
PART I 
CHAPTER 8 

EXTENDED ARITHMETIC ELEMENT 

8.1 EXTENDED ARITHMETIC ELEMENT KEll·A 
The Extended Arithmetic Element (EAE) (KE·11A) is an option which performs 
multiplication, division, multiple position shifts and normalization significantly 
faster than software routines. It connects directly to the UNIBUS and is pro· 
grammed as a peripheral, allowing overlap between CP and EAE operations. 

The KEl1·A performs the following operations: 

Multiply Two 16-bit numbers are multipiled to give a 32·bit product. 

Examples: 

000002 * 000005 = 000000·000012 (2 *5 = 10),0 
177775" 000007 = 177777·177753 (-3 * 7 = -21)'0 

176000 " 177400 = 000004-000000 (_2'0 * -2l' =2'8) 
010000 " 100000 = 174000·000000 (+ 1212 ... -2" = _227) 

Divide A 32,o·bit dividend is divided by a 16,o·bit divisor to give a 16,o·bit quotient 
and a 16,o·bit remainder. The sign of the remainder is always the same as the 
sign of the dividend, unless the·remainder is zero(Le.-8/3 = -2REM-2 not -3 
REM 1). The KEl1·A indicates overflow if more than 16,o·bits would be needed to 
express the quotient (Le. overflow if the quotient is out of the range (2")-1 to 
(_215). Zero divided by zero gives overflow. 

Examples: 

000000-000013 1000003 = 000003 REM 000002 (11'0/3 = 3 REM 2) 
177777-177765 1 000003 = 177775 REM 177776 (-11'0/3 = -3 REM -2) 

000010-()()()()()() 1000020 = Overflow 2'9/24 = 2 15 

000007·177777 1000020 = 077777 REM 000017 
2',9_112' = 2"-1 REM (24-1) 
177770-000000 1 000020 = 100000 REM 00000o (_2'9)/24 -2") 
000007·177177 1 177760 = 100001 REM 000017 
(2'9)-1/-(24) = -«2")-1) REM (24-1) 

NOTE 
All numbers are octal unless followed by a subscript "10" for decimal. Also, 32,0· 

bit numbers are shown in octal as two sixteen bit numbers, thus, 000001·000000 
is 2'6. 

143 



Normalize A 32 111-bit number is shifted left until the two most significant bits are 
different Zeros fill the empty positions on the right A count is kept of the number 
of places the 32.fI-bit number is shifted_ There are three special cases: 

The number is of the form llL_llCXLOOOO (BINARY) In this case, the 
number is shifted until it is 140000-000000_ 

The number is 177777-177777_ In this case the result is 140000-000000, 
and the count is 30'0-

The number is 000000-000000_ In this case the result is 000000-000000, 
and the count is 31.0_ 

Examples: 

000041-170324 becomes 041741-124000 Count: 9'0 

177777-174321 becomes 106420-000000 Count: 20'0 

177740-000000 becomes 140000-000000 Count: 9'0 

Multiple Shifts A 32.0'bit number is shifted either left or right the number of 
places specified by a count The count is a 6-bit 2"s complement number_ If the 
count is positive, the number is shifted left; if it is negative, the number is shifted 
right This allows for shifts from 31 positions left to 32 positions right A count of 
zero causes no change in the number. There are two different shift operations: 

Logical Shift: Zeros always fill the vacated positions_ 

RIGHT (SC<O) 

0_1 AC MQ I-D-LOST 

15 o 15 0 SRo 

LEFT(SC>O} 

LOST-D-I AC Me 1-
SR 15 o 15 a 

Arithmetic Shift: When shifting left, zeros fill the vacated positions and the 
most significant bit of the number is not shifted (the sign never changes)_ 
When shifting right, the most significant bit is replicated (the sign is ex­
tended)_ 

RIGHT(SC<O} 

0-1 AC I MQ I-D-LOST 
ACl5 14 a 15 0 SRO 

D~D-I AC MQ 1-0 
ACl5 SRo 14 a 15 0 

144 



The KEII-A indicates overflow on left shifts ifthe result is not the correct multiple 
of the original number. This occurs if the most significant bit changes ona logical 
shift, or if it would have changed on an arithmetic shift. No overflow is possible 
on right shifts. 

Examples: 

Original Number 
000777-177700 
177525-052525 
000777-177700 
177525-052525 

Count 
15 
05 
73 
63 

8.2 PROGRAMMING 

Logical Shift 
177770-000000 
165252-125240 
000017-177776 
000007-175252 

Arithmetic Shift 
077770-000000 overflow 
165252-125240 
000017-177776 
177777-175252 

Number Formats All numbers in the KEll-A are in signed, 2's complement nota­
tion. Th'is means that if the most significant bit of a number is zero, the number 
is positive and the rest ofthe number is the magnitude. If the most significant bit 
is one, it means that the number is negative and the rest of the number is the 2's 
complement of the magnitude. Zero is represented with all bits zero. 

There are two different number formats in the KE11-A, One fm'mat uses 16,,, bits: 

BIT 15 14 o 

This gives a range of numbers from + (215)-1 to -(215)_ The largest positive 
number is 077777 and the largest negative number is 100000. A pius one 
would be 000001; minus one would be 177777; and -«215)-1 would be 
100001. 

The other format uses 32,,, bits: 

BIT 31 30 o 

This gives a range of numbers from (2311)-1 to -(231). The largest positive num­
ber is 077777-177777 and the largest negative number is 100000-000000.4 The 
2's complement of a number is formed by changing all l's to 0'5, all O's to l's, 
and then adding 1. 

REGISTERS 

Accumulator (AC) 
Multiplier Quotient (MQ) 
Step Counter (SC) 
Status Register (SR) 

145 

ADDRESSES 

777302 
777304 
777310 
777311 



Accumulator (AC) and Multiplier Quotient (MQ) 
These are the two data registers in the KE-llA_ Each is 16",-bits_ They are some­
times used together to hold one 32,o-bit number, in which case the MQ is the low 
order part of the word (bits 00-15) and the AC is the high order part (bits 16-31)_ 

AC MQ 

BIT 31 30 16 15 o 

Whenever a part of this double-word register is loaded, the sign is always ex­
tended into the higher bits that were not loaded_ For example: 

MOVB 
MOV 
MOVB 
MOVB 
MOV 
MOVB 

A,MQ 
A,MQ 
A,MQ+1 
A,AC 
A,AC 
A,AC+ 1 

;MQ BITS 8-15 AND AC BITS 0-15 EXTENDED 
;AC BITS 0-15 EXTENDED 
;AC BITS 0-15 EXTENDED 
;AC BITS 8-15 EXTENDED 
;NO EXTENSION 
;NO EXTENSION 

Thus, when loading the AC and the MQ with word operations, first the MQ and 
then the AC must be loaded_ When using byte operations, first the low byte of the 
MQ, the high byte of the MQ, the low byte of the AC, and then the high byte of the 
AC must be loaded_ 

NOTE: This applies to all instructions that effect the destination not only MOVe_ 

On multiplication, the MQ initially contains the multiplier and theAC is ignored_ 
After the multiply, the AC-MQ contains the 32,o-bit product On division, the AC-

• MQ initially contains the 321O-bit dividend, and after the divide, the MQ contains 
the quotient and the AC contains the remainder_ On normalize and shifts, the AC­
MQ contains the 32,o-bit number which is shifted_ 

Step Counter (SC) 
The SC controls the number of steps done in all operations which the KEl1-A per­
forms_ It gets loaded automatically on multiply, divide, normalize and shifting_ 
The register is six bits long, and is at address 777310. 

Status Register (SR) 
The SR contains bits which give information about the last operation performed 
and the status of the AC and MQ_ It is 8 bits long and it is at address 777311 (the 
high byte of the AC address). 

SRBIlS 7 6 5 4 3 2 I 0 5 4 3 2 1 0 SC 
WORD BITS 15 14 13 12 11 10 09 06 07 06 05 04 03 02 01 00 

RO: READ ONLY 

146 



SIT 

o 

1 

2 

3 

4 

5 

6 

7 

NAME 

Carry 

AC=MQ 

AC=MQ=O 

MQ=O 

AC=O 

AC = 177777 

NEG 

FUNCTION 

On shifts this bit contains the last bit 
shifted out of the AC·MQ. 

On multiply, divide, and normalize this 15 
bit is cleared. When set, this bit means 
that every bit in the AC is the same as MQ 
bit IS, and therefore the number in the 
AC·MQ has only single word precision. 

When set, indicates that both the MQ and 
AC are all zero. 

When set, indicates that the MQ is zero. 

When set, indicates that the AC is zero. 

When set, indicates that the AC contains 
all ones. 

On shifts, normalize, and multfply this bit 
is set if the AC sign bit is set. On divide, if 
there is no overflow, this bit is set if MQ 
sign bit is set. If there was overflow, this 
bit is set if the original dividend was nega· 
tive. 

This bit, in c ~njunction with Sit 6, is used 
to indicate ov, -flow conditions. It is coded 
with Bit 6 as k . lows: 
Bit 7 Sit 6 
o 0 = Posit. Ie and no overflow 
o 1 = Negati\'!. and overflow 
1 0 = Positive c:nd overflow 
1 1 = Negative and' no ~verflow 

The reasc,;'! for coding bits 6 and 7. in this manner is so the processor condition 
code bits "N" and "V" can be set by a "ROLB SR" (rotate left byte) instruction. 
When the processor does a ROLS instruction, the old bit 6 becomes the new bit 7 
and goes into condition code bit "N", and the old bit 6 exclusive·or'ed with the old 
bit 7 goes into condition code bit "V". Therefore, by doing. a "ROLS SR" after a 
KE11·A operation, the "N" and "V" bits in the processor will get set, and some of 
. the conditional branches can be used. It should be noted that the other two bits in 
the processor condition codes, "Z" and "C', will not be set correctly (although 
they will be changed) and therefore not all ofthe conditional branches will work. 

Since it is not desirable to actually rotate the status register with the "ROLS SR", 
when the processor writes back the rotated SR into the KEll·A, nothing will ac­
tually change. This is .done by inhibiting the SR from being written when ad­
dressed as a byte. Therefore, no instruction that attempts to write the SR as a 
byte will have any effect on the SR. although the KEll·A will respond normally. 
For example, "CLRS', "MOVS", etc. will not change the SR. 

However, to allow for reentrant programming of the KE11·A, it is necessary to be 
able to save theSR and restore it. Therefore, when the word which contains the 
SR and SC is written (777310), both the SR and SC are loaded. The SC, just like 

147 



the SR, however, caMot be loaded by addressing it as a byte. When reloading the 
registers as a word, bits 0 through,S of the SC and bits 0,6, and 7 of theSR are 
the only ones that actually change. Bits 1 to 5 of the SR always indicate the pres· 
ent state of the AC and MQ. Examples of r~ading and writing the SR and SC: 

MOVB SC,RO 

MOVB SR,RO 

ROLB SR 

MOVB #-I,SC 

MOVB #-I,SR 

MOV #-I,SC 

8.3 INSTRUCTIONS 

;ASSUME THE SC = 70 AND THESR = 140 

;THE COMBINED WORD IS THEN 060070 

;RO WOULD BE 000070 

;RO WOULD BE 000140 

;SR WOULD REMAIN 140, "N" AND "V" 
BITS WOULD SET 

;SC WOULD REMAIN 70 

;SR WOULD REMAIN 140 

;SC WOULD BE 77, SR WOULD BE 301. 
;WORD WOULD BE 140477 

Operations in the KEll·A are started-by storing a number at an address. There is 
one address for each of the five operations that the KEll·A performs. Thenum· 
ber must be stored as a word or as the low byte, in which case the sign is auto· 
matically extended to the high byte. Storing the number as the high byte has no 
effect on the KEll·A. Once an operation is initiated in the KEll-A, it will not re­
spond to any instructions until it is finished with that operation. Thus, whenever 
the KEll-A is examined for a result, it will always be the correct, final answer, and 
never be some intermediate number. The maximum amount of time the KEll-A 
takes after an operation is started is 4.25 microseconds, and therefore, the most 
a processor can wait for a result is about 2 microseconds, due to the overlap in 

. operation and beginning the fetch for the result. . 

Multiply The multiply operation is initiated by writing the 16,,,-bit multiplicand at 
the multiply address. This number is then multiplied by the MQ, and a 32,,,-bit 
product is left in the AC-MQ. Reading the multiply address always returns 
000000. 

Address: 
Execution Time: 
SR BUs: 

777306 
4!'5 
o cleared 
I, 2, 3, 4, 5 set conditionally 
6 sign of the produce (AC) 
7 no overflow possible 

Divide The divide operation is initiated by writing the 16",-bit divisor at the divide 
address. This number is then divided into the AC-MQ, and a 16j,,-bit quotient is 
left in the MQ and a 16,n·bit remainder is left in the AC. Reading the divide ad­
dress· always returns 000000. 

14A 



Address: 
Execution Time: 
SRBits: 

777300 
4.25 p.s 
o cleared 
1, 2, 3, 4, 5 set conditionally 
6 if no overflow, sign of the quotient (MQ) 

if overflow, sign of the dividend (original AC 
sign) 
7 Overflow possible 

Normalize The normalize operation is initiated by writing something at the nor­
malize address. The number written there is ignored. The operation normalizes 
the number in the AC-MQ. The count of the number of left shifts can be read at 
the normalize address, where it will be in the lower six bits. (The SR will not be in 
the high byte). Since the count is always a positive ,number, reading the norma­
lized address as a word will get a "sign extended" value, and that number can be 
directly added or subtracted from an exponeht. 

Address: 
Execution Time: 
SR Bits: 

777312 
0-4 p.s 
o cleared 
1 set conditionally 
2 unchanged 
3, 4 set conditionally 
5 cleared 
6 sign of the AC 
7 no overflow possible 

Logical Shift The logical shift operation is initiated by writing a six bit shift count 
at the logical shift address. The number in the AC-MQ is then shifted right or left 
the number of places determined by the count. Reading the logical shift address 
always returns 000000. 

Address: 777314 
Execution Time: 0-4 p.s 
SR Bits: 0 Right shift: last bit shifted out of MQ(OO) 

Left shift: last bit shifted out of AC(15) 
1, 2, 3, 4, 5 set conditionally 
6 sign of the AC 
7 Right shift: no overflow possible 

Left shift: overflow is AC(15) changed at any 
point 

Arithmetic Shift The arithmetic shift operation is initia,ted by writing a six bit shift 
count' and the' arithmetic shift address. The number ih the AC-MQ iii then shifted . 
right or left the number of places determined by the count Reading the arithme­
tic shift address always returns 000000. 

Address: 
Execution Time: 
SR Bits: 

777316 
0-4 p.s 
o Right shift: Last bit shifted out of MQ(O) 

,Left shift: last bit shifted out of AC(14) 
1, 2, 3, 4, 5 set conditionally 
.6 sign of the AC 
7 Right shift: no overflow possible 

Left shift: overflow if AC(15) would have 
changed at any point 

149 



8.4 PROGRAMMING EXAMPLES 

DIV=777300 
AC=777302 
MQ=777304 
MUL =777306 
SC =777310 
SR=777311 
NOR =777312 
LSH=777314 
ASH =777316 

, 
MOV #MQ,RO 

;THE AUTO·INCREMENT AND AUTO· 
DECREMENT MODES OF ADDRESSING 
CAN BE USED TO TAKE ADVANTAGE OF 
THE ORDERING OF THE KEll·A AD· 
DRESSES 

;SET UP RO TO ADDRESS OF MQ. RO ASSUMED TO HAVE THIS ADDRESS FOR 
AI..L OF THESE EXAMPLES 
MULTIPLY EXAMPLE 
MUL T: MOV A,(O) + ;PUT "A" INTO MQ 

MOV B,(O) ;MUL TIPL Y BY "B" 

MOV -(O),C ;PUT LOW ORDER PRODUCT IN C 

MOV -(O),D ;PUT HIGH ORDER PRODUCT IN D 

TST (0) + ;BUMP RO BACK TO THE MQ 

DIVIDE EXAMPLE 

DIVD: MOV A,(O) 

MOV B,-(O) 

MOVC.-(O) 

TST(O)+ 

MOV(O)+.D 

MOV (O).E 

;NOTE THAT IF THE PRODUCT IS KNOWN 
TO BE LESS THAN 16 BITS, THE LAST 
TWO LINES ABOVE CAN BE ELIMINATED: 

;LOAD LOW ORDER DIVIDEND IN MQ 

;LOAD HIGH ORDER DIVIDEND IN AC 

;DIVIDE BY "C" 

;BUMP RO BACK 

;PUT REMAINDER IN "D" 

;PUT QUOTIENT IN "E" 

NORMALIZE EXAMPLE, (ASSUME AC·MQ ALREADY LOADED) 

INC@#NOR 

SUB@#NOR,Rl 

SHIFT EXAMPLES 
MOV #3.@#LSH . 

MOV #-5.@#ASH 

;SUBTRACT COUNT FROM Rl 

;LOGICALSHIFT LEFT BY 3 

;ARITHMETIC SHIFT RIGHT BY 5 

150 


	126
	127
	128
	129
	130
	131
	132
	133

