LU T U L LALLM e M N | W

opied o bsed in -
e 153 Graufachre oF sate ph fures
| WLA panmizapn, PR RAE O] e

A i

CONFIDENTIAL

~

PDP-X Technical Memorandum ¥ 43

TITLE:
AUTHOR{S):

INDEX KEYS:

DISTRIBUTION KEY:

OBSOLETE:

REVISION:

DATE:

PDP-X Assembler Specifications

H. G. Bramson

Software Specifications
XAP

B, C

PDP-X Technical Memorandum # 35

~None

February 1, 1968

PROGRAM SPECIFICATION

PDP-6/PDP-X ASSEMBLER

XAP-6

H. G. Bramson
2-1-48

0.1

1.2

1.3

1.4

OVERALL DESCRIPTION
=20 DESCRIPTION

XAP=6 is the symbolic assembly program for assembling PDP-X programs on
the PDP~6. XAP-6 runs under control of the PDP-6 Time~Sharing Monitor, XAP-4
processes input source programs in two passes and requires o minimum of 4K of core
memory. Additional core is dynamically added if requived. It is completely device
independent, allowing the user o select standard peripheral devices for input and
output files via o command string. ! -

The normal output of the ass&mbler is o bi.nory object program which can be
leaded for debugging or execution by the PDP-X Simulaior on the PDP-9 (XSIM=-9}.

- XAP-6 prepares the object program in either relocatable binary or non-refocatable
, 4

binary.

An output listing showing both the Programmei’'s source coding and the ob-
ject code produced by the assembler is printed if desired. :

GENERAL SPECIFICATION |

- MACHINE REQUIREMENTS

XAP-6 can operate on o 14K POP-6 undzr control of the PDP-6 Time~
Sharing Monitor system. The minfraum peripheral requirement for the normal
operation of the assembler is :

paper tape reader
paper tape punch
‘console teletype

»

MACHINE OPTIONS

The assembler is device independent and therefore other devices contoined
in the machine configuration may be selected vio the command siring. Such devices
might include: '

Disc -
DECtape
Magnetic Tape
Card Reader
Line Prinfer

SYSTEM REQUIREMENTS

- XAP-6 requires the presence of the PDP-4 Time~Sharing Monitor System.
This monitor controls all of tha input/output activities thas may be required by XAP-4.

RESIDENT PROGRAMS

NOT APPLICABLE.

0.1

1.1

1.2

1.3

1.4

VERALL DESCRIPTION

XAP-6 is the symbolic assembly program for assembling PDP-X programs on
the PDP-6. XAP-é runs under conirol of the PDP-6 Time-Sharing Monitor. XAP-6
processes iNput source prograus in two paosses and reguires o minimum of 4K of core
mernory. Additional core is dynamically added if required. 1t is completely device
independent, allowing the user to select standurd pc.anerol devices for input and
output files via a command string., :

The normal output of the assémbler is a binary object program which con be
loaded for debugging or execution by the PDP-X Simulator on the PDP-9 (XSIM-9}.
XAP-6 prepares the object program -in either relocatable binary or non-relocatable
binary. 4

An output listing showing both the programmer’s source codmg and the ob-
ject code produced by the assembler is printed if desired.

GEMERAL SPECIFICATION

- MACHINE REQUIREMENTS

XAP-6 can operate on 16K PDP~6 under control of the PDP-6 Time~
Sharing Monitor system. The minimum peripheral requirement for the normal
operation of the assembler is:

paper tape reader
paper tape punch
console teletype

MACHINE OPTIONS

The assembler is device independent and therefore other devices contained
in the machine configuration may be selected via the command siring. Such devices
might include: '

Disc

DECtupe
Magnetic Tape
Card Reader
Line Printer

 SYSTEM REQUIREMENTS

- XAP-6 n,tunres the prcsence of the POP-6 Tsm.—,-S"zot ing Monitor System.
This monitor conire's all of ths input/cutput activities that may be required by XAP-4.

RESIDENT PROGRAMS

NOT APPLICABLE.

2. DESIGN SPECIFICATIONS

2.1 DESIGN GOALS

KAP-4 is intendad to be downward compatible with the eventual PDP-X
assembler (XAP), i.e., XAP-6 will not contain features which are unavailoble in
XAP, and dlse source programs witl be 100% Ianguag?: compdriible. In order to
facilitate changes and enhance maintainability, XAP-6 will be written in a highly
modular form. "

The problems of reimplimentation of XAP-6 to XAP will be minimized
because the internal structure of the two assemblers will busically be the same.

2.2 INPUT

2.2.1 INPUT FORMAT

The input format for XAP-6 is equivalent to the PDP-X Assembler Language. .

The remainder of this seciion is presented in the form of ¢ Lenguage manual .

PDP-X
ASSEMBLER
(XAP)

USER'S MANUAL

0.0

1.0

1

N

[[T} BN P A N S Y O A 0 YT 1/ RSN T I N N UM U S

_IIXAPH

PDP—_)_(-éssemb!Iy El‘dgram

INTRODUCTION

L3

XAP is the symbolic assembly program for the PDP-~X. Operating under conirol
of @ monitor, which handles 1/O fuhctions, XAP processes input source programs in
two passes, and requires less than 6K of core'memery. [t is completely device indepand-
ent, allowing the user to select standard peripheral devices for |npuf and output files.

XAP makes machine language programming on the PDP-X much easier, faster
and more efficient. [t permits the programmer to use mnemonic symbols to represent
machine operation codes, location and numeric quantities. By using symbols o identify
instructions and data in his program, -the programmer can easily refer 1o any point in
his program without knowing acfual mechine locations.

The normal ou%pﬁ of the assembler is a relocatable b;nar) objeci program which
can be loaded for debugging or execution by the Linking Loader.

XAP prepures the object program for relecation, and the Linking Loader sets up
linkages to external subroutines. Optionally, the binary program may be outpuited in
non-relocatable code,

The programmer may direct the assembler's processing by the usage of pseudo-
operation insiructions (pseudo-ops). These pseudo ops are used to set the radix for
numerical interpretation, to reserve bioc&s of storage location, to handle sirings of
ASCH text, to conditionally assemble certain porhons of coding and other functions
which will be explained in detail.

An output listing, showing both the programmer's source coding and the object

-ceding procuced by XAP, is printed if desived. This listing may include all the sym-

bols used by the programmer with their assigned values. If assembly errors are detected,
erroneous lines are marked with specific letter error codes.

Operating procedures for XAP may be found in the appendices of this specifi-
cation. o '

" GENERAL SPECIFICATION

MACHINE REQUIREMENTS

XAP opfarc.tes in PDP-X sys’rems with the |/O Maonitor and the following minimum
hordware configuration: -

3K core memory
- Console reletype
Paper tape reader and paper tape punch

1.2

2.0

2.1

The assembler is actually device independent. The user preselects
device assignments for source program input, cutput of the binary object program,
and output of the prinied listing.

MACHINE OPTIONS

»
With the addition of bulk storage to the hardvrare configuration, XAP operates
with the Keyboard Monitor, which.allows tie user flexibility in assigning 1/O devices
at assembdly fime.

DESIGN SPECIFICATIONS - é

The assembler processes in two passes; that is, it passes over the same source
+ . 1 - 1 y . - 'S .
program twice, outputting the object code {and producing o printed listing, if reques-
ted), during the second pass.

The two passes are resident in memory of the same time. Pass 1 end Pass 2 are
almost identical in their operations, but object code is produced only during Pass 2.
The main function of Pass 1 is to resolve locations that are to be assigned to symbols
and to build up @ symbol table. Pass 2 uses the information computed by Pass 1 {and
left in memory) to produce the final output.

The standard object code produced by XAP is in a relocatable format which is
acceptable to the PDP-X Linking Loader. Relocatuble programs that are assembled
separately and use identical global* symbols where applicable, can be combined by
the Linking Leader into an executable object program.

Some of the advantages of having brograms in relocatable format ore as follows:

. Reassembly of one pregram, which at object time was combined with other
programs, does not necessitate a reassambly of the entire system.

b. Library routines (in relocatable object code) can be requested from the sysiem
device or user library device. :

c. Only global symbol definitions must be unique in a group of programs that
operate together, 3

INPUT

KAP programs are normally prepared on o tefetype as a sequence of statements.
{With the aid of an editing program the program can easily be updated.) Each statement
is written on a single line and is terminated by a carriage return - line feed seauence
(indicated by & in this document). A line feed or form feed are actuclly the charocters
that terminate XAP statements. XAP statements are virtuolly format free, i.e., elemenis

* Symbols which are referenced in onz program and defined in another.

2.2

2.2.1

of the siatement are not placed in numbered columns with rigidly controted spacing
between elements. The character set that is used as inpui to XAP is 7-bit ASCII.

(See Appendix A.)

ELEMENTS OF A STATEMENT

There are four elements in a XAP statement which cre separated by specific
characters. These elements are identified by the order of their appearance in the
statement, and by the delimiting character which follows or precedes the element.

Statements are written in the general form:
LABEL: OPERATOR OPERAND, OPERAND ~;COMMENTS §

The assembler interprets and processes the statemants, generating one or more binary
instructions or data words, or performing an assembly process. A statement must con-
tain at teast one of these elemenis, but it may contain all four.

LABELS

A label is the symbolic name created by the user to identify the statement,
If present, the labet is written first in o statement, ond isterminated by a colon (:).
No spaces are ¢llowed between the last character of the labe! and the colon (3).-

Examples:

ABC: '

TAG:

TAGT : TAG2: TAGS: All 3 labels point to the same location,

LABEL .. A: fmega!, no spaces are allowed within the label
TAGIT & .| or between the last character and the colen.

Lobels are not redefinable by another label, direct assignment or EOPDEF.
They can net appear after an operator or operand has preceded it on a line.

Examples:

LABEL: LDA 4,5

EOPDEF LABEL,1g ;EOPDEF can not redefine a Jabel, (See 3.1)
LABEL= 1ff ;Direct assignment can not redefine o label,
(See 2.3.1)
LDA 4,5 LABEL: ;A label can not be preceded by an operator

;or operand

2.2.2

OPERATORS

An operater may be:

LI TR T T T TRTTTTE T NI T

a. Any one of the mnemonic machine instruciion codes (see appendix B).
‘An assemibler pseudo op, which direcis assembler piocessmg

c. EOPDEF

1f there is no labe! associatéd with the staterient the operator may appear
os the first element of the statement. The operator field is terminoted by any one

of the following delimiters:

1 A - (space)

2) —l (tab)

3) ; (semicolon)
4) ¢ {line feed)

Examples of Operotors:
P

LDA - ;mnemonic machine instruciion,
LOC ;an assembler pseudo op.
EOP ;legal only if defined via EOPDEF,

4

In order for a symbol to be interpreted as an operator it must not be part of an expression.

as an operand and must therelore be user defined.

At must be used a5 a free standing symbol . [f it is used in an expression, it will be treated

Examples _ .

EOPDEF EOP, 25 . jdefines FOP as a user defined operator
LBA 3,L0C ;'"LDA™ is an operater, "LOC" is an operand
LDA+ ;"LDAM is an operand
LOC 5§ ;"LOC" is o pseudo op
LOC+59 ;"LOC" is an operand
EOP TAG ;"EOP™ is an operator, "TAG" is an operand
EOP+1 ; "EOP" trected os an operand

As an operator, a mnemonic machine instruction or o pseudo op takes preced-

ence over identically named user symbols.

Example
Source : : Would Assemble .As:
LDA-5
4 5
LDA ,LDA ,GJ ugr see 6._,@

+LDA | ﬁ?DD}J"

2.2.3 OPERANDS

Operands are usually the symbolic addresses of the data 1o be accessed when
an instruction Is executed, or the input daia or arguments of a pseudo op. In each
cose, the interpretation of operands in a statement depends upon the statement opera-
tor. Operands are separated by commas (if operator requires more than one operand)
and ferminoted by a space (&), tob (~Bl), semicolon (;}, or line feed (7). '

RULES ABOUT COMMAS

A comma terminates the current operand/argument and implies that another operand/
argumeni follows. Spaces and tabs may precede and follow commas.

Examples:
. Operaind | - Operand 2 Operand 3
Statement - - value: value value
1 1
1, 1 . g
, g g
1,2 1 2
1,2 1 2
1, 2 1 2
)2 g 2
r f. * Jg g Q
v, 2, 1 2]
1 2 1 2 flagged as
an error
Symbols used os operands must have a value defined by the user. [f a symbol,

used as an operand, is the seme as @ mnemonic machire instruction or pseudo op, it
will not be interpreted as such, but rather as o user defined symbol. EOPDEF defined
symhols may be used as cperators or operands. :

2.2.4

e ML L R Ml s sahe et

Examples

LOC=5

STA: 1)
LDA 4,STA ;OTA is user defined :
STA 4,LOC ;LOC is user defined, STA is a machine on code
LOC 5 ;LOC is a pseudo op

-

Many instructions reference an accumulalor and g memory location, If the
first operand is an accumulator it must be terminated with o comma (,). If an accumy~
lator is not specified but the operator requires one, accumulator 4 B assumed and the
instruction will be flagged. The value of the accumulator is truncated to the 3 least
significant bits, '

If an accumulator is specified on an instruction that does not require one, it
witl be flagged as an error. Any reference to accumulater 1 will get flagged os en
error, because AC 1 is the hardware program counter and must not be referenced. (See
Appendix E for expected formais) '

Examples:

AC5=5
LDA TAG ;error, AC 4 assumed
LDA ,TAG ;AC f implied

LDA" AC5,4 ;AC 5 referenced
LDA 1,TAG jerror, AC 1 can not be referenced
LDA 25,TAG ;AC S referenced ond flogged

B LOC ;correct form
B AC 5,LOC ;airor, instruction does not require an AC-5 assembled
COMMENTS

The programmer may add comments to a statement. Such comments must be

_ preceded by a semicolon (;). Comments do not affect the assembly process, but are

used mainty for documentary purposes.
Examples:

;this is o comment
A: LDA 4,5 sthis also is a corament

2.3

2.3.1

SYMBOLS

The programmer creates symbols for use in statements to represent labels,
operators and operands. A symbol contains one fo six characiers from the following

sefr: . . o
The letters A-Z
The digits g-9
Two special characters S (dollar sign)
%(percent) ' L ok

The first character of a symbol must be a letter or dollar sign or percent. It must not
be a digit. '

The following symbols are legal:

A $%TAG S
A% TAG25 P9%
%TAG % $25

The following symbols are illegal:

BTAG First character may not be a digit
TAG?] ? is an itlegal characier in o symbol

Only the first six choracters of o symbol are meaningful to the ussémbler, but
the prograrmer may use moie for his own information. If he writes,

SYMBOLT:
SYMBOL2Z:
SYN\BOL&

as the symbolic labels on three different statements in his program, the assembler will
recognize only SYMBOL and indicate error flags on the statements containing SYMBOLY,
SYMBOL?2, and SYMBOL3, because to ihe assembler they are duplicates of SYMBOL.

DIRECT ASSIGNMENTS

The programmer may define a symbol directly into the symbo! table by means
of @ direct assignment staterent, written in the form

TLA . AL L L

SYMBOL= value

where value can be any statement, including literals and data generating pseudo ops.
The expression to the right of the = assumes the operaior field. The value of the
direct assignment can not generate rmove than one word.

Direct assignments are redefinable. They may only redefine other direct
assignments, They may not redefine user symbols,

-

Examples:

A=1 . o :

B=A+3 ;B is defined as A13=4

A=2

A=A+ sredefinition of A

GETS=LDA 4,5 o

Lrr =111 ;LATT is address of Literal

MSG =ASCII /AB/ ;Stored os ,{’541125] .

CHK=CMP 4,['C%) ;Flogged as an error, value more than 1 word.

The = sign must immediately follow the symbol. However, the value to the
right of the equal sign may have preceding spaces or tabs.

Examples:
Lega! | | - HE
A=5 | | . A-pl=5
B=A10 ' BA=ALY
C=- 28 ' :

Direct assignment slutements do not generate instructions or data in the ohiect
program. They aie used to assign value so that symbols can be conveniently used in
other statements, .

In general, it is good programming prectice to define symbols before using them
in statements which generate storage woids.

Exampfe:

IDA 4,Y ssame as LDA 4,5

A symbol may bz defined after use.

2.4

Exomf_lie_:

BR Y
Y=1

This is called a forward reference, and is resolved properly in Pass 2. When first en~
countered in Pass 1, the BR Y statement is incomplete because Y is not yet defined.
Later in Pass 1, Y is given the volue 1. In Pass 2, the assembler finds that Y =1 in

fhelsymbol teble, and forms the complete word.

Since the assembler operates in two passes, only one-step Forwcm references
are allowed. The following sequence would be illegal.

The assembler will tist, during Pass 1, direct assignments whose values are incomplete.
In pass 2, statements containing references to unresolved direct assignments will be
flogged with an "E™.

NUMBERS

Numbers used in source programs may be signed or unsigned integers in single
or double precision, or they moy be FIoahng point numbers. Negative numbers are
represented in twos complement. The numbers are interpreted by the asseradler accord-
ing to the radix specified by the programmer, where;

*

2 <radix <10 .

The programmer may use an assembler pseudo op, RADIX (see 3.12), to sef
the radix for oll numerical interpretation. 1f the RADIX pseudo op is not used, the
assembler assumes a radix of 8 (octal},

The radix may be changed locally, to decimal, for a single number by following
the number with a period {.). If the period is followed by dagl’r the number will be
interpreted as a floating point number .

SOURCE GENERATED RADIX
STATEMENT VALUE {OCTAL) IN EFFECT
256 256 | OCTAL
+135 R 1%] B A OCTAL
-75 V77743 OCTAL {Twos complement)
196, oo 44 DECIMAL

-4 . 177738 . DECIMAL {Twes complement)

2.4.2

2.4.3

2.4.4.

DOUBLE PRECISION HNTEGERS

Double precision integers are specified by the letter D termirating
the number which indicates that they will occupy two memory locations with
the least significant digits right jusiified. As with single precision integers, o
negative double precision integer will be represented in twos complement form.

Examples: *
- SQURCE GSENERATED RADIX
STATEMENT VALUE {OCTAL) IN EFFECT
+125D 00002C 000125 QCTAL
635726430 000316 172643 OCTAL
-735D 177777 V77043 OCTAL (Twos complement)
. -100.D 177777 177634 DECIMAL (Twos complement)
-63572643D 17746% 005135 OCTAL (Twos complement)

BINARY SHIFTING

An integer or symbol value may be logically shifted left or right by following it
with the character pound sign () followed by o number, 4nn, which represents
the numbsr of ploces to be chifted. “nn" always represents a decimal number
from €-31. W “nn" is positive, the value will be shifted left. If "nn" is neg~
ative, the value will be shifted right. Bits leaving one end are lost and zercs enter
at the other end. Shifting moy only be used with integers.

 Exomples:
SOURCE GENERATED VALUE
A=25
Af5 B06124
125¥12 ' B58304
-35.7-3 617773
72345635D% +2 BE1647 027164

FLOATING POINT NUMBERS

If a string of digits contains o decimal point, which is foliowed by «
digit, it is evoluated as a floating point DECIMAL number.

Examples:
SOURCE | GENERATED
STATEMENT . VALUE
+.19 o#ooso 050754
-183.72 ' 141270 050754

+23.279 041027 043554

F|001‘ing poini decimal numbers may also be Wr;ﬂ“en, as in FORTRAN, WTI"I
(the number followed by a signed or unsigned exponent which represents o power
of 1. The exponent will be treated os o decimal numbder.

Examples:
»
SOURCE GENERATED
- STATEMENT - VALUE
' 1.5E5 042444 117400 -
1.5642 041226 000000)
1.5E-3 037142 Q46722 '

The preceding form of a floating point decimal number represents single
precision, in that it causes two words to be generated.

To express a double precision floaling peint decimal number, the number
is followed by the leiter D. In addition, an exponent can be represenied by
following D with a signed or unsigned number which represents a power of 16.

Examples:
SOURCE GENERATED
C STATEMENT VALUE
-.36D-4 137623 0722741;- 045176 174733
2.5 EXPRESSIOMNS *

Expressions are strings of symbols and numbers separated by arithmetic
or boolean operators.

The following are the allowable operators.

L]

OPERATOR FUNCTION

+ {plus) add

- {minus) subtract

* (osterisk) multiply

/ (slash) divide

& (ampersand) AND

P (exclamation) inclusive OR ;; Boolean
\ (back slash} ' exclusive OR |

~ The assembler computes the 16 bit value of the series of numbers
and/or symbols connecied by the arithmetic and boolean operators, truncating
from the left, if necessary. Operations are performed from left to right
(i.e., in the order in which they are encountered). For example:
A+B*CAD/E-~F*G is equivalent to the following algebraic expression:
L]

((ATB)*C+D)/E-F)*G

Bramples

Assume the foflowing symbol values:

Fi
SYMBOL VALUE (OCTAL)
A ' 2
B . B
C 3
D . 5

The folloving expressions would be evaluated occording to the above rule.

EXPRESSION EVALUATION (OCTAL)
A/BHAC 000006 Remainder of A/B is lost
B/A-DA-5 . \77777 1)
C+A&D 000005
- AtB*C&D o 000004
1+A&C ' 000003
20.-B 000052

2.6 LOCATION ASSIGNMERTS

As source program statements are processed, the Assembler assigns
consecutive memory locations to the storage words of the object program.
This is done by reference to the Location Counter, which is initially set to
zero. Machine instructions may cause the Location Counter to be incremented
by either one or two. Other statements such as those used to enter dota or
text, or to resarve blocks of storage words, cause the Location Counter to be
incremented by the number of storage words generaied.

2.6 SETTING AND REFERENCING THE LOCATION COUNTER

The programmer may set the Location Counter by using the pseudo op LOC
which will be described later on, He may referenceé the Location Counter
directly by using the symbol, period (.). '

Consider the following exomple:

LOCATION COUNTER STATEMENT . FORM
100 R 45 SHORT (1 word)
101 : LDAL 4,5000 LONG (2 words)
03 STAL - 4,6000 LONG
105 LDA 5,20 . ' SHORT
The First starement, BR .5, re’a;e:'s to 5 locations away {rem the current
instruciton and therefore references location 105. | the BR .+5 instruction

wos long form it would have to be .+6 to provide the sume resulis.

: 4
2.6.2 INDRECT ADDRESSING

The character @ prefixing an operand causes the assembler to set
bit B, indicating indirect addressing.

If the stafement contains both an operator and on operand, two words
will be genarated for the statement. If there is only an operand, only one
word will be generated for the statement. :

Examples:

STATEMENT GENERATED VALUES NOTES
LDA=50 . ' Assignments, no
TAG=20 values generated
LDAL 4,2TAG 2,485,288 | a

: : 100020 Two words
LDAL 4,LDA ¢.4.8 208 *Q}enercfed

_ 100050 '

ETAG 100020 Cne word generated,

also forces operond
and therefore LDA
interpreted as operand
rather than operator.

2.6.3 INDEXING

If the programmer wishes to index an operaond of a statement he may do
so by enclosing a value or expression within parenthesis suffixed to the operand.

- Examples:

X2=2

X3=3 _

'LDA 4, TAG(X2)

CBR O f(X3) orBR(X3)

STA - 5, TAG(2) . ’

LDA 4, @ TAG(X2) ;indexed, indirect
The lefr parenthesis "(" is mandutory, while the right parenthesis")" is optional.
In addition, the following statements will produce the same results without
causing un error. ' : -8

(&

i will ol produce an index valve equal to a9

2.6.4 LITERALS

In assenbler statements, a symbolic data reference may be replaced by o
direct representation of the data enclosed within brackets (L. (The left
bracket ([} is mandatory, while the right bracket (I)is optional). This direct
representation is called a Iiteral. The literal may be any legal assembly
statement including data generating pseudo ops. The literal can not generate
“more than 1 word. Liferals may net be nested, i.e., o literol can not
reference another iiteral.

Examples:

LDA 4,[1]

LDA 4, [27A-1]

LDA 4,ILDA 4,TAG]

SHET 4, [SHFTL+7] : |

LDA 4,TASCIl /ABCD/] jerror, oo many words genergted

2.6.4.1 ALLOCATION OF LITERALS

Literals are either pooled or cause the immediate mode fo be generated
 depending upon the form of the referencing statement.

. 2.6.4.1.1

2.6,4.1.2

LONG FORM REFERENCES

Literals referenced on long form instructions couse the immediate
mode to be gc.nerofec' for the referenci 19 instruction with the value of the
literal as the immediate word.

Examples:
SOURCE GENERATED VALUE
TAG=5 .
TAG1=3 ,
LDAL 4, [TAG3] g,4,1,260
ggesg
CMP 5,[TAGT] 6,5,1,11H1
i L3R03
CMP 4,0141 6,4,1,117
Agenie

SHORT FORM REFERENCES

Literals referenced on short form instruction (or if no operator
is present on the referencing line) are pooled on the occurrence of an
LPOOL pseudo op (see 3.13) or the END pseudo op (see 3.11.2).

Duplicate literals, completely defined when encountered in the
source during pass 1, ore stored only once so that many references 1o the
same literal in @ given "poo! area™ result in only one (1) memory lacation
being allocated for the literal.

Examples:
PROGRAM GENERATED SQURCE
COUNTER CODE CODE
A=77
205 LOC 2pg
200 g,4,8, 207 LDA 4,[TAG]
201 8, 4,8,265 LDA 4. [77]
202 g, 4,0, 206 LDA 4, [207]
203 g, 4,8,205 LDA 4, [ad
204 d,4,0,207 LDA 4, [TAG]
' LPOOL

285 QReET7
266 2EE208
207 ag211

1 extra location cllocated in poss 1 because "TAGY not dafined
211 g,4,8,216 TAG: LDA 4[]
212 aeo 6 (11

2.7

2.7

2.7.1.2

PROGRAM o - GENERATED _ SQURCE

COUNTER . ~ CODE _CODE

213 geg17 | [771 |
214 £,4,8,220 , LDA 4,1TAG]
215 | gop22p | [TAG]

e : . END

216 000001
217 000077

22 gagan
INSTRUCTION FORMS o

The permanent symbo! fable of the assembler contains the
machine opcode set of the PDP-X. This is comprised of the basic opcodes,
extended opcodes and the /O opcodes. In oddition, the bosic op code
mnemonics have been extended, by suffixing them with the lefter "L", in
order fo have ihem be assembled as fong form instructions.

For example; .

would occupy | memory location,
would occupy 2 memory locations.

LDA 4,
4

5
while IDAL 4,5

" The user must moke sure that long form be specified whenever an indirect

reference is mode or whenever o reference to an EXTERNAL is made.,

Examples: .
EXTERNAL EXTSMB (see 3.9.2)
LDAL 4,85
BSRL EXTSMS
LDA 4,@6 ;would be flagged as an error

EFFECT OF .lN_DEX VALUES ON INSTRUCTIONS

Index values cause the assembler to generate specific forms

of addressing. The index volues ond their affect on short form and long

form instructions are as follows:

SHORT FORM INDEX VALUES

INDEX I l[
§
VALUE © MEANING .| COMMENTS
NONE Direct or relative whichever 1) Direct is legal only if operand is absolute
is possible i and < 377 and £204.

2) Relaiive s legal only if the location «nd
operand have same form (abs/cbs - rel/rel)
and difference between operand and progrom
counfer is Wlthln F;?}]77

| i
Direct i Lega! only if operand is absolute and < 377 and
 F200.
_— e e e et e e A ma— e I [——. -
Relative Legc! on|y if i‘he Iocahon ond operand have
same form (ahs/abs ~ rel/rel) and difference
between operand and program counter is
within :Lﬁ 177
Indexed with 2 o Legc! only if opemnc‘ is absolute and is
within £§-177.

Indexed with 3

With respect to the nature of the form of the location ond its
operand, the following table shows the legal forms. f @ form is specified
that is illegal, only 1 location will be allocated for it and it will be
flagged with an "A™,

LOCATION OPERAND LEGAL SHORT FOIMS
RELOCATABLE RELOCATABLE RELATIVE ONLY
RELOCATABLE ABSOLUTE DIRECT ONLY
ABSOLUTE RELOCATABLE MUST BE LONG FORM
ABSOLUTE ABSOLUTE DIRECT OR RELATIVE

Whenever the velue of o literal or direct assignment contains
relctive addressing, i.e., X=1, it is computed relative to the program counter
where it was encountered and flagged as a possible error.

Example: -
ASSUMED GENERATED STATEMENT
LOCATION VALUE :
JCOUNTER - _
B=600
576 g,4,1,08 A=LDA 4,B ;flugged as possible error

because the relativity
may be incorrect.

2.7.1.3 LONG FORM INDEX VALUES

([ndex values for long form insiructions do not take on any special meaning

for long form insiructions other than whot they normally would mean. There are
no restrictions as to their usage,

—_— - L — . Cy .. . L e P - - . . . !
L INDEX VA_' VE . .. } omniEEFECHIVE ADDRESS |
B NONﬁwm_nué

1 9 | - D2
S S - 4
5 1 | PC+] (!MMEDIATE)
2 DXz ‘
!' - - o . . S = e A mumA TRLRL AT s - EEe R R - - . -‘-
l 3 ; D2- i~>(3

2.7.2 ADDITIONAL NOTES ON LONG FORM INSTRUCTIONS

If a long form instruction is immediately suffixed with an up arrow (1), it
(' indicates to the assembler to output only 1 word (16 bits) and updaie the program
3 counter by 1 rather than by 2.

Examples:
Generates
» .
CMPt 4,(1) 6,4,1,111
CMPt 4,5(2) 6,4,2,111

2.7.2.1 CALCULATION OF D2 FOR LONG FORM INSTRUCTIONS

IF the index value =1, D2 is g 14 bit value.
IF the index value #1, D2 is a 15 bit valve and -
if indirect wus specified, bit @ is set,

Examples:
A=-1 Generates
CMP 4,1A] &,4,1,111 177777
SUB 4,A 6,4,)‘3 112 p77777
SUB 4,@5 6,4,0,112 160395
3.0 - PSEUDO OPS
(r Pseudo ops are statemeants which direct the assambler to perform certain

assembler processing oparctions, such as preducing text strings or reserving blocks

3.1

of memory. Some pseudo ops generate object code and some do not. In all cases
a pseudo op will only be interpreted as such only if it is an operator,

EOPDEF

The programmer can define his own exiended Op coae operaier using an
- ’ . - i) .
EOPDEF statement written in the following general form: '

EQPDEF NAME ,D1,R

where: 1. "NAME" is the name of the user defined operator. .
2. "D1" s the value to be assigned to the DI portion of the instruciion
when_the EOPDEF operaitor is referenced. '
3. "R" is the value to be assigned to the R portion of the instruction

DT and R may be symbols, numbers or expressions. In addition, an opcode of 6
will be generated whenthe EOPDEF oparaier is referenced.

EOPDEF is the method for the user to define unused extended opcodes (UUQO's),

When an EOPDEF is used, it must follow the same syntax rules as
extended op codes {see appendix F).

Examples:

EOPDEF A,1200
EOPDEF B,121,2

| OP,R, X, D1

A 6,5 generates 6,6,9,128 gogods

A 5 generates 6,4,8,126 000005 and flagged (AC=4 assumed)
B 5 generates 6,2,8,121 002005

B 4

/9 genergies. 6,4,9,121 PLHI5 and flagged
EOPDEF defined symbols may be redefined by other EOPDEF's,

If an EOPDEF defined symbol is redefined by any other means, the EQOPDEF
definition remains ond the line that attempted to do the redefinition will be flagged
with an "9,

If an EOPDEF is encountered and the symbol has already been entered into
the symbol table {but not as an EOPDEF), the EOPDEF is ignored and flagged wit
an |TI 3] . .

Examples:

EOPDEF A,130

A TAG :
A LDA 4,5 ;Line flogged and label "A™ ignored
B: LDA 4,5

EOPDEF B, 131 ;Line flagged and EQPDEF ignored

3.3.2

3.4

RESERVING STORAGE

UNDEFINED SYMBOLS

If any symbols, except EXTERNAL symbols (see 3.9.2), remain undefined

- at the end of Pass 1 of assembly, they are automatically defined as the addiesses

of successive registers following the locations reserved for literals, if any, at the
C e e .
end of the program. .
All lines which referenced the undefined symbo! will be flagged wiih an
error code. One memary location will be reserved for cach undefined symbol
with the initial contenis of the reserved location heing unspecified.

At the end of Pass 1, the assembler will outpui the names of all undefined
symbols and the locations allocated fo them.

RESERVING A BLOCZK OF MEMORY

The user may request the assembler fo reserve a block of memory by the
usage of the BLOCK pseudo op written in the following form:

BLOCK value

BLOCK reserves a block of memory equal to "value". "Value", which may be
number, symbol, or expression, must be predefined; otherwise, phase errors will
occur during Pass 2 of assembly. The cssembler will output @ message, in Pass 1,
if the value is not predefined. The initial contents of the reserved location are

-unspecified. o
Examples:
SQURCE LOCATIONS
STATEMENTS RESERVED (OCTAL)
A=100
B=200
C: BLOCK 5 5
D: BLOCK B-A 106
BLOCK D-CH] . é

BYTE POINTERS

The LDC and STC instructions are avoilable for byte manipslation. These
instructions use the effective word as o character pointer to locate an 8 bit byte.
The LBYTE and RBYTL pseudo ops ¢re used 1o set up the pointer word, where LBYTE
initializes to point to the left byte and RBYTE to the right byfe.

3.5

3.6

Examples:

{assume BUFF to b_e location 3000

o)
LDC 4, POINTI S B ¥ 18
POINTY: LBYTE BUFF ;aenerafes 4001 BUFF P
LDC 4,POINT2 0 145
POINT2: RBYTE BUFF ;generates 6000 ‘BUFF ¢ 0:
LDC 4,[RBYTE BUFF]
VFD STATEMENT - s

To conserve memory, it is useful to siore data in less than full 16 bit
words. Byfes of any length, from @ to 16 bits may be entered using the VED
statemeni written in the form:

VFD KNP X, XN Y

The first operand n, which must be enclosed-in angfe brackets, is the byte size -
in bits. It is interpreted us a decimal number in the range of £-16. The operands
following ure separated by cormas and are the datg to be stored from left to right.
If an eperand is an expression, it is evaluated and if necessary truncated from the
lefi to the byte size specified. The datg may occupy only 1 word, (EXTERNAL
symbols or relocatable symbols should not be used in VED statements as results ot

object time may be erronsous.)

The byte size may be oltered by inserting a new byte size, in angle brackets,
immediately following ony operand., *

Examples:
SOURCE GENERATED VALUE
A=500
B =50 :
VFED <3>1,246>B - 025200
VED <7>B, <8 A 050500
VFD <3:1,2,3<72 A 024700
VFED <301,2,3,4,5,6 024712 error, too meny bytes spacified

TEXT HANDLING

Fext handling enables tha user to represent directly the 7-bit ASCH char-
acter set. The assembler will convert the desired character fo its appropricte
numerical equivalent. (See opoendix A)

3.6.1 SINGLE WORD TEXT

The assembler translates up to 2 characters enclesed within single guote
marks ('} using the ASCII value of the characters and stores them with the first
choracter in the right byte (8~ TJ) and the second choracter, if any, in the left
byte (3-7). Any legal ASCI churacters may be psed, except the single quote
mark itself {'). '

Examples:
GENERATED COD[; ;
TABLE= @
LDA 4, "AT+TABLE g,4,0,101
LDAL 4,'8'(1) 0,4,1,200 gogig
DAL 4,0'AB1 G,4,1,200 gaig
LDAL 4,0'ABCT g,4,1,200 ﬁtﬂ]ﬁ] ;error, tco many chars.
AR @41 i

VED g '¢cMV D gave

3.6.2 MULTIPLE WORD TEXT

If the user desires more than 1 word of text, he may do so by using one of
the following text pseudo ops;

1) ASCH | generate ASCII text.
2) ASCIP generate ASCI text with odd parity in bit 8
3) ASCIC generate ASCIH text followed with 2 words;

WORD? = numbet of bytes in text (2's complement)
WORD2 = byte pointer to the first byte of the text
4} ASCIPC generate ASCH text with parity, byte count and pointer.

The first non-blank or non-iab following one of the text pseudo ops will
be interpreted as the text delimiter, which may be any ASCil character, except
a left angle bracker (). The text will be terminated by repeating the initial
delimitor. The characters will be stored in the same manner as single word texi,
i.e., the first character in the right byte (8-15) and the second character in the
left byte (3-7).

Excimples:

ASCIH JTHIS IS A MESSAGE/ g44524 @51511 Q44440
g29123 @2agl g42515
£51523 #43581 9BH 05

ASCIP /PARITY/ 148728 §44522 154524

ASCIC /COUNT + POINTER/ 47503 B4A7125 §25524
{assume PC =547 : g4752¢ @A 42524
: aopi22
byte count 177763
byie pointer 21265
the user may reference the lust 2 words in the following way;
HDR =.-2 |

LDA 4, HDR

ASCIPC /DATA/ 140704 148524 5
(assume PC=600) byte count 177774
byte pointer £F1440
ASCII N2/30/67 . g31861 @31457 §27460
P33466
ASCH /ENDY, §47105 OpssE4

v go8a 2

Expressions may be represented in text statements by enclosing them in
angle brackets ({2}, The angle brackets must appear external to the fext
delimiter, otherwise they will be interpreted os part of the fext siring. The
value enclosed in angle brackefs will be truncated to 7 bits.

Examples:

CR =15 .
LF =12 L

ASCH JTEXT/ ICRAR G, paos24 g5213p

| LEsSs punsn

ASCIL AR /< o/ 036012 GU0E76
3.7 LOCAYION DEFINING AND ADDRESS MODE

The normal output of the assembler is relocatable binary addresses. The
user may also specify absolute binary addresses for the entire program or for selected
portions. In addition to being able to set the address mode the user can alter the
locations being ossigned to insiructions by explicitly defining the location,

b Fi y =

The pseudo op LOC, contrel both the cddressing mode and location defining.

3.7.1. LOC "n"

L LI F

LOC sets the Location Counter {program counter) to "n", which must be a
predefinad value or expression. (The assembler will outpul o message, in Poss 1,
if the value is not predefined).

e s e i b

3.7.2

If "n" is a relocatable expression, the assembler will assign relocatable
locations for the insiructions and data which follow. All labels encountered will

be relocatable.

con

£ "n" is an absolute expression, the assembler will assign absolute locations
for the instructions and dasa which fotlow and al] labels encountered will ke
absoluie.

L .
If no LOC statement appears, the assembler assumes an origin of relocatanle

Examples: :
o LOCATION TY?PE
LDA 4,A g REL
A: LDA 4,B 1 REL
B: DA 4,C 2 REL
X=.
LOC 287 »
C: LDA 4,D 204 ABS
p: LPA 4A 201 ABS
LOC X
LDA 4,8 3 REL

WAV UBY gnd "X are relocatable, while "C" and "D* are absolute,

MODULAR ORIGIN

The statement MORG "n" causes the location counter to be set to the

next highest multiple of "n™ if it is not already at such a value. "a" is mainly
useful when it is o power of 2, but it may be any value. 1t does not affect the

existing address mode {absolute or relocaioble}. The assembler will output o

I 1

message, in Pass 1, if "r™ is not predefined.

Examples:

T LOCATION ASSIGNED
TO INSTRUCTION

LOC 50

BR A o 50

MORG 2

LDA 4.5 : 52

LDA 4,5 , 53

MORG 2 '

LDA 4,5 54

MORG 144

LDA 4.5 164

 The algerithm used by the assambler is as follows:

3.8

3.8.1

3.8.2

3.9

1. Divide current value of Location Counter by "n"
2. If no remainder, bypass siep #3
3. {"n" -remoinder) + Location Counier 2>Location Counter

BINARY QUTPUT

The standard binary output of the assembler is in a format acceptable to
the Linking Louader. The user may specify to the assembler to output the binary
in "readin mode" by using the pseudo ops RIM of RIMNLD,

USAGE OF RIM AND RIMNLD

i. They must occur before any other statements, except the TITLE statement,
otherwise they will be flugged and ignored. 4 '

2. All locations and operands in the program witl be treated as absolute.

3. They force the implicit statement LOC 248 o cccur.

Note: The LOC 260 may be overridden by immediately following with
1.OC statement,

RIM AND RIMNLD

The RIM pseudo op, in addition to specifying readin mode binary, causes
the asserbler to precede the binary output with a loader. If no address follows
the RIM siatement, the assembler assigns the program break address as the
starting address of the loader, [f an oddress is specified, this value will be used
as the starting address of the loader.

Examples: .

Assume program break is 1600

RIM - lLoadei address set to 1ﬁLu
RIM 587 - loader address set to 508

The RIMNLD pseudo op also specifies readin mode binary, but no foader
precedes the binary output.

SUBROUTINE LINKAGE

Programs usually consist of subroutines which contfain references to symbols
in external programs. Since these subroutines may be asserbled separately the
Linking Loader must be able to identify "global® symbols,

For a given subroutine, o global symbol is either a symbol defined intern-
ally and available for reference by other subroutines, or @ symbol used internally
but defined in another subroutine. ‘

Gioba! symbels defined within a subroutine ond available to others are
called internal symbols. Global symbols defined by onother routine and referenced
by the current subroutine are called external symbols.

3.9.1

3.9.2

3.1¢

The linkages between internal and exiernal symbols are set up by deciaiing
global symbols through the INTERN and EXTERN pseuco ops. o :

INTERIN 51,82,83,...5n

The INTERN statement defines the symbe) or syrabols in the siring as
internal to the currenily being assembled subroutine and they may be referenced
by other subroutines. Internal symbsls may be defined in the program as either o
label or direct assignment. -

Examples: s
INTERN INTT, INT2 ‘
INTT: LDA 4,5
STA 4,INT2
INT2=,
EXTERN 51,52,53, ...5n

The EXTERN statement defines the symbol or symbols in the string as exter~
nal to the current subroutine. The symbols defined as external must not be defined
in the current program,

[f an external symbol is an eperand on a basic op, long form musi be
specified.

Examples;

EXTERN SORT, CUBE
PUL SQRT
PUL CUBE

CONDITIONAL ASSEMBLY

F

It is often useful to have the assembler test the value of an expression and
to assemble conditionally portions of the program based upon the results of the test.
For this purpose, two pseudo ops are provided. '

1) IF... - To initiute the condition
2) ENDC - To terminate the condition

The genzral form is os follows:

IF... EXP
2

ENDC

The body of coding following the IF statement is assembled only if the
expression "EXP" satisfies the IF condition.” If not sutisfied, all coding up to
and including ENDC is bypassed. '

The IF statements allowed are as follows:

CONDITION, ASSEMILE IF VEXP™ IS

IFLS - - L
IFN . fﬁ
IFGE . =
IFE = 3
IFDEF . - DEFINED
[FUND UNDCFINED
IF1 K ~ IF PASS 1
tF2 . IF PASS 2
Examples:
A=0
B=1
IFDEF A
LDA - 4.5 D these statements will
STA 4,6 o be assembled
ENDC
"IFZER B
LDA 4,5 "é_ these statements will not be
STA 4,6 - A assembled, but treoted us comments
ENDC)

Conditional statements moy be nested, that is, within the limits of a condi-
tiona! statement there moy be other conditionu! statements. Each nested conditional
staternent requires its own ENDC pseudo op to terminate it,

Exampies:
A=g
B =1 o
IFDEF A
LDA 4,5 this statement will be ossembled
IFDEF B ' .
LDA 4,5 this statement will be assembled
ENDC ' ‘
IFCEF C
DA 4,5 this statemant will not be assembled
EMNDC

ENDC

3.11.2

3.13

BEGINNING AND END OF PROGRAM STATEMENTS
TITLE NAME |

The name appearing after the TITLE statement (up fo 6 characiers) will
appear on the top of euch page of the assembly ljsting. It also will be used to
identify the program for DDT (debugging) and Linking Léader operations. If no
TITLE statemen; is preseat, the assembler inserts the assumed name %BMAIN%,

END START

s
The END statement must be the last statement in every program. A single

operand may follow the END operator to specify the address of the first insiruction
in the program to be executed.

RADIX

When a numerical value is encountered in o statement, the assembler
converfs the number to a binary represeniation reflecting the radix indicated by
the user. The siufement,

RADIX n , where n is a decimal number from 2 to 14, sets the radix to
n for all numerical values that follow, unless another RADIX statement changes the
prevailing radix or a local radix change to decimal occurs.

The implicit statement, RADIX 8, begins every program and if octal num-
bers are desired o radix statement is not necessary .
®

Examples:

SOURCE GENERATED VALUE(S\ RADIX IN EFFECT
SLUURCE y

125 - 900125 8
RADIX 1§

106 - pEn A 18
RADIX 2
1811118 - BEE136 2
RADIX 8 '

175 G375 8

267 . uisng 1

LPOOL

LPOOL causes literals that have previously been raferenced in short form
instructions fo be assembled, starting ot the curren! value of the location counter.

If 0 literals have been defined, the next free storege location will be at
program counter plus n. Literals defined after the LPOOL stotement are not

affected. (See 2.4.4.1,2)

4.0

PASS2

The PASS2 pseudo op causes the assembler fo switch fo puss 2 processing
for the remaining coding. Coding preceding this statement will have been pro-
cessed by Pass 1.only. The PASS2 pseudo op is primarily used for debugging, such
as festing macros,

_SW_I:EFT.i‘., SHETC, SHFTIR, SHFTL

The extended op code SHFT shifts the spedified accumulator as indicated
by the effective word. The right half (byte) of the effective word is used as a
signed shift count & = left, - =7right) ond bits 6 and 7 of the effective word
indicates the type of shift to be performed.

In order to facilitate specifying the type of shift the pséudo ops SHFTA,
SHETC, SHFTR and SHFTL are used. '

biv 0. 78 15!

SHFTA +nn generates (arithmetic) 00— 0 nn
0. 7% 15

SHFTC +nn generates (rotate combined) 0 —1 fim‘l

078 15

SHFIR +nn generates (rofcte) 0 —-2 inn' .,
o 7.8 15
SHETL +nn generates (logical) 0 —=3 inn L
Examples:
SHET 4, ISHFTA +4i 6,4,1,113
gopos
SHFT 4, ISHFTC =51 6,4,1,113
GEET73
SHFT 4, ISHFTR +71 &,4,1,113
5104
SHET ' 4, ISHFTL ~4! 6,5,1,112

431774

Note, that in the ahove examples the SHFT instructions are not indexable.
Indexing the SHFT may be done as follows:

SHFT 4, TABLE(2)

TABLE: SHFTA 3
SHFTA ~6
SHFTA +5

RELOCATION
The normal outpst from the assembler is @ relocatabie binary progrom. The

program may bz loaded into any part of memory regardiess of what locations were
assigned ot assembly Hiwe. To accomplish this, the address portion of some instruc-

tions must have a relocation constant added to it. This relocation constant,
which is added at load time by the Linking Loader, is equal fo the difference
between the memory location an instruction is actually loaded info und the

" location that was assigned to it af assembly time.

Example: R

ASSEMBLY ADDRESS LOAD ADDRESS RELOCATION CONSTANY

Wy, | amp TN |
The rules for dei-erm?n‘ing if operand is absolute or relctatable are as
follows: '
1. If eperand is a number, it is absolute,
2. Ifoperand isa d.irec;f' assignment which was equated to ¢ number,

the operand is absolute.

3. Ifoperand is a label which was defined within o black of
obsolute coding, it is absoluie,

4, Point references {.) get current block relocation.

5. Undefined symbols, as oparands, are relocaicble if @ block of
relocatable code was encountered in the program, otherwise they
are absolute.

L
6. All other operands are relocatable,

If an operand contains both ehsolute and relocatable elements, they ore
handled as follows:

(A = absolure, R = relocatable)

A+A=A

A-A=A -~

A+R=R = ' '

A-R=R flogged as pessible relocation error
R+A=R

R-A=R

R~R=A

R+R =R flagged as possible relocation ervor

Muitiplication, division, and boolean cparations are not ollowad on
relocotable symbals.,

5.0

ERROR FLAGS

The assembler will examine each source statement for possible errors.
The statement which contained the error will be flagged with one or several
letters in the left hand margin of the source line. The following table shows

the possible error flags and their megnings.
P g)

FLAG g

A Ervor in address form. Assembler could not generaie a requested
form or indirect or external requested on a short form instruetion.

B Iilegal character encountered. It is replaced with o ?

D Statement contains a reference to o multiply defined symbel.,

E Statement contains a reference to an unresolved direct assignment.
G Globa! symbo! error.\'.\’ili appear on an EXTERN statement if defined

by user or defined as an Internal. Will appear on a direct assign-
men? if right hand side is an external symbol.

i IHegal redefinition of an EQPDEF or direct assignment. Value not
entered into syrabo! table.

M Multiply defined symbo!,
N Error in number usage.
P Phase error. Pass 1 value of symbol does not egual Pass 2 value.

(Usually futal)

Q . Questionable synfax. (Results may be erroneous.)

R Possible relocation error,

T Truncaiion errorliteral or direct assignment generated more than
1 word. '

U Undefined symbol in statement.

In addition to flagging erronecus statements, the assembler during Pass 1
will print out multiple definitions and ¢ll undefined symbols and the locations
allocated to them.

6.0

6.1

ASSEMBLY OUTPUT LISTING

If the user requests it, the assembler will produce an output listing on the
requested output device,

The top of each page will contain the name of the program (as supplied in
the TITLE siatement} and the poge number. ’

The body of the listing”will be formatted as follows:

ERROR FLAGS LOCATION OBJECT CODE SOURCE STATEMENT
CXXXX XXKXX XXX $ X e — X

If the source siatement is a machine op code or an EQPDEF the OBJECT
CODE will be formatted as follows;

OP,R, X, DI
All other statements will produce a 6 digit octal value.
In addition, if the object code is 1o be relocated by the Linking Locdér
it will be indicated by o single quote following the value. Exterral symbol

references will be indicated with an E.

[nstructions which require more tharn "n" words of object code will be

listed as "n" fines,

SAMPLE PAGE 1 .
TITLE SAMPLE

Juiojolofol g,4,1,806 A LDA 4,G
gega 1,4,1,007 STA, 4,G2
gean 1,4,1,885 LDA 4,G1
ofojesied 6,4,1,111 CMP 4,["OK "1
ama 45517 ._

geszs: 4,3,1,373 B A

gaase! pooges G: g

geaar gugopd Gl A

prang' ouoees o2 g
END

SYMBOL TABLE LISTING

After the asserably listing has bean outputied, the assembler will cutput
an alphabeticatly ordered symbol table which lists all user defined
symbols. The symbol table listing is usefu! in tracing or czbugging a program
for which the programmer does not have an.assembly listirg.

SAMPLE PACE 2

A e

Gl
G2

LI AL LA ALUS . I LLL AL L sl 3 L el

s
oo
Py

CHARACTER

""‘N~<><§<(:—ImJUQ-cozgr—xt_—IO"nmonm>@

.fl‘-.
-
NULL
HORIZONTAL
TAB
LINE FEED
VERTICAL TAB

APPENDIX A

7~BIT ASCIt CHARACTER SET

ASCH}

188
7
192
13
174
195
176
197
11¢
111
112
113
114
115
116
117
196
121
122
123
124
125
126
127
13¢
131
132
133
134
135
134
137

b4
B11
812
#13

CHARACTER

L3

1
-

#
$
%
&
(
)

-+

-

T DN O A WN TR

NVOL A

?
FORM FEED
CARRIAGE
RETURN
CODE DELETE

ASCH

42371
@41
#42
B3
P44
045
(44
ga7
254
@51
§52
253
754
755
856
@57
i
761
#62
753
64
@55
866
257
g74
@71
@72
473
574
775
%76
877
£14

#15
V77

APPENDIX B

ggRMA'NENT SYMBOL TABLE

SYMBOL ~ OP R DI VAWE SYMBOL OP R Di VALUE
ADD(L) 3 050000 MUL c b 101 140101
AND{L) 2 040000 NEG(H) 5 3 124000
BR(L) 4 3 106000, POR 6 6 116 154116
BSR{L) 4 7 116000 POC 6 4 116 150116
CBCN(L) Z 0 100000~ POL 6 7 116 156116
BCZ{L) 4 4 110000 POP 6 5 4116 152116
BLSIL) 4 1 702000 PSC 7 7 006 176006
BN{L) - 4 2 104000 PSD 7 7 007 176007
BGE(L) 4 5 112000 PSI 7 7 004 176004
BE(L) 4 6 114000~ PSR 7 7 005 176005
CLR(L) 5 7 136000 PUD é 2 116 144116
CMP 6 111 140111 PUC 6 0 116 140116
COM(L) 5 1 122000 PUL 6 '3 116 146116
DIV 6 103 140103 PUSH 6 1 116 142116
HLT 7 7 001 174001 RCS 7 7002 3176007
INC(L) 5 2 124000 RIO 7 7 000 176000
fole 7 5 172000 RR (L) 5 4 130000
10D 7 7 176000 SHET 6 113 140113
~JOR 7 0 160000 STA(L)] 020000
IORC 7] - 162000 STC 6 115 140115
105 7 4 170000 sug 4 112 140112
10T 7 b 174000 SWF(L) 5 4 134000
1OW 7 2 164000 *TST(L) 5 0 120000
IOWC 7 3 S 166000 TSTC 6 107 140107
LCAP é 110 140711 TSTN 6 104 140104
LDAL) 0 000000 TSTO 6 106 140106
LDC é 114 140114 TSTZ é 165 140105
LDIV é 102 140102 wCl 7 7 003 176003
LI H 7 7 011 17601
LML 7 7 010 176010
LMUL é 100 140100
LR(L) 5 5 132000
LUH 7 7 013 176013
LUL 7 7 012 176012
By suffixing the indicated symbols with L, the assembler will treat them as long form

instructions,

APPENDIX C

SUMMARY OF PSEUDO OPS

ASCIC Seven bit ASCIl text with byte count,
ASCII Seven bit ASCIH text,)

ASCIP Seven bit ASCI! text with parity.
ASCIPC | Seven bit ASCII text with parity and byte count.
BLOCK . Reserve block of memory, s '
END End of program.

ENDC End of conditional section.

EOPDE# Define user created operator.

EXTERN External symbol declaration.

IFDEF Conditionally assanble if defined.

[FE Conditionally asseble if =g ,

IFGE Conditionally assemble if >,

IFLS - Conditionally assemble if < @,

IFN ' Conditiona!ly assemble if £ 7,
IFUND Conditionally assemble if undefined.
IF{ Conlitionally ossepble if pass 1.

fr2 Conditionally essemble if pass 2.
INTERN [nternal symbol declaration.

LBYTE Lefi byte pointer,

LOC ‘ Set location counter.

LPOOL Quiput literals,

MORG Modular origin,

PASS2 Switch to pass2 processing.

RADIX Interpref number in declared radix.
R3YTE Right byte pointer,

RIM Output readin binary with loader, -
RIMINLD Ourput recdin bincry with no fouder,

SHETA Create arithmetic shiff words,

SHETC
SHETL
SHFTR
TITLE
VFD

Creaie roi‘:;:'?e conbined shift word,
Create logical shift word,

Creaie rotare shift word,

Name of progrom.

- f. L) I
Variable lengih byte sioiwinent,

APPENDIX D

SUMMARY OF SPECIAL CHARACTER INTERPRETATIONS

. .
The characters listed below have special meaning in the context indicated. These interpretaiions
do not apply when the characiers appear In fext strings or in comments,

(:_I:IARACTER EEANIP\E _EXAMPE_E
Follows number to be shifred and 15%3
precedes binary shifi coun?
D Specifies double precision number 1.5D
72435853D
E. Exponent indicator. Precedes . 25.43E5
decimal exponent in flocting point
nurnbers,
+ (plus) . Add *—\
- (minus) Subtract N Arithmetic operctions
* {asterisk) Multiply
/ (siash) Divide /
& (ompersand) AND o
' (exclamation) Inclusive OR “}_ Boolean onerations
AN {back slash) Exclusive OR /
$ (dolfar sign) Legal character if encountered - STAG
% (parcent sign) in o label or symsol |
. {) (parenthesis) Used to enclose index field, LDA 4, #(2)
T (up arrow) Indicates half word gameration for | CMPT4, (1)

long fomra instructions

L)

. CHARACTER

<2

' (COIO;’I)

(sém icolon)

(point)
(comma)
(square brackels)

(equal sign)

{at sign)

(single quote marks) Enclose 7-bit ASCII text symbol, one

{angle brackets)

MEANING

- Immediately follows all labels

Precedes all comments

1) Has current value of the location
counrey '
2) Loca! radix charge to decimal

1) Géneral operand or argument
delimiter

-2) Accunulater field delimiter

Delimits a literal
Indicates o direct assignment

ndicates indirect oddiessing

or two choracters,

1} Enclose on expression within
ASCII texct |

2) Enclose byie size in VFD
statement

EXAMPLE
LABEL: LDA 4,5

; this 1s o commeni

B ,+5

187,
INTERN SYM1, SYM2, SYM3
LDA 4,5

y '
LDA 4, 7123

A=

BRL @&TAG

IASI

ASCII/ASC/L 15 ><12> <FF>

VED <4> A, 1,435 2,2<2> i

AL o A g L o A | AL L M A LAY L AL LA LA S

CAPPENDIX E

Operand Formats

The instruction sat of the PDP-X in addition fo using the op code bits {§-2) for idantification
sometimes uses the R bits (3-5) and/or D1(8-15) to identify the instruction. Because of inis condition,
the user should not use operands in a forma® that will alter the insiruction.

The following table shows the legal end illega! fornats for the PDP-X instruction repertoire.

BASIC INSTRUCTIONS :
CLASS 1 - OP bits only |
LEGAL ILEGAL
oP JOPERAND op OPERAND (implies AC=4)
op AC, OPERAND
CLASS 2 - OP & R bits
LEGAL ILLEGAL
op OPERAND Op , OPERAND
~op AC, OPERAND
EXTENDED INSTRUCTIONS
CLASS 1 - OP & D1
LEGAL ILLEGAL
O° , OPERAND op OPERAND (implies AC=4)
OP AC,OPERAND |
CLASS 2 - OP, D] & R
LEGAL JLLEGAL
OP OPERAND . op OPERAND

op AC, OPERAND

/O INSTRUCTIONS

CLASS 1 - OP & R ,
LEGAL _— LEGAL
OP DIV, OPERAND or JOPERAND . . o,
op OPERAND 'Mplies DEV = 7

CLASS 2 - OP, DT & R

LEGAL ILLEGAL
OP OPERAND - op , OPERAND
op DEV, OPERAND

(END OF MANUAL)

»

M

02.2

2.3

3.1

3.2

A

4.2

CHARACTER SET

The input fo XAP-5 is prepared in 7-bit ASCH, Refer fo Appandices A

and D of the user's manual for « description of the azceptuble ASCI characters

and o summary of special character inferpretciions.,

EXAMPLES ' ’

Examples of alt languag® features may ba found throughzut the user's
manual. '

OUTPUT - -8

OUTPUT FORMAT

The listing output format o XAP-6 is described in the user's manual,
scction 6.4, '

The binary formais of the object program is obsolute.

HARACTER SET

The XAP-5 listing is in ASCII,

EXAMPLES

A sample XAP-5 output lisiing may be found in section 6.6 of the user's

manual . .

ORGANIZATION

OPERATIONAL ORGAIIZATION

b et e

KAP-8.1s a two pass assembler which requires that the scurce be recd in
twice, ' '

INTERNAL ORGANIZATION

The entire assambler is resident in core at oll times.

OPERATING PROCEDURE

3.

o

1

N

LOADING PROCEDURE

XAP-5 relosatable binary is loaded in the fo!loving manner:

A, R LOADER n - requesis loader with core required.

B. DEV:XAPS, EXEC - device which conia’ns XAPS,

At this stuge XAPS is loaded.

SAVE - DEV:XAPE . puts it on the specified device in dump mode.
' ' Fl

CONDITIONAL LOAD

NOT APPLICABLE,

SWITCH SETTINGS

Switches are specified in the command string by typing " / * followed by o
single switch letter. Any number of switch settings may be indicaied ot one time by
enclosing a sfring of switch letiers in porenthesis; for example, (WAAP) rewinds the
magnetic tope, cdvances two files and increasss the pushdown list size by 89 locutions.

1

AT - Advance magnetic tape by ons file,
T e g
- B~ - Backspace magnetic tape by one file,
2) g +] . F I . 'l« L' 1 .
- Procluce listing file in o format acceptable to CREF. If no {isting device
is specified, DSK: is assumed. If no filename is specified, CREF, TMP
is assigned; if no extension is specified, TMP is assumed. In addition, the
Fisting-device must be a reirievable device (e.g. DTA, DSK, MTAY, [F it
is not, a command error resulis,
D - No symbo!l table in binary ouiput.
. .
! - Continue on source device datu error. When | is not used, this type of
error terminates the assembly,
2 ' ' .
L - Force long form for a!l basic ops.
N - Suppress teletype error prinfouts
2 H 4 | A o 4 l I r
P - Increase size of pushdown list by OOIO tocations for eoch appearance of P.
] Be - 1 L £
T - Skip to logical end of magretic tups,
1) A
W Rewind magnetic taps.
1,2

Z'T - Zero the DECtap: directory.

- NOTES:

3.3

3.4

3.5

- type

1. This switch must immediately follow the davice to which it refers.

9. This switch must not appear on source device specifications. If it appears on @
source device spacificoiion, o command error resulis,

L]

START UP PROCEDURE

After the vser has logged inio the system he types:
R XAPG S

When XAPS has been loaded, it responds with * (asterisk) and waits for the commana
string to be typed. :

COMMAND LANGUAGE

The genere! command format is as follows:

- BINGF ILIENA_ME CEXT,LST:FILENAME ., EXT «—SRC:FILENAME. EXT, ...

where: BIN is the chject program device.
LST is the listing device.
SRC is the source davice.

NOTE: A command string must be typed on one line because a line feed or corriage
return terminetes the string. '

EXAMPLES
MTAT:,DTA3:/C:—CDR:) Asserble one scurce file from the card reader; write
: ’ the object program on MTAT; wiite the assembly Hist~
ing on DTAJ in cross reference forinat and cali the
- : file CREF .TMP. '

,TTY:"J--‘}-"TTY:;}_, ' Assemble one source file from the teletype and list
the program on the teletype. Do not ouiput any
ohject code.

OPERATION

~ Throughout the assembly when a source device it encountered in the command
string which requires manual loading the operater, (e.g. PIR,CDR,TTY), XAPS will

LOAD THE NEXT FILE ON Dev

CRCLL TN T FYFITH N NN WOVRTITINTY NPy 0 T [P

6
on the console, All other devices will be loaded aviomaiically. At the end of
pass 1 the message
END OF PASS i
will be typed on the console,
3.6 ERROR RECOVERY

3.6.1 INPUT ERRCRS

XAP6 examines each source statement for possible errors and flags them with
one or'several fetter codes. (See section 5.0 of the user manual)

3.6.2 OPERATOR ERRORS

IF the command string to the assembler is typed improperly, XAP6 responds
with "COMMAND ERROR™ and returns an "*" | The user may then relype the command
string. '

The following are additional messages vdhich mav DCCUr,
o f

An insufficient amount of core
is available for assembly.

Message Meaning
| CAN NOT ENTER FILE DTA or DSK directory is full;
! File name, ext file cun not be entered,
| _ |
i CAN NOT FIND The file can not be found on
: filename . ext j the specified device,
DATA ERROR ON DEVICE Ouiput error has occurred on ;
dev the device. f
INPUT ERROR ON DEVICE ; tnput erior has cccurred on the t
dev ! device, i
 INSUFFICIENT CORE

L

3.6.3

3.6.4

4.1

L RUTT TR TIT YT

7
Message _ - Meaning
dev NOT AVAILABLE The device is assigned to another -
' user or does not exist.
NO END STATEMENT The'END statement is missing
ON INPUT FILE at the end of the source program
END STATEMENT FORCED : file. An END is forced and pass 2
: begins,
3
PDP QVERFLOW, TRY /P . Pushdown list overflow. Use /P in
- command siring fo lengthen the pushdown -
list. '
J

SOFTWARE ERRORS

There are no eivor halis nor are there any condifions which will cause the
assembler fo go into o loop.

HARDWARE ERRORS

I hordware fdi[ures w'nic:h are Undefecfed b :"he monifor) occur, they Wi”
}’ r /
USUG”)/ be defa—;cied CTi‘Jd indicu?ed on fhe ﬂsh’ng as p!wse ervors,

Peripheral errors will be indicoted by an appropriate message (see 3.6.2)
and control is returned to the command string.

INTERNAL ENVIRONMENT

TRADE~OFFS

Because XAP6 is intended to be downwared compatible with XAP (the PDP-X
assembler) some features were considered and will ot be implemented because of size
problems. '

Some of these feciures are:

a) Hexadecimal tumbars
b} Radix 5¢

c) Automatic optimization

The essembler was designed o3 a two pass cssemblar mainly for its capability of phase
checking of labels. Some features may be conditionalized depending on the size of
the computer. '

roouy

. 4.2

4.3

4.4

S.1

5.2

5.3

SOFTWARE INTERFACES

XAP6 performs all of its Input/Quiput funciions through calls fo the monitor.

(See DEC-10-MT50O-D, POP-10/40, 10/5C Time Sharing Monifors).

All subroutines cie called using the PUSHY instruchion. Arguments of
subroutines which reguire a catling sequence will be contained in designated accumulaiors,

L

CONVENTIONS

XAP6 is designed to be re-entrant; thus, in the eveni that jeentrant programs are
recognized by the multiprogramming system on the PDP-6, only one copy of XAP6 need
be resident in core for many users.

The accumulators are ollocated aceording fo major funciions, numely:

1) Utility
2} Pointers
3) Calling scyuences

LANGUAGE

XAP6 is writien in MACROX languoge. [t does not use the macro capabitity

of MACROX.

EXTERNAL ENVIRONMENT .

EXECUTION SPEED .

USE

XAPS is used to provide for PDP-X gssermilies on the PDP-6, becaouse ofa higher
availability of timz on the PDP-6 as compared with other in~house computers,

INTERFACE

XAP6 is intended o be used by system progrommers and diognostic programmaers
for development of PDP-X sofiwore. Although it isnot part of the fina! PDP-X software
system, it will be ¢ means of developing the PDP=-X softwore system. -

EXAMPLES OF USAGE

FORTRAN IV, DDT, MAINDEC

g
, ¥ b
6. DOCUMENTATION
6.1 MAJOR ASPECTS
The mointenance of XAP6 will be facilitated by the fc;ilowing documents:
1} Macro flowcharts
2) Table formats o
3) Heavily documented [isting
6.2 CHECKOUT - -
XAP6 will be checked cut by the implementor in the following manner.
1) All subroutines will be debugged.
2} Checkout of simple assembly statement.
3) Extensive checkout of syniox mles. :
4) Comprehensive checking of the complete system.
~ When the ebove checkout has been completed to the satisfaction of the
implementor, the piogram will be tiuned over to QC for further checkout,
6.3 MARKETING

Beccuse of some of the features in XAPS, if compores fovorably or even better
than all assemblers for existing 16 bit computers.

Some of these features are:

1) MACRQS

2) CONDITIONALS

3) EQPDEFS

4) Expressions

5) Variable length byte operaiions

6) -Automaiic relative addressing

7} Literal pooling

8) Booleans

?) Relocatable

10} Global ssetions

11) Extensive error chacking

12) Device independence

13) Free form _

14) Varioble length, symbol, litero! and mocro starage
15) Tekes cdvaniagz of more core :

................ M T TR T TTIRRTONT T I TROUR T IR YRR AR ORI 11 Y T B

