
DIIJ~(j~Tfll RESEflR[H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 ALTERA110N GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language. in any form or bv any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California Q3950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims a.ny
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the ri~ht
to revise this pubJication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

TrRdemarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 ALTERATION GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved. No part of
this publication may be reproduced, transmitted, transcribed, stored in
a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior
wri tten permission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M, MAC, and
SID are trademarks of Digital Research.

Introduction

CP/M 2.~ ALTERATION GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pac if ic Gr ove., Cal i fornia

. l.

2.

3.

First Level System Regeneration •

Second Level System Generation ·
4. Sample Getsys and Putsys Programs • ·
5. Diskette Organization • •

6. The BIOS Entry Points.

7. A Sample BIOS · . .
8. A Sample Cold Start Loader

9. Reserved Locations in Page Zero ••

10. Disk Parameter Tables

11. The DISKDEF Macro Library •

12. Sector Blocking and Deblocking

Appendix A · · · · · · · · · · · · · Appendix B · · · · · · · · · · · · · · · · · . . Appendix C · · · · · · · · · · · · · · · • · Appendix D · · · · · · · · · · · • · Appendix E · · · · · · · · · · · • · Appendix F · · · · · · · · · · · • · Appendix G · · · · · · · · · · · · · • · . .

1

2

6

l~

12

14

21

22

23

25

30

34

36
39
5~
56
59
61
66

l. INTRODUC'rION

'rhe standard CP/M system assumes operation on an Intel MDS-800
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment. In this way, the user can ~roduce a diskette
which operates with any IBM-3741 format compatible drive controller
and other peripheral devices.

Although standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
"hard disk" systems. In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M is available, the
customizing process is eased considerably. In this latter case, you
may wiSh to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M is separated into
tnree distinct modules:

BIOS - basic I/O system which is environment dependent
BOOS - basic disk operating system which is not dependent

upon the hardware configuration
CCP - the console command processor which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular
hardware. That is, the user can Upatch" the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system.
The purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first
time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal
version of the BIOS is given in Appendix C which can serve as the
basis for a modified BIOS. In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. In order to patcn the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D. In order to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1

2. FIRS 'r LEVEL SYS'rEM REGENERA'rION

'rhe procedure to follow to patch the CP/f1 system is given below in
several steps. Address references in each step are shown with a
follow i ng "H ,. wh ich denotes the hexadec imal radix, and are given for a
20K CP/M system. For larger CP/M systems, add a "bias" to each
address which is shown with a "+b" following it, where b is equal to
the memory size - 20K. Values for b in various standard memory sizes
are

24K: b = 24K 20K = 4K = lfil0filH
32K: b = 32K 20K = 12K = 3filfil0H
40K: b = 40K 20K = 20K = 5filfil0H
48K: b = 48K 20K = 28K = 7fil00H
56K: b = 56K 20K = 36K = 900fOH
62K: b = 62K 20K = 42K = A800H
6 4K: b = 64K 20K = 44K = B000H

Note: The standard distribution version of CP/M is set for
operation within a 20K memory system. Therefore, you must first bring
up the 2filK CP/M system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write
first two tracks of a diskette into
must begin at location 3380H.
location l00H (base of the TPA),
Appendix d.

a GETSYS program which reads the
memory. The data from the diskette

Code GETSYS so that it starts at
as shown in the first Dart of

(2) Test the GETSYS program by reading a blank diskette into
memory, and cheCk to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program.

(3) Run the GETSYS program using an initialized CP/M diskette to
see if GETSYS loads CP/M starting at 338filH (the operating system
actually starts 128 bytes later at 34filfOH).

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 3380H back onto the first two tracks of the
diskette. The PUTSYS program should be located at 20filH, as shown in
the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Research.)

2

(7) Test CBIOS completely to ensure that it properly performs
console character I/O and disk reads and writes. Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes. Failure to make these checks
may cause destruction of the initialized CP/M system after it is
patched.

(8) Referring to Figure 1 in Section 5, note that the 8IOS is
placed between locations 4A00H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIaS developed in step
(6) and tested in step (7). This replacement is done in the memory of
the machine, and will be placed on the diskette in the next step.

(9) Use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(10) Use GETSYS to bring the copied memory image from the test
diskette back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the load).
Upon suc':edsful load, brancn to the cold start code at location 4A00H.
The cold start routine will initialize page zero, then jumo to the CCP
at location 3400H which will call the BOOS, which will call the CBIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/M will type "A)", the system prompt.

When you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (10), CP/M has orompted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM

(recall that all commands must be followed by a carriage return).

CP/M should respond with another prompt (after several disk accesses):

A)

If it does not, debug your disk write functions and retry.

(12) Then test the directory command by typing

DIR

CP/M should respond with

A: X COM

(13) Test the erase command by typing

ERA X.COM

(All Information Contained Herein is Proprietary to Digital Research.)

3

CP/M should respond with the A prompt. vJhen you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely.

(14) Write a bootstrap loader which is similar to GETSYS, and
place it on track 0, sector 1 using PUTSYS (again using the test
diskette, not the distribution diskette). See Sections 5 and 8 for
more information on the bootstrap operation.

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (12), and (13). Upon completion of
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start" which reboots the system,
and types the A prompt.

(16) At this point, you probably have a good version of your
customized CP/M system on your test diskette. Use GETSYS to load CP/M
from your test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing

DIR

CP/M should respond with a list of files which are provided on the
initialized diskette. One such file should be the memory image for
the debugger, called DDT. COM.

NOTE: from now on, it is important that you always reboot the CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced
by anotner diskette, unless the new diskette is to be read only.

(18) Load and test the debugger by typing

DDT

(see the document "CP/N Dynamic Debugging Tool (DD'r)" for operating
procedures. You should take the time to become familiar with DDT, it
will be your best friend in later steps.

(l~) Before making further CBIOS modifications, practice using
the editor (see the ED user's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS, PUTSYS, and CBIOS
programs using ED, ASr1, and DD'f. Code and test a COpy program which
does a sector-to-sector copy from one diskette to another to obtain
back-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies your legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proprietary to Digital Research.)

4

on each copy which is made with your COpy program.

(20) Modify your CBlOS to include the extra functions for
punches, readers, signon messages, and so-forth, and add the
facilities for a additional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which you have
developed, or you can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have developed belongs to
you, the modified version of CP/M which you have created can be copied
for your use only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all
other CP/M systems, (assuming media compatiblity, of course) which
allows transfer of non-proprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

5

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, you will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/M with the "l10VCPM" program (system relocator) and
place this memory image into a named disk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation program. For further details on the operation of
these programs, see the "Guide to CP/M Features and Facilities"
~anua 1.

Your CBIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and SOOT.HEX, which contain the
machine code for CBIOS and BOOT in Intel hex format.

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xx *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will be:

CONSTRUCTING xxK Cf> /r1 VERS 2."
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

At this point, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location 0900H through
227FH. (i.e., The BOOT is at 0900H, the CCP is at 980H, the BOOS
starts at l180H, and the BIOS is at lF80H.) Note that the memory
image has thL standard MDS-800 BIOS and BOOT on it. It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:

SAVE 34 CPMxx.COM

The memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM

DDT should respond with

NEXT
2300

PC
0100

Load DDT, then read the CPM
image

(The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

portions of the memory image between 900H and 227FH. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual
address. Track 00, sector 01 is loaded to location 900H (you should
find the cold start loader at 9~0H to 97FH), track 100, sec. Jr 02 is
loaded into 980H (this is the base of the CCP), and so-forth through
the entire CP/M system load. In a 20K system, for example, the CCP
resides at the CP/M address 3400H, but is placed illto memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 3400F

Assuming two's complement arithmetic, n = 0580H, which can be checked
by

3400H + 0580H = 10980H = 0980H (ignoring'high-order
ove r flow) •

Note that for larger systems, n satisfies

(3400H+b) + n = 980H, or
n = 980H - (3400H + b), or
n = 0580H - b.

The value of n for common CP/M systems is given below

memc-:y size bias b negative offset n

20K 0000H D580H - 0000H = 0580H
24K 1000H 0580H 1000H = C580H
32K 30010H 0580H - 3000H = A580H
40K 51000H 0580H - 5000H = 8580H
48K 71000H 0580H - 7000H = 658iOH
56K 90el1OH 0580H - 91HlIOH = 4580£1
62K A8el0H 0580H - A80ftJH = 2080H
64K 80el0H D580H - 800elH = 258elH

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system. First type

Hx,n He~adecimal sum and difference

and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found. The input

H3400,0580

for example, will oroduce 980H as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the 9IOS located at
(4A00H+b)-n which, when you use the H command, produces an actual
address of IF80H. 'rhe disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7

LlF80

It is now necessary to patch in your CBOOT and CBIOS routines. The
BOOT resides at location 0900H in the memory image. If the actual
load address is "n", then to calculate the bias (m) use the command:

H900,n Subtract load address from
target address.

The second number typed in response to the command is the desired bias
(m). For example, if your BOOT executes at 0080H, the command:

H900,80

will reply

0980 0880 Sum and difference in hex.

Therefore, the bias Urn" would be 0880H. To read-in the BOOT, give the
command:

ICBOOT. HEX

Then:

Rm

You may now examine your CBOOT with:

L900

Input file CBOOT.HEX

Read CBOOT with a bias of
m (=900H-n)

We are now ready to replace the CBIOS. Examine
where the original version of the CBIOS resides.

the area
Then type

at lF80H

ICBIOS. HEX Ready the II hex" file fo r loadi ng

assume that your CBIOS is being integrated into a 20K CP/M system, and
thus is origined at location 4A00H. In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file. This is accomplished by
typing

RD5812l Read the file with bias D580H

Upon completion of the read, re-examine the area where the CBIOS has
been loaded (use an "LlF80" command), to ensure that is was loaded
properly. When you are satisfied that the change has been made,
return from DDT using a control-C or "G0" command.

Now use SYSGEN to replace the patched memory image back onto a
diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is ~roprietary to Digital Research.)

8

SYSGEN
SYSGEN VERSION 2.0
SOURCE DRIVE NAME (OR

DESTINATION DRIVE NAME

DESTINATION ON B, THEN

FUNCTION COMPLETE

Start the SYSGEN program
Sign-on message from SYSGEN

RETURN TO SKIP)
Respond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.
(OR RETURN TO REBOOT)
Respond with "B" to write the
new system to the diskette in
drive B.
TYPE RETURN
Place a scratch diskette in
drive B, then type return.

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

9

4. SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Section 2. 'rhe READSEC and ~vRITESEC
subroutines must be inserted by the user to read and write the
specific sectors.

,

GETSYS PROGRAH -
REGISTER

A
B
C
DE
HL
SP

READ TRACKS 0 AND 1 TO MEMORY AT 3380H
USE

(SCRATCH REGISTER)
TRACK COUNT (0, 1)
SECTOR COUNT (1,2, .•• ,26)
(SCRATCH REGISTER PAIR)
LOAD ADDRESS
SET TO STACK ADDRESS

START: LXI
LXI
MVI

SP,3381ilH
H, 3380H
B, 0

;SET STACK POINTER TO SCRATCH AREA
;SET BASE LOAD ADDRESS
;START WITH TRACK 0

RD'rRK :

RDSEC:
MVI

CALL
LXI
DAD
INR
rmv
CPI
JC

C,l

READSEC
D,128
D
C
A,C
27
RDSEC

;READ NEXT TRACK (INITIALLY 10)
; READ STAR'rING WITH SECTOR 1
;READ NEXT SECTOR
;USER-SUPPLIED SUBROUTINE
;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
;HL = HL + 128
;SECTOR = SECTOR + 1
;CHECK FOR END OF TRACK

;CARRY GENERATED IF SECTOR < 27

ARRIVE HERE AT END OF TRACK, MOVE TO NEXT 'rRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CPI 2
JC RD'rRK ; CARRY GENERA'rED IF

ARRIVE HERE A'r END OF LOAD, HAL'r FOR NOW
HLT

USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:

ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

TRACK

PUSH
PUSH

B
H

;SAVE BAND C REGISTERS
;SAVE HL REGISTERS .

perform disk read at this point, branch to

label START if an error occurs .
POP
POP
RET

H
B

END START

;RECOVER HL
;RECOVER BAND C REGISTERS
;BACK TO MAIN PROGRAM

< 2

(All Information Contained Herein is Proprietary to Digital Research.)

Hl

Note that this program is assembled and listed in
reference purposes, with an assumed origin of 100H.
operation codes which are listed on the left may be
program has to be entered through your machine's front

Appendix C for
The hexadecimal
useful if the
panel switches.

The PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL become the dump address (next
address to write), and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opposite function: data from address HL
is written to the track given by register B and sector given by
register C. It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(All Information Contained Herein is Proprietary to Digital Research.)

11

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
CP/M is given here for reference purposes. The first sector (see
table on the following page) contains an optional software boot
section. Disk controllers are often set up to bring track 0, sector 1
into memory at a specific location (often location 0000H). The
program in this sector, called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
3400H+b. If your controller does not have a built-in sector load, you
can ignore the program in track 0, sector 1, and begin the load from
track 0 sector 2 to location 3400H+b.

As an example, the Intel MDS-800 hardware cold start loader brings
track 0, sector 1 into absolute address 3000H. Upon loading this
sector, control transfers to location 3000H, where the bootstrap
operation commences by loading the remainder of tracks 0, and all of
track 1 into memory, starting at 3400H+b. The user should note that
this bootstrap loader is of little use in a non-MDS environment,
although it is useful to examine it since some of the boot actions
will have to be duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12

orr ack* Sector# Page# Memory Address CP/M Module name
--

00 01 (boot address) Cold Start Loader
--

00
.1

.1

"
. t

..

.1

..

00

"

"

.1

.1

II

..
01

II

..

.,

"

.,

" .,
.,
.1

..
" .,

01

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

01

02
"

03

04 .,
05

"
06

07
"

08
.1

09

10
"

11
"

12
II

13

14

15

16 .,
17

II

18

19
.1

20
"

21
II

3400H+b
3480H+b
3500H+b
351:HIH+b
3600H+b
3680H+b
3700H+b
3780H+b
3800H+b
3880H+b
3900H+b
3980H+b
3A00H+b
3A80H+b
3B00H+b
3B80H+b

3C00H+b
3C80H+b
3D00H+b
3D80H+b
3E00H+b
3E80H+b
3F00H+b
3F80H+b
4000H+b
4080H+b
4100H+b
4180H+b
4200H+b
4280H+b
4300H+b
4380H+b
4400H+b
4480H+b
4500H+b
4580H+b
4600H+b
4680H+b
4700H+b
4780H+b
4800H+b
4880H+b
4900H+b
4980H+b

CCP .,

.,

.,

CCP

BOOS

II

"
"
II

" .,

"
"
II

II

"
"
II

"
II

II

II

"
II

II

II

BOOS

01
"
II

.,

.,
01

20
21
23
24
25
26

22
II

23
II

24 .,

4A00H+b
4A80H+b
4B00H+b
4B80H+b
4C00H+b
4C80H+b

BIOS
"
II

II

"
BIOS

02-76 01-26 (directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and BOOS
are detailed below. Entry to the BIOS is through a "jump vector"
located at 4A00H+b, as shown below (see Apoendices Band C, as well).
The jump vector is a sequence of 17 jum~- instructions which send
program control to the individual BIOS subroutines. The BIOS
subroutines may be empty for certain functions (i.e., they may contain
a single RET operation) during regeneration of CP/M, but the entries
must be present in the jump vector.

'rhe jump vec tor at 4A00H+b take s the fo rm shown below, where the
individual jump addresses are given to the left:

4A00H+b JMP B001' ARRIVE HERE FROM COLD START LOAD
4A03H+b JMP WBOOr.r ARRIVE HERE FOR WARM START
4MJ6H+b JMP CaNST CHECK FOR CONSOLE CHAR READY
4A09H+b JMP CONIN READ CONSOLE CHARACTER IN
4A0CH+b JMP CONOUT vJRITE CONSOLE CHARACTER OU'!'
4A0FH+b J~lP LIST ~vRITE LISTING CHARACrER OUT
4A12H+b JMP PUNCH WRITE CHARACTER TO PUNCH DEVICE
4A15H+b JMP READER READ READER DEVICE
4A18rl+b JMP HOME MOVE TO TRACK 00 ON SELECTED DISK
4AIBlHb Jr1P SELDSK SELECT DISK DRIVE
4AIEH+o JMP SETTRK SET TRACK NUMBER
4A21H+b JMP SE'rSEC SET SEC~OR NUMBER
4A24H+b JMP SE'rDMA SET DMA ADDRESS
4A27H+b JMP READ READ SELECTED SECTOR
4A2AH+b JMP WRI'rE WRITE SELECTED SECTOR
4A2DH+b JMP LISTS'r RETURN LIST STATUS
4A30H+b JMP SECTRAN SECTOR TRANSLATE SUBROUTINE

Each jump address corresponds to a particular subroutine which
performs the specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
which results from calls on BOOT and WBOOT, simple character I/O
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST, and diskette I/O performed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/O operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero.
An end-of-file condition for an input device is given by an ASCII
control-z (IAH). Peripheral devices are seen by CP/M as "logical"
devices, and are assigned to physical devices within the BIOS.

In order to operate, the BDOS needs only the CONST, CONIN, and
CONOUT subroutines (LIST, PUNCH, and READER may be used by PIP, but
not the BDOS). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the initial version of CBIOS may have empty
subroutines for the remaining ASCII devices.

(All Information Contained Herein is Proprietary to Digital Research.)

14

The characteristics of each device are

CONSOLE

LIST

PUNCH

READER

The principal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or 'reletype.

The principal listing device, if it exists on your
system, which is usually a hard-copy device, such as a
printer or Teletype.

The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single peripheral can be assigned as
the LIS'r, PUNCH, and READER device simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not "hang" if the device is accessed by PIP or some
other user program. Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a lAH (ctl-Z) in reg A to indicate
immediate end-of-file.

For added flexibility, the user can optionally
implement the "IOBY'rE" function which allows
reassignment of physical and logical devices. The
IOBYTE function creates a mapping of logical to
physical devices which can be altered during CP/M
processing (see the STAT command). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory (currently
location 0003H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is
in effect at a particular time. The mapping is
performed by splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

IOBYTE AT 0003H I LIS'r I PUNCH I READER I CONSOLE I

bits 6,7 bits 4,5 bits 2,3 bits 0,1

The value in each field can be in the range 0-3,
defining the assigned source or destination of each
logical device. The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.)

15

CONSOLE field (bits 0,1)
o - console is assigned to the console printer device (TTY:)
I console is assigned to the CRT device (CRT:)
2 batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)
3 user defined console device (UCl:)

READER
o
1
2
3

PUNCH
o
1
2
3

field (bits 2,3)
- READER is the Teletype device (TTY:)
- READER is the high-speed reader device (RDR:)
- user defined reader # 1 (URI:)
- user defined reader # 2 (UR2:)

field (bits 4,5)
- PUNCH is the Teletype device (TTY:)
- PUNCH is the high speed punch device (PUN:)
- user defined punch # 1 (UPl:)

user defined punch # 2 (UP2:)

LIST field (bits 6,7)
o - LIST is the Teletype device (TTY:)
I - LIST is the CRT device (CRT:)
2 - LIST is the line printer device (LPT:)
3 - user defined list device (ULI:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of your
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at location
0003H), except for PIP which allows access to the
physical devices, and STA'l' which allows
logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guide"). In any case, the IOBYTE
implementation should be omitted until your basic CBIOS
is fully implemented and tested: then add the IOBYTE to
increase your facilities.

Disk I/O is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/O operation. After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations. Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selected DMA address before the DMA address is changed.
The track and sector subroutines are always called
before the READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

16

Boo'r

WBoo'r

CONST

CONIN

Note that the READ and WRITE routines should
perform several retries (10 is standard) before
reporting the error condition to the BOOS. If the
error condition is returned to the BOOS, it will report
the error to the user. 'rhe HOME subroutine mayor may
not actually perform the track 00 seek, depending upon
your controller characteristics; the important point is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 00.

'rhe exact responsibilites of each entry point
subroutine are given below:

The BOOT entry point gets control from the cold start
loader and is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version) • If the
IOBYTE function is implemented, it must be set at this
point. 'rhe var ious system parameters which are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 3400H+b for further
processing. Note that reg C must be set to zero to
select dr ive A.

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user
program branches to location 0000H, or when the CPU is
reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if you have
completed your patch). System parameters must be ini
tialized as shown below:

location 0,1,2 set to JMP WBOOT for warm starts
(0000H: JMP 4A03H+b)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JMP BOOS, which is the
primary entry point to CP/M for
transient programs. (0005H: JMP
3C06H+b)

(see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 3400H+b to (re)start
the system. Upon entry to the CCP, register C is set
to the drive to select after system initialization.

Sample the status of the currently assigned console
device and return 0FFH in register A if a character is
ready to read, and 00H in register A if no console
characters are ready.

Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

set the parity bit (high order bit) to zero. If no
console character is ready, wait until a character is
typed before returning.

Send the character from register C to the console
output device. The character is in ASCII, with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if your
console device requires some time interval at the end
of the line (such as a TI Silent 700 terminal). You
can, if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for exam91e).

Send the character from register C to the currently
assigned listing device. The character is in ASCII
with zero parity.

Send the character from register C to the currently
assigned punch device. The character is in ASCII with
zero parity.

Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must be zero), an end of file condition is
reported by returning an ASCII control-z (lAH).

Return the disk head of the currently selected disk
(initially disk A) to the track 00 position. If your
controller allows access to the track 0 flag from the
drive, step the head until the track 0 flag is
detected. If your controller does not support this
feature, you can translate the HOME call into a call
on SETTRK with a parameter of 0.

Select the disk drive given by register C for further
operations, where register C contains 0 for drive A, 1
for drive B, and so-forth UP to 15 for drive P (the
standard CP/M distribution -version supports four
drives). On each disk seleGt, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described in the Section 10. For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically. If there is an
attempt to select a non-existent drive, SELDSK returns
HL=0000H as an error indicator. Although SELDSK must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/O function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/O, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research.)

18

SETTRK

SETSEC

SE'rOMA

READ

WRITE

before selecting the new drive. This would cause an
excessive amount of noise and disk wear.

Register BC contains the track number for subsequent
disk accesses on the currently selected drive. You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register BC can take on values in the range
0-76 corresponding to valid track numbers for standard
floppy disk drives, and 0-65535 for non-standard disk
subsystems.

Register BC contains the sector number (1 through 26)
for subsequent disk accesses on the currently selected
drive. You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs.

Register BC contains the OMA (disk memory access)
address for subsequent read or write operations. For
example, if B = 00H and C = 80H when SETOMA is called,
then all subsequent read operations read their data
into 80H through 0FFH, and all subsequent write
operations get their data from 80H through 0FFH, until
the next call to SE'rOMA occurs. 'rhe initial DMA
address is assumed to be 80H. Note that the
controller need not actually suoport direct memory
access. If, for example, all data is received and
sent through I/O oorts, the CBIOS which you construct
will use the 120 byte area starting at the selected
OMA address for the memory buffer during the following
read or write operations.

Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA address
has been specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

o no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero
value as the return code. That is, if the value in
register A is 0 then CP/M assumes that the disk
operation completed properly. If an error occurs,
however, the CBIOS should attempt at least 10 retries
to see if the error is recoverable. When an error is
reported the BOOS will print the message "BOOS ERR ON
x: BAD SEC'rOR". The ope r a tor then has the opt ion of
typing <cr> to ignore the error, or ctl-C to abort.

write the data from the currently selected OMA address
to the currently selected drive, track, and sector.
The data should be marked as "non deleted data" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

LIS'rST

SECTRAN

maintain compatibility with other CP/M systems. The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
above.

Return the ready status of the list device. Used by
the DESPOOL program to improve console response during
its operation. The value 00 is returned in A if the
list device is not ready to accept a character, and
0FFH if a character can be sent to the printer. Note
that a 00 value always suffices. -

Performs sector logical to physical sector translation
in order to improve the overall response of CP/M.
Standard CP/M systems are shipped with a "skew factor"
of 6, where six physical sectors are skipped between
each logical read operation. This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector. In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response. Note, however,
that you should maintain a single density IBM
compatible version of CP/M for information transfer
into and out of your computer system, using a skew
factor of 6. In general, SECTRAN receives a logical
sector number in BC, and a translate table address in
DE. The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL. For standard systems, the tables and
indexing code is 9rovided in the CaIOS and need not be
changed.

(All Information Contained Herein is Proprietary to Digital Research.)

210

7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for your
first BIOS. The simolest functions are assumed in this BIOS, so that
you can enter it through the front panel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area
reserved in page zero (see Section 9) for the BIOS is used in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and perform better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is proprietary to Digital Research.)

21

8. A SAMPLE COLD S'rAR'r LOADER

'rhe program shown in Appendix D can serve as a basis for your cold
start loader. The disk read function must be supplied by the user,
and the program must be loaded somehow starting at location 0000.
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will probably want to get this loader onto the first disk sector
(track 0, sector 1), and cause your controller to load it into memory
automatically upon system start-up. Alternatively, you may wish to
place the cold start loader into ROM, and place it above the CP/M
system. In this case, it will be necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
which branches to the loader. Subsequent warm starts will not require
this key-in operation, since the entry point 'WBOOT ' gets control,
thus bringing the system in from disk automatically. Not,e also that
the skeletal cold start loader has minimal error recovery, which may
be enhanced on later versions.

(All Information Contained Herein is Proprietary to Digital Research.)

22

9. RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations 00H and ~FFH, contains
several segments of code and data which are used during CP/M
processing. The code and data areas are given below for reference
purposes.

Locations
from to
0000H - 0002H

13 13 13 3H - 0 0 0 3H

f0004H - k'.l0f04H

0005H - 0007H

0008H - 0027H

0030H - 0037H

0038H - 003AH

003BH - 003FH

0040H - 004FH

0050H - L:105BH

005CH 007CH

007DH - 007FH

Contents

Contains a jump instruction to the warm start
entry point at location 4A03H+b. This allows a
simple programmed restart (JHP 0000H) or manual
restart from the front panel.

Contains the Intel standard IOBYTE,
optionally included in the user's
described in Section 6.

which is
CEIOS, as

Current default drive number (0=A, ..• ,l5=P).

Contains a jump instruction to the BOOS, and
serves two purposes: JMP 0005H provides the
primary entry point to the BOOS, as described in
the manual "CP/M Interface Guide," and LHLD
0006H brings the address field of the
instruction to the HL register pair. This value
is the lowest aadress in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DD'r program will change the address
field to reflect the reduced memory size in
debug mode.

(interrupt locations 1 through 5 not used)

(interrupt location 6, not currently used
reserved)

Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
used by CP/I~.

(not currently used - reserved)

16 byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution
version of CP/M

(not currently used - reserved)

default file control
transient program by
Processor.

block produced for a
the Console Command

Optional default random record position

(All Information Contained Herein is Proprietary to Digital Research.)

23

0080H - 00FFH default 12d byte disk buffer (also filled with
the command line when a transient is loaded
under the CCP) •

Note that this intormation is set-up for normal operation under
the CP/M system, but can be overwritten by a transient program if the
BOOS facilities are not required by the transient.

If, for example, a particular program performs only simple I/O and
must begin execution at location 0, it can be first loaded into the
~PA, using normal CP/M facilities, with a small memory move program
which gets control when loaded (the memory move program must get
control from location 0100H, which is the assumed beginning of all
transient programs). The move program can then proceed to mo~e the
entire memory image down to location 0, and pass control to the
starting address of the memory load. Note that if the BIOS is
overwritten, or if location 0 (containing the warm start entry point)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start sequence.

(All Information Contained Herein is Proorietary to Digital Research.)

24

10. DISK PARAMETER TABLES.

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (16-byte)
parameter header which both contains information about the disk
and provides a scratchpad area for certain BDOS operations.
format of the disk parameter header for each drive is shown below

disk
drive

The

Disk Parameter Header

XLT I 0000 I 0000 I 0000 IDIRBUFI DPB CSV ALV

l6b l6b l6b l6b 16b l6b 16b l6b

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT

DIRBUF

Dffi

ALV

Address of the logical to physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same). Disk drives
with identical sector skew factors share the same
translate tables.

Scratchpad values for use within the BDOS (initial
value is unimportant).

Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same
scratchpad area.

Address of a disk parameter block for this drive.
Drives with identical disk characteristics address the
same disk parameter block.

Address of a scratchpad area used for software check
for changed disks. This address is different for each
DPH.

Address of a scratchpad area used by the BDOS to keep
disk storage allocation information. This address is
different for each DPH.

Given n disk drives, the DPH's are arranged in a table whose first row
of 16 bytes corresponds to drive 0, with the last row corresponding to
drive n-l. The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

DPBASE:

00 IXLT 001 0000 1 0000 1 0000 IDIRBUFIDBP 001csv 001ALV 001

01 IXLT 011 0000 1 0000 1 0000 IDIRBUFIDBP 01lcsv 01lALV 011

(and so-forth through)

n-lIXLTn-li 0000 1 0000 1 0000 IDIRBUFIDBPn-lICSVn-lIALVn-l1

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence of
operations returns the table address, with a 0000H returned if the
selected drive does not exist.

NDISKS EQU 4 ;NUMBER OF DISK DRIVES

SELDSK:
;SELECT DISK GIVEN BY BC
LXI H,0000H ; ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS iCY IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV L,C ;LOW(DISK)
MOV H, B ; HIGH (DISK)
DAD H ;*2
DAD H ;*4
DAD H ;*8
DAD H ;*16
LXI D,DPBASE ;FIRST DPH
DAD D ;DPH(DISK)
RET

The translation vectors (XLT 00 through XLTn-l) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-I. The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more DPH's, takes the general form

SPT IBSHIBLMIEXMI DSM DRM \AL0IALII CKS OFF

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the "8b" or "16b"
indicator below the field.

SPT

BSH

is the total number of sectors per track

is the data allocation block shift factor, determined
by the data block allocation size.

(All Information Contained Herein is Proprietary to Digital Research.)

26

EXM

DSM

DRM

CKS

OFF

is the extent mask, determined by the data block
aliocation size and the number of disk blocks.

det~rmines the total storage capacity of the disk drive

determines the total number of directory entries which
can be stored on this drive AL0,ALI determine reserved
directory blocks.

is the size of the directory check vector

is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which is not an entry in the disk parameter block. Given
that the desi]ner has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS
1,024
2,048
4,096
8,192

16,384

BSH
3
4
5
6
7

BLM
7

15
31
63

127

where all values are in decimal. The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+I) is the total number of bytes held by the drive and, of course,
must be within the capacity of the physical disk, not counting the
reserved operating system tracks.

The DRM entry is the one less than the total number of directory
entries, which can take on a 16-bit value. The values of AL0 and ALl,
however, are determined by DRM. The two values AL0 and ALI can
together be considered a string of l6-bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research.)

27

AL0 ALI

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labelled AL0, and 15 corresponds to the low order bit of the byte
labelled ALI. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS
1,024
2,048
4,096
8,192

16,384

Directory Entries
32 times # bits
64 times # bits
128 times # bits
256 times # bits
512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then there
are 32 directory entries per block, requiring 4 reserved blocks. In
this case, the 4 high order bits of AL0 are set, resulting in the
values AL0 = 0F0H and ALI = 00H.

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the last directory
entry number. If the media is fixed, then set CKS = 0 (no directory
records are checked in this case).

Finally,
skipped at the
automatically
mechanism for
partitioning a

the OFF field determines the number of tracks which are
beginning of the physical disk. This value is

added whenever SETTRK is called, and can be used as a
skipping reserved operating system tracks, or for
large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical.
F~rther, the DPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is
invoked.

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain. Both addresses reference an
area of un initialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by the
values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive. If CKS = (DRM+l)/4, then you must reserve (DRM+l)/4 bytes for
directory check use. If CKS = 0, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

28

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+I.

The CBIOS shown in Appendix C demonstrates an instance of these
tables for standard 8" single density drives. It may be useful to
examine this program, and compare the tabular values with the
definitions given above.

(All Information Contained Herein is proprietary to Digital Research.)

29

11. THE DISKDEF MACRO LIBRARY.

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process. You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro library is included with all CP/M 2.0
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
·
DISKS n
DISKDEF o , •••
DISKDEF 1 , ..•
·
DISKDEF n-l
·
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-l (corresponding to logical drives A
through P). N~te that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary un initialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where

dn is the logical disk number, 0 to n-l
fsc is the first physical sector number (0 or 1)
Isc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research.)

30

macro invocation. The "fsc" parameter accounts for differing sector
number ing systems, and is usually 0 or 1. The" Isc" is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "dks"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of "dir" is the total number of
directory entries which may exceed 255, if desired. The "cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem. If
the disk is permanently mounted, then the value of cks is typically 0,
since the probability of changing disks without a restart is quite
low. The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this
parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i, j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research.)

31

DISKS
DISKDEF
DISKDEF
DISKDEF
DISKDEF

ENDEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The DISKS macro generates n Disk Parameter Headers (DPH's),
starting at the DPH table address bPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four
drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE
DPE0:
DPEl:
DPE2:
DPE3:

EQU
DW
DW
DW
DW

$
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSVl,ALVl
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the disk parameter header are described in detail in
the previous section. The check anq allocation vector addresses are
generated by the ENDEF macro in the ram area following the BIOS code
and tables.

Note that if the ~skfh (skew factor) parameter is omitted (or
equal to 0), the translation table is omitted, and a 0000H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
0000H, and simply returns the original logical sector from BC in the
HL register pair. A translate table is constructed when the skf
parameter is present, and the (non-zero) table address is placed into
the corresponding DPH's. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT0: DB
DB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,~0,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32

4C72 =

40B0 =
013C =

BEGOAT EQU $
(da ta areas)
ENOOAT EQU $
OATSIZ EQU $-BEGOAT

which indicates that un initialized RAM begins at location 4C72H, ends
at 40B0H-l, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A, •.. ,P) and displays
the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent
b: Records/ Block
s: Sectors/ Track
t: Reserved Tracks

Three examples of DISKDEF macro invocations are
corresponding STAT parameter values (the last
8-megabyte system).

DISKDEF 0,1,58,,2048,256,128,128,2

shown below
produces a

r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2

DISKDEF 0,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=300, c=0, e=128, b=16, s=58, t=2

DISKDEF 0,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

with
full

(All Information Contained Herein is proprietary to Digital Research.)

33

12. SECTOR BLOCKING AND DEBLOCKING.

upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic l28-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically.

Upon each call to WRITE, the BDOS provides the following
information in register C:

o
1
2

=
=
=

normal sector write
write to directory sector
write to the first sector
of a new data block

Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write is to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written. In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on your CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by "hst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk·at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point. SECTRAN performs a trivial trivial function of
returning the physical sector number.

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of your
previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research.)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector
number) • You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms.

This particular algorithm was tested using an 80 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% improvement in overall response.
In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) 128-byte sectors. This is
primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital Research.)

35

~HH'0 =
ffff =
0000 =

0000 =

0000 =
0806 =
1880 =
1600 =
1603 =

3000

1880 =
0002 =
0031 =
0019 =
0018 =

f800 =
ff0f =
0078 =
0079 =
007b =
007f =

0078 =
0079 =
007a =
00ff =
0003 =
0004 =
0100 =

3000 310001

3003 db79
3005 db7b

3007 dbff

j~~6 ~~~130

APPENDIX A: THE MDS COLD START LOADER

MDS-800 Cold Start Loader for CP/M 2.0

Version 2.0 August, 1979
i
false equ
true equ
testing equ .
I

bias

bias

cpmb
bdos
bdose
boot
rboot

i
bdosl
ntrks
bdoss
bdos0
bdosl
i
mon80
rmon80
base
rtype
rbyte
reset
o
I

dstat
ilow
ihigh
bsw
recal
readf
stack
i
rstart:

i

if
equ
endif
if
equ
endif
equ
equ
equ
equ
equ

org

equ
equ
equ
equ
eau

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

lxi
clear
in
in

i check
coldstart:

in
ani
Jnz

o
not false
false

testing
03400h

not testing
0000h

bias
806h+bias
1880h+bias
l600h+bias
boot+3

ibase of dos load
ientry to dos for calls
iend of dos load
icold start entry point
iwarm start entry point

3000h iloaded here by hardware

bdose-cpmb
2 itracks to read
bdosl/128
25
bdoss-bdos0

i# sectors in bdos
i# on track 0
i# on track 1

0f800h
0ff0fh
078h
base+l
base+3
base+7

base
base+l
base+2
0ffh
3h
4h
100h

iintel monitor base
irestart location for mon80
i'base ' used by controller
iresult type
iresult byte
ireset controller

idisk status port
ilow iopb address
ihigh iopb address
iboot switch
irecalibrate selected drive
idisk read function
iuse end of boot for stack

sp,stackiin case of call to mon80
disk status

rtype
rbyte

if boot switch is off

bsw
02b d t toswitch on? coI s ar

36

300e d37f

3010 0602
3012 214230

3015 7d
3016 d379
3018 7c
3019 d37a

i

i
start:

301b db78 wait0:

~~t¥ ~~~g30

3022 db79
3024 e603
3026 fe02

3028 d20030

302b db7b

302d 17
302e dc0fff
3031 If
3032 e61e

3034 c20030

3037 110700
303a 19
303b 05
303c c21530

303f c30016

i

. ,

i

i

clear the controller
out reset ilogic cleared

mvi
lxi

b,ntrks inumber of tracks to read
h, iopb0

read first/next track into cpmb
mov a,l
out ilow
mov a,h
out ihigh
in dstat
ani 4. ill
J Z wa 1. tv

check
in
ani
cpi

if
cnc
endif
if
jnc
endif

disk status
rtype
lIb
2

testing
rmon80 igo to monitor if 11 or 10

not testing
rstart iretry the load

in rbyte ii/o complete, check status
if not ready, then go to mon80
ral
cc rmon80 inot ready bit set
rar irestore
ani 11110b ioverrun/addr err/seek/crc

if
cnz
endif
if
jnz
endif

lxi
dad
dcr
jnz

testing
rmon80 igo to monitor

not testing
rstart iretry the load

d,iopbl ilength of iopb
d iaddressing next iopb
b icount down tracks
start

jmp boot, print message, set-up jmps
jmp boot

parameter blocks

37

3042 80 iopb0: db 80h : iocw, no update
3043 04 db readf :read function
3044 19 db bdos0 i# sectors to read trk 0
3045 00 db 0 :track " 3046 02 db 2 istart with sector 2, trk 0
3047 0000 dw cpmb :start at base of bdos
0007 = iopb1 equ $-iopb0

:
3049 80 iopb1: db 80h
304a 04 db readf
304b 18 db bdosl isectors to read on track 1
304c 01 db 1 : track 1
304d 01 db 1 isector 1
304e 800c c1w cpmb+bdos0*128 :base of second rd
3050 end

38

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS)

0014 = vers

4a00
3400 = cpmb
3c06 = bdos
1600 = cT;>ml
002c = nsects
0002 = offset
0004 = cdisk
0080 = buff
000a = retry

4a00 c3b34a
4a03 c3c34a wboote:
4a06 c3614b
4a09 c3644b
4a0c c36a4b

mds-800 i/o drivers for cp/m 2.0
(four drive single density version)

version 2.0 august, 1979

equ 20 ;version 2.0

copyright (c) 1979
digital research
box 579, pacific grove
california, 93950

org 4a00h ;base
equ 3400h ;base

of
of

equ 3c06h ;base of

bios
cpm
bdos

in 20k
ccT;>

in 20k

system

system
equ $-cpmb ;length (in bytes) of cpm system
equ cpml/128;number of sectors to load
equ 2 ;number of disk tracks used by cp
equ 0004h ;address of last logged disk
equ 0080h ;default buffer address
equ 10 ;max retries on disk i/o before e

perform following functions
boot cold start
wboot
(boot
const

conin
conout
list
punch
reader
home

warm start (save i/o byte)
and wboot are the same for mds)

console status
reg-a = 00 if no character ready
reg-a = ff if character ready
console character in (result in reg-a)
console character out (char in reg-c)
list out (char in reg-c)
punch out (char in reg-c)
paper tape reader in (result to reg-a)
move to track 00

(the following calls set-up the io parameter bloc
mds, which is used to perform subsequent reads an
seldsk select disk given by reg-c (0,1,2 •••)
settrk set track address (0, ••• 76) for sub r/w
setsec set sector address (1, ••• ,26)
setdma set subsequent dma address (initially 80h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

jump
jmp
jmp
jmp
jmp
jmp

vector for indiviual routines
boot
wboot
const
conin
conout

39

4a0f c36d4b
4a12 c3724b
4a15 c3754b
4a18 c3784b
4alb c37d4b
4ale c3a74b
4a21 c3ac4b
4a24 c3bb4b
4a27 c3c14b
4a2a c3ca4b
4a2d c3704b
4a30 c3b14b

4a33+=
4a33+824a00
4a37+000000
4a3b+6e4c73
4a3f+0d4dee
4a43+824a00
4a47+000000
4a4b+6e4c73
4a4f+3c4dld
4a53+824a00
4a57+000000
4a5b+6e4c73
4a5f+6b4d4c
4a63+824a00
4a67+000000
4a6b+6e4c73
4a6f+9a4d7b

4a73+=
4a73+1a00
4a75+03
4a76+07
4a7 7+0 0
4a78+f200
4a7a+3f00
4a7c+c0
4a7d+00
4a7e+1000
4a80+0200
4a82+=
4a82+01
4a83+07
4a84+0d
4a85+13
4a86+19
4a87+05
4a88+6b
4a89+11
4a8a+17
4a8b+03

dpbase
dpe0:

dpel:

dpe2:

dpe3:

dpb0

xlt0

jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

maclib
disks
equ
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
diskdef
equ
dw
db
db
db
dw
dw
db
db
dw'
dw
equ
db
db
db
db
db
db
db
db
db
db

list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst ;list status
sectran

diskdef ;load the disk definition library
4 ;four disks
$;base of disk parameter blocks
xlt0,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb0 ;dir buff,parm block
csv0,alv0 ;check, alloc vectors
xltl,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpbl ;dir buff,parm block
csvl,alvl ;check, alloc vectors
xlt2,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb2 ;dir buff,parm block
csv2,alv2 ;check, alloc vectors
xlt3,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb3 ;dir buff,parm block
csv3,alv3 ;check, alloc vectors
0,1,26,6,1024,243,64,64,offset
$;disk parm block
26 ;sec per track
3 ;block shift
7 ;block mask
o ;extnt mask
242 ;disk size-l
63 ;directory max
192 ;alloc0
o ; ~llocl
16 ;check size
2 ;offset
$;translate table
1
7
13
19
25
5
11
17
23
3

40

4a8c+139
4a8d+13f
4a8e+15
4a8fH'J 2
4a90+e18
4a91+e1e
4a92+14
4a93+1a
4a94+136
4a95+13c
4a96+12
4a97+18
4a98+04
4a99+13a
4a9a+10
4a9b+16

4a73+=
13e11f+=
1313113+=
4a82+=

4a73+=
e1e11f+=
1313113+=
4a82+=

4a73+=
f0131f+=
1313113+=
4a82+=

00fd =
013fc =
013f3 =
13137e =

f80e =
ff0f =
f803 =
f8136 =
f8139 =
f813c =
f80f =
f812 =

dpbl
alsl
cssl
xltl

dpb2
als2
css2
xlt2

dpb3
als3
css3
xlt3

i
revrt
intc
icon
inte

mon813
rmon813
ci
ri
co
po
10
csts

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
diskdef
equ
equ
equ
equ
diskdef
equ
equ
equ
equ
diskdef
equ
equ
equ
equ

9
15
21
2
8
14
213
26
6
12
18
24
4
113
16
22
1,13
dpb13
als13
css13
xlt13
2,13
dpb13
als13
css13
xlt13
3,13
dpb13
als13
css0
xlt13

iequivalent parameters
isarne allocation vector size
isame checksum vector size
isame translate table

iequivalent parameters
isame allocation vector size
isame checksum vector size
isame translate table

iequivalent parameters
;sarne allocation vector size
;same checksum vector size
jsarne translate table

endef occurs at end of assembly

end of controller - independent code, the remaini
are tailored to the particular operating environrn
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

we also
equ
equ
equ
equ

assume the mds system has four disk drive
13fdh ;interru~t revert port
0fch iinterrupt mask port
0f3h iinterrupt control port
elll$1110bienable rst 13 (warm boot) ,rst 7

mds
equ
equ
equ
equ
equ
equ
equ
equ

monitor equates
0f80eh ;mds monitor
0ff0fh irestart mon80 (boot error)
0f8133h iconsole character to reg-a
0f806h ;reader in to reg-a
0f809h iconsole char from c to console 0
0f80ch ;punch char from c to punch devic
0f80fh ilist from c to list device
13f812h iconsole status 0e/ff to register

41

0078 =
0078 =
0079 =
007b =

0079 =
007a =

0004 =
0006 =
0003 =
0004 =
000d =
000a =

4a9c
4a9f
4aal
4aad
4ab0

4ab3
4ab6
4ab9
4abc
4abd
4ac0

0d0a0a
3230
6b20A3f
32 2e3 0
0d0a00

310001
219c4a
cdd34b
af
320400
c30f4b

4ac3 318000

4ac6 0e0a
4ac8 cS

4ac9 010034
4acc cdbb4b
4acf 0e00
4adl cd7d4b
4ad4 0e00
4ad6 cda74b
4ad9 0e02
4adb cdac4b

4ade cl
4adf 062c

;
base
dstat
rtype
rbyte . ,
ilow
ihigh

readf
writf
recal
iordy
cr
If

signon:

. ,
boot:

disk ports and commands
equ 78h ;base of disk command

;disk status (input)
;result type (input)
;result byte (input)

io ports
equ base
equ base+l
equ base+3

equ
equ

equ
equ
equ
equ
equ
equ

; signon
db
db
db
db
db

;print
(note:
lxi
lxi
call
xra
sta
jmp

base+l
base+2

4h
6h
3h
4h
0dh
0ah

;iopb low address (output)
;iopb high address (output)

;read function
;write function
;recalibrate drive
;i/o finished mask
;carriage return
;line feed

message: xxk cp/m vers y.y
cr,lf,lf
'20' ;sample memory size
'k cp/m vets'
vers/10+'0' ,'.',vers mod 10+'0'
cr,lf,0

signon message and go to ccp
mds boot initialized iobyte at 0003h)

sp,buff+80h
h,signon
prmsg ;print message
a ;clear accumulator
cdisk ;set initially to disk a
gocpm ;go to cp/m

wboot:; loader on track 0, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt
start.

wboot0 :

lxi

mvi
push
;enter
lxi
call
mvi
call
mvi
call
mvi
call

sp,buff ;using dma - thus 80 thru ff ok f

c,retry ;max retries
b

here on error retries
b,cpmb ;set dma address to start of disk
setdma
c,0
seldsk
c,0
settrk
c,2
setsec

;boot from drive 0

;start with track 0
;start reading sector 2

read sectors, count nsects to zero
pop b ;10-error count
mvi b,nsects

42

4ael c5
4ae2 cdc14b
4ae5 c2494b
4ae8 2a6c4c
4aeb 118000
4aee 19
4aef 44
4af0 4d
4afl cdbb4b
4af4 3a6b4c
4af7 fela
4af9 da054b

4afc 3a6a4c
4aff 3c
4b00 4f
4b01 cda74b
4b04 af

rdsec:

4b05 3c rdl:
4b06 4f
4b07 cdac4b
4b0a cl
4bl2Jb 05
4b0c c2e14a

4b0f f3
4b10 3e12
4b12 d3fd
4b14 af
4b15 d3fc
4b17 3e7e
4b19 d3fc
4blb af
4blc d3f3

4ble 018000
4b21 cdbb4b

4b24 3ec3
4b26 320000
4b29 21034a
4b2c 220100
4b2f 320500
4b32 21063c
4b35 220600
4b38 323800
4b3b 2100f8
4b3e 223900

gocpm:

;read next sector
push b isave sector count
call read
jnz booterr
Ihld iod
lxi d,128

iretry if ' errors occur
;increment dma address
isector size

dad d ; incremented dma address in hI
mov
mov
call
Ida
cpi
jc
must
Ida
inr
mov
call
xra
inr
mov
call
pop
dcr

b,h
c,l
setdma
ios

iready for call to set dma

26
rdl

;sector number just read
;read last sector?

be sector 26, zero and go to next track
iot iget track to register a
a
c,a
settrk
a
a
c,a
setsec
b
b

jnz rdsec

iready for call

iclear sector number
ito next sector
iready for call

irecall sector count
i done?

done with the load, reset default buffer
i (enter here from cold start boot)
enable rst0 and rst7
di
mvi
out
xra
out
mvi
out
xra
out

a,12h
revrt
a
intc
a,inte
intc
a
icon

iinitialize command

icleared
irst0 and rst7 bits on

iinterrupt control

set default buffer address to 80h
lxi b,buff
call setdma

reset monitor entry points
mvi a, jmp
sta 0
lxi h,wboote
shld 1 ;jmp wboot at location 00
sta 5
lxi h,bdos
shld 6 ijmp bdos at location 5

address

sta
lxi
shld
leave

7*8
h,mon80
7*8+1

;jrnp to mon80 (may have been chan

iobyte set

43

previously selected disk was b, send parameter to
4b41 3a0400 Ida cdisk :last logged disk number
4b44 4f mov c,a :send to ccp to log it in
4b45 fb
4b46 c30034

4b49 cl
4b4a 0d
4b4b ca524b

4b4e c5
4b4f c3c94a

4b52 215b4b
4b55 cdd34b
4b58 c30fff

;
booterr:

booter0:

bootmsg:

ei
jmp cpmb

error condition occurred, print message

pop b :recall counts
dcr c
jz booted'
try again
push b
jmp wboot0

otherwise too many retries
lxi h,bootmsg
call prmsg
jmp rmon80 :mds hardware monitor

4b5b 3f626f4 db '?boot' ,0

4b61 c312f8

4b64 cd03f8
4b67 e67f
4b69 c9

4b6a c309f8

4b6d c30ff8

4b70 af
4b71 c9

const:

conin:

conou t:

list:

;
listst:

;console status to reg-a
(exactly the same as mds call)
jmp csts

:console character to reg-a
call ci
ani 7fh ;remove parity bit
ret

;console character from c to console out
jmp co

;list device out
(exactly the same as mds call)
jmp 10

;return list status
xra
ret

a
;always not ready

punch: :punch device out
(exactly the same as mds call)

4b72 c30cf8 jmp po

reader: ;reader character in to reg-a
(exactly the same as mds call)

4b75 c306f8 jmp ri

home: ;move to home position

44

and retry

4b78 0e00
4b7a c3a74b

4b7d 210000
4b80 79
4b81 fe04
4b83 d0

4b84 e602
4b86 32664c
4b89 79
4b8a e601
4b8c b7
4b8d ca924b
4b90 3e30

4b92 47
4b93 21684c
4b96 7e
4b97 e6cf
4b99 b0
4b9a 77

~g~g ~600
4bge 29
4b9f 29
4ba0 29
4bal 29
4ba2 11334a
4ba5 19
4ba6 c9

4ba7 216a4c
4baa 71
4bab c9

4bac 216b4c
4baf 71
4bb0 c9

4bbl 0600
4bb3 eb
4bb4 09
4bb5 7e
4bb6 326b4c
tgg~ g~

. ,

;

treat as track 00 seek
mvi c, 0
jmp settrk

seldsk: ;select disk given by register c
lxi h,0000h ;return 0000 if error
mov a,c
cpi ndisks itoo large?
rnc ileave hI = 0000

ani
sta
mov
ani
ora
jz
mvi

10b ;00 00 for drive 0,1 and 10 10 fo
dbank ito select drive bank
a,c i00, 01, 10, 11
Ib imds has 0,1 at 78, 2,3 at 88
a iresu1t 00?
setdr ive
a,00110000b iselects drive 1 in bank

setd rive:
mov
lxi
mov
ani
ora
mov

b,a
h,iof
a,m

isave the function
iio function

11001111b imask out disk number
b imask in new disk number
m,a ;save it in iopb

i

m~y
dad
dad
dad
dad
lxi
dad
ret

~~0 ;hl=disk number
h ; *2
h i *4
h i*8
h ;*16
d,dpbase
d ;hl=disk header table address

settrk: iset track address given by c
lxi h,iot
mov m,c
ret

setsec: ;set sector number given by c

sectran:

lxi h,ios
mov m,c
ret

;translate sector bc using table at de
mvi
xchg
dad
mov
sta
mov
ret

b,0 ;double precision sector number i

b
a,m
ios
l,a

;translate table address to hI
;translate(sector) address
;translated sector number to a

;return sector number in 1

setdma: ;set dma address given by regs b,c

45

4bbb 69
4bbc 60
4bbd 226c4c
4bc0 c9

4bcl 0e04
4bc3 cde04b
4bc6 cdf04b
4bc9 c9

4bca 0e06
4bcc cde04b
4bcf cdf04b
4bd2 c9

4bd3 7e
4bd4 b7
4bd5 c8

4bd6 e5
4bd7 4f
4bd8 cd6a4b
4bdb el
4bdc 23
4bdd c3d34b

4be0 21684c
4be3 7e
4be4 e6f8
4be6 bl
4be7 77

4be8 e620
4bea 216b4c
4bed b6
4bee 77
4bef c9

4bf0 0e0a

4bf2 cd3f4c
4bf5 cd4c4c

4bf8 3a664c

mov l,c
mov h,b
shld iod
ret

i
(assuming disk/trk/sec/dma read: i read next disk record

mvi c,readf iset to read function
call setfunc
call waitio iperform read function
ret imay have error set in reg-a

i
write: idisk write function

mvi c,writf
call setfunc iset to write function
call waitio
ret imay have error set

utility subroutines
prmsg: iprint message at h,l to 0

. ,
setfunc:

. ,
waitio:

rewai t:

mov a,m
ora a izero?
rz
more to print
push h
mov
call
pop
inx
jmp

c,a
conout
h
h
prmsg

set function for next i/o (command in reg-c)
lxi h,iof iio function address
mov a,m iget it to accumulator for maskin
ani 11111000b iremove previous command
ora c iset to new command
mov m,a ireplaced in iopb
the mds-800 controller regis disk bank bit in sec
mask the bit from the current i/o function
ani 00100000b imask the disk select bit
lxi h,ios iaddress the sector selec
ora m iselect proper disk bank
mov m,a iset disk select bit on/o
ret

mvi c,retry imax retries before perm error

start the i/o function and wait for completion
call intype iin rtype
call inbyte iclears the controller

Ida dbank i set bank flags

46

4bfb b7
4bfc 3e67
4bfe 064c
4c00 c20b4c
4c03 d379
4c05 78
4c06 d37a
4c08 c3104c

4c0b d389
4c0d 78
4cl2le d38a

iodrl:

.
I

4c10 cd594c wait0:
4c13 e61214
4c15 ca104c

4c18 cd3f4c

4clb fe02
4cld ca324c

4c20 b7
4c21 c2384c

4c24 cd4c4c
4c27 17
4c28 da324c
4c2b If
4c2c e6fe
4c2e c2384c

4c31 c9

and 0ffh
shr 8

;drive

;zero if drive 121,1 and nz
;low address for iopb
;high address for iopb

bank I?
;low address to controlle

ora
mvi
mvi
jnz
out
mov
out
jmp

a
a,iopb
b,iopb
iodrl
ilow
a,b
ihigh
wait0

;high address

; dr ive bank 1
out ilow+10h
mov a,b
out ihigh+ll2lh

call
ani
jz

ins tat
iordy
wait0

check io completion ok

ito wait for complete

;88 for drive bank 10

;wait for completion
; ready?

call intype ;must be io complete (00)
121121 unlinked i/o complete, 01 linked i/o comple
10 disk status changed 11 (not used)
cpi 10b ;ready status change?
jz wready

must be 00 in the accumulator
ora
jnz

check
call
ral
jc
rar
ani
jnz

a
werror

i/o error bits
inbyte

wready

11111110b
werror

;some other condition, re

;unit not ready

;any other errors?

read or write is ok, accumulator contains zero
ret

wready: ;not ready, treat as error for now
4c32 cd4c4c
4c35 c3384c

werror:

. ,

call inbyte ;clear result byte
jmp trycount

;return hardware malfunction (crc, track, seek, e
the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
o - deleted data (accepted as ok above)
1 - crc error
2 - seek error
3 - address error (hardware malfunction)
4 - data over/under flow (hardware malfunct
5 - write protect (treated as not ready)
6 - write error (hardware malfunction)
7 - not ready

47

4c38 0d
4c39 c2f24b

4c3c 3e01
4c3e c9

4c3f 3a664c
4c42 b7
4c43 c2494c
4c46 db79
4c48 c9
4c49 db89
4c4b c9

4c4c 3a664c
4c4f b7
4c50 c2564c
4c53 db7b
4c55 c9
4c56 db8b
4c58 c9

4c59 3a664c
4c5c b7
4c5d c2634c
4c60 db78
4c62 c9
4c63 db88
4c65 c9

4c66 00

4c67 80
4c68 04
4c69 01
4c6a 02
4c6b 01
4c6c 8000

(accumulator bits are numbered 7 6 5 4 3 2 1 0)

. , it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable. in any case, the not ready conditio
treated as a separate condition for later improve

trycount:
register c contains retry count, decrement 'til z
dcr c
jnz rewait ;for another try

; cannot recover from error
mvi a,l ;error code
ret

; intype, inbyte, instat read drive bank 00 or 10
intype: Ida dbank

ora a
jnz intypl ;skip to bank 10
in rtype
ret

intypl: in
ret

rtype+10h ;78 for 0,1 88 for 2,3

;
inbyte: Ida

ora
jnz
in
ret

inbytl: in
ret

;
instat: Ida

ora
jnz
in
ret

instal: in
ret

. data ,
dbank: db

iopb: ;io
db

iof: db
ion: db
iot: db
ios: db
iod: dw

dbank
a
inbytl
rbyte

rbyte+10h

dbank
a
instal
dstat

dstat+10h

areas (must be in
0 ;disk

parameter block

ram)
bank 00 if drive

10 if dr ive

80h ;normal i/o operation
readf ;io function, initial
1 ;number of sectors to
offset ;track number
1 ;sector number
buff ;io address

define ram areas for bdos operation

48

0,1
2,3

read
read

4c6e+=
4c6e+
4cee+
4d({Jd+
4d1d+
4d3c+
4d4c+
4d6b+
4d7b+
4d9a+
4daa+=
({J13c+=
4daa

endef
begtiat equ
dirbuf: ds
a1v({J: ds
csv({J: ds
a1v1: ds
csv1: ds
a1v2: ds
csv2: ds
a1v3: ds
csv3: ds
enddat equ
datsiz equ

end

$
128 :directory access buffer
31
16
31
1Q
31
16
31
16
$
$-begdat

49

0014 =

0000 =
3400 =
3c06 =
4a00 =
0004 =
0003 =

4a00
002c =

4a00 c39c4a

msize

bias
ccp
bdos
bios
cdisk
iobyte

nsects

4a03 c3a64a wboote:
4a06 c3ll4b
4a09 c3244b
4a0c c3374b
4a0f c3494b
4a12 c34d4b
4a15 c34f4b
4a18 c3544b
4alb c35a4b
4ale c37d4b
4a2l c3924b
4a24 c3ad4b
4a27 c3c34b
4a2a c3d64b
4a2d c34b4b
4a30 c3a74b

4a33 734a00 dpbase:
4a37 000000
4a3b f04c8d
4a3f ec4d70

4a43 734a00
4a47 000000
4a4b f04c8d
4a4f fc4d8f

4a53 734a00
4a57 000000
4a5b f04c8d
4a5f 0c4eae

APPENDIX C: A SKELETAL CBIOS

skeletal cbios for first level of cp/m 2.0 altera

equ 20 icp/m version memory size in kilo

"bias" is address offset from 34012Jh for memory sy
than 16k (referred to as "b" throughout the text)

(msize-20) *1024 equ
equ
equ
equ
equ
equ

3400h+bias ibase of ccp
ccp+806h ibase of bdos
ccp+1600h ibase of bios
0004h icurrent disk number 0=a, ••• ,15=p
0003h iintel i/o byte

org
equ

bios iorigin of this program
($-ccp)/128 iwarm start sector count

jump
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

vector for
boot
wboot
const
con in
conout
list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst
sectran

individual subroutines
icold start
iwarm start
iconsole status
iconsole character in
iconsole character out
ilist character out
iPunch character out
ireader character out
imove head to home positi
iselect disk
iset track number
iset sector number
iset dma address
iread disk
iwrite disk
ireturn list status
isector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 00
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk00,al100
disk parameter header for disk 01
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk0l,al10l
disk parameter header for disk 02
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk02,al102

50

4a63
4a67
4a6b
4a6f

734a00
000000
f04c8d
lc4ecd

~~11 ~g~~~g trans:
4a7b 170309
4a7f 150208
4a83 141a06
4a87 121804
4a8b 1016

4a8d
4a8f
4a90
4a91
4a92
4a94
4a96
4a97
4a98
4a9a

la00
03
07
00
f200
3f00
c0
00
1000
0200

4a9c af
4a9d 320300
4aa0 320400
4aa3 c3ef4a

4aa6 318000
4aa9 0e00
4aab cd5a4b
4aae cd544b

4abl 062c
4ab3 0e00
4ab5 1602

4ab7 210034

4aba c5
4abb d5
4abc e5
4abd 4a
4abe cd924b
4acl cl

.
I

dpblk:

.
I

boot:

;
wboot:

10adl :

disk
dw
dw
dw
dw

parameter header
trans,0000h
0000h,0000h
dirbf,dpblk
chk03,al103

for disk 03

sector translate vector
gg
db
db
db
db
db

;disk
dw
db
db
db
dw
dw
db
db
dw
dw

1S~S:rl:17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22

,. sectors
,sectors
;sectors
;sectors
;sectors
isectors
isectors

~~g~1~~
9,10,11,12
13,14,15,16
17,18,19,20
21,22,23,24
25,26

parameter
26
3
7

block, common to all disks
;sectors per track
iblock shift factor
;block mask

o
242
63
192
o
16
2

;null mask
;disk size-l
;directory max
;alloc 0
;alloc 1
icheck size
itrack offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initi
xra a ;zero in the accum
sta iobyte ;clear the iobyte
sta cdisk ;select disk zero
jmp gocpm ;initialize and go to cp/

;simplest case is to read the disk until all sect
lxi sp,80h ;use space below buffer f
mvi c,0 ;select disk 0
call seldsk
call hom e ; got 0 t r a c k 0 0

mvi b,nsects ;b counts # of sectors to
mvi c,0 ;c has the current tra~k
mvi d,2 ;d has the next sector to
note that we begin by reading track 0, sector 2 s
contains the cold start loader, which is skipped
lxi h,ccp ;base of cp/m (initial 10
; load
push
push
push
mov
call
pop

one
b
d

more sector

h
c,d
setsec
b

51

;save sector count, current
;save next sector to read

track

;save dma address
;get sector address
;set sector address
;recall dma address

to register c
from register
to b,c

4ac2 c5
4ac3 cdad4b

4ac6 cdc34b
4ac9 fe00
4acb c2a64a

4ace el
4acf 118000
4ad2 19
4ad3 dl
4ad4 cl
4ad5 05
4ad6 caef4a

4ad9 14
4ada 7a
4adb felb
4add daba4a

4ae0 1601
4ae2 0c

4ae3 c5
4ae4 d5
4ae5 e5
4ae6 cd7d4b
4ae9 el
4aea dl
4aeb cl
4aec c3ba4a

4aef 3ec3
4afl 320000
4af4 21034a
4af7 220100

4afa 320500
4afd 21063c
4bfJ0 220600

4b03 018000
4b06 cdad4b

4b09 fb
4b0a 3a0400
4b0d 4f
4b0e c30034

;

;

gocpm:

push
call

dr ive
call
cpi
jnz

b ;replace on stack for later recal
setdma ;set dma address from b,c

set to
read
00h
wboot

0, track set, sector set, dma addres

;any errors?
;retry the entire boot if an erro

no error, move to next sector
;recall dma address
;dma=dma+128

pop h
lxi d,128
dad d inew dma address is in h,l

;recall sector address pop d
pop b ;recall number of sectors remaini

;sectors=sectors-l dcr b
j z gocpm itransfer to cp/m if all have bee

more sectors remain to load, check for track chan
inr d
mov
cpi
jc

a,d
27
loadl

isector=27?, if so, change tracks

;carry generated if sector<27

end of current track, go to next track
mvi d,l ibegin with first sector of next
inr c itrack=track+l

save
push
push
push
call
pop
pop
pop
jmp

register state, and change tracks
b
d
h
settrk itrack address set from register
h
d
b
loadl ifor another sector

end of load operation, set parameters and go to c

mvi
sta
lxi
shld

sta
lxi
shld

lxi
call

ei
Ida
mov
jmp

a,0c3h ;c3 is a jmp instruction
o ifor jmp to wboot
h,wboote iwboot entry point
1 iset address field for jmp at 0

5
h,bdos
6

b,80h
setdma

cdisk
c,a
ccp

52

i for jmp to bdos
;bdos entry point
iaddress field of jump at 5 to bd

;default dma address is 80h

;enable the interrupt system
iget current disk number
isend to the ccp
igo to cp/m for further processin

4bll
4b2l 3e00
4b23 c9

4b24
4b34 e67f
4b36 c9

4b37 79
4b38
4b48 c9

4b49 79
4b4a c9

4b4b af
4b4c c9

4b4d 79
4b4e c9

4b4f 3ela
4b5l e67f
4b53 c9

4b54 0e00
4b56 cd7d4b
4b59 c9

4b5a 210000
4b5d 79
4b5e 32ef4c
4b6l fe04

i

· I

· I

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code

const: iconsole status, return 0ffh if character ready,
ds l0h ispace for status subroutine
mvi a,00h
ret

conin: iconsole character into register a
ds l0h ispace for input routine
ani 7fh istrip parity-bit
ret

conout: iconsole character output from register c

· I

1 ist:

i

mov a,c iget to accumulator
ds l0h ispace for output routine
ret

ilist character from register c
mov a,c ;character to register a
ret ;null subroutine

listst: ireturn list status (0 if not ready, 1 if ready)
xra a ;0 is always ok to return
ret

i
punch: ;punch character from register c

i

· I

mov a,c ;character to register a
ret inull subroutine

reader: ;read character into register a from reader devic

· I

home:

;

mvi a,lah ;enter end of file for now {repla
ani 7fh ;remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

;move to the track 00 position of current drive
translate this call into a settrk call with param
mvi c,0 iselect track 0
call settrk
ret ;we will move to 00 on first read

seldsk: ;select disk given by register c
lxi h,0000h ;error return code
mov a,c
sta diskno
cpi 4 ;must be between 0 and 3

53

4b63 d0

4b64

4b6e 3aef4c
4b71 6f
4b72 2600
4b74 29
4b75 29
4b76 29
4b77 29
4b78 11334a
4b7b 19
4b7c c9

4b7d 79
4b7e 32e94c
4b8l
4b91 c9

4b92 79
4b93 32eb4c
4b96
4ba6 c9

4ba7 eb
4ba8 09
4ba9 6e
4baa 2600
4bac c9

4bad 69
4bae 60
4baf 22ed4c
4bb2
4bc2 c9

4bc3
4bd3 c3e64b

4bd6

i

i

rnc
disk number is
ds 10
compute proper
Ida diskno

ino carry if 4,5, •••
in the proper range

ispace for disk select
disk parameter header address

mov l,a i1=disk number 0,1,2,3
mvi h,0 ihigh order zero
dad h i*2
dad h i*4
dad h i*8
dad h i*16 (size of each header)
1xi d,dpbase
dad d ihl=.dpbase(diskno*16)
ret

settrk: iset track given by register c

;
setsec:

· ,

mov
sta
ds
ret

;set
mov
sta
ds
ret

a,c
track
10h ispace for track select

sector given by register c
a,c
sector
l0h ;space for sector select

sectran:
;translate
;translate
xchg

the sector given by bc
table given by de

;hl=.trans
;h1=.trans(sector)
;1 = trans(sector)
;hl= trans(sector)
;with value in hI

using the

· ,

dad b
mov I,m
mvi h,0
ret

setdma: ;set dma address given by registers band c

· ,
read:

· ,

· ,

mov l,c ;low order address
mov h,b ;high order address
shld dmaad ;save the address
ds l0h ;space for setting the dma addres
ret

;perform read operation (usually this is similar
so we will allow space to set up read command, th
common code in write)
ds l0h ;set up read command
jmp waitio ito perform the actual i/o

write: iperform a write operation

· ,
ds l0h iset up write comman~

waitio: ienter here from read and write to perform the ac
operation. return a 00h in register a if the ope
properly, and 0lh if an error occurs during the r

54

4be6
4ce6 3ellll
4ce8 c9

4ce9
4ceb
4ced
4cef

4cf0 =
4cf0
4d70
4d8f
4dae
4dcd
4dec
4dfc
4elllc
4elc

4e2c =
013c =
4e2c

in this case,

ds 256
mvi a,l
ret

we have saved the disk number in 'd
the track number in 'track' (0-76
the sector number in I sector I (I
the d rna add res sin I d rna a d I (I{) - 6 5 5
ispace reserved for i/o drivers
ierror condition
ireplaced when filled-in

the remainder of the cbios is reserved uninitiali
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdat" and "enddat").

track: ds
sector: ds
dmaad: ds
diskno: ds

2
2
2
1

itwo bytes for expansion
itwo bytes for expansion
idirect memory address
idisk number 0-15

begdat
di rbf:
al100 :
al101:
al102:
al103:
chk00:
chk01:
chk02 :
chk03:
i

scratch
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds

enddat equ
datsiz equ

end

ram
$
128
31
31
31
31
16
16
16
16

area for bdos use
ibeginning of data
iscratch directory
iallocation vector
iallocation vector
iallocation vector
ia11ocation vector
icheck vector 0
i check vec tor 1
icheck vector 2
icheck vector 3

$ iend of data area
$-begdatisize of data area

55

area
area
o
1
2
3

0100

0014 =

0000 =
3400 ::c

3c00 =
4a00 =

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

msize

combined getsys and putsys programs from Sec 4.
Start the programs at the base of the TPA

org 0100h

equ 20 size of cp/m in Kbytes

: hbias" is the amount to add to addresses for > 20k
(referred to as "b" throughout the text)

bias
ccp
bdos
bios

gstart:

equ
equ
equ
equ

(msize-20)*1024
3400h+bias
ccp+0800h
ccp+1600h

getsys programs tracks 0 and 1 to memory at
3880h + bias

register
a
b
c
d,e
h,l
sp

usage
(scratch register)
track count (0 ••• 76)
sector count (1. •• 26)
(scratch register pair)
load address
set to stack address

0100 318033 lxi sp,ccp-0080h
h,ccp-0080h
b,0

start of getsys
convenient plac
set initial loa
start with trac
read next track
each track star

0103 218033 lxi
0106 0600 mvi

rd$trk:
0108 0e01 mvi

010a cd0003
010d 118000
0110 19
0111 0c
0112 79
0113 felb
0115 da0a01

rd$sec:
call
lxi
dad
inr
mov
cpi
jc

c,l

read$sec
d,128
d
c
a,c
27
rdsec

get the next se
offset by one s

(hl=hl+128)
next sector
fetch sector nu

and see if la
<, do one more

arrive here at end of track, move to next track

0118 04
0119 78
011a fe02
011c da0801

811f fb
0120 76

inr
mov
cpi
jc

b
a,b
2
rd$trk

track = track+l
check for last
track = 2 ?
<, do another

arrive here at end of load, halt for lack of anything b

ei
hIt

56

0200

0200 318033
0203 218033
0206 0600

0208 0e01

020a cd0004
020d 118000
0210 19
0211 0c
0212 79
0213 felb
0215 da0a02

0218 04
0219 78
o 21a fe02
f021c da0802

021f fb
0220 76

0300

0300 c5
0301 e5

f{J3f{J2

f{J342 el
f{J343 cl

putsys program, places memory image starting at
3880h + bias back to tracks 0 and 1 . start this program at the next page boundary ,

org ($+0100h) and 0ff00h

put$sys:
lxi sp,ccp-0080h convenient plac
lxi h,ccp-0080h ; start of dump
mvi b,0 start with trac

wr$trk:
mvi c,l start with sect

wr$sec:
call write$sec write one secto
lxi d,128 length of each
dad d <hl>=<hl> + 128
inr c <c> = <c> + 1
mov a,c see if
cpi 27 past end of t
jc wr$sec no, do another

arrive here at end of track, move to next track

inr
mov
cpi
jc

b
a,b
2
wr$trk

track = track+l
see if

last track
no, do another

done with putsys, halt for lack of anything bette

ei
hIt

user supplied subroutines for sector read and write

move to next page boundary

org ($+0100h) and 0ff00h

read$sec:
read the next sector
track in ,
sector in <c>
dmaaddr in <hI>

push
push

b
h

; user defined read operation goes here
ds 64

pop
pop

h
b

57

0344 c9 ret

0400 org ($+0100h) and I?Jff00h another page bo

write$sec:

. same parameters as read$sec ,

0400 c5 push b
0401 e5 push h

user defined write operation goes here
0402 ds 64

0442 e1 pop h
0443 c1 pop b
0444 c9 ret

end of getsys!putsys program

0445 end

58

0000

12112114 =

001210 =
340121 =
4a00 =
0300 =
4a00 =
190121 =
0032 =

000121 12110200
01211213 1632
012105 2112l~34

APPENDIX E: A SKELETAL COLD START LOADER

this is a sample cold start loader which, when modified
resides on track 00, sector 01 (the first sector on the
diskette). we assume that the controller has loaded
this sector into memory upon system start-up (this pro
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running). the cold start loader brings the cp/m system
into memory at "loadp" (3400h + "bias"). in a 20k

; memory system, the value of "bias" is 0000h, with large
values for increased memory sizes (see section 2). afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + "bias." the cold start loader is not used un-

; til the system is powered up again, as long as the bios
is not overwritten. the origin is assumed at 0000h, an

; must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area
is used.

msize

bias
ccp
bios
biosl
boot
size
sects

cold:

Isect:

org 0 base of ram in cp/m

equ 20 min mem size in kbytes

equ (msize-20)*l024 offset from 20k system
equ 3400h+bias base of the ccp
equ ccp+l6~HJh . base of the bios ,
equ 0300h length of the bios
equ bios
equ bios+biosl-ccp size of cp/m system
equ size/128 # of sectors to load

begin the load operation

lxi b,2 b=e, c=sector 2
mvi d,sects d=# sectors to load
lxi h,ccp base transfer

; load the next sector

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,
into the address given by <hI>

address

branch to location "cold" if a read error occurs

59

0008 c36b00
000b

006b 15
006c ca004a

006f 318000
0072 39

0073 0c
0074 79
0075 felb
0077 da0800

007a 0e01
007c 04
007d c30800
0080

*
*
*

user supplied read operation goes here •••

jmp
ds

past$patch:
; go to next

dcr
jz

past$patch
60h

; remove this when patche

sector if load is incomplete
d sects=sects-l
boot ; head for the bios

more sectors to load

we aren't using a stack, so use (sp> as scratch registe
to hold the load address increment

lxi
dad

inr
mov
cpi
jc

sp,128
sp

c
a,c
27
lsect

128 bytes per sector
(hI> = (hI> + 128

; sector = sector + 1

last sector of track?
no, go read another

end of track, increment to next track

mvi
inr
jmp
end

c,l
b
Isect

60

sector = 1
track = track + 1

; for another group
of boot loader

1: ;
2:
3 :
4 :
5 :
6 :
7 :
8 :
9 :

10:
11:
12 :
13:
14:
15: ;
16:
17:
18:
19:
213:
21:
22: ;
23:
24:
25:
26:
27:
28:
29: ;
30:
31:
32:
33:
34:
35:
36: ;
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50: ;
51 :
52:
53:

APPENDIX F: CP/M DISK DEFINITION LIBRARY

CP/M 2.0 disk re-definition library

Copyright (c) 1979
Digital R~~earch
Box 579
Pacific Grove, CA
93950

CP/M logical disk drives are defined using the
macros given below, where the sequence of calls
is:

disks n
diskdef ?arameter-list-0
diskdef ~arameter-list-l

diskdef parameter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i=0,1, ••• ,n-l)

each parameter-list-i takes the form
dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where
dn is the disk number 0,1, ... ,n-l
fsc is tile first sector number (usually 0 or 1)
Isc is t~1e last sector number on a track
skf is o~tional "skew factor" for sector translate
bls is tne data block
dks is tne disk size
dir is tnt~ number of
cks is the number of
ofs is the number of
[0) is an optional 0

for convenience, the form
dn,dm

size (1024,2048, ••• ,16384)
in bls increments (word)
directory elements (word)
dir elements to checksum
tracks to skip (word)
which forces 16K/directory en

defines disk dn as having the same characteristics as
a previously defined disk dm.

a standard four
disks
diskdef

dsk set
rept

dsk set
diskdef
endm
endef

drive CP/M system is defined by
4
0,1.26,6,1024,243,64,64,2
o
3
dsk+l
%dsk,0

the value of "begdat" at the end of assembly defines t

61

54:
55:
56:
57:
58:
59:
60:
61 :
62:
63:
64:
65:
66:
67:
68:
69:
70:

i
dskhdr
; ;
dpe&dn:

. ,
disks

71: i i
72: ndisks
73: dpbase
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:

; ;
dsknxt

dsknxt

i
dpbhdr
dpb&dn

. ,
ddb

87: i i
88:
89:
90:
91:

i
ddw

92: i i
93:
94:
95:
96:

i
gcd

97: i i
98: i i
99:

100:
101 :
102:
103:
104:
105:
106:
107:
108:

; ;
gcdm
gcdn
gcdr

gcdx
gcdr

beginning of the uninitialize ram area above the bios,
while the valve of henddat" defines the next location
followinq the end of the data area. the size of this
area is ~iven by the value of "datsiz" at the end of t
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size.

macro
define
dw
dw
dw
dw
endm

dn
a single disk

xlt&dn,0000h
0000h,00(o0h
dirbuf,dpb&dn
csv&dn,alv&dn

macro nd
define nd disks

header list
itranslate table
iscratch area
idir buff,parm olock
icheck, alloc vectors

set nd iifor later reference
equ $
generate the

ibase of disk parameter blocks
nd elements

se t 10
rept nd
dskhdr %dsknxt
set dsknxc+l
endm
endm

macro
equ
endm

dn
$

macro data, comment
define a db statement
db data
endm

macro
define
dw
endm

data,comment
a dw sta.tement
data

macro m,n

idisk parm block

comment

comment

greatest common divisor of m,n
produces value gcdn as result
(used in sector translate table generation)
set m iivariable for m
set n iivariable for n
set 0 iivariable for r
rept 65535
set gcdm/gcdn
set gcdm - gcdx*gcdn
if gcdr = (0
exitm
endif

62

109:
IHi:

gcdm
gcdn

Ill:
112:
113: ;

set
set
endm
endm

gcdn
gcdr

114: diskdef macro dn,fsc,lsc,skf,bls,dks~dir,cks,bfs,k16
115: ;; generate the set statements for later tables
116: if nul lsc
117: ;; current disk dn s~me as orevious fsc

;8auivalent parameters 118: dpb&dn equ dpb&fsc
;same allocation vector size 119: als&dn equ als&fsc

120: css&dn equ css&fsc ;same checksum vector size
121: xlt&dn equ xlt&fsc ;same translate table
122: else
123: secmax set
124: sectors set
125: als&dn set

lsc-(fsc) ;;sectors 0 ••• secmax
secmax+l;;number of sectors
(dks)/8 ;;size of allocation vector
((dks) modo) ne!3 126: if

127:
12tl:
129:
130:
131 :
132 :
133:
134:
135:
136:
137:

als&dn

css&dn
; ;
blkval
blkshf
blkmsk

138: ;;
139: blkshf
140: blkrnsk
141: blkval
142:
143 : , ,
144: blkval
145: extmsk
146:
147:
148:
149:
150: ;;
151: extrnsk
152: blkval
153 :
154: ;;
155:
156:
157:
158: ;;
159:
160:
161 :
162: ;;

extmsk

extmsk

1 6 3 : d i r r ern

set
endif

als&dn+l

set (cks)/4 ;;number of checksum elements
generate the block shift value
set bls/128 ;;number of sectors/block
set 13 ;;counts right 0's in blkval
set 0 ;;£il1s with l's from right
rept 16 ;;~nce for each bit ?osition
if blkval=l
exitm
endif
otherwise, high order I not found yet
set blkshf+l
set (blkmsk shl 1) or 1
set blkval/2
endrn
generate the extent mask byte
set bls/1024 ;;number of kilobytes/block
set 0 ;;fi11 from right with l's
rept 16
if blkval=l
exitm
endif
otherwise more to shift
set (extmsk shl 1) or 1
set blkval/2
endm
may be
if
set
endif
may be
if
set
endif

double byte ~llocation
(dks) > 256
(extmsk shr 1)

optional [0]
not nul k16
k16

in last position

now generate directory reservation bit vector
set dir ;;# remaining to process

63

164: di r bks
165: dirblk
166:
167:
168 :
169:
170: "
171: ;;
172: dirblk
173:
174: dirrem
175:
176: dirrem
177:
178:
179:
180:
ltil:
182:
183:
184:
IdS:
186:
187:
188:
189:
190: "
191:
192: xlt&dn
193:
194:
195: xlt&dn
196:
197: ;;
198: nxtsec
199: nxtbas
200:
201: ;;
202: neltst
203: ;;
204: "
205: nelts
206: xlt&dn
207:
208:
209:
210:
211:
212 :
213: nxtsec
214:
215: nxtsec
216:
217: nelts
218:

set
set

bls/32
o

;;number of entries per block
;;fill with l's on each loop

rept
if
exitm
endif

16
dirrem=0

not complete, iterate once again
shift right and add 1 high order bit
set (dirblk shr l) or ~000h
if dirrem) dirbks
set dirrem-dirbks
else
set 0
endif
endm
dpbhdr dn ;;ge~erate equ $
ddw %sectors,<;sec per track)
ddb %blkshf,<;blcck shift)
ddb %blkmsk,<;block mask)
ddb %extmsk,<;e~tnt mask)
ddw %(dks)-l,<;oisk size-I)
udw %(dir)-l,<;airectory max)
ddb %dirblk shr 8,<;alloc0)
ddb %dirblk ana 0ffh,<;allocl)
ddw %(cks)/4,<;check size)
ddw %ofs,<;offset)
generate the translate table, if requested
if nul skf
equ 0
else
if
equ
else

skf = 0
o

;no xlate table

;no xlate table

generate the translate taole
set 0 ;;llext sector to fill
set 0 ;;fficves by one on overflow
gcd %sectors,skf
gcdn = gcd(sectors,skew)
set sectors/gcdn
neltst is number of elements to generate
before we overlap oIevious elements
set neltst ;;~ounter
equ $;translate table
rept sectors ;;once for each sector
if sectors < 256
ddb %nxtsec+(fsc)
else
ddw
endif
set
if
set
endif
set
if

%nxtsec+(fsc)

nxtsec+ (skf)
nxtser)= sectors
nxtsec-sectors

nelts-l
nelts = ra

64

219 :
220:
221 :
222 :
223:
224:
225:
226:
227:
228:
229:
230:
231 :
232 :
233:
234:
235:
236:
237:
238:
239:
240:
241 :
242:
243:
244:
245:
246:
247:
248: ;;
249:

nxtbas
nxtsec
nelts

defds
lab:

;
Ids

. ,
endef
; ;
begdat
di rbuf:
dsknxt

dsknxt

enddat
datsiz

set
set
set
endif
endm
endif
endif
endm

macro
ds
endm

macro
defds
endm

macro

nxtbas+l
nxtbas
neltst

;;end of nul fac test
;;end of nul bls test

lab, space
space

lb,dn,val
Ib&dn,%val&dn

generate the nec~ssary ram data areas
equ $
ds 128 ;directory access buffer
set 0
rept ndisks ;;once for eacn disk
Ids alv,%dsknxt,als
Ids csv,%dsknxt,css
set dsknxt+l
endm
equ
equ
db '"
endm

$
$-begdat

at this point forces hex record

65

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS.

1: i***
2: j*

3: ; *
4: j*

Sector Deblocking Algorithms for CP/M 2.0
*
*
*

5: i***
6 :
7 :
8:

i
smask

9: ;;
H'l :
11 :
12 :

; ;
@y
@x

utility macro to compute sector mask
macro hblk
compute log2(hblk), return @x as result
(2 ** @x = hblk on return)
set hblk
set 0

13: i i
14 :

count right shifts of @y until = 1
rept 8

15 :
16 :
17:
18:
19:
20:
21 :
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

; ;
@y
@x

if @y = 1
exitm
endif
@y is
set
set
endm
endm

not 1, shift right one position
@y shr 1
@x + 1

i
.*** ,
· * ,
· * ,
· * ,

*
CP/M to host disk constants *

*
.*** ,
blksiz
hstsiz
hstspt
hstblk
cpmspt
secmsk

secshf

equ
equ
equ
equ
equ
equ
smask
equ

2048
512
20
hstsiz/128
hstblk * hstspt
hstblk-l
hstblk
@x

iCP/M allocation size
ihost disk sector size
ihost disk sectors/trk
iCP/M sects/host buff
iCP/M sectors/track
isector mask
icompute sector mask
i log 2 (hstblk)

i
.*** ,
· * ,
· * ,
· * ,

BOOS constants on entry to write
*
*
*

.*** ,
wrall
wrdir
wrual

equ
equ
equ

o
1
2

iwrite to allocated
iwrite to directory
iwrite to unallocated

i
i***
. * * ,
· * ,
· * ,
· * ,

The BOOS entry points given below show the
code which is relevant to deblocking only.

*
*
*

.*** ,

66

54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

10e:
Hn:
102:
103:

: DISKDEF macro, or hand coded tables go here
dpbase equ $:disk param block base
· I

boot:
wboot:

· I

selds k:

:
set trk:

setsec:

setdma:

· ,
sectran:

:enter
xra
sta
sta
ret

here on system boot to initialize
a :0 to accumulator
hstact :host buffer inactive
unacnt :clear unalloc count

:select disk
mov
sta
mov
mvi
rept
dad
endm
lxi
dad
ret

a,c
sekdsk
l,a
h,0
4
h

d,dpbase
d

:selected disk number
:seek disk number
:disk number to HL

:multiply by 16

:base of parm block
:hl=.dpb(curdsk)

:set track given by registers Be
mov h,b
mov l,c
shld sektrk :track to seek
ret

:set
mov
sta
ret

sector given by register c
a,c
seksec :sector to seek

:set dma address given by Be
mov h,b
mov l,c
shld dmaadr
ret

:translate sector number Be
mov h,b
mov l,c
ret

67

104:
105:
106:
107:
108:
109:
110 :

.*** ,

.* * ,
· * ,
· * ,

The READ entry point takes the place of
the previous BIOS defintion for READ.

*
*

· * * ,
.*** ,
read:

;read the selected CP/M sector
mvi a,l
sta readop ;read operation
sta rsflag ;must read data
mvi a,wrual
sta wrtype ;treat as unalloc
jmp rwoper ; to perform the read

· ,
.*** ,

Ill:
112 :
113 :
114:
115:
116:
117 :
118:
119 :
120:
121:
122:
123:
124 :
125 :
126:
127:
128:
129 :
130:
131:
132 :
133 :
134:
135:
136 :
137:
138:
139 :
140:
141 :
142:
143 :
144 :
145:
146:
147:
148:
149:
150:
151 :
152:
153:
154:
155:
156:
157: ;
158:

.* * ,
· * ,
· * ,
· * ,

The WRITE entry point takes the place of
the previous BIOS defintion for WRITE.

*
*
*

.*** ,
write:

;
chkuna:

iwrite the selected CP/M sector
xra
sta
rnov
sta
cpi
jnz

write
mvi
sta
Ida
sta
Ihld
shld
Ida
sta

a
readop
a,c
wrtype
wrual
chkuna

to unallocated,
a,blksiz/128
unacnt
sekdsk
unadsk
sek trk
unatrk
seksec
una sec

;0 to accumulator
;not a read operation
;write type in c

;write unallocated?
icheck for unalloc

set parameters
;next unalloc recs

;disk to seek
iunadsk = sekdsk

;unatrk = sectrk

;unasec = seksec

icheck for write to unallocated sector
Ida unacnt ;any unalloc remain?
ora
jz

a
alloc ;skip if not

more unallocated records remain
dcr a ;unacnt = unacnt-l
sta
Ida
lxi
cmp
jnz

unacnt
sekdsk
h,unadsk
m
alloc

disks are the same

68

;same disk?

;sekdsk = unadsk?
;skip if not

(

159 :
160:
161 :
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178 :
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202 :
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:

noovf:

alloc:

lxi
call
jnz

tracks
Ida
lxi
cmp
jnz

h,unatrk
sektrkcmp
alloc

are the same
seksec
h,unasec
m
alloc

isektrk = unatrk?
iskip if not

isame sector?

iseksec = unasec?
iskip if not

match, move to next sector for future ref
inr m iunasec = unasec+l
mov a,m iend of track?
cpi cpmspt icount CP/M sectors
jc noovf iskip if no overflow

overflow to next track
mvi
Ihld
inx
shld

imatch
xra
sta
jmp

m,0
unatrk
h
unatrk

found,
a
rsflag
rwoper

mark as

iunasec = 0

iunatrk = unatrk+l

unnecessary read
i 0 to accumulator
i rsflag = 0
ito perform the write

inot an unallocated record, requires pre-read
xra a i 0 to accum
sta unacnt iunacnt = 0
inr a i 1 to accum
sta rsflag irsflag = 1

i
.**************************-************************** ,
.* * ,
i* Common code for READ and WRITE follows *
. * * ,
.*** ,
rwoper:

ienter here to perform
xra a
sta erflag
Ida seksec
rept
ora
rar
endm
sta

secsb f
a

sekhst

active host sector?
lxi h,hstact
mov
mvi

a,m
m,l

69

the read/write
izero to accum
inO errors (yet)
icompute host sector

icarry = 0
ishift right

ihost sector to seek

ihost active flag

ialways becomes 1

214:
215:
216:
217:
218:
219 :
220:
221:
222:
223:
224:
225 :
226:
227:
228:
229 :
230:
231 :
232:
233:
234:
235:
236:
237:
238 :
239:
240:
241 :
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261 :
262:
263 :
264:
265:
266:
267:
268:

;
nomatch:

;
filhst:

;
match:

ora
jz

host
Ida
lxi
cmp
jnz

same
lxi
call
jnz

a
filhst

;was it already?
ifill host if not

buffer active, same as seek buffer?
sekdsk
h, hstdsk
m
nomatch

disk, same track?
h,hsttrk
sektrkcmp
nomatch

;same disk?
;sekdsk = hstdsk?

;sektrk = hsttrk?

same disk, same track, same buffer?
Ida sekhst
lxi
cmp
jz

h,hstsec
m
match

;sekhst = hstsec?

;skip if match

;proper disk, but not correct sector
Ida hstwrt ;host written?
ora
cnz

a
writehst ;clear host buff

;may have to fill the host buffer
Ida sekdsk
sta hstdsk
lhld sektrk
shld hsttrk
Ida sekhst
sta hstsec
Ida rsflag
ora a
cnz readhst
xra a
sta hstwrt

;copy data to or
Ida seksec
ani secmsk
mov l,a
mvi h,0 '
rept 7
dad h
endm
hI has relative
lxi d,hstbuf
dad d
xchg
Ihld dmaadr
mvi c,128

from

host

70

;need to read?

iyes, if 1
;0 to accum
ino pending write

buffer
;mask buffer number
;least signif bits
;ready to shift
;double count
;shift left 7

buffer address

;hl = host address
;now in DE
;get/put CP/M data
;length of move

Ida readop iwhich way?
ora a
jnz rwmove ;skip if read

write operation, mark and switch direction
mvi a,l
sta hstwrt i hstwr t = 1
xchg isource/dest swap

rwmove:
;C initially 128, DE is source, HL is dest
Idax d isource character
inx d
mov m,a ito dest
inx h
dcr c i loop 128 times
jnz rwmove

data has been moved to/from host buffer
Ida wrtype ;write type
cpi wrdir ito directory?
Ida erflag ;in case of errors

269:
270:
271:
272:
273:
274:
275:
276:
277 :
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294 :
295:
296:
297:
298:
299:
300:
301 :
302:
303: i*
304:
305:
306:
307 :
308:
309 :
310:
311 :
312:
313:
314:
315 :
316 :
317:
318:
319 :
320:

rnz ;no further processing

· clear host buffer for directory write ,
ora a ;errors?
rnz iskip if so
xra a ; 0 to accum
sta hstwr t ibuffer written
call writehst
Ida erflag
ret

i
.*** ,

· * ,
· * ,

utility subroutine for 16-bit compare
*
*
*

.*** ,
sektrkcmp:

iHL =
xchg
lxi
Idax
cmp
rnz

.unatrk or .hsttrk, compare with sektrk

h,sektrk
d
m

;low byte compare
isame?

· low bytes , equal, test
ireturn if not

high Is
inx
inx
Idax
cmp
ret

d
h
d
m ;sets flags

71

.*** , 321 :
322: ; *
323: ; *
324: ; *
325: ;*
326 :
327 :
328 :
329 :
330:
331 :
332:
333:
334:
335:
336:
337:
338:
339:
340:
341 :
342:
343:
344:
345:
346:
347 :
348:
349 :
350:
351 :
352 :
353:
354:
355:
356:
357:
358:
359:
360:
361 :
362:
363:
364:
365:
366:
367:
368:
369:
370:

· * ,

WRITEHST performs the physical write to
the host disk, READHST reads the physical
disk.

*
*
*
*
*

.*** ,
writehst:

;
readhst:

;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. write "hstsiz" bytes
;from hstbuf and return error flag in erflag.
;return erflag non-zero if error
ret

;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. read "hstsiz" bytes
;into hstbuf and return error flag in erflag.
ret

;
.*** ,
· * ,
· * ,
· * ,

unitialized RAM data areas
*
*
*

.*************************************"*************** ,
;
sekdsk: ds 1 ; seek disk number
sektrk: ds 2 ; seek track number
seksec: ds 1 ;seek sector number
· ,
hstdsk: ds 1 :host disk number
hsttrk: ds 2 :host track number
hstsec: ds 1 ;host sector number

sekhst: ds 1 ; seek shr secshf
hstact: ds 1 ;host active flag
hstwr t: ds 1 :host written flag

unacnt: ds 1 ;unalloc rec cnt
unadsk: ds 1 :last unalloc disk
unatrk: ds 2 :last unalloc track
unasec: ds 1 ;last unalloc sector

erflag: ds 1 ;error reporting
r sflag: ds 1 ;read sector flag
readop: ds 1 : 1 if read operation
w:-type: ds 1 :write operation type
dmaadr: ds 2 :last dma address
hstbuf: ds hstsiz :host buffer

72

371 :
372:
373 :
374:
375:
376 :

.*** ,

.* * ,

. * , The ENDEF macro invocation goes here *

. * * ,

.*** ,
end

73

595-2534-04

