Il DIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 INTERFACE GUIDE

Copyright (e) 1979

DIGITAL RESEARCH

Copyright (e) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronie, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

4

Il DIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979
DIGITAL RESEARCH

Copyright

Copyright (¢) 1979 by Digital Research. All rights reserved. No part of
this publication may be reproduced, transmitted, transcribed, stored in
a retrieval system, or franslated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or changes.

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

Introduetion « o & & =

L]

Ll

Operating System Call Conventions

A Sample File-to-File Copy Program

A Sample File Dump Utility .

A Sample Random Access Program

System Function Summary

29
34
37

46

1. INTRODUCTION.

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/0 facilities of the system.

CP/M is logically divided into four parts, called the Basic I/0
System (BIOS), the Basic Disk Operating System (BDOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS 1is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device 1I/0. Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled "CP/M Alteration Guide").
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a
distinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device, The TPA is an area of memory (i.e., the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed, The lower portion of memory
is reserved for system information and is detailed later sections.
Memory organization of the CP/M system in shown below:

high | |
memory | |
| FDOS (BDOS+BIOS) |

FBASE: | |
| I

I cCp I

CBASE: | |
I |

I |

I |

| TPA |

I |

TBASE: | |
I system parameters |

BOOT: | |

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
“CP/M Alteration Guide." All standard CP/M versions, however, assume
BOOT = @@0PH, which is the base of random access memory., The machine
code found at location BOOT performs a system "warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research,)

1

to return control to CP/M at the command level, Further, the standard
versions assume TBASE = BOOT+#10@H which is normally location @100H,.
The principal entry point to the FDOS is at location BOOT+00@5H
(normally @605H) where a jump to FBASE is found. The address field at
BOOT+@@@6H (normally @@06H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient programs are loaded into the TPA and egecuted as
follows. The operator communicates with the CCP by typing command
lines following each prompt. Each command 1line takes one of the
forms:

command
command filel
command filel file2

where "command" is either a built-in function such as DIR or TYPE, or
the name of a transient command or program, If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command. COM

If the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory, The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE.

If the command is followed by one or two file specifications,
the CCP prepares one or two file control block (FCB) names in the
system parameter area, These optional FCB's are in the form necessary
to access files through the FDOS, and are described in the next
section,

The transient program receives control from the CCP and begins
execution, perhaps using the I/0 facilities of the FDOS. The
transient program is "called” from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M, 1In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-1 is free,

The transient program may use the CP/M 1I/0 facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/0 system is accessed by passing a
"function number" and an "information address” to CP/M through the
FDOS entry point at BOOT+@@@5H, In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful, The function numbers and error indicators are
given in below.

(All Information Contained Herein is Proprietary to Digital Research,)

2

2. OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions listed below, however, are more simply accessed
through the I/0 macro library provided with the MAC macro assembler,
and 1listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Applications Guide."

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/0, and
disk file I/0. The simple device operations include:

Read a Console Character

Write a Console Character

Read a Seqguential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/0O Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Seguential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+@@@5H., 1In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = H upon return in all cases., Note that
the register passing conventions of CP/M agree with those of 1Intel's

PL/M systems programming language. The list of CP/M function numbers
is given below.

(All Information Contained Herein is Proprietary to Digital Research.)

3

System Reset 19 Delete File

1 Console Input 2@ Read Sequential

2 Console Qutput 21 Write Sequential

3 Reader Input 22 Make File

4 Punch Output 23 Rename File

5 List Output 24 Return Login Vector
6 Direct Console I/0 25 Return Current Disk

7 Get I/O Byte 26 Set DMA Address

8 Set I/O Byte 27 Get Addr(Alloc)

9 Print String 28 Write Protect Disk
13 Read Console Buffer 29 Get R/O Vector

1l Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random

16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record

1B Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location G@@PH), it
is sufficiently large to make CP/M system calls since the FDOS
switches to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = @@60H):

BDOS EQU 000 5H ; STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
'
ORG 916G0H ; BASE OF TPA
NEXTC: MVI C,CONIN ; READ NEXT CHARACTER
CALL BDOS ; RETURN CHARACTER IN <A>
CPI e ;END OF PROCESSING?
JNZ NEXTC ; LOOP IF NOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive, Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

4

which have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File

COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each
“line"” of the source file is followed by a carriage-return 1line-feed
sequence (ODH followed by @AH), Thus one 128 byte CP/M record could
contain several lines of source text, The end of an ASCII file is
denoted by a control-Z character (lAH) or a real end of file, returned
by the CP/M read operation. Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M 1is wused to terminate read
operations,

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from @ through 65535, thus
allowing a maximum of 8 megabytes per file, Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area, Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decomposition into extents is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent 1is automatically accessed in both sequential and random
access modes,

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+@@5CH (normally @@65CH) for simple file operations., The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/0 is provided by CP/M
at location BOOT+0P80H (normally @#@80H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of
33 bytes for sequential access and a series of 36 bytes in the case
that the file 1is accessed randomly, The default file control block
normally located at @05CH can be used for random access files, since
the three bytes starting at BOOT+@@7DH are available for this purpose,
The FCB format is shown with the following fields:

(All Information Contained Herein is Proprietary to Digital Research,)
5

g9 91 02 ... 08 99 19 11 12 13 14 15 16 ... 31 32 33 34 35
where

dr drive code (@ - 16)
@ => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

LI

16=> auto disk select drive P.

£l...L8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl', t2', and t3' denote the
bit of these positions,

tl' = 1 => Read/Only file,
t2' = 1 => 8YS file, no DIR list
ex contains the current extent number,

normally set to @8 by the user, but
in range @ - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from @ - 128

d@...dn filled-in by CP/M, reserved for
system use

cr current record to read or write in

a sequential file operation, normally
set to zero by user

r@,rl,r2 optional random record number in the
range #-65535, with overflow to r2,
rd,rl constitute a 16-bit value with
low byte r#, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it is the
programmer‘'s responsibility to £ill the lower sixteen bytes of the FCB
and initialize the "cr" field. Normally, bytes 1 through 11 are set

to the ASCII character values for the file name and file type, while
all other fields are zero.

(All Information Contained Herein is Proprietary to Digital Research.)

6

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of the FCB 1is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command) .,

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the 1line following the
transient name, denoted by “filel" and "file2" in the prototype
command line described above, with unspecified fields set to ASCII
blanks, The first FCB is constructed at location BOOT+@@5CH, and can
be used as-is for subsequent file operations, The second FCB occupies
the d¥ ... dn portion of the first FCB, and must be moved to another
area of memory before use, If, for example, the operator types

PROGNAME B:X, 20T Y,ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+@M5CH is initialized to drive code 2, file name "X" and file type
“Z0T". The second drive code takes the default value @, which is
placed at BOOT+0@6CH, with the file name "Y" placed into location
BOOT+@@6DH and file type "ZAP" located 8 bytes later at BOOT+8075H.
All remaining fields through "cr" are set to zero, Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOCT+@0@5CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+0@5DH and BOOT+0@6DH contain blanks., In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions,

As an added convenience, the default buffer area at location
BOOT+P@8PH is initialized to the command 1line tail typed by the
operator following the program name. The first position contains the
number of characters, with the characters themselves following the
character count., Given the above command line, the area beginning at
BOOT+@68PH is initialized as follows:

BOOT+0080H:

+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14
l 4 L] " L3 B " (1] : L1} " x L] " " L1} L1} Z L 1] IOO“ " T " n " L) Y L[] 1 1] o " " Z [1] " A L1} " P (1]

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is

thg responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed,

The individual functions are described in detail in the pages
which follow.

(A1l Information Contained Herein is Proprietary to Digital Research.)
7

Kk hkhkhkkhhAxARA R AR A A ARk kb kb khhhhkhik

* *
* FUNCTION @#: System Reset :
*

kXX hhkhkhkhkrkhkAhkdhkhkhkhkA b khkhkhhhkhhkidkkkhikk
* Entry Parameters: *
* Register C: @0H %

HhAEAA AR AR AA AR AR AR A A A A A AR A A A kA Ak Ak Ak dok

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT.

KAk A AR ARk kAR AR A A AR Rk A Ak Ak Ak Ak hkhkkhhh k&

* *
* FUNCTION 1: CONSOLE INPUT ¥
* *
hkkAhhhhdkhkdhhhhhhkhkhhhkhhkhh kb koo hkhkhkk ik
* Entry Parameters: *
* Register C: 61H *
* *
* Returned Value: *
* Register A: ASCII Character *
% % ok vk %k v ke ok ok ok 3 ok ok ok ok ok ok ok ok ok ok d vk ke ok ok ok ok ok ok ok b ok ok ok ok e ok

The console input function reads the next console character to
register A, Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console. Tab characters
(ctl-I) are expanded in columns of eight characters, A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P),
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

Hhhkkhhkhkdkhhhkhd ko hkkkkkhkdkhk ko k k& ok k ke k

* *
* FUNCTION 2: CONSOLE OUTPUT *
* *
de g ok ok ok ok ok ok Rk ok ok ok ok kR ke ke ke ke ok e ok ok ok ok ek Rk o ok ok ok
* Entry Parameters: "
L Register C: @2H i
x Register E: ASCII Character *
* *

khkhkhhkhkhhkkhhhkhkhkhh kAR kh Ak Ak Rk hkkkkk

The ASCII character from register E is sent to the console

device, Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

8

% de ke od ok Kk ok ook ok ok ok ok ok ok A ko ok o ok o ok e ok o ok o ok o o ok ok e ok

* *
* FUNCTION 3: READER INPUT L)
* *
khkhkkhkhkhkhhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkkhhhhrhhkkkhkhhk
* Entry Parameters: 4
* Register C: @3H %
* *
* Returned Value: *
* Register A: ASCII Character *
% de g % Kk ok vk e ok ok ke v e ok ok e v ok ok ok ke K ok ok ke kb ok ok ke ke ok ok ok

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"), Control does not return until the character has
been read.

hhkkhkkkkhkhhkhhhkhhkhkhhhhhhhhhhhhhkhhhhkhkhkkxk

* *
* FUNCTION 4: PUNCH OUTPUT *
* *
Khkkdkhkhhhhkhkhhkhhhhhhhhhrhdhhhhkhhhkhhkdhdhkhih
* Entry Parameters: A
x Register C: ©4H *
- Register E: ASCII Character *
* *

LE R RS A S S SR AR SRR R R R R R R R RS

The Punch Output function sends the character from register E to
the logical punch device,

KhRkkhkhkhhkhhhhhhhhhhhhhhhhkhhhhhhhkhkrkkhk ki

* *
* FUNCTION 5: LIST OUTPUT *
* *
LR RS RS R SRS 22 SRR SRR 2SR R R R R R
* Entry Parameters: %
x Register C: @5H ¥
¥ Register E: ASCII Character *
* *

Khkhkhhkhkhkhhkhhkhhhhkhhhhhkhhkhhkhhhhhkhhkkhhhhhhk

The List Output function sends the ASCII character in register E
to the logical listing device,

(All Information Contained Herein is Proprietary to Digital Research.)

9

Ahhkdhhhkkdkhhkhhhhhhdbhdhhhihhkdhkhkdhhkhkhkkhhk

* *
* FUNCTION 6: DIRECT CONSOLE I/O :
*
Ahkkkkhkhkhkhkhkhkhkhkhrhkrhhhhhhkhkhkhhhkhkhhhkhhkhkhhhkk
* Entry Parameters: i
* Register C: @06H %
* Register E: @FFH (input) or *
* char (output) ¥
* *
* Returned Value: *
* Register A: char or status *
(no value) *
LERE S LS R R R R RS E SRS R SRR R RS SRR L

Direct console I/0 is supported under CP/M for those specialized
applications where unadorned console input and output is required,
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-P), Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to wuse direct
I/0 under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upoq entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character, If the input value is FF, then function 6 returns A = 00

if no character is ready, otherwise A contains the next console input
character,

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console,

(A1l Information Contained Herein is Proprietary to Digital Research.)

18

khkhkhkkhkhkhkhkhkhhhkkhkhkhhkhkhkhhkhkhhhrrrhkhhhhkhhhik

* *
* FUNCTION 7: GET I/O BYTE *
* *
% d % K % Kk de K g ok o ok ok ok ok ok ok ok ok ok kR ok K ok ok ok ok ok 3k 3k ok ok ok ok ok ke ke ok
* Entry Parameters: *
- Register C: @7H *
* *
* Returned Value: "
x Register A: 1I/0 Byte Value *
AKhkKAKRKKNA R Ak hhkhkhkrAhhhhhkhkhhkhhhkhkhkhkhhkhhkkkhhk

The Get I/O Byte function returns the current value of IOBYTE in
register A, See the "CP/M Alteration Guide" for IOBYTE definition,

Ahkk A kAKX hh Ak hkhkhkkhhhhkhkhhkhhkrkkhdkkhhkkkk

* *
* FUNCTION 8: SET I/0 BYTE %
* *
% % g ok vk gk ok ok ok % de de de de v sk vk sk ok e ek k% e ke ek vk ok ok ok ke ok ok ke ok
* Entry Parameters: "
* Register C: @8H ®
* Register E: I/O Byte Value *
* *

KRR KRR R AR R AR KRN AR AR R A AR AR R AR AR IR R AN kR h*

The Set I/0 Byte function changes the system IOBYTE value to
that given in register E.

% % %k vk ok %k gk ok %k ok ke vk kb ok %k ok vk ok s ok ok e ok ok ke ok ok e ok ok ok ok ok ok ke ke ok %

* *
* PFUNCTION 9: PRINT STRING *
* *
khkhkRkhkhkhkhkhkhkhkhkhkhkhhhhhhkhkhkhkhkhhkhrhhkhhhhkhhkhkkkk
* Entry Parameters: *
* Register C: ©09H *
x Registers DE: String Address *
* *

% K Kk % ododkodeod v sk vk sk sk dk do e dode do dodk B g dr ok ok ok ok ok % de do e g ok ok ok ok ok
The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a “$§"

is encountered in the string., Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo,

(All Information Contained Herein is Proprietary to Digital Research.)

11

KAKKKAA A AR R AR AR A R AR A I A AR A A A A Ak ko k%

- *
* FUNCTION 16: READ CONSOLE BUFFER *
* *
KA R R KRR AR A AR KRR R AR AR A ARKRRAR R A AR R AR AR kR
* Entry Parameters: =

Register C: 0OAH
Registers DE: Buffer Address

*
*
*
* Returned Value:
*
*

Consocle Characters in Buffer
LR EE S SRS R R R SRR R R R R R RS L

*
*
*
*
*
*
The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated

when either the input buffer overflows. The Read Buffer takes the
form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 i W @ +n

o ———— i —————— —————— T ———— T ———————

where "mx" is the maximum number of characters which the buffer will
hold (1 to 255), "nc" is the number of characters read (set by FDOS
upon return), followed by the characters read from the console., if nc
< mx, then uninitialized positions follow the last character, denoted
by "?2" in the above figure, A number of control functions are
recognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line

ctl-H backspaces one character position

ctl=-J (line feed) terminates input line

ctl-M (return) terminates input line

ctl-R retypes the current line after new line
ctl-U removes currnt line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to

the extreme leﬁt margin). This convention makes operator data input
and line correction more legible,

(All Information Contained Herein is Proprietary to Digital Research.)

12

Ahkhhkhkhhhkhhkhkhh bbbk hhhhk bbbk khid

* *
* FUNCTION l1ll: GET CONSOLE STATUS *
* L]
% %o de de ok e e do g v de g v v v o e e e e e vl e ok e e o ok e vk ok e e o ok ke ok ok ok
* Entry Parameters: =
* Register C: ©BH *
* *
* Returned Value: »
* Register A: Console Status *
AAKKARAAA A A AA A A A A A AR A A A A A AR A A A Ak h ki

The Console Status function checks to see if a character has
been typed at the console. If a character is ready, the value @FFH is
returned in register A, Otherwise a @0H value is returned,

Ahkhkhkdkhkhkhkhhhhhhhhhhhhhrbhhhhhdhkhhhdkikhkkhi

* *
* FUNCTION 12: RETURN VERSION NUMBER *
* *
khkkhhkhkhhkhkhkhhhhkhkhhkhkhhhkhhhhbhhhhhhhhdhhkhkhin
* Entry Parameters: *
* Register C: OCH *
* *
* Returned Value: ¥
X Registers HL: Version Number *
khkkdkdhkhkdhhdhhkdhhhkhkhhbhkhhkhkhhhh bbbk hhdhhkhikik
Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H = 00

designating the CP/M release (H = @01 for MP/M), and L = @6 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F, Using function 12, for example, vyou can
write application programs which provide both seguential and random
access functions, with random access disabled when operating under
early releases of CP/M,

(All Information Contained Herein is Proprietary to Digital Research.)

13

khkhkhkhhkhkhhhbhhhhhhkkbhkhkhkhdhdkdhhhkkkhkhhkhk

* *
* FUNCTION 13: RESET DISK SYSTEM X
:****************t********************:
* Entry Parameters: %
» Register C: ODH %
* *

% % de vk ok o A ok ek ok ok ok ok ok e ok vk ok ok e ok ok v ok gk ok ok ok ok vk e ok ok ok o

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A 1is selected, and the
default DMA address 1is reset to BOOT+0@8¢H., This function can be
used, for example, by an application program which requires a disk
change without a system reboot.

kA XA AR XA AARIRA A A IR A AR A AR A AR ARk k&

* *
* FUNCTION 14: SELECT DISK *
* *
AKEEEAKKRAAR A A AAAAAEAAA A A AR AN A A A A A A A A A A kA A A *®
* Entry Parameters: .
* Register C: OEH *
* Register E: Selected Disk *
* *

Khkkrk kA hhkhh kA bk kAR Ahk Ak hhhdhdhk

The Select Disk function designates the disk drive named 1in
register E as the default disk for subsequent file operations, with E
= @ for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
"on-line" status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28), FCB's which specify drive code =zero (dr = 00H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P,

(All Information Contained Herein is Proprietary to Digital Research.)
14

R T R R I R R R R

* *
* FUNCTION 15: OPEN FILE *
* *x
Khhkhkkkk kA ARk hk Ak Ak hkhhkrk kA hhhhkhhhkkk
* Entry Parameters: *
a Register C: 0OFH "
* Reglsters DE: FCB Address *
* *
* Returned Value: ¥
* Register A: Directory Code *
khhkkkhhhhhhkhhhhhhhhhhkhhkhkhkhhkhhhhhhkhhkx

The Open File operation is wused to activate a file which
currently exists in the disk directory for the currently active user
number, The FDOS scans the referenced disk directory for a match 1in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII qguestion mark (3FH) matches any
directory character in any of these positions. Normally, no guestion
marks are included and, further, bytes "ex" and "s2" of the FCB are
zero.

If a directory element 1is matched, the relevant directory
information 1is «copied into bytes d@ through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a “"directory code" with the value # through 3 if the open was
successful, or @FFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
activated. Note that the current record ("cr") must be zeroed by the

program if the file is to be accessed seguentially from the first
record,

(All Information Contained Herein is Proprietary to Digital Research.)

15

AR AAAARR AR AR R AR A A A A ARk R A Ak hkhkkk

* *
* FUNCTION 16: CLOSE FILE :
*

Ahhkhhkh kA hAhhAArARAhhhhhkhAhhkhhkhkhhdhdhik
* Entry Parameters:

Register C: 10H
Registers DE: FCB Address

*

Returned Value:
Register A: Directory Code

*
*
*
*
*
J % e % ok ok ok ok e ok o ok 3k o ok e o vk e o ok o v e ok ok ke ok ok ke ke e ok ok ok

*
*
*
*
*
*

The Close File function performs the inverse of the open file
function, Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical
to the open function. The directory code returned for a successful
close operation is @8, 1, 2, or 3, while a @FFH (255 decimal) is
returned if the file name cannot be found in the directory, A file
need not be closed if only read operations have taken place, If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information.

(All Information Contained Herein is Proprietary to Digital Research.)

16

RSS2SR RS R R R R R R R RS EES S

* *
* FUNCTION 17: SEARCH FOR FIRST :
*

% Kk KK ok ok gk ok ok ok oKk ke otk otk ok gtk ke e o ok e ok ok ok ok ok ok e ok ok ok ke ke ke ok
* Entry Parameters: .

* Register C: 11H *
® Registers DE: FCB Address ¥
* *
* Returned Value: "
* *
* *

Register A: Directory Code
ARKA ARk hkhkhAkhkh Ak h kAT XA AAN KA AN KR Kk

Search First scans the directory for a match with the file given
by the FCB addressed by DE, The value 255 (hexadecimal FF) 1is
returned if the file is not found, otherwise 6, 1, 2, or 3 is returned
indicating the file is present. 1In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position,

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from “f1" through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
"dr" field contains an ASCII question mark, then the auto disk select
function 1is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number, This latter function 1is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark,
the "s2" byte is automatically zeroed.

AhkARAAhhAA Ak khhkhhhdhbhhkhhhhhbhhkhdhddhihkikik

* *
* FUNCTION 18: SEARCH FOR NEXT *
* *
AhkhkA XA AARARIAAAA A AR AR Ak A AR RA AR ARk hhk
* Entry Parameters: *
4 Register C: 12H x
* Returned Value: *
* Register A: Directory Code *
kkdkhkdbhhhhhhkhhhhkhkhkhrkhkhkhkhhkhbhhhkhhhhhhhhhhkk

The Search Next function 1is similar to the Search First
function, except that the directory scan continues from the last

matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(All Information Contained Herein is Proprietary to Digital Research.)

17

Akkhhkhkkhkkhhkhkhhrkhrhkkhhhkhrhkhhhkkhkx

* *
* FUNCTION 19: DELETE FILE *
* *
kA kAkhhhkhhkkkhkkhkh kA kA ARk kA dhhhhhhkhkhkk
* Entry Parameters: -

Register C: 138
Registers DE: FCB Address

Register A: Directory Code

*
*
*
*
*
KAKKKAAARAKAA A KA KR A A AR RN A A ARk kkk kA hh*k

*
*
*
* Returned Value:
*
%*

The Delete File function removes files which match the FCB
addressed by DE,. The filename and type may contain ambiguous
references (i.e., gquestion marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the referenced file or

files cannot be found, otherwise a value 1in the range # to 3 is
returned.

KRR A AARAAAAKRAAARARA N AR A AR AR AR A ARk K

* *
* FUNCTION 20: READ SEQUENTIAL *
*

IE SRS A SRR ST SRS SRR SRS R E SRR RS RS EREREESE S
* Entry Parameters: »
* Register C: 14H ¥
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
hhhkhhkdhhhkhkh kA AKX RFAAXARA KRR A Ak kA hkhhkkk

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address, the record is read from position "cr" of the
extent, and the "cr" field is automatically incremented to the next
record position, If the "cr" field overflows then the next logical
extent is automatically opened and the “cr" field is reset to zero in
preparation for the next read operation, The value @@H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research.)

18

de d % oo de ok Kk gk dv ok Kk e ok ok de o ek ok K ok ok A ok o v o ok ok ok ok o ok

* *
L FUNCTION 21: WRITE SEQUENTIAL :
*

LR R E R AR RIS RSLSEES RS RESERSSES S &R & 4
* Entry Parameters: »
* Register C: 15H *
& Registers DE: FCB Address *
* *
* Returned Value: -
% Register A: Directory Code *
khkhkkkhkhkdhhkdhdhodhdkokkddkkkkkkkkkkkdkkkdkkkkkkkkk

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position "cr" of
the file, and the "cr" field is automatically incremented to the next
record position, If the "cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next write operation, Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file, Register A = 0@H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

KhkkAhkhkhAhkhhhkhhhhhhh Ak hhhhkkhhAkkdhkdhkikk

* *
* FUNCTION 22: MAKE FILE o
* *

AhkAkhkkhkhkhkhkhkAhhhhhhkhhhh kb hhhkhhhkhkkkk ik

* Entry Parameters:
Register C: 16H
Registers DE: FCB Address

*

Register A: Directory Code
RS SRS RS E RS R R E R E R R E R R R R R R

* *
* *
* *
* Returned Value: *
* *
* *

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "“dr" code, or the default disk if "dr" is zero). The FDOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A = 0,
1, 2, or 3 if the operation was successful and @FFH (255 decimal) 1if
no more directory space 1is available, The make function has the
side-effect of activating the FCB and thus a subsequent open 1is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research,)

19

EEKRKRRKRAKRKRRNRARRAARA KRR ARRAARRAARA N AR R AR AN K

* *
* FUNCTION 23: RENAME FILE *
* *
IR e 2 R 2222222222222 2 2o & &
* Entry Parameters: =

Register C: 178
Registers DE: FCB Address

Register A: Directory Code

*
*
*
*
*
tE RS SRS R EREREEEEE S SR AL RS E SRR R RS SRR

&
*
*
* Returned Value:
*
*

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr" at position @ is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between # and 3 if the rename was successful, and

@FFH (255 decimal) if the first file name could not be found in the
directory scan,

LR R R SR S R R R RS FE RS E RS EES E

* *
* FUNCTION 24: RETURN LOGIN VECTOR *
* *
LRSS SRR R R RS ES RS E R E RS S
* Entry Parameters: *
* Register C: 18H *
* *
* Returned Value: i
X Registers HL: Login Vector w
de e vk ok ok de e e e ok A ok ke e sk e ok ok ok Ak ke ok o ok ok ok e ke ek ok e ok ke ok ok

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H <corresponds to the sixteenth drive,

labelled P. A "0" bit indicates that the drive is not on-line, while
a "1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero "dr" field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

20

AR ERAKRAKRARAKAA A A AR A A AR T A A Ak kA Xk hkhk

* *
* FUNCTION 25: RETURN CURRENT DISK *
* *

HAE A AR AARAA ARk Ak Ak kA A A AR ARk kAR XA AKX AR &K

* Entry Parameters:
Register C: 19H

*

Register A: Current Disk

* *
* *
* Returned Value: w
* *
AR A A AR AR AT AR AR AARNAA AR AR A A A A A A AR AR A%

Function 25 returns the currently selected default disk number

in register A, The disk numbers range from ¢ through 15 corresponding
to drives A through P,

X 222222222228 2222222 2R 2 a2 R R o o & 8 2 &

* *
* FUNCTION 26: SET DMA ADDRESS %
* *
dhkkkkhhkokdkkdhdkkkdokkkkhkokkkdkddkok ok ok kokdkkkkkkk
* Entry Parameters: ¥
* Register C: 1AH *
* Registers DE: DMA Address *
* *

RS SRR SRR RS RES R SRR SRR RS REEERE]

"DMA" is an acronym for Direct Memory Address, which 1is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem, Although many computer systems use non-DMA access (i.e.,
the data 1is transfered through programmed I/0 operations), the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the DMA address is
automatically set to BOOT+@#80H., The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset,

(All Information Contained Herein is Proprietary to Digital Research,)

21

Akhkhkhkhkkhkhkhkkkhkkhhkhkhkhkhhhhhhhhhkhhhhhhhkhhhk

* *
* FUNCTION 27: GET ADDR (ALLOC) *
* *
ARk AAAKKAX A AR AA AR AT AR ARk Ak h bk h k%
* Entry Parameters: *
* Register C: 1BH »
* *
* Returned Value: i
* Registers HL: ALLOC Address *
Khkkhkhhkhhhkhkhhkkrhkhkhhkhhhhrhhhhkhkrhhhhkkhhihk

An "allocation vector" is maintained in main memory for each
on-line disk drive, Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide,"

B RS EER S SRR RS E SRR R R R R R EEE]

* *
* FUNCTION 28: WRITE PROTECT DISK :
*

LR RS E S SRS R R R E RS R E SR E R E R RS E SRS LR R
* Entry Parameters: *
* Register Cs 1CH L
* *

kA dhhkhkhhhhhhhhhhkhhkhhkhkkhhkhkhhhkhhkhhhhkhk

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

(All Information Contained Herein is Proprietary to Digital Research.)

22

hhhkhkhhhhhkhkhhkhhkhAhkhkhhkhkrrdhkhhkhhdhhhhhkhkk

* *
* PFUNCTION 29: GET READ/ONLY VECTOR *
* *
khkhkkhkhkhhkhhhhhhhhhhhkhkhkhkhkhkhkhkhkhkkhhkhhdhhhhk
* Entry Parameters: *
* Register C: 1DH *
* *
* Returned Value: *
* Registers HL: R/O Vector Value*
KHEEKAKXAAAEAKRKEAKRKANKRKRAANARRRARKRKRAAR AR AR Ak A kk%k

Function 29 returns a bit wvector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

KhkkkdhhhkhkrhkhAkARA Ik ArAhkhhhhhhkhhhhhhhhkhk

* *
* FUNCTION 36: SET FILE ATTRIBUTES *
* *
% Kk ok vk dode ok ok vk vk vk ok vk de ook sk sk kA ke ke ke ok ke gk ok kb ke %k ok ok ok
* Entry Parameters: ¥
* Register C: 1EH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
AhkhkhAhkhkhhhkhkdkhkhkAdhrdhhhrhkhhhkhkhkkkhkkhhk

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and System attributes (tl' and t2') can be set or
reset, The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset,. Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators, Indicators fl' through f£f4' are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations,

Indicators f5' through f8' and t3' are reserved for future system
expansion,

(All Information Contained Herein is Proprietary to Digital Research.)

23

KKK RRR KK AR KRR AR A AR AR Rk kA k kR AR Rk k&
* s
* PFUNCTION 31: GET ADDR(DISK PARMS) *
“ *
KAk ARAKRIAKRRA AR KK KRR AR A KRR AR AR KK KRNk Kk ok

* Entry Parameters:
Register €: 1FH

Registers HL: DPB Address

*
*
*
*
*
LA SRR S SRS RS R RS R SRR R R R R R

*
*
* Returned Value:
*
*

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call, This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if reguired. Normally, application
programs will not require this facility.

EEERIEKKR AN R A A KRR AN AR KRR A AR AR AARA KRR R AR TN AR %
*

FUNCTION 32: SET/GET USER CODE *
*

*

*

*

ERAEAA AR LE AR AR AR AN AN AR AR A AR AR A A Aok dhkhk
* Entry Parameters:

® Register C: 208n

* Register E: @FFH (get) or
*

*

*

*

*

*

*

User Code (set)

Returned Value:
Register A: Current Code or

(no value)
Ahkkhdhkhkhkhhhkhhhhhkhhhhhhhkhkhkkhkhkhkihkkiiik

* F H F % % ¥ *

An application program can change or interrogate the currently
active user number by calling function 32. If register E = @FFH, then
the value of the current user number is returned in register A, where
the value is in the range @ to 31. 1If register E is not @FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

24

AAAKK KKK AR AA IR AR AR R A AR AR AR AN AR

* *
* FUNCTION 33: READ RANDOM :
*

KA R I AR AR AR AR AR AR AR AR AR AR AR AR TR AR ARk

* FEntry Parameters:
Register Ce: 21H
Registers DE: FCB Address

*

Returned Value:

Register A: Return Code

%
*
*
*
*
hhkhkhkhhkhhkhkkhhkhkh kA hkhkhhkhhkhhhhhkhkkhhkkhhkkkk

*
®
%
*
*
*

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r@ at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits 1is stored with least significant byte first (r#), middle
byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2

must be zero, however, since a non-zero value indicates overflow past
the end of file,

Thus, the r@,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from @ to
65535, providing access to any particular record of the 8 megabyte
file. 1In order to process a file using random access, the base extent
(extent @) must first be opened., Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and 1is wvisible in DIR reguests. The
selected record number 1is then stored into the random record field
(r@,rl), and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 08 indicating the operation was successful, In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the seguential read operation, the
record number 1is not advanced, Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and current

record values are automatically set, Thus, the file can be
sequentially_ read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last

randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation, You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a seguential I/0 operation,

Error codes returned in register A following a random read are
listed below,

(All Information Contained Herein is Proprietary to Digital Research.)

23

1 reading unwritten data

@2 (not returned in random mode)
@3 cannot close current extent

B4 seek to unwritten extent

@5 (not returned in read mode)

g6 seek past physical end of disk

Error code @1 and 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions, Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected., Error code 06 occurs whenever byte r2
is non-~zero under the current 2.0 release, Normally, non-zero return
codes can be treated as missing data, with 2zero return codes
indicating operation complete,

(All Information Contained Herein is Proprietary to Digital Research.)

26

KKK KKK KRR AR AR RARARR AR A RA AR AR A A Ak k kK

* *
* FUNCTION 34: WRITE RANDOM :
*

AhkhkhkhhhhkhkkhkhkhkkhdAhAAAkRA A A Ak hkhhhhhhhk

* Entry Parameters: *
Register C: 22H
Registers DE: FCB Address

Register A: Return Code

*
*
*
*
*
% de % % e dr ok ok ok K e Ao ok e ke o ok ok A ok o ok ok ok ok e ok o ke ok e ok ok ok ok

*®
*
*
* Returned Value:
*
*

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address., Further, if the disk extent or data block which 1is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues, As in the Read Random
operation, the random record number is not changed as a result of the
write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written, Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a seguential
write operation, Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in seqguential mode,

The error codes returned by a random write are identical to the
random read operation with the addition of error code @5, which

indicates that a new extent cannot be <c¢reated due to directory
overflow,

(All Information Contained Herein is Proprietary to Digital Research.)

27

I E S EEEEE SRR RN EERESEE R R SRR R R R R TR N]

* *
* FUNCTION 35: COMPUTE FILE SIZE :
*

AAKAKAKAhFAhkhkhkARrdhhdhhkhkhkhhbhkhkhhhhhkhkhkhkhk
* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *
khkkhkhhhkkkhkhkhkhkhkhkhkhkhkkhkhhkhkhkhkhhkhhkhkhkhhhhkhhhk

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r#, rl, and r2 are
present), The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is #1, then the file contains the
maximum record count 65536, Otherwise, bytes r@ and rl constitute a
l6-bit wvalue (r@ 1is the least significant byte, as before) which is
the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of

file, then performing a sequence of random writes starting at the
preset record address,

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates, 1f, fox
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the wvirtual size 1is
65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

28

KAAARN A AR A AR ARA R AN AR A AR AN A A A AR Ak ko h k&

* *
* FUNCTION 36: SET RANDOM RECORD :
*

LA RS E AR R RS IE ISR SR SR SRS SRR LT

* Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Random Record Field Set

*
*
*
*
*
*
I EEEREEEEESEEESRE S SRR R R RS SRR RS RS R

*
*
*
* Returned Value:
*
x

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or

written sequentially to a particular point, The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields., As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier,
The scheme is easily generalized when variable record 1lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write, A file is
sequentially accessed to a particular point in the file, function 36
is called which sets thé record number, and subsequent random read and
write operations continue from the selected point in the file,

(A1l Information Contained Herein is Proprietary to Digital Research.)

29

3. A SAMPLE FILE-TO-FILE COPY PROGRAM,

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY.ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a "HEX" file., The LOAD program is the used to produce a COPY,COM file
which executes directly under the CCP., The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at #06CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at B@5CH is
properly set-up by the CCP upon entry to the COPY program. That 1is,
the first name is placed into the default fcb, with the proper fields

zeroed, including the current record field at @07CH. The program
contlnues by opening the source file, deleting any exising destination
file, and then creating the destination file, If all this is

successful, the program loops at the label COPY until each record has

been read from the source file and placed into the destination file,
Upon completion of the data transfer, the destination file 1s <closed

and the program returns to the CCP command level by jumping to BOOT.

sample file-to-file copy program
at the ccp level, the command
copy a:x,y b:u.,v

copies the file named x.y from drive
a to a file named u.v on drive b,

B wa ME NS We ws WE W ws

bo0O = boot egu 000608h ; system reboot
0eBs5 = bdos equ 0 005h ; bdos entry point
@@5¢c = fcbl egu 8B5ch ; first file name
@d5¢c = sfcb equ fcbl ; source fcb
goe6c = fcb2 eqgu goe6ch ; second file name
080 = dbuff equ 0080h ; default buffer
0106 = tpa equ 9100h ; beginning of tpa
0o09 = printf equ 9 ; print buffer func#
goet = openf eqgu 15 ; open file func#
ge1e = closef equ 16 ; close file funcé
8013 = deletef equ 19 ; delete file func#
Agl4 = readf equ 20 : seguential read
pe15 = writef equ 21 ; sequential write
gple = makef equ 22 : make file func#
010 org tpa ; beginning of tpa
2100 311b@2 1xi sp,stack; local stack

r

? move second file name to dfcb
8103 feld mvi c,16 ; half an fcb

(A1l Information Contained Herein is Proprietary to Digital Research.)

30

0105 116¢c00 1xi d,fcb2 source of move

7108 21da@dl 1xi h,dfcb ; destination fcb
@010b la mfcb: ldax d : source fcb
@l0c 13 inx a ; ready next
g1eda 77 mov m,a ; dest fcb
@1l0e 23 inx h ; ready next
@10f @d dcr a ; count 1l6...0
0110 c20b@dl jnz mfcb : loop 16 times
: name has been moved, zero cr
113 af Xra a ; a = 00h
114 32fagl sta dfcbcr ; current rec = @

source and destination fcb's ready

- mE me

3117 115c00 lxl d,sfcb ; source file
Plla cd69dl call open ;s error if 255
911a 118701 1xi d,nofile; ready message
120 3c inr a : 255 becomes 0
121 cc6101 cz finis ; done if no file

- me

source file open, prep destination

124 1ldagdl 1xi d,dfcb ; destination

127 cd7301 call delete ; remove if present
@l2a 1ldagdl 1xi d,dfcb ; destination

124 cdgzol call make ; create the file

#1308 119601 1xi d,nodir ; ready message

133 3c inr a ; 255 becomes @

P134 ccel@l cz finis ; done if no dir space

source file open, dest file open
copy until end of file on source

() = =s = =

137 115c0@ copy: I ¥ d,sfcb ; source
@l3a cd7801 call read ; read next record
134 b7 ora a ; end of file?
Bpl3e c25141 jnz eofile ; skip write if so

H not end of file, write the record
141 11ldanl 1xi d,dfcb ; destination
144 cad7del call write ; write record
9147 11a961 1xi d,space ; ready message
Plda b7 ora a ; B0 if write ok
@14b c46101 cnz finis ; end if so
Pld4e c33701 jmp copy ; loop until eof

I

eofile: ; end of file, close destination
@151 11da@1l 1xi d,dfcb ; destination
3154 cdeell call close ; 255 if error
0157 21bb@1l 1xi h,wrprot; ready message
Pl5a 3¢ inr a : 255 becomes 06
915b cc6l01 cz finis : shouldn't happen

- W

copy operation complete, end

(All Information Contained Herein is Proprietary to Digital Research,)

31

@l5e llccHl 1xi d,normal; ready message

finis: : write message given by de, reboot

pl16l Ped9 mvi c,printf
163 cdo509 call bdos ; write message
166 c30000 jmp boot ; reboot system

system interface subroutines
(all return directly from bdos)

Q =~ we we

#0169 Dedf pen: mvi c,openf

0l6b c30500 jmp bdos

0l6e @eld close: mvi c,closef

0170 c30500 jmp bdos

0173 Pel3 delete: mvi c,deletef

0175 c30500 jmp bdos

0178 Peld read: mvi c,readf

Bl7a c30500 jmp bdos

017d pel5 write: mvi c,writef

B17f c30500 jmp bdos

0182 belb make: mvi c,makef

0184 c30500 jmp bdos
: console messages

0187 6e6f2d0fnofile: db ‘no source file$'

$196 6e6f289nodir: db 'no directory space$'

pla9 6f£7574fspace: db ‘out of data space$’

@1lbb 7772695wrprot: db ‘'write protected?s$’

Jlcc 636£7@00normal: db ‘copy complete$’
: data areas

g 1da dfcb: ds 33 : destination fcb

glfa = dfcbcr equ dfcb+32 ; current record
H

01fb ds 32 s 16 level stack
stack:

#d21b end

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references, This situation

could be detected by scanning the 32 byte default area starting at
location #@5CH for ASCII question marks., A check should also be made

to ensure that the file names have, in fact, been included (check

locations @@5DH and 0#06DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file

names are different., A speed improvement could be made by buffering
more data on each read operation, One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

the size of memory by fetching FBASE from location #806H and use the
entire remaining portion of memory for a data buffer. 1In this case,
the programmer simply resets the DMA address to the next successive

128 byte area before each read, Upon writing to the destination file,
the MA address 1is reset to the beginning of the buffer and

incremented by 128 bytes to the end as each record is transferred to
the destination file.

(A1l Information Contained Herein is Proprietary to Digital Research.)

33

4. A SAMPLE FILE DUMP UTILITY,

The file dump program shown below is slightly more complex than
the simple copy program given in the previous section., The dump
program reads an input file, specified in the CCP command 1line, and
displays the content of each record in hexadecimal format at the
console, Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP, Thus, the dump program does not
perform and warm start at the end of processing.

DUMP program reads input file and displays hex data

~e =8

0100 org 1806h
gags = bdos equ 2995h ;dos entry point
6o0l = cons equ 1 jread console
0802 = typef eqgu 2 ;type function
PBB9 = printf equ 9 ;buffer print entry
pOoGb = brk £ equ 11 ;break key function (true if char
pOOE = openf equ 15 ;file open
@14 = readf equ 20 ;jread function
r
B@5c = fcb equ 5ch ;file control block address
0p8Y = buff equ 80h ;input disk buffer address
; non graphic characters
gea = cr eqgu @dh jcarriage return
poga = 1f equ Pah ;line feed
!
: file control block definitions
B05c = fcbdn egu fcb+@ ;disk name
gos5d = fcbfn eqgu fcbh+l ;file name
P65 = fcbhft equ fcb+9 ;disk file type (3 characters)
0p68 = fcbrl equ fcb+l2 ;file's current reel number
goe6b = fcbrc egu fcb+l5 ;file's record count (8 to 128)
B@7c = fcber equ fcb+32 ;current (next) record number (@
pg7d = fcbln equ fcb+33 ;fcb length
r
7 Set up stack
P160 210000 1xi h,®
#1063 39 dad sp
: entry stack pointer in hl from the ccp
P1l04 221502 shld oldsp
: set sp to local stack area (restored at finis)
0167 315702 1xi sp,stktop
; read and print successive buffers
@1lda cdclgdl call setup ;set up input file
#10d feff cpi 255 ;255 if file not present
P10f c21b@l jnz openok ;skip if open is ok
r
: file not there, give error message and return
112 11£391 1xi d,opnmsg
9115 cd9chl call err
#118 c35101 jmp finis ;to return

-

(All Information Contained Herein is Proprietary to Digital Research.)

34

openok: ;open operation ok, set buffer index to end

@1llb 3e80 mvi a,86h
pl11d 321302 sta ibp ;jset buffer pointer to 86h
: hl contains next address to print
8120 210000 1xi h,0 ;start with 06000
gloop:
$123 e5 push h ;save line position
0124 cdaz20l call gnb
0127 el pop h ;jrecall line position
p128 da5101 e finis ;carry set by gnb if end file
@912b 47 mov b,a
: print hex values
2 check for line fold
pl2c 7d mov a,l
$12d e60f ani Bfh :check low 4 bits
012f c24401 jnz nonum
: print line number
0132 cd72081 call crlf
1 check for break key
P135 cd5901 call break
H accum 1lsb = 1 if character ready
138 Of rec sinto carry
#2139 da5101 e finis ;don't print any more
B13c 7c mov a,h
$13d cd8fol call phex
81406 7d mov a,l
141 cdsf@l call phex
nonum:
0144 23 inx h ;to next line number
9145 3e20 mvi a,* "
P147 cde501 call pchar
@l4a 78 mov a,b
014b cd8fol call phex
Plde c32301 jmp gloop
Einis:

end of dqump, return to ccp
(note that a jmp to 000Ph reboots)

- we

8151 cd7201 call crlt
0154 2al502 lhld oldsp
8157 £9 sphl
i stack pointer contains ccp's stack location
#158 c9 ret :to the ccp
subroutines

O~ e = =

reak: ;check break key (actually any key will do)

P159 e5d5c¢cH push h! push d! push b; enviromment saved
B15c Qedb mvi c,brkf

Pl5e cdd500 call bdos

Plel cldlel pop b! pop d! pop h; enviromment restored

(All Information Contained Herein is Proprietary to Digital Research.)

35

#l64 c9 ret

pchar: ;print a character

B165 e5d5cH push h! push d! push b; saved
0168 Ped?2 mvi c,typef
@lea 5f mov e,a
@16b cdos500 call bdos
glée cldlel pop b! pop d! pop h; restored
@171 c9 ret
crlfes
9172 3edd mvi a,cr
174 cdeb501 call pchar
8177 3eba mvi a,lf
0179 cde501 call pchar
@1l7¢c c9 ret
pnib: ;print nibble in reg a
0174 e6bf ani @fh ;low 4 bits
B17f fela cpi 10
P18l 428901 jnc pld
: less than or equal to 9
$184 c630 adi v 9"
9186 c38bdl jmp prn
: greater or equal to 1@
9189 c637 pld: adi ‘a' - 10
#18b cd6501 prn: call pchar
@18e c9 ret
phex: ;print hex char in reg a
P18f f5 push psw
0190 O£ rrc
p191 of rrc
9192 0f o of o
#1933 0f PEC
0194 cd7401 call pnib ;print nibble
0197 f1 pop psw
198 cd7d401 call pnib
#19b c9 ret
err: ;print error message
: d,e addresses message ending with "$"
019c Bed9 mvi c,printf ;print buffer function
#1%e cdps508 call bdos
Plal c9 ret
gnb: ;get next byte
flaZ2 3al302 lda ibp
@la5 fe80 cpi 80h
Bla7 c2b301 jnz g
; read another buffer

(All Information Contained Herein is Proprietary to Digital Research,)

36

#laa cdcedl call diskr

@lad b7 ora a :zero value if read ok
flae cab3fl jz gb ;for another byte
i end of data, return with carry set for eof
g1bl 37 stc
@1b2 c9 ret
g : ;jread the byte at buff+reg a
p1b3 5f mov e,a :1s byte of buffer index
@1b4 1600 mvi 4a,0 ;double precision index to de
@1b6 3c inr a ; index=index+1
@1b7 321302 sta ibp sback to memory

pointer is incremented
save the current file address

-8 ms

#lba 218000 1xi h,buff
@1lbd 19 dad d
: absolute character address is in hl
flbe 7e mov a,m
: byte is in the accumulator
@1bf b7 ora a ;reset carry bit
P1lc@® c9 ret
setup: ;set up file
: open the file for input
@lcl af Xra a ;zero to accum
Blc2 327cho sta fcber ;clear current record
r
Plc5 115c@@ 1xi d,fcb
@1lcB deldf mvi c,openf
Plca cdo500 call bdos
: 255 in accum if open error
@lcd c9 ret
I
diskr: ;read disk file record
Plce e5d5c5 push h! push d! push b
91dl 115c@0 1xi d,fcb
91d4 Oeld mvi c,readf
P1d6 cdes500 call bdos
§1d9 cldlel pop b! pop d! pop h
gldc c9 ret
3 fixed message area
#1ldd 46494chdsignon: db 'file dump version 2.08$'
01f3 #dBadePopnmsg: db cr,1f,'no input file present on disks$’
: variable area
9213 ibp: ds 2 ;input buffer pointer
4215 oldsp: ds 2 ;entry sp value from ccp
g stack area
9217 ds 64 ;reserve 32 level stack
stktop:
r
0257 end

(All Information Contained Herein is Proprietary to Digital Research,)

37

5. A SAMPLE RANDOM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,

assembled, and placed into a file labelled RANDOM.COM, the CCP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file 1is created before the

prompt is given, Each prompt takes the form
next command?

and is followed by operator input, terminated by a carriage return.,
The input commands take the form

nw nR Q

where n is an integer value in the range # to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and guit processing, respectively. If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return, RANDOM then writes the character string into the
X.DAT file at record n, If the R command is issued, RANDOM reads
record number n and displays the string value at the console., If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. The
default file control block at @@5CH and the default buffer at 0980H
are used in all disk operations. The utility subroutines then follow,
which contain the principal input 1line processor, called “readc."
This particular program shows the elements of random access

processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

38

F***

- % *
;* sample random access program for cp/m 2.0 *
% *
;***************************‘A‘***********************

8100 org 100h ibase of tpa

0oBg = reboot equ 0000h ;system reboot

gRes = bdos equ g0@5h :bdos entry point

0ol = éOninp egu x ;console input function

peg2 = conout egu 2 ;jconsole output function

@eB9 = pstring equ 9 ;print string until '$°

gfPa = rstring equ 19 ;read console buffer

ppdc = version equ 12 ;jreturn version number

0aBE = openf eqgu 15 ;file open function

o106 = closef equ 16 ;close function

g0le = make £ equ 22 ;make file function

@21 = readr egu 33 ;read random

gR22 = writer equ 34 ;write random

@05¢c = fcb egu @g@5ch sdefault file control block

pe74 = ranrec equ fcb+33 ;random record position

go7f = ranovf equ fcb+35 ;high order (overflow) byte

2080 = buff egu g@80h ;buffer address
i

pged = ar equ gdh ;carriage return

gopa = 1E eqgu @ah ;line feed
;*******************1\'****1\'**************************
. *
;* load SP, set-up file for random access %
ok *
;******************************t********************

2100 31bcod 1xi sp,stack
: version 2,6?

0103 Oeldc mvi c,version

3105 cdosg call bdos

9108 fe28 cpi 20h ;version 2.0 or better?

@lPa 42168 jnc ver sok
; bad version, message and go back

9194 111b@6 1xi d,badver

0116 cddad call print

0113 c30600 jmp reboot
versok:
; correct version for random access

0116 Qebf mvi c,openf ;open default fcb

9118 115cH 1xi g.,fch

@11lb cdbs58 call bdos

@lle 3c inr a ;err 255 becomes zero

011f c2370 jnz ready

cannot open file, so create it

(All Information Contained Herein is Proprietary to Digital Research,)

39

0122 Pel6 mvi c,makef

3124 115cH 1xi d.Ecbh

@127 cdgse call bdos

@gl2a 3c inr a ;err 255 becomes zero

912b c2379 jnz ready
; cannot create file, directory full

@gl2e 113ad Laxi d,nospace

P131 cddad call print

0134 c3000 jmp reboot ;back to ccp
;*******t***
.* *
+* loop back to "ready" after each command *
. Kk *
;***********'k***************************************
H
ready:
; file is ready for processing

9137 cde50 ' call readcom ;read next command

@13a 22740 shld ranrec ;store input record#

9134 217f0 1xi h,ranovf

0140 3600 mvi m,d ;clear high byte if set

9142 fe51 cpi Q! squit?

9144 c2560 jnz notg
; quit processing, close file

3147 deld mvi c,closef

149 115c@ 1xi d, fcb

@l4c cdos5e call bdos

B1l4af 3c inr a ;err 255 becomes 6

0150 cab9@ jz error ;error message, retry

P153 c3000 jmp reboot ;back to ccp
;*****1\-*********1\'***********************************
. *
:* end of guit command, process write *
. R *
;****i**
notqg:
H not the gquit command, random write?

9156 fe57 cpi W'

9158 c2890 jnz notw
H
: this is a random write, fill buffer until cr

@15b 11440 Ixi d,datmsg

d15e cddag call print ;data prompt

gl6l Be7f mvi 27 ;up to 127 characters

@163 21800 1xi h,buff ;destination
rloop: j;read next character to buff

0166 c5 push b ;save counter

2167 eb5 push h ;next destination

8168 cdc2@ call getchr j;character to a

@leb el pop h srestore counter

(311 Information Contained Herein is Proprietary to Digital Research.,)

40

Bglec cl pop b ;restore next to fill

@l6d fedd Ccpi cr ;end of line?

Blef ca780 jz erloop
: not end, store character

@172 77 mov m,a

9173 23 inx h snext to fill

8174 8d dcr c ;counter goes down

8175 c2660 jnz rloop send of buffer?
erloop;:
: end of read loop, store 00

0178 3600 mvi m,d
: write the record to selected record number

gl7a Be22 mvi c,writer

B17c 115c@ 1xi d,fcb

@17f cdps0 call bdos

9182 b7 ora a ;error code zero?

9183 c2b9d jnz error ;message if not

9186 c3374 jmp ready ;for another record
;********'k**
e *
;* end of write command, process read &
« % *
;**‘k**
notw:
3 not a write command, read record?

0189 fe52 cpi "R

018b c2b9@ jnz error :skip if not
: read random record

@18e Ge2l mvi c,readr

#1906 115c@ 1xi d,fcb

P193 cd@se call bdos

9196 b7 ora a sreturn code 907?

8197 c2b9@ jnz error
. read was successful, write to console

#19%a cdcfe call on oll) 2 ;new line

#194 0e80 mvi c,128 ;max 128 characters

@19f 21800 1xi h,buff ;next to get
wloop:

Bla2 Te mov a,m ;next character

gla3 23 inx h snext to get

Plad eb67f ani 7fh ;mask parity

#la6 ca37d@ jz ready ;for another command if 6@

#la9 c5 push b ;save counter

flaa e5 push h ;save next to get

Blab fe20 cpi x 3 ;graphic?

flad d4c8d cnc putchr ;skip output if not

g1bd el pop h

#1lbl cl pop b

81b2 @d dcr c ;count=count-1

P1b3 c2a28 jnz wloop

B1b6 c3370 jmp ready

(All Information Contained Herein is Proprietary to Digital Research.)

41

Khhkhkkhkhkhhhhhkkrhkhkhkh Ak khAkArhkhhkhhhr kb hhk bbbk ok khkk
%*

end of read command, all errors end-up here :

* % % ¥ %

LSRR R R R SRR R RS R E X R R R RS ERSE R AR RE R EY

A WM ma w4 WE W Wy

utility subroutines for console i/o ®
*

:***

*

error:

P1b9 11590 1%z d,errmsg

@1bc cddad call print

@1bf c3370 jmp ready
;***
% *
”
i

getchr:

sread next console character to a
Plc2 fedl mvi c,coninp
@1lc4d cdisd call bdos
Plc7? c9 ret

putchr:

;write character from a to console
01lc8 QeB?2 mvi c,conout
Plca 5f mov e,a ;character to send
@lcb cdese call bdos :send character
@lce c9 ret

crlf:

;send carriage return line feed
d1cf 3ed mvi a,cr ;carriage return
P1dl cdc8@ call putchr
01d4 3efa mvi a,lf ;line feed
01d6 cdc8p call putchr
9149 c9 ret

print:

;iprint the buffer addressed by de until $
#lda d5 push d
@1ldb cdcf@ call crlf
f#lde dl pop d ;new line
g1df 0ed9 mvi c,pstring
flel cdes5e call bdos ;print the string
Pled c9 ret

readcom:

sread the next command line to the conbuf
Ple5 116bg 1xi d,prompt
@le8 cddad call print ;command?

Pleb Qela mvi c,rstring
gled 117a0 1xi d,conbuf
91£f0 cdgs5e call bdos ;jread command line

command line is present, scan it

-

(All Information Contained Herein is Proprietary to Digital Research.)

42

01f3 21000 1xi h,o ;start with 0000

@1f6 117c@ 1xi d,conlin;command line

p1£f9 1la readc: ldax d ;next command character

g1lfa 13 inx d :to next command position

d1lfb b7 ora a ;cannot be end of command

Plfc c8 rz
? not zero, numeric?

g1fd de639 sui g

B1ff fepa cpi 10 ;carry if numeric

p201 42130 jnc endrd
: add-in next digit

0204 29 dad h ;%2

Pp285 4d mov C el

0206 44 mov b,h sbc = value * 2

0207 29 dad h ;%4

g208 29 dad h :%8

0209 @9 dad b 1*%2 + *8 = %10

@20a 85 add 1 ;+digit

@2¢0b 6f mov 1l,a

P20c d2£f90 jnc readc ;for another char

g20f 24 inr h soverflow

0210 c3£f98 jmp readc ;for another char
endrd:
H end of read, restore value in a

@213 c630 adi '@’ ; command

9215 febl cpi ‘a' ;translate case?

8217 ds rc
; lower case, mask lower case bits

0218 e65f ani 101$1111b

2la c9 ret
;***
.k *
;* string data area for console messages :
. %
;****'k**
badver:

621b 536£79 db ‘sorry, you need cp/m version 2§'
nospace:

P23a 4e6£29 db 'no directory space$’
datmsg:

024d 547970 db 'type data: $'
errmsg:

0259 457272 db ‘error, try again,$'’
prompt:

B26b 4e6570 db 'next command? $'

r

(All Information Contained Herein is Proprietary to Digital Research.)

43

;***

. K *
’
+* fixed and variable data area *
% *
;***
g27a 21 conbuf: db conlen ;length of console buffer
027b consiz: ds 1 ;resulting size after read
g27c conlin: ds 32 ;length 32 buffer
0021 = conlen equ $-consiz
629c ' ds 32 116 level stack
stack:
@ 2bc end

Again, major improvements could be made to this particular
program to enhance its operation, In fact, with some work, this
program could evolve into a simple data base management system, One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator, For example, the
command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "“LASTNAME" field from each record, starting at position 16 and
ending at character 20. GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-bit record number
location within the file, The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical

list of LASTNAME fields with their correspondlng record numbers,
(This list is called an “inverted index" in information retrieval
parlance,)

“Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command 1line might
appear as:

QUERY NAMES.DAT LASTNAME,KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which 1is a particular key to find in the NAMES.DAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular entry
quite rapidly by performing a "binary search," similar to looking up a
name in the telephone book, That is, startlng at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search,
You'll qu1ckly reach the item you're looking for (in log2(n) steps)
where you'll find the correspondlng record number, Fetch and display

tgls record at the console, just as we have done in the program shown
above,

(All Information Contained Herein is Proprietary to Digital Research.)

44

At this point you're just getting started. With a 1little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if wvyour 1lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

(All Information Contained Herein is Proprietary to Digital Research.)

45

6. SYSTEM FUNCTION SUMMARY,

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS
2 System Reset none none

1 Console Input none A = char

2 Console Output E = char none

3 Reader Input none A = char

4 Punch Qutput E = char none

5 List Output E = char none

6 Direct Console I/0 see def see def

7 Get I/0 Byte none A = IOBYTE

8 Set I/0 Byte E = IOBYTE none

9 Print String DE = ,Buffer none

10 Read Console Buffer DE = ,Buffer see def

11 Get Console Status none A = @g@/FF

12 Return Version Number none HL= Version*
13 Reset Disk System none see def

14 Select Disk E = Disk Number see def

15 Open File DE = .FCB A = Dir Code
16 Close File DE = ,FCB A = Dir Code
1.7 Search for First DE = .FCB A = Dir Code
18 Search for Next none A = Dir Code
19 Delete File DE = ,FCB A = Dir Code
20 Read Segquential DE = ,FCB A = Err Code
21 Write Sequential DE = ,FCB A = Err Code
22 Make File DE = ,FCB A = Dir Code
23 Rename File DE = .FCB A = Dir Code
24 Return Login Vector none HL= Login Vect¥*
25 Return Current Disk none A = Cur Disk#
26 Set DMA Address DE = ,DMA none

27 Get Addr(Alloc) none HL= ,Alloc
28 Write Protect Disk none see def

29 Get R/0O Vector none HL= R/0O Vect*
30 Set File Attributes DE = ,FCB see def

31 Get Addr(disk parms) none HL= ,DPB

32 Set/Get User Code see def see def
33 Read Random DE = ,FCB A = Err Code
34 Write Random DE = .FCB A = Err Code
35 Compute File Size DE = ,FCB g, rl., t2

36 Set Random Record DE = ,FCB réd, rl, r2

* Note that A = L, and B = H upon return

(All Information Contained Herein is Proprietary to Digital Research.)

46

7. ADDENDUM

NEW CP/M 2.2
BDOS FUNCTIONS

Jedededededededededededededede e e Yoo Aokl il ok

&
* FUNCTION 37: RESET DRIVE v
W

alaalall

Fededededesedededet oo e Yok el vede e e e e e dedele e e e

* Entry Parameters: %
* Register C: 25H %
* Register DE: Drive Vector *
b e
* Returned Value : %
¥ Register A: @@H %

Fededededdedededodedede e e de T dededededede e dede e kel ek

The RESET DRIVE function allows resetting of specified
drive(s). The passed parameter is a 16 bit vector of drives
to be reset, the least significant bit is drive A:.

In order to maintain compatibility with MP/M, CP/M
returns a zero value.

Mol atealsole oo alsalants o . | PN oot ala alealaut i alaslanlantonbalsnlaata
Sevededevedededesedevedededededededevee e de e e e ke ek

% FUNCTION 40: WRITE RANDOM WITH:
s ZERO FILL %

. | T, PN R T A T T e e) et P O R DR TR TR YRR UL TN L T JEL R R N
Fefedededede Ao e RS de e Yo de e e A e e e e e e e e e e e

* Entry Parameters: i
* Register C: 28H -
% Register DE: FCB Address *
* Returned Value: *
¥ Register A: Return Code *
bR i o o o o L LU I L U

The WRITE RANDOM WITH ZERO FILL operation is similar
to FUNCTION 34: with the exception that a previously
unallocated block is filled with zeros before the data
is written.

47

P gl
i o 1| 1 “‘:r
dd If M ’.l-.’l —d’ l’h
- - N Y e

) 31
L QIS Sl

--!_L_‘

L]
W

i P (D
: .T;?-‘-JE_!{:- I--': ‘il-'llaml’ﬁrllll J -
E LN 4 ;I - L ! -%‘._H"-.,'.l"
n ::#(".__"hl H‘ ‘.'-‘I. .'11.

7 : AL - -,
W S L= S
BT
T CUR e
H_ﬁ_.,

by B PP T oy T _-

e
1w

| .‘__'_'J'_ == =i ‘:‘ [) i
‘r}.."_, ~ b, - A A T |"_-""n|‘_J-._
e S T e R ey
R i =" e A T e
F e b - - » '.-— oy " _.r'r_'
o oo o N 4 e f 8 18-"1:
i W ‘) o 1, & I'Ih

P gl
i o 1| 1 “‘:r
dd If M ’.l-.’l —d’ l’h
- - N Y e

) 31
L QIS Sl

--!_L_‘

L]
W

i P (D
: .T;?-‘-JE_!{:- I--': ‘il-'llaml’ﬁrllll J -
E LN 4 ;I - L ! -%‘._H"-.,'.l"
n ::#(".__"hl H‘ ‘.'-‘I. .'11.

7 : AL - -,
W S L= S
BT
T CUR e
H_ﬁ_.,

by B PP T oy T _-

e
1w

| .‘__'_'J'_ == =i ‘:‘ [) i
‘r}.."_, ~ b, - A A T |"_-""n|‘_J-._
e S T e R ey
R i =" e A T e
F e b - - » '.-— oy " _.r'r_'
o oo o N 4 e f 8 18-"1:
i W ‘) o 1, & I'Ih

