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MST-80 MICROPROCESSOR TRAINER

INTRODUCTION

This trainer is a complete, se1f—contained.microcomputer system housed
in a brief case /for portability and convenience of use. It utilizes
INTEL's* 8080A microprocessor and associated -support chips.

The trainer is designed to allow the student to explore and learn the
hardware and software capabi]ity of the 8080 microprocessor. It includes
a breadboard socket so that experiments can be interfaced to the trainer.
This option allows the student to learh both interfacing techniques and
programming.

A keyboard and numerical display are provided for the student to commun-
icate with the trainer. This combination eliminates the need for ex-
pensive and bulky I/0 such as a teletype. The keyboard and numerical
display can be used with either the octal number system or the hexa-
decimal number system. A header socket is provided to select which
number system to be is utilized by the display. Two keyboard monitor
programs are provided, one to allow octal number input from the keyboard
and the other to allow hexadecimal input. The user can select which
number system he prefers by plugging in the appropriate header socket
along with its companion preprogrammed PROM.

A block diagram of the trainer is shown in Figure 1. . Figure 6 shows the
complete trainer in its case, Figure 7 a close-up of the circuit card
with keyboard. '

Hardware Features of the trainer are:

1. Uses INTEL's 8080A CPU and support chips.

*Reference to a company or product name does not imply approval or
recommendation of the product by the University of California or the
U.S. Energy Research and Development Administration to the exclusion
of others that may be suitable.



2. Has 1024 bytes of read/write memory (RAM).
'3.  Has sockets for three 1702A PROM's (768 bytes). Also one uncom-
: mitted socket that can be jumper-wired to a 24 PIN ROM of user's

choice. Normally a MONITOR program resides in PROM 9.

4. Has a 24-key keyboard. This is an input device, accessed through
memory mapped I/0. See Figure 3 for the memory map.

5. Has a three digit display with full hex number capability. This is
an output device with output port address #.

6. - Has one 8jbit input port. Address = 1.

7. Has one 8—bit.output_port (Tatched). Address = 1.

8.l Has sing]e step capability.

9. H&s ten uncommitted LED's that can easily be connected to any
desired signals (address lines, data 1in¢s, stgtus, etc;). These

are used in single step mode.

.Figure 2 shows the connectors used to interface the trainer and also
gives detailed information on each signal and its connector pin number.

MONITOR PROGRAM (OCTAL)

The trainer contains a monitor program that allows the user to enter a
program in RAM, examine locations, change contents of locations and run
the user program from a specified starting address. ‘

The monitor program also contains a debug routine to assist the user in
"program debug. This routine allows the user to insert a break point
(3778) in his progrém. When the break point is encountered the break
routine (in the monitor program) will be entered which will save all the
CPU registers and the break point address, and will put 222 in the
display to signal the user that a break point has been encountered.
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The contents of the CPU registers and break point address are Sayed in
the following dedicated page 7 memory locations:

BREAK POINT MEMORY STORAGE LOCATIONS (MEMORY PAGE 7)

LOC CONTENTS ~ LOC CONTENTS
222 PCL ) Break 227 B REG

. " Point

223 PcH ) Address - 230 E REG
224 PSW _ 231 . D REG
225 A REG S 232 L REG

226 C REG 233 H REG

These 106ation$’can now be examined using the DISP feature of the
monitor prbgram and, if desired, can be changed to new values using the
ENTER feature of the monitor program. A detailed description of how to
do this is included in the SAMPLE PROGRAM write ‘up.

‘The RUN feature of the monitor program starts the users program with the
CPU registers intialized to the current values found in these dedicated

memory locations. This allows you to change these values before pushing
RUN. | |

A complete listing of this program is included at the end of this report
along with a flow chart, Figures 4 and 5. Figure 3 is a memory map for
the system. A sample program is included in the report.

OPERATION OF KEYBOARD USING OCTAL MONITOR

KEYBOARD LAYOUT

C| D E F RESET . | EXA
8 9 A B RUN LDH
4 5 b 7 DISP S3
0 1 2 3 ENTER S4




RESET:

NUMBER KEYS:

" LDH:

DISP:

ENTER:

Resets the system and starts the monitor program running.

~ Pushing these keys cause a number to be entered into the

display in a left shift mode. Care must be exercised
when entering numbers to ensure that the intended number
is éntered, since the display is not cleared but simply
shifted left. For instance if you want to enter a 1
into the display, you should push §P1 to insure the old
number is completely replaced. ‘

The current value in the display is also stored in a
memory location called KYTEM.

Keys 8 thru F are ignored by the octal monitor program.

In order to address any location in memory the user needs

to specify the complete address. The high order address

is specified by keying in the desired value into the display
and then pushing LDH (LOAD H). This stores the high

value in a memory location called HVALU for later use by

the monitor program.

The Tow order address is specified by the current con-
tents of the display whenever it is needed, i.e., in RUN
or DISP operations. Its current value is kept in a memory
location called LVALU.

When it is desired to examine the contents of a memory
location the DISP key is used. The high order address is
selected by entering the desired value and using the LDH
key, as explained above. The low order address is then

" keyed into the display, then Lhe DISP key is pushed.

This will cause the contents of the desired address to be
displayed.

The ENTER key is used to enter new values into specified
locations. ENTER also automatically increments the

DISTRIBUTION OF THIS DOCUMENT 1S UNU‘WIWE{
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address value, allowing the user to quickly examine or
_enter new values into consecutive locations in memory.

- The address is set by using the DISP key since the present
value should be displayed before you enter a new value. '
After pushing DISP a new value may be keyed into the |

~display and when ENTER is pushed this value is entered
into the currently addressed location.

In addition, the address is incremented and the contents
of the next consecutive location is displayed. That
value can be re-entered by pressing ENTER again or a new
value can be keyed in before pressing ENTER.

RUN: This a]]ows'you to start a user program at any specified
' address. The address is specified by using the LDH key
. and keying in to the display the low order address before
pushing RUN. Remember RUN initializes all CPU registers
from dedicated memory locations before starting the user
program.

EXA: Pushing this key displays the current value of the Tow
order address. This is useful when examining a program
(stepping through using ENTER) and you forget where you
are.

USE_OF THE_KEYBOARD READ ROUTINE AS A CALL FROM A USER PROGRAM (OCTAL
MONITOR) '

The KEY routine in the monitor program is written as a subroutine and
may be ca11ed by a user program. This is useful when the user's program
réquires operator interaction since the keyboard is convenient for this
purpose. The subroutine is called by a CALL KEY instruction (315 (26
Qbﬂ) and returns to the user with the value of the number key pushed in
the C register. Thé A register also contains this number in the Tow



order octal digit, and in addition contains the last two key entries in
the high-order digits. ' '

Two precautions must be obServed when using this subroutine. First, the
“KEY routine uses the A, B, C, H and L registers. If the user program
also uses the registers, they must be saved before ca]iing KEY. Second,.
only number keys.-can be used when KEY is called. The control keys are
not decoded in the KEY subroutine and should not be used. Also number
keys ‘larger than 7 will be ignored when using the octal monitor. There-
fore a number key between 0 and_7 must be pushed before a return is
completed to the user program. '

SAMPLE PROGRAM

MEMORY  MACHINE

LOCATION CODE IN OCTAL A
209 P76 MVI A, P CLEAR AC
PPl 90D | | :
P2 323 AGAIN: ouT ; SEND AC TO DISPLAY
pp3 ppp - |
pp4 0p6 MVI B, P ; CLR B REGISTER
pp5 pop
po6 e MVI C, 190 ; PUT 100 IN C REGISTER
007 - 1pp : o .
p1p - s LOOP: INRB ; INCREMENT B
P11 312 - JZ LOOP ; DO IT AGAIN
P12 p1p |
213 . ppa
P14 5 - DCR C ~; DECREMENT C
915 3p2 ~ JNZ LOOP ; LOOP UNTIL ZERO
P16 p1p |
P17 - opph
p2p  3p6 ‘ ADI PP ; ADD ONE TO AC
p21 - PPl | N
P22~ 3p3 JMP AGAIN  ; GO DISPLAY AC & DO AGAIN
p23  pp2 | |
p24 P4



This program can be used to demonstrate the use of the OCTAL monitor
program. Load the sample program into memory as follows:

Before you start, you need to decide where to load it. Let's put if in
page 4 starting at location @ (absolute address = @499 hex). First,
key PP4 into the display and then push the LDH (load H) key. This sets
the high order address (High byte) to page 4. Next key 9P@ into the
display, and push the DISP key. This will display the current contents
of location @ on page 4. Now you can key in the machine language code
for the first instruction, 76 (MVI'A), and push the ENTER key. This
will enter the 976 into location P and will also display the contents of
the next location (loc 1). Now you can key in the next code, P@@,

“and push ENTER again. The @PP will be entered into location 1 and then
location 2 wi]l be displayed. Continue this process until the entire
program is entered.

If at any time a mistake is made while keying in a number, just continue
to key in until the correct value appears in the display. (This number
is not used until a control key is pressed.) If at any time while
loading a program you forget where you are, just press EXA (examine
"address) and the current low order address will appear in the display.
You can continue on from that point by pushing the DISP key and then the
ENTER key. Or you can key in a new address into the display; then
'pushing theADISP key will allow you to continue from that address.

After the‘entire program has been keyed in, you may want to check it for
correctness. This is done by keying the starting address into the
display (P99 for our sample program), pushing the DISP key and then
repeatedly pushing the ENTER key. This will step though the program
sequentially and display each location so it can be checked. If a
mistake is found, just key'in the correct value before the ENTER Key 1is
pushed.

After the program is loaded satisfactorily you cén run it if so desired.
To run the program, key the starting address (P@@ for our sample program)
into the disp]ay'and push RUN. If you are not sure what the current



high order address (HVALU) 1is, you should set it to the correct value
using the LDH key as explained previously.

USING A BREAK POINT IN PROGRAM DEBUGGING

PROGRAM FLOW CHART

- START The use of a break point in program debugging
can be demonstrated using this sample program..
CLEAR
AC The program is a simple count routine that will
AGAIN;\ cause the display to count up at a fixed rate
DISPLAY determined by the constants in the counting loops.
AC If you execute the program as it is written, you
9 will notice the display is counting very rapidly.
CLEAR ' This is not intentional and is caused by a program -
B_REG bug. Let's use the break point to find it. Looking
: 4’ at the flow chart at the left, you will sée there
IEUE ;28 are two counting loops. The first one counts up to
= 3778 and then goes back to @. Then the second
INCREMENT count loop is entered. It counts the number of
B REG times the first loop must go thru a full count (4008

counts). Since the C register is initialized to
1008, the second Toop counts 1008 counts, hence the
‘total counts for both Toops is 4005 x 1004 (=]6384]0)
counts. After the full count is reached, 1 is added

to the A register and its contents are displayed.

DECREMENT Then the count loop starts over. This program runs
C REG '

endlessly until stopped by the user. The first
thing to check is to see if the registers are ini-
tialized correctly. This is done by inserting a

break point (break point code = 3778) in place of
the INR B instruction at memory location 910.
(Remember to set the high order address to page 4.)

Run the program. It will break when the 377 is

encountered and a 222 will appear in the display to

signal the user that a break has occured. The break
routine automatically sets HVALU to page 7 and 222



is being displayed so if you now push the DISP key, the contents of
memory location 222 page 7 will be disp]éyed. This location contains
the low byte of the address where the break occured. The high byte of
the break address is stored in location 223, so pushing the ENTER key -
will cause it to be displayed. Rebeated use of the ENTER key allows you
to examine the contents of all the CPU registers. The BREAK routine
stores these away in the following memory locations:

BREAK ROUTINE MEMORY STORAGE LOCATIONS (MEMORY PAGE 7)
(Octal Monitor)

LOC CONTENTS | LOC CONTENTS

222 PCL ) Break 227 B REG
Point

223 PcH ) Address 230 E REG-

224 - PSW 231 D REG

225 A REG ' 232 L REG

226 C REG 233 H REG

Register C is stored in location 226 and upon examination should contain
1008. Location 225 (A REG) and 227 (B REG) should contain zero. If
these are 0.K. replace the INR B instruction (code PP4) in location

P19 and put a break point (377) in location P14 in place of the DCR C

" instruction. Run the program. When it breaks, examine loc 227 again to
see what the B REG is now. It should be a zero when the count']oop is
exited. But it is not zero! The bug must be in this loop. Upon in-
spection of the program it is apparent that the JZ Loop instruction
which tests for completion of the count, is testing the wrong condition.
It exits the loop on nonzero count father than zero count, so you need
to replace the JZ instruction with a JNZ (code 3@2) instruction. Replace .
the break point in P14 with DCR C (P15) and run the program. It should
run 0.K. with the display counting much slower.

COMMENT: This may appéar to be'a trivial bug and shou]dibe apparent by
just inspecting the program listing. But this is one of the most common
programming errors (that is, using the wrong sense of a test instruction),
and is usually quite difficult to find in a more complex program.
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.Figure.l. Operational Block Diagram of MST-80 Microprocessor Trainer
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Figure 2. Panel Connectors Used to Interface MST-80 Microprocessor Traingr
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FFFF

Figure 3. Memory Map for MST-80 Micfoprocessor Trainer

HEX OCTAL
2000 PROM @ it
MONITOR PROGRAM
POFF . : pep377
p1pp PPpapn
PROM 1 Page 7 locations used by
__DIFF ppR777 monitor program
pepp - : 001000
PROM 2 LOC CONTENTS ‘
P2FF pp1377 216 KYTEM (current value of
3 14 229 LVALU display)
p3pp : PROM 3 pR1400 221 HVALU
222 PCL
pspp  UNCOMMITTED SOCKET ... 222 pCL }pCSTO
2 2 224 PSW
pagp RAv 4 pp2000 225 A
226 c
PAFF pp2377 227 B
5 24 23p E
9500 RA 5 Pp2499 231 0
232 L
PSFF pp2777 233 H
p6pp Pp3009
RAM 6 36p STACK PTR
. Q6FF 893377 /
p7op RAM 7 pP34pP
REGISTER STORAGE .
P7FF & STACK 03777
8 4
P8O0 . evBoaro PRGMD
OFFF (PAGES 10-17 OCTAL) 007777 FLAGWORD
1999 manan D7 D6 DS D4 D3 D2 D1 NA
NOT USED
17FF 913777 S1Z |0 {AC|P IP f1 |CY
1899 P14ppp | SIGN —4 1 4 4
: KEYBOARD 7ERO )
(PAGES 30-37 OCTAL) '
VFFF 17777 | AUX CARRY
2000 020000 | paARITY
NOT USED
177777 CARRY
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OCTAL MONITOR FOR MST-80

oL ¢
SET COL PTR TO
coL # 1
INIT STACK 1 LDKY
PTR & DISPLAY
7 READ KYBD
CALL KEY s
NO :
KEY DOWN
IN THIS
KEY A coL?
BUMP
READ KYBD CoL PTR
YES
YES NO
coL 1
LOAD TABLE
YES POINTER
L2 ¢ | DECOD ¢
DELAY
LOAD TABLE
POINTER DECODE KEY
REP DECOD § . SHIFT ¢
: GO TO
- SHIFT NEW
READ KYBD DECODE KEY CNTL | o1éit Into o,
ADD (2) 10 ’ ' . STORE
CORRECT VALUE & DISPLAY IT
FOR COL 2. .
SHIFT l
SHIFT NEW DIGIT , '
INTO OLD NUMBER |- _ RETURN T
DELAY ! - CALL KEY OR USER
PROGRAM
STORE
& DISPLAY IT

"RETURN TO
CALL KEY OR USER
PROGRAM

Figure 4. Flowchart for Octal MONITOR Program for MST-80
) Microprocessor Trainer (Continued in Figure 5)
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CONTROL KEY
ROUTINES

CNTL *

OCTAL MONITOR (CONT)

LOAD TABLC
POINTER

JDECODE KEY

JMP KEY

[ ¥

GET MEM PTR
FROM H&L VALU

BREAK ROUTINE

BRK W

Y

PUT GEN REGS
AWAY IN MEM

Y

PUT CURRENT PUT BRK ADDR
GET MEM PTR
DISPLAY VALUE AWAY IN MEM
LOW FROM DISPLAY IN MEM LoC
GET MEM PTR BUMP MEM LOAD H&L VALU
HIGH FROM HVALU POINTER WITH BKSTO
GET CONTENTS DISPLAY CONTENTS DISPLAY
OF THIS LOC . OF NEXT MEM 222
LOCATION
: STORE NEW JMP KEY
DISPLAY IT NO. IN KYTEM
JMP KEY JMP KEY
LOAD GEN
REGISTERS FROM
MEM STORAGE
GET CURRENT . LOAD PSHW
DISPLAY VALUE
] |
» GET START ADDR
. STORE IT FROM H&L VALU
DISPLAY .CURRENT IN HVALU :
LVALU e
* : * PUT H&L IN PC
JMP KEY
JMP KEY & RUN PROG

Figure 5. Flowchart for Octal MONITOR Program
for MST-80 Microprocessor Trainer
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