INDIGITAL RESEARCH

- Post Office Box 579, Pacific Grove, California 93950, (408) 373-3403
CP/M ASSEMBLER (ASM)
USER’S GUIDE
-~

COPYRIGHT © 1976, 1978

DIGITAL RESEARCH

Copyright @ 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or trans-
lated into any language or computer language, in any form or
by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to iime in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents
Section Page

1. ImmmIoN [B AN BB EENESNNESNENNENRERNIERNHEEH:EHNHJREIEIRIESIJEJ]IESJJEH~NHJE.]
2. PROGRAM FORMAT seeeovvecessnssavcssnsusssssnsannsses
3. EOMIMTI-E wERMD LA ERREA RN RN EA SN RN ENRNEENEENENENRNENESS]
3.1. Iamls [A FERNEENENEERENENENNNEENNENENENENENNENHJENRH:]
3.2. NLmriC Constants L L N N N BN R NN NENNEZSNIESSES.HESHEEBJEHJSHE]
343+ Reserved WOLAS sesssssecesscocrssosssnscsasnse
3.4. Strim Constants [FE R E R ERENENESNE NN EENEN NN NNNN]
3.5. Arithmtic and mical Omrat()rs svEsARENEDaRS
3.6. Precedence of Operators sesceccesscsasasereses
4. A%WBLER DIRECTIVES I E AN NN ENEN N EERNERERERNERERENZENIES:NHEH;H}.)
4,1. The ORG DirecCtive ceeeescsesassssassscesssases
4.2. The END DireCtive cuicssssncssncsnovsnsssssares
4.3. The EQ[J Directive I FEY A NN NSNS ERREREERRE RN N RN N RN KR,
4.4‘ The SEr Directive [EXE R NN NNEEEERERE R NN NN NN N ENXY)
4,5, The IF and ENDIF DIirectivesS .ceevenssscnsssases
4,6, The DB DIreCtive .ieeeesssssccssescsasesasases
4.7. Tm mDirective [R XN XA RN AR R REREREESENNENRNNN)
5. OPERATION mDES [EI RN EEESENSNEEEERENEERNNNENINENMNJREJNEJNJNEJNE]
Bl JUII'IPS, Calls, and REBULNS sesssatcssasasssssse
5.2, Immediate Operand INStructions .veessacsensacs
5.3. Increment and Decrement Instructions .cseesesss
5.4, Data Movement INsStructions seveescssssssevrenes 14
5.5. Arithmetic [‘lec Unit Operations eenesevessves 15
5.6. Control InStructionS astesscssnsnsananssasnsas 1O
6. ERROR MESSAGES ssesessesssssesssscsssesssssssssscsase 10
7« A SAMPLE SESSION esecssecscosssscocnsncosossascnsses 17

e
HSR@RWOWEO-J0 0B BB

I S .
b Lo B A

CP/M Assembler User ‘s Guide

1. INTRODUCTION.

The CP/M assembler reads assembly language source files from the diskette,
and produces 8888 machine language in Intel hex format. The CP/M assembler is
initiated by typing

ASM filename
or
AM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name
filename .ASM

which contains an 8#80 assembly language source file, The first and second
forms shown above differ only in that the second form allows parameters to be
passed to the assembler to control source file access and hex and print file
destinations,

In either case, the CP/M assembler loads, and prints the message
CP/M ASSEMBLER VER n.n

where n.,n is the current wersion number. In the case of the first command,
the assembler reads the source file with assumed file type “ASM" and creates
two output files

filename,HEX
and
filename .PRN

the "HEX" file contains the machine code corresponding to the original program
in Intel hex format, and the "PRN" file contains an annotated listing showing
generated machine code, error flags, and source lines. If errors occur during
translation, they will be listed in the PRN file as well as at the console

The second command form can be used to redirect input and output files
from their defaults. 1In this case, the "parms" portion of the command is a
three letter group which specifies the origin of the source file, the
destination of the hex file, and the destination of the print file. The form

is
filename.plp2p3
where pl, p2, and p3 are single letters

pl: A,B, ..., Y designates the disk name which contains

the source file
p2: A,Bs 444, ¥ designates the disk name which will re-
ceive the hex file
Z skips the generation of the hex file
p3: A,B, ..., ¥ designates the disk name which will re-
ceive the print file

X places the listing at the console
Z skips generation of the print file
Thus, the cammand |
ASM X,RAR

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and mrint {X.PRN) files are to be created also on disk A.
This form of the command is implied if the assembler is run from disk A. That
is, given that the operator is currently addressing disk A, the above command
is equivalent to

ASM X
The command

ASM X,.ABX
indicates that the source file is to be taken from disk A, the hex file is
placed on disk B, and the listing file is to be sent to the console, The
command '

ASM X,.BZZ

takes the source file from disk B, and skips the generation of the hex and
print files (this command is useful for fast execution of the assembler to
check program syntax).

The source program format is compatible with both the Intel 8088 assembler
{macros are not currently implemented in the CP/M assewbler, however), as well
as the Processor Technology Software Package #1 assembler. That is, the CP/M
asserbler accepts source programs written in either format. There are certain
extensions in the CP/M assembler which make it somewhat easier to use. These
extensions are described below,

‘2. PROGRAM FORMAT,

An assembly language program acceptable as input to the assembler consists
of a sequence of statements of the form

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each

~embly language statement is terminated with a carriage return and line feed
{the line feed is inserted automatically by the ED program), or with the
character “!" which is a treated as an end-of-line by the assembler (thus,
multiple assembly language statements can be written on the same physical line
if separated by exclaim synbols).

The line$¢ is an optional decimal integer value representing the source
program line number, which is allowed on any source line to maintain
compatibility with the Processor Technology format, In general, these line
nunbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
ar
identifier:

and is optional, except where noted in particular statement tvpes. The
identifier is a sedquence of alphanumeric characters (alphabetics and numbers),
where the first character is alphabetic. Identifiers can be freely used by
the programmer to label elements such as program steps and assembler
directives, but cannot exceed 16 characters in length, All characters are
significant in an identifier, except for the embedded dollar symbol ($} which
can be used to improve readability of the name, Further, all lower case
alphabetics become are treated as if they were upper case, Note that the *:"
following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technolegy)}. Thus, the following are all valid
instances of labels '

X Xy . longSname
X yx1: longer$namedSdata:
X1y2 X1x2 X234$56785901253456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8#8¢ machine operation code. ‘The pseudo operations and
machine operation codes are described below.

The operand field of the statement, in general, contains an expression
formed out of constants and labels, along with aritlmetic and logical
operations on these elements, Again, the complete details of properly formed
expressions are given below.

The comment field contains arbitrary characters following the ";" symbol
until the next real or logical end-of-line. These characters are read,
listed, and otherwise ignored by the assembler. In order to maintain
compatability with the Processor Technology assembler, the CP/M assembler also
treat statements which begin with a “*" in column one as comment statements,
which are listed and ignored in the assembly process. Note that the Processor

Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. This causes an ambiguous
situation when attempting to be compatible with Intel’s lanquage, since
arbitrary expressions are allowed in this case. Hence, programs which use
this side effect to introduce comments, must be edited to place a ";“ before
these fields in order to assemble correctly.

~ The assembly language program is formulated as a sequence of statements of
the above form, terminated optionally by an END statement, All statements
following the END are ignored by the assembler.

3., FORMING THE OPERAND,

In order to completely describe the operation codes and pseudo cperations,
it is necessary to first present the form of the operand field, since it is
used in nearly all statements. Expressions in the operand field consist of
simple operands {labels, constants, and reserved words), combined in properly
formed suwbexpressions by arithmetic and logical operators, The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit wvalue during the assembly. Further, the
number of significant digits in the result must not exceed the intended use,
That is, if an expression is to be used in a byte move immediate instruction,
then the most significant 8 bits of the expression must be zero, The
restrictions on the expression significance is given with the individual
instructions.,

3.1, Labels.

As discussed above, a label is an identifier which occurs on a particular
statement., In general, the label is given a value determined by the type of
statement which it mrecedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.d, a MW instruction, or a
DS pseudo operation}, then the label is given the value of the program address
which it labels. If the label precedes an EQU or SET, then the label is given:
the value which results from evaluating the operand field., Except for the SET
statement, an identifier can label only one statement.

when a label appears in the operand field, its value is substituted by the
assembler, This value can then be combined with other operands and operators
to form the operand field for a particular instruction.

3.2. Numeric Constants.

A numeric constant is a l16=bit wvalue in one of several bases., The base,
called the radix of the constant, is denoted by a trailing radix indicator.
The radix indicators are

B binary constant (base 2)
0 octal constant (base 8)

Q octal constant (base §)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q0 is an alternate radix indicator for octal numbers since the letter O is
easily confused with the digit 8. Any numeric constant which does not
terminate with a radix indicator is assumed to be a decimal constant,

A constant is thus composed as a sequence of digits, followed by an
optional radix indicator, where the digits are in the appropriate range for
the radix, That is binary constants must be composed of @ and 1 digits, octal
constants can c¢ontain digits in the range B « 7, while decimal constants
contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (1eD), B (1lp}), C (A2p), D {(13D), E (14D}, and F
(15D) . Note that the leading digit of a hexadecimal constant must be a
decimal digit in order to avoid confusing a hexadecimal constant with an
identifier (a leading @ will always suffice). A constant composed in this
manner must evaluate to a binary number which can be contained within a lé-bit
counter, otherwise it is truncated on the right by the assembler. Similar to
identifiers, imbedded "$" are allowed within constants to improve their
readability. Finally, the radix indicator is translated to upper case if a
lower case letter is encountered. The following are all wvalid instances of
numeric constants

1234 1234p 11908 1111560680$1111$80008
1234H OFFEH 33770 338778220
33770 @fe3n 12343 pfrffh

3.3. Reserved Words.

There are several reserved character seguences which have predefined
meanings in the operand field of a2 statement. The names of 8080 registers are
given below, which, when encountered, produce the value shown to the right

YO U WA E)

EQZFEMUONB’
=

{again, lower <case names have the same values as their upper case
equivalents), Machine instructions can also be used in the operand field, and
evaluate to their internal codes, 1In the case of instructions which require
operands, where the specific operand becomes a part of the binary bit pattern

" "*e instruction {e.g, MV A,B), the value of the instruction (in this case
MW) is the bit pattern of the instruction with zeroes in the optional fields
{e.q, MW produces 40H).

When the symbol “$" occurs in the operand field (not imbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contained withing the
current logical line,

3.4, String Constants.

String constants represent sequences of ASCII characters, amnd are
represented by enclosing the characters within apostrophe symbols ('). All
strings must be fully contained within the current physical line (thus
allowing "!" symbols within strings), amd must not exceed 64 characters in
length, The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes), which becomes
a single apostrophe when read by the assembler. In most cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in which case the string becomes an 8 or 16 bit wvalue,
respectively, Two character strings become a l6-bit constant, with the second
character as the low order byte, and the first character as the high order
byte,

The value of a character is its corresponding ASCII code. There is no
case translation within strings, and thus both upper and lower case characters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

PR - - .-

A AR ‘ab’ C
‘Walla Walla Wash.’

“Sshe said ““Hello™ " to me,’
‘I said “Hello" to her,”

3.5. Arithmetic and Logical Operators,
The operands described ahove can be combined in normal algebraic notation
using any carbination of properly formed operands, operators, and

parenthesized expressions, The operators recognized in the operand field are

a+b unsigned arithmetic sum of a and b
unsigned arithmetic difference between a and b

]
1
o

+b unary plus (produces b)

-b wmary minus (identical to 8 - b)
a*hb unsigned magnitude multiplication of a and b
a/hb wnsigned magnitude division of a by b
aMDb remainder after a / b
NOT b logical inverse of b (all #'s become 1's, 1°'s

become 8°s), where b is considered a 16-bit value

a BND b bit-by-bit logical and of a and b

aORb bit-by~bit logical or of a and b

a XORb bit-by-bit logicl exclusive or of a and b

a SHL b the value which results from shifting a to the
left by an amount b, with zero fill

a SBR b the value which results from shifting a to the
right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric
constants, reserved words, and one or two character strings), or fully
enclosed parenthesized subexpressions such as ‘

18+20 18h+370 Ll /3 (L2+4) SHR 3
('a' and 5fhy + ‘g {'B'+B) OR (PSWHM)
(1+(2+c)) shr (A-{(B+1)) -

Note that all computations are performed at assembly time as 16-bit unsigned
operations. Thus, =1 is computed as B-1 which results in the wvalue BEfffh
(i.e., all 1°s). 'The resulting expression must fit the operation code in
which it is used. If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bits of the expression must
be zero, As a result, the operation "ADI -1" produces an error message (-1
becomes @ffffh which cannot be represented as an 8 bit value), while "ADI (-1)
AND @FFR" 1is accepted by the assembler since the "AND" operation zeroces the
high order bits of the expression,

3.6. Precedence of Operators,

As a convenience to the programmer, ASM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. The resulting expression
has assumed parentheses which are defined by the relative precedence. ‘The
order of application of operators in unparenthesize expressions is listed
below. Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), while operators listed last have lowest
precedence. Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHI, SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler
as the fully parenthesize expressions shown to the right below

a*b+c (a*b) +c
a+b*c a+ (b *g)
ame*cSHLd ((a MOD b)Y * ¢) SHL 4

aORDbAND NOT ¢ + 4 SHL e a OR (b AND {NOT (c + (@ SHL e))}}

Balanced parenthesized subexpressions can always be used to override the
assumed parentheses, and thus the last expression above could be rewritten to
force application of operators in a different order as

{a ORb) AND (NOT c} + d SHL e
resulting in the assumed parentheses
(@ OR b) AND ((NOT ¢) + (d SHL €))

Note that an wnparenthesized expression is well-formed only if the expression
which results from inserting the assumed parentheses is well-formed,

4. ASSEMBLER DIRECTIVES.

Assembler directives are used to set labels to specific values during the
assmbly, perform conditional assembly, define storage areas, and specify
starting addresses in the program., FEach assembler directive is denoted by a
"pseudo operation" which appears in the operation field of the line, The
acceptable pseudo operations are

ORG set the program or data origin

'END end program, optional start address
BQU numeric "equate®

SET numeric "set" .

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

DW define data words

B define data storage area

The individual pseudo operations are detailed below
4.1, The ORG directive, |
The ORG statement takes the form
label ORG expression

where "label” 1is an optional program label, and expression is a 16-bit
expression, consisting of operands which are defined previocus to the ORG
statement. The assembler begins machine code generation at the 1location
specified in the expression. There can be any number of ORG statements within
a particular program, and there are no checks to ensure that the programmer is
not defining overlapping memory areas, Note that most programs written for
the CP/M system begin with an ORG statement of the form

OR: 100H

which causes machine code generation to begin at the base of the CP/M
transient program area, If a label is specified in the ORG statement, then
the label is given the value of the expression (this label can then be used in
the operand field of other statements to represent this expression).

4,2, The END directive,

The END statement is optional in an assembly language program, but if it
is present it must be the last statement (all subsequent statements are
ignored in the assembly). The two forms of the END directive are

label END
label END expression

where the label is again optional. If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
3009, Otherwise, the expression 1is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code "hex" file which results fram the assembly).
Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 188H (beginning of the transient
program area).

4.3. The EQU directive.

The EQU (eguate} statement is used to set up synonyms for particular
numeric values. the form is

label EQU expression

where the label must be present, and must not label any other statement. The
assembler evaluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a name which describes
the wvalue in a more human-oriented manner, Further, this name .is used
throughout the program to “parameterize" certain functions, Suppose for
example, that data received from a Teletype appears on a particular input
port, and data is sent to the Teletype through the next output port in
sequence, The series of egquate statements could be used to define these ports
for a particular hardware environment

TIYBASE EQU ~ 10H ;BASE FORT NUMBER FOR TTY
TTYIN QU TTYBASE ;TTY DATA IN :
TIYOUT © EOU TTYBASE+l;TTY DATA OUT

At a later point in the program, the statements which access the Teletype
could appear as '

IN TTYIN sREAD TTY DATA TO REG-A

o TTYOUT ;WRITE DATA TO TTY FROM RBEG-A

making the program mre readable than if the absolute i/0 ports had been
used. Further, if the hardware environment is redefined to start the Teletype
commmications ports at 7FH instead of 10H, the first statement need only be
changed to _

TIYBASE EQU 7FH ;BASE FORT NUMBER FOR 1TY
and the program can be reassembled without changing any other statements,
4.4, The SET Directive.
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label can occur on other SET statements within the program.
The expression is evaluated and becomes the current value associated with the
label. Thus, the EQU statement defines a label with a2 single value, while the
SET statement defines a wvalue which is walid from the current SET statement to
the roint where the label occurs on the next SET statement, The use of the
SET is similar to the EQU statement, but is used most often in controlling
conditional assembly.

4,5. The IF and ENDIF directives.

The IF and ENDIF statements define a range of 'assetrbly language statements
which are to be included or excluded during the assembly process, The form is

IF expression
statement#l
statement$2
statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement). If the expression evaluates to a non-zerc value, then
statement#]l through statement#n are assembled; if the expression evaluates to
zero, then the statements are listed but not assembled. Conditional assembly
is often used to write a single “generic" program which includes a number of
possible run-time ernvironments, with only a few specific portions of the
program selected for any particular assembly. The following program segments
for example, might be part of a rprogram which communicates with either a
Teletype or a CRT console (but not both) by selecting a particular value for
TTY before the assembly begins

18

TRUE EQU @FFFFH ;DEFINE VALUE OF TRUE
FALSE EQU NOT TRUE :DEFINE VALUE OF FALSE
H
Y EQU TRUE JTRUE IF TTY, FALSE IF CRT
TIYBASE BQU 10H :BASE OF TTY I/0 FORTS
CRIBASE BQU 298 .BASE OF CRT I/0 FORTS |
IF TTY .ASSEMBLE RELATIVE TO TTYBASE
CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TIYBASE+l ;CONSOLE OUTPUT
ENDIF
' IF NOD TTY ;ASSEMBLE RELATIVE TO CRTBASE
ONIN EQU CRTBASE '+CONSOLE INPUT
CONOUT EQU CRIBASE+] ;CONSOLE OUTPUT
ENDIF '
IN CONIN sREAD CONSOLE DATA
OUr OONOUT ;WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a Teletype
is comnected, based at port 1@H. The statement defining TIY could be changed
to .

TTY

EQU FALSE

and, in this case, the program would assemble for a CRT based at port 28H.

4.6, The DB Directive.

: The DB directive allows the programmer to define initialize storage areas
in single precision (byte} format. The statement form is

label DB e#].' e#2, avey e#n

vhere el through e¥n are either expressions which evaluate to 8-bit values
(the high order eight bits must be 2zero), or are ASCII strings of length no
greater than 64 characters. There is no practical restriction on the number
of expressions included on a single source line. The expressions are
evaluated and placed sequentially into the machine code file following the
last program address generated by the assembler, String characters are
similarly placed into memory starting with the first character and ernding with
the last character. Strings of length greater than two characters cannot be
used as operands in more complicated expressions (i.e,, they must ‘stand alone
between the cammas), Note that ASCII characters are always placed in memory
with the parity bit reset (@). Further, recall that there is no translation
from lower to upper case within strings, The optional label can be used to
reference the data area throughout the remainder of the program., Examples of

11

valid DB statements are

data: DB 0,1,2,3,4,5

data and #ffh,5 37?0,1+2+3+4
signon: DB please type your name ,cCr, 1f,8
SHR 8, C", 'DE’ AND 7FH

2

8

4,7. The DW Directive.

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label O e#l, e#2 r sy e#n

vhere e#l through e#n are expressions which evaluate to 16-bit results, Note
that ASCII strings of lenath one or two characters are allowed, but strings
jorger than two characters disallowed, In all cases, the data storage is
consistent with the 8888 processor: the least significant byte of the
expression is stored forst in memory, followed by the most 51qn1f1cant byte.
Examples are

doub: DW Bffefh,doub+4,signon-$,255+255
oW ‘a’, 5, ab’, 'CD", 6 shl 8 or 1lb

4.8. 'The DS Directive,

The DS statement is used to reserve an area of unlmtlallzed memory, and
takes the form

lJabel DS expression

where the label is optional, The assembler begins subsequent code generation
after the area reserved by the DS. Thus, the DS statement given above has
exactly the same effect as the statement

label: BEQU § ;LABEL VALUE IS CURRENT CODE LOCATION
ORG S+eXpression :MOVE PAST RESERVED AREA

5. OPERATION (QODES,

Assembly language operation codes form the principal part of assembly
lamquage programs, and form the operation field of the instruction., In
general, ASM accepts all the standard mnemonics for the Intel- 8680
microcomputer, which are given in detail in the Intel manual “8086 Assembly
Language Programming Manual.“ Labels are optional on each input line and, if
included, take the .value of the instruction address immediately before the
instruction is issued, The individual operators are listed breifly in the

12

following sections for campleteness, although it is understood that the Intel
manuals should be referenced for exact operator details. 1In each case,

e3 represents a 3-bit value in the range @7
which can be one of the predefined registers
A, B, C, D, E, H, L, M, 5P, or PSW.

eB represents an 8-Hit value in the range @=255
elé represents a 16-bit value in the range B-65535

which can themselves be formed from an arbitrary combination of operands and
operators. In some cases, the operands are restricted to warticular values
within the allowable range, such as the PUSH instruction., These cases will be
noted as they are encountered,

In the sections which follow, each operation codes is listed in its most.
general form, along with a specific example, with a short explanation and
special restrictions. '

5.1. Jumps, Calls, and Returns,
The Jump, Call, and Return instructions allow several different forms

‘which test the condition flags set in the 8088 microcomputer CPU. The forms
are

JMP el6 JMP L1 Jump unconditionally to label
JINZ el6 JMP 12 Jump on non zero condition to label
JZ2 eld JMP 180H Junp on zero condition to label
JNC elb JNC Ll+4 Jump no carry to label

JC el6 JC L3 Jump on carry to label

JEO elé JEO $+48 Jump on parity odd to label

JPE el6 JFE L4 Jump on even parity to label

JP elé JP GAMMA Jump on positive result to label
JM el6 - JIM al Jume on minus to label

CALL el6 CALL 81 Call subroutine unconditionally
NZ el6 Nz s2 Call subroutine if non zero flag

CZ elé Cz 1¢g8 Call subroutine on zero flag
MNC elé NC S1+4 Call subroutine if no carry set

CC els CcC 83 Call subroutine if carry set
CRD elé CEO §+8 Call subroutine if parity odd
CPE el6 CPE 5S4 Call subroutine if parity even

CP elé CP @AM Call subroutine if positive result
. CM elé CM blSc2 Call subroutine if minus flag

RST e3 RST @ Programmed “restart", equivalent to
CALL 8%*e3, except one byte call

13

RNZ

g8

RC

283

Return from subroutine

" Return if non zero flag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result
Return if minus flag is set

5.2. Immediate Operand Instructions.

Several instructions are available which load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions which perform immediate arithmetic or logical operations on the
accumulator {(register A).

MVI e3,eB

ADI e8
ACI e8
SUI e8
SBI e8
ANI e8
XRI e8
ORI e8
CPI e

IXI e3,elb

MVI B,255

ADI 1

ACI AFFH

ST L+ 3

SBI L AND 11B

ANI $ AND 7FH

XRI 1111560048
ORI L A3ND]+1

CPI “a’

IXI B,190@H

Move immediate data to register A, B,
C, D, E, H, L, or M (memory)

Add immediate operand to A without carry
Add immediate operand to A with carry
Subtract from A without borrow (carry)
Subtract from A with borrow (carry)
logical "and” A with immediate data
*Exclusive or" A with immediate data .
Logical "or" A with immediate data
Compare A with immediate data (same
as SUI except register A not changed)

Ioad extended immediate to register pair
{e3 must be eguivalent to B,D,H, or 5P}

5.3, Increment and Decrement Instructions,

Instructions are provided

in the 8080 repetoire for incrementing or

decrementing single and double precision registers. The instructions are

INR e3
ICR e3
INX e3

DCX e3

INR E

DCR A

INX SP

ICX B

Single precision increment register (e3
produces one of A, B, C, D, E, H, L, M)
Single precision decrement register (e3
reoduces one of A, B, C, D, B, H, L, M)
Double precision increment register pair
(e3 must be equivalent to B,D,H, or SP)
Double precision decrement register pair
{e3 must be eguivalent to B,D,H, or SP)

5.4, Data Movement Instructions,

14

Instructions which move data from memory to the CPU and from CPU to
memory are given below

MW e3,e3 MOV A,B Move data to leftmost element from right-
most element (e3 produces one of A,B,C
Db,E,H,L, or M}. MOV M,M is disallowed

LDAX e3 LIRX B Load register A from computed address
(e3 must produce either B or D)

STAX e3 STAX D Store register A to computed address
{e3 must produce either B or D)

LHLD elf LHLD 11 Inad HL direct from location el6 (double
precision load to H and L)

SHLD 16 SHLD L5+x Store HL direct to location el6 (double
precision store from H and L to memory)

LA el6 LA Gamma Ioad register A from address el6

STA el6 STA X35 Store register A into memory at el6

ECP e3 FOP PSW Load register pair from stack, set SP
{e3 must produce cone of B, D, H, or PSW)

PUSH e3 PUSH B Store register pair into stack, set Sp
(e3 must produce one of B, D, H, or PSW)

IN e8 IN @ Ioad register A with data from port e8

Our e8 our 255 Send data from register A to port e8

XTHL Exchange data from top of stack with HL

PCHL Fill program counter with data fram HL

SPHL Fill stack pointer with data from HL

XCHG Exchange DE pair with HL pair

5.5. Arithmetic Logic Unit Operations,

Instructions which act upon the single precision accumulator to perform
arithmetic and logic operations are :

ADD e3 ADD B Add register given by e3 to accumulator
without carry {(e3 must produce cne of A,
B, C, D, E, H, or L)
ADC e3 ADC L Add register to A with carry, e3 as above
SUB e3 SUB H Subtract reg e3 from A without carry,
_ e3 is defined as above
SBBE e3 SBB 2 Subtract register e3 from A with carry,
: e3 defined as above .
ANA e3 ANA 141 Iogical "and" reg with A, e3 as above
XRA e3 XRA A *Exclusive or" with A, e3 as above
ORA e3 ORA B Logical “or” with A, e3 defined as above
CMP e3 CMP H _Compare register with A, e3 as above
DAA Decimal adjust register A based upon last
arithmetic logic imit operation
CMA Complement. the bits in register A
STC Set the carry flag to 1

15

cMe Complement the carry flag

RLC Rotate bits left, (re)set carry as a side
effect (high order A bit becomes carry)

REC Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)

RAL Rotate carry/A register to left (carry is
involved in the rotate)

RAR Rotate carry/A register to right (carry

is involved in the rotate)
DAD e3 DAD B Double precision add register pair e3 to
- HL {e3 must produce B, D, H, or SP)
5.6. Control Instructions.

The four remaining instructions are categorized as control instructions,
and are listed below o

HLT _ Halt the B0B# processor

DI Disable the interrupt system
EI Enable the interrupt system
NOP No operation

6. ERROR MESSAGES.

when errors occur within the assembly language program, they are listed as
single character flags in the leftmost position of the source listing. The
line in error is alsc echoed at the console so that the source listing. need
not be examined to determine if errors are present. The error codes are

D Data error: element in data statement cannot be
placed in the specified data area

B Expression error: expression is ill-formed and
cannot be computed at assembly time -

L Label error: label cannot appear in this context
(may be duplicate label)

N Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this wersion} '

o Overflow: expression is too complicated (i.e., too
many pending operators) to computed, simplify it

P Phase error: 1label does not have the same value on
' two subsequent passes through the program

16

R . Register error: the value specified as a register
is not compatible with the operation code

v Value error: operand encountered in expression is
improperly formed

Several error message are printed which are due to terminal error
conditions

NO SOURCE FILE PRESENT The file specified in the ASM command does
not exist on disk

NO DIRECTORY SPACE The disk directory is full, erase files
which are not needed, and retry

SOURCE FILE NAME ERROR Improperly formed ASM file name (e.qg,, it
is specified with "?" fields)

SOURCE FILE READ ERROR Source file cannot be read properly by the
assembler, execute a TYPE to determine the
point of error

QUTPUT FILE WRITE ERROR Output files cannot be written properly, most
likely cause is a full disk, erase and retry

CENNOT CLOSE FILE Output file cannot be closed, check to see
if disk is write protected

7. A SAMPLE SESSION.

The following session shows interaction with the assembler and debugger in
the development of a simple assembly language program,

(7

ash SORT, assewble SopT.ASM
CP/M ASSEMBLER - VER 1.8

B15¢ wext Free ald | - .
003h USE Fﬂ?fﬂk ;/?:F ~fulle wed 00 FF C&wdec'md)

?ND OF ASSEMBLY

LIR SORT. =,
SORT ASH souxe file eab ot

SORT BAK loackuy avk edi

SORT PRN Prist file (contaivs fob Claseciers)
SORT HEX weachee code filo

AOTYPE SORT. PN,

!Hsd wzc le laﬂuh ' BORT PROGRAN IN CP/M ASSEMBLY LANGUAGE
0 START AT THE BEGINNING OF THE TRANSIENT PROGRAN &t
glop . ORG 1eeH '
wn.ltdwndnm&&dz X !
6100 214691~3 SORT. LI - H, 84 ;RDDRESS SWITCH TOGGLE
8103 3601 MYl M. ;SET TO 1| FOR FIRST ITERATION
81es5 214781 LRI H. 1 ;ADDRESS INDEX
o168 3680 _ MY 1 M, 8 i1 = @
| - :
. ; COMPARE I WITH ARRAY 812E
810a 7E © COMP, MoV a M ;A REGISTER = 1
218B FEBS CPi N-1 ;CY SET IF 1 ¢ ¢(N-1)
818D D21981 JHT CONT JCONTINUE IF 1 <= (N-2)
; CEND OF ONE PASS THROUGH DATA
110 214801 LK1 H, 5% ;CHECK FOR ZEKO SWITCHES
@113 7EB7C200061 MDY AL M! ORA A! JNZ SORT END OF SORT IF SU=@
i . ' i
8118 FF : RST 7 ;G0 TG THE DEBUGGER INSTEAD OF RE:
; ““’*‘ucounuus THIS PASS
ADDRESSING 1, SO0 LOAD AY(I> INTD REGISTERS
B119 5F1639214SCOHT. MOV E,A! MYI D1,8¢ LLXI H,A¥! DpB D! DAD D
8121 4E?92346 . MOV C,HM! MOV A, C! INX H! MOV B.HM - ;
; LOU GRDER BYTE IN A AHD C, HIGH ORDER BYTE IK B |
i MOV H AND L TQ ABDRESS AV(I+1)
pi25 23 _ THX H
] .
i COMPARE VALUE WITH REGS CONTAINING AvCl)
126 965778239F SUB M! MOV D,A! MOV A, B! INX H! SBB # iSUBTRACT
| ; BORROYW SET IF AVY(I+1)> > AVLI)
8128 DA3Fat JC . INCI ;SKIP IF IN PROPER ORDER
; CHECK FOR EQUAL VALUES

P12E B2CA3FAI DRA D! 42 INCI SKIP IF AVCI) = AY(I+1) 18

or

Bl32 S56702B5E MOy D, M{ MOV M, B! DCX HI MOV E.0

8136 7128722873 MOV M.C! DCK HI MGY M. D! DCX H! MOV M, E

5 |

3 INCREMENT SWITCH COUNT
138 21468134 LX1 H.SU! IHR M

i

; INCREMENT 1
@13F 21470134C3INCT. LKI H, 1! INR M1 JMP CONP.

; DATA DEFINITION SECTION
2146 00 5V, Do e ;RESERVE SPACE FOR SWITCH COUNT
8147 I, s 1 ;SEACE FOR INDEX |
G148 BSBBE4ABIERY. o 5, 160, 36,58, 26,7, 1908, 368, 1008, -32767
BOBA = EQU ($-AY)/2 ;COMPUTE N INSTEAD OF PRE
@15¢C "-—-quh wlue END
AXTYPE SORT' HEX,

. 10010021 4601360121470136007EFEBSD2190@1480

100110080 2146B17EB7C2BRAIFFIF16082148011988 : lo &
. 19B12P0B194ET923462396577B239EDAIFBIB2CAAT ‘“‘%"‘" in
. 198130003FB156702B5E71287228732146013421C7 | HER Tl

. O7014880470134C30001BO6E :

. 10014880050 B64B01ERRI2PA! 42007 BREBR32CA1BR

. B4p1588B64PEB1BABE

. BABEORERDH .

RYDDT SORT.HEX shart ddpug e

16K DDT VER 1.0

XL S dehuk adhes (v ot o B9 shoasd

"'XP"’
P=0paR 108 'c Te 4o (00 ' :
) Change - ,
_ : H
-UFFFF) urdvace fa €539 Sleps | _ , le:tt::

CEZBHRERIP A=PB B=GGAE D=B3000 Hx@@@P S=010@ P=8148 LXI H,@146+8180
"T85 vace |0, sheps |

COZBMBERBID A=P] B=0BPO D=POA0 H=@146 S=0100 Px8188 LXI H.B146
COZBMNBEB]O A=P) P=BAB0 D=POOD H=Q144 S=@]8Q P=0183 MVI H.P|
Co2eMPEQIO® A=P) B=PEBY DwRPRd H=0146 S=0102 P=8185 LXI H.B147
COZBMOERIO® A=B) B=008P D=B0Ad H=0147 S=H10@ P=ald8 MYI MH.B8
CO28MPEB]O® A=Bi B=PObO D=POAD H=Q147 S=0108 P=818A MOY A.H
COZGMOER] D A=00 B=E000 D=00DBA H=0147 S=0l08 P=01mB CFI @3
Ct28MIEQI® A=00 B=E080 D=ROROG H=0147 S5=0190 P=B1ED JNC BLI3
C1ZoMiEQI® A=H0 B=pRAR D=APO0 H=0147 S=@l1@@ P=B110@ LXI H.@6146
C1ZOMIEQIP A~ed B~BODO D=DO2O H=B146 S=810Q P=pli3 MOY A.HM
C120M1ESGID® A=@] B=dPRO DwBDRO H=0146 S=0108Q P=8114 ORA A
CeZbMBEGI® A=P1 B=PRBD D=000D H=@l46 6=0108 PmRi1S JUNZ 08189
COZAMBERI® A=B1 B=0000 D=AUBR H=@146 S=01006 P=R188 LX1 H,B146
CO2BMBEQG]® A=B1 B=0000 DwB@DD H=B146 S=0108 P=22183 MVI M, B}
CeZBMBEDRI® A=H] B=DBRO D=BARY H=@14Ff S5S=0100 P=B1AT LXI -H,.B8147
CoZBMOERID A=p1 B=BRPD D=POGP H=0147 S=01@8 P=A1B8 MYI M.020
CoZaMBER]Dd A=d1 B=PORB D=800® H=D0147? S=€)080 P=01BA MOV A,.M»B)8b
-AlBd : . :

o e
g}?gidc t;sjchaﬁcﬁaduﬁwm'ﬁ sh‘i‘s:f 19

-xP
’ p
P=D10E 100 ygg{- '?"""J"”“"‘ (bun:kv loar_(r'b laec"ml;unj c‘F’projmm

» .
—ng;2 “4race execution £ (OH Sleps
COZEMBEOI@ A=00 B-=0OOG D=BB85 H=0147 $=0109 P=G168 LXI H, 8146
CaZ0MPEGBI® n=00 B=0ADL D=0060 H=0146 S=0188 FP=0163 MVI ., 01 A\w

CeZOMPEOID A=-B0 B=0PBOG D=BHOP H=0146 S=01@0 P=018635 LX1 H., 8147 *d
Cez2oMbdtalo A=60 B=0000 D=00DE H=08147 S=8la0 P=01G5 MVW[N,08 N
CeZOMbEald fA=060 B-0GOG D=06RD H=x9147 ES=01006 P=0164 MOV A.M
CaZovPEeld n=bo B=06D0 D=bhbE H=©147 S=081068 P=014GB CP1 03 F/}
C1ZeMiEQI® A=90 B=0BBO D=-06WE H=0147 S=6lbo P=816D JC 8113
Ci1ZaGMiEa]la A=HB B=0080 N=B00E H=6147 S=0180 P=H119 "MOV E.R
C1ZéniEBl1® A=#0 B=06B0 D=BO0QB H=G147 S=01@0 P=@iis M¥iI D.0e
C1ZO0MIEG]ID® A=B0 B=0BOD® D=(PBE H=0G147 S=@108 P=011C Lul H.8i48
Ci1Z&éMiEBI® A=860 B=00Q&0 D=P0OP H=8148 S=0198 P=0tiF BAbL D

Y

Agazen1sela A=68 B=GGBO D=BPOB H=914 5=0160 P-812@ DAl D
' LOZ@MIEGI® A=d@ B-G@B@ D=p@@d H=@l1483 S=@ied P=atzl HOV .0
COZEMIERID A=B@ B=EBA5 D=B@aU H=0148 S=Bled F=ulz2 AO¥ 8. C
COZEMIE@I® A=05 B=pOBS D=RGBO H=G148 S=0100 P=0123 INXK H
COZBMIE@I@ A=B5 B=BOBS [=08E0 H=0149 S:=6180 P=G124 MOV B, M=8125
-Ligg -
¥

B1BG LX! H.B146 : Ackomatic
B183 MV M, 81 ut

reok povAl
B165 LXI H, 8147 brea¥pe
B198 MYl M. @8 ,
B16A MOV 4, N hat Sowme code
§198 CP1 89
B160 JC @119 Frowe 100K

a1t LXI H,Bi46
113 MOY A.M
a1t4 ORA A

115 JHZ Bied

.-LB

BI18 RST @7 L&t wore
8119 MOV E.A

aila H¥YI D.B0
B1IC LX1 H.pl48

" alovt (6t o rubadt
-G, § IB‘? ?km’t ’Pvayuu-gmu
+9127 shopped wth an cdlernal wtrnpt 7 frow _—Fm& we| (proquu s
“T42 \ook ot loopmy Proara w fvoce mode ! Locpmg | tackely

CazZoMpEale A=36 B=PB64 D=HOV6 H=2156 S=08189 P=21zg?7 NnNOV D.A
COZ0MBEQI® A=3% B=BR64 D=3806 H=0156 S=0100 P=8128 MOV RA.B
CAZGMOEBIB A=BB B~0864 D=3806 H=6156 S=9100 P=0129 INX H
COZOMOERAT® A=HO B=0064 D=3806 H=0157 S=@1@0 P=0lza S5BB N+0128B

Thise kf"'atad‘a & sated, bud ?vajrau; clocsvtf 5‘\'6?" .

curved 6 (01250 and vwe 1 veal Ame o 11BH

b148 B5 BB B7 BB 14 DG 1E GO

G156 32 B8 64 @B 64 B@ 2C Bl EG ©3 Bl 80 @0 83 @6 86 2 D.L

P16 pe B9 By 0D 0B BP B9 b6 69 .. DO €06 D@ b AH B8

20

"G-#; yeturn 4o CP/M .

nT ‘ . "

PDT SORT HEK) reload -HM mervy Iﬁ\AﬁS‘
16K LBT VER 1.9

HEXT PC
815C BEOE
~XP

P=000p ma) set PC o ‘aejmnm:j af?roamm
~L1eD, lat bed cpeode

8140 JNC 9119’/
Bils LX1 H.B8146

7 Aot ek wnkw ruboud
~a10D) assewlde new opcode.

@160 JC 113
s

8ile
LY Lot -s*url'wn sechon of Promm

b186 LXI H.BL46
8183 MVI M,61
B185 LX1 H,8147
6108 MY1 M,88

ook sk with ket
-aln3 2 CI&A;?‘ “-Sw’,.{.d,‘h tukhd—lt‘bﬁ{tﬂﬁ_ "b Efﬁ
8133 MVI Ha%; '

31352 . . |
-~C vetwu P CP/ M wikla G{'{-f-- (Gﬁ Wo’k‘ 0s wtlo

SAVE 1 SORT.COM, saue 1 pose (25 bytes, Fromn 10010 1FFH) on disk i case

_ . we have o velood {ater
AYDDT SORT. COM, vesart TOT wdh : '

Saved memory \mant
16K DDT VEK 1. @

NEXT : - -
359& a’:ga " eont” ‘F{[L alwags sterts with address 100K
=G, run-the Proran Lroym PC=IU0H
W A .
«0118 progronmed shop (25T7) enesuntered
~D148
tf-claclawfa«_tj c0rfed
Y oo

6148 85 PO ©7 @8 14 88 {E

B156 32 88 64 AP €4 80 2C @1 EB 03 B1 50 80 08 09 88 2.0 D:s.

0156 98 e 00 00 0B P26 0O O° 02 09 B BO P8 @8 °p RO
6170 B0 PO Q@ 9D G0 PO BB ©Q@ B3 00k 8O GO bV BB 00 B8

- GD} returu o CF/A

ED SORT.ASH moke ch 4o MJ[M‘ 'f'v"ﬁ'ﬁm |

chi-2

N, 60 20TT, fond wedt " o
HVI M.B i1 = @
*“Ju‘, one [mc .Lkﬂ . -
H. 1 sADDRESS INDEXR
’)ufamﬁﬂ{me
MVI M, 1 iSET TGO 1 FDR FIKRST ITERATION
K'E) kdl \uaad-“"t wod line
CLXI Ho 1 " ;ADDRESS INDEX
*I'? wetrt W e
Myl M. ;ZERD Sy
*5 .
L¥1 H. 1 iADDRESS 1NDEX
enancl JeT, -
JNC*E
CONHT sCONTINUE TIF T (= (§-2)
»-2010CpL Y,
JC g,CGNT ;CONTINUE IF I (= (N-2)
*E wree 4vem dish A '
4 [erto bk

4SM SORT. nn%;*xhewnﬁk

CPsW ASSEMBLER - VER 1.0

8150 waet addras 4o assandde
#oIR USE FACTOR
END OF ASSEMBLY

BDT SORT. HEX M‘Pvajww char:y,s '

t6K DBDT VER t. 0
HEZT PC

B15C pooo
-Glﬁ%g

r@il8
-Dl#%g

/“ . socked

Bi48 BS @0 B? 0a 14 BO 1E B0

2158 32 B0 64 PO &4 BD 2C 81 EB 03 Dl 86 00 68 Q6 PO.2. D.D......

fl1€E 0O BG VD 60 00 DB PO BO 8D OO0 BHO GO @0 OB PO HE
- a\:ov'{ wrﬂa ‘mbm’i"

..(,-@‘2 fe’lw'“'b ({P/M_..Twcjmm CLgd'.‘ Okt.

72

