')P UCID-17145

Lawrence Livermore Laboratory

! MST-80 MICROPROCESSOR TRAINER

Gordon D. Jones

May 21, 1976

This is an informal report intended
primarily for internal or limited
external distribution. The opinions
and conclusions stated are those of
the author and may or may not be
those of the laboratory.

Prepared for U.S. Energy Research &
Development Administration under
contract No. W-7405-Eng-48.

WISTRIBUTION OF THIS DOCUME =NT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

N

MST-80 MICROPROCESSOR TRAINER

CONTENTS = : - PAGE

Introduction.. .. .'. e e e e e e e T
HérdwareAFeatufes of fhe Trainer . e e .2
MONITOR'Program (Octalj .. ; e e e e e e e e e e e e e e e o3
Operation of Keyboard Using Oétal_MONITOR e e e e e e e e .. .8
Use of the KEYBOARD READ Routine as a Call from a User

Prdgramx(Octal Mbnftor) e e e e e e e e e e e6
Sample Program‘. . . . R 7
Using a BREAK POINT inAProgram Debugging9
Figures . . « v v v v v v .. L 12419
Program Listing e e e .. e e e 20-24

warranty, exptess or implied, or assumes any legal
Hability or ibility for the

or usef of any infc product or
process disclosed, or represents that its use would not
infringe privately owned rights.

-1- DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED

MST-80 MICROPROCESSOR TRAINER

INTRODUCTION

This trainer is a complete, se1f—contained.microcomputer system housed
in a brief case /for portability and convenience of use. It utilizes
INTEL's* 8080A microprocessor and associated -support chips.

The trainer is designed to allow the student to explore and learn the
hardware and software capabi]ity of the 8080 microprocessor. It includes
a breadboard socket so that experiments can be interfaced to the trainer.
This option allows the student to learh both interfacing techniques and
programming.

A keyboard and numerical display are provided for the student to commun-
icate with the trainer. This combination eliminates the need for ex-
pensive and bulky I/0 such as a teletype. The keyboard and numerical
display can be used with either the octal number system or the hexa-
decimal number system. A header socket is provided to select which
number system to be is utilized by the display. Two keyboard monitor
programs are provided, one to allow octal number input from the keyboard
and the other to allow hexadecimal input. The user can select which
number system he prefers by plugging in the appropriate header socket
along with its companion preprogrammed PROM.

A block diagram of the trainer is shown in Figure 1. . Figure 6 shows the
complete trainer in its case, Figure 7 a close-up of the circuit card
with keyboard. '

Hardware Features of the trainer are:

1. Uses INTEL's 8080A CPU and support chips.

*Reference to a company or product name does not imply approval or
recommendation of the product by the University of California or the
U.S. Energy Research and Development Administration to the exclusion
of others that may be suitable.

2. Has 1024 bytes of read/write memory (RAM).
'3. Has sockets for three 1702A PROM's (768 bytes). Also one uncom-
: mitted socket that can be jumper-wired to a 24 PIN ROM of user's

choice. Normally a MONITOR program resides in PROM 9.

4. Has a 24-key keyboard. This is an input device, accessed through
memory mapped I/0. See Figure 3 for the memory map.

5. Has a three digit display with full hex number capability. This is
an output device with output port address #.

6. - Has one 8jbit input port. Address = 1.

7. Has one 8—bit.output_port (Tatched). Address = 1.

8.l Has sing]e step capability.

9. H&s ten uncommitted LED's that can easily be connected to any
desired signals (address lines, data 1in¢s, stgtus, etc;). These

are used in single step mode.

.Figure 2 shows the connectors used to interface the trainer and also
gives detailed information on each signal and its connector pin number.

MONITOR PROGRAM (OCTAL)

The trainer contains a monitor program that allows the user to enter a
program in RAM, examine locations, change contents of locations and run
the user program from a specified starting address. ‘

The monitor program also contains a debug routine to assist the user in
"program debug. This routine allows the user to insert a break point
(3778) in his progrém. When the break point is encountered the break
routine (in the monitor program) will be entered which will save all the
CPU registers and the break point address, and will put 222 in the
display to signal the user that a break point has been encountered.

-3-

The contents of the CPU registers and break point address are Sayed in
the following dedicated page 7 memory locations:

BREAK POINT MEMORY STORAGE LOCATIONS (MEMORY PAGE 7)

LOC CONTENTS ~ LOC CONTENTS
222 PCL) Break 227 B REG

. " Point

223 PcH) Address - 230 E REG
224 PSW _ 231 . D REG
225 A REG S 232 L REG

226 C REG 233 H REG

These 106ation$’can now be examined using the DISP feature of the
monitor prbgram and, if desired, can be changed to new values using the
ENTER feature of the monitor program. A detailed description of how to
do this is included in the SAMPLE PROGRAM write ‘up.

‘The RUN feature of the monitor program starts the users program with the
CPU registers intialized to the current values found in these dedicated

memory locations. This allows you to change these values before pushing
RUN. | |

A complete listing of this program is included at the end of this report
along with a flow chart, Figures 4 and 5. Figure 3 is a memory map for
the system. A sample program is included in the report.

OPERATION OF KEYBOARD USING OCTAL MONITOR

KEYBOARD LAYOUT

C| D E F RESET . | EXA
8 9 A B RUN LDH
4 5 b 7 DISP S3
0 1 2 3 ENTER S4

RESET:

NUMBER KEYS:

" LDH:

DISP:

ENTER:

Resets the system and starts the monitor program running.

~ Pushing these keys cause a number to be entered into the

display in a left shift mode. Care must be exercised
when entering numbers to ensure that the intended number
is éntered, since the display is not cleared but simply
shifted left. For instance if you want to enter a 1
into the display, you should push §P1 to insure the old
number is completely replaced. ‘

The current value in the display is also stored in a
memory location called KYTEM.

Keys 8 thru F are ignored by the octal monitor program.

In order to address any location in memory the user needs

to specify the complete address. The high order address

is specified by keying in the desired value into the display
and then pushing LDH (LOAD H). This stores the high

value in a memory location called HVALU for later use by

the monitor program.

The Tow order address is specified by the current con-
tents of the display whenever it is needed, i.e., in RUN
or DISP operations. Its current value is kept in a memory
location called LVALU.

When it is desired to examine the contents of a memory
location the DISP key is used. The high order address is
selected by entering the desired value and using the LDH
key, as explained above. The low order address is then

" keyed into the display, then Lhe DISP key is pushed.

This will cause the contents of the desired address to be
displayed.

The ENTER key is used to enter new values into specified
locations. ENTER also automatically increments the

DISTRIBUTION OF THIS DOCUMENT 1S UNU‘WIWE{
N1

address value, allowing the user to quickly examine or
_enter new values into consecutive locations in memory.

- The address is set by using the DISP key since the present
value should be displayed before you enter a new value. '
After pushing DISP a new value may be keyed into the |

~display and when ENTER is pushed this value is entered
into the currently addressed location.

In addition, the address is incremented and the contents
of the next consecutive location is displayed. That
value can be re-entered by pressing ENTER again or a new
value can be keyed in before pressing ENTER.

RUN: This a]]ows'you to start a user program at any specified
' address. The address is specified by using the LDH key
. and keying in to the display the low order address before
pushing RUN. Remember RUN initializes all CPU registers
from dedicated memory locations before starting the user
program.

EXA: Pushing this key displays the current value of the Tow
order address. This is useful when examining a program
(stepping through using ENTER) and you forget where you
are.

USE_OF THE_KEYBOARD READ ROUTINE AS A CALL FROM A USER PROGRAM (OCTAL
MONITOR) '

The KEY routine in the monitor program is written as a subroutine and
may be ca11ed by a user program. This is useful when the user's program
réquires operator interaction since the keyboard is convenient for this
purpose. The subroutine is called by a CALL KEY instruction (315 (26
Qbﬂ) and returns to the user with the value of the number key pushed in
the C register. Thé A register also contains this number in the Tow

order octal digit, and in addition contains the last two key entries in
the high-order digits. ' '

Two precautions must be obServed when using this subroutine. First, the
“KEY routine uses the A, B, C, H and L registers. If the user program
also uses the registers, they must be saved before ca]iing KEY. Second,.
only number keys.-can be used when KEY is called. The control keys are
not decoded in the KEY subroutine and should not be used. Also number
keys ‘larger than 7 will be ignored when using the octal monitor. There-
fore a number key between 0 and_7 must be pushed before a return is
completed to the user program. '

SAMPLE PROGRAM

MEMORY MACHINE

LOCATION CODE IN OCTAL A
209 P76 MVI A, P CLEAR AC
PPl 90D | | :
P2 323 AGAIN: ouT ; SEND AC TO DISPLAY
pp3 ppp - |
pp4 0p6 MVI B, P ; CLR B REGISTER
pp5 pop
po6 e MVI C, 190 ; PUT 100 IN C REGISTER
007 - 1pp : o .
p1p - s LOOP: INRB ; INCREMENT B
P11 312 - JZ LOOP ; DO IT AGAIN
P12 p1p |
213 . ppa
P14 5 - DCR C ~; DECREMENT C
915 3p2 ~ JNZ LOOP ; LOOP UNTIL ZERO
P16 p1p |
P17 - opph
p2p 3p6 ‘ ADI PP ; ADD ONE TO AC
p21 - PPl | N
P22~ 3p3 JMP AGAIN ; GO DISPLAY AC & DO AGAIN
p23 pp2 | |
p24 P4

This program can be used to demonstrate the use of the OCTAL monitor
program. Load the sample program into memory as follows:

Before you start, you need to decide where to load it. Let's put if in
page 4 starting at location @ (absolute address = @499 hex). First,
key PP4 into the display and then push the LDH (load H) key. This sets
the high order address (High byte) to page 4. Next key 9P@ into the
display, and push the DISP key. This will display the current contents
of location @ on page 4. Now you can key in the machine language code
for the first instruction, 76 (MVI'A), and push the ENTER key. This
will enter the 976 into location P and will also display the contents of
the next location (loc 1). Now you can key in the next code, P@@,

“and push ENTER again. The @PP will be entered into location 1 and then
location 2 wi]l be displayed. Continue this process until the entire
program is entered.

If at any time a mistake is made while keying in a number, just continue
to key in until the correct value appears in the display. (This number
is not used until a control key is pressed.) If at any time while
loading a program you forget where you are, just press EXA (examine
"address) and the current low order address will appear in the display.
You can continue on from that point by pushing the DISP key and then the
ENTER key. Or you can key in a new address into the display; then
'pushing theADISP key will allow you to continue from that address.

After the‘entire program has been keyed in, you may want to check it for
correctness. This is done by keying the starting address into the
display (P99 for our sample program), pushing the DISP key and then
repeatedly pushing the ENTER key. This will step though the program
sequentially and display each location so it can be checked. If a
mistake is found, just key'in the correct value before the ENTER Key 1is
pushed.

After the program is loaded satisfactorily you cén run it if so desired.
To run the program, key the starting address (P@@ for our sample program)
into the disp]ay'and push RUN. If you are not sure what the current

high order address (HVALU) 1is, you should set it to the correct value
using the LDH key as explained previously.

USING A BREAK POINT IN PROGRAM DEBUGGING

PROGRAM FLOW CHART

- START The use of a break point in program debugging
can be demonstrated using this sample program..
CLEAR
AC The program is a simple count routine that will
AGAIN;\ cause the display to count up at a fixed rate
DISPLAY determined by the constants in the counting loops.
AC If you execute the program as it is written, you
9 will notice the display is counting very rapidly.
CLEAR ' This is not intentional and is caused by a program -
B_REG bug. Let's use the break point to find it. Looking
: 4’ at the flow chart at the left, you will sée there
IEUE ;28 are two counting loops. The first one counts up to
= 3778 and then goes back to @. Then the second
INCREMENT count loop is entered. It counts the number of
B REG times the first loop must go thru a full count (4008

counts). Since the C register is initialized to
1008, the second Toop counts 1008 counts, hence the
‘total counts for both Toops is 4005 x 1004 (=]6384]0)
counts. After the full count is reached, 1 is added

to the A register and its contents are displayed.

DECREMENT Then the count loop starts over. This program runs
C REG '

endlessly until stopped by the user. The first
thing to check is to see if the registers are ini-
tialized correctly. This is done by inserting a

break point (break point code = 3778) in place of
the INR B instruction at memory location 910.
(Remember to set the high order address to page 4.)

Run the program. It will break when the 377 is

encountered and a 222 will appear in the display to

signal the user that a break has occured. The break
routine automatically sets HVALU to page 7 and 222

is being displayed so if you now push the DISP key, the contents of
memory location 222 page 7 will be disp]éyed. This location contains
the low byte of the address where the break occured. The high byte of
the break address is stored in location 223, so pushing the ENTER key -
will cause it to be displayed. Rebeated use of the ENTER key allows you
to examine the contents of all the CPU registers. The BREAK routine
stores these away in the following memory locations:

BREAK ROUTINE MEMORY STORAGE LOCATIONS (MEMORY PAGE 7)
(Octal Monitor)

LOC CONTENTS | LOC CONTENTS

222 PCL) Break 227 B REG
Point

223 PcH) Address 230 E REG-

224 - PSW 231 D REG

225 A REG ' 232 L REG

226 C REG 233 H REG

Register C is stored in location 226 and upon examination should contain
1008. Location 225 (A REG) and 227 (B REG) should contain zero. If
these are 0.K. replace the INR B instruction (code PP4) in location

P19 and put a break point (377) in location P14 in place of the DCR C

" instruction. Run the program. When it breaks, examine loc 227 again to
see what the B REG is now. It should be a zero when the count']oop is
exited. But it is not zero! The bug must be in this loop. Upon in-
spection of the program it is apparent that the JZ Loop instruction
which tests for completion of the count, is testing the wrong condition.
It exits the loop on nonzero count father than zero count, so you need
to replace the JZ instruction with a JNZ (code 3@2) instruction. Replace .
the break point in P14 with DCR C (P15) and run the program. It should
run 0.K. with the display counting much slower.

COMMENT: This may appéar to be'a trivial bug and shou]dibe apparent by
just inspecting the program listing. But this is one of the most common
programming errors (that is, using the wrong sense of a test instruction),
and is usually quite difficult to find in a more complex program.

-10-

- ACKNOWLEDGMENTS

I wish to acknowledge the contributions of Eugene R. Fisher and James M.
" Spann to ‘the design of the trainer and its operating features.

-1-

KEYBOARD

A

DISPLAY

MEM R

o |E | F {resfExa OIF |F Fi?g’;d
9 | A | 8 RUNJLOH (N\ \ \(:ea)
516(7 DISP} S3 | r_j 170 W
| 2 3 |ENT| S4 .
EM R) :
DATA~ BUSS
a _-6-°—O _§ SINGLE . g SR :
: INST ' '
‘ 8p8PA Ap
- Q [: ADDRESS BUSS 16
0] D Al5
N " ‘
CLK - | ‘ | < -
8224 ald DBIN > \ £ ‘ A4 ‘
- - o 52 (I DATA BUSS 8 >
—_— RESET '
o RESTV] CNTL » MEM R
_L > ROY DP
I] > MEM WY controL
-———4 SYNC 07 +—I/0R
4 : > 1/0 W
.Figure.l. Operational Block Diagram of MST-80 Microprocessor Trainer

~ | -
: (0p|©@ J1 @04 AB7l@ J2 @) aBis
1/0 0| ©|o7 - AB6 | D O] AB14
' 02| ® o|or ABS | ©® O] AB13
D31 ® O3 AB4 | D ©| AB12
170 0019 pal @ ol Ql/o IN 23 |& S| aern
3 05| @ |06 AB2 | © ©O| AB1p
ADDR }— 06| @ el|n AR 1O O] Ay
L07|©® ©|02) ABR D O] 288
wm am
DATA
N 4
STAT ‘r——w—‘ —
DB71@ J3 @IMEMR INT REQ{@ 04 ©OLITE
DB6 1@ QMM W INTEe—{® OJLITE 2
L ITES 085 | @ A|T/0R WAIT-o & @fLITE 3
& DB4 {© @|T/ow HOLD-»{ @ ©|LITE 2
CNTL 083 |@® -] B HLOA< D Q©|LITES
082 | @ @ | PrROM 1 RDY - & ®|LITE 6
0Bl Q @] PROM 2 LITE 19| @ ©@|LITE 7
10 089 | © @] PROM 3 LITE9 |@ = @|LITES
2 Q —
30
+Q N o—
GND 5<:> 2 1] —O©O
Q) = 216 o—O0
7Q) 36 o—0
= 416 &—©
(%] R
~oV 8Q) & 5 |6 o——0
el = IELO ; —3
-1V -
+5V 180
(<
S -
1 T
DISP ‘ | 5 | C D E F |l reser EXA
ADR L 2 |
H [=) | = = ——
J5 136 1C37 Ic38 8 9 A B RUN LDH
| SE——— - Y | SRS | TESISSE.,
)] RUN
4 5 6 7 DISP s3
' , SS
" || ENTER s4
¢ H ! 2 3 . STEP
L I

Figure 2. Panel Connectors Used to Interface MST-80 Microprocessor Traingr
‘ -13- ‘ '

FFFF

Figure 3. Memory Map for MST-80 Micfoprocessor Trainer

HEX OCTAL
2000 PROM @ it
MONITOR PROGRAM
POFF . : pep377
p1pp PPpapn
PROM 1 Page 7 locations used by
__DIFF ppR777 monitor program
pepp - : 001000
PROM 2 LOC CONTENTS ‘
P2FF pp1377 216 KYTEM (current value of
3 14 229 LVALU display)
p3pp : PROM 3 pR1400 221 HVALU
222 PCL
pspp UNCOMMITTED SOCKET ... 222 pCL }pCSTO
2 2 224 PSW
pagp RAv 4 pp2000 225 A
226 c
PAFF pp2377 227 B
5 24 23p E
9500 RA 5 Pp2499 231 0
232 L
PSFF pp2777 233 H
p6pp Pp3009
RAM 6 36p STACK PTR
. Q6FF 893377 /
p7op RAM 7 pP34pP
REGISTER STORAGE .
P7FF & STACK 03777
8 4
P8O0 . evBoaro PRGMD
OFFF (PAGES 10-17 OCTAL) 007777 FLAGWORD
1999 manan D7 D6 DS D4 D3 D2 D1 NA
NOT USED
17FF 913777 S1Z |0 {AC|P IP f1 |CY
1899 P14ppp | SIGN —4 1 4 4
: KEYBOARD 7ERO)
(PAGES 30-37 OCTAL) '
VFFF 17777 | AUX CARRY
2000 020000 | paARITY
NOT USED
177777 CARRY

e e e e R Ak 4

OCTAL MONITOR FOR MST-80

oL ¢
SET COL PTR TO
coL # 1
INIT STACK 1 LDKY
PTR & DISPLAY
7 READ KYBD
CALL KEY s
NO :
KEY DOWN
IN THIS
KEY A coL?
BUMP
READ KYBD CoL PTR
YES
YES NO
coL 1
LOAD TABLE
YES POINTER
L2 ¢ | DECOD ¢
DELAY
LOAD TABLE
POINTER DECODE KEY
REP DECOD § . SHIFT ¢
: GO TO
- SHIFT NEW
READ KYBD DECODE KEY CNTL | o1éit Into o,
ADD (2) 10 ’ ' . STORE
CORRECT VALUE & DISPLAY IT
FOR COL 2. .
SHIFT l
SHIFT NEW DIGIT , '
INTO OLD NUMBER |- _ RETURN T
DELAY ! - CALL KEY OR USER
PROGRAM
STORE
& DISPLAY IT

"RETURN TO
CALL KEY OR USER
PROGRAM

Figure 4. Flowchart for Octal MONITOR Program for MST-80
) Microprocessor Trainer (Continued in Figure 5)

-15-

CONTROL KEY
ROUTINES

CNTL *

OCTAL MONITOR (CONT)

LOAD TABLC
POINTER

JDECODE KEY

JMP KEY

[¥

GET MEM PTR
FROM H&L VALU

BREAK ROUTINE

BRK W

Y

PUT GEN REGS
AWAY IN MEM

Y

PUT CURRENT PUT BRK ADDR
GET MEM PTR
DISPLAY VALUE AWAY IN MEM
LOW FROM DISPLAY IN MEM LoC
GET MEM PTR BUMP MEM LOAD H&L VALU
HIGH FROM HVALU POINTER WITH BKSTO
GET CONTENTS DISPLAY CONTENTS DISPLAY
OF THIS LOC . OF NEXT MEM 222
LOCATION
: STORE NEW JMP KEY
DISPLAY IT NO. IN KYTEM
JMP KEY JMP KEY
LOAD GEN
REGISTERS FROM
MEM STORAGE
GET CURRENT . LOAD PSHW
DISPLAY VALUE
] |
» GET START ADDR
. STORE IT FROM H&L VALU
DISPLAY .CURRENT IN HVALU :
LVALU e
* : * PUT H&L IN PC
JMP KEY
JMP KEY & RUN PROG

Figure 5. Flowchart for Octal MONITOR Program
for MST-80 Microprocessor Trainer

-16-

e

{

i L)

S

i \..wnuwmm\v,\x i

/

RN 77

()
(%]
W
()
v
=
L)
(15}
2
e
I
1 S
-
o
¥
-
192
=
]
4y
a
P
o
=
(@}
(&)

ure 6.

FEERE A RN EEABREI R AR NS BT
.

e

L R
PENE SRS E RN B RN R AR

!

R

i

t Card and Keyboard

VLAY s

sy

1’

1reu

80 C

\

// ?,_.

L

Close Up of MST

Figure 7.

.-6[-

!

wr o= I vr haso «ev 8D
> 16 — EENIC T 8.
s = INTE I8 TN IC TICKFT
22 —1
17 4 132 irn
-2 5 = 280 = 280 ¢
WA D81 |— = | oar !
| 7 Py m 5] (ABE) 458 ==
20 82 o | o8z A s
3 24 T LA : : y ::l
] .
|t A1 7 3
>— oa | 1on =
o= i e
— e Ie 2
=== 21 5
ey (nuwsm SV 6 th
e
s =
— L s
== D)
> BRoM | “
= P R 9 e
o= F | zs g I
i | — o—i2 Pl o=
{557 ! 2
| |
1 = = —= 8
T | (7024 | 17024 =
| 4 e 29 A
|\ [i
|I e —_ i — - —
| | Se—c . evel
i 1 & — -k
1702 A | — - e i, >eraf]
27 | R[] EEFERY Ey i
)58 299 | -
TYPICAL FOR = | | -
T 28 ¢29
= ! VOTE 480 THRL 2
J S0TH 31DES ZF SCLKET
A0 THRU DB _UMPERED =
Os Oz Os Os Os O Or B8 BOTW SIDES JF SOCKET 4LS
S(&[7 @]9
=
i A S COMP ZHAGE S 5] Doa
REV | TOME | DESCRIFTION OaTe APPROVED .
DE fmAD - o A
S = = W/ IRIPROCESSOR TRAINLRLEBLOSD,
45y <2 12 5 5 2 L3 K] = 5 B2 S8iry) 3 JONES]
. g 3 - l E HOUTWaY €
1 L B 4 4 4, L LI E2 19 18 ® 14 1 3 PACKASE sus eV
1 T 1 x e) s 1 2 g cHecKeD DATR E ml[. = o7 ~ry al-
e Wi P = _— dlie 1707 JBFFLISRS,
3% 254 82 283 284 2085 286 287 e 1 1| wesr [or !

Figure 8.

Circuit Schematic of {IST-80

icroprocessor

B

530 e O

Trainer

e
ARAAAG

Uf

31

SHMELER.

aav

5lare
3 HRR
AEEA

a7 8ug

a6
HE

A

i

Y TEM
IRUS NN
HWHLU

Lv‘:| T UI*.,
HE TOR

TP
BﬂT'

&

EEF

MONITOR PROGRAM LISTING

o Ll
»
P

etk +0C TEL
» ST FI

CRORRE

MONTTO

s bR EYBOARD REATD

=SS 3
et o}

m™™M
T
T

Lo
P
T

AV EH

GF.
n.a
BISFL
rthH

ROU

b

TINE+++++

MPLEHEH%
f-L.)

K KtT
EROUNCE

i

o o o
TRA INER A4t

ISPLAY
Di PLAY STORAGE

QUTIME
“.l-' Fiou

EYEOERD

DN

S0 READ KEYBOARD

%

-20-

LagP IrF

MO KEY DOLN

177
i

IME

A CALL

i .
BESR MACRD ASSEMBLER. VER 2.2 ERRORS = @ PAGE 2

EROUNCE .
UF COLUMN POINTER

nEgadl 315 243 REo
4 Al BEa GO

THELE 'IF KEY FOUND
<Y FOUND - BUMP COLLFN POINTER
TE 70 HEXT COLUMH

IR

- O LAST COLUMM
SHOT OLGST COLUMN - G0 REARD R KEY
SLAST COLUMY STRET OVER

"~

NRG - Fan
s+ THIS 1S THE BREAK ROUTINE+++++

BRK: THLT HETIR ;

]
N
A
Y]
53}
)
o
=
)

slala] rg) 2 e it !
(3]5]3]5 gk 341 For k-
Aooer4 B53 DCX H H

TORE Hal IN MEMORY
UT BREAK ADDRESS IN HalL REG
CORRECT BRK ADDR

ORBETS 842 | aar SHLD PCSTOR :STORE BREAK ADDR IN MEMORY
‘@epl1es 365 o PUSH PSW ;GET AC AND PSW IN STACK
aRa1o1 POP H :PUT AC &PSW IN Hel

apa18z2 SHLD PSWST - ;PUT aC aPSW IN MEMORY
‘aaaias PUSH B :GET Ba&C

AGE i HE i Fl PUT Des
ape1a7 z S TR
Gealiz
aEails

[Y]
T

N
[hY]
\Y]

M MEMORY
IMN MEMORY
I HE
Lk M MEMORY

SREAE MEMORY LOCNT JO0H

T IM PROFER LOCATION

22 IH AC

Y222 AND RETURN TO KEY

—i
—
zZ
[
izt
il
ot
M
|
=
—_
T
0
=
e
il
b

-
[
=

-5

ical

; Pt THE KEY WAS FOUND IH AHD L
it VELUE TH THE APPROPRIATE TAB

. HIL

LUT: ¥
CnLdre POINTER

RIBHT
A ials)

B : D15 0T COLES
SHUST BE CONTROL COLLMN

aeo ids Feal 222 280 CoLi: i_mi HLTABLE~-]

21-

1
BP0 MACRO 1in3

VR M.z ERRORE - 8 MPAGE I

MRS LnEn GO GET WoalLUe FROM TABLE
IR S FSTORE AMD SEND TO DISPLAY

{ Ha TRSLE-1 ; T TRBLE POINTER

Dezsom JGET WALUE FROM TRBLE

A] AECT YWALUE FOR COLUMM 2
C.A '
kY ' FILLEGRL CHARACTER CHECK
HEWTER SGET QLD DISPLAaY VaLlg

a0

A8a151
R iSd
aaaise
teg 162
fanB 155
BRALEY
B 1 7 e

T OGHIFET:

1

PROTATE OHE OCTEL DIGIT LEFT

3Fa0 ' :MASK OFF BOTTOM DIGIT
i 200 MELW DIGIT TO OLD HUMBER
|

(PYE] APUT GACK IN DISPLAY STORAGE
:SEHD TGO DISPLAY
il OF MUMBER KEY ROUTINE

o g

AR

B2 P
=

B

L)
[y
=8
[
=
L
—

DECOD:
AGHTN:

A. B A :BET KEY WALUE

A :ROTATE INTO CARRY
H . :EUMP TABLE POINTER
AGFA TH E :

vt
ia
[
X
—
—

RS K I N RN

RO RTRRY

fax]
=l

[
1.1

TAELE : SHUMBER KEYS CODE TABLE

[T

FTHIS 16 A RELGY SUBROUTINE TO DERCUNCE THE KiEY SWITCHES

1 B SINITIALIZE COUNTER
T it : FEUMP COHNTER
HETRA DELAY IN LOOP

-22-

1
" 8888 MACRO

agR247
arazso
ABR253

™
=)

[I I B B |

DS YNy

]

WUEAT]
=

AN Ear i il i ay)

[l

Caf 0 T

(o P =]

1}

IO
DA 7 I M Y

agazn3
vEa3ae
" geasit
a5l =)
BREELS
aErR3ic
ERBRE21
HRARIZZ
A
EE
7
[1%] 5
GEE3 3
apsla et

B 3 r’-q

. NO PROGRAM

ASSEMBLER.

aaa

g7z 216 @ay
BE2 220 Bar
@52 226 BAE7
345
3a1

2 235 87

ERRORS

RUM:

VER

2.2 ERRORS

XTHL

RET

s
oHL
[
JHR
LDk
STH

JIMP

LT
PUSH
LHLD
RET
T5F: LiA
R
i
=T SHIL D
nINAYY
Rk

ORI

ouT
RINTE
HIH

EFTER:

=

- THE

5] PQGE 4
LOoP

COMTROL
ABILC—

HYRLU
KEY

KYTEM
LVALU
ESTOR .

HETOR

KYTEM

-23- -

KEY ROUTINES

SAURP D PR
af L RESISTER

: DONE~

FEET

RN

: LOOP UNTIL

GET T PO
GET A :

1I [
WAL
REG

T
T=FELAY
T EEY

I H

GET CURRENT
_____ IMN L R
CONTENTS
OM STHECK
IN B&C R
CONTENTS
ZHHHJE ML
T Hlb » H

JLl P

iT
AN

FER

AL

ZERD

INTER
FOM TABLE
INTD L REG

YVALUE
JuMP TO KEY
E FROM TERMP

ISTER STORAGE

GO TO START

DISPLAY YALUE
EG LOCATION
OF Bal REGS

EGS

COMTROL ROUTINE

F D&E REGS
WITH D&E
NIy PSUW
N STACK
3TiS
HDDPE37
O STEHCK
FROM STRCK AND RUN
SPLAY YWALLE
||||PI"I 'IE
KEYED IH

‘HK FOINTER
INMTED 7O
L

STAET OWER

BY MEM POINTER

IN KEY STORAGE

15l
SEUT WAL
»MHMP T
HPUTOIMC P

MEMORY

FOIMTER
MYy WAL

iM LOC PO

TiR ALAY AN

INTED

i NERT LOCATIGN

TOBY Hal

D DISPLAY MEXT

Lot

39 MACRD ASSCMBLER. VER 2.2 ERRORD = @ PAGE 5

SYMEQL T TARLE

FGEATH
BT BT
ZGis

JINNEES

I
"

Ean(R i i e 23
&

oLz

T

-24-

DISTRIBUTION

Internal Distribution -

L.L. Cleland, L-156

G.D. Jones, L-156 - (10)
E.A. Lafranchi, L-151 '
H.C. McDonald, L-161

A.W. Olson, L-152

C.A. Larsen, L-73

ERD File ' (02) -

TID (15) : Printed in the United States of America
} Available from

) National Technical Information Service
U.S. ‘Department of Commerce

Externa] D,istr.ibut-ion 5285 Port Royal Road
. Springfield, VA 22161

Argonne Code Center (01) Price: Printed Copy § ; Microfiche $2.25
Att'n: M. Butler '
Argonne National Lab" '] Domestic " Domestic
9700 South CaSS Ave. Page Range Price Page Range Price
Argonne, IL 60439 . ‘ 001-025 $ 3.50 326350 10.00
‘ 026-050 4.00 . 351-375 10.50
. 051075 450 . 376-400 . 1075
TIC, Oak Ridge (27) 076-100 5.00 T 401-425 11.00
| _ to1-125 5.25 _ 426-450 11.75
Distribution through 126150 5.50 451-475 12,00
151175 6.00 476-500 12.50
UCLLL TIP Program (100) 176-200- 7.50 501-525 12.75
o . 201-225 . 175 526-550 13.00
226 250 8.00 551-575 13.50
251-275 9.00 576-600 13.75
276-300 9.25 601—up *
301-325 9.75

*

Add $2.50 for each additional 100 page increment from
601 to 1,000 pages: add $4.50 for each additional 100 page
increment over 1,000 pages. ’

NOTICE

“This report was prepared as an account of work
sponisored by the United States Government.
Neither the United States nor the United States
Encrgy Research & Development Administration,
nor any of their employees, nor any of their
contractors, subcontractors, or their employees,
makes any warranty, express or implied, or
assumes any legal liability or responsibility for the
accuracy, completencss oi usefulness of any
information, apparatus, product or process
disclosed, or represents that its use would not
infringe privately-owned rights.”

-25-

Technical Information Department
LAWRENCE LIVERMORE [LABORATORY

University of California | Livermore, California | 94550

