Il DIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 ALTERATION GUIDE

Copyright (e) 1979
DIGITAL RESEARCH

Copyright

Copyright (e) 1979 by Digital Research. All rights reserved.
No part of this publication mav be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language, in any form or bv any
means, electroniec, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims anyv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

Il DIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93850, (408) 649-3896

CP/M 2.0 ALTERATION GUIDE

Copyright (c) 1979
DIGITAL RESEARCH

Copyright

Copyright (¢) 1979 by Digital Research. All rights reserved. No part of
this publication may be reproduced, transmitted, transcribed, stored in
a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M, MAC, and
SID are trademarks of Digital Research.

CP/M 2.0 ALTERATION GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

l. Introduction . + « « = = &« = = =»
2., First Level System Regeneration .
3. Second Level System Generation .
4, Sample Getsys and Putsys Programs
5, Diskette Organization . .,
6. The BIOS Entry Points ,
7. A Sample BIOS . . &« ¢« « o o s o &
8. A Sample Cold Start Loader . . .
9. Reserved Locations in Page Zero .
10, Disk Parameter Tables
11, The DISKDEF Macro Library
12, Sector Blocking and Deblocking .

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix
Appendix

GmmoOwmy
L] L] L] . . . []

- 8 & @& ® @ =

L] . L] L] L] L] .

L] L] L] L] Ll L] L[]

. . L] L L - .

" ® & ¢ = ° @

. . L] L] L] . L

19
12
14
21
22

23

1. INTRODUCTION

The standard CP/M system assumes operation on an Intel MDS-860
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment., In this way, the user can produce a diskette
which operates with any IBM-3741 format compatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is confiqured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
"hard disk" systems. In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M 1s available, the
customizing process is eased considerably. In this latter case, you
may wish to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M 1is separated into
three distinct modules:

BIOS - basic I/0 system which is environment dependent

BDOS - basic disk operating system which is not dependent
upon the hardware configuration

CCP - the console command processor which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular
hardware, That is, the user can “patch" the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system.
The purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first

time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal

version of the BIOS is given in Appendix C which can serve as the
basis for a modified BIOS. 1In addition to the BIOS, the user must
write a simple memory 1loader, called GETSYS, which brings the
operating system into memory. 1In order to patch the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands, Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D. 1In order to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B)., A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1

2. FIRST LEVEL SYSTEM REGENERATION

The procedure to follow to patcn the CP/M system is given below in
several steps. Address references in each step are shown with a
following "H" which denotes the hexadecimal radix, and are given for a
20K CP/M system. For 1larger CP/M systems, add a "bias" to each
address which is shown with a "+b" following it, where b is equal to
the memory size - 20K. Values for b in various standard memory sizes
are

24K: b = 24K - 20K = 4K = 1000H
32K: b = 32K - 20K = 12K = 3060H
49K: b = 49K - 20K = 20K = 5000H
48K: b = 48K - 20K = 28K = 7000H
56K: b = 56K - 20K = 36K = 9000H
62K: b = 62K - 20K = 42K = A80UH
64K: b = 64K - 20K = 44K = BOOOH

Note: The standard distribution version of CP/M 1is set for
operation within a 20K memory system., Therefore, you must first bring
up the 20K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation),

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory. The data from the diskette
must begin at location 338¢H. Code GETSYS so that it starts at
location 190¥H (base of the TPA), as shown in the first wvart of
Appendix d.

(2) Test the GETSYS program by reading a blank diskette into
memory, and check to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program,

(3) Run the GETSYS program using an initialized CP/M diskette to
see 1if GETSYS 1loads CP/M starting at 3380H (the operating system
actually starts 128 bytes later at 3460H).

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 3380H back onto the first two tracks of the
diskette. The PUTSYS program should be located at 20@H, as shown in
the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS., Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Research.)

2

(7) Test CBIOS completely to ensure that it properly performs
console character I/0 and disk reads and writes., Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes. Failure to make these checks
may cause destruction of the initialized CP/M system after it is
patched.

(8) Referring to Figure 1 in Section 5, note that the BI0S 1is
placed between locations 4APPH and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). This replacement is done in the memory of
the machine, and will be placed on the diskette in the next step.

(9) Use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(18) Use GETSYS to bring the copied memory image from the test
diskette back 1into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the 1load).
Upon suc~essful load, brancn to the colada start code at location 4AY0H.
The cola start routine will initialize page zero, then jump to the CCP
at location 340WH which will call the BDOS, which will call the CBIOS.
The CRIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, Cp/M will type "A>", the system prompt.

when you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (10), CP/M has promoted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM
(recall that all commands must be followed by a carriage return).
CP/M should respond with another prompt (after several disk accesses):
A>
If it does not, debug your disk write functions and retry,.
(12) Then test the directory command by typing
DIR
CP/M should respond with
A: X COoM
(13) Test the erase command by typing

ERA X.COM

(All Information Contained Herein is Proprietary to Digital Research.)

3

CP/M should respond with the A prompt, When you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely.

(14) Write a bootstrap loader which is similar to GETSYS, and
place it on track @, sector 1 using PUTSYS (again using the test
diskette, not the distribution diskette). See Sections 5 and 8 for
more information on the bootstrap operation.

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (12), and (13). Upon completion of
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start" which reboots the system,
and types the A prompt,

(16) At this point, you probably have a good version of vyour
customized CP/M system on your test diskette. Use GETSYS to load CP/M
from vyour test diskette, Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version, Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research,

(17) Load your modified CP/M system and test it by typing
DIR

CP/4 should respond with a list of files which are provided on the
initialized diskette. One such file should be the memory image for
the debugger, called DDT,COM.

NOTE: from now on, it is important that you always reboot the CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced
by another diskette, unless the new diskette is to be read only,

(18) Load and test the debugger by typing
DET

(see the document "CP/M Dynamic Debugging Tool (DDT)" for operating
procedures. You should take the time to become familiar with DDT, it
will be your best friend in later steps.

(1Y) Before making further CBIOS modifications, practice using
the editor (see the ED wuser's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS, PUTSYS, and CBIOS
programs using ED, ASM, and DDIT. Code and test a COPY program whichn
does a sector-to-sector copy from one diskette to another to obtain
back=up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies vyour 1legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proprietarv to Digital Research,)

4

on each copy which is made with your COPY program.

(20) Modify your CBIOS to include the extra functions for
punches, readers, signon messages, and so-forth, and add the
facilities for a additional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which vyou have
developed, or you can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have developed belongs to
you, the modified version of CP/M which you have created can be copied
for vyour wuse only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all

other CP/M systems, (assuming media compatiblity, of course) which
allows transfer of non-proprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

5

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, you will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/M with the “"MOVCPM" program (system relocator) and
place tnis memory image into a named disk file, The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation program. For further details on the operation of
these programs, see the "Guide to CP/M Features and Facilities"
manual.

Your CBIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and BOOT.HEX, which contain the
machine code for CBIOS and BOOT in Intel hex format,

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xx *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will be:

CONSTRUCTING xXK Cp/M VERS 2.0
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

At this point, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location 690¢H through
227FHd. (i.e., The BOOT is at 09@0@éH, the CCP 1is at 980H, the BDOS
starts at 1180H, and the BIOS is at 1F8@H.) Note that the memory
image has the standard MDS-800 BIOS and BOOT on it, It 1is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:

SAVE 34 CpMxx,COM

The memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed 1in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM Load DDT, then read the CPM
image

DDT should respond with
NEXT PC
2300 0100
- (The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

portions of the memory image between 908H and 227FH. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the Cp/M address to find the actual
address. Track 9@, sector @1 is loaded to location 96¢H (you should
find the cold start loader at 980H to 97FH), track @@, sec.>r 02 is
loaded into 980H (this is the base of the CCP), and so-forth through
the entire CP/M system load, In a 20K system, for example, the CCP
resides at the CP/M address 3400H, but is placed iuto memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 98dH ~ 3400P

Assuming two's complement arithmetic, n = D580H, which can be checked
by

3400H + D58@H = 10980H = 0980H (ignoring-high-order
overflow),

Note that for larger systems, n satisfies
(340@H+b) + n = 98UH, or

n 980H - (34090H + b), or
n D580QH - b.

nn

The value of n for common CP/M systems is given below

memc-y size bias b negative offset n
20K WoBoOH D58¥H - ©0OVYH = D580H
24K leved D580H - 1Q8@H = C58VH
32K 3089H D580H - 3000H = A58@H
49K 5008H D58¥YH - S5PVVH = B8580H
48K 79 08H D589H - 7J00H = 6580H
56K 99 BVH D58YH - 9UBOH = 4584H
62K AB@OH D580H - A8@0UH = 2D8OH
64K BOOOH D580H - BOYQH = 2580H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system. First type

Hx,n He:xadecimal sum and difference
and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found., The input

H3400,D580

for example, will produce 980H as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the BIOS 1located at
(4AQ0BH+Db) -n which, when vyou use the H command, produces an actual
address of 1FB@H. The disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7

L1F88
It is now necessary to patch in your CBOOT and CBIOS routines. The
BOOT resides at location @96¢H in the memory image, If the actual
load address is "n", then to calculate the bias (m) use the command:

H9006,n Subtract load address from
target address.

The second number typed in response to the command is the desired bias
(m) ., For example, if your BOOT executes at V@80UH, the command:

H9G¥,80
will reply
3980 BBBO Sum and difference in hex.

Therefore, the bias "“m" would be 9¥880H. To read=-in the BOOT, give the
command:

ICBOOT.HEX Input file CBOOT.HEX
Then:
Rm Read CBOOT with a bias of
m (=990¥H-n)

You may now examine your CBOOT with:
L90d

We are now ready to replace the CBIOS. Examine the area at 1F80H
where the original version of the CBIOS resides. Then type

ICBIOS.HEX Ready the "hex" file for loading

assume that your CBIOS is being integrated into a 20K CP/M system, and
thus is origined at location 4A00H. In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file, This is accomplished by
typing

RD584 Read the file with bias D586H
Upon completion of the read, re-examine the area where the CBIOS has
been loaded (use an "L1F8@" command), to ensure that is was loaded

properly. When you are satisfied that the <change has been made,
return from DDT using a control-C or "G@" command,

Now use SYSGEN to replace the patched memory image back onto a

diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is Proprietary to Digital Research,)

3

SYSGEN Start the SYSGEN program
SYSGEN VERSION 2.4 Sign—-on message from SYSGEN

SQURCE DRIVE NAME (OR RETURN TO SKIP)
Respond with a carriage return

to skip the CP/M read operation
since the system is already in
memory.,

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Respond with "B" to write the

new system to the diskette in
drive B,

DESTINATION ON B, THEN TYPE RETURN
Place a scratch diskette in

drive B, then type return,

FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c¢), 1979
Digital Research

4, SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced 1in Section 2., The READSEC and WRITESEC
subroutines must be inserted by the user to read and write the
specific sectors.

GETSYS PROGRAM - READ TRACKS @ AND 1 TO MEMORY AT 3380H

; REGISTER USE
; A (SCRATCH REGISTER)
; B TRACK COUNT (@, 1)
; C SECTOR COUNT (1,2,...,26)
; DE (SCRATCH REGISTER PAIR)
; HL LOAD ADDRESS
; Sp SET TO STACK ADDRESS
START: LXI SP,3380H ;SET STACK POINTER TO SCRATCH AREA
LXI H, 3380H ;SET BASE LOAD ADDRESS
MVI B, 0 s START WITH TRACK 6
RDTRK : s READ WEXT TRACK (INITIALLY 9)
MVI C,1 : READ STARTING WITH SECTOR 1
RDSEC: ;READ NEXT SECTOR
CALL READSEC ; USER-SUPPLIED SUBROUTINE
LXI D,128 ;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
DAD D : L, = HL + 128
INR C ;SECTOR = SECTOR + 1
MOV A,C ; CHECK FOR END OF TRACK
CPI 27
JC RDSEC ;CARRY GENERATED IF SECTOR < 27
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ; TEST FOR LAST TRACK
CPI 2
Jc RDTRK ; CARRY GENERATED IF TRACK < 2

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

-

USER-SUPPLIED SUBROUTINE TO READ THE DISK
EADSEC:
ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

. mE wme we Wh- -

PUSH B ;SAVE B AND C REGISTERS
PUSH H ;SAVE HL REGISTERS

® 2 8 8 8 T AR A S S SE S EE S E eSS NS e eSS eSS

perform disk read at this point, branch to

label START if an error occurs

® & & 8 & % 8 8 8 8 S TS S S S LSS WSS E S S BB S SRS S e RS BN

POP H ; RECOVER HL
POP B ;RECOVER B AND C REGISTERS
RET ; BACK TO MAIN PROGRAM

END START

(All Information Contained Herein is Proprietary to Digital Research,)

19

Note that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 100H. The hexadecimal
operation codes which are listed on the left may be wuseful 1if the
program has to be entered through your machine's front panel switches.

The PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL become the dump address (next
address to write), and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opposite function: data from address HL
is written to the track given by register B and sector given by
register C. It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix,

(All Information Contained Herein is Proprietary to Digital Research.)

i) |

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
cP/M 1is given here for reference purposes, The first sector (see
table on the following page) contains an optional software boot
section. Disk controllers are often set up to bring track @, sector 1
into memory at a specific 1location (often location 0066H). The
program in this sector, called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
34PPH+b., If your controller does not have a built-in sector load, you
can ignore the program in track 9, sector 1, and begin the 1load from
track @ sector 2 to location 3400H+b,

As an example, the Intel MDS-8006 hardware cold start loader brings
track 9, sector 1 into absolute address 3006H. Upon 1loading this
sector, control transfers to location 300@0H, where the bootstrap
operation commences by loading the remainder of tracks 4, and all of
track 1 into memory, starting at 340UH+b., The user should note that
tnis bootstrap loader is of 1little use in a non-MDS environment,
although it 1is useful to examine it since some of the boot actions
will have to be duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Track# Sector# Page# Memory Address CP/M Module name

S —————————pep————————— R e

Bo g1 (boot address) Cold Start Loader
0o g2 0a 340 0H+b CCP
“ 03 " 3480H+b ¥
¥ 04 91 3500H+b %

" @5 . 3580H+b 2

" 6 @2 3600H+b "

y @7 " 3680H+b &

' 28 g3 3700H+b '

' @29 " 3780H+b "

! 10 04 3800H+b o

: 11 " 388@H+b "

2 12 45 3900H+b ®

o 13 " 3980H+b "

14 @6 3A0PH+b "

. 1.5 " 3A80H+b “

. 16 37 3B0@H+b "
09 17 " 3B8@H+D CCp
a0 18 a8 3C@0H+b BDOS

" 19 ¥ 3C80@H+b "

20 g9 3D@BH+b i

1 21 " 3D8@H+b "

» 22 10 3EQ@H+b o

" 23 . 3E80H+b »

“ 24 11 3F@0QH+b "

" 25 " 3F80H+b "

" 26 12 4000H+b "
21 g1 . 4080H+b "

" 02 13 4100H+b "

! 03 s 418@H+b t

i 04 14 4200H+b "

& as “ 4280H+b o

» 26 15 43008H+b ks

» 07 i 4380H+b "

’ 08 16 4400H+b »

" 99 " 4480H+b "

. 19 17 4500H+b "

. 11 " 4580H+b “

' 12 18 4600H+b "

" 13 " 4680H+b "

" 14 19 4700H+b “

o 15 “ 478@H+b #

¥ 16 20 4800H+b :

3 17 " 4880H+b "

& 18 21 49@0H+b “

g1 19 " 4980@H+b BDOS

g1 20 22 4A0@H+b BIOS

" 21 " 4A80H+b "

" 23 23 4BOOGH+D "

= 24 " 4B8QH+b o

u 25 24 4COPH+D 4

g1 26 . 4C8@H+b BIOS

¥2-76 g1-26 (directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6.

The entry points

THE BIOS ENTRY POINTS

into the

BIOS from the cold start loader and BDOS

are detailed below. Entry to the BIOS is through a "jump vector"
located at 4A0QH+b, as shown below (see Appendices B and C, as well).
The jump vector is a sequence of 17 Jjump instructions which send
program control to the individual BIOS subroutines, The BIOS
subroutines may be empty for certain functions (i.e., they may contain
a single RET operation) during regeneration of CP/M, but the entries
must be present in the jump vector.

The jump vector at 4AYPH+b takes the form shown below, where the

individual jump addresses are given

Each jump address corresponds
performs

400 BH+Db
470 3H+D
4p06H+b
4A09H+b
4A9CH+b
4ADFH+Db
4Al12H+b
471 5H+b
4718H+b
4A1BH+b
4A1EH+D
4A21H+Db
4A24H+Db
4A27H+Db
4A2AH+D
4A2DH+Db
4A30@H+Db

the

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMp
JMP
JMP
JMP
JMP
JMP
JMP

specific

major divisions in the jump

which

LISTST

results
performed by calls on CONST, CONIN, CONOUT, LIST,

from

to the left:

BOOT ; ARRIVE HERE FROM COLD START LOAD
WBOOT ; ARRIVE HERE FOR WARM START
CONST ; CHECK FOR CONSOLE CHAR READY
CONIN ; READ CONSOLE CHARACTER IN
CONOUT + WRITE CONSOLE CHARACTER OUT
LIST ; WRITE LISTING CHARACTER OUT
PUNCH ; WRITE CHARACTER TO PUNCH DEVICE
READER ; READ READER DEVICE
HOME ; MOVE TO TRACK #¥0 ON SELECTED DISK
SELDSK ; SELECT DISK DRIVE
SETTRK ; SET TRACK NUMBER
SETSEC ; SET SECIOR NUMBER
SETDMA ; SET DMA ADDRESS
READ ; READ SELECTED SECTOR
WRITE ; WRITE SELECTED SECTOR
LISTST ; RETURN LIST STATUS
SECTRAN ; SECTOR TRANSLATE SUBROUTINE
to a particular subroutine which
function, as outlined below, There are three
table: the system (re)initialization
calls on BOOT and WBOOT, simple character 1I/0

PUNCH, READER, and

», and diskette I/0 performed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE,

and SECTRAN.

All simple character I/0 operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero.

An

In order to operate,

CONOUT

DESPOOL,

end-of-=file
control-z (1AH).

condition

Peripheral
devices, and are assigned to

subroutines
not the BDOS).

and

Further,
thus,

the
(LIST,

the
the

for
devices are seen
physical devices within the BIOS.

BDOS needs only
PUNCH,
LISTST entry is used
initial

an input device is given by an ASCII

by CP/M as "logical"

the CONST, CONIN,
and READER may be used by PIP, but

currently only by
CBIOS may have empty

and

version of

subroutines for the remaining ASCII devices,

(All Information Contained Herein is Proprietary to Digital Research.)

14

The characteristics of each device are

CONSOLE

LIST

PUNCH

READER

IOBYTE AT

The principal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

The principal listing device, if it exists on vyour
system, which is usually a hard-copy device, such as a
printer or Teletype.

The principal tape punching device, if it exists, which
is normally a high~speed paper tape punch or Teletype.

The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single peripheral can be assigned as
the LIST, PUNCH, and READER device simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not "hang" if the device is accessed by PIP or some
other user program, Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a 1AH (ctl-2) in reg A to indicate
immediate end-of-file,

For added flexibility, the user can optionally
implement the “IOBYTE" function which allows
reassignment of ophysical and 1logical devices. The
IOBYTE function creates a mapping of 1logical to
physical devices which can be altered during CP/M
processing (see the STAT command). The definition of
the IOBYTE function corresponds to the 1Intel standard
as follows: a single location in memory (currently
location WG@3H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is
in effect at a particular time. The mapping is
performed by splitting the IOBYTE into four distinct
ftields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

————————— —————— T ——— —— T ———— T —

PeB3d | LIST | PUNCH | READER | CONSOLE |

————————— T ——— i ——— — ——

bits 6,7 bits 4,5 bits 2,3 bits 0,1

The value in each field can be in the range ¢-3,
defining the assigned source or destination of each
logical device. The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.,)

15

CONSOLE field (bits 0,1)

7} -
)
g
3 -

console is assigned to the console printer device (TTY:)
console is assigned to the CRT device (CRT:)

batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)

user defined console device (UCl:)

READER field (bits 2,3)

wporH=
|

READER is the Teletype device (TTY:)

READER is the high~speed reader device (RDR:)
user defined reader # 1 (UR1l:)

user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)

=

1 ==
B
3

PUNCH is the Teletype device (TTY:)

PUNCH is the high speed punch device (PUN:)
user defined punch # 1 (UPl:)

user defined punch # 2 (UP2:)

LIST field (bits 6,7)

@ -
1 -
2 -
3 -

LIST is the Teletype device (TTY:)
LIST is the CRT device (CRT:)

LIST is the line printer device (LPT:)
user defined list device (ULl:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of vyour
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at location
dvB3d), except for PIP which allows access to the

physical devices, and STAT which allows
logical-pnysical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guide"). In any case, the IOBYTE

implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities.

Disk I/0 is always performed through a seauence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/0O operation, After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation,
Note that there is often a single <call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations, Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write ftrom the
selected DMA address before the DMA address is changed.
The track and sector subroutines are always called
before the READ or WRITE operations are performed,

(All Information Contained Herein is Proprietary to Digital Research,)

16

Note that the READ and WRITE routines should
perform several retries (10 is standard) before
reporting the error condition to the BDOS. If the
error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine may or may
not actually perform the track 6@ seek, depending upon
your controller characteristics; the important point is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 00.

The exact responsibilites of eacn entry point
subroutine are given below:

BOOT The BOOT entry point gets control from the cold start
loader and 1is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point, The various system parameters which are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 3400H+b for further
processing. Note that reg C must be set to zero to
select drive A,

WwBOOT The WBOOT entry point gets control when a warm start
occurs, A warm start 1is performed whenever a user
program branches to location 0@80H, or when the CPU is
reset from the front panel, The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if you have
completed your patch). System parameters must be ini-
tialized as shown below:

location 6,1,2 set to JMP WBOOT for warm starts
(00POH: JMP 4A@3H+Db)

location 3 set initial value of IOBYTE, 1if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which 1is the
primary entry point to CP/M for
transient programs, (P@@5H: JMP
3CO6H+Db)

(see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 3490H+b to (re)start
the system, Upon entry to the CCP, register C is set
to the drive to select after system initialization,

CONST Sample the status of the currently assigned console
device and return @FFH in register A if a character is
ready to read, and @0H in register A if no console
characters are ready.

CONIN Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

set the parity bpit (high order bit) to zero. 1If no
console character is ready, wait until a character |is
typed before returning,

Send the character from register C to the console
output device, The character is in ASCII, with high
order parity bit set to zero., You may want to include
a time-out on a line feed or carriage return, if your
console device requires some time interval at the end
of the line (such as a TI Silent 700 terminal). You
can, if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for example).

Send the character from register C to the currently
assigned listing device, The character is in ASCII
with zero parity.

Send the character from register C to the currently
assigned punch device, The character is in ASCII with
zero parity.

Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must be zero), an end of file condition 1is
reported by returning an ASCII control-z (1lAH).

Return the disk head of the currently selected disk
(initially disk A) to the track 60 position. If your
controller allows access to the track 6 flag from the
drive, step the head until the track ©® flag is
detected. If your controller does not support this
feature, vyou can translate the HOME call into a call
on SETTRK with a parameter of 4.

Select the disk drive given by register C for further
operations, where register C contains # for drive A, 1
for drive B, and so-forth up to 15 for drive P (the
standard CP/M distribution version supports four
drives)., On each disk select, SELDSK must return 1in
HL the base address of a l6-byte area, called the Disk
Parameter Header, described in the Section 16. For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically, If there is an
attempt to select a non-existent drive, SELDSK returns
HL=P0@BBH as an error indicator. Although SELDSK must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/0 function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/0, and many
controllers will wunload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research,)

18

before selecting the new drive. This would cause an
excessive amount of noise and disk wear.

SETTRK Register BC contains the track number for subsequent
disk accesses on the currently selected drive. You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs, Register BC can take on values in the range
=76 corresponding to valid track numbers for standard
floppy disk drives, and 9-65535 for non-standard disk
subsystems,

SETSEC Register BC contains the sector number (1 through 26)
for subseguent disk accesses on the currently selected
drive, You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs.

SETDMA Register BC contains the DMA (disk memory access)
address for subseqguent read or write operations. For
example, if B = @PH and C = 8PH when SETDMA is called,
then all subseguent read operations read their data
into 8@H through @FFH, and all subsequent write
operations get their data from 8¢H through @FFH, until
the next call to SETDMA occurs, The initial DMA

address is assumed to be 8UH. Note that the
controller need not actually support direct memory
access, If, for example, all data is received and

sent through I/0 vorts, the CBIOS which you construct
will wuse the 128 byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations,

READ Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA aadress
has been specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

)] no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a =zero or non-zero
value as the return code, That is, if the value in
register A is @ then CP/M assumes that the disk
operation completea properly. If an error occuts,
however, the CBIOS should attempt at least 16 retries
to see 1if the error is recoverable, When an error is
reported the BDOS will print the message "BDOS ERR ON
X3 BAD SECTOR". The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort,

WRITE Write the data from the currently selected DMA address

to the currently selected drive, track, and sector,
The data should be marked as "non deleted data”" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

maintain compatibility with other CP/M systems, The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
above,

LISTST Return the ready status of the list device, Used by
the DESPOOL program to improve console response during
its operation, The value ¥@d is returned in A if the
list device is not ready to accept a character, and
PFFH if a character can be sent to the printer, Note
that a 00 value always suffices,

SECTRAN Performs sector logical to physical sector translation
in order to improve the overall response of CP/M,
Standard CP/M systems are shippred with a "“skew factor"
of 6, where six physical sectors are skipped between
each logical read operation. This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector, In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response. Note, however,
that you should maintain a single density IBM
compatible version of CP/M for information transfer
into and out of your computer system, using a skew
factor of 6. 1In general, SECTRAN receives a logical
sector number in BC, and a translate table address in
DE. The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL, For stanaard systems, the tables and
indexing code is provided in the CBIOS and need not be
changed.

(All Information Contained Herein is Proprietary to Digital Research.)

20

7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for vyour
first BIOS. The simplest functions are assumed 'in this BIOS, so that
you can enter it through the front panel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines, Storage is
reserved for wuser-supplied code in these regions., The scratch area
reserved in page zero (see Section 9) for the BIOS is wused in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and perform better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented,

(All Information Contained Herein is Proprietary to Digital Research.)

21

8. A SAMPLE COLD START LOADER

The program shown in Appendix D can serve as a basis for your cold
start loader. The disk read function must be supplied by the user,
and the program must be loaded somehow starting at location 64400,
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will probably want to get this loader onto the first disk sector
(track #, sector 1), and cause your controller to load it into memory
automatically upon system start-up. Alternatively, you may wish to
place the cold start loader into ROM, and place it above the CP/M
system, In this case, it will be necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
which branches to the loader., Subsequent warm starts will not require
this key-in operation, since the entry point ‘WBOOT' gets control,
thus bringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
be enhanced on later versions,

(All Information Contained Herein is Proprietary to Digital Research.)

22

9., RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations @PH and @FFH, contains
several segments of code and data which are used during CP/M
processing. The code and data areas are given below for reference
purposes,

Locations Contents
from to
PPOOH - VOO2H Contains a jump instruction to the warm start

entry point at location 4A@3H+b. This allows a
simple programmed restart (JMP @680H) or manual
restart from the front panel.

P06 34

@30 3H Contains the Intel standard IOBYTE, which is
optionally included in the user's CBIOS, as
described in Section 6,

YiP04d

Va4 Current default drive number (#=A,...,15=P).

¥ B0 5H 00074 Contains a jump instruction to the BDOS,and
serves two purposes: JMP 0065H provides the
primary entry point to the BDOS, as described in
the manual “CP/M Interface Guide," and LHLD
PYP6H brings the address field of the
instruction to the HL register pair. This value
is the lowest aadress in memory used by CP/M
(assuming the CCP is being overlavyed). Note
that the DDT program will change the address
field to reflect the reduced memory size in
debug mode,

BOB8H - ©0B27H (interrupt locations 1 through 5 not used)

G336 - @O37H (interrupt location 6, not currently used -
reserved)

9038 - OO3AH Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
used by CP/M.

@@3BH - GO3FH (not currently used - reserved)

0B40H - WOAFH 16 byte area reserved for scratch by CBIOS, but
1s not used for any purpose in the distribution
version of CpP/M

PWO58H - WVWB5BH (not currently used - reserved)

We5CH - @87CH default file <control block produced for a
transient program by the Console Command
Processor,

POTDH - QBTFH Optional default random record position

(All Information Contained Herein is Proprietary to Digital Research.)

23

p@8¥H - VOFFH default 128 byte disk buffer (also filled with
the command 1line when a transient is loaded
under the CCP).

Note that this information is set-up for normal operation under
the CP/M system, but can be overwritten by a transient program if the
BDOS facilities are not reguired by the transient,

If, for example, a particular program performs only simple I/O and
must begin execution at location 6, it can be first 1loaded into the
TPA, wusing normal CP/M facilities, with a small memory move program
which gets control when loaded (the memory move program must get
control from location @l¥YbH, which is the assumed beginning of all
transient programs). The move program can then proceed to move the
entire memory image down to 1location @, and pass control to the
starting address of the memory loaaq. Note that if the BIOS 1is
overwritten, or if location @ (containing the warm start entry point)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start seguence,

(All Information Contained Herein is Proprietary to Digital Research.)

24

190, DISK PARAMETER TABLES,

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B, The purpose here is to describe the elements of these
tables,

In general, each disk drive has an associated (l6-byte) disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for certain BDCS operations, The
format of the disk parameter header for each drive is shown below

Disk Parameter Header
| XLT | 0000 | 0000 | 0600 |IDIRBUF| DPB | cCcsv | ALV |
16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT Address of the logical to physical translation vector,
if wused for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same). Disk drives
with identical sector skew factors share the same
translate tables,

0000 Scratchpad values for wuse within the BDOS (initial
value is unimportant),

DIRBUF Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same

scratchpad area.

DPB Address of a disk parameter block for this drive.
Drives with identical disk characteristics address the
same disk parameter block.

Csv Address of a scratchpad area used for software check
for changed disks, This address is different for each
DPH,

ALV Address of a scratchpad area used by the BDOS to keep

disk storage allocation information. This address is
different for each DPH.

Given n disk drives, the DPH's are arranged in a table whose first row

of 16 bytes corresponds to drive @, with the last row corresponding to
drive n-1, The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

DPBASE:

——————— ———— i —————————————— T ———— T ———— " ————— o —

00 |XLT 00| 0000 | 00P0 | 9000 |DIRBUF|DBP @0|CSV Q0|ALV 00|

—— o —— e — —— e —— i —— T —— ——— T ——————————— T ——

@1 |XLT ©01] 0000 | 9000 | 00PY |DIRBUF|DBP @1|CSV ¥1|ALV 01|

—— i ——— S e S N S S S N S . T T S o —

————————————— T —— N S A — —— — — ———— T — —

n-1|XLTn-1| 0000 | 6000 | 09000 |DIRBUF|DBPn-1|CSVn-1|ALVn-1|

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive, The following seguence of
operations returns the table address, with a @600H returned 1if the
selected drive does not exist,

NDISKS EQU 4 ; NUMBER OF DISK DRIVES
SELDSK:
;SELECT DISK GIVEN BY BC
LXI H,0000H ; ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS ;CY IF SO
RNC ;RET IF ERROR
:NO ERROR, CONTINUE
MOV j ;s LOW(DISK)
MOV H,B sHIGH(DISK)
DAD H F%*2
DAD H %4
DAD H ;%8
DAD H 1 *16
LI D,DPBASE ;FIRST DPH
DAD D ; DPH (DISK)
RET

The translation vectors (XLT @@ through XLTn-1) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1, The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more DPH's, takes the general form

—————— T — — . — T — T —— —— T —— T — T — o — o —— —

T — T S — T —— S S P S A S R S S W — -

l6b 8b 8b 8b 1éb lé6b 8b 8b l6b lé6b

where each is a byte or word value, as shown by the "“8b" or "1l6b"
indicator below the field,

SPT is the total number of sectors per track

BSH is the data allocation block shift factor, determined
by the data block allocation size,

(All Information Contained Herein is Proprietary to Digital Research,)

26

EXM is the extent mask, determined by the data block
aliocation size and the number of disk blocks,

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which
can be stored on this drive AL®O,AL1 determine reserved
directory blocks.

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which 1is not an entry in the disk parameter block. Given
that the desijner has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS BSH BLM
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

where all values are in decimal. The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,024] N/A
2,048 1 /]
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units., The product BLS times
(DSM+1) is the total number of bytes held by the drive and, of course,
must be within the capacity of the physical disk, not counting the
reserved operating system tracks.

The DRM entry is the one less than the total number of directory
entries, which can take on a 16-bit value, The values of AL# and ALl,
however, are determined by DRM, The two values AL# and ALl can
together be considered a string of 16-bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research.)

27

———————— S AT SN SN S T ———— S ——— ——
—————————— —————————————————— . T - — - ——————

——————— S ————————————————————— —— T ———

00 01 02 063 04 65 @6 07 08 99 10 11 12 13 14 15

where position @0 corresponds to the high order bit of the byte
labelled AL#, and 15 corresponds to the low order bit of the byte
labelled ALl1., Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at @0 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS Directory Entries
1,024 32 times # bits
2,048 64 times # bits
4,096 128 times # Dbits
8,192 256 times # bits

16,384 512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1824, then there
are 32 directory entries per block, reguiring 4 reserved blocks, In
this case, the 4 high order bits of AL# are set, resulting in the
values AL# = @FOPH and ALl = @0@H,

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+1l)/4, where DRM is the 1last directory
entry number, If the media is fixed, then set CKS = @ (no directory
records are checked in this case).

Finally, the OFF field determines the number of tracks which are
skipped at the beginning of the physical disk. This wvalue is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections,

To complete the discussion of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical.
Further, the DPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is
invoked.

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain, Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by the
values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive. If CKS = (DRM+1l)/4, then you must reserve (DRM+l)/4 bytes for
directory check use, If CKS = @, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

28

The size of the area addressed by ALV 1is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+1,

The CBIOS shown in Appendix C demonstrates an instance of these

tables for standard 8" single density drives. It may be useful to

examine this program, and compare the tabular values with the
definitions given above.

(All Information Contained Herein is Proprietary to Digital Research.)

29

11. THE DISKDEF MACRO LIBRARY.

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process, You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro 1library is included with all CP/M 2.0
distribution disks,

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 0,...
DISKDEF 1,...

DISKDEF n-1

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as vyour BIOS) into MAC's internal tables, The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each 1logical disk, @ through n-1 (corresponding to logical drives A
through P)., Note that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of vyour BIOS, typically
directly following the BIOS jump vector.

The remaining portion of your BIOS 1is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement, The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs, [0]

where
dn is the logical disk number, # to n-1
fsc is the first physical sector number (@ or 1)
1sc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 0@
(6] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research,)

30

macro invocation, The "fsc" parameter accounts for differing sector
numbering systems, and is usually 8 or 1, The "lsc" 1is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors 1is 1less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes, No translation table is created if the
skf parameter is omitted (or equal to 0). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the wvalues 1024, 2048, 40696, 8192, or 16384, Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced, The "dks"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1624, The value of "dir" 1is the total number of
directory entries which may exceed 255, if desired. The "cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem, 1If
the disk is permanently mounted, then the value of cks is typically 0@,
since the probability of changing disks without a restart is gquite
low. The “ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive,. Finally, the [0]
parameter 1is 1included when file compatibility is regquired with
versions of 1.4 which have been modified for higher density disks,
This parameter ensures that only 16K is allocated for each directory

record, as was the case for previous versions, Normally, this
parameter is not included.

For convenience and economy of table space, the special form
DISKDEF i,3
gives disk i the same characteristics as a previously defined drive j.

A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research.)

31

DISKS 4
DISKDEF 9,1,26,6,1024,243,64,64,2
DISKDEF)

DISKDEF 2,
DISKDEF 3,

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The DISKS macro generates n Disk Parameter Headers (DPH's),
starting at the DPH table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four

drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE EQU §

DPE@: DW XLTO ,0000H ,0000H,00800H,DIRBUF ,DPB#,CSVO ,ALVA
DPELl: DW XLTO ,0000H,0000H,0000H,DIRBUF ,DPB@,CSV1,ALV1
DPE2: DW XLTQ ,0000H,0000H,0000H,DIRBUF ,DPB@,CSV2,ALV2
DPE3: DW XLTO ,0000H,0000H,0000H,DIRBUF ,DPB@,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive # through 3, The values
contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are

generated by the ENDEF macro in the ram area following the BIOS code
and tables,

Note that if the “skf" (skew factor) parameter is omitted (or
equal to @), the translation table is omitted, and a @006@H value is
inserted in the XLT position of the disk parameter header for the
disk, In a subseguent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
00@PH, and simply returns the original logical sector from BC in the
HL register pair. A translate table 1is constructed when the skf
parameter 1is present, and the (non-zero) table address is placed into
the corresponding DPH's, The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLTd: DB 1,.,%,13.19,25,5.,11,17.23,3.9.15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of wuninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32

4C72 = BEGDAT EQU $
(data areas)
4DBO = ENDDAT EQU $
p13C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB@H-1, and occupies @13CH bytes. You must ensure that these
addresses are free for use after the system is loaded,

After modification, you can use the STAT program to check vyour
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive 4 (d=A,...,P) and displays
the values shown below:

128 Byte Record Capacity
Kilobyte Drive Capacity
32 Byte Directory Entries
Checked Directory Entries
Records/ Extent

Records/ Block

Sectors/ Track

Reserved Tracks

rTnoMOQ R

Three examples of DISKDEF macro invocations are shown below with
corresponding STAT parameter values (the 1last produces a full
8-megabyte system),

DISKDEF ©,1,58, ,2048,256,128,128,2
r=4996, k=512, 4=128, c=128, e=256, b=16, s=58, t=2

DISKDEF ©,1,58,,2048,1024,300,0,2
r=16384, k=2048, d4=300, c=0, e=128, b=16, s=58, t=2

DISKDEF 0,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=10#24, b=128, s=58, t=2

(All Information Contained Herein is Proprietary to Digital Research.)

33

12, SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit, The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically,

Upon each call to WRITE, the BDOS provides the following
information in register C:

normal sector write
write to directory sector
write to the first sector
of a new data block

2
1
2

I un

Condition @ occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write 1is to other than the first sector of an unallocated block, or
when the write is not into the directory area, Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written, In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file 1is included on vyour CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which 1is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by "hst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved,

The entry points BOOT and WBOOT must contain the initialization
code starting on 1line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk'at this point
(it 1is selected 1later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point, SECTRAN performs a trivial trivial function of
returning the physical sector number,

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of vyour
previous READ and WRITE operations,

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research,)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector

number) . You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz, All other mapping functions are performed by the
algorithms,

This particular algorithm was tested using an 80 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage, When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% improvement in overall response,
In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) 128-byte sectors. This 1is
primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital Research.)

35

"§73"1"
LELE
0ooo

pooRe =

0000
P806
1880
1600
1603

3000

1880
po0D2
PB31
PB19
0018

£800
ffof
0078
va79
BB7b
0B7f

po78
po79
PB7a
POEE
poo3
poo4
0100

3000

3003
3005

3007

3882

310001

db79
db7b

dbff

508730

APPENDIX A: THE MDS COLD START LOADER
MDS-8@0 Cold Start Loader for CP/M 2,0

Version 2.0 August, 1979

- me we w8

false equ 0
true equ not false
testing equ false
I

if testing
bias egu P3400h

endif

if not testing
bias equ 00d06h

endif
cpmb equ bias ;base of dos load
bdos equ 8@6h+bias ;entry to dos for calls
bdose equ 188@8h+bias ;end of dos load
boot egu 1600h+bias ;cold start entry point
rboot equ boot+3 ;warm start entry point
’

org 3600h ;loaded here by hardware
bdosl equ bdose-cpmb
ntrks egu 2 ;tracks to read
bdoss egu bdosl/128 :# sectors in bdos
bdos@ equ 25 :# on track @
bdosl eau bdoss-bdos@ :¥# on track 1
[
mon84@ equ 9f8080h ;intel monitor base
rmon8@ equ 0ffAfh ;restart location for mon80
base equ 078h ; 'base’ used by controller
rtype equ base+l ;result type
rbyte equ base+3 ;result byte
reset equ base+7 ;reset controller
dstat equ base ;disk status port
ilow egu base+l ;low iopb address
ihigh egu base+2 ;high iopb address
bsw equ @ffh ;boot switch
recal equ 3h ;recalibrate selected drive
readf equ 4h :disk read function
stack egu 100h ;use end of boot for stack
rstart:

1xi sp,stack;in case of call to mon8@
: clear disk status

in rtype

in rbyte
H check if boot switch is off
coldstart:

in bsw

?E% g%&dstarESW1tCh on?

36

300e

3610
3612

3915
3016
3018
3619
361b

3012

3022

3024
3026

3028

302b

3824
302e
3831
39032

3034

3037
303a
383b
303c

303f

d37f

p602
214230

74
d379
1c
d37a
db78

g2y

db79
e603
fef2

d20038

db7b

17
dcOfff
1f
eble

c20039

1127080
19
b5
c21530

c30016

-8 wme

= ws [f] =
T
1}
~
t

waitf:

=8 wa

- - - -

- me

- wmE we

- wme

clear the controller

out reset :logic cleared
mvi b,ntrks ;number of tracks to read
1xi h, iopb#

read first/next track into cpmb

mov a,l

out ilow

mov a,h

out ihigh

in dstat

g2t daito

check disk status

in rtype

ani 11b

cpi 2

if testing

cnc rmon8@# ;go to monitor if 11 or 19
endif

if not testing

jnc rstart ;retry the load

endif

in rbyte :1i/0 complete, check status
if not ready, then go to mon8#8

ral

ac rmon8@ ;not ready bit set
rar ;restore

ani 111108b ;overrun/addr err/seek/crc
if testing

cnz rmon8# ;go to monitor

endif

if not testing

jnz rstart ;retry the load

endif

1xi d,iopbl ;length of iopb

dad d ;addressing next iopb
dcr b ;count down tracks
jnz start

jmp boot, print message, set-up jmps
jmp boot

parameter blocks

37

3042 80 iopb#: db 80h ;iocw, no update

3043 04 db readf ;read function

3044 19 db bdosd ;1% sectors to read trk 0
3045 00 db] strack @

3046 92 db 2 ;start with sector 2, trk @
3047 0000 dw cpmb ;start at base of bdos

Beo7 = iopbl equ S=iopb#@

3049 80 iopbl: db 80h

304a 04 db readf

304b 18 db bdosl ;sectors to read on track 1
304c 01 db 1 strack 1

3044 01 db 1 ;sector 1

304e 80Oc dw cpmb+bdos@*128 ;base of second rd
3050 end

38

P14

4a00
3400
3ch6
1600
@0 2c
G002
gon4a
d080
Boda

4200
4ap3
4af6
4ap9
4alc

c3b34a
c3c34a
c3614b
c3644b
c36adb

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS)

m wE e we we we G we we we we we
1]
~
)]

cpmb
bdos
cpml
nsects
offset
cdisk
buff
retry

™E WE WE WE WA W WS W WS WE WE WE WS ME WA WA WE W WE WE WS WS Wy W wh ws ws

wboote:

mds-886 i/o drivers for cp/m 2.0
(four drive single density version)

version 2,0 august, 1979

eqgu 20 sversion 2,0
copyright (c) 1979

digital research

box 579, pacific grove
california, 93950

org 4a@dodh ;base of bios in 20k system

egu 3400h ;base of cpm ccp

egu 3cB6h ;base of bdos in 20k system

equ S-cpmb ;length (in bytes) of cpm system
equ cpml/128;number of sectors to load

equ 2 ;number of disk tracks used by cp
equ B004h ;address of last logged disk

egu 0380h ;default buffer address

equ 10 :max retries on disk i/0 before e

perform following functions
boot cold start
wboot warm start (save i/o byte)
(boot and wboot are the same for mds)
const console status
reg—a = U0 if no character ready
reg—a = ff if character ready
conin console character in (result in reg=-a)
conout console character out (char in reg-c)
list list out (char in reg-c)
punch punch out (char in reg-c)
reader paper tape reader in (result to reg-a)
home move to track 0@

(the following calls set-up the io parameter bloc
mds, which is used to perform subseguent reads an
seldsk select disk given by reg-c (6,1,2...)
settrk set track address (6,...76) for sub r/w
setsec set sector address (1,...,26)

setdma set subsequent dma address (initially 80h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

jump vector for indiviual routines

jmp boot

jmp wboot
jmp const
jmp conin
jmp conout

39

4aff c36d4db
4al2 c3724b
4al5 ¢3754b
4al8 c3784b
4alb c37d4b
4ale c3a74b
4a2l c3acédb
4a24 c3bbdb
4a27 c3clédb
4aZ2a c3cadb
4a2d c3764b
4a30 c3bldb

4a33+=

4a33+824a00
4a37+000000
4a3b+6edc73
4a3f+0dddee
4a43+824a60
4a47+0006000
4adb+6edc73
4a4f+3c4ddld
4a53+824a060
4a57+000000
4a5b+6edc73
4a5f+6bdddc
4a63+824a00
4a67+000000
4a6b+6edc73
4a6f+9a4d7b

4a73+=
4a73+1ad@
4a75+03
4a76+07
4a77+00
4a78+£200
4a7a+3f0@
4a7c+cl
4a7d4+00
4a7e+1000
4a80+0200
4a82+=
4a82+01
4a83+07
4a84+pd
4a85+13
4a86+19
4a87+05
4a88+¢b
4a89+11
4a8a+l7
4a8b+03

-

dpbase
dpef :

dpel:

dpel:

dpe3:

dpbo

x1td

jmp
jmp
Imp
jmp
Imp
jmp
3mp
jmp
jmp
jmp
jmp
jmp

maclib
disks
egu
dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

diskdef
equ
dw
db
db
db
dw
dw
db
db
dw
dw
egu
db
db
db
ab
db
db
db
db
db
db

list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst
sectran

;list status

diskdef ;load the disk definition library

4 ; four disks

$;base of disk parameter blocks
Xx1t@,0000h ;translate table
BO00Ch,00080h0 ;scratch area
dirbuf,dpbd ;dir buff,parm block
csvéd,alvd ;check, alloc vectors
x1ltl,0600h stranslate table
0000h,0000h0 ;scratch area
dirbuf,dpbl ;dir buff,parm block

csvl,alvl
x1t2,806006h
f000h,0000hN
dirbuf,dpb2
csv2,alv2
x1t3,0600h
PPRGh,0006h
dirbuf,dpb3
csv3,alv3

:check, alloc vectors
:translate table
:scratch area

;dir buff,parm block
;check, alloc vectors
;translate table
;scratch area

;dir buff,parm block
;check, alloc vectors

0,1,26,6,1024,243,64,64,0ffset

$
26
3
7
0
242
63
192
@
16
2
$
1
V)
13
19
25
5
i i
17
23
3

40

;disk parm block
;jsec per track
;block shift
;block mask
;extnt mask
;disk size-1
;directory max
s;alloc@

;allocl

;check size
:offset
;translate table

4a8c+09
4a8d+0f
4aB8e+l5
4a8f+@2
4a90+08
4a9l1+0e
4a292+14
4a93+1la
4a94+06
4a95+0@c
4a96+12
4297+18
4a98+04
4a99+Pa
4a9a+1p
4a9b+16

4a73+=
PO1E+=
0010+=
4a82+=

4a73+=
Ga1f+=
0810+=
4a82+=

4a73+=
PALE+=
0010+=
4a82+=

gofa
Bdfc
00£3
d07e

£800
ffof
£803
£806
£869
f80c
f86¢f
£812

dpbl
alsl
cssl
> I i |

dpb?2
als2
css2
x1lt2

dpb3
als3
css3
x1lt3

A WME WE ME S mE W Ws W W

revrt
intc
icon
inte

r
mon8@
rmon8@
ci

ri

co
po
lo
csts

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
diskdef
egu
egu
egu
equ
diskdef
eqgu
egu
equ
egu
diskdef
equ
equ
equ
equ

endef occurs at

end of controller - independent code,

9

15
21

2

8

14
20
26

6

12
18
24

4

19
16
22
1,0
dpb@
als@
cssh
x1t@
2,0
dpbg
alsg@
cssi
x1t@
3,0
dpb#
als@
cssi
x1ltd

;eqguivalent parameters

;same allocation vector size
;jsame checksum vector size
ssame translate table

;eqguivalent parameters

;same allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters

;same allocation vector size
:same checksum vector size
;same translate table

end of assembly

the remaini

are tailored to the particular operating environm
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

we also assume the mds system has four disk drive

equ
equ
equ
equ

gfdh
@fch
@f3h

rinterrupt revert port
;interrupt mask port
;interrupt control port

$111$1110@b;enable rst @ (warm boot) ,rst 7

mds monitor equates

equ
equ
equ
equ
equ
equ
equ
equ

P£806h
PEfBfh
P£8063h
pf8@6h
P£809N
pf8Ach
Pf8Gfh
P£812h

41

;mds monitor

;restart mon80@ (boot error)
;console character to reg-a
;reader in to reg-a

sconsole char from ¢ to console o
:punch char from ¢ to punch devic
slist from ¢ to list device
;jconsole status 00/ff to register

0D78
pB78
079
p07b

@ge79
gB7a

Doo4
Q066
B6O03
g004
pooda
po0a

4a9c
4a9f
4aal
4aad
4abf

4ab3
4abb6
4ab%
4abc
4abd
4ac@d

4ac3

4acé
4ac8

4acH9
4dacc
dact
4adl
4ad4
4adé6
4ad9
4adb

4ade
4adf

T | A B 1

Bdbada
3230
6b2043f
322e30
Adpad@

3100681
219c4da
cdd34b
af

3204400
c36f4b

318000

Pebda
ch

P10634
cdbbé4db
fedd
cd7d4b
Bedd
cda74b
Bed2
cdacdb

cl
B62c

r

base
dstat
rtype
rbyte
ilow
ihigh

readf
writf
recal
iordy
cr
1f

signon:

O~

oot:

~s me me F owe e
o
o]
o}
o+
-

-

wbootf:

- me

disk ports and commands

equ 78h ;base of disk command io ports
equ base ;disk status (input)

egu base+l ;result type (input)

equ base+3 ;result byte (input)

egu baset+l ;iopb low address (output)
egu base+2 ;iopb high address (output)
egu 4h ;read function

equ 6h ;write function

equ 3h ;recalibrate drive

eqgu 4h ;i/o finished mask

equ @dh ;carriage return

equ Pah ;line feed

;signon message: xxk cp/m vers y.y

db er; 511

db '20° ;sample memory size

db 'k cp/m vers '

db vers/16+'9','.',vers mod 16+'0"'

db cr,l1£,0

;print signon message and go to ccp
(note: mds boot initialized iobyte at 00@@3h)
1xi sp,buff+806h

Ixi h,signon

call prmsg ;print message

Xra a ;clear accumulator

sta cdisk ;set initially to disk a
jmp gocpm :go to cp/m

loader on track @, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt
start.

Ixl sp,buff ;using dma - thus 80 thru ff ok £
mvi c,retry ;max retries

push b

:enter here on error retries

1xi b,cpmb ;set dma address to start of disk
call setdma

mvi c,® :boot from drive @

call seldsk

mvi c,d

call settrk ;start with track @

mvi e, 2 ;jstart reading sector 2

call setsec

read sectors, count nsects to zero
pop b ;1@0-error count
mvi b,nsects

42

rdsec: ;read next sector

4ael c5 push b :save sector count
4ae2 cdcldb call read
4ae5 c2494b jnz booterr ;retry if errors occur
4aeB 2abcdc 1lhld iod sincrement dma address
4aeb 118000 1xi d,128 ;sector size
4aee 19 dad d ;incremented dma address in hl
daef 44 mov b,h
4af@ 4d mov c,l ;ready for call to set dma
4afl cdbb4db call setdma
4af4 3abbdc lda ios ;sector number just read
4af7 fela cpi 26 ;read last sector?
4af9 da@54b jc rdl
. must be sector 26, zero and go to next track
4afc 3abadc lda iot ;get track to register a
daff 3c inr a
4b0dB 4f mov c,a sready for call
4b@P1l cda74b call settrk
4bP4 af Xra a ;clear sector number
4b@5 3c rdl: inr a :to next sector
4bPe 4f mov c,a ;ready for call
4b0@7 cdacdb call setsec
4bPa cl pop b ;recall sector count
4bdb 05 dcr b ;done?
4bfc c2elda jnz rdsec
: done with the load, reset default buffer address
gocpm: ; (enter here from cold start boot)
: enable rst@ and rst?
4b@Gf £3 di
4bl@ 3el2 mvi a,l2h ;initialize command
4bl2 d3fd out revrt
4bl4 af Xra a
4bl5 d3fc out intc scleared
4bl7 3eTe mvi a,inte ;rst® and rst7 bits on
4bl19 d3fc out intc
4blb af Xra a
4blc d3f3 out icon ;interrupt control
: set default buffer address to 80h
4ble 0180080 1xi b,buff
4b21 cdbb4db call setdma
’
: reset monitor entry points
4b24 3ec3 mvi a,jmp
4b26 320000 sta @
4b29 21634a 1xi h,wboote
4b2c 220100 shld P ;jmp wboot at location 00
4b2f 320500 sta 5
4b32 210663c 1xi h,bdos
4b35 220600 shld 6 ;jmp bdos at location 5
4b38 323800 sta 7*%8 ;Jmp to mon8@ (may have been chan
4b3b 2100f8 1xi h,mon8@
4b3e 223900 shld 7*8+1

-

leave iobyte set

43

4b41l
4b4 4
4b45
4b46

4b49
4bda
4bdb

4dbde
4b4f

4b52
4b55
4b58

4b5b

4b61

4bb6 4
4b67
4b69
4bba

4b6d

4b70
4b71

4b72

4b75

3a0400
4f
fb
c30034

el
gd
ca524b

c5
c3c9%4a

215b4b
cdd34b
c30fff

3f626f4

c312f8

cd@3fs8

e67f

c9

c309£8

c30ff8

af
c9

c30cfs8

c306£8

-

L T]

booterr:

booterd:

-
r

’
bootmsg:

onst:

me () me we

previously selected disk was b, send parameter to

lda cdisk ;last logged disk number
mov c,a ;send to ccp to log it in
ei

jmp cpmb

error condition occurred, print message and retry
pop b ;recall counts

dcr c

jz booterd

try again

push b

Jjmp wboot@

otherwise too many retries

1xi h,bootmsg

call prmsg

jmp rmon8@ ;mds hardware monitor

db '?boot’',@

;console status to reg-a
(exactly the same as mds call)

jmp csts

;console character to reg-a

call ci

ani 7fh ;jremove parity bit
ret

:console character from ¢ to console out
jmp co

;1list device out
(exactly the same as mds call)
jmp lo

sreturn list status
Xra a
ret ;always not ready
;punch device out
(exactly the same

jmp po

as mds call)

:reader character
(exactly the same
jmp ri

in to reg-a
as mds call)

;move to home position

44

4b78
4b7a

4b74d
4b8o
4b81
4b83

4b8 4
4b86
4b89
4b8a
4b8c
4b8d
4b90

4b92
4b93
4b96
4b97
4b99
4b%a

48B3k
4b9e
4b9f
4bad
4bal
4ba?2
4bas
4bab6

4ba’
4baa
4bab

4dbac
4baf
4bbf

4bbl
4bb3
4bb4
4bb5
4bb6

iBB2

bel0
c3a74b

210000
79
fedd
dd

e6d2
32664c
79
e6f1
b7
caf924b
3e30

47
21684c
Te
e6ef
b@

17
9800
29

29

29

29
11334a

19
c9

216adc
71
c9

216bd4c
71
c9

peod
eb

g9

Te
326b4c

6
c

-

mvi
Jjmp
seldsk:
1xi
mov
cpi
rne

-

ani
sta
mov
ani
ora
3 -

mvi

setdrive:

mov
1xi
mov
ani
ora
mov
A9y
dad
dad
dad
dad
1xi
dad
ret

4
settrk: ;set track address given

1xi
mov
ret

setsec:
1xi
mov
ret

sectran:

mvi

xchg

dad
mov
sta

mo
re

r
setdma:

;select

treat as track 00 seek

c,?
settrk

disk given by register c¢

h,00806h ;return 0000 if error
a,c
ndisks ;too large?
:leave hl = 0060
16b ;00 00 for drive 0,1 and 10 16 fo
dbank ;to select drive bank
a,c ;00, 61, 16, 11
1lb smds has 4,1 at 78, 2,3 at 88
a ;result 087
setdrive
a,d01100008b ;selects drive 1 in bank
bé ;save the function
h,iof ;io function
a,m
110061111b :mask out disk number
b ;mask in new disk number
m,a ;save it in iopb
%:ﬁ ;hl=disk number
h ;%2
h s %4
h : %8
h ;%16
d,dpbase
d shl=disk header table address

by c
h,iot
m,c

;set sector number given by c

h,ios
m,c

;translate sector bc using table at de

b, ;double precision sector number i
;translate table address to hl

b ;translate(sector) address

a,m s;translated sector number to a
ios
1l,a ;return sector number in 1

;set dma address given by regs b,c

45

4bbb
4bbc
4bbd
4bch

4bcl
4bc3
4bco
4bcH9

4bca
4dbcc
4bcf
4bd2

4bad3
4bd4
4bd5

4bdé6
4bd7
4bads
4bdb
4bdc
4bdd

4bef
4bel
4bed
4beb
4be?

4be8
4bea
4bed
4bee
4pbef

4bf@

4bf2

4bf5
4bf8

69
60
226c¢c4c
c9

Bedd
cdeldb
cdf@4b
c9

Beld6
cdef4db
cdf@d b
c9

Te
b7
c8

e5
4f
cdeadb
el
23
c3d34b

21684c

feba

cd3fdc
cddcdc

3a664dc

read:

- we

write:

Y =e =e =

rmsqg:

-e

.
r

setfunc:

.
L

- e

.
r

waitio:

rewait:

r

-

mov 1€
mov h,b
shld iod
ret

;read next disk record (assuming disk/trk/sec/dma

mvi c,readf ;set to read function

call setfunc

call waitio ;perform read function

ret ;may have error set in reg-a

;disk write function

mvi c,writf

call setfunc ;set to write function
call waitio

ret :may have error set

utility subroutines
;print message at h,1 to @

mov a,m

ora a ;zero?

rz

more to print

push h

mov c,a

call conout

pop h

inx h

jmp prmsg

set function for next i/o (command in reg-c)

1xi h,iof :io function address

mov a,m ;get it to accumulator for maskin
ani 11111000Db ;remove previous command
ora c ;set to new command

mov m,a ;replaced in iopb

the mds-8060 controller reqg's disk bank bit in sec
mask the bit from the current i/o function

ani 00160080Db ;mask the disk select bit
1xi h,ios ;address the sector selec
ora m ;select proper disk bank
mov m,a :set disk select bit on/o
ret

mvi c,retry ;max retries before perm error

start the i/o function and wait for completion

call intype ;in rtype
call inbyte j;clears the controller
1da dbank ;set bank flags

46

4bfb
4bfc
4bfe
4c00
4c@3
4cB5
4cl6
4cpd8

4c@b
4cpd
4cle

4cl@d
4cl3
4cl5

4cl8

4clb
4cld

4¢c20
4c21

4c24
4c27
4c28
4¢c2b
4c2c
4c2e

4c31

4c32
4c35

b7
3e67
@64c
c2@bdc
d379
78
d37a
c31d4c

d389
78
d38a

cd59%4c
e60d4
calfdc

cd3fdc

fed?2
ca3z4c

b7
c2384c

cddcdc
17
da324c
1.E
e6fe
c2384c

c9

cddc4c
c3384c

iodrl:

wait@:

- m

- =e - me

- wme

- we

wready:

W ME WS WE WA WS W mE W wE s -

error:

ora a :zero if drive 0,1 and nz

mvi a,iopb and @0ffh ;low address for iopb

mvi b,iopb shr 8 ;high address for iopb
jnz iodrl ;drive bank 17?

out ilow ;low address to controlle
mov a,b

out ihigh ;high address

jmp waith ;to wait for complete

;drive bank 1

out ilow+10h :88 for drive bank 10
mov a,b

out ihigh+16h

call instat ;wait for completion
ani iordy ;jready?

jz waitd

check io completion ok

call intype ;must be io complete (9048)
@@ unlinked i/o complete, 1 linked i/o comple
19 disk status changed 11 (not used)

cpi 10b ;ready status change?

- wready

must be 8@ in the accumulator
ora a
jnz werror ;some other condition, re

check i/0 error bits

call inbyte

ral

jc wready ;unit not ready
rar

ani 11111116b ;any other errors?
jnz werror

read or write is ok, accumulator contains zero
ret

;not ready, treat as error for now
call inbyte ;clear result byte
jmp trycount

;return hardware malfunction (crc, track, seek, e
the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
- deleted data (accepted as ok above)

- CIrcC error

- seek error

address error (hardware malfunction)

- data over/under flow (hardware malfunct
- write protect (treated as not ready)

- write error (hardware malfunction)

- not ready

~N~oubsWwNHES
|

47

4c38
4¢c39

4c3c
4c3e

4c3f
4cd42
4c43
4c46
4c48
4c49
4c4b

4c4c
4c4f
4c590
4c53
4c5h5
4c56
4c58

4¢59
4c5c¢
4c5d
4c60
4c62
4c63
4c65

4c66

4c67
4c68
4c69
4c6a
4c6b
4cé6e

ga
c2f24b

3edl
c9

3a664dc
b7
c2494c
db79
c9
db89
c9

3a664c
b7
c2564c
db7b
c9
db8b
c9

3a664c
b7
c2634c
db78
c9
db88
cY

0o

80

g1
B2
21
8000

(accumulator bits are numbered 7 6 5 4 3 2 1 @)

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable, 1in any case, the not ready conditio
treated as a separate condition for later improve

=8 (T ws ws wmE we ws we

rycount:
register ¢ contains retry count, decrement 'til z
dcr (o
jnz rewait ;for another try
’
H cannot recover from error
mvi a,l ;error code
ret

- we

intype, inbyte, instat read drive bank 00 or 190

intype: 1lda dbank
ora a
jnz intypl ;skip to bank 10
in rtype
ret
intypl: in rtype+loh ;78 for 0,1 88 for 2,3
ret
r
inbyte: lda dbank
ora a
jnz inbytl
in rbyte
ret
inbytl: in rbyte+lgh
ret
r
instat: lda dbank
ora a
jnz instal
in dstat
ret
instal: in dstat+10h
ret
;
H data areas (must be in ram)
dbank: db ('] ;disk bank 0@ if drive 0,1
H 190 if drive 2,3
iopb: ;io parameter block
_ db 80h ;jnormal i/o operation
iof: db readf ;io function, initial read
ion: db 1 ;number of sectors to read
iot: db offset ;track number
ios: db 1 ;sector number
iod: dw buff ;10 address

- wmE W

define ram areas for bdos operation

48

4cobe+=
4coee+
4cee+
44084+
4414+
4d3c+
4d4c+
4d6b+
44d7b+
4d9a+
4daa+=
Bl3c+=
4daa

begadat

dirbuf:

alvb:
csvi:
alvl:
csvl:
alv2:
csv2:
alv3:
csv3:
enddat
datsiz

endef
equ

ds
ds
ds
ds
ds
ds
ds
ds
equ
equ
end

128 sdirectory access buffer

$-begdat

49

pB14

0000
3400
3cl6
4a00
p004
AB63

4a00

oW nwonn

BB2c =

4a00
4a@3
4206
4a09
4alc
4apf
4al12
4als
4al8
4alb
dale
4a2l
4a24
4a27
4a2a
4a2d
4a30

4a33
4a37
4a3b
4a3f

4a43
4a47
4adb
4a4f

4a53
4a57
4a5b
4a5f

c39cda
c3a64da
c3114b
c3244b
c3374Db
c3494b
c34d4b
c34f4b
c3544b
c35a4db
c37d4b
c3924Db
c3addb
c3c34b
c3d64b
c34bdb
c3a74b

734a08
0000609
fo4c8d
ecddio

7342048
PooBR0
f@4c8d
fc4dsf

734a00
000000
f@4c8d
@cdeae

size

= me ms ome H e ome

bias
ccp
bdos
bios
cdisk
iobyte

nsects

-

wboote:

) =0 =2 = =e

pbase:

-8

-

APPENDIX C: A SKELETAL CBIOS
skeletal cbios for first level of cp/m 2.0 altera
equ 20 jcp/m version memory size in kilo

"bias" is address offset from 3400h for memory sy
than 16k (referred to as "b" throughout the text)

equ (msize-20) *10624

equ 34@0h+bias ;base of ccp

equ ccp+806h :base of bdos

equ ccp+16806h ;base of bios

equ 0@04h ;jcurrent disk number 0=a,...,15=p
equ @aa33nh ;intel i/o byte

org bios ;origin of this program

equ ($-ccp) /128 ;jwarm start sector count
jump vector for individual subroutines

jmp boot spold sgtart

jmp wboot ;warm start

jmp const ;console status

jmp conin ;console character in
jmp conout ;jconsole character out
jmp list ;list character out

jmp punch ;punch character out

jmp reader ;jreader character out
jmp home ;move head to home positi
jmp seldsk ;select disk

jmp settrk :set track number

jmp setsec ;set sector number

jmp setdma ;set dma address

jmp read ;read disk

jmp write iwrite disk

jmp listst ;return list status

jmp sectran ;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 080

dw trans,0006h
dw g0006h, 00000
dw dirbf,dpblk
dw chk@@,all@ggd
disk parameter header for disk 61
dw trans, 080868h
dw 0000h,0000h
dw dirbf ,dpblk
dw chk@l,alldl
disk parameter header for disk 02
dw trans,00800h
dw 0000h,0000h
dw dirbf,dpblk
dw chk@2,all@?2

50

4a63
4a67
4a6b
4a6f

4373
4a7b
4a7f
4a83
4a87
4a8b

4a8d
4a8f
4a90
4a91l
4a92
4a94
4a96
4a97
4298
4a9a

4a9c
4a9d
4aabd
4aal

4aab
4aa9
4aab
4aae

4abl
4ab3
4ab5s

4ab7

4aba
4abb
4abc
4abd
4abe
4acl

734a00
g00o00
f@4c8d
lcdecd

758288

178369
150268
1l41a@6
121804
1816

lag@
03
a7
00
£200
3f00
ch
0o
1006
200

af

320300
320400
c3efda

318000
deld

cd5aédb
cd544b

B62c
Qe
1602

210034

(o)
das
eb5
4a
cd924b
cl

-

T = =

rans:

dpblk :

O =~ =¢ = =

;
wboot:

-y e

loadl:

disk parameter header for disk 03

dw trans,8000h
dw 0B006h,D000N
dw dirbf,dpblk
dw chk@3,alls3

sector translate vector

4B 3sT5tiildy igeckgrs 1.2:3.4

db 23,;3,;9,;15 :sectors 9,16,11,12
db 21,2,8,;14 ;sectors 13,14,15,16
db 20,26,6,12 :ssectors 17,18,19,20
db 18,24,4,10 ;sectors 21,22,23,24
db 16,22 ;sectors 25,26

;disk parameter block, common to all disks
dw 26 ;jsectors per track
db 3 iblock shift factor
db 7 ;block mask

db a ;null mask

aw 242 ;disk size-1

dw 63 ;directory max

db 192 ;alloc @

db %] ;alloc 1

dw 16 ;check size

daw 2 ;track offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initi

Xra a ;zero in the accum

sta iobyte ;clear the iobyte

sta cdisk ;select disk zero

jmp gocpm ;initialize and go to cp/
;simplest case is to read the disk until all sect
1xi sp,80h ;use space below buffer £
mvi c,? ;select disk @

call seldsk

call home ;go to track @0

mvi b,nsects :b counts # of sectors to
mvi c,@ ;¢ has the current track
mvi d,2 ;d has the next sector to

note that we begin by reading track @, sector 2 s
contains the cold start loader, which is skipped

1xi h,ccp ;base of cp/m (initial lo
sload one more sector

push b ;save sector count, current track
push d ;save next sector to read

push h ;save dma address

mov c,d ;get sector address to register ¢
call setsec ;set sector address from register
pop b ;recall dma address to b,c

51

4ac?
4ac3

4acéh
4ach
4acb

4dace
4act
4ad2
4ad3
4ad4
4ad5
4ad6

4ad9
4ada
4adb
4add

4ael
4ae2

4ael
4aed
4aeb
4aeb
4ae9
4aea
4daeb
4aec

4aef
4afl
4af4
4af’

4afa
4afd
4b0 @

4b@3
4b@6

4b09
4bda
4bgd
4bfe

c5
cdad4b

cdc34b
fedod
c2a64a

el
118000
19
dl
o
g5
caefda

14

Ta
felb
dabada

1601
Bc

£bh
das
e5
cd7d4b
el
dl
&l
c3bada

3ec3

320000
210834a
220100

320500
21063c
220600

018000
cdaddb

fb
3a0400
4f
c30034

- wa

- wme

~e w8

- ws

- =

0 ~s =s
o]
g
3

-

-

-

push b ;replace on stack for later recal
call setdma ;set dma address from b,c

drive set to @, track set, sector set, dma addres
call read

cpi @6h ;any errors?

jnz wboot ;retry the entire boot if an erro

no error, move to next sector

pop h ;recall dma address

1xi d,128 :dma=dma+128

dad d :new dma address is in h,l1l

pPop d ;recall sector address

pop b ;recall number of sectors remaini
dcr b ;sectors=sectors-1

jz gocpm ;transfer to cp/m if all have bee

more sectors remain to load, check for track chan
inr d

mov a,d :sector=27?, if so, change tracks
cpi 27

jc loadl scarry generated if sector<27

end of current track, go to next track

mvi d,1l ;begin with first sector of next
inr c strack=track+l

save register state, and change tracks

push b

push d

push h

call settrk ;track address set from register
pop h

pop d

pop b

jmp loadl :for another sector

end of load operation, set parameters and go to c

mvi a,Pc3h ;c3 is a jmp instruction

sta 2 ;for jmp to wboot

Ixi h,wboote ;wboot entry point

shld 1 ;set address field for jmp at @
sta 5 ;for jmp to bdos

1xi h,bdos ;bdos entry point

shld 6 ;address field of jump at 5 to bd
1xi b,80h ;default dma address is 80h

call setdma

ei ;enable the interrupt system

1da cdisk ;get current disk number

mov C;a ;send to the ccp

jmp ccp ;90 to cp/m for further processin

52

4bll
4b21
4b23

4b24
4b34
4b36

4b37
4b38
4b48

4b49
4b4da

4b4b
4b4c

4bdd
4bde

4b4f
4b51
4b53

4b54
4b56
4b59

4bb5a
4b5d
4b5e
4b6l

3e00
cH

e67f
c9

79
c9

79
c9

af

79
c9

3ela
eb67f
c9

fed @
cd7d4b
c9

210000
79
32ef4c
febd

onst:

punch:

-8 we

reader:

=t [T we ws ws W we e

éeldsk:

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code

;console status, return @0ffh if character ready,

ds 10h ;space for status subroutine
mvi a,doh
ret

;console character into register a

ds 16h ;space for input routine
ani 7fh ;strip parity bit
ret

;console character output from register c

mov a,c ;get to accumulator
ds 106h ;space for output routine
ret

:list character from register c
mov a,c ;character to register a
ret ;null subroutine

;return list status (@ if not ready, 1 if ready)
Xra a ;0 is aiways ok to return
ret

;punch character from register c
mov a,e ;character to register a
ret ;null subroutine

sread character into register a from reader devic

mvi a,lah ;enter end of file for now (repla
ani 7fh ;remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

smove to the track 00 position of current drive
translate this call into a settrk call with param

mvi c,® :1select track @
call settrk
ret ;we will move to 00 on first read

;select disk given by register c

1xi h,80800h ;error return code

mov a,c

sta diskno

cpi 4 :must be between 8 and 3

53

4b63
4b64

4bb6e
4b71
4b72
4b74
4b75
4b76
4b77
4b78
4b7b
4b7c

4b7d
4b7e
4b81
4b91

4b92
4b93
4b96
4bab6

4ba’
4ba8
4ba%
4baa
4bac

4bad
4bae
4baf
4bb2
4bc2

4bc3
4bd3

4bdé6

dag rnc ;no carry if 4,5,...
: disk number is in the proper range
ds 10 ;space for disk select
5 compute proper disk parameter header address
3aefdc lda diskno
6f mov l,a ;1=disk number 0,1,2,3
2600 mvi h,0 :high order zero
29 dad h g R2
29 dad h %4
29 dad h ;%8
29 dad h :*16 (size of each header)
11334a 1xi d,dpbase
19 dad 4 ;hl=_dpbase(diskno*16)
c9 ret
settrk: ;set track given by register c
79 mov a,e
32e9%4c sta track
ds 16h ;space for track select
c9 ret
setsec: ;set sector given by register c
79 mov a,c
32eb4dc sta sector
ds 108h ;space for sector select
c9 ret
sectran:
;translate the sector given by bc using the
;translate table given by de
eb xchg shl=_trans
g9 dad b ;hl=.trans(sector)
6e mov 1l,m ;1 = trans(sector)
2600 mvi h,o ;hl= trans(sector)
c9 ret swith value in hl
setdma: ;set dma address given by registers b and c
69 mov 1l,c ;low order address
60 mov h,b ;high order address
22eddc shld dmaad ;save the address
ds 16h ;space for setting the dma addres
c9 ret
read: ;perform read operation (usually this is similar
; so we will allow space to set up read command, th
: common code in write)
ds 16h ;iset up read command
c3eb64b jmp waitio ;to perform the actual i/o
write: ;perform a write operation
ds 16h ;set up write commanu

I

waitio: j;enter here from read and write to perform the ac
: operation, return a @6h in register a if the ope
: properly, and 01lh if an error occurs during the r

54

4be6
4ceb
4ce8

4ced
4ceb
4ced
4cef

4cfo
4cfo
4470
448f
4dae
4dcd
4dec
4dfc
4efc
4elc

4e2c
Bl3c
4de2c

3edl
c9

nn

wE wE e WE w

e wE W WE wE wms

track:
sector
dmaad:
diskno

-

r

begdat
dirbf:
all@@:
allgl:
all@2:
all@3:
chk@d:
chk@l:
chk@?2:
chk@d3:

enddat
datsiz

in this case, we have saved the disk number in 'd

ds
mvi
ret

the track number in 'track' (6-76
the sector number in 'sector' (1-
the dma address in 'dmaad' (0-655
;space reserved for i/o drivers
;error condition

;replaced when filled-in

the remainder of the cbios is reserved uninitiali
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdat" and "enddat").

ds
ds
ds
ds

scratch
egu
ds
ds
ds
ds
ds
ds
ds
ds
ds

equ
egu
end

RN

s two bytes for expansion
;two bytes for expansion
;direct memory address
:disk number #-15

ram area for bdos use

$
128
31
31
31
31
16
16
16
16

$

:beginning of data area
;scratch directory area
s;allocation vector
;allocation vector
sallocation vector
jallocation vector
:check vector
;check vector
;check vector
scheck vector

wMNo-==

wroHHS

;end of data area

$-begdat;size of data area

55

8100

go14

0000
3400
3co0
4ap00

6100
9103
p106

21908

610a
#1064
0110
6111
p112
8113
8115

@118
8119
dlla
gllc

Allf
0120

L]

nnuu

318033
218033
0600

Pedl

cdoges
118600
19

fc

79
felb
da@adl

@4

78
fe@ 2
da#g8ol

fb
76

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

- we

combined getsys and putsys programs from Sec 4,
Start the programs at the base of the TPA

org

msize equ

-
r
-
r

9100h

20

; size of cp/m in Kbytes

“"bias" is the amount to add to addresses for > 20k
(referred to as "b" throughout the text)

bias equ
ccp equ
bdos equ
bios equ

~8 w8

M mE W mE wg wE we

3888h +

register

nosa0ow
=

gstart:

1xi

(msize-20) *1024

34@0h+bias
ccp+88@0h
ccp+l608h
getsys programs tracks # and 1 to memory at
bias
usage
(scratch register)
track count (8...76)
sector count (l...26)
(scratch register pair)
load address
set to stack address
start of getsys
sp,ccp-00886h convenient plac
h,ccp-0080h set initial loa

1xi
mvi

rd$trk:

mvi

rdSsec:

’

-
r

call
1xi
dad
inr
mov
cpi
jc

b,o

Oy

readSsec

d,128
d

c

a,c
27
rdsec

start with trac
read next track
each track star

e me W W wa we

get the next se
of fset by one s
(hl=hl1+128)
next sector
fetch sector nu
and see if la
<, do one more

™A mE WE ms WE WS me

arrive here at end of track, move to next track

inr
mov
cpi
jc

b

a,b

2
rdStrk

track = track+l
check for last
track = 2 ?

<, do another

ms me ws wg

arrive here at end of load, halt for lack of anything b

ei
hlt

56

0200

0200
0203
D206

0208

g20a
9204
0210
@211
9212
3213
@215

@218
3219
g2la
B21lc

p21f
0220

2300

0300
p301
0302

8342
P343

318033
2180833
P600

Beldl

cdpan4
118000
19

dc

79
felb
dafa@2

@4

78
fe@2
da@8o2

fb

ch
e5

cl

- me W

putsys program, places memory image starting at
3880h + bias back to tracks # and 1
start this program at the next page boundary

org ($+0160h) and Pf£fa6h
put$sys:
1xi sp,ccp-0080h ; convenient plac
1xi h,ccp-6088h ; start of dump
mvi b,d : start with trac
wrsStrk:
mvi c.1l ; start with sect
wr$sec:
call write$sec ; write one secto
1xi d,128 : length of each
dad d : <hl>=<hl> + 128
inr c ; <c> = <¢e> + 1
mov a,c ; see if
cpi 27 H past end of t
jc wrSsec ; no, do another
; arrive here at end of track, move to next track
inr b ; track = track+l
mov a,b ; see if
cpi 2 3 last track
jc wrStrk ; no, do another
: done with putsys, halt for lack of anything bette
ei
hlt
; user supplied subroutines for sector read and write
3 move to next page boundary
org ($+0100h) and Of£f00h
read$sec:
; read the next sector
i track in ,
; sector in <c>
; dmaaddr in <hl>
push b
push h
; user defined read operation goes here
ds 64
pop h
pop b

57

6344 c9 ret
0400 org ($+0100h) and Bf££00hN ; another page bo
writeS$sec:

; same parameters as read$sec

0400 c5 push b
0401 e5 push h
: user defined write operation goes here
0402 ds 64
0442 el pop h
0443 cl pop b
#8444 c9 ret

; end of getsys/putsys program

8445 end

58

0000
0B14

2000
3400
4200
0300
4a0@
1900
pe32

0ooo
0903
a0eB5

nmwnuwuwnn

010200
1632
210034

e ME WA WS WA WA WE WA WS WS WS WG WE WE WS WE WE we

APPENDIX E: A SKELETAL COLD START LOADER

this is a sample cold start loader which, when modified
resides on track 0@, sector 81 (the first sector on the
diskette). we assume that the controller has loaded
this sector into memory upon system start-up (this pro-
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running) ., the cold start loader brings the cp/m system
into memory at "loadp" (3400h + "bias"). 1in a 20k
memory system, the value of "bias" is 0006h, with large
values for increased memory sizes (see section 2). afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + “"bias." the cold start loader is not used un-
til the system is powered up again, as long as the bios
is not overwritten. the origin is assumed at 0006h, an
must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area
is used,

org (] ; base of ram in cp/m
msize equ 20 ; min mem size in kbytes
bias egu (msize-20) *1024 ; offset from 20k system
ccp equ 34@0Bh+bias ; base of the ccp
bios egu ccp+l600h ;: base of the bios
biosl equ B3060h ; length of the bios
boot equ bios
size egu bios+biosl-ccp ; size of cp/m system
sects equ size/128 ; # of sectors to load

begin the load operation

cold:
1xi b,2 ; b=0, c=sector 2
mvi d,sects ; d=# sectors to load
1xi h,ccp : base transfer address

lsect: ; load the next sector

g mE WE mE we ma we

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,

into the address given by <hl>

branch to location "cold" if a read error occurs

59

008
pOOb

Pd6b
BB6C

go6f
0072

0073
0074
075
bR77

A67a
@07c
@@a7d
0o8@

c36b@o

15
caddda

318000
39

dc

79
felb
daidl80@

bedl
g4
c30800

W mE wE ms we

AhkAkRkhkAkRA R AR ARKRAKA AT A A A ARk hhkhkhhkhkhhhhhkhkhhhhhhik
*

¥ user supplied read operation goes here...
*
khkhkhkkRkhkhkhkhkhkkhkhkhRAkhkhhkhAhkhkhdkrhhkhhdhkrhkhhhhkhkhkhhkhkkkhkii

jmp past$patch ; remove this when patche
ds 60h
past$patch:
; go to next sector if load is incomplete
dcr d : sects=sects-1
jz boot ; head for the bios
: more sectors to load
H
; we aren't using a stack, so use <sp> as scratch registe
H to hold the load address increment
Ixd sp,128 ; 128 bytes per sector
dad sp ; <hl> = <hl> + 128
inr C ; sector = sector + 1
mov a,c
cpi 27 ; last sector of track?
je lsect ; no, go read another
; end of track, increment to next track
mvi c,l ; sector =1
inr b ; track = track + 1
jmp lsect ; for another group
end ; of boot loader

60

4% 84 ss ar Be B S =R

NS VO WU & W

b

ME WE WS WS wma ws wE WS wS WG e mp wp WE WS WS W W WS WE WS WS mE W WS WO WS WE WS WE WA WE WG w4 WG WG WS WE WS W WS WS W we W WE WE s we we we W W

APPENDIX F: (P/M DISK DEFINITION LIBRARY

CP/M 2.0 disk re-definition library

Copyright (c) 1979
Digital Rzsearch
Box 579

Pacific Grove, CA
93959

CP/M logicel disk drives are defined using the

macros given below, where the sequence of calls
is:

disks n

diskdef parameter-list-0
diskdef parameter-list-1
diskdef parameter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list—i defines the
characteristics of the ith drive (i=#,1,...,n-1)

each parameter-list-i takes the form
dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where

dn is the disk number 6,1,...,n-1

fsc is tune first sector number (usually 0 or 1)
1sc is the last sector number on a track

sk is optional "skew factor" for sector translate
bls is tne data block size (1024,2048,...,16384)
dks is tne disk size in bls increments (word)

dir is tne number of directory elements (word)

cks is the number of dir elements to checksum

ofs is the number of tracks to skip (word)

[@] is an optional @ which forces 16K/directory en

for convenience, the form

dn,dm
defines disk dn as having the same characteristics as
a previously defined disk dm,

a standard four drive CP/M system is defined by

disks 4

diskdef ©0,1,26,6,1024,243,64,64,2
dsk set @

rept 3
dsk set dsk+1

diskdef %dsk,0

endm

ender

the value of “begdat" at the end of assembly defines t

61

54;
557
56:
57:
58:
59:
6d:

62:

74:

89:
90
9ls
923
93:
94:
85:
96:
97:
98:
99:
100:
191:
162:
103:
104:
145:
106:
187:
198:

Qs=e O,~s =8 =s =8 = =s =g =

-

disks

- =
rr

ndisks
dpbase

dsknxt

dsknxt

beginning of the uninitialize ram area above the bios,
while the valve of "enddat" defines the next location

following the end of the data area, the size of this

area is given by the value of "datsiz" at the end of t
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size.

macro dn
define a single disk header list

dw xlt&dn,0060h ;translate table

dw 00B6bh,vB06N ;scratch area

dw dirbuf,dpb&dn ;dir buff,parm pblock
aw csv&dn,alvadn scheck, alloc vectors
endm

macro nd
define nd disks

set nd ::for later reference

equ $ ibase of disk parameter blocks
generate the nd elements

set [}

rept nd

dskhdr %dsknxt

set dsknxc+1l

endm

endm

macro dn
equ $;disk parm block
endm

macro data,comment

define a db statement

db data comment
endm

macro data,comment

define a dw statement

dw data comment
endm

macro m,n

greatest common divisor of m,n

produces value gcdn as result

(used in sector translate table generation)

set m ;;variable for m
set n ;s svariable for n
set @ ;;variable for r
rept 65535

set gcdm/gcdn

set gcdm - gcdx*gcdn

if gcdr = @

exitm

endif

62

129: gcdm set gcdn

116: gcdn set gcdr

1311z endm

112: endm

113 3

114: diskdef macro dn, fsc,1sc,skf,bls,dks,dir,cks,ofs,klé6
115: ;; generate the set statements for later tables
116: if nul lsc

117: :: current disk dn same as previous fsc

118: dpb&dn equ dpb&fsc ;zauivalent parameters

119: als&dn equ als&fsc ;same allocation vector size
126: css&dn equ css&fsc ;same checksum vector size
121: x1lt&dn equ xlt&fsc ;same translate table

122; else

123: secmax set lsc—-(fsc) ;;sectors 0...secmax
124: sectors set secmax+l;;number of sectors

125: als&dn set (dks) /8 ;;size of allocation vector
126: i€ ((dks) mod &) ne ¢

127: als&dn set als&dn+l

123: endif

129: css&dn set (cks)/4 ;;number of checksum elements
139: ;: generate the block shift value

131: blkval set bls/128 ;;number of sectors/block
132: blkshf set 7] ;:counts right 0's in blkval
133: blkmsk set 0 ;3rills with 1's from right
134: rept 16 ;:once for each bit position
135: if blkval=1

136: exitm

137: endif

138: ;3 otherwise, high order 1 not found vet

139: blkshf set blkshf+l

146: blkmsk set (blkmsk shl 1) or 1

141: blkval set blkval/2

142: endm

143z 3o generate the extent mask byte

144: plkval set bls/1024 : snumber of kilobytes/block
145: extmsk set 7] ;;£1iil from right with 1's
146: rept 16

147: if blkval=1

148: exitm

149: endif

156: ;: otherwise more to shift

151: extmsk set (extmsk shl 1) or 1

152: pblkval set blkval/2

1533 endm

154: ;:; may be double byte allocation

155 if (dks) > 256

156: extmsk set (extmsk shr 1)

1573 endif

158: ;; may be optional [@] in last position

159: if not nul klé

160: extmsk set klé

161: endif

162z 33 now generate directory reservation bit vector
163: dirrem set dir ;i# remaining to process

63

164:
165:
166:
lo7:
1638:
169:
178:
171:
172:
173
174:
175:
176:
177:
178:
179:
186
181§
182:
183:
184:
LE5>
186:
187:
1838:
185:
19d:
191:
192:
193:
194:
195
196:
197:
1948:
199:
200
201:
202:
203:
204:
285:
206
287:
208
209:
21@:
211:
212:
213:
214:
215:
216:
2%
218:

dirbks
dirblk

dirrem

dirrem

s .
rr

x1lt&dn

xlt&dn

HH
nxtsec
nxtbas

neltst
xlt&dn
nxtsec

nxtsec

nelts

set bls/32 ;;number of entries per block
set @ ;;fill with 1's on each loop
rept 16

1 dirrem=0

exitm

endif

not complete, iterate once again
shift right and add 1 high order bit

set (dirblk shr 1) or 8888h

i dirrem > dirbks

set dirrem—-dirbks

else

set @

endif

endm

dpbhdr dn ;;generate egu $
ddw $sectors,<;sec per track>
ddb $blkshf,<;blcck shift>
ddb $blkmsk,<;blcck mask>

ddb $extmsk,<;extnt mask>

ddw 3 (dks)-1,<;aisk size-=1>
adw %$(dir)-1,<;airectory max>
adb $dirpblk shr 8,<;alloc®>
ddb $dirblk ana 0ffh,<;allocl>
ddw % (cks)/4,<;check size>
ddw 30fs,<;offset>

generate the translate table, if requested
it nul skf

equ %] ;no xlate table
else

if skf = @

equ] ;no xlate table
else

generate the translate taple

set B ; ;next sector to fill
set ¥ ;;mcves by one on overflow
gcd $sectors,skf

gcdn = gcd(sectors,skew)

set sectors/gcdn

neltst is number of elements to generate
before we overlap orevious elements

set neltst ;;ccunter

equ S ;translate table
rept sectors ;;once for each sector
if sectors < 256

ddb $nxtsec+ (fsc)

else

ddw $nxtsec+ (fsc)

endif

set nxtsec+(skf)

afy nxtsec >= sectors

set nxtsec-sectors

endif

set nelts-1

if nelts = @

64

219:
220:
221
222s
223:
224:
225:
226:
227:
228:
229:
230:
2312
2323
233:
234:
2353
236:
237:
238:
239:
240
241:
242:
243:
244:
245:
246;
247:
248:
249:

nxtbas
nxtsec
nelts

defds
lab:

endef

begdat
dirbuf:
dsknxt

dsknxt

enddat
datsiz

rr

set
set
set
endif
endm
endif
endif
endm

macro
ds
endm

macro
defds
endm

macro

nxtbas+i
nxtbas
neltst

nd of nul fac test
nd of nul bls test

o 0

lab,space
space

lb,dn,val
lb&dn, $val&dn

generate the nec2ssary ram data areas

eqgu
ds
set
rept
las
lds
set
endm
equ
equ

$
128 ;directory access buffer

]

ndisks ;;once for eacnh disk
alv,%dsknxt,als
csv,%dsknxt,css

dsknxt+1l

$
$-begdat

db @ at this point forces hex record

endm

65

#8898 es ms *E es

—

[
NHEFSWYWOO~NO U W -

el el
U W
L1} Ll Ll e aw Ll e

16:

23:
24:
25
26:
27:
28:
29:
306
31:
32:
33:
34:
353
36:
372
38:
39:
40
41:
42:
43:
44:
45;
46:
47:
48:
49
50:
51:
52:
53:

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS,

:***
. K *
3 * Sector Deblocking Algorithms for CP/M 2.0 :
« K
;***
. utility macro to compute sector mask
smask macro hblk
33 compute log2(hblk), return @x as result
7 (2 ** @x = hblk on return)
@y set hblk
@x set @
:: count right shifts of @y until =1

rept 8

if @y = 1

exitm

endif
i @y is not 1, shift right one position
Qy set @y shr 1
@x set @x + 1

endm

endm

ARXKKKAARAKAANRAARARRARAANAAAAA AN AR AA AN A Ak hkkhddhkhhkkihi
*

mE wE W wE we
% % % %

CP/M to host disk constants ¥
*
;******tt*******************************w*#***********
blksiz equ 2048 ;CP/M allocation size
hstsiz equ 512 ;host disk sector size
hstspt equ 20 ;host disk sectors/trk
hstblk equ hstsiz/128 ;CP/M sects/host buff
cpmspt equ hstblk * hstspt ;CP/M sectors/track
secmsk equ hstblk-1 i sector mask
smask hstblk jcompute sector mask
secshf equ @x ;log2 (hstblk)
;***************************************t*************
.k *
js BDOS constants on entry to write "
. K *
;***
wra}l equ @ ;write to allocated
wrdir equ 1 ;write to directory
wrual equ 2 ;write to unallocated

]
;***

;* *
The BDOS entry points given below show the *
p¥ code which is relevant to deblocking only, *
« K *

'
s KA AR AR A AR A A AR AR A AN AR ARRAR AR AR A kAR kA ko kk

r
-
r

66

54: ; DISKDEF macro, or hand coded tables go here
55: dpbase equ $:disk param block base
56: ; i

57: boot:

58: wboot:

59: senter here on system boot to initialize
60: Xra a ;8 to accumulator
61: sta hstact shost buffer inactive
62: sta unacnt ;clear unalloc count
63: ret

64: ;

65: seldsk:

66: ;select disk

67: mov a,c ;selected disk number
68: sta sekdsk ;seek disk number
69: mov 1,a ;disk number to HL
70: mvi h,8

71: rept 4 ;multiply by 16

72: dad h

73: endm

74: 1xi d,dpbase sbase of parm block
ha dad d ;hl=_dpb(curdsk)
76: ret

Tie @

78: settrk:

793 ;set track given by registers BC

80: mov h,b

81: mov 1.

82: shld sektrk strack to seek

83: ret

84: ;

85: setsec:

86: ;set sector given by register c

87: mov a,c

88: sta seksec ;sector to seek

89: ret

98: ;

91: setdma:

92: ;jset dma address given by BC

93: mov h,b

94: mov l,c

95: shld dmaadr

96: ret

97z :

98: sectran:

99: ;translate sector number BC

100: mov h,b

101: mov 1;c

102: ret

183: :

67

164:
165:
106:
107:
108:
189:
110
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
1222
123
124:
125:
126:
1.2
128:
129:
136:
131
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143;
144:
145:
146:
147:
148:
149;
158:
151:¢
152:
I153:s
154:
155:
156:
157:
158:

:***

I* *
I

g * The READ entry point takes the place of *
s % the previous BIOS defintion for READ, *
.* *
;**t********

read:
;read the selected CP/M sector

mvi a,l

sta readop ;read operation

sta rsflag ;must read data

mvi a,wrual

sta wrtype ;treat as unalloc

jmp rwoper ;to perform the read
;**************t*********t*************tt*************
o The WRITE entry point takes the place of =
E the previous BIOS defintion for WRITE, *
oK *
;***

write:

swrite the selected CP/M sector
Xra a ;0 to accumulator
sta readop ;not a read operation
mov a,c ;write type in c
sta wrtype
cpi wrual swrite unallocated?
jnz chkuna ;check for unalloc
[
3 write to unallocated, set parameters
nvi a,blksiz/128 snext unalloc recs
sta unacnt
lda sekdsk ;disk to seek
sta unadsk sunadsk = sekdsk
1hld sektrk
shld unatrk sunatrk = sectrk
lda seksec
sta unasec ;unasec = seksec
r
chkuna:
;check for write to unallocated sector
lda unacnt ;any unalloc remain?
ora a
jz alloc ;skip if not
H more unallocated records remain
dcr a ;unacnt = unacnt-=1
sta unacnt
lda sekdsk ;same disk?
1xi h,unadsk
cmp m ;sekdsk = unadsk?
jnz alloc ;skip if not
. disks are the same

68

159:
160:
161:
162:
163:
l64:
165:
166:
167:
168:
169:
176
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
k92
193:
194:
195
196:
197:
198:
199:
200:
201:
202
203:
204:
205:
206:
207:
208:
209:
2106:
211:
212:
213

1xi h,unatrk

call sektrkcmp ;sektrk = unatrk?
jnz alloc ;skip if not

3 tracks are the same
lda seksec ; same sector?
1xi h,unasec
cmp m ;seksec = unasec?
jnz alloc ;skip if not

-~ e

match, move to next sector for future ref

inr m sunasec = unasec+l
mov a,m send of track?

cpi cpmspt ;count CP/M sectors
jc noovf ;skip if no overflow

- wa

overflow to next track

mvi m,0 ;unasec = @

1hld unatrk

inx h

shld unatrk ;unatrk = unatrk+1l
;
noovf:

smatch found, mark as unnecessary read

Xra a :@ to accumulator

sta rsflag ;rsflag = @

jmp rwoper ;to perform the write
H
alloc:

;not an unallocated record, requires pre-read

Xra a s1¥ to accum

sta unacnt ;unacnt = @

inr a :1 to accum

sta rsflag ;rsflag = 1
;**************************‘***************************
g *
R Common code for READ and WRITE follows *
« %k *
;***
rwoper:

;enter here to perform the read/write

Xra a :Z2ero to accum

sta erflag ;no errors (yet)

lda seksec ;jcompute host sector

rept secshf

ora a jcarry = 0

rar ;shift right

endm

sta sekhst shost sector to seek

active host sector?

- me

Ixl h,hstact ;host active flag
mov a,m
mvi m,1l ;always becomes 1

69

214:
215:
216:
217:
218:
219:
220:
221:
222
223:
224:
225:
226:
2210s
228:
229:
230
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252;
253:
254:
255;
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:

ora a ;was it already?
jz filhst ;£i1ll host if not
: host buffer active, same as seek buffer?
lda sekdsk
1xi h,hstdsk ;same disk?
cmp m ;sekdsk = hstdsk?
jnz nomatch
: same disk, same track?
1xi h,hsttrk
call sektrkcmp ;sektrk = hsttrk?
jnz nomatch
: same disk, same track, same buffer?
1lda sekhst
1xi h,hstsec :sekhst = hstsec?
cmp m
jz match ;skip if match
nomatch:
;proper disk, but not correct sector
lda hstwrt shost written?
ora a
cnz writehst ;clear host buff
filhst:
;may have to fill the host buffer
lda sekdsk
sta hstdsk
1hld sektrk
shld hsttrk
lda sekhst
sta hstsec
lda rsflag ;need to read?
ora a
cnz readhst ;ves, if 1
Xxra a ;8 to accum
sta hstwrt ;no pending write
r
match:
;copy data to or from buffer
lda seksec ;mask buffer number
ani secmsk ;least signif bits
mov 1l,a ;ready to shift
mvi h,8: ;double count
rept 7 ;shift left 7
dad h
endm
H hl has relative host buffer address
1xi d,hstbuf
dad d ;hl = host address
xchg ;now in DE
1hld dmaadr ;get/put CP/M data
mvi c,128 :length of move

70

269:
270
271
2723
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
362:
303:
304:
305:
306:
307:
308:
369:
310:
311z
312:
313:
314:
315:
316:
317:
318:
319:
320:

lda readop swhich way?

ora a

jnz rwmove ;skip if read
H write operation, mark and switch direction

mvi a,l

sta hstwrt shstwrt = 1

xchg ;source/dest swap
rwmove :

;C initially 128, DE is source, HL is dest

ldax d ;source character

inx d

mov m,a ;to dest

inx h

dcr ¢ ;loop 128 times

inz rwmove
: data has been moved to/from host buffer

lda wrtype ;write type

cpi wrdir ;to directory?

lda erflag ;in case of errors

rnz ;no further processing
r
3 clear host buffer for directory write

ora a ;errors?

rnz :skip if so

Xra a ;0 to accum

sta hstwrt sbuffer written

call writehst

lda erflag

ret
;'k**********1\'***************************************'k*
. K x
;¥ Utility subroutine for lé6-bit compare *
. % *
;*t******************t***************************t****
sektrkcmp:

;HL = ,unatrk or ,hsttrk, compare with sektrk

xchg

1xi h,sektrk

ldax d ;low byte compare

cmp m ;same?

rnz ;return if not
: low bytes equal, test high 1s

inx d

inx h

ldax d

cmp m :sets flags

ret
H

i)

322
322:
323:
324:
325:
326:
327:
328:
329;
330:
331:
332:
333:
334:
335:
336:
337:
338:
3393
340:
341:
342:
343:
344;
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:

ek AkhkhkhkhAkhhkhkAhRhkhhhhkhkhAhhhkhkhk ko kb hhhhkhhhkhkhhhhkhk
]

. K *
i WRITEHST performs the physical write to *
5. % the host disk, READHST reads the physical »
7 * disk. *
« % *
A *

s kKKK KKKKkAkRKkhhkhkKkhkkhkhkhkhhkkhhhkhhkhhhhhhhkhkhkhkhkhkhkhkhhkkhkhkhkkixk
’

writehst:
;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. write "hstsiz" bytes
;from hstbuf and return error flag in erflag,
;return erflag non-zero if error
ret

-
r

readhst:
;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. read “"hstsiz" bytes
;into hstbuf and return error flag in erflag,
ret

I

KAEKKKRAAKRARAKNAKR A AR AR A AR AR AR R AR A AR R A AR AR Ak Ak Ak A Ak khkhkd ik
*

Unitialized RAM data areas *
*

LB SRR RS SRS E R R R RS E R R R NSRS R RS S EE]

- WmE WE W me w™mE wy
* % * % %

sekdsk: ds 1 ;seek disk number
sektrk: ds 2 :seek track number
seksec: ds 1 :seek sector number

r

hstdsk: ds 1 s;host disk number
hsttrk: ds 2 shost track number
hstsec: ds I shost sector number
sekhst: ds 1 ;seek shr secshf
hstact: ds i ;host active flag
hstwrt: ds 1 ;host written flag
unacnt: ds 1 sunalloc rec cnt
unadsk: ds 1 ;last unalloc disk
unatrk: ds 2 ;last unalloc track
unasec: ds 1 ;last unalloc sector
erflag: ds 1 ;error reporting
rsflag: ds 1 ;read sector flag
readop: ds 1 ;1 if read operation
wrtype: ds 1 ;write operation type
dmaadr: ds 2 slast dma address
hstbuf: ds hstsiz ;host buffer

72

371: ;***
372: ;* *
373: 3% The ENDEF macro invocation goes here i
374: ;* =
375: ;t*******t**t***

376: end

73

595-2534-04

L
S5 A Y Sl

s

e

-
w1

o
Y
A5

o
.

L
S5 A Y Sl

s

e

-
w1

o
Y
A5

o
.

