This drawine and SDecifications, h

erly of Digi*tal fqu=

repiodu?é?—: .g!r fqu Jiment Corparation and shayl not be

e baee m;:op-fj of used in whole or in part as
8 manufacture or sale of items without

erein. are the pran-

. e

written permissicn.

PDP-X Technical Memorandum #__ 26

Title: : I0 Bus Sequences
Author(s): H. Burkhardt
Index Keys: Bus
- IO
Sequences

Distribution

Keyes:. 7 A
Obsolete: . None
Revision: None

Pate: October 5, 1967

*

S I S N N
L

Contents

Introduction

“The 10 Bus

Processor Initiated Activity

Device Injitiated Activity

Appendix Bus Sequences

_?igure

Figure

Figure

Figure

Figure
Figure
Figure

Figqure

Figure

Figure

Figure

-Figure

1l

2
3
4
5
6
7
8

Input One. Byte

Output One Byte

Input Tﬁo Bytes

Outéut Two Bytes

Interrupt - No Channel

Interrupt - Channel

Channel - Read 1l6-bit Address, Don't Use BC,: BA

Channel - Count @nly BC Single Byte Device .(Data)

8a ~ Channel ~-Count Only BC Double Byte Device (Data)

9 -~ Channel - Output One Byte

10 - Channel - Input One.Byte

11 - Channel - Add In One Byte

Introduction

The PDP-X IO Bus provides many facilities that are

- available to both standard and customer-designed

peripheral devices, Some of these facilities are:
1. Mulﬁiplexo} Channel input and output

2., Data Packing

3. Priority Interrupt synchfonizationr

4, ability to specify arbitrary memory locations
for data transfer operations ‘

5. addition of external data to the contents of
~ main memory :

The data input/butput and packing operatibns are
described in PDP-X Technical Memorandum #29

" (sections 3.1, 3,2, 3.3). This document describes

additional features of the IO Bus and provides de-
tailed information on the sequences of events '
on the fully interlocked bus., Details concern-

ing the electrical and mechanical characteristics

of the IO Bus are beyond the scope of this docu-
ment, It is sufficient to say, however, that the

10 Bus uses a twisted pair, push/pull current system.
The reader is first referred to Technical Memoran-
dum #29 in the sections mentioned above, as well

as to section 3.7. .

The IO Bus

Thé I0 Bus is the connection between IO device
control units and the central processor. All

- communication lines to and from the processor

are common to all control units except for the
priority request and grant lines which are com—
mon only to devices on a given priority level,
At any one instant, however, only one control
unit is logically connected to the processor _
(selected), This connection is maintained until
the processor re-selects a different device.
Since all standard devices can operate with a
comparitively small amount of processor inter-
vention, many deVices may be operational simul-
taneously.

The IO Bus consists of 8 bi-directional data
lines and 32 control lines. The control lines
may be broken into four groups:

a. 8 outbound control lines (Command Out)
(from the processor to the device)

b, 8 iﬁbound control lines (ReSponse In)
(from the device to the processor)

c. 8 inbound priority request lines
(from the devices to the processor, 1 line
per each priority level) .

da, :8 outbound priority gradnt lines

(from the ‘processor to the devices, 1 line
per priority level)

In addition, power and ground return are available

‘on the bus,

The priority request and grant lines are used to

“synchronize device service requests with proces-
- sor activity. The bi-directional data lines and

the outbound and inbound control lines are uged
to control the actual data transfers and to in-
dicate special functions or exceptional conditions,

Fof purposes of further discussion, it is meaningful
to distinguish between two types of operation on
the busg : ‘

l. Processor initiated activity

3

2. Device initiated activity

(It must be remembered that both types of activity
are directly or indirectly initiated by the processor,
The distinction is made here between specific tasks
performed by the program controlling the proces-

sor such as reading data or changing device status

and those processor functions performed without the
intervention of the program because of requests’ generated
by a device, ©Of course, the program had to initialize
the processor and the device to generate and respond
to these requests. It might further be noted that

the IO Bus is, quite literally, merely a collection

of wires, The functional properties ascribed to

these wires arise only because there is hardware

in the processor controlling the signals trans-

mitted by these wires.)

3.

Processor Initiated Activity

The processor (or to more exact, the program coh-

trolling the processor) may initiate activity
on the I0 Bus by the execution of an IO c¢lass
instruction,” These instructions are:

IOR/IOW/IORC/IOWC Read or write data
- XI08/1I0C Read or write status

RIO Reset 10 system

One additional instruction, IOT, is provided for
the convenience of the programmer, 1I0T appears to
the I0 Bus (and hence the selected device) as an
105 (read status). &All of these instructions (with
the exception of RIO) contain a Device Address
(device selection code, device number, etc.) .

When an IO class instruction is executed, this
Device Address.is transmitted on the Data Lines,

The outbound control lines are set to indicate

that an Address is on Data Lines and a SYNC level

is transmitted (one of the outbound control lines),
Every device on the I0 Bus decodes the command

lines and the Data Lines, but only one device .recog-
nizes the Device Address code, This device becomes
selected (sets a Flip~Flop in itself) and signals
the processor that it has received and decoded

the address by setting the inbound control lines

.and raising RTN {one of the inbound control lines),

The processor may how disconnect the Device Ad-
dress from the Data Lines and drop SYNC, The
selected device then drops RTN and the other in-

"bound control lines and the bus becomes free. (Auto-
-matic time-out circuitry in the processor will dis-

connect the Device Address from the bus, etc. and
allow the processor program to continue if no de-

- vice responds.)

The processor next initiates a DATI END sequence -
{IOR, IORC), DATO sequence (IOW, IOWC), CONI se~
quence (IOS) or CONO sequence (IoC). Fiqure 1
depicts a one-byte data input seguence (IOR, IORC).
The status input sequence (108, IOT) would be iden-
tical except that the processor would set the com-
mand lines to CONI instead of DATI END, Figure 2
depicts a one-byte data output sequence (IOW, IOWC).
The status output sequence (IOC) would be iden-
tical except that the processor would set the com-
mand lines to CONO instead of.DATO,

- Figures 3 and 4 depict two-byte input and output
respectively, When the first data transfer be-
tween processor and device is accomplished, the
device responds and indicates that it requires
(or has) "an additional byte of data (or status).

When an RIO instruction is executed (or when the
corresponding console switch is closed), the
processor sets the outbound control lines to
indicate a Reset operation and raises SYNC (one of
the outbound control lines), If then waits for all
devices to receive this signal (the same time-oit
that occurs during the address-selection sequence)
and then proceeds, :

4.

~to the n

Device-Initiated Activity

When a device finishes a task previously reguested
by the processor, it will set the REQ bit in its
status register. The processor may test this bit
(with an I0S or IOT instruction) to determine if
the device has finished its task, Since the proces-
sor would have no way of knowing when the device
finished unless it continually tested this bit
(precluding any other computational activity), an
interrupt system is made available to allow the
device to signal its service request to the proces-
sor, Every device has an ENABLE bit in its
status register which allows it to be connected

or disconnected from this interrupt system, If:
this ENABLE bit is set and the device has either
finished its task or has detected an wnusual con-
dition (REQ or UNUSUAL), the device will signal

the central processor that it requires service by
raising the REQ; line corresponding to the pri-

ority level to which it is assigned (i). (Note

that this does not affect any operations on the
data, outbound control and inbound control lines
that may be occurring,) Wwhen the processor is
able to honor this service request, it raises the
corresponding Priority (grant); line, This line
passes through all devices whosSe priority is 1.
The first such device that is also requesting
(has REQ, up), does not re~transmit this signal
%xt device, but instead, connects its
Device Address code and the HIGH bit from its

- status register onto the Data Lines and raises

Address In (one of the inbound control lines).
When the processor detects the rise of Address In,
it reads in the Device Address and HIGH from the
Data Lines, The processor then determines if a
channel operation is indicated or not by examining
the contents of the main memory location indicated
by the Device Address and HIGH, '

- Figure 5 depicts the sequence that occurs when-

a channel operation is not indicated, Figure

6 depicts the sequence that occurs when a channel
operation is indicated. In a channel operation,
the device is selected, The processor does so |
by setting the outbound c¢ontrol lines to indicate
an address-selection sequence and raises SYNC,
Since the Device Address is already on the Data
Lines, the device becomes selected and sets the
inbound control lines including RTN. The proces-

Sor then examines the inbound control lines and
drops Priority,; and SYNC, The inbound control
lines 4, 5 ind%cate one of four initiatl types
of operations: '

0 Normal, the Byte Counter ang Byte Address
: are updated, Response In 6-7 are then
examined, - :
-1 Inhibit BA Count, Only the Byte Counter

is updated. The Byte Address is left un-
disturbed. Response In 6-7 are then
_ examined, . -

2 Force Last Cycle After Reading in 16-bit
Byte Address, The IO Bus performs 2 DATI
cycles to read in a 16-bit Byte Address,
The Byte Counter ang Byte Address are un-
disturbed, Response In 6~7 are then examined,

3 Permit only BC Count. The Byte Counter is
' incremented and the result is re-transmitted
to ‘the device. The interrupt is then dismissed
by the processor, :

Modes 2 and 3 are depicted in Figures 7 and 8 re-
spectively, Figure 8a depicts Mode 3 for a 2-byte
device. After Modes 0, 1, 2, Response In 6.7

are examined to determine the type of data trans-
fer as follows:

o QUT.

1 ILLEGAL
2 IN :
3 ADD-IN

These types of transfer are depicted for a single-
byte device in Figures 9, 10, 11. 1If the device
is a multiple-byte device, channel overflow is
indicated while transferring the byte in which the
overflow occurred, In the case of ADD-IN, which
reads in data bytes, does the addition, stores

the sum in memory and transmits the sum: two types
of overflow may occurs: ' : ‘

a. channel overflow
b. add overflow
Channel overflow is indicated while transforming

the byte in which the overfiow occurred {DATI
LAST) and add overflow is indicated during each

each output transfer, O©Only one or two byte trans-
fers will be made during an ADD-IN operation. Ad-
ditional bytes will not be received, Double-byte
additions acreoss word boundaries may produce un-—

predictable sum and overflow results, '

5. Appendix

Bus Sequences

END changed to CONI)

Processor

Y 5 set up Device Address
onto Data Lines 2-7;
set command 5=7 to ADDRESS:

. ~— IOR, IORC INSTRUCTION (IOS, IOT with DATI

Bus Sequence
Input One Byte

Figure 1

Device

raise SYNC

- decode address on Data Lines

/

drop SYNC

_ 2=T7¢
decode Command 5~7 = ADDRESS: .
select;

. raise RTN
. drop RTN

set command S~7 = DATI END.

gm decode command 5-7 = DATI END;
load data onto Data Lines:

Read iéyDATA
(processor may proceed)

drop SYNC

. raise RTN

disconnect data from Data Lines:

Bus 45 free

drop RTN

01

Bus Sequence

' Output One Byte
IOW, IOWC INSTRUCTION (I0C with DAED

changed to CONO) _ ' ' : Figure 2
Processor ' _ Device

set up Device Address
onto Data Lines 2-7:
" set Command 5~7 to ADDRESS:

decode address on Data Lines 2-7:
rajise SYNC

pw decode command 5- 7 ~ADDRESS;

select:
- raise RTN
drop SYNC =~ —
d%op RTN
put data byte. «@-
on Data Lines:
set command 57 to DATO
raise SYNC. B decode command 5«7 = DATO:
_ - ‘ . ‘ read in data:
raise RTN

(processor$ﬁay proceed)
- disconnect data from Data Lines:

drop SYNC

drop RTN

Bug ig free

1T

Bus Sequence -
Input Two Bytes

: : 5 | ' Figure 3
IOR, IORC INSTRUCTION (IOS, IOT with ‘ e
- DATI END changed to CONI)

Processor ! Device
set up Device Address
onto Data Lines 2-7:
set Command 5=7 to ADDRESS:

raise SYNC p~decode address on Data Lines
= : . , 2=7:
decode Command 5«7 = ADDRESS:
select:
: — raise RTN
drop tYNC
dréﬁ RTN

set Command 5j6 = DATI END

' raise SYNC — _p» decode Command 5-7 = DATI END;

%gggedﬁggep%?%ega?&ILg??s"

- raise RTN

Read in First Byte;

: disconnect data from Data Lines:
' drop SYNC . - ‘ . disconnect Respeonse Ins

T drop RTN
set Command 5-3%7 ‘= DATI END:
ralse SYNC

p-decode Command 5-7 = DATI END:
load data byte onto Data Lines:

- + raise RTN
Read in Séiond Bytef _ '
(processor may proceed): ' disconnect data from Data Lines:
drop SYNC -~ s -
. v

Bus 18 free qﬂ

. drop RTN

IOW, IOWC INSTRUCTION (IOC with DATO
S " changed to CONO)

Processor

set u Device'Address
onto Data Lines 2-7;
set Command 5-7 to ADDRESS:

Bus Sequence
Cutput Two Bytes

Figqure 4
Device

decode address_on Dgta Linet

raise SYNC - decode coﬁmﬁﬁgsgr7 = AD-
: select: o
raise RTN
drop éYNc

put data onto Data Lines; <@

set Command 5«7 to DATO:s .

raige SYNC

. dro§ RTN

decode Command 5-7 = DATO:

&

B ’
Read in data:
Raise More Bytes (RI3):

disconnect d;ia from Lines:

drop syNe

raise RTN =

ut secohd byte onto -

discoﬁéect Response In:

ata Lines:
set Command 5~7 to DATO:

raise SYNC -

.drop RTN

. decode Command 5-7 = DATO.

= Read in Data:

disconnect déta from Lines:
- (processor: may proceed)

drop SYNC

raise RTN

ET

Bus is free

- drop RTN

Bug=Bequence
Interrupt - No Channel

Figure 5‘

Processor

(REQUNUSUAL)AENABLE ® — 5

Device

if current priority<i (and not inhibited)

Send REQ; < ¥

send Priorityy

device is requesting and Priority; is

up, put High and ‘Address on Dat% Lines

set Response In to indicate type of op-
eration:

read address from Data Lines:
decode 'if Channel: 4if not:
{processor may proceed)

raise Address In

drop Priorityi

|

disconnect address, Response

Bus is free: processor
~doesn't respond since it
is now operating at priorityi.

In:
drop Addresg In

14

Bus Sequence
' Interrupt -~ Channel

' Fiqure 6 : o I (REQ, UNUSUAL), ENABLE

Processor o : ' Device
f Send REQi

f current priority <i (and not inhibited)

Send Priorityi,

device is requesting and Priority; is up,

put HIGH and Address on Data Lines 1-7:

set Response In to indicate type of opera-
tion:

[

.. Raise Address In

read Address from Data
Lines; decide if Channel
if it is:

Set Command 5-7 = ADDRESS

. decode address on Data Lines 2~7:
SR decode Command 5-7 = ADDRESS:
raise SYNC ,__ - selects
. raise RTN
(processor m;t proceed to '
erform channel function
figure 7,8 or directly to 9,10 or 11)
drop Priorityy : ‘
. drop SYNC | . -

: - disconnect HIGH, Address;
- - disconnect Response In;
$. ' drop Address In

ST

Bus is free

Bus Sequence - _
Channel - Read 16-=bit Address

.Enter from Interrupt Sequence -~ Channel (Figure 6) Don't Use BC,BA
Fiqure 7
Processor , . Device

. Set Command 5-~7 to DATI:

raise SYNC , P decode Command 5-7 = DATI:
connect byte 1 to Data Lines:

raise RTN
Read in Byte 1:
drop SYNC - ' %
—~ grop RTN
Set Comman§'5-7 to DATT END:
raise SYNC , p»decode Command 5=-7 = DATTI

connect byte 2 to Data Lines:
connect Response In

raise RTN:
raise Address In

Read in Byte 2:°

drop SYNC .
. drop RTN:
é : , drop Response In:
drop Address In

Bus is free

Proceed to
CHANNEL INPUT (Figqure 9)
CHANNEL OUTPUT (Figure 10)
CHANNEL ADD-IN ({Figure 11)

9T

Enter‘from_Interrupt Sequence - Channel (Figure 6)

Processor
" Set Command 5-7 to .
' a, DATO if BC # 0O
b, DATO LAST if BC = O

Put BC byte 1 on Data Lines

Bus Sequence ,
Channel - Count Only BC’
Single Byte Device (DATA)

Fiqure 8

Device

- decode Command 5-7 =

raise SYNC

a. DATO clear REQ,
gset BUSY
b, DATO LAST set LOW
read data byte: :

disconnect data from Lines
(processor may proceed: dismis)

raise RTN

drop SYNC

v

Bus isﬁfree

drop RTN

L1

Enter from Interrupt Sequence - Channel (Figure 6)

Processor -

Put BC byte 1 onto Data Lines:
Set Command 5-7 to
a., DATO if BC £ 0O
- b, DATO IAST if BC = 0

Bus Sequence
Channel - Count Only BC

- Double Byte Device (DATA)

Figure 8a

Device

pmdecode Command 5-7 = DATOs

ralse SYNC .

read data
raise More Bytes (RI3)

raise RTN

disconnect data from Lines

drop SYNC _

Put BC byte 2 onto Data Lines

Set Command 5=7 to : _
a, DATO if BC % 0O _
b, DATO 1AST if BC = 0O

d53g Seeonse I

Es decode Command 5-7 =

~ paTo)
a cie2g,R8°

se
b, DATQ LAST set LOW
read byte 2

, raise RTN

disconneét data from Lines
(processor may proceed; dismis)

drop SYNC .

L

drop RTN

Bus is free

8T

~%— Enter: from Interrupt Sequence - Channel (Figure 6)

or Read 16~bit Address

Processor

V__;_gpput data byte on Data Lines:

Set COmmand 5=7 Lo
‘ . DATO if no OVERFLOW
b. DATO LAST if OVERFLOW

faise SYNC

(Figure 7)

Bug Sequence
Channel - Output One Byte

Figqure 9 t

Device

o decode Command S-7 =
g decode Comm

TO = read data:
start device -

‘b, DATO LAST = read

- datar start device:

clear HIGH- clear

- {processor may proceed:
dismiss interrupt)

. REQ:s drop REQ
raise RTN :

- drop SYNC

v

Bﬁs is free

» drop RTN

*Device can signal more bytes
by raising More Bytes (Re-
“sponse In 3). This sequence
is the same as the second se-
quence in Figure 2 {i,e., af-
ter the device Selection Se-
quence).

6T

Enter from Interrupt Sequence - Channel (Figure 6)

. or Read 16-bit Address

Processor

Set Command 5-7 to
a. DATI if no OVERFLOW
‘b, DATI LAST if OVERFLOW

(Figure 7)

Bug Sequence
- Channel ~ Input One Byte

Figure 10

Device

. decode Command 5-7 = |

raise SYNC

a. DATI clear REQ, set BUSY
start device

b, DATI LAST c¢lear HIGH
connect data to Data vines:¥*

raise RTN

. Read in Data:
(processor may proceed: dismis)

drop SYNC

Bus is free

drop RTN

- #*Device can signal more bytes
by raising More Bytes (Re- '
sponse In 3). This sequence is
the same as the second se-
quence in Figure 7 (i.e., af-
ter the dev1ce selection SQ=-

uence
quence). §

o

- T ' Bus Segquence

Enter from Interrupt Sequence - Channel (Figure 6) Channel - Add In One Byte
or - Read l6~bit Address (Figure 7) ,

b ' Figure 11

Processor _ _ Device

Set Command 57 to
a, DATI if no OVERFLOW .
b, DATI LAST if OVERFLOW

ralse SYNC g decode Command 5-7 =
: a. DATI clear REQ, set BUS]
b, DATI LAST clear HIGH
connect data to Data Lines

raise RTN

Y

read data from
- Data Lines
- Form SUM

~drop SYNC

.. drop RTN.

Set Ccmman§'5-7 to
a, DATO if no SUM OVERFLOW
b, DATO LAST if SUM OVERFLOW
put sum on Data Lines

raise SYNC — _— ‘ ‘ ' - b decode Command 5-7
' read sum from Pata Lines

raise RTN

disconnect data from Lines |
(processor may proceed: dismis)
' drop SYNC

12

- - | | = déop RTR

