What is a PDP-8?
[bookmark: _GoBack]Charles Lasner

 For the purpose of this archive, a PDP-8 is any machine, whether
actual, planned, or simulated, past, present or future, which
executes the instruction set of the classic DEC PDP-8 made starting
in 1965, or any newer design compatible with it. Products relating
to various other models with either frills or deficiencies will also
be included in the archive, with relevant differences noted.

 Various existent models will be enumerated, but the list is by no
means exhaustive. All known large-scale commercial models will be
covered, but various individuals have produced independent models on
a smaller basis.

 Some of the information is obscure, and comes from the personal
recollection of the author, Charles Lasner, of CLA Systems. All
information is presented as accurately as possible with no
representation as to copyright. This document is purely for
information purposes only.

Pre-1965 machines.

 Prior to the PDP-8, the first relatively small-scale 12-bit
computer was produced for laboratory work, the Laboratory Instrument
Computer, or LINC. It was designed using the then-standard DEC
System Modules. Many LINC designers were members of MIT's Lincoln
Laboratories and/or DEC employees at various times in their careers.
The LINC project was also responsible for LINCtape, which is a
block-replaceable disk device implemented physically serially on a
reel of tape. While DEC took no business interest in the LINC
project, they supported it by basically maintaining a "hands-off"
policy as various DEC facilities were tapped for its development.

 DEC's answer to the LINC was the PDP-5, which is a PDP-8 with
several design compromises. The largest incompatibility is the usage
of memory location 00000 as the program counter (PC). This was seen
as an economy move because register logic was much more expensive
than simple gating, and the memory plane was already a "given" in the
design. So, the PDP-8 design was bastardized in a subset where
location 00000 was not usable for ordinary storage purposes. Indeed,
storing into 00000 is equivalent to branching to the address value
stored there (-1). (This is the method FOCAL, 1969 uses to determine
operation on the PDP-5. Store one less than the address of an "I am
a PDP-5" routine into 00000 and you wind up in that routine.)

 There are a few other compromises, such as the inability to
freely OR together group one operate condition bits to produce
combinations such as CMA RAL, but this was primarily due to existent
design specification deficiencies, rather than any specific intention
to limit performance. In spite of this, the PDP-5 can execute most
non-conflicting combinations of these bits. This will produce
multiple operations within the same memory cycle, and in a proscribed
order. (The PDP-8 improved the flexibility later such that there
were very few restricted combinations; newer-still models improved
the situation so that there are virtually no restrictions.) Memory
speeds for both the LINC and PDP-5 are 8 microseconds, consistent
with available memory for 1962.

 While the LINC technically is not a PDP-8, it partially shares a
common history, and is also an offshoot of options on other models,
so its information should be included in a 12-bit DEC computer
archive.

 The PDP-5 is capable of running a small portion of the PDP-8
programs available, most notably a variant version of the DECtape
Library System for the type 555 DECtape only, and FOCAL, 1969. The
PDP-5 interrupt structure is to store the PC into 00001 and start
execution at 00002 whereas all PDP-8's store into 00000 and start
execution at 00001. FOCAL, 1969 self-modifies to accommodate the
hardware differences when it is first started up on a PDP-5. All
combinations of operate bits not implemented on the PDP-5 are avoided
in FOCAL, 1969.

 The PDP-5 supports a subset of the negative buss available on the
PDP-8. The PDP-5 buss connection is achieved using large
military-type connectors. DEC made available a mechanical buss
converter which makes most negative buss peripherals compatible with
the PDP-5, most notably the PDP-8 expansion box type 804, which
allows various lab peripherals (type 34D oscilloscope controller and
D-A converter, etc.) and a Calcomp plotter interface. Some of the
earliest 12-bit submissions to DECUS were for such a machine. Also,
PDP-5's started at 1K, although 4K was a popular option. Extended
memory is theoretically compatible with PDP-8 standards, but the buss
does not implement 3-cycle Direct Memory Access (DMA) nor a DMA
field. Extended memory software had to use the Data Field (DF)
during the DMA transfers, thus interrupts were illegal during
transfers since an interrupt clears the DF register. The later TC01
DECtape controller, which uses 3-cycle DMA, is not compatible with
the single-cycle type 555 DECtape, although the tape format is the
same. LINCtape is not compatible with DECtape format, but uses the
same media running in the opposite direction. Blank media can be
formatted for either system. Clearly DECtape is conceptually based
on LINCtape, but with improvements added. (Some LINCtape systems
include modifications to read/write DECtapes, with some restrictions,
etc.)

 LINCtape is 12-bit oriented, and can search bi-directionally, but
can only accomplish read/write transfers in the forward direction.
DECtape is 18-bit oriented, and can transfer while moving backwards
as well. Block lengths are chosen to be multiples of 18-bits for
compatibility with other DECtape systems, so the PDP-8 standard block
size is 129 12-bit words. (Some software treats the 129th word as a
nuisance word, while at least one system, the 4K Disk Monitor System,
actually takes advantage of it.)

The classic PDP-8 appears in 1965.

 This is the beginning of the line as far as the bulk of this
archive is concerned. The PDP-8 is the emergence of the older PDP-5
design with several improvements:

1) 3-cycle DMA on the buss.

2) a break field on the buss for extended memory transfers via DMA
 without restriction.

3) Interrupts at 00000; no special PC in memory kludge.

4) Much faster memory (1.5 microsecond cycle time for all operations
 other than I/O).

5) More flexibility when combining operate instructions. The only
 restricted combination is the use of the IAC operation with any
 of the four rotate instructions: RAR, RAL, RTR, RTL.

6) Newly designed Extended Arithmetic Element (EAE) option. The
 PDP-5 EAE was more like an I/O device, similar to the PDP-9/15.
 The PDP-8 EAE uses group three of the operate instructions and
 avoids external buss cycles.

7) 4K as standard minimum size and size increment.

8) Wire-wrapped backplane for lower cost and improved reliability
 and much smaller so-called "flip-chip" cards that are 6 times the
 logic density. PDP-5 modules were much larger, slower, and
 required soldered back-plane sockets assembled by hand.

 The PDP-8 revolutionized what has become today the notion of
"mini" computer, and indirectly the micro-computer or PC, which are
somewhat confused terms for what is actually the notion of a
"personally approachable" machine. For the first time, a computer
used by a sole individual within the relative privacy of a small
office, etc. was feasible. (The LINC was virtually always installed
in a large laboratory room whereas PDP-8's are just smaller enough to
wind up in private offices. Further, less than 100 LINC's were built
by diverse groups such as the US Army, whereas several thousand
PDP-8's were made by DEC.)

 Further, PDP-8's were the first machine offered with options that
"mattered." (Again, credit is due the LINC project for building in
peripherals such as LINCtape into the basic design. By NOT allowing
the tape to be an option, software was written to deal with it. The
PDP-8 was the last machine widely sold as a Central Processing Unit
(CPU) without a bundled mass-storage peripheral, and also the first
sold with an optional mass-storage peripheral as a popular option.)
The usual PDP-8 configuration was at least the minimum required to
use the software included in this archive, namely 4K (or more), a
mass-storage device (such as TC01 DECtape), and a terminal (usually a
model 33 or 35 Teletype).

 The first software to appear on this configuration was the PDP-8
version of the DECtape Library System, which actually has its roots
in the PDP-5 and LINC-8 versions. (All three versions are
incompatible.) These early software systems are basically binary
program savers, with a primitive filing system. Programs are saved,
and can then be called into memory by invoking the filename. A
primitive "index" facility is provided as the only other built-in
command. (Eventually there was an update to at least one version of
this system where the PAL III assembler could take input from a
"hidden" reserved text area instead of paper-tape, and output to a
"hidden" reserved binary area that could be loaded and saved. Source
files could also be edited and saved in a somewhat analogous manner,
but the system remained otherwise quite primitive.)

 DEC eventually released a system known as the Disk Monitor
System. It could be configured for use with DECtape or various disks
such as RF08 or DF32. It is known for being somewhat clumsy to use,
and used a structure not translatable to newer peripherals (since it
requires 129 words/block devices). (The PDP-8 DECtape format
standard is 129 words/block. The RF08 and DF32 disks are
word-oriented, and can be dealt with as 129 word blocks or any other
size up to 4096 words/block. Newer devices are addressed as
collections of blocks of 128 or even 256 words/block.)

 In 1967, an independent operating system appeared known as the
R-L monitor system or MS/8. It was designed primarily by Richard
Lary, who was also the principal architect for OS/8, RTS8, and more
recently DEC's large-scale mass-storage systems' internal protocol.
This system was refined and upgraded, finally being submitted to
DECUS by myself and others in 1970.

 In 1971, a replacement system was started using most of the
original concepts, which has gradually evolved into P?S/8, the
current version being 8Z as of 1992. The original concepts mostly
still apply: to run on the minimum system of a single DECtape or
other mass storage device, a 4K PDP-8 CPU, and a console device which
is at least a Teletype. All additional hardware options are used,
but not strictly necessary to run the minimal system.

 At the same time as P?S/8 was being developed, Richard Lary and
others started PS/8, later known as OS/8, for the same environment
plus the requirement of extended memory control and at least 8K of
memory. The programming discipline was identical in both systems:
the instruction set of the classic PDP-8 was to be used as the basis
for the operating system, no newer frills were allowed to be depended
on. (Device handlers present only on newer systems, such as LINCtape
on PDP-12, are allowed to use the additional CPU features guaranteed
to be present. Some newer devices, such as RX02, may not assume
this, since they may be connected to a PDP-8 CPU through an
appropriate buss converter (DW8E-N).) OS/8 development, as well as
P?S/8 development, persists to this day, although admittedly on a
"non-profit" basis by concerned individuals, some of whom are
contributors to the archive.

 An issue of compatibility must be raised here:

The PDP-8 instruction set is the basis for all of the "major"
software usually found on these machines, and more particularly the
combination rules of the PDP-8 operate instruction subset. Other
models, the PDP-5 and PDP-8/s, are incompatible with this level of
instruction set implementation; some newer models are actually
superior (slightly) to the PDP-8 in this area. Had the original
PDP-5 been released with the program counter kludge deleted, PDP-8
programming may have taken a slightly different direction, but due to
the relative popularity of the PDP-8, it has become the standard for
minimal instruction set requirement.

The PDP-8/s economy machine.

 DEC decided to offer a CPU-only machine for use in dedicated
applications, such as embedded systems within dedicated x-ray
spectrophotometers, etc., as offered by companies such as Picker
Instruments. These applications didn't require a fast machine, nor a
complete one, as the OEM probably would design custom hardware and
software to control his instruments as part of the overall instrument
package.

 Thus was born the PDP-8/s, a serial-logic implementation of the
PDP-8, but with certain restrictions. The original design was
designated PDP-10, and had a disk/drum memory, similar to some older
computers from the '50's. The idea was that every machine would have
32K and parity memory on a moving disk, and the overall physical size
would be much smaller than existing models, and also somewhat less
expensive. The tradeoff would be slight incompatibility and
significant loss of speed. Some PDP-8/s instructions take 78
microseconds to execute!

 Since the PDP-8/s is even more restrictive than the PDP-5
regarding operate combination, even less software runs on it.
Despite these significant limitations, the Disk Monitor System can
(slowly) run on the -8/s, using a specially slowed-down version of
the DF32. Extended memory is compatible, but not often implemented.
(The memory component actually implemented was a relatively small 4K
core plane on a quad card, the first of its kind: a physical
forerunner of the common Omnibus card!) FOCAL, 1969 self-modifies to
accommodate the sloth of the -8/s, so that paper-tape reader and
other time-out routines are properly calibrated.

 Another limitation of the PDP-8/s is the lack of a built-in
console device. To use the -8/s with a terminal requires an outboard
terminal interface such as a PT08 setup for device 03/04 usage.
(This was an accommodation to its primary application as a device
controller - CPU only in a small box.)

The LINC-8 appears.

 DEC took a more active role in the LINC project by releasing the
LINC-8. It was quickly realized that the LINC processor couldn't be
implemented as a peripheral device, and should be highly integrated
into the CPU design. The LINC-8 consists of a modified PDP-8
processor and memory interface, and an additional complete LINC
instruction-set CPU with high-speed DMA access to the memory buss.
When the LINC processor runs, the PDP-8 CPU is TOTALLY locked out.
There is a front panel DMA activity light on the LINC-8 (on the PDP-8
side, the same indicator as on the PDP-8). When the LINC processor
is running, this light glows brightly :-).

 Various portions of the LINC are simulated by a resident PDP-8
program (known as the PROGram OF OPeration, or PROGOFOP). This
program is read in from the beginning of the LINCtape (which is
actually a PDP-8 peripheral). At this point, all LINC operations are
available, including a complete (simulated) LINC console. Enough
hardware (and software) is in place at this point to allow all LINC
operations, including the use of dual switch registers, a front panel
instruction executive ("DO") key, a hardware load (boot) key,
EXAMINE, FILL, RESUME, and even FETCH and EXEC stops for LINC
programs. (A FETCH match causes a PDP-8 interrupt, thus stopping the
LINC CPU, and restarting the PROGOFOP interrupt processor, etc.)

 Various LINC-specific operating systems (such as LAP6) run from
this (partially simulated) environment. Most of these require only
4K of memory; a few support additional memory. (Some only support 8K
maximum.) There are some purely PDP-8-side LINC-8-only systems that
leave the LINC processor disabled such as the LINC-8 Library System,
CPS-4K, and CPS. (CPS requires 8K of memory).

 More recently, modifications have appeared to the LINC-8 as
specified and designed by Cooley Laboratories, the source of the CPS
systems. These hardware changes were augmented by Charles Lasner of
CLA Systems and David Soergel of Syracuse University. The current
version of the modification package allows P?S/8 to run in 4K, and
OS/8 to run in 8K. (It is possible to run alternate versions of
P?S/8 and OS/8 in 8K and 12K respectively on unmodified machines.)
The changes do not affect existing software ignorant of the changes.

 An additional feature of the modifications is the ability to
access (using special software written by Charles Lasner and others)
standard DECtapes and also Data General NOVA-based LINCtapes. NOVA
LINCtapes are created on drives and controllers for the NOVA which
are manufactured by Computer Operations Corp. of Beltsville, Md.
P?S/8 includes software to treat DECtapes on a LINC-8 as a block
device. Using the system's handlers, DECtapes and LINCtapes are
interchangable at the system handler call level. (Note that DECtape
conversion on LINCtape drives is not as reliable as using LINCtape
media, so this is not really recommended for general-purpose use;
P?S/8 design allows for this, but is only recommended for
block-oriented copying programs such as P?S/8 BLKCPY. This is a
utility to copy or compare blocks from different devices. Error
handling is very interactive with the user so that marginal tapes may
be reliably copied, etc.)

 Using Computer Operations tape drives and a custom interface,
Cooley Labs personnel developed a positive-buss version of the LINC-8
tape interface that allows CPS and other software to run on PDP-8's.
Only the PDP-8 <=> LINC register interface of the LINC-8 is
implemented, and only insofar as it pertains to tape operations.

PDP-8/i and PDP-8/l.

 The appearance of TTL (M-series) logic allowed DEC to scale down
the size of logic somewhat. The "FLIP-CHIP" boards of the PDP-8 and
LINC-8 are single-sided, and accommodate either several gates or at
most three flip-flops (less if additional gating is required on the
flip-flop). By making the boards double-sided, the new limit was
whatever required a total pinout of 36 connections per card.
Unfortunately, the limiting factor is often the connector, not the
"real-estate" of the board. Many small M-series cards are mostly
empty space, because the 36 pins are all used by as little as three
chips.

 In any case, logic density is somewhat higher in the TTL
implementation, so the PDP-8/i was able to be packaged in a slightly
smaller cabinet. Since large peripherals are often included in a
complete system, net improvement may boil down to how much empty
space is present in a standard cabinet or two. A minor mechanical
issue is that PDP-8 planes are often mounted high in the cabinet
leaving the bottom portion potentially underutilized. PDP-8/i is
implemented primarily on a vertical sliding metal backplane mounted
in the cabinet base. (There was also a relatively obscure standalone
unit with large support legs and no rack cabinet.)

 Since most peripherals at this time were negative buss (PDP-8
compatible), the buss of the PDP-8/i was implemented as negative as
well. Several years later, an ECO was issued for the 8/i to
implement positive buss drivers if desired. This was included as
part of a DEC refurbishing plan for 8/i's, etc.

 The PDP-8/i has a nominal cycle time identical to the PDP-8, but
in practice, it is often somewhat slower because of vendor problems
with the memory stacks. (The memory interface is asynchronous
allowing for this form of "detuning" if necessary.) Some individual
systems were known to run as slowly as 1.8 microseconds/cycle.

 The PDP-8/i has no restriction on operate combination, and even
some "interesting" quirks when incompatible options are chosen, such
as RAL and RAL simultaneously. (The net result is to zero both the
highest and lowest bits; this property is used to identify the 8/i in
programs such as FOCAL, 1969.) When EAE is implemented (a trivial
option to install), all PDP-8 EAE instructions are implemented,
including one additional operation undefined in the PDP-8 (load the
step counter, which is only needed in situations such as a
background/foreground system, where both contexts require EAE
independently). (It is possible to "fake" this operation by setting
up a table-driven Normalize (NMI) instruction that produces a
predictable value for the step counter.)

 PDP-8/i can accommodate 4K or 8K in the basic chassis, and up to
32K using external expansion memory modules known as MM-8/i. There
are also other vendors of 8/i-compatible memory such as Memorex,
which produced a 24K add-on box to achieve 32K more economically than
DEC's method. DEC eventually produced an add-on memory box using
PDP-8/e memory to accomplish pretty much the same thing.

 As an economy measure, DEC produced the PDP-8/l. This is
essentially the PDP-8/i design stripped down somewhat to produce a
lower-cost entry level system. PDP-8/i has a nominal cycle time of
1.6 microseconds, and most machines generally do so, because this
represents the best typical speed that the 8/i-type memory could
actually do. (It is rare to find a reliable PDP-8/i system running
as fast as 1.55 microseconds/cycle.)

 The PDP-8/l consists of a 4K memory and CPU, and no extended
memory. It has a curious unique feature called Memory Protect, which
write-locks the last page of memory, presumably to protect the
paper-tape-oriented RIM and BIN loaders sometimes stored there. The
buss is positive only, and was often used with newer devices such as
DF32D-P or TC08P.

 PDP-8/l is often upgraded to 8K by using a standard 8/l expander
box which provides all extended memory as well as an additional 4K of
8/i-style memory. There is also an obscure option which provides 8K
additional memory and memory controller, and also an extra set of
front panel switchs for the Instruction Field (IF) and Data Field
(DF). (The single IF and DF switches are built into the 8/l front
panel for use with a total of 8K memory, but with 12K memory, two
switches each are required, so the extra switches are on this
external box. This is somewhat unwieldy when performing manual
operations!) The standard expander box also provides some optional
plug-in options such as a clock, plotter interface, and D-A
converter, whereas the obscure box provides memory and control ONLY.
It is even legitimate to use both boxes. The memory box to provide a
total of 12K, and the (mostly empty) expander box to provide support
for a plotter or D-A converter, etc.

 PDP-8/l also prevents execution of EAE instructions, since this
option is not available. KERMIT-12 uses this property to distinguish
an 8/i from an 8/l. The instruction 7601 will clear the AC on an
8/i, but will NOT on the 8/l, because it is an EAE instruction to
clear the AC, and thus is inhibited. A curious aside is how FOCAL,
1969 attempts to distinguish the 8/i from the 8/l: the console
Teletype is used as a "clock" to determine if the machine is fast
enough. Unfortunately, if the machine is upgraded to a terminal
faster than 110 baud, then this test will always determine the
machine to be an 8/l regardless of which it is! Furthermore, since
many 8/i's are slower than nominal (virtually all are slower than
1.50, and many are slower than the 1.60 nominal of the 8/l, which
actually often is the case, since 8/l often had better grade memory),
this test is almost worthless. Fortunately, there is no serious
problem in FOCAL, 1969 other than the misidentification. (As long as
the serious issues of PDP-5 or PDP-8/s detection are served the
program will function; the other issues are merely frills. The newer
models such as PDP-8/e are reported as PDP-8.)

PDP-12.

 DEC re-entered the LINC market with the LINC-8/i or PDP-12 as it
became known. (The modules themselves often say LINC-8/i.) The same
basic scheme is used as how a PDP-8 became a LINC-8, except for one
difference: the CPU was designed to be a dual processor with a mode
bit, and all operations are in hardware. No simulator is used. (For
compatibility, there is a "trap simulator" mode to emulate the
limitations of the LINC-8, so software dependent on this feature can
be attempted.) There is only one integrated control panel, and all
of the features are real, not simulated as is the LINC-8's LINC
control panel.

 The PDP-12 can run all of the PDP-8 software, as long as the
system device can be a LINCtape instead of DECtape. (Optional disk
peripherals can be plugged in just as on a PDP-8/i or PDP-8/l, or
even some PDP-8/e peripherals on the DW8E, with some restrictions.)
There are also several PDP-12-specific operating systems, most
notably DIAL-MS.

 The PDP-12 supports the FPP-12 floating point processor option.
This option can be used on any model, but there is a special
connection to the PDP-12 backplane to allow "lockout" mode where the
PDP-8 only runs during interrupts (shades of the LINC-8!). This
speeds up the floating point operations relative to using the FPP-12
on the other models.

 The PDP-12 console represents the 12-bit programmer's zenith.
FETCH and EXEC stop are a standard feature. All registers are
displayed, and there is even a variable speed slow-run option. All
instructions can be executed from the built-in dual switch register.

 The buss is positive, and in later models includes a built-in DMA
multiplexer and hardware priority interrupt structure and hardware
pushdown stack (KF-12B backplane). All registers, including
operating mode, are stored during an interrupt by this hardware, (if
enabled) to speed real-time event handling.

 PDP-12 has virtually all required lab peripherals built-in
(digital inputs, sense switches, relays, D-A converters, A-D
converters for analog inputs and potentiometer knobs, programmable
real-time clock with internal clock, external clock, and 60 Hz
inputs). The D-A is connected to a 12" built-in oscilloscope display
with character and graphics output to the screen or an external scope
option.

 Memory expansion is either by any PDP-8/i method, or by a special
box designed by DEC later to use PDP-8/e memory boards. When this
option was introduced, a companion box was introduced for the
PDP-8/l. This was known as "the plot to blow up the PDP-8/l" and
included a box with two sets of two switches to allow the 8/l front
panel and box to provide the complete set of six IF and DF switches
for 32K manual access.

 PDP-12 cycle time is nominally 1.6 microseconds, but if faster
memory can be provided, there is a hardware hack: a certain module
can be plugged in backwards to make the machine run 20% faster at
your own peril. (It won't work unless the memory can keep up!)

 There is an option known as TC12-F which allows DECtape
conversion along similar lines to the LINC-8 modifications mentioned
above.

 The PDP-12 is housed in a special large 30" wide cabinet
physically compatible with DEC's standard 19" cabinets for expansion.
The standard configuration includes a programmer's table to be placed
just beneath the elaborate console, etc.

PDP-8/e, f, m.

 In late 1970, DEC announced the PDP-8/e. Ergonomically, this
machine is a follow-on to the minimalism of the PDP-8/l. A rotary
switch allows one of several choices of display, but there is only a
single display. The memory address is independently displayed in a
15-bit display, but there is no distinguishing the purpose of the
memory access, i.e., the program counter or effective address of
data, etc. An eventual option was offered to demultiplex the buss
into a complete display of all registers simultaneously, which was
called the MARS (Memory Address Register and Status) panel. Since it
was prohibitively expensive, few were actually produced.

 PDP-8/e implements a more sensible physical arrangement: much
larger boards are used which are nominally four wide and two high
relative to the original boards, but are actually more than eight
times as dense because of lack of handle and edge "overhead." There
are now four times as many pins to deal with a common buss, known as
Omnibus. All cards are on the Omnibus, and adjacent cards can have
"private" interconnects on the module tops as necessary. (Indeed
some cards have eight edges and you are warned not to plug the card
in upside down!) There is a standard two-card interconnect plug for
the purpose of linking two cards together on one of the four possible
top edges. A complete machine is now the size of a breadbox. There
is even a table-top version to avoid rack mounting if desired.

 By using newer TTL logic, and better buss components, the Omnibus
has better basic speed than the positive buss. Complete peripherals
are often implemented on a single card. The largest known peripheral
is four cards using several board-top interconnects.

 The CPU is somewhat faster, with one-cycle instruction speeds of
1.2 microseconds, with a 1.4 microsecond second cycle. DMA priority
is done on the buss to allow up to 13 DMA devices. Buss converters are
available to allow compatibility with all former devices on the
positive and negative busses. Buss logic slows the buss down only on
these "external" operations to avoid slowing down "internal"
operations.

 The CPU adds a few new frill instructions, including a new
byte-swap (BSW) instruction which defines the combination of bits
formerly used for the quirky RTL or RTR combination without the
rotate bit specified. (Rotate neither direction twice.) Interrupt
handling instructions are added to improve interrupt latency, and
there is an instruction to cause a power-clear on the buss to all
peripherals (CAF).

 The MQ register is standard, whether EAE is present or not. This
assists in simulating EAE if not installed. EAE is a large superset
of the PDP-8/i-type EAE of the 8/i or PDP-12, and includes
double-precision instructions, etc.

 Many new peripherals are available which are downsized versions
of older peripherals, as well as some newer ones unique to the
Omnibus such as the VT8E, etc.

 The basic PDP-8/e comes with an incandescent lamp front panel and
room for 20 slots in one Omnibus back plane. The power supply and
box can accommodate an additional 20-slot back plane as an option,
but interconnection will take up one slot in each for an effective
space of 38 slots. Using expansion cables, an additional box can be
added to add on another 20 or 40 more slots (minus the interconnect
overhead).

 There is an economy version of the 8/e known alternately as 8/f
or 8/m. There really is no difference between these two other than
marketing and the name on the plastic silk-screen front panel. The
8/f uses a compatible front panel with LED's instead of lamps, and
has a smaller power supply and box. Only one Omnibus back plane can
be accommodated in the basic box, but the 8/e expansion chassis can
be used if required.

 The PDP-8/m is identical to the PDP-8/f except that the front
panel is an option. If no front panel is installed, an "operator's
panel" is used instead. This is a minimal panel that can only start
the machine up with no switches or display available other than a run
indicator.

 Though never marketed this way, the 8/f-8/m LED front panel is
compatible with the 8/e box, but not vice-versa. The smaller power
supply of the 8/f box doesn't provide lamp power. There is a
power-fail restart option for these machines which must be strapped
for the analog consideration of which box it's plugged into.
(Earlier revisions of this card only function in 8/e boxes, since
there is no 8/f-8/m-specific circuit alternative.)

 A minor configuration consideration when adding on an expansion
box is that the so-called POWER-OK signal cannot be connected to
unlike boxes due to incompatibility. This means that one box cannot
realize that there is a shut-down condition initiated by the other
box. This only affects "canned systems" such as an unattended
application which uses RK8E/RK05's, etc. In actuality, the worst
thing that can happen is that the latest location referenced in a
running program will get corrupted, or that the RK05 may fail to
unload the disk at the appropriate time. Operator usage of the
machine would always include manual halt and shutdown of the disk
packs, so this isn't a consideration in this case. (It isn't likely
that an 8/f and 8/e expander chassis and RK05 would ever get used in
an unattended application anyway.)

 The PDP-8/e sold for far less money than its predecessors, and
was the first reasonable system for less than $10,000 including
useful peripherals. As such, it represents the first offering of a
practical "personal computer."

PDP-8/a

 This is the collective name for a group of semi-compatible
products. The original offering was a 10-slot box which supported
slow memory. A new Omnibus processor was introduced that is slower
than the PDP-8/e CPU board set. The new card includes its own
termination (at the wrong physical end of the buss!), and is 1.5
microseconds every cycle. EAE is not available, nor physical
expansion beyond the single box. All cards are (potentially) 50%
wider than the standard Omnibus cards. There are six buss feet as
well, but the sixth foot has no connections implemented, and the
fifth is only partially utilized. The CPU doesn't use the fifth
slot. The original memory options are a slowed-down semiconductor
RAM card and a ROM card with scratchpad RAM for a few locations of
memory. These memories require a memory stall option be supported by
the CPU. (The 8/a CPU board is known as the KK8A.) Eventually, the
PDP-8/e CPU (known as the KK8F when describing the board set) was
upgraded to support the same option.

 The PDP-8/a was originally slated for OEM applications continuing
the same philosophy started with the PDP-8/s. The difference here is
that this much machine is barely capable of being "useful" to a more
general audience.

 Eventually larger chassis boxes appeared. The first was a
12-slot box with a switching power supply and battery backup, and a
20-slot box with an additional power supply capable of supporting
core memory. (An obscure 12-slot box exists in limited production,
which supports core memory, but lacks the battery.) A front panel
with octal readout is optional, and requires a specific option board
capable of many other features be installed. (In the PDP-8/e, the
front panel itself plugs into the buss.)

 There are many memory options for PDP-8/a systems. An early 8K
core memory stack, MM-8AA, was failure prone, and was rated only for
use with the slow non-EAE KK8A CPU. Eventually, the MM-8AB was
introduced, which is 16K core memory. A 32K MOS dynamic memory card
was introduced which performs on-board refresh, thus occasionally
stalling the CPU. (This was the first PDP-8 with an "irregular"
cycle time.)

 Eventually, the notion of PDP-8/e and PDP-8/a was blurred as
well, because 8/a configurations were brought out containing 8/e
processors and terminator cards and even EAE. In essence, it is
totally reasonable to plug nearly anything from the 8/e into the 8/a
SOMEHOW. Somehow may include using an 8/e box as an expander for an
8/a, or it can be considered vice-versa.

 So, the new system concept was basically Omnibus configuration
according to the Omnibus Configuration Guide, an official DEC
publication. There are guidelines for using either the 8/e or 8/a
processor, multiple boxes of either kind, and even recommended
mounting positions in the cabinets to proscribe cable folding
procedures, etc.

 Software can only detect what type of CPU is present, and whether
EAE (if possible) is installed. There are several operate
instruction quirks in both CPU's, and there is a slight difference:

 The PDP-8/e CPU interprets the instruction: RTR RTL as "load what
page of memory I am currently running on +16 into the AC" whereas the
PDP-8/a CPU loads the updated current absolute address of the program
into the AC. By positioning the 7016 instruction at relative 15 of a
handler, it is possible to use the loading address information in a
handler for use on either system. (This has actually been done in a
practical handler!)

 Eventually, various memory options appeared for the hex wide
boxes. DEC supports a memory scheme for use with four of the 32K
dynamic memories (or equivalent in up to eight 16K core stacks) for a
maximum of 128K. DEC's system has a few advantages:

1) A 64K-maximum mode that is unconditionally compatible with all
 hardware.

2) A DMA arbiter to allow existing peripherals to address the full
 128K. (There are parallels to this problem and method of
 solution in the PDP-11 world.)

3) Close compatibility with existing software philosophy while
 introducing the extensions. (No additional instructions beyond
 initialization are required, just that the range of possible
 instructions is wider.

 A competitive system was introduced by CESI Inc. The CESI method
also supports DEC's memory scheme electrically, but is software
incompatible when extending the memory space. (All methods are
compatible up to 32K.)

 The CESI method requires additional instructions per usage beyond
the initialization to access the additional memory, and there is no
individualized arbiter for DMA extension. This prevents full
flexibility when used with existing peripherals. (CESI's reasoning
is that THEIR peripherals have an additional INCOMPATIBLE mode beyond
normal DEC standard, in which instance each peripheral does full DMA
addressing, thus their memory controllers need not bother. Problems
occur when you use mixed systems since the master DMA arbiter must
either be ALWAYS used, or NEVER used.)

 A useful feature of the CESI scheme is that it allows full access
to 128K with complete hardware compatibility. DEC's method requires
memory access be limited to a maximum of 64K to accomplish this.
Furthermore, the CESI card has a totally incompatible mode where only
CESI memory cards can be used. (Their memory cards can be strapped
for DEC compatibility or the CESI-exclusive mode as required.) In
this mode, the maximum memory size is quadrupled. Thus up to 256K
memory is addressable with full hardware compatibility, and up to
512K if the conflicting hardware is avoided. (Device code 30-37 is
in conflict with the full implementation mode of all of these
schemes. Avoiding the conflict thus cuts in half the total memory
space available in the configuration. The CESI 128K maximum mode has
no such conflict, while the DEC 128K mode drops to 64K maximum, and
the CESI 512K mode drops to 256K. Most peripherals can be strapped
to values other than 30-37, so this isn't too much of a problem.)
Both modes of CESI operation are software compatible with each other
up to 128K.

 A rework of the FPP-12 was introduced by DEC and sold as the
FPP-8/A. When the cards are bundled with a 12-slot backplane and
BC-80C cable, the package is known as the FPP-8/E, and is meant to be
added on as an expander box for any one-box 8/e-8/f-8/m system. This
version supports the original lockout mode, and also includes the
double-precision option as standard.

 My own personal system includes an 8/e processor in an 8/e box
with 40 slots cabled to a 20-slot 8/a box containing 32K contained in
two 16K core planes (MM-8AB). Both boxes have front panels which are
simultaneously functional. The buss terminator is in the first slot
of the 20-slot 8/a box while the processor (with EAE) is at the other
physical end, namely the front slots of the 40-slot 8/e box. I have
quad and hex peripherals, both DEC and CESI throughout the two boxes.
Any attempt to identify the system type beyond the 8/e-type CPU is
quite impossible :-).

PDP-8 micros appear.

 With the introduction of Intersil's IM6100, several PDP-8 systems
appeared in micro form. The CPU is contained on a single chip which
is PDP-8/e compatible. EAE is not available, and speed is about 2/5
of the normal 8/e. Intersil itself sold a packaged machine called
the Intercept. This design is capable of up to 32K using 4K CMOS
static RAMs. The only mass storage peripheral is the DSD-210 RX01
superset. (DSD-210 is RX01-compatible and can also format.) A
compatible version was sold by Pacific CyberMetrix as the PCM-12 and
PCM-12A (a slightly faster model). Eventually DEC placed a slower
6100 with 16K into a VT52 box to create the VT-78. Most had RX01's
but in theory could have RX02's (up to two pairs of drives). This
machine comes complete with serial and parallel interfaces for
various printers, etc. All peripherals are compatible with PDP-8/e
counterparts except for speed. The serial interfaces add a new
instruction to set the baud rate by software. Rotary switches on the
box are used to set the default baud rate values.

 The IM6100 has a few quirks in the operate instruction set which
allows for identification of the CPU type. This is the only model
where RAR RAL and RTR RTL are true NOP conditions, yet otherwise
maintaining 8/e compatibility. Further there is a total
INCOMPATIBILITY with the 8/e:

The normal addressing scheme of the -8 is that bit[4] determines
where the effective address is located: on the current memory page if
set, and on page zero of memory if clear. This allows all memory
locations to access page zero locations. In addition, if the page
zero location is in the range 0010-0017, and the instruction is
indirect, then the contents of the particular location 0010-0017
addressed is first auto-incremented before being used as the
effective address pointer. This is useful for accessing tables, etc.

On the 6100, the above is USUALLY true, but NOT if the instruction
itself is located on page zero. In this case, the PDP-8 would ignore
the page bit. The IM6100 uses the page bit differently in this
unique case. Thus the instruction 1410 is always TAD I 10, and
auto-indexes, but on page zero 1610 is equivalent only in PDP-8's.
The IM6100 creates a "feature" in that 1610 uses location 0010 as an
ordinary pointer and won't auto-increment it!

 This quirk was found by the 8/e diagnostic known as "Random TAD
Exerciser" which creates TAD instructions at random placed in random
addresses, including on page zero. The instruction is executed and
also emulated. Results are compared yielding an error message should
the above case occur on a 6100-based system.

 There is no practical software implication of this "problem,"
since usage of this case beyond the diagnostics and CPU-type checking
programs is virtually unknown. All assemblers produce the
non-problematic cases so a programmer has to go out of the way to
produce octal coding of the problem situation.

 There exists an interesting extension to the PDP-8 architecture
first implemented on the 6100. Beyond the normal instructions and
interrupt structure of the PDP-8 there is a "higher" level of
interrupt known as the Control Panel (CP) interrupt. This interrupt
is serviced even if the machine is not running! Like ordinary
interrupts, the program counter is saved, and an interrupt routine is
entered, but these are not located in any part of the 32K memory
space. Instead, there is an "alternate" space with its own program
counter called Control Panel memory. Location 0000 of CP memory is
where the program counter is saved, and 7777 of CP memory is where
the interrupt routine starts. CP memory is itself non-interruptible,
and is used to service the source of CP, not regular interrupts.
Interrupt service exit is via the normal ION; JMP I 0 sequence except
that the former run state is restored (running or halted) and control
returns to the "normal" or main memory. It is possible to create
minimal interfaces to the machine to cause instructions to
deliberately trap, so that they may emulate more complex operations,
etc. The ability to access main memory as well as CP memory can
easily be implemented as well.

 The original purpose of CP memory was to help implement a front
panel in software. The Intercept uses a variable clock to interrupt
the machine at some rate (typically 30 Hz) for the purpose of
scanning a simulated front panel. Interfaces exist for operation
switches such as ADDRESS LOAD, EXAMINE, etc., to simulate the "real"
PDP-8/e panel. The PCM-12 is quite similar. DEC's VT-78 uses the
ability to CP-interrupt on HLT to allow a register dump on the
screen, but DEC didn't implement any ability to restart the main
memory program.

 When any of these machines is first turned on, a CP interrupt
condition is forced, which can be used to initiate either a front
panel operation or a floppy bootstrap (automatically in the case of
the VT-78).

Second generation micro-PDP-8.

 Some of the problems of the 6100 were addressed and improved in
the 6120. This is a faster implementation of a design similar to the
6100. Several improvements were added:

1) 32K memory control is built-in.

2) CP memory is now 32K.

3) Instructions were added directly to force the machine to run when
 exiting to main memory. This overcomes the HLT problem in the
 VT-78 with ease.

4) Speed roughly equivalent to 8/a-8/e is achievable. Some
 instructions are actually marginally faster than their 8/e
 execution times; most are only slightly slower.

5) EAE is still not implemented, but enough hooks were added to
 possibly add it on externally.

6) Dual push-down stacks and manipulation instructions were added.

7) Power-on status can be read to help software initialize the
 machine in ways appropriate to true power-on only.

8) Instructions were added to cause panel traps directly.

9) Instructions were added to help sense the cause of the CP
 interrupts (power-on, HLT, panel trap request, or device
 interrupt request).

 In addition, an "official" interface chip was added, to ease
design effort when implementing practical systems.

 This interface chip is the source of the most serious blow to
PDP-8 software, and we haven't completely recovered from it yet. The
problem is that this interface design is NEARLY but NOT EXACTLY
compatible with the PDP-8 console interface design. It is different
in ways that are not completely overcome in the present software. It
is hoped that future software will restore the original functionality
of PDP-8 software in a manor totally compatible with all members of
the PDP-8 family. P?S/8 has already been upgraded to solve most of
these problems.

 The first machine to appear based on the 6120 was the DECmate I.
This machine supports one or two pairs of (possibly mechanically
modified) RX02 and optional RL02's. The machine simulates device
03/04 to be a VT-100, but is slightly incompatible with PDP-8's 03/04
interface to a real VT-100. Because the keyboard is a simulated
"local" device, it is not possible to lose portions of escape
sequences, which is an improvement over the use of "real" VT-100's.
DEC attempted to make OS/8 compatible with the DECmate I and released
OS/78 V4, but the software performs only a subset of original OS/8
functionality. Execution (with the limitations caused by the
imposition of the DECmate I) is identical on the 8/e or better. The
8/e is the minimum system that can run this system due to the
presence of many instructions violating earlier machines'
limitations.

 The next machine is the DECmate II. While just as incompatible
with the PDP-8 as the DECmate I, the device 04 emulation is smoother
and faster. Keyboard emulation is totally "compatibly incompatible"
with the earlier DECmate I, except that the keyboard is the standard
VT-220 LK-201 keyboard. The running DECmate II system acquires part
of the CP program from the boot device in dedicated tracks known as
"slushware." Slushware resides on either an RX50 5.25" disk or on a
hard disk in a dedicated volume (which is called "FIRMWARE"). Disk
configurations start from an RX50 pair and optionally include:

1) an additional RX50 pair.

2) one or two external RX01 or RX02 pairs on an RX78 option board.
 Programming the RX01/02 is NOT quite compatible with RX01/02 of
 previous systems. (P?S/8 runs on all of these systems in spite
 of this :-).)

3) an RD51 disk controller with nominally a 5, 10, or 20 Megabyte
 hard disk. Other larger sizes work "unofficially."

The hard disk precludes the RX01/02 options, and there is no place
internally to mount both the extra RX50 and hard disk, but the
software could support this configuration.

 Additional options include a graphics board and an external color
monitor. Provided software can cause the whole system to emulate a
VT-240 or VT-241.

 Additional processor options include a Z80 with 64K, and a board
with the Z80 and an 8086 and 256K or 512K. (The 512K board is
rumored to support 1.0 Meg.)

 Standard features include a USART comm port, serial printer port,
100 Hz real-time clock, etc.

 Internally, the device 03/04 interface is trapped and emulated
using an external keyboard interfaced to CP memory via CP interrupts
only, and an internal DMA video chip that uses CP RAM as a video
buffer. Various character generator RAM and ROM options exist to
implement DEC's VT-220 character sets. Several interfaces exist in
support of this emulation including a bi-directional serial UART
interface to the keyboard, and a dedicated video interface, as well
as a device used only to trap the device 03/04 Input/Output Transfer
instructions (IOT's) themselves.

 The problem with all DECmates relative to the console handling
has its roots in a chip actually designed for the 6100 (and
indirectly in the RX8E). All designs before the RX8E always had a
classic form of instruction set regarding event sensing. An event
was either a level or edge used to trigger a flip-flop to hold the
event. The event flip-flop's output was gated onto the interrupt
request buss through an AND gate. The enabling side of the AND gate
is the output of another flip-flop which contains the interrupt
enable for the event itself. An instruction (traditionally a 6xx1
IOT where xx is the device code) was provided to skip on the event
set, and another instruction (typically 6xx2) was provided to clear
the event. Sometimes a side effect of the clear operation was to
clear the AC. Often an additional instruction (typically 6xx5) was
provided to load the interrupt-enable flip-flop as well. (This part
of the interface design isn't relevant to the problem because
non-interrupt software is affected. Further, earlier interfaces to
device 03/04 had no interrupt enable; it was permanently enabled.
The PDP-8/e implements interrupt enable for device 03/04 using 6035
as load interrupt enable for both sides of the device pair per the
value of AC[11]. On some early LPT: interfaces, 6xx5 enables, and
6xx7 disables interrupt enable.)

 6xx4 could be designated as some form of data read operation of
information associated with the event flag. The earliest buss
specification defines this as an OR transfer. Since the early buss
actually micro-programs IOTs by the bits set, 6xx6 would first
execute 6xx2 followed by 6xx4 in the same I/O cycle. Thus, if 6xx2
was defined to clear the AC, then 6xx6 becomes an AC load instead of
the 6xx4 OR transfer. This is the original definition of the
keyboard interface and was faithfully implemented in all PDP-8
designs from the PDP-5 through the VT-78. (No additional frill
instructions exist before the PDP-8/e implementation.) On machines
where a Teletype was possible, an additional effect of 6032 or 6036
was to cause the reader to release a single frame of paper-tape if
present. This leads to an eventual character available
indistinguishable from a user-typed event. (To separate the
functions, the PDP-8/e added 6030 to clear the flag and NOT advance
the reader; little software exists to actually take advantage of this
feature, as paper-tape was gradually phased out.)

 A key issue here is the separation of functions: the skip IOT
always skips if the event is true. The clear IOT is the only way to
clear the event. Much software was written to exploit PRECISELY this
collection of features. (I think hardware engineers actually believe
that the only console software ever written is the trivial examples
given in Introduction to Programming :-).)

 When the RX8E came along, it was clear that a lot of IOTs were
needed to handle the device, which has three event flags: DONE,
TRANSFER, and ERROR. Using traditional implementation design would
require three device codes. An alternative could have been to
implement a status register to read all conditions, but this was
rejected. Instead, an economy of instructions was introduced. Each
operation was tested with one instruction, a skip on event flag,
clear event flag in one operation. This requires some additional
software, but saves the hardware designer's MANAGER some grief :-(.

 Event flag initialization now requires some form of NOP after the
skip on, clear IOT since it might skip, even though the purpose is to
definitely clear, and the skip part is a nuisance condition. Since
the RX8E is used in custom-designed disk handlers only, compatibility
with previous designs isn't really necessary, so the design was
approved. (Looking back on the history of the RX "fiasco" it is
clear that this is the least of the RX family's problems :-).)

 Eventually the 6100 was introduced, and soon thereafter a chip
appeared called Program Interface Element (PIE). The PIE chip
contains four event flags, and has so many instructions for data that
two complete adjacent (even/odd) device codes are needed. Four of
these 16 instructions are skip on, clear event flag IOTs just like
the RX8E. Again, the purpose of the chip is for custom interfacing,
so compatibility isn't an issue. It should be noted that neither
Intersil, PCM, nor DEC ever used the PIE chip in their 6100 designs,
because it was important back then to maintain software
compatibility, so all of the major interfaces were implemented with
small-scale logic.

 The PIE chip design was part of the engineer's model for
producing the next-generation interface chip, the 6121. This chip
has some notable features: each chip is actually five devices in one,
and the chip is externally initialized by software to recognize what
devices it actually responds to. However there is a major software
problem: each of these interfaces is IDENTICAL, and slightly
incompatible with the traditional interface :-(. Without additional
logic, the 6121 implements the following instruction set:

6xx0 Set the flag.

6xx1 Skip on, clear the flag.

6xx2 Clear the AC only.

6xx3 Undefined.

6xx4 Read or write. Input transfers may OR or load.

6xx5 Load interrupt enable for the flag per AC[11].

6xx6 Read or write as in 6xx4. OR ability may differ from 6xx4.

6xx7 Undefined.

Using this set of instructions, it is only possible to implement the
trivial examples of device 03 usage in Introduction to Programming,
not the ACTUAL coding used in *REAL* code in the various operating
systems :-(:-(.

 There are several levels of incompatibility. Device 03 and
device 04 must now SEPARATELY interrupt enable, whereas previously
6035 served both interfaces. 6045 was defined on the 8/e as skip on
interrupt from either device to help minimize polling overhead in
interrupt handlers.

 6030 was defined in the 8/e to clear the input flag. In the 6121
it SETS the flag! (6040 is actually compatible, because that should
set the output flag :-).)

 The main problem is that 6031 skips on, AND CLEARS the input
flag. This destroys the functionality of all existing software which
depends on noticing the input flag being set, and in the event of ^C
being the character struck, leaving the flag set for handling
elsewhere, often by programming swapped in. The swapped in
programming attempts to find out by executing 6031 again, and
expecting another skip, which fails to occur here.

 The DECmate II implementation of device 03 is such that all odd
IOTs are actual, and all even IOTs trap and are emulated in CP memory
by the slushware routines. When the PDP-8 program should be informed
of an available character, the slushware routines execute 6030 to set
the flag. The PDP-8 program notices the 6031 skipping, and is
expected to execute 6036, which traps to CP memory, which emulates
loading the AC with the latest character. Should 6031 skip, and 6036
not be executed, 6031 will NEVER skip again, even if more characters
are typed in on the *real* keyboard, which is actually device 11, and
causes CP interrupts. 6034 is traps and ORs into the AC a replay of
the last character transferred with 6036.

 This method is useful for transmitting long escape sequences for
the special function keys, because it is impossible to lose a
character in real-time, but it imposes the constraint on the PDP-8
program to NEVER fail to couple 6036 to 6031. (There are several
known bugs in OS/278, especially ODT, traceable to this problem.)

 Several techniques used in the past are also incompatible with
this implementation: the effective use of 6034 to OR in the latest
character (used especially to check for ^C being pressed) is now
impossible, since 6034 merely presents a repeat of the previous
character 6036 has already transferred, not the latest character
available without disturbing its flag. (The original idea was that
6032 cleared the flag and AC, 6034 ORed the data into the now clear
AC to effect the load. 6034 alone merely ORed in the new data
without disturbing the flag.)

 The OS/278 attempt to repair the damage caused by this
incompatibility is to merely do 6036 when 6031 skips, and not attempt
to convey the information about ^C to the rest of the system upon its
detection. This leads to an emasculation of the original OS/8
functionality.

 The P?S/8 solution to the problem is to define a soft "^C-hit"
bit. Detecting programs will execute 6031 and 6036, and then set the
bit accordingly. The keyboard monitor first looks at the soft bit
for ^C detection leading to abort action. Failing this, 6031 is
tested. If it skips, and 6036 reads ^C, then the abort action is
taken. This allows PDP-8-only programs (such as DECtape formatters,
etc.) to be compatible without modifications. A further advantage is
that other devices (graphics terminals, etc.) can simulate ^C abort
exit by setting the bit as well.

DECmate III models.

 The DECmate III is a down-sized DECmate II for most purposes.
Only a single RX50 pair is allowed, and no hard disk. The graphics
board and console video interface can share a single color or mono
monitor (unlike the DECmate II which always requires the mono
monitor).

 The printer interface baud rate cannot be changed from the fixed
rate of 4800, but is otherwise compatible. The communications option
is compatibly upgraded to include support for an optional 300/1200
baud DEC "Scholar" compatible internal modem. Certain programming
constraints must be applied when accessing the comm chip that makes
certain existing OS/278 programs incompatible with the DM III, but
this is fixable. All video and real-time interfaces are compatible.

 The graphics option is mostly compatible with the DM II graphics
option, and the APU option is essentially compatible with the Z80
APU option of the DM II. It is rumored that DEC created (but never
marketed) an XPU (80x86 version) version for the DM III as well.

 The DECmate III+ was the last model introduced. It comes with a
built-in RD51 interface to a 20 Megabyte ST-225 hard disk, but only
one floppy. The diskette drive is actually an RX33 drive, but no
attempt is made to use the high-density or double-sided capabilities.
(Since the drive runs at 360 RPM, transfers are 20% faster.) Overall
dimensions and case are identical to the DECmate III model.

 The built-in modem was dropped; all other features and options
remain the same. It is possible to produce a non-standard machine
with two floppies, and examination of the CPU board reveals the
likelihood of the modem interface being added merely by installing a
few components in areas reserved for them. The RD51 interface is
implemented on a separate board suggesting it could have been an
option. It is entirely possible that DECmate III systems could have
been produced using the DECmate III+ board to phase out the older
DECmate III boards.

Non-DEC PDP-8's.

 Besides the Intersil and Harris micro-PDP-8's, there have been
some other attempts at compatible machines over the years.

 CESI introduced a single-board machine called SBC-8 which is
based on the 6120, but uses compatible interfaces and an external
console terminal. An SCSI buss allows many disk options.

 There have been many small groups producing 6100-based machines
with various peripherals on them. Intersil itself included an
Omnibus subset (no DMA) application note with the machine. Some of
these are based on various development projects known as the 6100
Sampler Kit and the Intercept Jr. These were comparable to hobbyist
micros of the same era (1974-1976), and other manufacturer's
development systems such as for Motorola's 6800, etc.

 Fabritek once introduced a machine called the MP-12 which was
PDP-8 compatible. Little is known about it.

 Digital Computer Controls introduced several models called
DCC-112 and DCC-112H. At least one of them was positive buss
compatible, and a newer model was to be Omnibus compatible.
Eventually, DCC was sued by Data General for producing a machine
called DCC-116 which was too close to being a clone of a NOVA, and
the company was absorbed into Data General who dropped support of the
12-bit line.

 In the late '60s, Hungary demonstrated a machine that was clearly
a PDP-8/l. It is not known if it was made in Hungary or actually
shipped there from DEC in the USA. Photographs show a Hungarian
silkscreened front panel calling the machine "TPA." The rest of the
machine appears to be DEC standard. The only accompanying
information is the fact that the machine wasn't IBM-compatible :-).
A dual system was even alleged, but this was merely two identical
boxes stacked on each other. It is doubtful that any "parallel
processing" existed between them :-).

last update: 30-Sep-1992

[end of file]

