

S S —— D Y D D - — S = — . — T O TN M S St D - - — — — — S S W G G G S G G D S - G - D D e W - e

—— > G D — . — D — - — —— - D E=b S - — —— — - 0 - S - G - G G G ——————— —— ———

0o 01 02 ... 68 9 10 11 12 13 14 15 16 ... 31 32 33 34 35
where
dr drive code (8 - 16)
=> use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,
ié;> auto disk select drive P.
f1...£f8 contain the file name in ASCII
upper case, with high bit = @
tl,t2,t3 contain the file type in ASCII
upper case, with high bit = @
tl*, t2', and t3' denote the
bit of these positions,
tl' = 1 => Read/Only file,
t2' = > 8YS file, no DIR list
ex contains the current extent number,
normally set to @@ by the user, but
in range @ - 31 during file I/0
sl reserved for internal system use
s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH
rc record count for extent "ex,"
takes on values from @ - 128
dd...dn filled-in by CP/M, reserved for
system use
cr current record to read or write in
a sequential file operation, normally
set to zero by user
rf#,rl,r2 optional random record number in the

range #B-65535, with overflow to r2,
rd,rl constitute a 1l6-bit value with

low byte r@, and high byte rl

Function 15: Open File.

The Open File operation is identical
with the exception

previous versions of CP/M defined this byte

to

as

previous

that byte s2 is automatically zeroed.

zero,

definitions,
Note that

but made no

(All Information Contained Herein is Proprietary to Digital Research.)

14

checks to assure compliance, Thus, the byte is cleared to ensure
upward compatibility with the latest version, where it is required.

Function 17: Search for First.

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) |is
returned if the file is not found, otherwise a value of A equal to 0,
l, 2, or 3 is returned indicating the file is present. In the case
that the file 1is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A * 32 (i,e., rotate the A register left 5 bits, or ADD A
five times). Although not normally required for application programs,
the directory information can be extracted from the buffer at this
position,

An ASCII guestion mark (63 decimal, 3F hexadecimal) in any
position from f1 through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function 1is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function 1is not normally used by
application programs, put does allow complete flexibility to scan all
current directory values, If the dr field is not a question mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next.

The Search Next function 1is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions,

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range # to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15

Function 22: Make File.

The Make File operation is identical to previous versions of
CP/M, except that byte s2 is zeroed upon entry to the BDOS,

Function 23: Rename File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range ¥ to 3 is returned.

Function 24: Return Login Vector.

The login vector value returned by CP/M 2.0 is a 16-bit value in
HL, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: Write Protect Current Disk,

The disk write ©protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

Function 29: Get R/O Vector,

Function 29 returns a bit vector 1in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/0 bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Function 38: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files, In
particular, the R/O0O and System attributes (tl' and t2' above) can be
set or reset, The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset, Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

l6

match, and changes the matched directory entry to contain the selected
indicators. 1Indicators fl' through f4' are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.
Indicators f5' through £8' and t3' are reserved for future system
expansion,

Function 31: Get Disk Parameter Block Address.

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, apolication
programs will not require this facility.

Function 32: Set or Get User Code,

An application program can change or interrogate the currently
active wuser number by calling function 32, If register E = FF
nexadecimal, then the value of the current user number is returned in
register A, where the value is in the range 9 to 31, If register E is
not FF, then the current user number is changed to the value of E
(modulo 32).

Function 33: Read Random,

The Read Random function is similar to the seguential file read
operation of ©previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r® at 33, rl at 34, and r2 at 35). ©Note that the seguence
of 24 pits 1is stored with least significant pbyte first (rd), middle
byte next (rl), and high byte last (r2). CP/M release 2.4 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file,

‘Thus, in version 2,0, the r#,rl byte pair is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from ¥ to 65535, providing access to any particular
record of the 8 megabyte file, In order to process a file using
random access, the base extent (extent ©) must first be opened.
Although the base extent may or may not contain any allocated data,
this ensures that the file is properly recorded in the directory, and
is visible in DIR requests. The selected record number is then stored
into the random record field (rd,rl), and the BDOS is called to read
the record. Upon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to pvigital Research.)

17

error code, as listed below, or the value 00 indicating the operation
was successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record,

Upon each random read operation, the logical extent and current

record values are automatically set, Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this <case, the 1last

randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record vosition following each random read or write to
obtain the effect of a segquential I/0 operation,

Error codes returned in register A following a random read are
listed below.

@1 reading unwritten data

@2 (not returned in random mode)
83 cannot close current extent

84 seek to unwritten extent

5 (not returned in read mode)

6 seek past physical end of disk

Error code ¥l and 64 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions., Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code #6 occurs whenever byte r2
is non-zero under the current 2.0 release., Normally, non-zero return
codes can be treated as missing data, with =zero return codes
indicating operation complete,

Function 34: Write Random.

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which 1is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the

write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written, Again, segquential read or write operations can

commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research,)

18

switch as it does in sequential mode under either CP/M 1.4 or CP/M
2.0,

The error codes returned by a random write are identical to the
random read operation with the addition of error code ¥5, which
indicates that a new extent <cannot be <created due to directory
overflow,

Function 35: Compute File Size.

when computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes rd, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is @91, then the file contains the
maximum record count 65536 in version 2.8, Otherwise, bytes rd and rl
constitute a 16-bit value (r@ 1is the least significant byte, as
before) which is the file size,

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. 1If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the wvirtual size 1is
65536 records, although only one block of data is actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point, The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. 1If the data
unit size is 128 bytes, the resulting record vosition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record 1lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selectea point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation., The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM.COM, the CCpP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file 1is <created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return,
The input commands take the form

nw nkR 0

where n is an integer value in the range # to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and gquit processing, respectively. If the W command is 1issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return, RANDOM then writes the character string into the
X,DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console., If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the program’'s not so brief), the only error message is

error, try again
The vrogram begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. The
default file control block at 985CH and the default buffer at #080H
are used in all disk operations, The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

20

which contain the principal input 1line processor, called *"readc.”
This particular program shows the elements of random access
processing, and can be used as the basis for further program
development.

;********‘k**

o %k x
;* sample random access program for co/m 2.4 *
o % *
;***

3100 org 100dh ;base of tpa

00008 = reboot equ 00900h ;system reboot

pogs = bdos eqgu 38d5h ;bdos entry point

001 = coninp equ 1 ;console input function

peB2 = conout equ 2 ;console output function

BOBY = pstring equ 9 ;print string until '$°

poda = rstring equ 19 ;read console buffer

ddc = version egu 12 ;return version number

RORE = openf equ 15 ;file open function

0dl1p = closef equ 16 ;close function

pole = makef egu 22 ;make file function

dv2l = readr equ 33 sread random

Pv22 = writer equ 34 ;write random

Jd85c = fcb equ Pd5ch ;default file control block

ga7d = ranrec egu fcb+33 ;random record position

Bailt = ranovf equ fcb+35 ;high order (overflow) byte

0080 = buff egu 2880h ;buffer address

pBdd = cr equ gdh ;carriage return

goda = 1f equ gah ;line feed
;***
o % x
;* load spP, set-up file for random access »
« %k *
;***

3106 31lbco 1xi sp,stack
i
: version 2.07?

0103 Bebc mvi c,version

9105 cdvsy call bdos

0108 fe2d cpi 28h ;jversion 2.0 or better?

¥lba d21606 jnc versok
H bad version, message and go back

plod 111bd 1xi d,badver

0119 cddad call print

8113 c3000 jmo reboot
versok:
; correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21

Blle Dedf mvi c,openf ;open default fcb

118 115c@ 1xi d, fcb

Pllb cd@s5@ call bdos

glle 3c inr a ;err 255 becomes zero

311f c2370 jnz ready
: cannot open file, so create it

9122 delo mvi c,makef

0124 115c¥d 1xi d,fcb

9127 cdpse call bdos

Bl2a 3c inr a ;err 255 becomes zero

912b c2370 jnz ready
; cannot create file, directory full

912e 113ad 1xi d,nospace

0131 cddad call print

0134 c30090 jmp reboot ;back to ccp
;***
e Kk *
;* loop back to "ready" after each command x
« K *
;***

file is ready for processing

~~e we ¢
@
)}
Q
<

137 cdeb5y call readcom ;read next command

913a 22749 shld ranrec ;store input record#

d913d 217f£@ 1xi h,ranovf

01490 3600 mvi m,9? ;clear high byte if set

8142 feb51 coi Q! ;quit?

0144 c2569 jnz notqg
: quit processing, close file

8147 0Geld mvi c,closef

0149 115c® 1xi d,fcb

Bl4c cddso call bdos

8l14f 3c inr a ;err 255 becomes @

9156 cab9d jz error ;error message, retry

#153 c3089 jmp reboot ;back to ccp
;**t**********
%k *
;* end of guit command, process write *
. K *
;***
notaqg:
: not the gquit command, random write?

8156 fe57 cpi ‘W'

$158 c2890 jnz notw
: this is a random write, f£ill buffer until cr

#15b 11446 1xi d,datmsg

¥15e cddad call print ;data prompt

(All Information Contained Herein is Proprietary to Digital Research.)

22

94161 de7f mvi c,127 ;up to 127 characters

@gl63 21800 1xi h,buff ;destination
rloop: ;read next character to buff

@166 cb5 push b ;save counter

2167 e5 push h ;next destination

Y168 cdc2d call getchr j;character to a

glob el pop h ;restore counter

¥léc cl pPOD b ;restore next to fill

Pled fedd cpi cr ;end of line?

016f ca78d jz erloop
; not end, store character

6172 77 mov m,a

9173 23 inx h snext to fill

¥174 64 dcr & ;counter goes down

0175 c2660 jnz rloop ;end of pbuffer?
erloop:
s end of read loop, store 90

08178 3609 mvi m,d
H write the record to selected record number

fPl7a De22 mvi c,writer

d17c 115c#@ 1xi d,fcb

B17f cdps50 call bdos

38182 b7 ora a ;error code zero?

9183 c2b9d jnz error ;message if not

3186 ¢c3379 jmp ready ; for another record
;***
o % *
’
;* end of write command, pnrocess read *
« Kk *
;***********x***************************************
notw:
. not a write command, read record?

8189 fe52 cpi ‘R'

#18b c2b9d jnz error ;skip if not
3 read random record

d18e fe2l mvi c,readr

0190 115cH 1xi d,fcb

8193 cdease call bdos

8196 b7 ora a ;return code @¢?

8197 c2b9o jnz error
: read was successful, write to console

#19a cdcfo call crlf ;new line

3194 de8d mvi c,128 smax 128 characters

B19f 21840 1xi h,buff ;next to get
wloop:

fla2 7e mov a,m ;next character

#la3 23 inx h ;next to get

Plad e67f ani 7fh ;magk parity

#la6 ca370 iz ready ;for another command if 00

Pla9 c5 push b ;save counter

#laa e5b push h ;save next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23

@lab fe2d cpi ;graphic?

@lad d4c89d cnc putchr ;skip output if not

P1by el pop h

P1bl cl pop b

d1b2 @d dcr (o ;count=count-1

21b3 c2a20 jnz wloop

d1b6 c3379 jmp ready
;*****************************t*********************
o % *
;¥ end of read command, all errors end-up here *
o %k *
;***

error:

@1b9 11590 1xi d,errmsg

Plbc cddad call print

d1lbt c3370 jmp ready
;***
;* *
;* utility subroutines for console i/o "
P *
;***
getchr:

;read next console character to a

0lc2 Genl mvi c,coninp

@1cd cdd50 call bdos

@1lc7 c9 ret

;
putchr:
;write character from a to console

W1lc8 dey?2 mvi c,conout
flca 5f mov e,a ;character to send
@dlcb cddsd call bdos ;ssend character
flce c9 ret

crlf:

;send carriage return line feed
bWilcf 3eld mvi a,cr ;carriage return
#1d1 cdc8d call putchr
J1d4 3efda mvi a,lf ;line feed
91d6 cdc8d call putchr
8149 c9 ret

print:

;print the buffer addressed by de until $
¥lda d5 push d
31db cdcfd call crlf
¥lde dl pop d snew line
d1df 0ed9 mvi c¢,pstring
Plel cdo50@ call bdos ;erint the string
Jd1led c9 ret

readcom:

(All Information Contained Herein is Proprietary to Digital Research.)

24

:read the next command line to the conbuf

string data area for console messages *
*

;***

d1le5 116b¥ 1xi d,prompt
Ble8 cddad call print ; command?
dleb Oela nvi c,rstring
Bled 117a6 1xi d,conbuf
01£f08 cdosg call bdos ;read command line
: command line is present, scan it
#1£3 21000 1xi h,? ;start with 0000
81f6 117c0 1xi d,conlin;command line
01£f9 1la readc: 1ldax d :next command character
d1fa 13 inx d ;to next command position
Blfb b7 ora a scannot be end of command
glfc c8 rz
: not zero, numeric?
Pl1fd de30 sui ‘g
01ff felba cpi 10 scarry if numeric
3261 42139 jnc endrd
; add~in next digit
8204 29 dad h $ %2
g205 44 mov c,1
0206 44 mov b,h sbc = value * 2
9207 29 dad h 1 %4
P2068 29 dad h :*8
3209 69 dad b s*2 + *8 = *10
B2va 85 add 1 ;+digit
d200 6L mov 1,a
B26c a2£90 jnc readc ; for another char
d20f 24 inr h soverflow
W21 c3f90 jmp readc ;for another char
endrd:
: end of read, restore value in a
6213 c639 adi ‘g’ ; command
9215 febl cpi 'a' ;translate case?
3217 48 rc
. lower case, mask lower case bits
0218 e65f ani 10181111b
fg2la c9 ret
;*************************************x*************
e K *
'R,

*

badver:
P21b 536£79 db 'sorry, you need cp/m version 2S$°
nospace:
B23a 4e6£29 db 'no directory space$’
datmsg:
6244 547970 db 'type data: §°'
errmsgqg:
2259 457272 db ‘error, try again.$’
prompt:
026b 4e6570 db 'next command? $°'

.
’

(All Information Contained Herein is Proprietary to Digital Research.)

25

;***

« % *
;* fixed and variable data area *
« % *
;***
B27a 21 conbuf: db conlen ;length of console buffer
827b consiz: ds 1 ;resulting size after read
d27c conlin: ds 32 ;length 32 buffer
0921 = conlen equ $-consiz
¥29c ds 32 ;16 level stack
stack:
¥4 2bc end

(All Information Contained Herein is Proprietary to Digital Research.)

26

9., Cp/M 2.0 MEMORY ORGANIZATION.

Similar to earlier versions, CP/M 2.0 is field-altered to fit
various memory sizes, depending upon the host computer memory
configuration, Typical base addresses for popular memory sizes are
shown in the table below.

Module 20k 24K 32k 48k 64k
cCP 3400H 4490H 6400H A400H E490H
BDOS 3C0O0YH 4C0O0H 6Ca0H ACO9H ECOOH
BIOS 4A00H 5A00H 78004 BAOOH FAQQH

Top of Ram 4FFFH 5FFFH 7FFFH BFFFH FFFFH

The distribution disk contains a CP/M 2.8 system configured for a 20k
Intel MDS-808 with standard 1IBM 8" floppy disk drives. The disk
layout is shown below:

Sector Track 20 Module Track 91 Module
1 (Bootstrap Loader) 4980H BDOS + 480H
2 3400H CCP + 0@00H 4190H BDOS + 500H
3 34380H CCP + (080H 4180H BDOS + 580H
4 35004 CCP + 100H 4209H BDOS + 600H
5 3580H CCp + 18dH 423YH BDOS + 680H
6 3600H CCP + 200H 43006H BDOS + 700H
7 3680H CCP + 280H 438¢0H BDOS + 780H
8 37864 CCP + 3004 440¥H BDOS + 8@0H
9 37804 CCP + 38@H 4480H BDOS + 88WH

18 38004 CCp + 400H 459BH BDOS + 900H
11 3886H CCP + 480H 4580H BDOS + 980H
12 3900H CCP + 500H 460¥H BDOS + Ad@H
13 39894 CCP + 580H 4680H BDOS + A80H
14 3A00H CCP + 600H 4709H BDOS + BOOH
15 3A80H CCP + 680H 4780H BDOS + B8@H
16 3BUGH CCP + 7804 4800H BDOS + C90H
17 3B80H CCp + 780H 4880H BDOS + C80H
18 3C00H BDOS + Q00OH 4900H BDOS + D@@H
19 3C80H BDOS + (80H 4980H BDOS + D8@H
20 3D@PH BDOS + 100H 4AGBH BIOS + 0O@BH
21 3D8AH BDOS + 180H 4A80H BIOS + @80H
22 3EQQ0H BDOS + 200H 4B3@H BIOS + 100H
23 3E80H BDOS + 280H 4B80H BIOS + 180H
24 3F00H BDOS + 300H 4C90H BIOS + 2060H
25 3F80H BDOS + 380@H 4C80QH BIOS + 280H
26 4000H BDOS + 400H 4D@PH BIOS + 308H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4, The BDOS portion,
however, occupies one more 256-byte page and the BIOS portion extends
through the remainder of track @1. Thus, the CCP is 8006H (2048
decimal) bytes in length, the BDOS is E@@H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. 1In
version 2.0, the BIOS portion contains the standard subroutines of
1.4, along with some 1initialized table space, as described in the
following section,

(All Information Contained Herein is Proprietary to Digital Research.)

27

19, BIOS DIFFERENCES.

The CP/M 2.6 Basic I/O System differs only slightly 1in concept
from its predecesssors., Two new jump vector entry points are defined,
a new sector translation subroutine 1is included, and a disk
characteristics table must be defined, The skeletal form of these
changes are found in the program shown below.

l: org 4900h

2: maclib diskdef

33 jmp boot

4: e

5¢ jmp listst ;list status

6: jmp sectran ;sector translate

7: disks 4

8: 3 large capacity drive

9: bpb equ 16*1624 ;bytes per block

19: rpb equ bpb/128 ;records per block

11: maxb equ 65535/rpb ;max block number
12: diskdef ¢,1,58,3,bpb,maxb+1,128,0,2
13: diskdef 1,1,58, ,bpb,maxb+1,128,0,2

14: diskdef 2,0

15: diskdef 3,1

16: ;

17: boot: ret ; nop

18: ;

19: listst: xra a ; NOp

249 ret

21:

22: seldsk:

23: ;drive number in c

24: 1xi h,? ;0200 in hl produces select error
25: mov a,c sa 1s disk number 3 ... ndisks-1
26: cpi ndisks ;less than ndisks?

27: rnc ;return with HL = 6000 if not
28: ; proper disk number, return dpb element address
29: mov 1l;¢

30: dad h 1 %2

31: dad h s %4
32: dad h ;%8

33: dad h 1 %16
34: 1xi d,dpbase
353 dad d ;HL=.dpb

36: ret
372 3

38: selsec:

39: ;sector number in c
49 1xi h,sector

41: mov m,C

42: ret
43: ;

44: sectran:

45 ;translate sector BC using table at DE
46: xchg ;HL = .tran

47 dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

48: ; dad b again if double precision tran

49: mov l,m ;only low byte necessary here
50: ; fill both H and L if double orecision tran
51: ret sHL = ?7?ss

52: ;

53: sector: ds 1

54: endef

553 end

Referring to the program shown above, lines 3-6 represent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jump
vector elements). The 1last two elements provide access to the
"LISTST" (List Status) entry point for DESPOOL. The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different than the previous 1.4 release. It should be noted that
the 1.4 DESPOOL porogram will not operate under version 2.8, but an
update version will be available from Digital Research in the near
future.

The "SECTRAN" (Sector Number Translate) entry shown in the jump
vector at line 6 provides access to a BIOS-resident sector translation
subroutine., This mechanism allows the user to specify the sector skew
factor and translation for a particular disk system, and is described
below.

A macro library 1is shown in the 1listing, called DISKDEF,
included on 1line 2, and referenced in 12-15., Although it is not
necessary to use the macro liporary, it greatly simplifies the disk
definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro 1library 1is
included with all Cp/M 2.9 distribution disks. (See the CP/M 2.0
Alteration Guide for formulas which you can wuse to hand-code the
tables produced by the DISKDEF library).

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF

DISKS n
DISKDEFf @,...
DISKDEF 1,...

DISKDEF n-1

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16, A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, @ through n-l1 (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate in-line

(All Information Contained Herein is Proprietary to Digital Research.)

29

fixed data tables, and thus must be placed in a non-executable portion
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion of your BIOS 1is defined followipg the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs, (0]

where

dn is the logical disk number, ¢ to n-1

fsc is the first physical sector number (8 or 1)

lsc is the last sector number

skf is the optional sector skew factor

bls is the data allocation block size

dir is the number of directory entries

cks is the number of "checked" directory entries

ofs is the track offset to logical track @0

(0] is an optional 1,4 compatibility flag
The value "dn" is the drive number being defined with this DISKDEF
macro invocation, The "fsc" parameter accounts for differing sector
numbering systems, and is usually 9 or 1. The "lsc" 1is the 1last

numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors 1is 1less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created 1if the
skf parameter is omitted (or equal to 0). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the wvalues 1024, 2048, 40696, 8192, or 16384, Generally,
performance increases with 1larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced., The "“dks"
specifies the total disk size in "bls" units, That is, if the bls =
2048 and dks = 1008, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1624, The value of "dir" 1is the total number of
directory entries which may exceed 255, if desired. The “cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data 1is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically @, since the probability
of changing disks without a restart is quite low. The “ofs" value
determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research,)

30

space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [@#] parameter 1is included when file
compatibility is required with versions of 1.4 which have been
modified for higher density disks., This parameter ensures that only
16K is allocated for each directory record, as was the case for
previous versions., Normally, this parameter is not included.

For convenience and economy of table space, the special form
DISKDEF i;9

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS 4
DISKDEF
DISKDEF
DISKDEF
DISKDEF

,26,6,1024,243,64,64,2

el
.0
, 0
, 0

W=

ENDEF

with all disks having the same parameter values of 26 sectors vper
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2.0. All disks have identical parameters, except that drives @ and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks," starting at
address DPBASE which 1is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. 1In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE EQU §

DPE@: DW XLT@ ,0000H,0000H,0000H,DIRBUF ,DPBO,CSVA ,ALVE
DPEl: DW XLTO ,0000H,0000H,0000H,DIRBUF,DPBA,CSV]1,ALV1
DPE2: DW XLT@ ,0000H,0000H,0009H,DIRBUF ,DPB@,CSV2,ALV2
DPE3: DW XLT@ ,0000H,0000H,0000H ,DIRBUF ,DPB@#,CSV3,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive @
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT@,
which is the translation vector for drive # in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31

followed by three 16-bit “"scratch" addresses, followed by the
directory buffer address, disk parameter block address, check vector
address, and allocation vector address, The <check and allocation
vector addresses are generated by the ENDEF macro in the ram area
following the BIOS code and tables,

The SELDSK function is extended somewhat in version 2.0. In
particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.0,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE®, DPEl, DPE2, or DPE3, in the
above example) in register HL., If SELDSK returns the value HL =
B000H, then the BDOS assumes the disk does not exist, and prints a
select error mesage at the terminal. Program lines 22 through 36 give
a sample CP/M 2.0 SELDSK subroutine, showing only the disk parameter
header address calculation.

The subroutine SECTRAN is also included in version 2.0 which
performs the actual 1logical to physical sector translation. 1In
earlier versions of CP/M, the sector translation process was a part of
the BDOS, and set to skip six sectors between each read. Due
differing rotational speeds of various disks, the translation function
has become a vart of the BIOS in version 2,6, Thus, the BDOS sends
sequential sector numbers to SECTRAN, starting at sector number @.
The SECTRAN subroutine uses the seguential sector number to produce a
translated sector number which is returned to the B8DOS. The BDOS
subseaguently sends the translated sector number to SELSEC before the
actual read or write is performed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary. 1In this case, the "skf" parameter
is omitted in the macro <call, and SECTRAN simply returns the same
value which it receives. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT@: DB 1,7313:19;25;54,11,1%,23,3,9;15;21
DB 2,8,14,20,26,6,12,18,24,4,190,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. The sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (B = 0@ in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresponding to the first element of a disk parameter
header (XLT@ in the case shown above), The SECTRAN subroutine then
fetches the translated sector number by adding the input sector number
to the base of the translate taple, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L, Note that if the number
of sectors exceeds 255, the translate table contains 16-bit elements
whose value must be returned in HL,

Following the ENDEF macro call, a number of wuninitialized data
areas are defined, These data areas need not be a part of the BIOS
(All Information Contained Herein is Proprietary to Digital Research.)

32

which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro, For a
standard four-drive system, the ENDEF macro might produce

4C72 = BEGDAT EQU 3
(data areas)
4DBY = ENDDAT EQU $
413C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DBY¥H-1, and occupies WY13CH bytes. You must ensure that these
addresses are free for use after the system is loaded,

CP/M 2.0 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes. Information is provided by the BDOS
on sector write operations which eliminates the need for pre-read

operations, thus allowing blocking and deblocking to take place at the
BIOS level,

See the "CP/M 2.4 Alteration Guide" for additional details
concerning tailoring your CP/M system to your particular hardware,

(All Information Contained Herein is Proprietary to Digital Research.)

33

Rl e

Rl e

