives the "Illegal function call" error.
Therefore, if USR is called without changing the address in
USRLOC, an "Illegal function call" error results.

The format of a USR function call is

USR(argument)

where the argument is a numeric expression. To obtain the
argument, the assembly language subroutine must call the
routine DEINT. DEINT places the argument into the D,E
register pair as a 2-byte, 2~s complement integer. (If the
argument is not in the range -32768 to 32767, an "Illegal
function call" error occurs.)

To pass the result back from an assembly language
subroutine, load the value in register pair [A,B], and call
the routine GIVABF. If GIVABF is not called, USR(X) returns
X. To return to BASIC, the assembly language subroutine
must execute a RET instruction.

For example, here is an assembly language subroutine that
mUltiplies the argument by 2:

USRSUB: CALL DEINT iPut arg in D,E
XCHG imove arg to B,L
DAD H iH,L=H,L+H,L
MOV A,H imove result to A,B
MOV B,L
JMP GIVABF ipass result back and RETurn

Note that valid results will be obtained from this routine
for arguments in the range -163S4<=x<=16383. The single
instruction JMP GIVABF has the same effect as:

CALL GIVABF
RET

Page C-3

To return additional values to the program, load them into
memory and read them with the PEEK function.

There are several methods by which a program may call more
than one USR routine. For example, the starting address of
each routine may be POKEd into USRLOC prior to each USR
call, or the argument to USR could be an index into a table
of ijSR routines.

C.3 USR FUNCTION CALLS - EXTENDED AND DISK BASIC

In the Extended and Disk versions, the format of the USR
function is

USR[<digit>] (argument)

where DIGIT> is from 0 to 9 and the argument is any numeric
or string expression. <digit> specifies which USR routine
is being called, and corresponds with the digit supplied in
the DEF USR statement for that routine. If <digit> is
omitted, USRO is assumed. The address given in the DEF" USR
statement determines the starting address of the subroutine.

When the USR function call is made, register A contains a
value that specifies the type of argument that was given.
The value in A may be one of the following:

Value in A ~ of Argument

2 Two-byte integer (two~s complement)

3 String

4 Single precision floating point number

8 Double precision floating point number

If the argument is a number, the [H,L] register pair points
to the Floating Point Accumulator (FAC) where the argument
is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and

FAC-2 contains the middle 8 bits of mantissa and
FAC-l contains the highest 7 bits of mantissa
with leading 1 suppressed (implied). Bit 7 is
the sign of the number (O=positive, l=negative).
FAC is the exponent minus 128, and the binary
point is to the left of the most significant
bit of the mantissa.

Page C-4

If the argument is a double precision floating point number:

FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits).

If the
to 3
string
255) •
8 bits

argument is a string, the [D,E] register pair points
bytes called the "string descriptor." Byte 0 of the
descriptor contains the length of the string (0 to

Bytes land 2, respectively, are the lower and upper
of the string starting address in string space.

CAUTION: If the argument is a string literal in the
program, the string descriptor will point to program text.
Be careful not to alter or destroy your program this way.
To avoid unpredictable results, add +"" to the string
literal in the program. Example:

A$ = "BASIC-80"+""

This will cop~ the strin~ literal into string space and will
prevent alteration of program text during a subroutine call.

Usually, the value returned by a USR function is the same
type (integer, string, single precision or double precision)
as the argument that was passed to it. However, calling the
MAKINT routine returns the integer in [H,L] as the value of
the function, forcing the value returned by the function to
be integer. To execute MAKINT, use the following sequence
to return from the subroutine:

PUSH
LHLD
XTHL

RET

H
xxx

isave value to be returned
iget address of MAKINT routine
isave return on stack and
iget back [H,L]
;return

Also, the argument of the function~ regardless of its type,
may be forced to an integer by calling the FRCINT routine to
get the integer value of the argument in [H,Ll. Execute the
following routine:

LXI H iget address of subroutine
icontinuation

PUSH H iplace on stack
LHLD xxx iget address of FRCINT
peHL

SUB1:

Page C-S

C.4 CALL STATEMENT

Extended and Disk BASIC-80 user function calls may also be
made with the CALL statement. The calling sequence used is
the same as that in Microsoft~s FORTRAN, COBOL and BASIC
compilers.

A CALL statement with no arguments generates a simple "CALL"
instruction. The corresponding subroutine should return via
a simple "RET." (CALL and RET are 8080 opcodes - see an 8080
reference manual for details.)

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For each argument
argument list, a parameter is passed to the
That parameter is the address of the low
argument. Therefore, parameters always occupy
each, regardless of type.

in the CALL
subroutine.
byte of the

two bytes

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC
(if present) •

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL.

2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3) •

Note that, with this scheme, the subroutine must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. There are no checks for
the correct number or type of parameters.

If the subroutine expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system
subroutine which will perform this transfer. This argument
transfer routine is named $AT (located in the FORTRAN
library, FORLIB.REL), and is called with.HL pointing to the
local data area, BC pointing to the third parameter, and A
containing the number of arguments to transfer (i.e., the
total number of arguments minus 2). The subroutine is

Page C-6

responsible for saving the first
calling $AT. For example, if a
parameters, it should look like:

two parameters before
subroutine expects 5

SUBR: SHLD
XCHG
SHLD
MVI
LXI
CALL

Pl

P2
A,3
H,P3
$AT

:SAVE PARAMETER 1

:SAVE PARAMETER 2
iNO. OF PARAMETERS LEFT
:POINTER TO LOCAL AREA
:TRANSFER THE OTHER 3 PARAMETERS

[Body of subroutine]

Pl:
P2:
P3:

RET
DS
DS
DS

2
2
6

: RETURN TO CALLER
iSPACE FOR PARAMETER 1
iSPACE FOR PARAMETER 2
:SPACE FOR PARAMETERS 3-5

A listing of the argument transfer routine $AT follows.

00100 . ARGUMENT TRANSFER ,
00200 i [B, C] POINTS TO 3RD PARAM.
00300 :[H,L] POINTS TO LOCAL STORAGE FOR PARAM 3
00400 i [A1 CONTAINS THE i OF PARAMS TO XFER (TOTAL-2)
00500
00600
00700 ENTRY $AT

- 00800 $AT: XCHG :SAVE [H,L] IN [D,E]
00900 MOV H,B
01000 MOV L,C i [H,L] = PTR TO PARAMS
01100 ATl: MOV C,M
01200 INX H
01300 MOV B,M
01400 INX H :[B,C] = PARAM ADR
01500 XCHG : [H,L] POINTS TO LOCAL STORAGE
01600 MOV M,C
01700 INX H
01800 MOV M,B
01900 INX H :STORE PARAM IN LOCAL AREA

- 02000 XCHG iSINCE GOING BACK TO AT1
02100 DCR A :TRANSFERRED ALL PARAMS?
02200 JNZ AT1 iNO, COpy MORE
02300 RET i YES, RETURN

Page C-7

When accessing parameters in a subroutine, don~t forget that
they are pointers to the actual arguments passed.

NOTE

It is entirely up to the
programmer to see to it that
the arguments in the calling
program match in number, ~,
and length with the parameters
expected by the subroutine.
This applies to BASIC
subroutines, as well as those
written in assembly language.

C.S INTERRUPTS

Assembly language subroutines can be written to handle
interrupts. All interrupt handling routines should save the
stack, register A-L and the PSW. Interrupts should always
be re-enabled before returning from the subroutine., since
an interrupt automatically disables all further interrupts
once it is received. The user should be aware of which
interrupt vectors .are free in the particular version of
BASIC that has been supplied. (Note to CP/M users: In CP/M
BASIC, all interrupt vectors are free.)

APPENDIX D

BASIC-80 with the CP/M Operating System

The CP/M version of BASIC-80 (MBASIC) is
standard size 3740 single density diskette.
file is MBASIC.COM. (A 28K or larger
recommended.)

supplied on a
The name of the

CP/M system is

To run MBASIC, bring up CP/M and type the following:

A>MBASIC <carriage return>

The system will reply:

xxxx Bytes Free
BASIC-80 Version S.O
(CP/M Version)
Copyright 1978 (C) by Microsoft
Created: dd-mmm-yy
Ok

MBASIC is the same as Disk BASIC-SO as described in this
manual, with the following exceptions:

D.1 INITIALIZATION

The initialization dialog has been replaced by a set of
options which are placed after the MBASIC command to CP/M.
The format of the command line is:

A>MBASIC [<filename>] [/F:<number of files>] [/M:<highest memory location>]
[/S:<maximum record size>]

If <filename> is present, MBASIC proceeds as if a RUN
<filename> command were typed after initialization is
complete. A default extension of .BAS is used if none is
supplied and the filename is less than 9 characters long.
This allows BASIC programs to be executed in batch mode
using the SUBMIT facility of CP/M. Such programs should
include a SYSTEM statement (see below) to return to CP/M
when they have finished, allowing the next program in the

Page 0-2

batch stream to execute.

If /F:<number of files> is present, it sets the number of
disk data files that may be open at anyone time during the
execution of a BASIC program. Each file data block
allocated in this fashion requires 166 bytes of memory. If
the /F option is omitted, the number of files defaults to 3.

The /M:<highest memory location> option sets the highest
memory location that will be used by MBASIC. In some cases
it is desirable to set the amount of memory well below the
CP/M~s FOOS to reserve space for assembly language
subroutines. In all cases, <highest memory location> should
be below the start of FOOS '(whose address is contained in
locations 6 and 7). If the /M option is omitted, all memory
up to the start of FOOS is used.

/S:<maximum record size> may be added at the end of the
command line to set the maximum record size for use with
random files. The default record size is 128 bytes.

Examples:

NOTE

<number of files>, <highest
memory location>, and <maximum
record size> are numbers that
may be either decimal, octal
(preceded by &0) or
hexadecimal (preceded by &H).

A>MBASIC PAYROLL. BAS Use all memory and 3 files,
load and execute PAYROLL. BAS.

A>MBASIC INVENT/F:6

A>MBASIC /M:32768

Use all memory and 6 files,
load and execute INVENT. BAS.

Use first 32K of memory and
3 files.

A>MBASIC OATACK/F:2/M:&H9000

0.2 OISK FILES

Use first 36K of memory, 2
files, and execute OATACK.BAS.

Oisk filenames follow the normal CP/M naming conventions.
AIl- filenames may include A: or B: as the first two
characters to specify a disk drive, otherwise the currently
selected drive is assumed. A default extension of .BAS is

Page 0-3

used on LOAD, SAVE, MERGE and RUN <filename> commands if no
"" appears in the filename and the filename is less than 9
characters long.

For systems with CP/M 2.x, large random files are supported.
The maximum logical record number is 32767. If a record
size of 256 is specified, then files up to 8 megabytes can
be accessed.

0.3 FILES COMMAND

Format:

Purpose:

Remarks:

Examples:

FILES[<filename>]

To print the names of files residing on the
current disk.

If <filename> is omitted, all the files on the
currently selected drive will be listed.
<filename> is a string formula which may contain
question marks (?) to match any character in the
filename or extension. An asterisk (*) as the
first character of the filename or extension
will match any file or any extension.

FILES
FILES "*.BAS"
FILES "B:*.*"
FILES "TEST?BAS"

0.4 RESET COMMAND

Format:

Purpose:

Remarks:

RESET

To close all disk files and write the directory
information to a diskette before it is removed
from a disk drive.

Always execute a RESET command before removing a
diskette from a disk drive. Otherwise, when the
diskette is used again, it will not have the
current directory information written on the
directory track.

RESET· closes all open files on
writes the directory track
with open files.

all drives and
to every diskette

Page D-4

D.5 LOF FUNCTION

Format:

Action:

Example:

D.6 EOF

LOF«file number»

Returns the number of records present in the
last extent read or written. If the file does
not exceed one extent (128 records), then LOF
returns the true length of the file.

110 IF NUM%>LOF(l) THEN PRINT "INVALID ENTRY"

With CP/M, the EOF function may be used with random files.
If a GET is done past the end of file, EOF will return -1.
This may be used to find the size of a file using a binary
search or other algorithm.

D.7 MISCELLANEOUS

1. CSAVE and CLOAD are not implemented.

2. To return to CP/M, use the SYSTEM command or
statement. SYSTEM closes all files and then
performs a CP/M warm start. Control-C always
returns to MBASIC, not to CP/M.

3. FRCINT is at 103 hex and MAKINT is at· 105 hex.
(Add 1000 hex for ADDS versions, 4000 for SBC CP/M
versions.)

APPENDIX E

BASIC-BO with the ISIS-II Operating System

With ISIS-II, BASIC-BO is the same as described in this
manual, with the following exceptions:

E.l INITIALIZATION

The initialization dialog has been replaced by a set of
options which are placed after the MBASIC command to
ISIS-II. The format of the command line is:

-MBASIC [<filename>] [/F:<number of files>] [/M:<highest memory location>]
[/S:<maximum record size>]

If <filename> is present, BASIC proceeds as if a RUN
<filename> command were typed after initialization is
complete. A default extension of .BAS is used if none is
supplied.

If /F:<number of files> is present, it sets the number of
disk data files that may be open at anyone time during the
execution of a BASIC program. The maximum is six and the
default is three. The /M:<highest memory location> option
sets the highest memory location that will be used by BASIC.
Use this option to reserve memory locations above BASIC for
assembly language subroutines. /S:<maximum record size> may
be added at the end of the command line to set the maximum
record size for use with random files. The default record
size is 12B bytes.

At initialization, the system will reply:

xxxx Bytes Free
BASIC-BO Version x.x
(ISIS-II Version)
Copyright 1978 (C) by Microsoft

Page E-2

E.2 ~ PRINTER I/O

To send output to the printer during execution of a BASIC
program, open the line printer as if it were a disk file:

50 N=4
100 OPEN "O",N,":LP:"

120 PRINT #N,A,B,C

Since BASIC buffers disk I/O, you may want to force buffers
out by CLOSEing the printer channel.

To LIST a program on the line printer, use:

SAVE II : LP : " , A

E.3 ATTRIB STATEMENT

In ISIS-II BASIC-SO, the ATTRIB statement
attributes. The format of the statement is:

ATTRIB <filename string>,<attribute string>

sets file

The attribute string consists of F, W, S or I for the
attribute, followed by a 1 to set the attribute or a 0 to
reset.

Examples:

ATTRIB "INFO.DAT","Wl"
ATTRIB "GHOST.BAS","Il"
ATTRIB ":Fl:SYSFIL","WlFlSlIl"
ATTRIB A$,B$

E.4 MISCELLANEOUS

Note these other differences for ISIS-II BASIC:

1. MAKINT is located at 3903 hex, and GIVINT is
located at 3905 hex.

2. There is no
Filenames do
and MERGEs.

FILES command in ISIS-II BASIC.
not default to .BAS on SAVEs, LOADs,

APPENDIX F

BASIC-SO with the TEKDOS Operating System

The operation of BASIC-SO with the TEKDOS operating system
is the same as described in this manual with the following
exceptions:

1. At initialization, BASIC asks MEMORY SIZE? If you
respond with a carriage return, BASIC will use all
available memory. If you respond with a memory
location (in decimal), BASIC will use memory only
up to that location. This lets you reserve space
at the top of memory for assembly language
subroutines.

2. The number of disk files that may be open at one
time defaults to 5.

3. LPRINT and LLIST are not implemented.
open a file to the printer.

Instead,

4. TEKDOS does not support random disk I/O.
corresponding BASIC-SO statements (PUT,
OPEN"R", etc.) are inoperable under TEKDOS.

The
GET,

5. Control-C works only once due to a bug in TEKDOS.
If you interrupt a running program or a LIST
command with Control-C, BASIC appears to be in
"single statement" mode. To clear this condition,
exit BASIC with a SYSTEM command and re-enter BASIC
with an XEQ BASIC. Avoid using the AUTO command,
since it requires a Control-C to return to BASIC
command level.

APPENDIX G

BASIC-80 with the INTEL SBC and MDS Systems

G.I INITIALIZATION

The paper tape of BASIC-80 supplied for SBC and MDS systems
is in Intel-compatible hex format. Use the monitor~s R
command to load the tape, then execute the G command to
start BASIC-80. The command is:

.G4000

BASIC will respond:

Memory size?

If you want BASIC to use all available RAM, just type a
carriage return. If you want to reserve space at the top of
memory for machine language subroutines, enter the highest
memory address (in decimal) that BASIC may use.

Terminal Width?

(8K versions only) Respond with the number of characters for
the output line width in PRINT statements. The default is
72 characters. (Extended versions use WIDTH command.)

Want SIN-COS-TAN-ATN?

Type Y' to retain these functions, type N to delete them, or
type A to delete ATN only.

G.2 SUBROUTINE ADDRESSES

In the 8K version of SBC and MDS BASIC-80, DEINT is located
at 0043 hex and GIVABF is located at 0045 hex. USRLOC is at
xxxx hex. In the Extended version, FRCINT is located at
xxxx hex, and MAKINT is located at xxx x hex.

Page G-2

G.3 LLIST AND LLPRINT

LLIST and LPRINT are not implemented.

APPENDIX H

Standalone Disk BASIC

Standalone Disk BASIC is an easily implemented,
self-contained version of BASIC-aD that runs on almost any
aoao or ZSO based disk hardware without an operating system.
Standalone Disk BASIC incorporates several unique disk I/O
methods that make faster and more efficient use of disk
access and storage.

Random access with Standalone BASIC is faster than other
disk operating systems because the file allocation table is
kept in memory and updated periodically on the diskette.
Therefore, there is no need for index blocks for random
files, and there is no need to distinguish between random
and sequential files. Because there are no index blocks,
there is no large per-file-overhead either in memory or on
disk. Binary SAVEs and LOADs are also faster because they
are optimized by cluster, i.e., an entire cluster is read or
written at one time, instead of a single sector.

To initialize Standalone Disk BASIC, insert the BASIC
diskette and power up the system. In one- or two-drive
systems, BASIC asks if there are two drives. In systems
with more than two drives, BASIC asks for the number of
drives. BASIC then asks how many files, i.e., how many disk
files may be open at one time. Answer with a number from 0
to 15, or, for a default of 1 file per drive, just enter a
carriage return.

The operation of Standalone Disk BASIC is the same as Disk
BASIC-SO as described in this manual, with the following
exceptions:

H.l FILENAMES

The format for disk filenames is:

[drive#:]filename[.extension]

The first drive is 1.

Page H-2

Disk filenames are six characters with an optional
three-character extension that is preceded by a decimal
point. If a decimal point appears ~n a filename after fewer
than six characters, the name ~s blank-filled to six
characters and the next three characters are the extension.
If the filename is six or fewer characters with no decimal
point, there is no extension. If the filename is more than
six characters, BASIC inserts a decimal point after the
sixth character and uses the next three characters as an
extension. (Any additional characters are ignored.)

H.2 DISK FILES

The FILES command prints the names of the files residing on
a disk. The format is: [L]FILES[<drive number>]
LFILES outputs to the line printer. In addition to the
filename, the size of each file, in clusters, is output. A
cluster is the minimum unit of allocation for a file -- it
is one-half of a track. Filenames of files created with
OPEN or ASCII SAVE are listed with a space between the name
and extension. Filenames of binary files created with
binary SAVE are listed with a decimal point between the name
and extension. The protected file option with SAVE is not
supported in Standalone Disk BASIC.

B.3 FPOS

The FPOS function:

FPOS«file number»

is the same as BASIC-80~s LOC function except it returns the
number of the physical sector where <filenumber> is located.
(BASIC-80~s LOC function and CP/M BASIC-80~s LOF function
are also implemented.)

B.4 DSKI$/DSKO$

The OSKO$ statement:

DSKO$<drive>,<track>,<sector>,<string expression>

writes the string on the specified sector. The maximum
length for the string is 128 characters. A string of fewer
than 128 characters is zero-filled at the end to 128
characters.

Page H-3

DSKI$ is the complementary function to the DSKO$ statement.
DSKI$ returns the contents of a sector to a string variable
name. The format is:

DSKI$«drive>,<track>,<sector»

Example: A$=DSKI$(O,I,J)

H.S MOUNT COMMAND

Before a diskette can be used for file operations (i.e., any
disk I/O besides DSKI$, DSKO$, or IBM or USR modes), it must
be MOUNTed. The format of the command is:

MOUNT[<drive>[,<drive> •••]]

MOUNT with no arguments mounts all drives. When a diskette
is mounted, BASIC reads the File Allocation Table (see
Section H.Il.2) from the diskette into memory and checks it
for errors. If there are no errors, the disk is mounted.
If an error is found, BASIC reads one or both of the back-up
allocation tables from the diskette in an attempt to mount
the disk; and a warning message, "x copies of allocation
bad on drive y", is issued. x is I or 2 and y is the drive
number. When a warning occurs, it is a good idea to make a
new copy of the diskette. If all copies of the allocation
table are bad or if a free entry is encountered in the file
chain, a fatal error--"bad allocation table"--is given and
the diskette will not be mounted.

While a disk is mounted, BASIC occasionally writes the
allocation table to the directory track, but it does not
check for errors unless the read after write attribute is
set for that drive (see SET statement).

H.6 REMOVE COMMAND

REMOVE is the complement of MOUNT. Before a diskette can be
taken out of the drive, a REMOVE command must be executed.
The format of the command is:

REMOVE[<drive>[,<drive> •••]]

REMOVE writes three copies of the current allocation table
to disk and follows the same error-check procedure as MOUNT.
MOUNT and REMOVE replace the RESET command that is in
BASIC-SO.

NOTE

ALWAYS do a REMOVE before
taking a diskette out of a
drive. If you do not, the
diskette you took out will not
have an updated and checked
allocation table, and the data
on the next diskette inserted
will be destroyed when the
wrong allocation table is
written to the directory
track.

Page H-4

H.7 SET STATEMENT

The SET statement determines the attributes of the currently
mounted disk drive, a currently open file, or a file that
need not be open. The format of the SET statement is:

SET<drive> I i<file> I <filename>,<attribute string>

<attribute string> is a string of characters that determines
what attributes are set. Any characters other than the
following are ignored:

R Read after write
P Write protect
E EBCDIC conversion (if available)

Attributes are assigned in the following order:

1. MOUNT command

2.

When a MOUNT is done for a particular drive, the
first byte of the information sector on the
diskette (track 35, sector 20 for floppy; track
18, sector 13 for minifloppy) contains the
attributes for the disk. (octal values: R=lOO,
P=20, E=40)

SET<drive>,<attribute string> Statement
This statement sets the current attributes for
disk, in memory, while it is mounted.
attributes are not permanently recorded and
only while the disk is mounted.

the
The

apply

3. When a file is created, the permanent file
attributes recorded on the disk will be the same as
the current drive attributes.

Page H-5

4. SET<filename>,<attribute string> Statement
This statement changes' the permanent
attributes that are stored in the directory
for that file. It does not affect the
attributes.

file
entry
drive

5. When an existing file is OPENed, the attributes of
the file number are those of the directory entry.

6. SET#<file number>,<attribute string> Statement
This statement changes the attributes for that file
number but does not change the directory entry.

Examples:

SET 1,"R" Force read after write checking on all
output to drive 1

SET #l,IR" Force read after write for all output to
file 1 while it is open

SET #l,"P" Give write protect error if any output is
attempted to file 1

SET "TEST","P" Protect TEST from deletion and
modification

SET 1,"" Turn off all attributes for drive 1

H.8 ATTR$ FUNCTION

ATTR$ returns a string of the current attributes for a
drive, currently open file, or file that need not be open.
The format of ATTR$ is:

ATTR$«drive> I #<file number> I <filename»

For example:

SET 1,"R":A$=ATTR$(l) :PRINT A$
R
Ok

H.9 OPEN STATEMENT

The format for the OPEN statement in Standalone BASIC is:

OPEN <filename> [FOR <mode>] AS [#]<file number>

where <mode> is one of the following:

INPUT
OUTPUT
APPEND
IBM
USR

Page H-6

The mode determines only the initial positioning within the
file and the actions to be taken if the file does not exist.
The action taken in each mode is:

INPUT .

OUTPUT

APPEND

IBM

USR

The initial position is at the start of the file.
An error is returned if the file is not found.

The initial position is at the start of the file.
A new file is always created.

The initial position is at the end of the file.
An error is returned if the file is not found.

The initial position is after the last DSKI$.or
DSKO$. The file is then set up to write
contiguous. No file search is done. (The same
effect may be achieved in many cases by altering
the FORMAT program. See Section H.ll.2.l.)

Same as IBM mode except, instead of write
contiguous, USRO is called and returns the next
track/sector number. The USRO routine should read
the current track/sector from B,C and return the
next location in a,c. When USRO is first called,
B,C contains the track and sector number of the
previous DSKI$ or DSKO$.

If the FOR <mode> clause is omitted, the initial position is
at the start of the file. If the file is not found, it is
created.

Note that variable length records are not supported in
Standalone Disk BASIC. All records are 128 bytes in length.

USR mode is especially useful for creating diskettes that
require sector mapping. This is the case if the diskette is
intended for use on another system, for example, a CP/M
system. Instead of opening the file for write contiguous
(IBM mode), the USRO routine may be used to map the sectors
logically, as required by the other system.

When a file is OPENed FOR APPEND, the file mode is set to
APPEND and the record number is set to the last record of
the file. The program may subsequently execute disk I/O
statements that move the pointer elsewhere in the file.
When the last record is read, the file mode is reset to FILE

~ and the pointer is left at the end of the file. Then, if
you wish to append another record, execute:

GET#n,LOF(n)

This positions the pointer at the end of the file in
preparation for appending.

At anyone time, it is possible to have a particular

Page H-7

filename OPEN under more than one file number. This allows
different attributes to be used for different purposes. Or,
for program clarity, you may wish to use different file
numbers for different methods of access. Each file number
has a different buffer, so changes made under one file are
not accessible to (or affected by) the other numbers until
that record is written (e.g., GETin,LOC(n».

H.IO DISK I/O

A GET or PUT (i.e., random access) cannot be done on a file
that is OPEN FOR IBM or OPEN FOR USR. Otherwise, GET/PUT
may be executed along with PRINT#/INPUTi on the same file,
which makes midfile updating possible. The statement
formats for GET, PUT, PRINTi, and INPUT# are the same as
those in BASIC-80. The action of each statement in
Standalone BASIC is as follows:

GET If the "buffer changed" flag is set, write the
buffer to disk. Then execute the GET (read the
record into the buffer), and reset the position
for sequential I/O to the beginning of the buffer.

PUT Execute the PUT (write the buffer to the specified
record number), and set the "sequential I/O is
illegal" flag until a GET is done.

INPUTi If the buffer is empty, write it if the "buffer
changed" flag is set, then read the next buffer.

PRINTt Set the "buffer changed" flag. If the buffer is
full, write it to disk. Then, if end of file has
not been reached, read the next buffer.

H.lO.1 File Format

For a single density floppy, each file requires 137 bytes:
9 bytes plus the 128-byte buffer. Because the File
Allocation Table keeps random access information for all
files, random and sequential files are identical on the
disk. The only distinction is that sequential files have a
Control-Z (32 octal) as the last character of the last
sector. When this sector is read, it is scanned from the
end for a non-zero byte. If this byte is Control-Z, the
size of the buffer is set so that a PRINT overwrites this
byte. If the byte is not Control-Z, the size is set so the
last null seen is overwritten.

Any sequential file can be copied in random mode and remain
identical. If a file is written to disk in random mode

Page H-8

(i.e., with PUT
sequential mode,
detection.

instead
it will

of PRINT) and then read in
still have proper end of file

H.ll DISK ALLOCATION INFORMATION

with Standlone Disk BASIC, storage space on the diskette is
allocated beginning with the cluster closest to the current
position of the head. (This method is optimized for
writing. Custom versions can be optimized for reading.)
Disk allocation information is placed in memory when the
disk is mounted and is periodically written back to the
disk. Because this allocation information is kept in
memory, there is no need for index blocks for random files,
and there is no need to distinguish between random and
sequential files.

H.ll.l Directory Format

On the diskette, each sector of the directory track contains
eight file entries. Each file entry is 16 bytes long and
formatted as follows:

Bytes

0-8

9

10

11-15

Usage

Filename, 1 to 9 characters. The
first character may not be a or 2550

Attribute:
Octal

200 Binary file
100 Force read after write check

40 EBCDIC file
20 Write protected file

Excluding 200, these bits are the same
for the disk attribute byte which is the
first byte of the information sector.

Pointer into File Allocation Table
to the first cluster of the file~s
cluster chain.

Reserved for future expansion.

If the first byte of a filename is zero, that file entry
slot is free. If the first byte is 255, that slot is the
last occupied slot in the directory, i.e., this flags the
end of the directory.

H.ll.2 Drive Information

For each disk drive that is MOUNTed,
information is kept in memory:

1. Attributes

Page H-9

the following

Drive attributes are read from the information
sector when the drive is mounted and may be changed
with the SET statement. Current attributes may be
examined with the ATTR$ function.

2. Track Number
This is the current track while the disk is
mounted. Otherwise, track number contains 255 as a
flag that the disk is not mounted.

3. Modification Counter
This counter is incremented whenever an entry in
the File Allocation Table is changed. After a
given number of changes has been made, the File
Allocation Table is written to disk.

4. Number of Free Clusters
This is calculated when the drive is mounted, and
updated whenever a file is deleted or a cluster is
allocated.

5. File Allocation Table
The File Allocation Table has a one-byte entry for
every cluster allocated on the disk. If the
cluster is free, this entry is 255. If the cluster
is reserved, this entry is 254. If the cluster is
the last cluster of the file, this entry is 300
(octal) plus the number of sectors from this
cluster that were used. Otherwise, the entry is a
pointer to the next cluster of the file. The File
Allocation Table is read into memory when the drive
is mounted, and updated:

1. When a file is deleted

2. When a file is closed

3. When modifications to the table total twice the
number of sectors in a cluster (this can be
changed in custom versions)

4. When modifications to the table have been made
and the disk head is on (or passes) the
directory track.

Page H-IO

H.ll.2.1 FORMAT Program - Before mounting a
drive with a new diskette, run BASIC~s FORMAT program to
initialize the directory (set all bytes to 255), set the
information sector to 0, and set all the File Allocation
Table entries (except the directory track entry (254» to
"free" (255).

The FORMAT program is:

10 CLEAR 1500
20 A$=STRING$(128,255)
30 B$=STRING$(35*2,255}+STRING$(2,254}+STRING$(56,255)
40 FOR S=l TO 19:DSKO$ l,35,5,A$:NEXT
50 FOR 5=21 TO 25 5TEP 2:DSKO$ 1,35,5,B$
60 DSKO$ 1,35,S+1,A$:NEXT
70 DSKO$ l,35,20,CHR$(O}

After running FORMAT and MOUNTing the drive, files will be
allocated as usual, i.e., on either side of the directory
track.

The FORMAT program may be altered to pre-allocate selected
files. For instance, you may wish to use the FORMAT program
to pre-allocate files contiguously (as they would be
allocated in IBM mode). Then IBM and BASIC files may both
exist on the diskette. The altered FORMAT program must also
write the name of the file(s} to the directory track (i.e.,
files 1-8 in sector 1, files 9-16 in sector 2, etc.), so
BASIC knows where the files start.

H.ll.3 File Block

Each file on the disk has a file block that contains the
following information:

1. File Mode (byte 0)
This is the first byte (byte a) of the file block,
and its location may be read with
VARPTR(#filenumber). The location of any other
byte in the file block is relative to the file mode
byte. The file mode byte is one of the following:

(octal)
1
2
4

10
20
40

100
200

Input only
Output only
File mode
Append mode
Delete file
IBM mode
Special format (U5R)
Binary save

NOTE Page H-II

2.

3.

4.

5.

It is not recommended that the user attempt
to modify the next four bytes of the File
Allocation Table. Many unforeseen
complications may result.

Pointer to the File Allocation Table entry for
first cluster allocated to the file (+1)

Pointer to the File Allocation Table entry for
last cluster accessed (+2)

Last sector accessed (+3)

Disk number of file (+4)

the

the

6. The size of the last buffer read (+5). This is 128
unless the last sector of the file is not full
(i.e., Control-Z).

7. The current position in the buffer (+6). This is
the offset within the buffer for the next print or
input.

8. File flag (+7), is one of the following:
Octal

100 Read after write check
40 Read/Write EBCDIC, not ASCII

(Not available in all versions.)
20 File write protected
10 Buffer changed by PRINT

4 PUT has been done. PRINT/INPUT are
errors until a GET is done.
(See Section H.10.)

2 Flags buffer is empty

9. Terminal position for TAB function and comma in
PRINT statements (+8)

10. Beginning of sector buffer (+9), 128 bytes in
length

H.12 ADVANCED USES· OF FILE BUFFERS

1. Information may be passed from one program to
another by FIELDing it to an unopened file number
(not #0). The FIELD buffer is not cleared as long
as the file is not OPENed.

Page H-12

2. The FIELDed buffer for an unopened file can also be
used to format strings. For example, an
aO-character string could be placed into a FIELDed
buffer with LSET. The strings could then" be
accessed as four 20-character strings using their
FIELDed variable names. For example:

100 FIELD#l, ao AS A$
200 FIELD#l, 20 AS Al$, 20 AS A2$, 20 AS A3$, 20 AS A4$
300 LINE INPUT "CUSTOMER INFORMATION: ";B$
400 LSET A$=B$
500 PRINT "NAME ";Al$; ·'SSN: ";A2$

3. FIELD#O may be used as a temporary buffer, but note
that this buffer is cleared after each of the
following commands: FILES, LOAD, SAVE, MERGE, RUN,
DSKO$, MOUNT, OPEN.

4. The effect of PRINT[USING]# into a string may be
achieved by printing to a FIELDed buffer and then
accessing it without reopening the file. To assure
that this temporary buffer is not written to the
disk, return the pointer to the beginning of the
buffer and reset the "buffer changed" flag as
follows:

10 OPEN "D n FOR IBM AS l:REM THIS DOESN"-T USE SPACE
20 PRINT USING#l .••
30 P=PEEK(6+VARPTR(#1)) : REM OPTIONAL, TO GET LENGTH OF PRI~
USING
40 FIELDil ••• AS •••
SO Y=7+VARPTR(il)
60 POKE Y,PEEK(Y AND &360) : REM RESET BUFFER CHANGED FLAG
70 POKE 6+VARPTR,0:REM CLEAR POSITION IN BUFFER

H.13 STANDALONE BASIC DISK ERRORS

50 FIELD overflow
51 Internal error
52 Bad file number
53 File not found
54 File already open
55 Disk not mounted
56 Disk I/O error
57 File already exists
59 Disk already mounted
61 Input past end
62 Bad file name
63 Direct statement in file
64 Bad allocation table
65 Bad drive number
66 Bad track/sector
67 File write protected
68 Disk offline
69 Deleted record
70 Rename across disks
71 Sequential after PUT
72 Sequential I/O only
73 File not OPEN

H.14 DOUBLE DENSITY, DOUBLE SIDED DISKETTES

Page H-13

For diskettes with 256-byte sectors, DSKI$ and DSKO$ are
modified.

The DSKI$ function returns as its value the first 255 bytes
of the sector read.

The DSKO$ statement does not use the <string expression>
field. The format is:

DSKO$ <drive>,<track>,<sector>

In order to specify the data to write with DSKO$ and to
retrieve all 256 bytes of the data read by DSKI$, the user
must FIELD two or more variables (for a total of 256 bytes)
to the fileiO buffer. The FIELDed variables will be
identical to the data read with DSKI$ and written with
DSKO$. For example:

FIELDiO,128 AS A$,128 AS B$

For double-sided diskettes, the formats of DSKI$ and DSKO$
must also include the surface number:

DSKI$«drive>,<surface>,<track>,<sector»

DKSO$ <drive>,<surface>,<track>,<sector>
or

DKSO$ <drive>,<surface>,<track>,<sector>,<string exp>

APPENDIX I

Converting Programs to BASIc-ao

If you have programs written in a BASIC other than BASIC-aO,
some minor adjustments may be necessary before running them
with BASIC-aO. Here are some specific things to look for
when converting BASIC programs.

I.I STRING DIMENSIONS

Delete all statements that are used to declare the length of
strings. A statement such as DIM A$(I,J), which dimensions
a string array for J elements of length I, should be
converted to the BASIC-aO statement DIM A$(J).

Some BASICs use a comma or ampersand for string
concatenation. Each of these must be changed to a plus
sign, which is the operator for BASlc-ao string
concatenation.

In BASIC-aO, the MID$, RIGHT$, and
to take substrings of strings.
access the Ith character in A$,
substring of A$ from position
changed as follows:

LEFT$ functions are used
Forms such as A$(I) to

or A$(I,J) to take a
I to position J, must be

Other BASIC

X$=A$(I)
X$=A${I,J)

BASIc-ao

X$=MID$ (A$, I, 1)
X$=MID$(A$,I,J-I+l)

If the substring reference is on the left side of an
assignment and X$ is used to replace characters in A$,
convert as follows:

Other BASIC

A${I)=X$
A$(I,J)=X$

A${I)=X$
A${I,J9=X$

aK BASlc-ao

A$=LEFT${A$,I-I)+X$+MID$(A$,I+I)
A$=LEFT$(A$,I-l) iX$iMID$(A$,J+l)

Ext. and Disk BASIC-aO

MID$(A$,l,I)=X$
MID$(A$,I,J-I+l)=X$

Page I-2

I.2 MULTIPLE ASSIGNMENTS

Some BASICs allow statements of the form:

10 LET B=C=O

to set Band C equal to zero. BASIC-SO would interpret the
second equal sign as a logical operator and set B equal to
-1 if C equaled O. Instead, convert this statement to two
assignment statements:

10 C=O:B=O

I.3 MULTIPLE STATEMENTS

Some BASICs use a backslash (\) to separate multiple
statements on a line. with BASIC-SO, be sure all statements
on a line are separated by a colon (:).

I.4 MAT FUNCTIONS

Programs using the MAT functions available in some BASICs
must be rewritten using FOR ••• NEXT loops to execute
properly.

Code

NF

SN

RG

OD

FC

APPENDIX J

Summary of Error Codes and Error Messages

Number

1

2

3

4

5

Message

NEXT without FOR
A variable in a NEXT statement
correspond to any previously
unmatched FOR statement variable.

does not
executed,

Syntax error
A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, misspelled command or
statement, incorrect punctuation, etc.).

Return without GOSUB
A RETURN statement is encountered for
there is no previous, unmatched
statement.

Out of data

which
GOSUB

A READ statement is executed when there are
no DATA statements with unread data remaining
in the program.

Illegal function call
A parameter that is out of range is passed to
a math or string function. An FC error may
also occur as the result of:

1. a negative or unreasonably large
subscript

2. a negative or zero argument with LOG

3. a negative argument to SQR

4. a negative mantissa with a non-integer
exponent

OV 6

OM 7

UL 8

BS 9

DO 10

/0 11

ID 12

TM 13

Page J-2

5. a call to a USR function for which the
starting address has not yet been given

6. an improper argument to MID$, LEFT$,
RIGHT$, INP, OUT, WAIT, PEEK, POKE, TAB,
SPC, STRING$, SPACES, INSTR, or
ON ••• GOTO.

Overflow
The result of a calculation is too large to
be represented in BASIC-80~s number format.
If underflow occurs, the result is zero and
execution continues without an error.

Out of memory
A program is too large, has too many FOR
loops or GOSUBs, too many variables, or
expressions that are too complicated.

Undefined line
A line reference in a GaTO,
IF ••• THEN ••• ELSE or DELETE is
nonexistent line.

range

GOSUB,
to a

Subscript out of
An array element
subscript that
the array, or
subscripts.

is referenced either with a
is outside the dimensions of
with the wrong number of

Redimensioned array
Two DIM statements are given for the same
array, or a DIM statement is given for an
array after the default dimension of 10 has
been established for that array.

Division by zero
A division by zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is
supplied as the result of the involution, and
execution continues.

Illegal direct
A statement that is illegal in direct mode is
entered as a direct mode command.

Type mismatch
A string variable name is assigned a numeric
value or vice versa; a function that expects
a numeric argument is given a string argument
or vice versa.

os

LS

ST

eN

UF

14

15

16

17

18

Page J-3

Out of string space
String variables have caused BASIC to exceed
the amount of free memory remaining. BASIC
will allocate string space dynamically, until
it runs out of memory.

String too long
An attempt is made to create a string more
than 255 characters long.

String formula too complex
A string expression is too long or too
complex. The expression should be broken
into smaller expressions.

Can~t continue
An attempt is made to continue a program
that:

1. has halted due to an error,

2. has been modified during a break in
execution, or

3. does not exist.

Undefined user function
A USR function is called before the function
definition (DEF statement) is given.

Extended and Disk Versions Only

19 No RESUME
An error trapping routine is entered but
contains no RESUME statement.

20 RESUME without error

21

A RESUME statement is encountered before an
error trapping routine is entered.

Unprintable error
An error message is not available
error condition which exists.
usually caused by an ERROR with an
error code.

for the
This is

undefined

22 Missing operand
An expression contains an operator with no
operand following it.

23 Line buffer overflow
An attempt is made to input a line that has
too many characters.

Page J-4

26 FOR without NEXT
A FOR was encountered without a matching
NEXT.

29 WHILE without WEND
A WHILE statement does not have a matching
WEND.

30 WEND without WHILE
A WEND was encountered without a matching
WHILE.

Disk Errors

50 Field overflow
A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

51 Internal error
An internal malfunction has occurred in Disk
BASIC-SO. Report to Microsoft the conditions
under which the message appeared.

52 Bad file number
A statement or command references a file with
a file number that is not OPEN or is out of
the range of file numbers specified at
initialization.

53 File not found

54

A LOAD, KILL or OPEN statement references a
file that does not exist on the current disko

Bad file mode
An attempt is made to use PUT, GET, or LOF
with a sequential file, to LOAD a random file
or to execute an OPEN with a file mode other
than I, 0, or R.

55 File already open

57

A sequential output mode OPEN is issued for a
file that is already open; or a KILL is
given for a file that is open.

Disk I/O error
An I/O error occurred on a disk I/O
operation. It is a fatal error, i. eo, the
operating system cannot recover from the
error.

Page J-5

58 File already exists
The filename specified in a NAME statement is
identical to a filename already in use on the
disk.

61 Disk full
All disk storage space is in use.

62 Input past end
An INPUT statement is exeucted after all the
data in the file has been INPUT, or for a
null (empty) file. To avoid this error, use
the EOF function to detect the end of file.

63 Bad record number
In a PUT or GET statement, the record number
is either greater than the maximum allowed
(32767) or equal to zero.

64 Bad file name
An illegal form is used for the filename with
LOAD, SAVE, KILL, or OPEN (e.g., a filename
with too many characters).

66 Direct statement in file
A direct statement is encountered while
LOADing an ASCII-format file. The LOAD is
terminated.

67 Too many files
An attempt is made to create a new file
(using SAVE or OPEN) when all 255 directory
entries are full.

APPENDIX K

Mathematical Functions

Derived Functions

Functions that are not intrinsic to BASIC-BO may be
calculated as follows.

Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBOLIC
COTANGENT

BASIC-BO Equivalent

SEC(X)=l/COS(X)
CSC(X)=l/SIN(X)
COT(X)=l/TAN(X)
ARCSIN(X)=ATN(X/SQR(-X*X+l»
ARCCOS{X)=-ATN (X/SQR(-X*X+l»+1.S70B
ARCSEC{X)=ATN{X/SQR(X*X-l»

+SGN{SGN{X)-1)*1.570B
ARCCSC(X)=ATN(X/SQR(X*X-l»

+(SGN(X)-1)*1.S70B
ARCCOT(X)=ATN{X)+1.S70B
SINH(X)=(EXP{X)-EXP(-X»/2
COSH{X)=(EXP{X)+EXP{-X»/2
TANH(X)=EXP{-X)/EXP(X)+EXP{-X»*2+l
SECH(X)=2/(EXP(X)+EXP{-X»
CSCH{X)=2/(EXP(X)-EXP{-X»
COTH{X)=EXP(-X)/{EXP(X)-EXP(-X»*2+1

ARCSINH(X)=LOG{X+SQR{X*X+l»

ARCCOSH(X)=LOG{X+SQR(X*X-l)

ARCTANH{X)=LOG{{1+X)/(1-X»/2

ARCSECH(X)=LOG{(SQR(-X*X+l)+l)/X)

ARCCSCH(X)=LOG({SGN(X)*SQR(X*X+l)+l)/X

ARCCOTH{X)=LOG{{X+l)/{X-l»/2

APPENDIX M

ASCII Character Codes

ASCII ASCII ASCII
Code Character Code Character Code Character

000 NUL 043 + 086 V
001 SOH 044 087 W
002 STX 045 088 X
003 ETX 046 . 089 Y
004 EOT 047 / 090 Z
005 ENQ 048 0 091 {
006 ACK 049 1 092 \
007 BEL 050 2 093]
008 BS 051 3 094 '"
009 HT 052 4 095 <
010 LF 053 5 096 ~

011 VT . 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 SO 057 9 100 d
015 SI 058 101 e
016 DLE 059 102 f
017 DC1 060 < 103 9
018 DC2 061 = 104 h
019 DC3 062 > 105 i
020 DC4 063 ? 106 j
021 NAK 064 @ 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 C 110 n
025 EM 068 D III 0
026 SUB 069 E 112 P
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 GS 072 H 115 s
030 RS 073 I 116 t
031 US 074 J 117 u
032 SPACE 075 K 118 v
033 ! 076 L 119 w
034 " 077 M 120 x
035 * 078 N 121 Y
036 $ 079 0 122 z
037 % 080 P 123 {
038 & 081 Q 124 ! 039 ~ 082 R 125
040 (083 S 126
041) 084 T 127 DEL
042 * 085 U

ASCII codes are in decimal.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

%INCLUDE •

ABS • • •
Addition •
ALL • • •

• L-4

· 3-2
• • • • 1-10

· 2-4,
Arctangent • • •• •••• 3-3
Array variables ••••••• 1-7,
Arrays •••••••••••• 1-7,
ASC • • • • • • • • • 3-2
ASCII codes ••••••• 3-2,
ASCII format • • ••••• 2-4,
Assembly language subroutines 2-3,

C-1,
ATN • • • • • •• •••• 3-3,
ATTR$ • • • • • • • • H-s
ATTRIB • • • • • • •••• E-2
AUTO. • ••• 1-2,

Boolean operators • 1-12

INDEX

2-9

2-9, 2-18, L-s
2-7, 2-11, 2-24

3-4
2-49, 2-77, L-1
2-16, 2-59, 3-23 to 3-24,
L-2
L-4

2-2

CALL ••••••••••••• 2-3, C-s, L-2
Carriage return • • • • • 1-3, 2-36, 2-41 to 2-42,

2-83 to 2-85
Cassette tape •••••• 2-7, 2-11
CDBL • • • •• • • • • 3-3
CHAIN • • • • • ••• 2-4, 2-9, L-2
Character set • • • • • • • • 1-3
CHR$ • • • • • • • • • 3-4
CINT • • •• •• • • • • • 3-4
CLEAR • • • • • • • • • • 2-6, A-I
CLOAD • • •• • • • • 2-7
CLOAD* • • • • • • • • • • • • 2-7
CLOAD? • • • • •• • • • • 2-7
CLOSE • • • • • • • ••• 2-8, B-3, B-8
Command level • • • • • • • • 1-1
COMMON •••••••••••• 2-4, 2-9, L-2
Concatenation • • • • • • • • 1-15
Constants • • • • • • • • • • 1-4
CONT • • • • • • • • • 2-10, 2-41
Control characters • • • • • • 1-4
Contro1-A • • • • • • • • • • 2-22
COS •• • • • • ••• 3-5, L-4
CP/M.. • •••••••• 2-46, 2-49, 2-76 to 2-77,

B-1, 0-1
• • • • 2-11 CSAVE

CSAVE* •
CSNG •

. 2-11
· 3-5

CVD •••
CVI • • • • •
CVS • • • • • • •

• ••• 3-6, B-8
• • 3-6, B-8
• • 3-6, B-8

DATA • • • • . 2-12, 2-74
DEF FN •• ••• • 2-13
DEF USR • • • e • •• 2-16, 3-23
DEFDBL ••••• • 1-7, 2-15, L-2
DEFINT • • 1-7, 2-15, L-2
DEFSNG • • • • •••• 1-7, 2-15, L-2
DEFSTR • • •• 1-7, 2-15, L-2
DEINT •••••••••••• C-1, G-1
DELETE. • • • • • • • •• 1-2, 2-4, 2-17
DIM • • •• • •••••• 2-18, L-3
Direct mode ••• • ••• 1-1, 2-34, 2-54, L-1
Division • • • • 0.... 1-10
Double precision • • • • • • • 1-5, 2-15, 2-60, 3-3, A-I,

DSKI$
DSKO$

EDIT ••
Edit mode
END

EOF
ERASE
ERL
ERR
ERROR

· .

L-4
• H-2, H-13

H-2, H-13

• 1-2, 2-19
• 1-4, 2-19, L-l

• •• 2-8, 2-10, 2-23, 2-32,
L-3

• •• 3-6, B-3, B-5, 0-4
• • 2-24, L-3

2-25
• 2-25

• • • • 2-26
Error codes • • • • • • • • • 1-16, 2-25 to 2-26, J-1
Error messages . • • • •• 1-16, J-1, L-2
Error trapping • • •• •• 2-25 to 2-26, 2-54, 2-75,

B-7, L-3
Escape • • • • • • • • • • 1-3, 2-19

3-7, L-4 EXP • • • • • • • • •
Exponentiation . • • •
Expressions • • • •

• • • • 1-10 to 1-11, L-4
• • • 1-9

FIELD •••••••••• 2-28, B-8, H-l1
FILES • •• • • •• • 0-3, H-2
FIX • • • . • • • •• 3-7
FOR ••• NEXT • • • • 2-29, A-I, L-4
FORMAT program •• •••• H-10
FPOS • . • • •• • H-2
FRCINT . • • • •• C-1, C-4, 0-4, G-1
FRE • • • • • • • • • 3-8
Functions • • . • • •• • 1-14, 2-13, 3-1, K-1

GET

GIVABF •
GIVINT •
GOSUB
GOTO ••••

HEX$ • • • •
Hexadecimal

• •• 2-28, 2-31, B-8, 0-4,
H-7

• •••• C-1 to C-2, G-1
• • E-2

• • • • • 2-32
• • • • • • • • • 2-32 to 2-33

• 3-8
• 1-5, 3-8

IF ••• GOTO .••••••• 2-34
IF ••• THEN • • . • •• •• 2-25, 2-34
IF ••• THEN ••• ELSE • • • 2-34

Indirect mode • • • • • • 1-1
INKEY$ • • •• ••• • • • 3-9
INP • • • • • • • • • • • • • 3-9
INPUT • • •• •• • • 2-10,

B-9
INPUT$ • • • • • • • • • • • • 3-10
INPUTi • • • • • • • • • • • • H-7
INPUTi •••••••••• B-3
INPUTi •••••••••• 2-38
INSTR • • • • • • • • 3-11
INT • • • • • • • • • • • • • 3-7,
Integer •• • •••••• 3-4,
Integer division • • • 1-10
INTEL • • • • • • • • • • • • G-l
Interrupts • • • • • •• • C-7
ISIS-II ••••• 2-76,

2-28, 2-36, A-2,

3-12
3-7, 3-12

E-1

KILL • • 2-39, B-2

LEFT$ ••• • • • •• 3-12 .
LEN • • •• • • •• • 3-13
LET • • • • • • • • •• • 2-28, 2-40, B-9
LFILES • • • • • • • • • • • • B-2
Line feed • •• • •••• 1-2, 2-36, 2-41 to 2-42,

LINE INPUT •
LINE INPUTi •••••
LINE INPUTi •••
Line numbers • • • • •

2-84 to 2-85, L-l
• 2-41

• • • • B-3
• • • • 2-42

• • 1-1 to 1-2, 2-2, 2-73,
L-2

Line printer ••••••••• 2-45, 2-47, 2-83, 3-14,
A-2, E-2

Lines •••••••••• 1-1, L-l
LIST. • • • • • • 1-2, 2-43
LLIST ••••••••• ~ •• 2-45, F-1, G-2
LOAD.. • •••••••• 2-46, 2-77, B-1
LOC • • • • • • • 3-13, B-3, B-5, B-8, B-2
LOF • • • • • • • • • •• D-4, H-2
LOG • • • • • • ••• 3-14, L-4
Logical operators • •• • 1-12
Loops .••.•••••••• 2-29, 2-82
LPOS • • •• • •••••• 2-83, 3-14
LPRINT • • • • •• • ••• 2-47, 2-83, F-1, G-2
LPRINT USING • • • 2-47
LSET • • • • • • • • • 2-48, B-8

MAKINT • • • • • • C-1, C-4, D-4, E-2, G-1
MBASIC • • • • • • • • • • • • D-1
MDS • • • • • • • G-1
MERGE • • • • • • 2-4, 2-49, B-2
MID$ • • • • • • • • • • • 2-50, 3-15, I-l
MKD$ • • • • • • • •• •• 3-15, B-8
MKI$ ••••••• 3-15, B-8
MKS$ • • • • •• • •••• 3-15, B-8
MOD operator • • • • • • • • • 1-11
Modulus arithmetic •• 1-11
MOUNT • • • • • • • • H-3
Multiplication •• •• •• 1-10

NAME · · Negation
NEW
NULL · · Numeric
Numeric

· · · · · · · · · 2-51

· · · · · · · · · 1-10

· · · · · · · · · 2-8, 2-52

· · · · · · · · · 2-53
constants · · · · · · 1-4
variables · · · · · · 1-7

• • 3-16
• ••••• 1-5, 3-16

2-54, L-3
• • • • • 2-55

· • • • • • • • 2-55

OCT$ • • • • •
Octal • • • •
ON ERROR GOTO
ON ••• GOSUB •
ON ••• GOTO
OPEN ••• • •• 2-8, 2-28, 2-56, B-3,

B-8, H-5 to H-6
Operators · . • • 1-9, 1-11 to 1-13, 1-15,

L-4
OPTION BASE • • • • • • • • • 2-57
OUT • •• •• • • • • 2-58
Overflow ••••••••••• 1-11, 3-7, 3-22, A-I,

L-4
Overlay • • • 2-4

Paper tape · · · · · · · · · · 2-53
PEEK · · · · · 2-59, 3-16
POKE · · · · · · · · · · · 2-59, 3-16
POS · · · · · · · 2-83, 3-17
PRINT · · · · · · · · · · 2-60, A-I
PRINT USING · · · · · 2-62, A-2
PRINT* · · · · · · · · · · · · B-7
PRINT* USING · · · · ·)J' · B-5
PRINT* USING · · · · 0 B-3
PRINT* · · · · · · · · · · 0 · B-3
PRINT* USING · · · · • · · 2-66
PRINT* · · · · · • 0 · 2-66
Protected files · · · 2-77, A-2, B-2
PUT · · · · · · · 2-28, 2-68, B-8, B-7

Random files · · · · · · · 2-28, 2-31, 2-39, 2-48,
2-56, 2-68, 3-13, 3-15,
B-7, D-4

Random numbers · · · · · · 2-69, 3-18
RANDOMIZE · · · · 2-69, 3-18, A-I
READ · · · · · · · · · 2-70, 2-74
Relational operators · · · · · 1-11
REM · · · · · · · • · · · · · 2-72, L-3
REMOVE · · · · · · · · · · B-3
RENUM · · · · · · · · · · · · 2-4, 2-25, 2-73
RESET D-3
RESTORE · · · · · · · · · 2-74
RESUME · · · · · · 2-75, L-3
RETURN · · · · · · · · · · 2-32
RIGHT$ · · · · · · · · 3-17
RND · · · · · · · · · · · 2-69, 3-18, A-I
RSET · · · · · · · · · · · 2-48, B-8
Rubout · · · · · · · · 1-3, 1-15, 2-20
RUN · · · · · · · 2-76 to 2-77, B-2, L-2

SAVE •• • • 2-46, 2-76 to 2-77, B-1

SBC • • • • • •
Sequential files

• • G-1
• • 2-38 to 2-39, 2-42, 2-56,

2-66, 2-85, 3-6, 3-13,
B-3

SET • • • • • • • • • H-4 .
SGN • • • • • • • • • 3-18
SIN ••••••••••••• 3-19, L-4
Single precision • • • 1-5, 2-15, 2-60, 3-5, A-I
SPACES •••••••••• 3-19
SPC • • • • •• ••• 3-20
SQR • • • • • • • • • •• 3-20, L-4
Standalone Disk BASIC • • • • H-1
STOP. • ••••••••• 2-10, 2-23, 2-32, 2-78,

STR$ • •• • •
String constants •
String functions

String operators •
String space • • •
String variables
STRING$
Subroutines •••
Subscripts • • • •
Subtraction
SWAP • • • • • • •
SYSTEM •

L-4
• • 3-21

1-4
• •••• 3-6, 3-11 to 3-13, 3-15,

3-17, 3-21, 3-23, I-I
• • 1-15
• • 2-6, 3-8, A-I, B-9

• •••• 1-7, 2-15, 2-41 to 2-42
• • • • . 3-21

2-3, 2-32, 2-55, C-1
• • 1-7, 2-18, 2-57, L-3
• • 1-10
• • 2-79
• • D-4, F-1

TAB • • • • • 3-22
Tab • • • • • • • • • 1-3 to 1-4
TAN • • • • • • • • • •• 3-22, L-4
TEKDOS • • • • • • • • •• F-1
TROFF •••••••••••• 2-80, L-4
TRON •• •• • • • 2-80, L-4

USR
USRLOC •

VAL • • • • .
Variables
VARPTR •

WAIT . · WEND . · WHILE · WIDTH

· · · · · · · WIDTH LPRINT
WRITE · · · WRITE# · WRITE# · · ·

·
· ·

·

· · ·
· · ·
· ·

• • 2-16, 3-23, C-1
• • C-2, G-1

• • 3-23
• • 1-6, L-S
· . 3-24, H-I0

· · · · 2-81

· · · · · · 2-82, L-4

· · 2-82, L-4

· · · · · 2-83, A-2

· · · · · · 2-83, A-2

· · · · 2-84

· · · · · B-3

· · · · · · 2-85

basic
compiler
user's manual

basic
compiler
user's man ual

BASIC Compiler Command Format and Switches

Procedures for Using the BASIC Compiler

Sample Compilation

Error Messages

© Microsoft, 1979

8102-510-01

Microsoft
BASIC Compiler User's Manual

CONTENTS

CHAPTER 1 BASIC Compiler Command Scanner

1 • 1 Command Format
1 • 1 • 1 BASIC Compilation Switches

CHAPTER 2 Using the BASIC Compiler

2.1 Procedure
2.2 Sample Compilation

CHAPTER 3 Error Messages

3.1 BASIC Compiler Error Messages
3.2 BASIC Runtime Error Messages

CHAPTER 1

BASIC COMPILER COMMAND SCANNER

1.1 COMMAND FORMAT

To run the BASIC Compiler, type BASCOM followed by a
carriage return. (For users with 32K CP/M systems, type
BASCOM32 instead of BASCOM. BASCOM32 is a small loader
program which loads BASCOH into the user TPA.) BASIC will
return the prompt "*", indicating it is ready to accept
commands. To tell the BASIC compiler what to compile and
with which options, it is necessary to input a "command
string," which is read by the compiler's command scanner.
The general format of a BASIC compiler command string is:

objprog-dev:filename.ext,list-dev:filename.ext=
source-dev:filename.ext

objprog-dev:
The device on which the object program is to be written.

list-dev:
The device on which the program listing is written.

source-dev:
The device from which the source-program input to BASIC is
obtained. If a device name is omitted, it defaults to the
currently selected drive.

The available device names with CP/M are:

A:, B:,
HSR:
LST:
TTY:

filename. ext

C:, D: Disk drives
High speed reader
Line printer
Teletype or CRT

The filename and filename extension of the object program
file, the listing file, and the source file. Filename
extensions may be omitted. The default filename extensions
with CP/M are:

BASIC Compiler User's Manual Page 1-2

BAS BASIC source file
MAC MACRO-80 source file
REL Relocatable object file
PRN Listing file
COM Absolute file
FOR FORTRAN-80 source file
COB COBOL-80 source file

object file or the listing file or both may be
If neither a listing file nor an object file is

place only a comma to the left of the equal sign.
names of the object file and the listing file are
the default is the name of the source file.

Either the
omitted.
desired,
If the
omitted,

Examples:

*=TEST Compile the program TEST. BAS
and place the object in TEST.REL

*,TTY:=TEST Compile the program TEST.BAS
and list program on the terminal.
No object is generated.

*TESTOBJ=TEST.BAS Compile the program TEST. BAS
and put object in TESTOBJ.REL

*TEST,TEST=TEST Compile TEST.BAS', put object in
TEST.REL and listing in TEST.PRN

*,=TEST.BAS Compile TEST.BAS but produce

1 • 1 • 1

no object or listing file. Useful
for checking for errors.

BASIC 'Compilation' Switches

A switch on the end of a compiler command string specifies a
special parameter to be used during compilation. Switches
are always preceded by a slash (/1. More than one switch
may be used in the same command. The available switches
are:

Switch

/E

Act'ion

The /E switch tells the compiler that the program
contains the ON ERROR GOTO statement. If a RESUME
statement other than RESUME <line number> is used
with the ON ERROR GOTO statement, use /X instead
(see belowl. To handle ON ERROR GOTO properly in
a compiled environment, BASIC must generate some
extra code for the GOSUB and RETURN statements.
Therefore, do not use this switch unless your
program contains the ON ERROR GOTO statement. The

BASIC Compiler User's Manual Page 1-3

/E switch also causes line numbers to be included
in the binary file, so runtime error messages will
include the number of the line in error.

/X The /X switch tells the BASIC compiler that the
program contains one or more RESUME, RESUME NEXT,
or RESUME a statements. The /E switch is assumed
when the /X switch is specified. To handle RESUME
statements properly in a compiled environment, the
compiler must relinquish certain optimizations.
Therefore, do not use this switch unless your
program contains RESUME statements other than
RESUME <line number>. The /X switch also causes
line numbers to be included in the binary file, so
runtime error messages will include the kumber of
the line in error.

IN The IN switch prevents listing of the generated
code in symbolic notation. If this switch is not
set, the source listing produced by the compiler
will contain the object code generated by each
statement.

/D The /D switch causes debug/checking code to be
generated at runtime. This switch must be set if
you want to use TRON/TROFF. The BASIC compiler
generates somewhat larger and slower code in order
to perform the following checks:

1. Arithmetic overflow. All arithmetic
operations, integer and floating point, are
checked for overflow and underflow.

2. Array bounds. All array references are
checked to see if the subscripts are within
the bounds specified in the DIM statement.

3. Line numbers are included in the generated
binary so that runtime errors can indicate the
statement which contains the error.

4. RETURN is checked for a prior GOSUB.

/Z The /Z switch tells the compiler to use Z80
opcodes whenever possible. The generated code is
listed using 8080 opcodes except in those cases
where Z80 opcodes have been used.

/S The /S switch forces the compiler to write long
quoted strings (i.e., more than 4 characters) to
the binary file as they are encountered. This
allows large programs with many quoted strings to
compile in less memory. However, there are two
disadvantages:

BASIC Compiler User's Manual Page 1-4

1 • Memory space is wasted if identical, long
quoted strings appear in the program.

2. Code generated while the /S switch is set
cannot be placed in ROM.

/4 The /4 switch allows the compiler to use the
lexical conventions of the Microsoft 4.51 BASIC

-interpreter. That is, spaces are insignificant,
variables with embedded reserved words are
illegal, variable names are restricted to two
significant characters, etc. This feature is
useful if you wish to compile a source program
that was coded without spaces, and contains lines
such as

FORI=ATOBSTEPC

Without the /4 switch, the compiler would assign
the variable "ATOBSTEPC" to the variable FORI.
With the /4 switch, it would recognize it as a FOR
statement. It is recommended that such programs
be edited to the 5.0 lexical standards, rather
than using the /4 switch. Delimiting reserved
words with spaces causes no increase in the
generated code and greatly improves readability.

/C The /C switch tells the compiler to relax line
numbering constraints. When /C is specified, line
numbers may be in any order, or they may be
eliminated entirely. Lines are compiled normally,
but of course cannot be targets for GOTOs, GOSUBs,
etc. While /C is set, the underline character
causes the remainder of the physical line to be
ignored, and the next physical line is considered
to be a continuation of the current logical line.
NOTE: /C and /4 may not be used together.

Examples:

*,TTY:=MYPRG/N Compile MYPRG.BAS and list the
source program on the terminal but
without the generated code. Put
the object file in MYPRG.REL.

*=TEST/E Compile TEST. BAS. The source
file contains an ON ERROR GOTO
statement. Put the object file
in TEST.REL.

*=BIGGONE/D Compile BIGGONE.BAS and put
the object file in BIGGONE.REL.
Check for overflow and out-of
bound array subscripts, and include
line numbers in the object file.

CHAPTER 2

USING THE BASIC COMPILER

2 • 1 PROCEDURE

The following steps give the procedure for creating,
compiling, and saving BASIC programs using the BASIC
compiler and LINK-aD loader on the CP/M operating system.

1. Create a source file
Create a BASIC source file using the CP/M editor or
Microsoft t s EDIT-80 Text Edi tor or r1icrosoft' s
BASIC-aD interpreter. Filenames are up to eight
characters long, with 3-character extensions.
BASIC source filenames should have the extension
BAS. (MACRO-aD source filenames should have the
extension MAC.)

2. Error check
Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. This will
help eliminate the necessity of recompiling later
due to syntax errors or other easy-to-fix errors.
One way to check for errors is to run the program
on Microsoft's BASIC-aD interpreter.

Another way to perform the error check is to do a
compilation without generating an object or listing
file. For example, if your BASIC source file is
called MAX1.BAS, type the following:

A>BASCOM ,=MAX1/N

This command compiles the source file MAX1.BAS
without producing an object or listing file. (For
users with 32K CP/M systems, type BASCOM32 instead
of BASCOM. BASCOM32 is a small loader program which
loads BASCOM into the user TPA.)

If necessary, return to the editor (or interpreter)
and correct any errors.

3. Compile the source file
To compile the edited source file and produce an
object and listing file, type

BASIC Compiler User's Manual Page 2-2

A>BASCOM M&~1,MAX1=~~1

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file called MAX1.PRN.

4. Load, Execute and Save the Program
To load the program MAX1.REL into memory and execute
it, type

A>LaO MAX1/G

To exit LINK-80 and save a memory image of the
object code, type

A>L80 ~..x 1 /E

When LINK-80 exits, three numbers will be printed:
the starting address for execution of the program,
the end address of the program and the number of
256-byte pages used. For example

[210C 301A 48]

Use the CP/M SAVE command to save a memory image.
The number of pages used is the argument for SAVE.
For example

A>SAVE 48 MAX1.COM

NOTE

CP/M always saves memory starting at 100H
and jumps to 100H to begin execution. Do
not use /P or /D to set the origin of the
program or data area to 100H, unless
program execution will actually begin at
100H.

The CP/M version of LINK-ao is capable of creating
COM files by using the /N switch, (See LINK-80
Switches, Utility Software Manual) . In our
example,

A>Lao MAX1,MAX1/N/E

loads and links MAX1.REL, creates the file MAX1.COM
for direct execution, and exits to CP/M.

An object code file has now been saved on the disk
under the name specified with the LINK-80 /N switch
or the CP/M SAVE command (in this case MAX1). To
execute the program simply type the program name

A> MAX 1

BASIC Compiler User's Manual Page 2-3

5. CP/M Command Lines
CP/M command lines and files are supported; i.e.,
a BASIC, COBOL-SO, FORTRAN-SO, MACRO-SO or LINK-SO
command line may be placed in the same line with
the CP/M run command. For example, the command

A>BASCOM =TEST

causes CP/M to load and run the BASIC compiler,
which then compiles the program TEST.BAS and
creates the file TEST.REL. This is equivalent to
the following series of commands:

A>BASCOM
*=TEST
A>

BASIC Compiler User's Manual Page 2-4

2.2 SAMPLE COMPILATION

BASCOM Y5.0 - Copyright
0014 0007 00100

** 0014'L00100:
0014 0007 00200

** 0014'L00200:
0014 0007 00300

** 0014'L00300:
0014 0007 00400

** 0014'L00400:
0014 006D 00500

** 0014'L00500:
** 0017'
** 001A'

001D 006D 00600
** 001D'L00600:
** 0020'
** 0023'
** 0026'I00001:

0026 006F 00700
** 0026'L00700:
** 0029 '.
** 002A'
** 002B'
** 002C'
** 002F'
** 0030'
** 0031'
** 0032'
** 0033'
** 0034'
** 0037'
** 0038'
** 0039'
** 003C'
** 003D'
** 003E'
** 003F'
** 0040'
** 0043'
** 0044'
** 0045'
** 0046'
** 0047'
** 004A'
** 004B'
** 004E'
** 004F'
** 0050'
** 0053'
** 0054'
** 0055'
** 0056'
** 0057'

1979 (C) by MICROSOFT - 11776 Bytes Free
, SAMPLE BASIC COMPILATION

DEFINT I-N,S

DIM S(50)

S(O) =
LXI
SHLD
SHLD
FOR I=O
LXI
SHLD
JMP

1 : S(1) = 1
H,0001
S%
S%+0002
TO 24
H,OOOO
I%
IOOOOO

S(2*(I+1»=S(2*(I+1)-1)+S(2*(I+1)-2)+3
LHLD I%
DAD H
DAD H
PUSH H
LXI D,S%+0002
DAD D
MOV E,M
INX H
MOV D,M
XCHG
SHLD
POP
PUSH
LXI
DAD
MOV
INX
MOV
LHLD
DAD
INX
INX
INX
SHLD
POP
LXI
DAD
PUSH
LHLD
XCHG
POP
HOV
INX
MOV

T:01
H
H
D,S%
D
E,M
H
D,M
T:01
D
H
H
H
T:02
H
D,S%+0004
D
H
T:02

H
M,E
H
M,D

BASIC Compiler User's Manual

0058 006F 00800
** 0058 'LOO800:
** OOSB ,.
** OOSC'
** OOSF' IOOOOO:
** OOSF'
** 0062 '
** 0065 '
** 0066 '
** 0067 '
** 006A'
** 006B'
** 006C'IOOO02:

006F 006F 00900
** 006F'L00900:
** 0072'
** 0075'
** 0078 '
** 007B'

007E OQ6F
** OQ7E'

00000 Fatal Errors
11151 Bytes Free

NEXT
LHLD
INX
5HLD

LHLD
LXI
MOV
RAL
JC
DAD
DAD
JC
PRINT
CALL
LXI
CALL
LHLD
CALL

CALL

Page 2-5

I
I%
H
I%

I%
D,FFE7
A,H

IOOO02
D
H
IOOO01

"AN5WER ="; 5 (501
$PROA
H,<const>
$PV1D
5%+0064
$PV2C

$END

The address in the left-hand column is the current program
address. The address in the next column is the current data
address.

Note the examples of common subexpression elimination in
lines 500 and 700, and constant folding and peephole
optimization in line 700.

CHAPTER 3

ERROR MESSAGES

3. 1 BASIC COMPILER ERROR MESSAGES

The following errors may occur while a program is compiling.
The BASIC compiler outputs the two-character code for the
error, along with an arrow. The arrow indicates where in
the line the error occurred. In those cases where the
compiler has read ahead before it discovered the error, the
arrow points a few characters beyond the error, or at the
end of the line.

The error codes are as follows:

FATAL ERRORS

Code

SN

Error

Syntax Error. Caused by one of the following:
Illegal argument name
Illegal assignment target
Illegal constant format
Illegal debug request
Illegal DEFxxx character specification
Illegal expression syntax
Illegal function argument list
Illegal function name
Illegal function formal parameter
Illegal separator
Illegal format for statement number
Illegal subroutine syntax
Invalid character
Missing AS
Missing equal sign
Missing GOTO or GOSUB
Missing comma
Missing INPUT
Missing line number
Missing left parenthesis
Missing minus sign
Missing operand in expression
Missing right parenthesis

BASIC Compiler User I s ~1anual

Missing semicolon
Name too long
Expected GOTO or GOSUB
String assignment required
String expression required
String varible required here
Illegal syntax
Variable required here
Wrong number of arguments
Formal parameters must be unique
Single variable only allowed
Missing TO
Illegal FOR loop index variable
Missing THEN
Missing BASE
Illegal subroutine name

OM Out of Memory
Array too big
Data memory overflow
Too many statement numbers
Program memory overflow

SQ Sequence Error
Duplicate statement number
Statement out of sequence

TMType Mismatch
Data type conflict
Variables must be of same type

TC Too Complex
Expression too complex
Too many arguments in function call
Too many dimensions
Too many variables for LINE INPUT
Too may variables for INPUT

BS Bad Subscript
Illegal dimension value
Wrong number of subscripts

LL Line Too Lon~

ue Unrecognizable Command
Statement unrecognizable
Command not implemented

OV Math Overflow

/0 Division by Zero

DD Array Already Dimensioned

Page 3-2

BASIC Compiler User's Manual

FN FOR/NEXT Error
FOR loop index variable already in use
FOR without NEXT
NEXT without FOR

FD Function Already Defined

UF Function Not Defined

WE WHILE/WEND Error
WHILE without WEND
WEND without WHILE

/E Missing "/E" Switch

/X Missing "/X" Switch

WARNING ERRORS

ND Array Not Dimensioned

SI Statement Ignored
Statement ignored
Unimplemented command

Page 3-3

BASIC Compiler User's Manual Page 3-4

3.2 BASIC RUNTIME ERROR MESSAGES

The following errors may occur while a compiled program is
executing. The error numbers match those issued by the
BASIC-80 interpreter. The compiler runtime system prints
long error messages followed by an address, unless ID, IE,
or Ix is specified. In those cases the error message is
followed by the number of the line in which the error
occurred.

Number Message

2 Syntax error
A line is encountered that contains an incorrect
sequence of characters in a DATA statement.

3 RETURN without GOSUB
A RETURN statement is encountered for which there is
no previous, unmatched GOSUB statement

4 Out of data
A READ statement is executed when there are no DATA
statements with unread data remaining in the program.

5 Illegal function call
A parameter that is out of range is passed to a math
or string function. An FC error may also occur as the
result of:

1. a negative or unreasonably large subscript

2. a negative or zero argument with LOG

3. a negative argument to SQR

4. a negative mantissa with a non-integer exponent

5. a call to a USR function for which the starting
address has not yet been given

6. an improper argument to ASC, CHR$, MID$, LEFT$,
RIGHT$, INP, OUT, WAIT, PEEK, POKE, TAB, SPC,
STRING$, SPACE$, INSTR, or ON ••• GOTO

7. a string concatenation that is longer than 255
characters

6 Floating overflow or integer overflow
The result of a calculation is too large to be
represented in BASIC-80's number format. If underflow
occurs, the result is zero and execution continues
without an error.

BASIC Compiler User1s Manual Page 3-5

9 Subscript out of range
An array element is referenced with a subscript that
is outside the dimensions of the array.

11 Division by zero
A division by zero is encountered in an expression, or
the operation of involution results in zero being
raised to a negative power. Machine infinity with the
sign of the numerator is supplied as the result of the
division, or positive machine infinity is supplied as
the result of the involution, and execution continues.

14 Out of string space
String variables exceed the allocated amount of string
space.

20 RESUME without error
A RESUME statement is encountered before an error
trapping routine is entered.

21 Unprintable error
An error message is not available for the error
condition which exists. This is usually caused by an
ERROR with an undefined error code.

50 Field overflow
A FIELD statement is attempting to allocate more bytes
than were specified for the record length of a random
file.

51 Internal error
An internal malfunction has occurred in Disk BASIC-80.
Report to Microsoft the conditions under which the
message appeared.

52 Bad file number
A statement or command references a file with a file
number that is not OPEN or is out of the range of file
numbers specified at initialization.

53 File not found
A LOAD, KILL or OPEN statement references a file that
does not exist on the current disk.

54 Bad file mode
An attempt is made to use PUT, GET, or LOF with a
sequential file, to LOAD a random file or to execute
an OPEN with a file mode other than I, 0, or R.

BASIC Compiler User' s ~1anual Page 3-6

55 File already open
A sequential output mode OPEN is issued for a file
that is already open; or a KILL is given for a file
that is open.

57 Disk I/O error
An I/O error occurred on a disk I/O operation. It is
a fatal error, i.e., the operating system cannot
recover from the error.

58 File already exists
The filename specified in a NAME statement is
identical to a filename already in use on the disk.

61 Disk full
All disk storage space is in use.

62 Input past end
An INPUT statement is exeucted after all the data in
the file has been INPUT, or for a null (empty) file.
To avoid this error, use the EOF function to detect
the end of file.

63 Bad record number
In a PUT or GET statement, the record number is either
greater than the maximum allo~led (32767) or equal to
zero.

64 Bad file name
An illegal form is used for the filename with LOAD,
SAVE, KILL, or OPEN (e.g., a filename with too many
characters).

67 Too many files
An attempt is made to create a new file (using SAVE or
OPEN) when all 255 directory entries are full.

APPENDIX L

Microsoft BASIC Compiler

The Microsoft BASIC Compiler package contains the following
software: BASIC Compiler, MACRO-SO assembler, and LINK-SO
loader. The following manuals are also supplied: BASIC-SO
Reference Manual, BASIC Compiler User~s Manual, utility
Software Manual. The Utility Software Manual is the:
reference manual for MACRO-SO and LINK-BO. The BASIC
Compiler User~s Manual describes the use of the compiler,
its command format, compilation switches and error messages.
The BASIC language that is used with the Microsoft BASIC
Compiler is the same as described in this manual for Disk
BASIC-BO with the following exceptions:

L.l OPERATIONAL DIFFERENCES

The Compiler interacts with the console only to read
compiler commands. These specify what files are to be
compiled. There is no "direct mode," as with the BASIC-SO
interpreter. Commands that are usually issued in the direct
mode with the BASIC-SO interpreter are not implemented o~·
the Compiler.

The following statements and commands are not implemented
and will generate an error message:

AUTO
DELETE
NEW

CLEAR
EDIT
RENUM

CLOAD
LIST
SAVE

CSAVE
LLIST

COMMON
LOAD

CONT
MERGE

Because there is no direct mode for typing in programs or
edit mode for editing programs, use Microsoft~s EDIT-SO Text
Editor or BASIC-SO interpreter for creating and editing
programs. If you use the interpreter, be sure to SAVE the
file with the A (ASCII format) option.

The compiler cannot accept a physical line that is more than
127 characters in length. A logical statement, however, may
contain as may physical lines as desired. Use line feed to
start a new physical line within a logical statement.

Page L-2

To reduce the size of the compiled program, there are no
'program line numbers included in the object code generated
by the compiler unless the /D, IX, or /E switch is set in
the compiler command. Error messages, therefore, contain
the address where the error occurred, instead of a line
number. The compiler listing and the map generated by
LINK-SO are used to identify the line that has the error.
It is always a good idea to debug programs using the
BASIC-SO interpreter before attempting to compile them. See
the BASIC Compiler User~s Manual for more information.

L.2 LANGUAGE DIFFERENCES

Mo~t programs that run on the Microsoft BASIC-SO interpreter
willi run on the BASIC Compiler with little or no change.
However, it is necessary to note differences in the use of
th.~following program statements:

1. CALL
,The <variable name> field
must contain an External
recognized by LINK-SO as
routine must be supplied
language subroutine or
FORTRAN-SO library.

in the CALL statement
symbol, i.eo, one that is
a global symbol. This

by the user as an assembly
a routine from the

2. COMMON
The COMMON statement is not implemented on the
compiler. It will generate a fatal error.

The COMMON statement will be implemented in a
future release of the BASIC compiler. However, its
implementation will be different from the BASIC-SO
interpreter~s version. The COMMON statement will
be similar to FORTRAN~s COMMON statement.

3. CHAIN and RUN
The CHAIN and RUN statements have been implemented
in their simplest form only; i.e., CHAIN
filename$. For CP/M, the default extension is
• COM. BASCOM programs can chain to any COM file;
however, the command line information ~s not
automatically passed. Command line information can
be passed by POKEing the appropriate information
into the command line area.

4. DEFINT/SNG/DBL/STR
The compiler does not "execute" DEFxxx statements;
it reacts to the static occurrence of these
statements, regardless of the order in which
program lines are executed. A DEFxxx statement
takes effect as soon as its line is encountered.
Once the type has been defined for a given

Page L-3

variable, it remains in effect until the end of the
program or until a different DEFxxx statement with
that variable takes effect.

s. USRn Functions
USRn Functions are significantly different from the
interpreter versions. The argument to the USRn
function is ignored and an integer result is
returned in the HL registers. It is recommended
that USRn functions be replaced by the CALL
statement.

6. DIM and ERASE
The· DIM statement is similar to the DEFxxx
statement in that it is scanned rather than
executed. That is, DIM takes effect when its lirte'
is encountered. If the default dimension (10) has
already been established for an array variable andl
that variable is later encountered in a" ::DIM
statement, a "Redimensioned array" error results.

There is no ERASE statement in the compiler, so
arrays cannot be erased and redimensioned. An
ERASE statement will produce a fatal error.

Also note that the values of the subscripts in a
DIM statement must be integer constants; they may
not be variables, arithmetic expessions, or
floating point values. For example,

DIM AI(I)
DIM Al (3+4)

are both illegal.

7. END
During execution of a compiled program, an END
statement closes files and returns control to the
operating system. The compiler assumes an" END
statement' at the end of the program, so "running
off the end" produces proper program termination.

8. ON ERROR GOTO/RESUME <line number>
If a program contains ON ERROR GOTO and RESUME
<line number> statements, the IE compilation switch
must be used. If the RESUME NEXT, RESUME, or
RESUME a form is used, the IX switch must also be
included. See the BASIC Compiler User~s Manual for
an explanation of these switches.

9. REM
REM statements or remarks starting with a single
quotation mark do not take up time or space during
execution, and so may be used as freely as desired.

Page L-4

10. STOP
The STOP statement is identical to the END
statement. Open files are closed and control
returns to the operating system.

11. TRON/TROFF
In order to use TRON/TROFF, the /D compilation
switch must be used. Otherwise, TRON and TROFF are
ignored and a warning message is generated.

12. FOR/NEXT and WHILE/WEND

13.

FOR/NEXT and WHILE/WEND loops must be statically
nested.

Double Precision Transcendental Functions
SIN, COS, TAN, SQR, LOG, and EXP return double
precision results if given a double precision
argument. Exponentiation with double prec~s~on
operands will return a double precision result •

. % INCLUDE
'The %INCLUDE <filename>statement allows the
compiler to include source from an alternate file.
The %INCLUDE statement must be the last statement
on a line. The format of the %INCLUDE statement
is:

<line number> %INCLUDE <filename>

, For example,

999 %INCLUDE SUBIOOO.BAS

\

L.3 EXPRESSION EVALUATION

During expression evaluation, the operands of each operator
are converted to the same type, that of the most precise
op~~and. For example,

~;.)"--'-,

QR=J%+AI+Q#

causes J% to be converted to single prec~s~on and added to
AI. This result is converted to double precision and added
to Qt.

The, Compiler is more limited than the interpreter in
ha~dfrng numeric overflow. For example, when run on the
int'~rpteter the following program

," ·r

I%=20000
J%=20000
K%=-30000
M%=I%+J%-K%

Page L-S

yields 10000 for M%. That is, it adds I% to J% and, because
the number is too large, it converts the result into a
floating point number. K% is then coverted to floating
point and subtracted. The result of 10000 is found, and is
converted back to integer and saved as M%.

The compiler, however, must make type conversion decisions
during compilation. It cannot defer until the actual values
are known. Thus, the compiler would generate code "to
perform the entire operation in integer mode. If the /D
switch were set, the error would be detected. Otherwise, an
incorrect answer would be produced.

In order to produce optimum efficiency in the compiled
progr'am, the compiler may perform any number of valid
algebraic transformations before generating the code. -~or
example, the program

I%=20000
J%=-18000
K%=20000
M%=I%+J%+K%

could produce an incorrect result when run. If the compiler
actually performs the arithmetic in the order shown, no
overflow occurs. However" if the compiler performs I%+K%
first and then adds J%, an overflow will occur. The
compiler follows the rules for operator precedence and
parenthetic modification of such precedence, but no other
guarantee of evaluation order can be made.

L.4 INTEGER VARIABLES

In order to produce the fastest and most compact object ,'code>.:
possible, make maximum use of integer variables. ,For
example, this program

FOR I=l TO 10
A{ I) =0
NEXT I

can execute approximately 30 times faster by simply
substituting "I%" for "I". It is especially advantageou~;~ci
use integer variables to compute array subscripts. "''i'fie
generated code is significantly faster and more compact.

	0_001
	0_002
	0_003
	1_001
	1_002
	1_003
	1_004
	1_005
	1_006
	1_007
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	1_1-09
	1_1-10
	1_1-11
	1_1-12
	1_1-13
	1_1-14
	1_1-15
	1_1-16
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_2-11
	1_2-12
	1_2-13
	1_2-14
	1_2-15
	1_2-16
	1_2-17
	1_2-18
	1_2-19
	1_2-20
	1_2-21
	1_2-22
	1_2-23
	1_2-24
	1_2-25
	1_2-26
	1_2-27
	1_2-28
	1_2-29
	1_2-30
	1_2-31
	1_2-32
	1_2-33
	1_2-34
	1_2-35
	1_2-36
	1_2-37
	1_2-38
	1_2-39
	1_2-40
	1_2-41
	1_2-42
	1_2-43
	1_2-44
	1_2-45
	1_2-46
	1_2-47
	1_2-48
	1_2-49
	1_2-50
	1_2-51
	1_2-52
	1_2-53
	1_2-54
	1_2-55
	1_2-56
	1_2-57
	1_2-58
	1_2-59
	1_2-60
	1_2-61
	1_2-62
	1_2-63
	1_2-64
	1_2-65
	1_2-66
	1_2-67
	1_2-68
	1_2-69
	1_2-70
	1_2-71
	1_2-72
	1_2-73
	1_2-74
	1_2-75
	1_2-76
	1_2-77
	1_2-78
	1_2-79
	1_2-80
	1_2-81
	1_2-82
	1_2-83
	1_2-84
	1_2-85
	1_2-86
	1_3-01
	1_3-02
	1_3-03
	1_3-04
	1_3-05
	1_3-06
	1_3-07
	1_3-08
	1_3-09
	1_3-10
	1_3-11
	1_3-12
	1_3-13
	1_3-14
	1_3-15
	1_3-16
	1_3-17
	1_3-18
	1_3-19
	1_3-20
	1_3-21
	1_3-22
	1_3-23
	1_3-24
	1_A-01
	1_A-02
	1_B-01
	1_B-02
	1_B-03
	1_B-04
	1_B-05
	1_B-06
	1_B-07
	1_B-08
	1_B-09
	1_B-10
	1_B-11
	1_B-12
	1_C-01
	1_C-02
	1_C-03
	1_C-04
	1_C-05
	1_C-06
	1_C-07
	1_C-08
	1_D-01
	1_D-02
	1_D-03
	1_D-04
	1_E-01
	1_E-02
	1_F-01
	1_F-02
	1_G-01
	1_G-02
	1_H-01
	1_H-02
	1_H-03
	1_H-04
	1_H-05
	1_H-06
	1_H-07
	1_H-08
	1_H-09
	1_H-10
	1_H-11
	1_H-12
	1_H-13
	1_H-14
	1_I-01
	1_I-02
	1_J-01
	1_J-02
	1_J-03
	1_J-04
	1_J-05
	1_J-06
	1_K-01
	1_K-02
	1_M-01
	1_M-02
	1_i-01
	1_i-02
	1_i-03
	1_i-04
	1_i-05
	2_001
	2_002
	2_003
	2_004
	2_005
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_3-06
	2_L-01
	2_L-02
	2_L-03
	2_L-04
	2_L-05

