EK-KBT1C-TM-001

KB11-C PROCESSOR
MANUAL (PDP-11/70)

digital equipment corporation - maynard. massachusetts

Copyright © 1975 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.

Digital Equipment Corporation assumes no respon-
sibility for any errors which may appear in this

manual.

Printed in U.S.A.

This document was set on DIGITAL’s DECset-8000
compuferized typesetting system,

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP

FLIP CHIP FOCAL
DIGITAL COMPUTER LAB
UNIBUS MASSBUS
DECUS

8515

SECTION I

SECTION 11

INTRODUCTION

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 3
CHAPTER 6

SECTION Il

INTRODUCTION

CHAPTER 1
CHAPTER 2

SECTION IV

INTRODUCTION

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9

SECTION V

INTRODUCTION

CHAPTER 1
CHAPTER 2
CHAPTER 3

SECTION VI

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAFPTER 4

APPENDIX A

TABLE OF CONTENTS

BLOCK DIAGRAM AND CONCEPTS

PROCESSOR

INSTRUCTION DECODE AND MICROPROGRAM CONTROL
DATA PATHS

PROCESSOR CONTROL REGISTERS
TIMING GENERATOR

DATA TRANSFERS

ABORTS, TRAPS AND INTERRUPTS

CONSOLE

SWITCHES, INDICATORS AND OPERATION
LOGIC DESCRIPTION

MEMORY MANAGEMENT

PDP-11/70 ADDRESS SPACE

GENERAL DESCRIPTION

MEMORY MANAGEMENT MAPPING FUNCTION

PAR AND PDR ADDRESSING DURING RELOCATION
GENERATION OF THE PHYSICAL ADDRESS

ADDRESS VALIDITY

DESCRIPTION OF PDR

READING AND WRITING OF PAR AND PDR REGISTERS
MEMORY MANAGEMENT ERROR HANDLING

MEMORY MANAGEMENT REGISTERS (MMRO, 1, 2 and 3)

UNIBUS MAP

GENERATION OF THE PHYSICAL ADDRESS
UNIBUS/CACHE INTERFACE
READING AND WRITING THE MAPPING REGISTERS

CACHE

CACHE CONCEPTS
PDP-11/70 CACHE
THEORY OF OPERATION
DETAILED LOGIC

BLOCK DIAGRAMS

This manual describes the KBI11-C Central Pro-
cessor Unit, which is the basic component of the
PDP-11/70 Programmed Data Processor System.
The purpose of this manual is to:

1. provide an gverall understanding of how
the KB11-C functions in the PDP-{1/70
System.

2. describe how the KBI11-C logic works in
sufficient detail to enable maintenance
personnel to perform on-site trouble-
shooting and repair.

The format of this manual is functional, i.e,, the in-
tent is 1o explain the various processes that are exe-
cuted by the KBI11-C, as opposed to a module by
module logic descriplion. Since this might be a
problem for a technician who has & module to re-
pair. an index of logic flunctions by module is
provided.

This manuval is divided into six sections:

Scction T is an introduction to the PDP-11/70.
It describes a block diagram of the system
and introduces some system concepts.

Section 11 describes the processor. [ts six chap-
ters explain processor control. data manipu-
lution, Control Registers, timing, data
transfers and error handling.

Section] provides both an eperating guide
to the Console and a detailed description of

its logic.

Section 1V describes Memory Muanugement
and address space.

Section V describes the Umbus Map.

INTRODUCTION

Section VI contains a description of the
Cache,

Appendix A contains both a System Data
Paths and a System Address Paths block
diagram.

Due fo the numerous references to specific logic
functions in the text, it is recommended that the
reader reler Lo the PDP-11/70 Engineering Print Set
while reading this manuval.

Comments (both favorable and unfavorable), sug-
pestions, and corrections are welcome. A Reader's
Comment sheet is provided for this purpose at the
end of this manual.

REI.ATED DOCUMENTS
This manual should be used in conjunction with the
lollowing related publications:

PDP-11/70 Muaintenance and Installation
Manual

PDP-11/70 Processor Handbook
MI1{ Memory System Muaintenance Manual
FP11-C Floating-Point Processor Manual

RWS04/RWS03 Fixed Head Disk Subsystem
Maintenance Manuwal

RWP0O4 Moving Head Disk Subsystem
Maintenance Manual

TWUI6 Magnetic Tape Subsystem Mainte-
nance Manual

PDP-11 Peripherals Handbook

SECTION 1

BLOCK DIAGRAM AND CONCEPTS

Unless otherwise indicated, references within this sec-
tion pertain to this section only.

CHAFPTER 1

11

L1.1
1.12
1.13
1.1.4
I.1.5
1.1.6
1.2

1.21
12.2
1.2.3
124

CHAPTER 2

2.1
22
23
24

Figure No.

1-1
1.2
1-3
1-4
1-5
1-6
1-7
1-8
1.9
1-10
1-11
1-12

SECTIONT BLOCK DIAGRAM AND CONCEPTS
CONTENTS

BLOCK DIAGRAM

BLOCK DIAGRAM e e e e e e e
Processor e e
Memory Management L e e e e e e e e e e
Unibus Map . . . 0 0 e e e e e e e e e e e e e
Cache e e e e
Unibus L e e e
Optional Equipment oL

MEMORY SYSTEM e e e
Representationand Storage 0 o0
Address Space . . . o o L e e e e e e e e
Mapping e e e e e e e
Parity e e e

CONCEPTS

MICROPROGRAMMING e e
PARALLEL OPERATION(PIPELINING}
VIRTUALMACHINES
REENTRANT AND RECURSIVE PROGRAMMING

ILLUSTRATIONS
Title

PDP-11/70 Block Diagram o i i it e e e e e e e e
PDP-11/70 System Simplified Block Diagram ot
Highand Low Byte o it e e e e s e e e s
Memory Addresses L L h e e e e e e e e e
Word and Byte Addresses L. Lo
Main Memory Addresses o o i i i i e e e e
Address Paths L e e e e e e e
Physical Address Spacet
I6-Bit MappifiZ . . . o v o e e e e e e e e e e e e e e e
I8-BitMapping e e e
22-Bit Mapping o e e e e e e e e e e e e e
Parity (P} in the PDP-11/70System o o v vt i s s e

I-ii

The PDP-11/70 is the most powerful computer in
the PDP-11 family. It is designed to operate in
large, sophisticated, high-performance systems. [t
can by used as a4 powerful computational tool for
high-speed, real-time applications and for large
multi-user, multi-task, time-shared applications re-
quiring large amounts of addressable memory
space. Although it is a 16-bit machine, it applies
the power of u Cache memory and 32-bit memory
and 1/0 structure to demanding, multi-function
computing requirements,

The PDP-11/70 contains as an integral part of the
Central Processor Unit (CPU), the following hard-
wure features and expansion capabhilities;

Cache memory organization to provide bipo-
lar memory speed at core memory prices.

CHAPTER 1
BLOCK DIAGRAM

Memory Management for relocation and pro-
tection in multi-user, multi-task environments.

Ability to access up to 4 million bytes of
Main Memory.

Optional high-speed mass storage controllers
as an integral part of the CPU. These con-
trollers provide dedicated paths to high per-
formance storage devices.

Optienal Fleating Point Processor

1.1 BLOCK DIAGRAM

The PDP-11/70 is a medium scale, general-purpose
computer. A block diagram of the computer is
shown in Figure 1-[.

o |
UMIBLS
‘ PROCESSOR CENTRAL | e _>
PROCESSCR 1 ;
-1
‘ MEMORY S _ '
CONSOLE MANAGEMENT) | rwiaus. | | wi-seeen”| | ;-spees”| | mi-speen”| | mi-seeeo s]
‘ MAR CONTROL CONTROL [| COMNTROL [| CONTROL [‘ PERIFHERAL |
' CArCHE ‘
I S S 1% VIRON N DS DU P
ME;\QDRI’ .
e g L proa [$1s]
als BUS BUS BUS MASE ¥
_____ - — = - — - STORAGE
PERIPHERAL
—
T maN 4 J
| WEMORY
= |NDICATES 32-BIT DATA BUS
2= QFTIDNAL n-31s
Figure 1-1 PDP-11/70 Block Diagram

I-1-1

The KBL1-C Processor performs all arithmetic and
logical operations required in the system. Memory
Management is slandard with the basic computer,
allowing expanded memory addressing, relocation,
and protection. Also standard is the Unibus Map,
which transiates 18-bit Unibus addresses to 22-bit
physical memory addresses. The Cache contains
2048 bytes of bipolar memory that buffer the data
from Muin (core) Memory. Main Memory is on its
own high data rate bus. The processor has a direct
connection to the Cache/Main Memory system for
high-speed access.

The PDP-11/70 Console allows direct coatrol of
the compuler system. It contains a power switch for
the CPU. This switch may also be used as the mas-
ter switch for the system. The Console is used for
starting, stopping, resetting, and debugging. Lights
and switches provide the facilities for monitoring
operations, system control, and maintenance. De-
bugging and detailed iracing of operations can be
accomplished by having the computer execute
single instructions or single bus cycles. Contents of
all locations ¢an be examined, and data can be en-
tercd manually from the Console switches. Console
operation and logic are described in Section ITI of
this manual.

Also within the CPU assembly are pre-wired arcas
for an optional Floating Point Processor, and for
up to four optional high-speed 1/O controllers
(RH70 Massbus Controllers). These controllers
huave direct connections through the Cache to Main
Memory (using the Cache only for timing
purposes).

The Unibus remains the primary controi path in
the 11/70 system. It is conceptually identical with
previous PDP-11 systems; the memory in the sys-
tem still appears to be on the Unibus to all Unibus
devices. Control and status information to and
from the high specd 1/0 controllers is transferred
over the Unibus. This expanded internal implemen-
tation of the PDP-11 architecture has no effect on
programming the PDP-11/70.

Three Unibus devices are standard on the PDP-
14/70:

1. a KW11-L Line Time Clock

2. a DLI! Synchronous Serial Interface (an
LA36 DECwriter IT is also standard in

the PDP-11/70)

a Unibus Terminator and Bootstrap
Module.

Also standard are 128KB of parity core mcmory.
Memory, in the PDP-11/70, is not on the Unibus,
but on ils own high-speed bus (refer to Paragraph
1.2).

1.1.1 Processor

The Processor is the instruction execution section
of the system. It implements the PDP-11/45 instruc-
tion set. 1t also acts as the arbitration unit for
Unibus control by regulating bus requests and trans-
ferring control of the bus to the requesting device
with the highest priority.

The Processor contains arithmetic and control logie
for a wide range of opecrations. These include high-
speed, fixed-point arithmetic with hardware multi-
ply and divide, extensive test and branch oper-
ations, and other control operations.

The Processor is described in Section Il of this
manual.

1.1.2 Memory Management

Memory Management provides the hardware facil-
ities necessary for address relocation and pro-
tection, 11 is designed to be a memory management
fucility for accessing all of physical memory and for
multi-uscr, multi-programming systems where mem-
ary protection and relocation facilities are
neeessary.

In order to most effectively utilize the power and ef-
ficiency of the PDP-11/70 in medium and large
scale syslems, it is necessary to run several pro-
grams simultancously. In such multi-programming
environments, several user programs could be resi-
dent in memory at any given time. The task of the
supervisory program would be 1o control the execu-
tion of the various user programs, to manage the al-
location of memory and peripheral device
resources, and to safeguard the integrity of the sys-
tem us u whole by control of each user program.

In a mulli-programming system, Mcmory Manage-
ment provides the means for assigning memory
pages 1o a user program and preventing that user
from making any unauthorized access to these
puges. Thus, a user can effectively be prevented
from accidentul or willful destruction of any other
user program or of the system executive program.

The basic characteristics of Memory Management
are:

16 User mode memory pages

16 Supervisor mode memaory pages
16 Kerncl mode memory pages

8 pages in cach mode for instructions
B pages in each mode for data

Page lengths rom 32 to 4096 words

Euch puge provided with full protection and
relocation

Transparent operation
6 modes of memory access control

Memory access o 2 million words (4 million
bytes)

Mcmory Management is described in Section IV of
this munual.

£.1.3 Unibus Map

The Unibus Map is the interface to the Memory
System (Cache and Main Memory) from the
Unibus. It performs the address conversion that al-
lows devices on the Unibus to communicate with
physical memory by means of Non-Processor
Requests (NPRs), Unibus addresses of 18 bits are
converted to 22-bat physical addresses using reloca-
tion hardware. This relocation is enabled (or dis-
abled) under program control.

The top 4K word addresses of the 128K Unibus ad-
dresses are reserved for CPU and 1/0 device regis-
ters and is called the Peripherals Page. The lower
124K addresses are used by the Unibus Map to ref-
crence physical memory.

The Unibus Map is described in Section V of this
manual,

1.1.4 Cache

The Cache is a high-speed memory that buffers
words between the processor and Main Memory.
The Cache is completely transparent to all pro-
grams: programs are treated as if there were one
conlinuous bank of memory.

Whenever a request is made from the Processor to
fetch data from memory, the Cache does an ad-
dress compare to see if that data is already in the
Cuache, If it is, it is fetched from there and no Main
Memory read is required. If the data is not already
in Cache memory, 4 bytes are fetched from Main
Memory and stored in the Cache, with the re-
quested word or byte being passed directly to the
processor.

When a request is made from the Processor to
write data into memory:

1. If it is stored in the Cache, it is written
both 10 the Cache and to Main Mem-
ory, thus assuring that Main Memory is
always updated immediately.

b

If it is not stored in the Cache, it is writ-
ten only to Main Mcmory.

Unibus Map references to memory are execuled in
the same manner as processor references,

Because it stores 1024 words, and because pro-
arams tend to use localized sections of code and
duta, the Cuche already contains the next needed
word a very high percentage of the time, indepen-
dently of the program.

The Cache is also the interfuce between the high-
speed 1/0 controllers and Main Memory.

A detailed description of the Cache is contained in
Section VI of this manual.

1.L.L5 Unibus

Most of the computer system components and pe-
ripherals connect to and communicate with each
other on a bus known as the Unibus. Addresscs,
dita. and control information are sent along the 56
lines of (he bus. Refer to Figure [-2.

R i A
L)

<R ‘ | I/ l /o 1 jEie] |
n-3az

Figure 1-2 PDP-11/70 System
Simplified Block Diagram

The form of communication is the same for every
device on the Unibus. Peripheral devices use the
sume set of signals when communicating with the
processor, memory, or other peripheral devices.
Each device, including memory locations, processor
registers, and peripheral device registers, is assigned
an address. Peripheral device registers may be ma-
nipulated as flexibly as memory by the central pro-
cessor. All instructions that can be applied 1o data
in core memory can be applied equally well to data
in peripheral device registers,

Processor Unibus operations are described in Sec-
tion Il. Chapters 5 and 6 of this manual. Cuche
Unibus operations are transacted through the
Unibus Map (Section V).

1.1.6 Optional Equipment

Floating Point Processor

The Floating Point Processor fits into prewired
slots in the Central Processor backplane. It pro-
vides a supplemental instruction sct for performing
single- and double-precision fleating point arith-
metic operations and floating-integer conversion in
parallel with the CPU. The Floating Peint Pro-
cessor provides both speed and accuracy in arith-
metic computations. It provides 7 decimal digit
accuracy in singie word calculations and 17 decimal
digit accuracy in double calculations.

Floating point calculations take place in the FPP's
six 64-bit accumulators. The 46 floating point in-
structions include hardware conversion from single-
or double-precision floating point to single- or
double-precision integers. Refer to the FPII-C
Floating Point Processor Manual for a detailed
description.

High-Speed Mass Storage

Up 1o four high-speed 1/0 controllers can be
plugged into the KB11-C backplane. A dedicated in-
terfuce (wired on the backplane) connects these con-
trollers to the memory. A separate bus (Massbus)
connects the controllers to high-speed devices. Pre-
sent DIGITAL devices that utilize this bus struc-
ture arc the RP0O4, RS04, RSO3, and TUL6. The
RI*04 is a moving head disk pack drive with capac-
ity Tor 88 million bytes and 4 transfer rate of 1.25
microseconds per byte. The RS04 is a fixed head
disk with a capacity of 1024K bytes and a transfer
rate of | microsecond per byte (1.2 microseconds at
30 Hz). The R803 is a fixed head disk, 312K bytes,
2 microseconds per byte. The TUILG is an industry

stundard 1600 bpi tape unit.

Refer to the following manuals for detailed descrip-
tions of these high-speed devices:

RWS04/RWS03 Fixed Head Disk Subsystem
Maintenance Manual

RWP04 Moving Head Disk Subsystem
Maintenance Manual

TWUI16 Magnetic Tape Subsystem Mainte-
nance Manual

1.2 MEMORY SYSTEM

1.2.1 Representation and Storage

The PDP-11/70 is a 16-bit machine. The data is
stored in Main Memory in blocks, cuch of which
consists of two {6-bit words. Thus, the PDP-11 in-
siruction set and the addressing modes are identical
to other PDP-t1s, but data storage is impiemented
in a 32-bit configuration. This is transparent to the
program und to the processor logic.

The PDP-1t data word consists ol two 8-hit bytes,
as shown in Figure 1-3, The program addresses ci-
ther a single byte, when it uses a byte instruction,
or u 16-bit word, when it uses a word instruction.

£ ov og

HIGH 8YTE LOW BYTE
1 " : 1 . " 1 1 1 " 1 1

- tions.

n-393

Figure 1-3 High and Low Byte

From the point of view of the program. memory
can be viewed as a series of locations, with a num-
her {address) assigned 1o each location. Thus, a
131,072-bylc PDP-11 memory could be represented
as in Figure [-4.

Becuuse PDP-11 memories ure designed Lo accom-
modate both 16-bit words and 8-bit bytes, the totul
number of addresses does not correspond to the
number of words, A 64K-word memory can con-
tain 128K bytes and caonsist of 777 777y byte locu-
Words always start at even-numbered
locations.

LOCATIONS

04 000 000
00 000 OO
00 000 002

g0 000 003
00 000 Q04

L J

L]

OCTAL .
ADDRESSES .
L]

L J

L J

Q0 777 774
00 777 775

00 777 776

\, 00777 777

n-3124

Figure 1-4 Memory Addresses

Low bytes are stored at even-numbered memory lo-
cations and high bytes at odd-numbered memory lo-
cations. Thus it is convenient, from the point of
view of the program, to represent the PDP-11 mem-
ory us shown in Figure |-3.

Main Memory stores data in blocks. A block con-
sists of two 16-bit words (plus 4 parity hits). Figure
1-6 shows how the data for thc same memory
shown in Figure 1-5 is stored in Main Mcmory.
Block boundaries are located on program addresses
whose low-order octal digit is either O or 4.

Main Memory addresses are block addresses. The
processor and the Unibus use word addresses and
the Cachc translates these addresses to block
addresses.

The Cache, which is the interface to Main Memory
for the processor, the Unibus and the high-speed
1/0 controllers, reads and writes Main Memory as
listed helow Tor each of these units:

High-Speed 1/0 Controllers

l. Reud: double word only
2. Write: double word, single word, or
byte.

The controllers listed in Paragraph 1.1.6 do not im-
plement byte writes,

16-BIT WORD 8-BIT BYTE
"3 BYIE D507 BYTE 50 57 ™ 00
00 000 001 HIGH Low 00 000 000 worb { Low 00 000 000
00 000 003 HIGH Low 00 000 002 HIGH 00 000 001
00 000 Q05 HIGH LOW Q0 D00 004 WORD{ LOW G0 000 D02
HIGH 00 000 003
{ Low a0 000 004
...-—"“-'—'—-“""M OR
'__/x/
S
Q0 777 773 HIGH LOW Q0 777 772 { HIGH 00 777 775
00 777 775 HIGH LOW 00 777 774 { LOW 00 777 77
00 777 777 HIGH LowW 00 777 776 HIGH a0 777 777
WORD ORGAMNIZATION BYTE OQORGANIZATION n-319%

Figure 1-5 Word and Byle Addresses

I-1-5

BLOCK

WORD 1 WORD O
o o v
BYTE 3 BYTE 2 BYTE 1 BYTE 0

00 0OC 003 00 000 002 00 000 001 00 000 000 00 000 000

00 000 007 00 000 004 00 000 005 00 000 004 00 Q00 004
0G 000 010
G0 777 760

00 777 767 00 777 766 00 777 765 00 777 764 00 777 764

Q0777 773 00 777 772 00 777 771 00 777 770 60 777 770

Qo0 7?77 777 Q0 777 776 00 777 775 00777 774 007277 774
11-4000

Figure 1-6 Main Memory Addresses

Processor or Unibus

1. Rcad: double word, but only Word 0
or Word | are transmitted to processor

This address is an {8-bit address in the case of a
Unibus reference and a 22-bit address in the case of
a memory reference. The Unibus Map converts 18-
bit Unibus addresses to 22-bit Cache addresses.

or Unibus
2. Write: single word (Word 0 or Word 1D
or single byte {one of bytes 0, 1, 2, or 3).
CPU
UNIBUS
1.2.2 Address Space & 16 ADDRESE BT -
The PDP-11/70 uses 22 bits for addressing physical MEM MGT. 1?T%DDRESS
memory. This represents a total of 222 {over 4 mil-
. . 22 UNIBUS
lion) byte locutions. a?gRESS MAP
Three separate address spaces are used with the 22 ADDRESS BITS
PDP-11/70, Main memory uses 22 bits, the Unibus CACHE
uses an 18-bit address, and the computer program
uses a 16-bit virtual address, This information is 22
summarized below: ADDRESS
BITS
16 bits program virtual space 21 = 64K bytes :
18 bits Unibus space 2% = 256K byles M’;‘ag\'m
22 bits physical memory space 4 million bytes

Refer 1o Figure 1-7. Memory Management gener-
-ates the physical address output lor the processor,

1"n-400

Figure 1-7 Address Paths

Processor Addresses

Sce Figure 1-8. Of the over 2 million 16-bit word lo-
cations possible with the 22-bit physical address,
the top 128K are used to reference the Unibus
rather than physical memory, Maximum physical
memory is therefore 22 - 2% bhytes, or a total of
1.966,080 words. The system size boundary is the
highest address available with the amount of mem-
ory included in the system. IT the CPU address is
between 00 000 000 and the system size boundary,
an attempl is made 1o reference physical memory.
Memory addresses between the system size bound-
ary and 16 777 777 are known as Non-Existent
Memory (NEXM): any attempt to access these loca-
Lions is aborted. If the address is in the top 128K,
17000 000 - 17 777 777, the lower 18 bits of the ad-
dress are placed on the Unibus,

17} 777 777 PERIPHERAL
PAGE {4K)
| _ 1171 rev 000 | UNIBUS
n7) 757 777 REFERENCE
i128K)

(171 000 D00

16 777 777
NON-EXISTENT
MEMORY OR NXM
SYSTEM SIZE]
BOUNDARY
MEMORY
REFEREN CE
00 000 000
11- 4002

Figure 1-8 Physical Address Space

1.2.3 Mapping

Mapping i1s the process of converting the virtual ad-
dress generated by the program to a physical mem-
ory address or 10 @ Unibus address, or the process
ol converting a Unibus address to a physical mem-
ory address,

The virtual address is mapped by Memory Manage-
ment: the Unibus address is mapped by the Unibus
Muap. Neither of these increases memory access
time,

Memory Management and the Unibus Map are sep-
arate units and one may be enabled independentiy

of each other. They are both part of the KBII-C
and are included in all PDP-11/70 systems.

Refer to Figures -9 through 1411,

1. Mapping of processor addresses is per-
formed in one of three possible ways by
Memory Manuagement:

16-BIT MAPPING

There s fixed mapping from virtual to
physical addresses. The lowest 28K vir-
tual addresses are treated as correspond-
ing to the sume physical addresses. The
top 4K addresses cause Unibus cycles to
iddresses 17 760 000 - 17 777 777. Refer
to TFigure 1-9. [6-bit mapping is enabled
after. Power Up, Console Start, or the
RESET instruction.

18-BIT MAPPING

32K virtual addresses for each of the
three modes (Kernel, Supervisor, User)
are mupped into 128K of physical ad-
dress space. The lowest 124K addresses
reference physical memory, The top 4K
uddresses cause Unibus cycles to ad-
dresses |7 760 000 - 17 777 777. Reler to
-igure 1-10.

22-BIT MAPPING
This mode produces 22-bit addresses for
uccessing all of physical memory, The
top 128K addresses cause Unibus cycles
to uddresses 17 000 000 - |7 777 777. Re-
fer 1o Figure 1-11.

!\J

Mapping of Unibus addresses is per-
formed by the Unibus Map,

UNIBUS MAP NOT ENABLED

When the Unibus Map is not enabled,
Unibus addresses 000 000 - 757 777 uac-
cess memory locations 00 000 000 - 00
757 777, i.e., they are not modified ex-
cept for the insertion of lecading zerces.

UNIBUS MAP ENABLED

When the Unibus Map is enabled,
Unibus addresses 000 000 - 757 777 are
relocated and a Unibus device may ac-
cess uny location in physical memary,

FLOW

77reer. | Y ITF 5T o 17777777
4K PERIFHERAL PAGE
e R A 17600000
7757777
UNIBLS \\
{® BITS)
124% .
S
000000 _17e00000 A _
URIBUS 16777777 |~
MAP N
<
N
.
|
00757777 1920k
77777 96K
woooo v _
VRTUAL 00157777 00157777
(1&BITS) 28K 2BK
000000 e ogaopoce | _ 00000000
INCOMING PHYSICAL ADDRESS
ADDRESS ADDRESS SPACE LOCATIONS
|22 BITS) [MAX. AvAILABLE
MEMORY 1024K]
—————= <RELOCATION
— ———— :NO ADDRESS
RELGCATION N-3196
Figure 1-9 16-Bit Mapping
FLOW _
7Pz | T T T T T T vy | T 77 11777777
4K PERIFHERAL PAGE
zmocos | 17600000
177577277
UNIBUS AN
|18 BITS) 124K
000000 o /112000000 —
16777777 3
00757777 00757777 1920K
177227 124K 124%
VIRTUAL MEM o
(6 BITS) "
000000 00000000 00000000 1
INCOMING PHYSIC AL ADDRESS
ADDRESS ADDRESS SPACE LOCATIONS
|22 BITS} [MAX. AVAILABLE
MEMORY 1024K)
st s RELOCATION
— ————~ =NO ADDRESS
RELOCATION
n-3197

Figure 1-10

1-1-8

18-Bit Mapping

FLOW

777777 17777777 W FzF7E0T
4K PERIPHERAL PAGE
oo o 17600000
17757777 5
UNIBUS 5
18 BIT3) 124K 5
000000 I S 17000000
16777777 16777777
1920K
ADDRESS
177777 MEM
MAGMT
00757777
124K
000000 |ooooo0go 20000000
INCOMING PHYSICAL ADDRESS
ADDRESS ADDRESS SPACE LOC ATIONS
122 BITS) [MAX. AvalLABLE
MEMORY 1024K)
—————= 1 RELOCATION
— ———— =NQ ADDRESS
RELOCATION
11-31%8
Figure 1-11 22-Bit Mapping

1.2.4 Parity

This paragraph provides general information on
parity checking in the PDP-11/70 system. A de-
tiiled description of this subject is provided in Sec-
tion V1 of this manual (Cache) and in the Memory
Manual.

System Reliability

Purity is used extensively in the PDP-11/70 to en-
sure the integrity of the data and thus 1o enhance
the reliubility of the system, A memory (Cache
and Main Memeory) has byte parity. Parity is gener-
ated and checked on all transfers beiween Muin
Mcmory and Cache, and between Cache and the
CPU. It is checked between the high-spced mass
storage devices and their controllers, and again be-
tween the controllers and core memory. A software
routine can be used to log the occurrence of parity
errors, to handle recovery from errors, and to pro-
vide information on system rcliability and
performance,

Parity in the System
Main Memory stores one parity bit lor each 8-bit
byte, (refer to Figure 1-12). The Cache also stores

byte purity for data, and in addition it stores two
parity bits for the address information (tag storage)
associated with each two-word block of data.

cPU UNLEUS - __'1>
apoResst (AR apoess
ADDRESSIP) [CaTAlP] | paTA (7} ""G'";;SPEED HIGH-SPEED
COMTROL 140 BUS
CACHE DATA & CONTROUP)
ADDRESS pATA[R)
.3
CONTROL (P}
WA CONTROL
- @@ @@ |
1=-3189

Figure [-12 Parity (P} in the
PDP-11/70 System

The bus between Main Memory and the Cache con-
lains parity on the data lines and on the address
and contro! lines. The high-speed 1/0 controllers
check and generate parity for data transfers to
Mauin Memory, und they have the capability of han-
dling address errors that are flagged by the control
in the Cache memory. Refer to Section VI, Chapter
3 for u detailed description of the PDP-11/70 parity
systent.

System Handling of Parity Errors

The design of the PDP-11/70 allows recovery from
parity crrors. 1t also allows operation in a degraded
mode if o scetion of the memory system is not oper-
ating properly. This type of operation is possible un-
der program control by using the control registers.

[f part or ail of the Cache memory is malfunction-
ing. il is possible 1o bypass half or all of the Cache.
Misses cun be forced within the Cache, such that
all read data is brought from Main Memory. Oper-
ation will be slower, bul the system will yield cor-
rect results. IT part of Main Memory is not

working. Memory Management can be used 1o map
around it, I data found in the Cache does not have
correcl parity, the memory system automaticaily
tries the copy in Main Memory, Lo allow program
execution to proceed. The correet data from Main
Mcmory automatically replaces the data in the
Cache which caused the parity error. Therefore,
if the error was caused by transitory conditions, it
will not occur again.

Ahorts and Traps

One ol two uctions can tuke place after detection of
a parity error: {1} The cycle can be aborted. The
compuler then transfers controt through the vector
at location 114 to an error handiing rou-
tine. (2) The instruction is completed, but then
the compuler traps (also through location 114). In
the first case, it wus not possible to complete the
cycle: in the sccond case it was, This second type of
purity error usually (but not always} causes the teap
before the next instruction is fetched.

I-1-10

This chapter introduces several concepts that are
useful for the understanding of the KB11-C Pro-
cessor and the PDP-11/70 system, The first two of
these concepts, Microprogramming (2.1} and Paral-
lel Operation or Pipelining (2.2), should be well un-
derstood before reading any further. The other two
paragraphs, Virtual Machines (2.3) and Reentrant
and Recursive Programming (2.4), discuss system
concepts that may be easier to understand after a
working knowledge of the PDP-11/70 has been ac-
quired. The block diagrams in Appendix A show
the interconnection between the several parts of the
PDP-11/70, including the RH70 contrellers.

2.1 MICROPROGRAMMING

The KB11-C Processor uses a microprogram con-
irol section which reduces the amount of com-
binational logic in the processor. This paragraph
introduces the concept of microprogramming by
first describing a digital computer, then dividing the
computer into various parls, and finally, describing
how some ol thesc parts differ for a micro-
programmed processor,

Digital Computer Description

Although a2 computer can effect complicated
changes to the data it receives, it must do so by
combining a large number of simple changes in dif-
lerent ways. The part of the digital computer that
actually operites on the data is the processor. A
processor is made up of logical elements; some of
these elements can store data, others can do such
simple operations as complementing a data oper-
and, combining 1two operands by addition or by
ANDing, or reading a data operand from some
other part of the computer. These simple oper-
ations can be combined intoe functionzl groups:
such a group is called an instruction, and it in-
cludes operutions that read dala, operations that
combing, ¢hunge, or simply move the data, and op-
erations that dispose of the data. Instructions can

CHAPTER 2
CONCEPTS

be further combined into programs, which use the
combined instructions to construct even more com-
plex operations.

The logical elements of a processor can only per-
form a small number of operations at ong time.
Therefore, 1o combine operations into an instruc-
tion. the instruction is divided into a series of oper-
ations {or groups of operations that can be
performed simultaneously). The processor does
cach parl of the series in order. One way to de-
scribe how the processor cxecutes an instruction is
to call cach operation {or group of operations) «
maching state, An instruction then becomes a se-
guence of machine states which the processor enters
in a specilic order,

The processor can be completely described in terms
of machine states by listing all the machine states in
which the processor can perform (i.e., all the differ-
ent operations or groups of aperations that it can
perform) and all the sequences in which these ma-
chine stutes can occur. The sequence of machine
states is determined by the current state of the com-
puter: this includes such information as the instruc-
tion being executed, the valucs of the datu being op-
erated on, and the results of previous instructions.

In terms of the machine state description, the pro-
cessor can be divided into two parts. The first part,
culled the duta section, includes the logic elements
that perform the operations which make up a ma-
chine state. The second part, called the control sec-
tion, includes all the logic that determines which
operations are to be performed and what the next
machine state should be. The data section and con-
trol scction are discussed in the following
paragraphs.

[-2-1

The data section in the KB11-C is usually referred
10 as the Data Paths and is described in Section I,
Chapter 2. The control section is described in Sec-
tion [, Chapter 1, Instruction Decode and Micro-
program Controt,

The Data Section

During each machine state, the data section per-
forms operations selected by signals from the con-
trol section. The data section provides inputs to the
control section which help to determine the next
muchine state; the data section also exchanges data
with other devices external to the processor.

The dula scction can be divided into three fune-
tional sections; cach section is discussed in one of
the Tollowing paragraphs.

The Data Storage Section

For the processor (o combine data opcrands it
musi be able 1o store data internally, while simulta-
neously reading additional data. Often, a processor
stores information about the instruction being exe-
cuted, about the program from which the instruc-
tion was taken, and about the location of the data
being operated on, as well as 4 number of data op-
erands. When the processor must select some of the
internally-stored data, or store new data, the con-
trol scction provides control signals which cause the
appropriute action within the data storage section.

The Data Manipulation Section

This section includes the various logic elements that
actually change data. Many of these elements are
controlled by signals from the control section,
which select the particular operation 1o be per-
formed. Data manipulation is petformed on data
being transferrcd between the processor and the
rest of the system, and on data (hat remains within
the processor. In some cases, the data that remains
within the processor is used to control the pro-
cessor by providing inputs to the sensing section of
the processor control.

The Data Routing Section

The interconnections between the logic elements in
the data storage section and the elements in the
data manipulation section are not fixed; they are
set up as required in each machine state. The con-
trel section generates signals that cause the logic ele-
ments in the data routing section to form the
appropriate interconnections within the processor,
and between the data interface and the data storage
and manipulation sections.

[-2-2

The Control Section

The control section of a processor receives from the
data section, inputs which are used by the sensing
logic 1o help select the next machine state. The con-
trol section also generates control signals to all
parts of the data section and communicates with
other purts of the computer system through control
signais. The foliowing paragraphs describe the three
purls of the control section.

The Sequence Control Section

The primary control of the processor is the selec-
tion ol the sequence of machine slates to be per-
formed. This is done by the sequence control
section which selects the next machine state on the
basis of:

the current machine state

2. inputs from the data section (such as the
instruction type or the dala values)
3. information about external events.

The sequence control section maintains information
about the current machine state, and receives infor-
mation from the data section and the external envi-
ronment through the sensing section.

The Function Generator

In cach muchine state, the data section performs op-
erations selected by signals from the control section
of the processor. The Tunction gencrator produces
these control signals on the basis of the current ma-
chine state and also on the basis of inputs from the
sensing section, such as information on the instruc-
tion Lype.

The Sensing Logic

In general. the sequence control section requires in
puts that seleet one of a limited number of maching
states Lo Tollow the current state.

The Control Section in the KB11-C

The Tunction generator comprises the micro-
progrum Read Only Memory (ROM), its output
bufler, and several logic clements that generate con-
trol signals based on sensed inputs (notably
through the subsidiary ROMs). The sequence con-
trol comprises the microprogram address gener-
ation logic. The sensing section includes the various
logical clements that receive inputs from the data
seclion, especially the condition-code gencerator, the
subsidiary ROMs, and the branch logie,

Micreproegramming in the Control Section
Implementation

This paragraph describes two methods of imple-
menting the control section of a processor. The first
method, which is called the corventional method for
the purposes of this discussion, uses combinational
networks, with many inputs combined in varying
ways to produce cach output. The second method,
which is culled micraprogramming, replaces most of
the combinational networks with an array struc-
ture. The array requires a small number (approx-
imalely 10) of inputs to select the output states for
a large number (approximately 100) of signals, Be-
cause the urray is a regular structure, it is stmpler
to construct and understand, and less expensive.

Conventional Implementation

In a conventionul processor, each control signal is
the cutput of a combinational network that detects
all the machine states {and other conditions) for
which the signal should be asserted, The machine
state is represented by the contents of a number of
storage ¢lements (such as flip-flops), which are
louded from signals that are, in turn, the outputs of
combinational networks. The inputs to these net-
works include:

l. the current machine state
2. sensed conditions within the Processor
3. sensed external conditions.

The number of logical elements in the processor is
often reduced by sharing the outputs of networks
which generate intermediate signals needed in the
generation of several control signals, or even in the
generation of control signals and machine states.
Unfortunately, while this reduces the size of the pro-
¢essor, it increases the complexity and difficulty of
understanding the device because it is no longer ob-
vious what conditions cause each signal. In addi-
ton, the distinction between the sequence control
and the function generator is blurred, which makes
it more difficult to determine whether improper op-
eration is caused by a bad machine state sequence
or, more simply, by the wrong control signals
within an otherwisc correct machine state.

Microprogrammed Implementation
The microprogrummed implementation is based on
the foilowing observation. Each control signal is

completely defined if its value is known for every
muchine state, The function generator section can
therefore be implemented as a storage device: the
stornge is divided into words, with each word con-
taining a bit for every control signal; there is one
word for each machine state. During each machine
state, the contents of the corresponding word in the
storage element are transmitted on the control
lings, For most control signals, the output of the
storage uvnit is the control signal; no additional
logic is required,

The two tasks of the sequence control section are
to select the next machine state, and to provide in-
formation about the current machine state to the
function generator. The only information that the
function generator in a microprogrammed pro-
cessor requires is which word to use as control sig-
nals. Therefore, the seqence control simply provides
an address that selects the correct word. The se-
gquence control must also select the address of the
next word to determine the machine state sequence.
Because the next machine state is determined in
part by the current maching state, information is
stored in the microprogram that helps to select the
next state; the microprogram word contains the con-
trol signal values and the address and sensing con-
trol information required by the microprogram
address generation logic (i.e., by the sequence
control).

In u microprogrammed control like the one de-
scribed above, the two major portions of the con-
trol section have been simplified to regular logical
structures, The function generator is entirely sepa-
rate rom the sequence control, so it is casy to iso-
late malflunctions to the microprogram storage or
to the address generator. In addition, the sensing
logic is simplified, because cach sensed condition is
reduced to u single signal and the sensing logic se-
lects the appropriate signals for the current ma-
chine state, based on signals output from the
microprogram storage. To summarize this dis-
cussion, a microprogrammed processor has a sim-
pler, more regular, more easily repaired control
structure, based on the generation of control signals
from stored information, and the selection of each
machine stale, based on information stored in the
current machine state, and on information from a
simplificd sensing section.

[-2-3

2.2 PARALLEL OPERATION (PIPELINING)

In a digital computer system, the processor is usu-
alty the fastest part of the system. In order 1o
uchieve the maximum speed of operation, all parts
of the processor should be used as much as pos-
sible. To prevent the processor from wasting time
wailing for other parts of the system, the processor
must make use of the external data transfer inter-
fuce as much as possible. Because any one oper-
ation that the processor performs uses only part of
the processor’s available resources, the two consid-
erations ubove require the processor Lo perform sev-
crial operutions in parallel.

In general, the sequence of operations required for
euach instruction uses various parts of the processor
at different times. Some parts of the processor,
such as the program counter, are used only during
the carly parts of the instruction; others, like the
shilt counter, ure used only during later parts of the
instruction. The processor can be fully utilized only
if different parts of the processor ¢an be used for
parts of dilferent instructions during the same ma-
chine state.

When the processor works on the early part of an
msteuction al the same time that it completes the
previcus instruction, this form of parallel operation
is culled pipelining. The processor attempts ta make
continuous use of the external data interface by
fetching cach word addressed by the Program
Counter (PC) in succession {incrementing the PC
during euch truansfer), on the assumption that the
next word required will be the one following the
current instruction. In the pipelining analogy, the
processor attempts to fill a pipe, corresponding to
the differcnt parts of the processor used succes-
sively by each instruction, with ua series of
instructions.

The current instruction often requires some other
words from the external storage. At times, the next
instruction does not follow the current instruction
because the PC hus been explicitly changed by the
current instruction. When cither of these two condi-
tions occurs, the processor must stop the data trans-
fer begun after the instruction fetch and begin a
data transfer with a different address. In the pipe-
line analogy, this is a break in the smooth flow of
instructions through the pipe; some time is lost be-
fore the pipe drains (the current instruction is com-
pleted) and cun be refilled (a new instruction
fetched and a transfer begun to read the word fol-
lowing thal instruction).

1-2-4

A second form of parallel operation occurs in the
KBI11-C to further improve the utilization of the
processor. Because the processor includes several
types of duta storuge and data manipulation cle-
ments, with different interconnections, several data
trunsfers can take place within the processor simul-
tuncously, As an example, during the same machine
slate that completes an external data transfer, the
processor can read a general register into a tempo-
riry storage register, and perform an addition that
adds a constant 1o the program counter,

The use of parallel operations within an instruction
reduces the number of machine states (and there-
lfore the totul 1ime) required to execute cach instruc-
tion; the use of pipelining further reduces the
number of machine states required to execute a pro-
gram by effectively elimirating the elapsed time be-
tween many external data transfers,

2.3 VIRTUAL MACHINES

The processor executes instructions and operates on
data, both of which are stored in memory, and it re-
sponds o various asynchronous events.

The response 1o an interrupt or trap is not entirely
designed into the processor. Instead, the response is
controlled by a scries of instructions (a program)
which is selected by a simpler hardware response
when the usynchronous event is detected, Often, a
number of programs are required to respond to a
number of events, und the scheduling, coordination,
and interaction of these programs is one of the
most important (and difficult) parts of program-
MIng 4 computer system.

In many applications, the user programs that are
writlen for the syslem are treated as though they
are interrupt response programs. This is done to
simplily the scheduling, to ailow each user program
1o operate with a lerminal (some form of character
1/0 device), und to allow several user programs 1o
operate at once, By running several programs at
once, Lthe processor can be utilized more fully than
is generally possible with only one user program,
which would often be waiting while devices other
than the processor completed data transfer oper-
alions. With severul programs to be run, the pro-
cessor cuan be switched umong the programs so that
those ready 1o run have the use of the processor
while others are wuiting. The use of the processor
for several programs ut the same time is called
mudtiprogramming.

Running programs in a multiprogrammed system
presents several difficulties. Each program can be
run al arbitrary times, but all the programs must be
capable of running together, without conflict. A fail-
ure in one program must not be allowed to affect
other programs. Each program must be able to use
all features of the system in a simple, easily-learned
maunner, preferably in such a4 way that the program
does not need to be modified to run in a different
hardware configuration.

These difficultics are overcome by providing each
program with a virtual machine. The programmer
writes his program as though it is to run by itself;
the program uses any sysiem resources (such as
memory or peripheral devices), and the system pro-
vides the services necessary to support the program
and coordinate it with other programs in operation.
The physical hardware in the system is combined
with a control, or executive program, to simulate a
more powerful hardware machine; it is for this
more powerful, but abstract, machine that the pro-
Lrams are written.

Based on this discussion, the hardware machine
and the executive program must combine to fulfitl
the following Tour mujor objectives of the virtual
machine:

t. Mapping - The virtual machine of the
program currently in operation must be
assigned to some part of the hardware
machine.

2. Resource management - The scheduling
of programs, and the allocation of parts
of the hardware machine, must be per-
formed by the executive program.

3. Communication - The virtual machine
must be able to request services from the
executive program, and the executive pro-
gram must be able to transfer data back
und forth with the user programs,

4. Protection - The system that supports
the virtual machine, and all other virtual
machines, must be protected from fail-
ures in any one virtual machine.

Each of these subjects is discussed in one of the fol-
lowing paragraphs.

1-2-5

Mapping

Each time a program is rum {or, if the multi-
programming system is running several programs in
a round-robin manner, each time a program re-
sumes operation), it has some of the system dar-
dware allocated to it. This generally includes some
part of the memory to contain the instructions and
data required by the program, some of the pro-
cessor's registers, a hardware stack (which is ac-
tually an area in the memory and a pointer to that
area in a processor register), possibly some per-
tpheral devices, and perhaps a fixed amount of the
processor’s time. All of thse allocations must be
made in such a way that the hardware machine can
then execute the user program with a minimum of
extra operations; i.e., so that the execulion of the
user progeam requires as few additional memory cy-
cles, or additional machine cycles, as possible.
Therefore, the allocation is done entirely in the
hardware machine; registers in the hardware con-
tuin all the allocation {(mapping) information, and
all references to virtual addresses, virtual stack loca-
tions, virtual register contents, or virtual devices
converted by hardware to physical references.

In a PDP-11/70 System, mapping is done by two
devices. The mapping of virtual registers into pro-
cessor registers, of the virtual stack, and of the vir-
tual program counter, is done by loading the
appropriate values into the processor registers; one
of two sets of general registers can be selected for
the user, and the processor has a separate stack
pointer for user mode, while the program counter is
changed by interrupt and trap operations and by
the Return (rom Interrupt (RT1) or Return from
Trap (RTT) instructions.

The remaining mapping functions distribute the vir-
tual memory into the physical memory. In the phys-
icil memory, many specific addresses are reserved
for special Tunctions; the lowest addresses are used
for interrupt and trup vectors, while the highest ad-
dresses are used for device registers. Because all
functions that require reserved addresses in the
physical memory ure performed either by the phys-
ical muchine or by the control program, these ad-
dresses need not be reserved in the virtual machine.
Therelore, the programs written to be run in the vir-
tual machine can use any addresses; specifically,
these programs can start at address 000000 and con-
tinue through ascending addresses to the highest ad-
dress needed.

In discussions of the virtual memory and the phys-
ical memory. it is often necessary to describe the ad-
dresses used to select data items within the
memory. The range of addresses that it is possible
to vse is called the address space. The maximum
range of addresses that can be used in the virtual
machine (which in the PDP-11/70 is the maximum
number that can be contained in a 16-bit word) is
called the virtual address space, while the maximum
range of physical addresses that can exist in the
hardware system is called the physical address
space (in the PDP-11/70 this can be all the ad-
dresses expressed by a 22-bit number).

[l the user program is to use addresses in the vir-
tual address space that are reserved in the physical
address space, the virtual address space must be
relocated to some other part of the physical address
space. En a multiprogramming system, several user
programs, each in 14 own virtual address space,
may be sharing the physica! address space. There-
fore, the relocation of the virtual address space into
the physical. address space must be variable; each
lime a program is run, it may be allocated a differ-
ent parl of the physical address spuce. Memory
Munagement provides the capability of varying the
relocation for each vser program by storing a map
ol the memory allocation in a set of registers.

Resource Management

In a multiprogramming system, each user program
operuates in a virtual machine that can utilize any of
the possible devices or functions of the physical ma-
chine, as well as many functions performed by the
exceulive program. The resources that exist in the
system must be allocuted Lo each user program as
required, but without allowing conflicts to arise
where several user programs require the sume re-
sources, The physical machine and the executive
program niust resolve any protective conflicts by
scheduling the resources for use by different pro-
grams at diflferent times, and must schedule the
user programs 1o operate when the resources are
available,

The management of input/output or peripheral de-
vices is beyond the scope of this discussion, which
is primarily concerned with the hasic PDP-11/70
System. Within the system, the two mosl important
resources which require the most care and cffort to
control are the memory and the processor.

[-2-6

Processor Management

The processor can only execute one instruction at a
time. When severul programs are sharing the use of
the processor, the processor operates on each pro-
gram in turn; cither the processor is shared among
the programs, by using periodic interrupts to allow
the exccutive program to transfer the processor to
another user program, or cach uscr program runs
o completion before the next user program begins.
To share the processor on a time basis, the execu-
tive program must perform the transfer from one
virtual muchine Lo another, Each virtual machine is
given control of the physical machine by loading
the map of that virtual machine into the physical
machine. That is, the executive program changes vir-
tal machines by changing the contents of the pro-
cessor registers used by the virtual machine, and by
changing the contents of the registers in Memory
Management which map the virtual address space.

Memory Management

The following discussion assumes that Memory
Management is enabled, Memory Management is
much more complicaled than Processor Manage-
ment. Il 4 program uses a lurge proportion of the
virtual address space, and only a small amount of
memory is physically avuailable in the system, the
program may be oo large 1o fit into the memory
all at once, Forlunately, in mosl programs only a
small part of the program {or possibly several small
paris, one for the instruction stream and one or
more for blocks of duta) is used at any one time,
To take advantage of this fact, the virtual address
spuce is divided into pages so that each page can be
mupped separately. Only the pages that are in use
in the current instruction are required to be in the
physical memory during the execution of - that
instruction.

A system which uses Memory Management lo per-
mit ecach virtual machine to have a larger address
space than the available physical memory must also
include a muass storage device to hold those parts of
cach virtual memory that are not in the physical
memory. As o program procceds through a se-
quence of instructions, it requires different pages of
the virtual memory. The memory map in the Mem-
ury Management includes relocation information
for cach page of the virtual address space, and also
includes information specifying which pages are cur-
rently in the physical memory. If the processor at-
iempts 1o perform transfers with a virtual address

which is on a non-resident page, the instruction is
aborted. A part of the executive program which
trunsfers the required page into the physical mem-
ory and changes the map in Memory Management
to reflect the newly available page is then executed,

Memory Use Statistics

If it is necessury for the executive program to bring
a4 page into the physical memory, but all of the
physical memory is alrcady in use, the executive
program must remove another page (from the same
virtual machine or, in a multiprogramming system,
from some other virtual machine) from the physical
memory, When a page is removed from the phys-
ical memory, a copy of that page must be stored in
the mass storage device; if a copy of the puge is al-
ready on the mass storage device, and none of the
data (or instructions) stored on the page have been
chunged, the writing of the page onto the mass stor-
age device can be bypassed. Each time a page must
be replaced, the executive program attempts to pre-
dict which puge is least likely to be used in the fu-
ture, so that it will not soon need to be moved
back inte the physical memory.

Memory Management includes hardware 1o permit
choosing the page to be replaced and 1o detcrmine
whether that page must be written onto the mass
storage device, Euch external data transfer per-
formed by the processor requires that Memory
Manuagement convert a virtual address into a phys-
ical address and keep track of which virtual pages
have been uccessed and which virtual pages have
been written into. The executive program operates
on the assumption that pages which have been re-
cently accessed will also be used soon. To find a
page which can be replaced, the executive program
looks for a puge which hus not been used, prefera-
bly from the address space of a user other than the
current user. If there ure no virtual pages currently
in the physical memory that have not been ac-
cessed, the exceutive program looks for a page that
has not been written into, to avoid having to copy
a puge Lo the mass storage device. IT all the virtual
puges in the physical memory belong to the current
user, Lhe exccutive program looks for a page that
has nuol been used recently. aguin preferably one
that has notl been written into. By use of the hard-
wire Memory Management unit and of a variety of
scheduling and allocation algorithms in the execu-
tive program, the system can provide 4 number of

[-2-7

user programs with virtual machines of great power
und flexibility, with a minimum burden on the user
program.

Communication

A program running in a virtual machine must be
able to communicate with the executive program,
to request various services performed by the execu-
tive program, or to determine the status of the sys-
tem. The same type of communication can be used
for communication between virlual machines, by
providing inter-machine communication as a service
through the executive program. The same hardware
functions that provide a means for the user pro-
gram (o cemmunicate to the executive program are
also used by the executive program to determine
the status of the user program when a trap or abort
condition occurs.

The user program requests services by executing
trap instructions (such as EMT, TRAP, or 10OT).
Abnormal conditions caused by a program failure,
such as an odd address for a word data transfer, or
an atlempt to exccute 4 reserved instruction, cause
inernal processor traps. In either cuse, the trap
function performed by the processor serves to no-
tify the exccutive program that an instruction is
required.

Context Switching

The exceutive program must then begin executing
instructions to perform the requested service or to
correct the failure condition, if possible. However,
in order for the hardwuare machine to operate on
any program other than the user program, the map-
ping information must be changed to reflect the al-
locations used by the new program,

The trapping function performs the change of most
of the mapping information. The contents of the
Program Counter (PC) and the Processor Status
(PS) registers are changed directly; the old contents
arg stored on o stack in memory, pointed to by a
stack pointer, and the new contents are supplied
from locations culled a trap vector. The address of
the trap veclor is provided by the processor and de-
pends on the type of trap instruction or trap condi-
tion, so that for each trap instruction or condition,
a different PC and P8 cun be supplied.

Memory Management stores the maps (or the exec-
utive program and one user program in separate
regisiers. The processor indicates which map should
be used 1o relocate virtual addresses, During the ex-
ecution ol instructions (as opposed to the interrupt
and trap service function), the address space map
to use is specified by bits S and 14 of the PS.
These bits also specify which Stack Pointer (SP) reg-
ister in the processar 1o use (there is a separate SP
for each virtual machine), Because the trap and in-
terrupt service lunction loads the PS register with a
new value, this function changes almost the entire
virtual muchine context directly.

The only renaining parts of the virtual machine
context that require changes ure the general regis-
ters in the processor. These cun be changed either
by saving the contents of the registers from the pre-
vious virtual machine on the hardware stack and
loading new contents, or by selecting the alternate
set ol generul registers (the processor has two sets
of general registers, 0 — 5). Register set selection is
controlled by bit 11 of the PS register, so this
method can be used in conjunction with the trap
service function,

To summarize the change of virtual machines: the
mapping in the hardware system includes the selec-
tien of a register set, a stack pointer, a program ad-
dress (in the program counter), an address space,
and a processor status, The trap and interrupt ser-
vice lunction, which is performed by the processor
as an aulemiltic response to trap an instruction or
abnormal condilion, can change all of these selec-
tons as Tollows:

I. The program counter and processor
stilus arc changed directly.

2. Bits 15 and 14 of the new PS select the
new address space and stack pointer,
3. Bit I1 of the new PS selects the new rcg-

ister set.

The mapping and selection information for the pre-
vious virtual maching is completely saved, either by
remaining in unselected portions of the processor
and the Memory Management unit, or by being
stored on the hardware stack. If the selected regis-
ter set is shared with other virtual machines, the reg-
ister conlents must be changed by an instruction
seguence.

1-2-8

Inter-Program Data Transfers

When the new virtual machine begins executing a
service program for the programmed request (if a
trap instruction was executed) or abnormal condi-
tion (if u trap condition accurred), the service pro-
gram must get information from the previous
virtua! machine. This information may define the
status of the previous virtual machine, after an ab-
normal condition occurred, so that the service pro-
gram can correct the condition and restore the
correct status before returning control to the pre-
vicus virtual machine. If the service program is per-
forming a service, the information required from
the culling program may define the specific type of
scrvice Lo perform, or provide the addresses of data
buffers, or specify device and file names,

Most information required by the service program
is stored in the calling program’s address space. To
get this information, and to return information to
the calling program, the service program must be
able to operate in the present address space and
transfer data in the previous address space, at the
same time. The KB11-C Processor provides instrug-
Lions Lo do this.

The special instructions that transfer data between
virtual address space make use of the PS register to
specily which address space is being used by the cur-
rent virtuul machine, and which address space was
used by the previous machine {this is identified by
bits 13 antd 12 of the PS). The data is transferred be-
tween the hardware stack of the current address
space and arbitrary addresses of the previous ad-
dress space. The calculations of the virtual address
in the previous address space; i.e., any index con-
stants or absolute addresses used to generate the vir-
twil address, arc taken from the current address
space, just as the instructions are.

Each virtual address space is divided into an In-
struction (1) space and a Data (D) space. Each I or
D space has a full set of 2'6 virtual addresses. There-
fore, the communication instructions are available
in two versions; ene to transfer with the previous |
spuce. and one to transfer with the previous D
spuce. A different instruction is needed for each
transler direclion as well, so there are four commu-
nication instructions; Move To Previous Instruction
(MTPD space, Move To Previous Data (MTPD)
spuce, Move From Previous Instruction (MFPI)
space, and Move From Previous Data (MFPD)
space.

Returning to the Previous Context

Because all the mapping and context information
for the previous virtual machine is saved when the
trap and interrupt service function sets up a new vir-
tual machine, the hardwarc system can resume the
execution of any program at the same point that it
was interrupted. This is done with a Return from
Interrupt (RTIY or Return from Trap (RTT) instruc-
tion, which replaces the PC and PS values of the
current virtual machine with the stored values from
the previous virtual machine.

The PS selects most of the mapping information, as
described previously, so the return instructions com-
pletely restore the previous context,

Protection

The hardware system zand the executive program
must be protected from failures in each virtual ma-
chine. In addition, most systems provide protection
so that no program operating in a virtual machine
can tuke control of the system or affect the oper-
ation of the system without authorization, A third
form of protection that is useful in a large and com-
plex system is the protection of the execulive pro-
gram against itself. The exccutive program is
divided into a basic, carefully written Kernel, which
is allowed to perform any eperation, and a broader
Supervisor, which cannot perform privileged oper-
ations, bul which provides various services uscful 1o
the execulive program and to the user programs.

The forms of protection provided include the differ-
ent address spaces for different types of programs,
a varicty of restricted access modes, and restricted
processor operations. The address space protection
can be used with any (ype of program, whether op-
erating in User, Kernel, or Supervisor mode. The re-
stricled processor operations are uvsahle only in
Kernel mode: Superviser mode has the same restric-
tions as User mode.

Separate Address Spaces

The most basic protection against modification of
the exccutive program by a User program {or of
the Kernel section by the Supervisor section) is the
separation of the address spuces. A program oper-
aling in User mode operates in the User address
space. 1t cannot access any physical uddresses that

arc nol in that address space, regardless of their cor-
respondence 1o addresses in any other virtuul ad-
dress space. The executive (Kernel) program can
prevent a User program from accessing other vir-
tual address spaces through the communication in-
structions (MTPI, MTPD, MFPI, MFPD) by
forcing bits 13 and 12 of the stored processor stalus
word to 1s (to reflect User mode) before executing
an RTI or RTT instruction to return control to the
user program. This forces the previous maode bits in
the PS register to take on User mode, just as the
current mode bits are set to User mode, and the
communication instructions operate only within the
User address space |

Access Modes

Within one address space, it is ofien useful to be
able to protect certain parts of a program from un-
intentional modification. This can be done by allow-
ing the data in those addresses to be read, but
prohibiting transfers into the addresses. This is
known us read-only (or write-protected) access.
Areas in a virtual address space that contain alter-
able data must permit read/write access. but areas
that contain unmodified instructions may be read-
only,

Another useful form of uccess protection dis-
tinguishes between read accesses that fetch instruc-
tions (or address constants) and any accesses that
transfer data, If instructions can be accessed by the
processor only as instructions, they can be executed
but they cannot be read or transferred to uny other
part ol the address space. This prevents the user
from determining what the instructions are in order
to tamper with the instruction sequence or atiempt
to modify the program in undesirable ways. This
tvpe of aceess restriction s called execute-only
UCCESS.

Memory Munagement provides a read/write, read-
only, and execute-only access modes system. The ac-
cess mode is stored in the mapping registers along
with the relocation information: in fact, when a
page of the virtwal address space is not in memory,
a special access code that idenlifies the page as
nan-resident is used. The execute-only access mode
is not u separale access mode, but is provided by
separating the address spuce into two address

1-2-9

spaces that are used for the different kinds of trans-
fers. One address space is used for all transfers that
ferch instructions and is called the Instruction (1)
spuce, while a second address space is used for all
data trunsfers and is called the Data (D) space. If
the two address spaces are mapped separately, at-
templs o use the same address for an instruction
and for data may address different physical loca-
tiens, IT no addresses in the D space correspond to
the physical addresses used in the [space, the in-
structions cunnotl be accessed as data and an exe-
cute-only access mode has been achieved. This
mode must be used with cantion: tables that arc ac-
cessed by indexed address modes must be in D
spuace and MARK instructions, which are siored an
he hardware stack as data and then executed, and
require the stuck 10 be in the same virtual addresses
in I and D space.

Privileged Instructions

Certain PDP-11 instructions that affect the oper-
ation of the hardware machine must be prohibited
in the virtual machine. These include the HALT in-
struction, which stops the physical machine and
thus prevents any virtual machine from operation,
the RESET instruction, which stops all in-
put/outpul devices, regardless of which virtual ma-
chine they are allocated to, and various PS change
instructions, These instructions are allowed only in
Kernel mode so that the executive program can con-
trol the entire hardware system; they are ineffective
in the Supervisor or User mode. The RESET and
Set Priority Level (SPL) instructions are allowed to
execute in these modes, but have no effect; the
HALT instruction activates a trap function so that
the exceulive program may stop all aciion for the
virtual machine that executed the HALT, but not
for other virtual machings,

2.4 REENTRANT AND RECURSIVE
PROGRAMMING

A program cun generally he divided inte routines,
cach of which performs a function that is built up
from a sequence of instructions, Often, the function
perlormed by a routine is needed in several other
routines, so 1t is desirable to be able 1o call the rou-

tine from many other routines in the program; i.e.,

the program should be able to transfer the pro-
cessor Lo the instructions following the calling in-
struction. A routine which is called from other
routings is said Lo be subordinate to those routines
and is called a subrouting; the special instructions
that transfer the processor to the beginning of a
subroutine and that return the processor to the call-
ing routine are called subroutine linkage
instructions.

Recursive Functions

Some procedures are most easily implemented us a
subroutine that either performs a part of the pro-
cedure and then culls itself to perform the rest of
the procedure, or completes a computation and re-
turns a partial (and linally, a compiete) result, This
is called recursive operation. The common example
ol a recursive procedure is one that calculates the
factorial of & number (the factorial is the product
resulting from the multiplication of a number, n, by
all smaller numbers). The recursive procedure 1o cal-
culate u factorial of a positive integer is as follows:

l, ifnis ! or@, return 1 as the value of fac-
torial n.,

2. I nis greater than |, compute the facto-
riwd of n minus 1, multiply that number
times n, and return that value.

lor example, to compute the value of factorial 3,
the procedure is to compute the value of factorial 2
and multiply by 3. However, the value of factorial
2 is the value of fuactorial 1 times 2, The value of
fuctorial | is Tound by Step 1. to be I, so the final
result is | times 2, multiplied by 3, or 6. The same
recursion computes the factorial of uny positive in-
teger. in n recursions for a number n.

Use of a Stack in Recursive Routines

When a subroutine is called recursively, the linkage
information for each call (the information required
Lo retarn Lo the calling program) must he saved dur-
ing subsequent calls, Since a recursive subroutine
can be called again before it returns from the first
call. the linkage information should not be stored
in a lixed location: instead, it is stored in a stack,
with cach linkuge in a different location and a
pointer that identifies the specific location for each
linkage.

1-2-10

Assume that subroutine A calls subroutine B,
which then calls subroutine C. Subroutine C must
return control 1o subroutine B before subroutine B
can return centrol to subroutine A. [t can be seen
thut in this case the last linkage which has not been
used for a return must be the first one used; ie,
the linkages must be used in 2 last-in, first-out se-
quence. A storage urca whose locations are used for
List-in, first-out storage is called a stack; a pointer
is used to point to the last catry placed on the
stack, and the subroutine linkage instructions that
put information on the stack {a push operation), or
remove information from the stack (a pop oper-
ation), change the contents of the pointer so that it
always points to the correct word for the next link-
age vperation.

One ol the KB11-C processor’s general registers is
used by the subroutine linkuge instructions as a
stack pointer, This register is the Kernel Stack
Pointer {SP) and it must be initialized to point to
the first word in a stack area. This same stack is
also used Tor storage of context or linkage informa-
tion hy the trap and interrupt service function,
which is deseribed in Section I, Chapter 6. The
traps, interrupts, and subroutine calls are all han-
dled in the same last-in, first-out manner,

A subrouline that can be called recursively should
not move data into lixed locations, because later ex-
centions of the same subroutine (before the current
execution is linished) may also execute the same
duta transler instructions, The best way 1o keep the
data storage lfor each execution of 4 subrouting sep-
arate is Lo store the data on the stack in the same
manner as the linkage information.

Reentrant Functions

Keeping the data steruge separate from the pro-
gram is particularly important for programs and
subrautines that can be culled from more than one
virtual machine, I several virtual machines are exec-
uting the same program, it can be called from more
than one virtwal machine. [T several virtual ma-
chines are executing the sume program, it is desir-
ible to have anly one copy of the program in the

physical memory, and to map each virtual address
space into the same physical address space. How-
ever, in o muliprogramming system, one virtual ma-
chine may begin execution of a program and then
be interrupted: a second virtual machine may begin
execution of the same virtual program and then run
out of time: the original virtval machine may re-
sume execution and complete the program; and the
seeond virtual machine may resume executions, The
programmer cannol make any assumptions about
where cuach virtual machine may resume execution,
nor can he make any assumptions about where
cach virtual machine stops, so the program must be
capable of being reentered at any time, regardless
ot what other virtual machines have done with the
program.

Programs designed to store all their data on a
stuck, so that cach virtwal machine that uses the
program simply uses a different stack, are called re-
entrant programs. A different stack pointer is se-
lected cach tme a different virtual muchine is
selected. If the executive progrum changes the con-
text ol the user virtual machine, to run a different
user, il ¢hanges the address mapping of the stack
area and the contents of the stack pointer, so that
cach actlivation of o program executes the program
in complete isolation from other activations hy
other virtual machines,

[ndexed Addressing of Parameters

When o program or routine calls a subroutine, the
cialling routine may send data to the subroutine.
The amount of the data to be “*passed™ to the sub-
rouline may vary, as may the amount of data re-
turned by the subroutine. By placing all the data on
the stack, the amount of data becomes unimpor-
tani. The subroutine may read different data items
on the stack by using the indexed addressing modes
with the stack pointer as the buse register. Complex
subroutines may require that the last word placed
on the stack (the word with the lowest virtual ad-
dress, because the stack expands toward low ad-
dresses) contain the number of parameters passed
so Lthat the program does not use other data also
on the stack but not intended as parameters.

[-2-11

Separate Stack and Index Painters

Using the stack pointer as the base address for in-
dexed addressing presents problems if the sub-
routine must, in turn, pass data to another
subroutine. Fuch time the first subroutine calculates
a parameter for the second subroutine, it pusheg
the purameter onto the stack. The address in the
stack pointer changes te reflect the new data on the
stuck. As a result, all instructions in the first sub-
rouline which contain index constants are invalid,
because the base value that the index constants are
suppoesed 1o modify has changed. Tt would he very
difficult, il not impossible, 10 write a subrouline
that could use different index constants as the stack
poinier changes (because Lo remain reentrant, the
program cunnol change any part of the instruction
code). A much simpler solution is to separate the
hase register from the stack pointer by copying the
stack pointer value into another generaf register be-
fore using the stack for any other data, This is stifl
reentrant because any change of virtual machine
also changes the contents of (or the selection of) all
reneral registers.

The register commonly used as a separate index
pointer is register 5. The standard method of call-
ing subroutines in recntrant programs uses register
5 us the index pointer, register 6 as the stack
puinter, and a word on the stack (at the address
contatned in the index pointer) that indicates the
number of parameters on the stack. In addition to
providing a straightforward and completely reen-
trant structure, this method is completety com-
patible with 2 similar form of non-reentrant
subroutine cull. The same subroutine can be called
both by reentrant programs and by simpler pro-
grams that are non-reentrant.

Subroutine Call Compatibility

In a non-reentrunt program, the parameters passed
ta a subrouline are placed in-ling; i.e., they are in
the addresses immedialely Tollowing the address of
the calling instruction, The subroutine call and re-
turn instructions use a register 1o store the program
counter value for the calling program; the value in
the program counter at the time the subroutine call
(jump (o subroutine or JSR) instruction is execuled
is the address of the word following the ISR instruc-
tion. The standard register specified in the JSR in-
structions is register 5 register 5 can he used as an

index pointer while the stack is used for data stor-
age during the execution of the subroutine. The
JSR instruction does not destroy the previous con-
tents of register 5 when it stores the return address
in that register: the previous contents are pushed on
the stack, und are automatically restored by a Re-
turn rom Subroutine (RTS) instruction.

When the RTS instruction restores the Program
Counter (PC) value stored by the JSR instruction,
the calling pregram must have some means of by-
passing the stored data to get to the next instruc-
tion. The word immediately following the calling
instruction must contain the number of words occu-
picd by the parumeters. Both of these requirements
cin be (ulfilled by placing a branch instruction in
the return locution; the branch instruction advances
the PC so that the Nirst word after the line parame-
ters, and the offset in the eight least-significant bits
of the branch instruction, contain the number of
words used for the parameters (the offset is multi-
plicd by 2, belore use, to generate u byte uddress).

The calling sequence and in-line parameter struc-
ture used by non-reentrant routines permits the sub-
rautine Lo return control 1o the calling rouline with
an RTS R5 instruction. For compalibility, the reen-
trant subroutine call must also permit the same
RTS RS instruction o perform the return. How-
ever, when o subrouting has been called in a reen-
trant nmuanner, RS points o a localion on the
hardware stuck. not (o the calling program. In addi-
tion. the spuce in the stack area used by the sub-
routing call must be released (the stack pointer
must he adjusted to point to the first location after
the parameter area) so that any additional informa-
tion on the stack (such us 4 return linkage to a rou-
tine that called the routing that catled the current
subroutine) is accessible. Thus, the word pointed Lo
by RS should contain an instruction, whose least-
significant bits are the number of parameters
passed te the subroutine, which can adjust the
stack pointer and also complete the subroutine re-
lrn seyuence.

The MARK instruction performs this function in
the PDP-11/70. A detailed deseription of the use of
this instruction is contained in the PRP-11/70 Pro-
cessor Handhook,

I1.2-12

SECTION II

PROCESSOR

Unless otherwise indicated, references within this sec-
tion pertain to this section only,

SECTIONII PROCESSOR
CONTENTS

INTRODUCTION

CHAFTER 1 INSTRUCTION DECODE AND MICROPROGRAM CONTROL

1.1 MICROPROGRAM ROM AND BUFFER REGISTER
1.2 FLOWDIAGRAMS e e e e et e e e e e
1.2.1 ROMTIMInG . . - . . . e e e e e e e e
1.2.2 GloSSary o e e e e e e e e e
1.23 Instruction Classes e
124 Addressing Modes and Operand Fetch
1.24.1 General Register Addressing
12472 Program Counter Addressing
1.24.3 AandCForks: OperandFetch
125 Flowchart Deseription o,
1251 FLOWS 1 e
1.25.2 FLOWS 2 . e e e e
1.2.5.3 FLOWS 3 . . e
1254 FLOWS 4 e e e
1.2.5.5 FLOWS S . .. e e e e e e
1256 FLOWS 6 e e e e e
12.5.7 FLOWS 7 . . o e e
1.258 FLOWS & . . . e
1.259 FLOWS9and 10 i i i it e
1.2.5.10 FLOWS 11 . . o e e e e e e e e e e e
1.2.5.11 FLOWS [2and 13 e i,
1.2.5.12 FLOWS 14 e e e e e
1.26 Following an Instruction Through the Flowcharts
1.2.6.1 Figuresand Tables . _ e
1262 AnlpstructionExample o 0oL
13 ROMMAP e e
14 ROM ADDRESS e e,
14.1 ROM Address Register (RAR) it
142 ROM Address Selection i i i e
143 Branchesand Forks o o e
144 Branch Logic e e
1.4.5 Instruction Registers oo i e e
14.6 AFotkLogic e
14.6.1 DecodeLogic
14.6.2 Address Bit Generation L. o .
1.4.6.3 Instructions Other ThanBranch
1464 BranchInstructions
1.4.7 CFotkLogic i i ettt ittt e
148 BForkLogic e e
1.5 CONDITION CODES i it i e e e e e s e e e e e e
1.5.1 Condition Code Storage 0 v i i it e
152 Condition Code Load Field,
1.5.3 Instruction Dependent Control
154 SUBROM Address Generation,

1Lt

Page

11-1-7
11-1-10
II.1-12
11-1-13
11-1-14
1I-1-15
1I-1-15
1I-1-15
II-1-18
I-1-1%
I-1-20
H-1-21

I1-1-22
1i-1-23
I1-1-25
1I-1-29
II-1-30
11-1-31
II-1-31
II-1-31
11-1-35
II-1-37
11-1-37
11-1-38

11-142
11-1-47
II-1-50
I1-1-51
II-1-53
I1-1.53
1I-1-54
II-1-54
I1-1-54

1.5.5
1.56
1.5.7
1.5.8

CHAPTER 2

21
211
2111
2112
2.1.2
2.1.2.1
2.1.2.2
213
214
2.1.5
2.1.6
2.1.7
2.1.8
219
2191
2.19.2
2.19.3
2194
22
221
222
2.2.21
2222
2223
2224
223
224
2.3
231
232
233
234

CHAPTER 3

3.1
32
33
34
35
36
3.7

SECTION 11 PROCESSOR

CONTENTS (Cont)
Page
CBitData o e e e e e e e 1I-1-55
NBitData . . . v ot ot o e e e e e e e e e e e e e e e e s 1I-1-55
ZBitData s e 11-1.58
VBItData . . o vt o e e e e e e e e e e e e e e e 11-1-60
DATA PATHS

DATA MANIPULATION o e e e e e e e e e e oo e s e e s 1-2-3
Arithmetic and Logic Unit (ALU) - . v 11.2-3
Descripionof ALUo v s II.2-3
ALUCONIOl . v . v v e ot e e e e e e e e e e e e e e e e e 11-2-4
Shifter (SHFR) o i e e e e i e e e 11-2-6
Description of SHFR oo i 11-2-6
Shifter Control v v v e e e e e e e e 1i-2-7
Program Counter (PCAandPCB) v i 11.2-7
General Registers v v v v v i i v it e e e s I1-2-7
Source and Destination Multiplexcrs (SRMX and DRMX) 1[-2-10
Source Register (SR) e 11-2-11
Destination Register (DR}« oo o it If-2-11
Shift Counter{SC) e e [1-2-12
ALUInputs . . o oo o e e e e e 11.2-13
A Muttiplexer (AMX} 11.2-13
BMultiplexer (BMX) [1-2-13
Constant Multiplexer O(KOMX) oo 1I-2-14
Constant Multiplexer 1I(KIMX) 11-2-14
INPUTS TOPROCESSOR DATAPATHS oo 11-2-15
Bus Register Multiplexer (BRMX) 11-2.15
Internal Data Bus (INTD} o o o ot i e s e 11-2-16
SSRI Multiplexero e 11-2-18
SCCHBus Qutput . . . o o o v it it i e et e e v e [1-2-18
SCCM Multiplexero e 11.2-18
SCCN Multiplexer v v v i e e e I1-2-18
Bus Register (BRandBRA) o 11-2-18
Insiruction Registers (IRand AFIR) 11-2-18
PROCESSOR DATAPATHSOQUTPUTS oot 11-2-19
Bus Address Multiplexer (BAMX} 11.2-19
Unibus Data Multiplexer (DMX) oo 11-2-19
BusRegister A(BRA) 11.2-20
Display Multiplexer L e 11-2-20

PROCESSOR CONTROL REGISTERS
SWITCH REGISTER (SWR) AND LIGHT REGISTER(LR) I1-3-1
LOWER SIZE REGISTER s i i i it et e e e e e e e e If-3-1
UPPER SIZE REGISTER. o e e et e e e e e e e e e e e I1-3.1
SYSTEMID REGISTER i e e e e e e i e e as 1(-3-1
CPUERROR REGISTER« o i e i i e i it e e e e et et e e e e e e e e s 11-3-2
MICROPROGRAM BREAK REGISTER(PB} 11.3-2
PROGRAM INTERRUPT REQUEST REGISTER(PIRQ) 11-3-2

Il-iv

338
39
39.1
39.2
393
394
395
39.6
397
39.8
399
3.9.10

CHAPTER 4

4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
422
4.23
4.24
4.3
4.3.1
4.3.2
433
44

4.5
4.6
4.6.1
4.6.2
4.7

438
48.1
48.1.1
48.1.2
4.3.2
4821
4.8.22
483
483.1
483.2
4.9
4.9.1
4.9.2
49.3

SECTIONII PROCESSOR

CONTENTS (Cont)

Page
STACK LIMIT REGISTER(SL) i it i iii e PR 1I-3-3
PROCESSOR STATUSWORD(PS,PSW) o i i I1-3-3
Readingthe PS e 1I-3-5
Leadingthe PS e 11-3-5
Processor Mode Bits [PS(15:12)] & v v v v o e e e e e e e 135
Current Processor Mode [PS(15:14)] oo I11-3-6
Previous Processor Mode [PS(13:12)], 11-3-6
PS(15:12) Implicit Write o o i i e e e e e 11-3-6
General Register Set Bit (PS11} i 11-3-7
Priority [PS(07:05)] e e e 11-3-7
Trace Bit (TBit, PS04} e e 11-3-8
ConditionCodes i i e e e 11-3-8

TIMING GENERATOR
CLOCK SOURCES e e e e e e e et e e e e I14-1
Crystal Clock e e e e e e e e 4-2
RICClock . o o e e e e e e e e e e e 1142
MAINTSTPRSwitch i e 1142
SOURCE SYNCHRONIZER e e e et e e o 114-2
Crystal Clock Selection Lo o e e e 11-4-2
RCClock Selection i i i e e e e e e e e 1n4-2
MAINT STPR Selection o 0t i e e e e e e e 1i4-2
Synchronization _ L L L e 114-3
PHASE SPLITTER/BUFFER et e e, e e e 114-3
Level Converter i i i i e e e e e e e e [1-4-3
Phase Splitter e 1-4-4
Buffers e e e e e e e e e e i1-4-4
TIGCTPBANDTE e e e e e e 1144
RING COUNTER e e e e e e e e e e e e e 4.4
TIMING PULSES, T1-T5 o i e e e e e e e e e e 114-5
TS H . . e e e e e e e e e e e e e II-4-6
1 114-7
TIME STATES(TIGE TSI L-TSSL) e, [-4-9
PAUSECYCLES ANDCLOCKBR 11-4-9
Synchronous Pauses i i e e e e e e e e e e 114-9
Internal Bus{INT D) Pause (T2), 11-4-9
Cache Pause (5) & . . v i v i i i e e e e e e e e e e [14-9
AsynchronousPauses L L L L L L L e e e e e e 11-4-9
Unibus Pause (T2) 0 o i o e e e e e s e e e e e e e 1149
INTRPause (T2}« o o o v v oo e e e e e e e e e e e e e 11-4-11
CLKBR,BRA e e e e 114-11
NonCacheCycleso oo o e e I4-11
Cache Cycles e I14-12
MAINTENANCE STOPS e e e e et e 114-12
Single Cycle Mode . . L . L L o e e 11-4-12
ROM+UPB e e e e e e e e 1I4-13
TIGBCONTL e e e e 114-13

II-v

CHAPTER 5

51
5.1.1
5.1.2
513
514
52

53
53.1
532
5.3.21
5.3.22
5323

CHAPTER 6

6.1
6.1.1
6.1.2
6.1.3
6.1.3.1
6.1.3.2
6.1.3.3
6.1.34
6.1.3.5
6.1.3.6
6.1.3.7
6.1.3.8
6.1.3.9
6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.1.3
6.2.14
6.2.1.5
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.3
6.2.3.1
6.2.3.2
6.3
6.3.1
6.3.2
6.3.3

SECTIONII PROCESSOR

CONTENTS (Cont)
Page
DATA TRANSFERS

PROCESSORDATATRANSFERS, I1.5-1
Types of Data Transfers 0 0 i i vt e II-5-3
Typesof BUST Cyeles« oo i o e 11-5-4
Typesof Pause Cycles 0 . o i i e e I1-5-4
BEND Cycle i . it e et e b s e e e e If.5-5
UNIBUS INTERFACE o i e e e e e e e e e e s [1-5-§
UNIBUS DATAINTERFACE I1-5.5
Unibus Data Transfer Protocol o o 0 o 00 0 o e e I1-5-5
Upibus DataInterface it it e I1.5-6
Unibus Device References o o oo i il I1-5-6
Unibus Timeout o o o e e e e I1.5-8
Control Register Refecence59

ABORTS, TRAPS AND INTERRUFPTS
SERVICEFLOWS ANDVECTORS o i [1-6-1
=T [1-5-1
CPUErrer Register o o v i i e e e e e e e e e e e I1-6-2
Service Flows 0 o o e e 11-6-2
Entry intothe Service Flows o, I1-6-2
BRK.9CGand ZAPDO e 116-2
BRKOOandBRK.ID i e 11-6-2
Branch Enable 13, e e e 11-6-2
Red Stack Error (SER.00and SER.10), 11-6-3
BRK.BGand BRK.20 i e e 11-6-3
BR.30 . e e e e e e [1-6-3
Entry inte SVCO0 II-6.-3
SVCO0—8VI0 e e e I1-6-3
ABORTS . e e e I1-6-3
Address Erroms . . . o o . i i e e e e e e e e e e e 11-6-3
Odd AddressError I1-6-3
Non-Existent Memory Error L . o o o oo I1-6-5
Memory Management Aborts o o oo o 11-6-5
Timeout Brror e e e e e e e e [1-6-6
Timing of Address Error Aborts v v v v v o I1-6-6
Stack Errors L L e e e e e 11-6-7
Kemel RE . . . o . . o o o e e e [1.6-7
Stack Limit Errors e e e e e e s II-6-8
Timing of Stack Error Aborts I1-6-10
Parity Errors . . . o o 0 o e e e e e e e e PR 11-6-10
Description i e e e e e e s 11-6-10
Timing of Parity Error Aborts 0L 11-6-11
TRAPS ANDINTERRUPTS e 11-6-12
Megal Halt o o e e e e e 1I-6-12
Console Flag e 11-6-12
CacheParity Trap o e II-6-12

[-vi

6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.4
6.4.1
64.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3
6.53.1
6.5.3.2
6.5.3.3

Figure No.

1-1
1.2
1-3
14
1.5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
2-1
22
2-3
24
2-5
2-6
2-7

SECTION I PROCESSOR

CONTENTS (Cont)
Page
Memory Management Traps v . v v v i i o e e e e e e II-6-12
Yellow Zone Trap(SLYEL) i 11-6-12
Power Down Trap(PDNF) i e 11-6-12
FPException Trap o o i i i i i e e et e e bt s st 11-6-12
Program Interrupt Request 116-14
External Interrupt (BUSBR) 11-6-14
TBitTrap o e e e i1-6-14
UNIBUS ARBITRATION AND INTERRUPT INTERFACE 1I-6-14
Unibus Arbitration Interface Logic« oo 1I-6-17
NPR-NPG Sequence v i v it it e it e e e e e e e e e as I[-6-17
BR-BG Interrupt Sequence and Passive Release II-6-18
UNIBUS POWERMONITOR e e e e e e e e e e e s 1-6-19
Power-Down e II-6-20
Power-Up e e e e e e e e 1-5-21
PDP-11/70 System Power Contral . . . i . . . i v i i v i i e e e 11-6-21
ACLOConnections it ittt e e i-6-21
DCLO Connections v i it i it e s e e et e e e 11-6-21
PowerDown i e e e e e e 1I-6-22

ILLUSTRATIONS
Title Page
Block Diagram o v i e e e e e e e e e e e e e e e e I1-1.2
ROM Word: Clock, [Csand Registerst iiii . 11-1-5
Flow Chart Symbols (PO Flows 2) v v v it e e et e e et e e e e I1-1-8
ROMTIMING . . . oo o it e I1.1.9
Source and Destination Mode Formats 1-1-12
Aand CForks, General Case v 0t v i r e e e e e e e e e e e e e I-t-16
Multiply Instruction o e e e e e e II-1-23
Divide Algorithm L e Ii-1-26
Divide Instructions o i L e e e e e e e e e e e 1-1-27
Determination of an Instruction from the Binary Code 11-1-34
Instruction Execution Cxample II-1-35
ROMAddress oo it i i it i e e e e e e e e e 11-1-38
Sources of C Bit Data, Simplified Diagram I1-1-36
Sources of N Bit Data, Simplified Diagram e e e II-1-36
Sources of Z Bit Data, Simplified Diagram, 1f-1-59
VENI Sources of V Data Bit, Simplified Diagram 1I-1-61
VEN?2 Sources of V Data Bit, Simplified Diagram, 11-1-62
Block Diagram DataPaths e 11.2-2
Typical SHFRBit e e II-2-6
General Register Storage In GS and GD Storage Elements 1-2-8
Processor Status Word L . L L L e e e e e IE-2-8
SCLoaded With 00101 e e e e e e e 1I-2-12
SCLloaded With 1735 L . . . 0 i i s e e e e s e e e e e 11-2-13
BRMX Selection, Simplified Schematic e 1-2-16

2.8
3.1
3.2
33
34
3.5
4-1
4.2
43
44
4.5
46
4.7
4-8
49
5.1
52
6-1
62
6-3
64
6-5
66
6-7
68
69
6-10
6-11
612

Table No.

1-1
1-2
1-3A
1-3B
1-3C
1-3D
1-3E
1-4
1-5A
1-5B
1-5¢C
1-6

SECTION 11 PROCESSOR

ILLUSTRATIONS (Cont)

Page

Internal Data Bus Block Diagram v i v it e m.2-17
CPUErmor Register i i i it e i e et i e e e e I1-3-2
Program Interrupt Register L L o oo e I1-3-3
Stack Limit Register o o o i o e e e e e e e e 11-3-3
Processor Status Word e e e e e 11.3-3
PSW Clock and Direct Set Simplified Schematic I1-3-7
Timing Generator Block Diagram o o e 11-4-1
Timing Source Synchronization e e 114-3
Timing Pulse Generation v v v v i i e e e e e e 114-5
Simplified Schematics of TIGDTSHt i it 114-6
Simplified Schematics of TIGDTSL oo 0 i i i e e e s 114-7
Time States e e e e e e e e e e e e e e e e e e e 1149
Timing Generatorand Pauses o e 114-9
Clock BR Circuit (Part of D-CS-M8139-0-1,8heet3), I14-11
ClockBRTImiNg v o v i et e e e e et e s e e e e s e s n4.12
ProcessorData Transfers o 0 i it e e e e e 1I-5-2
Unibus Pata Transfers oo i e e e e e -5
Address Error Aborts L o 0 e e e e e s [1-6-6
Examplesof Stack Limit oo 1169
Stack Error Aborts L L L e e e e e e e e 1I-6-10
Parity AbOrt o e e e e e e e e e e e e [1-6-11
Program Interrupt Request Register 11-6-14
BR —Interrupt Sequence -« . . i et e e e e I1-6-16
UBCD Free Clock o o i e e e e e e e s -6-17
NPR-NBGSequence i i v v it v vt v e o it s e st e et e 11-6-18
INTR Sequence 0 i it i i et e e e e e e I1-6-19
Power-Down L e e e e e e e e e e e e e e 1I-6-20
Power-Up . . . e e e e e e 11621
PDP-11/70 ACLO and DCLO Connections v . v v v v v v v v v s aaa v v s 11-6-22

TABLES

Title Page

Microprogram Bit Usage 0 o 0 it e e e e e 1I-1-6
Sign Correction for MUL Instruction v i II-1-24
Instruction Micropregram Properties, 11-1-32
AFork, BIN*SMO e e e e e e e e I1.1-33
AFork, DAC e e e e e e 1-1-33
CFord, BIN i e e e e e e e e e e e e e e e e e e e 1I-1-33
Branches (All Cycleson Flows 1) i i i i e s 1i-1-33
Branch Signal SOUrces b e e e e e e e e e e e e e e e e 11-1-41
A Fork Address Generation o o L e e e e e e e e e e e 11-1-44
AFork, BIN®*SMO e 11-1-45
AForK, DAC . . L e e e e e e e e e e e e e e e e e I1-1-45
Branch Instruchons o . . L i i e e e e e e e e e e 11-1-48

11-viii

-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
241
2-2
2-3
2-4
2-5
2-6
2-7
2.8
29
3-1
4-1
6-1
62
6-3
6-4

SECTION II PROCESSOR

TABLES (Cont)

Page
Branch Instruction ROM Address o oo o e 11-1-49
C Fork Address Generation v v v v v v v b e e II-1-51
B Fork Address Generation - ¢ . o v o i b i e e e e e e 11-1-52
Condition Code Load« « i i e e e e e e e e I-1-54
Subsidiary ROM Address Sources o o v v e e 11-1-55
CBitDataSOUICES « v v v v o ot e e e e e e e e e e e e 11-1-57
NBitDataSOUICES + .« « v v v v v v e e e e e e m e e e e e e e e 11-1-58
ZBItDataSOUICES . .« v v v e e e e e e e e e e e e e e e e e e 11-1-59
VBt Data SOUICES . . o« v ot et e e e e e e e e e e e e II-1-60
Non-Instruction-Dependent ALU Control Signals, 11-2.5
Multiplexer Input Selection GSAMand GDAM 11-2-9
Multiplexer Input Values« o II-2-9
Multiplexer Input Selection GSREG and GDREGSET L 11-2-10
ALU Input Multiplexers o0 0 11-2-13
BMX Qutput Selection v o 0o e II-2-14
BMX Output FromKIMX e 11-2-15
Data OQutput to Unibus v 0 v v oy e o o e 11.2-20
Display Register Selection o .. o oo 1-2-20
Processor Status Word Bit Assignments Lo oo 11-3-4
Ring Counter Stop and Pause Conditions o, 11-4-10
Service Flows i e e e e e e e e 1I-6-4
Processor Service in Order of Priority v v i i e II-6-13
Trap Vectors Enabledo I1-6-14
ACLO and DCLO Driver Qutputs o o i i i i i e e e e 1I-6-21

IL-ix

The KB11-C Processor System is capable of manip-
ulating, storing, and routing data. The processor is
the system component that manipulates the data.
Although the processor is designed to effect com-
plicated changes to the data that it receives, it ac-
tually consists of elements making only simple
changes. The complex data manipulation are ach-
eived by combining a number of these simple
changes in a varicty of ways.

The processor consists of logical clements, euch ele-
‘tent designed o perform a specific function. For
example, some clements store data, some read data
frem wnother part of the computer, and others per-
form simple modifying functions such as com-
plementing the dala or combining two operands,
cither by arithmetic or by logical means. These
simple busic operations are combined inte func-
tional greups known as instructions. An instruction
can include a number of operations so that data
can be combined, changed, moved, or deleted. In-
structions can be lurther combined into programs
which use a number of instructions Lo construct
even more complex operations.

The hasic logicul ¢elements of the processor can per-
form only a small number of operations at one
time, Therefore, 1o comhbine a number of these oper-
ations into an instruction, the instruction must be
divided into a series of scquential steps. These steps
are called machine states, or ¢ycles, and may per-
form ¢ither a single operation or severul operations
at the same time. An instruction thus becomes a se-
quence ol machine states. This sequence may be
fixed or may provide alternate paths (branches); in

II-I-1

INTRODUCTION

the latler case, internal conditions determine which
branch the instruction will follow.

The processor can be divided into several func-
tional parts:.

1. The [fnterface scction cxchanges data
with devices external to the processor
{(Chapters 5 and 6).

2. The Data Parhs section performs data
handling functions (Chapter 2).

3. Conrrol section includes the logic that de-
termines which operations are 1o be per-
formed during a particular state and
whal the next machine state should be
{Chapter 1),

4. The Timing section generates clock sig-
nals which synchronize the various oper-
ations of the KB11-C Processor System
{Chapter 4).

5. The Control Registers store the results of
processor operations. This data may be
used in determining luture processor op-
crations (Chapter 3).

The Interface section consists basteully of logic nee-
essury for transicrring data between the processor,
the Unibus, th¢ memory, and the Console. The
Data Paths and Control sections interact to per-
form the threce main processor functions of data
starage, modification, and routing.

The Duta Paths section consisis of storage registers,
shift registers, multiplexers, and an Arithmetic
Logic Unit (ALU). The multiplexers centrol the
data flow between registers. The ALU executes the
more complex data manipulations, while the shift
registers move the data bits stored in them, either
1o the left or to the right.

Opcration of the ¢lements of the Data Paths seciion
is determined by the Control section. Refer to Fig-
ure I-1. This section consists of a Read Only Mem-
ory (ROM) und its associated logic. The ROM
contiing 256, (4004) lacations. Each location con-
tains 68,0 bits. This 64-bit ROM output is divided
inte 32 groups or fields, each of which controls a
discrete part of the KB11-C Processor. One of these
fields is called the Address Field (UADR or UAD).
The UAD field from the current machine state is
combined with selected data from other sections of
the KB11-C Processor in the ROM address logic,
whose output is the ROM address for the next ma-
chinc state. In this manner, the required machine
states are generated in the proper sequence. The
UAD field may cither be used as the next ROM ad-
dress, ar may be modificd by the feedback from the
other sections of the processor 1o generate the next
ROM uddress. This allows for instruction branch-
ing that is dependent on other conditions, and also

I1-1-2

[
ROM

ADDRESS
LOGIC

3 MEMORY
1—’ MANAGEMENT

ROM

B4 UAD

P
l l l l

DATA

PATHS INTERFACE CONSOLE TIMING
1=-31

Figure I-1 Processor Control Section

for the use of muchine states that are common to
several instructions, An auxiliary ROM in Memory
Muanagemeni uses the same address as the pro-
cessor ROM.

The main function of the processor is to execute a
Program, or sequence of fnstructions.

Instructions are stored in memory. A Program
Counter stores the address of the next instruction,
At the end of the execution of one instruction, the
processor fetches (reads from memory) the instruc-
ttan that is to be processed next.

[nstructions consist of a series of steps, called Ma-
chine Staies, or cycles, that are executed sequen-
tially. This sequence of steps is unique to each
instruction, although some steps, or series of steps,
muay be common to several instructions.

The sequence of operations within each instruction
i the KBI1-C is controlled by the microprogram
Read Only Memory (ROM).

A ROM is a storage device whose contents are pre-
determined and cannot be changed. Each address
generates a unique outputl. The KB11-C ROM has
an 8-bit address, which allows 2356,y different out-
puts, each consisting of 68 bits.

This 68-bit output (ROM word) is divided into 32
lields, each of which controls a different part of the
[PrOCESSOr. :

The ROM word contains an address field, which in
muost cases is the address of the next ROM word:
the ROM s self-sequencing. This address field can
be modiflied by conditions internal or external to
the processor, such as the instruction operation
cade, the addressing mode or other factars.

II-1-1

CHAPTER 1
INSTRUCTION DECODE AND
MICROPROGRAM CONTROL

When an instruction is fetched (read from memory)
it is stored in two instruction registers (IR):IRCA-
IR(15:00) and RACJ AFIR (15:00) and in the
FPP's FIRA if this option is installed. The contents
of these registers are decoded, and these decoded
outputs control the ROM address, along with in-
puts from other processor circuits.

The decoded outputs of the IR are also used to de-
termine how the results of the executed instruction
are interpreted in setting the Condition Codes. Refer
to Purugraph .5

BLOCK DIAGRAM

Figure 1-1 is a block diagram of the KBI11-C Read
Only Memory {ROM). The ROM contains 256, or
400, processor control words, For each processor
machine cycle, one of these stored words is output
to the Data Paths section and to the other pro-
cessor circuits. The ROM word is divided into
fields. and each field controls a specific register,
multiplexer or process of the processor. In Figure
I-1, euch control field is listed by a mnemonic
niame and by bits of the microprogram word occu-
pied by the control field, The control selection that
is made, or the action that takes place for each
vulue that cun be stored in the field, is listed under
the field name. Where possible, the field name and
description are placed next to the logical element
controlied by that field.

The microprogram ROM outputs that control
other parts of the processor must be stored in a buf-
fer register, so that the next microprogram word
can be selected while the current word is being
used. Therefore, a ROM Bulfer Register (RBR) is
provided for these ouipuots (Paragraph 1.1},

CONDITION CODE LOAD
cCL {T2) [54-52]

NG CHANGE

INSTRUCTION DEPENDENT
SET/CLR FROM BR (CCOP}
LOAD FROM FPP IF ENABLED
CCLD‘!}ZB N ACC SHFR; C B V+—0}
CCLDSIZ &N ACC SHFR; C —AMNIS;

TO
CONDITION
CODES

FROM VARIQUS
oaTA PlnTHS

CONDITION CODE
| GENERATOR

{GRAB, IRCE, F

RAR

|—e TO MEMORY MGMT

O AAaWUN—-O

GENERAL
REGISTER To
CONTROL |—= GENERAL

(GRAC) REGISTERS

[— TO ALL

V +—Vgig +SHFRIS % AMX151) t
CCLOGIN,C, & ¥ UNAFFECTED; Z+— Z% SHFR+0| £ROM IR FROM AFIR
CCLD7(Z,N,8 V UNAFFECTED; C ~~ALU CARRY)
IR DECODE AF1R DECDDE ROM RER
(IRCH, C,0) {RACE, F,H} / “ T
I ™
ROM 7:64> (RACA
OM < 6 {) ok
—+ ROM <63: RACA (RacA,
| <6360> {RACA] Raca {
] l RACC)
-+l ROM <(59:56> (RACA)
SUBSIDIARY
I N FORK 8 FORK A T2
RGN CONTROL — FORIK S— ORK] Lol roM <55:52> (RaACA) ok [Ecof
{IRCH) {TRCC) (IRCE) (RAGE,F,H)
RARB | |+ ROM<5i:48> (RACA)
D A RACC)| ™ ROM <47:44> (RACB) 14 T PwE
CONDITiON ALU g { ax E -
CODE ARY SUBSIDIARY E N > ROM <43:40> (RACB) = PAD
ROM — | @ ——_—_ —
Fi S 6 - 85D
F-:E}:t:if?za;s ROM E -+ ROM <39:36> (RACH)
5 N0 FORK {IRCH) GRAA] BRANCH ENABLE I (RAGLY
— Lo{ ROM <35:32> (RACB)
1 FORK & | BeF (11 -6l UADRS [+40) UADR4 [+20] BRANCH omesssz> | - acT
2 FORK B -
0 GND GND (RACK) ADR |FEN - RA = 1
4 FORK C { [DESTINATION MODE 35,7 |SRet — |RoM 3ress (RACO) ol Ewsc
¢ |CONDITION CODE 2 ruRErL BEN Lol ROM <27:243> (RACC) = Bsc
4 |-DIv sue CONDITIDN CODE N
5 [-08D (00D BYTE DESTINATIONVH| - DIV qu1T] =l ROM <23:20> (RACC)
MICRO ADDRESS FiELD ¢ BRI410) RESTORE
Y RACK BE 75H RACK FP REQ H RARA | L»lROM <19:163 (RACC) - AV
vaD [0T-c0] 10 |RIP+FP SYNG FaMB, TP CLasS L {Race ~ M'U]_- orRL
11 $€:= 0 ‘| P ROM <5122 (RACDIE—
TO ADDRESS GATING 12 |CONF (CONSOLE FLAG) - BRQ RAcP! — o GRaal
. - [
:: PF{D}*{5F +TF} , PF{GI*{SF+ ~TF) ol ROM <11:08> (RACD) =
1 -FJ/CLASS ~Q/CLA |
2 |oratn ToGRvERRss -+ ROM <07:04> (RACD) =
17 |RAck RIP+FP SYNG L % TMCE BRG« (T + SONF }L AP -
TMCB BRQ* [T+ CONF } L Z =] ROM <03.00>> (RACD} =
1 |BEF-5wOBD* CONDITIONAL FORK B 200 —
M ISCELLANEQUS BUS DELAY {BEF~14)-CONSOLE BRANCHES
MSC (T1) [29-27) BSD (T1) fap-38] (BEF =15}* FJ/CLASS = CONDITIONAL FORK B)
0 NO EFFECT 0 ND PAUSE
é f;%]éTTgED 21 INTR PAUSE
U
3 SEY CONF IF KERNEL MODE 3} BuS PAUSE
3 SPL ISET PRIORITY LEVEL) ! | '
& 6RO STRoBE L TRAPS AND
]
7 BUST (BUS START) FROM CONSOLE ") UNIBUS AND MISCELLANEOUS TIMING
— TO ALL MODULES
CONTROL (PRIORITY ARBITRATOR) GENERATOR
BUS CONDITION BUS CONTROL FP START {uect {TMC) (T16)
BSC (T1) [26-24] BCT {T4) [32-30) FPS (T1} [67] VA
g NOP
0 DATI 0 NO EFFECT
1 SRCI DATT » 1 READ FPP DATA 1 FLOATING POINT START £ROM
2 KERNEL DATI 2 CONSOLE ACKNOWLEDGE MEMORY MGMT
3 SRC2 DATT 3 CLEAR FLAGS TO/FROM a UNIBUS
4 FC (CONTROLLED BY FPP) & INIT IF KERKEL MODE TO/ FROM FPP, MEMORY MGMT
5 DATO 5 BTACK REFERENCE UNIBUS : ATA BUS
& BSOR1 6 ACKNOWLEDGE CONTROL INTERNAL DATA BU
7 B3OPZ 7 BEND (BUS END} SIGNALS & UNIBUS
FLOATING POINT CONTROL % BET = 1 IS HIGH ORDER CLEAR SYNC
FPC {T1) [64 -65] OF FPC cLs {T11) [e6]
2 nNOP g NOP
1 LD FGR 1 IMITIAUZE SYNCHRONIZER
2 LD FIR
3 LD FPA
4 READ DATA
5 READ FPS
& READ FOR
? READ FPA
Figure 1-1 Block Diagram

11-1-2

- 3447

Three output fields are used to select the next mi-
croprogram word (FEN, BEF, and UAD). They
arc not buffered because they are used immediately
and the resulting address is buffered. Immediately
after the beginning of a machine cycle; when a mew
microprogram word becomes available, the ROM
address generation circuits begin the calculation of
the next ROM address. This corresponds to select-
ing the next machine state. The generated address is
assembled by the address gating logic and loaded
into the ROM Address Register (RAR). There are
three copies of the RAR to accommodate the out-
put loading required for 16 ROM elements, and to
transmil the ROM address to Memory Manage-
ment, (Refer to Paragraph 1.4.1))

The address gating logic assembles the address
from lve sets of inputs. The basic input, which is al-
wuys present, is the Address (UAD) field of the cur-
rent microprogram word. The UAD is ORed with
the outputs of the Branch logic, which is controlled
by the BEF field of the microprogram word. The
Branch Control logic selects a set of condition in-
puts from signals received from the processor data
paths, the conditien codes, and from the processor
interface modules. Depending on the state of the se-
lected inputs, the Branch Contro! generates one or
two signals that are used to modify the address
{(Paragraph 1.4.4),

The three other inputs to the address gating circuits
are f'rom the Fork logic, The three forks are similar
in implementation and purpose. Each fork uses
combinational logic to decode the instruction type
and a variety of processor conditions, and generates
one of .u number of addresses that is combined with
the UAD input by masking. Each fork can be en-
abled by one bit in the Fork-ENable (FEN) micro-
program field; normally all forks are disabled. No
maore than one fork is ever enabled at a time (Para-
graphs 1.4.6 - 1.4.8).

The A Fork logic, used to sclect the machine state
that follows an instruction fetch, requires a scparate
instruction register {AFIR) because this fork must
operale rapidly and therefore puts a heavy load on
the IR outputs. The B and C Forks decode inputs

from the primary TR and use the outputs of a sub-
sidiary ROM, which decodes some classes of in-
structions. These forks arc used after a destination
operand fetch and a source operand fetch,
respectively.

To summarize the operation of the microprogram
control logic: during each machine cycle, an ad-
dress is assembled from any enabled fork combined
with the address field of the microprogram word
and any enabled branches. This address is loaded
into the ROM address register to select a new mi-
croprogram word. At the beginning of the next ma-
chine cycle, the new microprogram word is loaded
into the ROM buffer register and the sequence is
continued.

On power-up, the ROM is initialized and the pro-
gram is forced to a fixed address in memory which
contains the power-up subroutine. This subroutine
typically restores the program parameters that were
stored during power-down. Refer to Chapter 6
(Traps, Aborts and Interrupts) for a description of
these features.

DOCUMENTS

The documents listed below contain the informa-
tion required to follow an instruction from fetch to
execution.

1. KBI11-C Flow Diagrams, drawing num-
ber D-FD-KB11-C-1, sheets 1 - 15. This
set contains a block diagram of the pro-
cessor on sheet 1, and the sequence of
microprogram cycles in flowchart form,
on sheets 2 — 15, The flowchart sheets
are labelled “FLOWS 1" through
“FLOWS 15", and are referred to in this
manner throughout this manual. (Refer
to Paragraph 1.2)

2. ROM Muap, sheets 12 - 15 of the RAC
module schematic, drawing number D-
CS-MB123-0-1. These four sheets repro-
duce the computer listing, in numerical
order, ol the contents of each ROM
word, the name of each state, and the
puge of the Flows on which this state is
shown. Refer to Paragraph 1.3.

II-1-3

The ROM and its ¢control logic is shown on draw-
ing D-C8-M8123-0-1, ROM & ROM Control
{RAC module), and on drawing D-CS-M8132-0-1,
iR Decode & Cond. Codes {TRC module),

1. The ROM, ROM Buffer Register (RBR)
and ROM Address Register (RAR) are
shown on sheets 2 - 5 of RAC (drawings
RACA-RACD). Refer to Paragraphs
1.1 and 1.4.1.

2. The ROM Address bits {(RADR), which
are the inputs to the RAR are shown on
sheet 1] of RAC (drawing RACL). Re-
fer to Paragruph 1.4.2.

3. The Branch Control logic is on sheet 10
(RACK) of RAC. Refer to Paragraph
.44,

4. The A Fork logic is shown on sheets 6 -
8 of RAC (drawings RACE, RACF and
RACH). Refer to Paragraph [.4.6.

5. The B Fork logic is on sheet 3 of IRC
(IRCB). Refer to Puragraph 1.4.7.

6. The C Fork logic is on sheet 4 of IRC
(IRCC). Refer to Paragraph 1.4.8.

7. The Condition Code logic is on sheets 6
through 9 of IRC (IRCE - IRCI). Refer
to Paragraph 1.5.

1.1 MICROPROGRAM ROM AND BUFFER
REGISTER

All control signals that are dependent only on the
machine state (i.c., that are not dependent on as-
ynchronous signals or on data inputs) are derived
directly from the outputs of the microprogram
ROM. The ROM contains 256 68-bit words, during
cuach processor cycle, one word is fetched from the
ROM und stored in a buffer register. The outputs
of the buflfer register are transmitted (o the other
madules of the processer to aet as control signals
or 1o be used in combinational logic that generates
contro! signals for all processor operations.

The ROM is implemented by 16 256-word X 4-bit
read-only memories.

11-1-4

The bulfer register is implemented primarily by
745174 D-type hex flip-flop registers. (Some bits
are implemented by individual flip-flops to provide
separate input clocking or greater output load
cipacity.)

Various ROM bits are clocked into the output buf-
fer register at different times. Most bits are clocked
by the TI pulse, while others are clocked by the T2
pulse. Certain bits are clocked on the trailing edge
of the T1 pulse Lo allow slightly more time for the
processor (o complete operations started by the pre-
vious machine cycle,

Figure 1-2 shows the ROM output bits, the type of
ROM IC that generates each bit (i.¢., C71), which
groups of hits are stored in one 6-bit IC register,
und the time ut which they are clocked into the
RBR. Tublc t-1 gives much of the samec informa-
tion, plus the name given to each field.

The output buflfer register, shown on drawing
RACA, is clocked by the T2 pulse; none of the con-
trol signals transmitted from the 18 bits of storage
on this drawing can be assumed to have settled be-
fore the T3 puise.

Five output signals are derived from the contlents of
the buffer register that is clocked by the falting
edpe of the T1 pulse, rather than the leading edge
{drawing RACB). These signals (iwo pad write-en-
able and three pad address lines) gate the writing of
information inle the processor general registers.
The data is transferred into the registers by writing
them with the Tl pulse, so these enable signals
must not change until after the T1 pulse has
weeurred.

One of the 6-bit outpul registers, shown on drawing
RACC, stores the output of bi 34 and of bits 32 -
28 ol the ROM. Bit 33 is stored in a separate flip-
flop. This permits the buffer register to transmit
both polaritics of USHCO00, with no additional sig-
nal delays. Bit 27 of the ROM, which generates
UMBSBCO0, is also stored on a separate flip-flop to
generite both polarities,

The microprogram bits which are used 1o calculate
the new ROM address are used oniy on the RAC
module. so they are not brought 10 module pins,
However, several of the branch-enable signals are
required either in both polarities or with greater fan-
out capacity; UBEF03, UBEF0I, and UBEFQ0 are
bultered by more than one gate.

FEN BEN UAD
A B c
J R D U I N W AN W A W SR N N SN S W |
Ram ™ 4 [3| 2 [o 1o | o8 | e8| or | o6 | 05 | 0a | 03 | o2 | &1 | a0
c78 c7e cag ca
BSC AMX BMX KMX ALU
I O I O O [I O
T o 26 | 25 | 2a | 23 | 22 | 2 z0 | 19 18] 171 18| 15
c75 c7e c77 c7e
SHC BCT MSC
| Gl 1l |
T - 34% 33 32 | 31| 30 | 20 | 28 » 27
c73 c74 c75
Bs0 BAX 185
N
Tt 40 | 39 | 28 | 27 | 3 | 35
c7 c72 c73
PCA pCB SHF IRK PWE PAD
[I N A O T B
T2 el 81 | 50 | 45 | 48 | 47 | as a5 | aa | a3 | a2 | a1 | NOT
ces 7o ’—~ c7
~T1
BRK | BRxX SRX DRX SRK ORK ceL
I O A I I I O
Te—— w83 | 62 | B | 60 | 59 | %B s7 | se | 55 | sa | s3 | 52
ces ce? ces
FPs | cLS FPC
T 67 J s6 | 65 | ea
ce2 11-3448
NOTE:

CB2 = ROM IC 1ype

Each €-bit group: one 748174 reqister, except bits 66-64
which are clocked into 0 745175 register,

Bits 27,33,67 ore individeal T4574 Hip-flops.

Figure 1-2 ROM Word: Clock, ICs and Registers

II-1-3

Table 1-1
Microprogram Bit Usage

Bit Positions Contents Clocked At
RACA
67 FP start (UFPS) Tl
66 clear sync (UCLS) T1
65-64 Floating Point Contrel (UFPC) T1
63 bus register ctock (UBRK) T2
62 bus register multiplexer (UBRX) T2
6160 source register MUX (USRX) T2
5958 destination register MUX (UDRX) T2
57 source register clock (USRK) T2
56—355 destination register clock (UDRK) T2
54-52 condition-code load (UCCL) T2
51 program counter A CLK (UPCA) T2
50—49 program counter B CLK (UPCB) T2
4847 shifter control (USHF) T2
46 instruction register CLK (UIRK) T2
RACB
45--44 pad write-enable (UPWE) Ti+E5ns
43-41 scratchpad address (UPAD) Tl + 15 ns
40-39 bus delay (UBSD) T1
38-37 bus address multiplexer (UBAX) Tl
3635 internal bus (UIBS) Tl
RACC
34-33 shift counter (USHC) Tl
32--30 bus control (UBCT) Tl
2927 miscellaneous control (UMSC) Tl
2624 bus conditions (UBSC) Tl
23-22 A multiplexer (UAMX) Tl
21-20 B multiplexer (UBMX) Tl
19-18 constant multiplexers (UKMX) T1
17-15 arithmetic logic unit cont (UALU) Ti
RACD
14 fork C enable (UCFEN) not buffered
13 fork B enable (UBFEN) not buffered
12 fork A enable (UAFEN) not buffered
11-08 branch-enable (UBEF) not buffered
07-00 microprogram address (UADR) not buffered

II-1-6

1.2 FLOW DIAGRAMS

The Flows are a description, in flowchart form, of
the operation of the KBJ1-C Processor. Refer to
Figure 1-3. Each cycle, or machine state, is repre-
scnied on the Flows by a rectangular box. The top
part of this box describes the operations executed

during the cycle. The bottom part lists the actual

aperuations that occur at each timing pulse.

The following information is supplied to aid in un-
derstanding and using the Flows:

1. A note on timing (Paragraph [.2.1).

2. A glossary of abbreviations and terms
used on the Flows (Paragraph 1.2.2).

3. A definition of Instruction Classes (Para-
graph [.2.3).

4. A description of Addressing Modes as
they relute to operand fetch (Paragraph
1.2.4).

5. A description of the Flow Diagrams,
page by page, which explains in general
terms the use of the cycles on each page
(Puragraph 1.2.5).

6. Tables listing the cvcles on each Fork
used by each instruction (Paragraph
[.2.6).

1.2.1 ROM Timing

Refer to Figure [-4. The ROM address RACL
RADR{07:00) H is clocked intc the ROM address
register at T3, The ROM output for the new cycle
is clocked into the RBR at T1 - T2.

NOTE

The KB11-C is controlled by the clock circuits de-
scribed in Chapter 4, Timing Generator. For the pur-
poses of this Chapter and of Chapters 2 and 3, it
must be known that there are twe types of cdock sig-
nals: the timing pulses, T1 — T5 and the time states,
TS1 - TS5, The timing pulses are 15 ns wide and oc-
cur at 30 ns intervals. The time states occur at the
same lime as the timing pulse of the same number
(TSI occurs al the same time as T1) and are asserted
for 60 ns.

The timing pulse shown as “T6" on the Flows occurs
at TL of the next cycle.

1.2.2 Glossary

The symbols, abbreviations and terms listed below
occur on the Flow Diagrams and are also used in
the text of this manual.

SYMBOLS

(OP CODE).B - Refers to both the word and byte
instructions, when describing instruction classes,
e.g.: “NEG.B” means “NEG and NEGB.”

+ is used for a logical inclusive OR,

* is used for a logical AND.

ANGLE BRACKETS (...} - Indicates operations
that are executed for diagnostic purposes only and
are not necessary to the operation performed by the
cycle.

$ - Instruction dependent. Sce Chapter 2.

ACKN - ACKNowledge: signal that clears certain
trap and abort flags when they have been serviced.

AFIR - Sec IR
ALU - Arithmetic Logic Unit. See Chapter 2.

BA - Bus Address: Example: BA-PCB means that
the PCB is used us the address for a data transfer.

BC - Bus Condition: defines the type of datu trans-
fer that is to be exccuted: example: BC-DATI

BEND - Bus END: aborts a data transfer cycle
which cannot be coimpleted because of an abort con-
dition (refer to Chapter 6) or one which was started
it the previeus cycle and which is not required. See
Chapter 5.

BR - Bus Register: stores data received during
dutn transfers; also used as temporary storage dur-
ing instruction execution,

BRQ STROBE - Signal which clocks traps and in-
werrupts mnio the request register. See Chapter 6.

BUS - Source of data during any data transfer:
may be Umbus, loternal Bus or Cache; example:
BR-BUS.

BLS PAUSE - Sccond ROM state of any data
tramster. See Chapter 3,

II-1-7

another page BIw ¥ 67"/‘-‘_2'—_’__— into flows that follow

Connector from (F-Foke) — Condition for entry
%ﬂ?
Sc7d@ fa 57 1
Name V’E‘”’ INDEX WORD,FIXUP SR Address of

Cycle EOEL To POINT BEYond ImIY] ROM cycle
WORD IF SF7OR DF?
R, BeFCE, BCe-LRTT
by SHFReFLHA+E
Ex BUS PRUSE
t. £laBUS
—SE7 SE%GSUSFD
SF7 SRe SHFE
- &F 7 Die—GLT HFT
DF7: DRe SHFR - Address of
(Bolom—— e
Se7/® | s next ROM
D0 I OEX TG AT UP BT Tl cycle
FPOINT BEYOND TNOEX WOF,
¢, BACPCE >
o SHIREE SE+8/E
b SAw Sy e
- L
l (res)
Se7pE (L 78]
. FETCH S8C; MDD St CHECK Description of Cyele operations
Clock time e -
. - , BCe SECr DRFT
at which E: SHERE FCA> Operations executed during Cycle
operations ta JOUST: GRCDT
are ¢ xecuted ‘;:z 30 l g,:‘;'%
GET SEC
; BC&SEC, JI
:t.’ fsi:i&-’:d; i Connector (o
2y 805 STHOEE another page: may
Fork i‘: g&gs*;:?gss be to Fork or Branch
Enable: (revse)senseca) —smisz_ 7 .0
bR, (Zaze)~ 2
2=B Fork -
1=A F°rk S/3. &P 3 X} ‘k
=AFor [S6C AEORS T0 SECINDIRECT) Page number {i.e., Flow 4}
¢, CORELTE>
£ SHFLe SR
2y SEu Sl (s
l ez 7)) Condition for
Sr3 83 CrER) Branch
F[Tféf S,Ei CFEERNS 4 WO
SL CHL, " BEN14: Branch
t, EREEL RS ECE LRTT
12 CSHER &-FLE Y Enable #14y
Uy BUST; CRIPT {317} Base address
/4G .
) (.‘l.f next Cycle:
S/340 C/EL final address
GET SRC OPEEFNS \- depends an
£, BReSe, BCESRCE DRATE conditions
Uy CSHFEECE S
Z3 BLG STLOBE
ty SUSE PRUSE
Lo BRBESUS

FENE (3T7)

Figure 1-3 Flow Chart Symbols (P/O Flows 2)

11-3136

[1-1-8

P

wle SECOND ROM CYLE ————

——FIRST ROM CYGLE

T2 . B .;r4

TG
T
| |

TG

TS T TZ T3 T4

T1H| I

—

I I | |
T2H | | I [| | [—I
1 1 | |
| ’ |
I I | . | I
T3H 1 I |
] . | | |]
L) 7 [
ADDRESS |
If GENERATION - ROM ACCESS TIME ———— |
| |
| |
l |

! !

e _¥y _

BITS BITS RAR
15:40 46:63 CLOCKED
BITS 41:45
ROM OUTPUT

CLOCKED INTOQ
BUFFER (RBR]

|
E
f
|
|
|
I
|
|

—
ROM OQUTPUT T
CLOCKED INTG RAR

BUFFER (RBR) CLOCKED

11-3103

Figure 1-4 ROM Timing

BUST - BU STurt: first cycle of any data transfer,
See Chapter 5,

BXX DISP - The left shifted (muliiplicd hy 2) and
sign extended value of the displacement field of
hranch instruction,

CC - Conditton Codes
CCLD - Condition Code Load

CHECK STACK LIMIT - The contents of GDI[§]
ire checked (o see i there is a stack violation. Sce
Chapter 6,

CLEAR FLAGS - Asserted when UBCT=3: cleuars
the Address and Stack Error Flags, Sce Chapter 6.

CONF - CONsoie Flag: causes the processor (o
hatlt when set,

DATI - Trunsfer of one word of data o the pro-
cessor from memory or from g Unibus device.
RRCI, SRC2, KERNEL DATI. Sec Chapter 5.

DATO - Transfer of one word of data from the
processor to nmemaory or to a Unibus device,

DF - Destination Field: bits 02:00 of instruction
word: this number is the address of o register.

DM - Destination Mode: bits 05:03 of instruction
ward.

DR - Destination Register: see Chapter 2.

EALU - Floating Point Processor (FPP) ALU.
FC - FPP Cl line.

FCC - FPP Condition Codes,

FDR - FPP Data Register.

FIRA - FPP Instruction Register.

FPA - FPP Address Register

FP ATTEN - Signals the FPP that data transfer is
complete.

FP READ DATA - Processor request for FPP
data.

FPS - FPP Status Register.

FP START - Processor signal to FPP to initiate
operation,

11-1-9

GD[X] - General Destination register. See Chapter
2. “X" designates the register number, ¢.g.. GD[4];
GDI{DF] is the register designated by the Destina-
tion Field of the instruction word. The notation
“GD[X]” means that the register is read.

GR[X] - General Register: includes both GD and
GS when writing into these registers.

GS[X] - General Source Register. See Chapter 2.
“X designates the register number, e.g.. GS[4];
GS[SF] is the register designated by the Source
Field of the instruction word. The notation
“GS[X]” means that the register is read.

INIT - INITialization pulse (10 ms).

INTR PALUSE - INTerRupt PAUSE: the processor
stops and accepts an interrupt vector from the
Unibus. See Chapter 6.

IR,AFIR - Instruction Register which stores the in-
structon word.

Left Arrow {«) - Signifies transfer of data to unit
on left from unit on right; example: BR—BUS, the
BR receives data from the BUS,

PC,PCAPCB - Program Counter. See Chapter 2,
SC - Shift Counter. See Chapter 2.

SF - Source Field: bits 08:06 of Binary instruction
word; this number is the address of a register.

SHFR - SHiFieR. See Chapter 2.

SM - Source Mode: bits 11:09 of binary instruction
word.

SR - Source Register. See Chapter 2.

SRCCON - Value generated to modify the SR dur-
ing auto increment or decrement addressing mode.

SV - Start Vector: address of a word that contains
the address that is entered on power-up. See Chap-
ter 6.

SWAP(XX)- The SHFR moves the low byte into
the high byte position and the high byte into the
low byte position of the designated register.

I'V - Trap Vector: address of a word that contains
the address of a subroutine that is entered after a
trap. See Chapter 6,

1.2.3 Instruction Classes

The instructions in the PDP-11 Instruction Set are
divided into classes by the decoding logic on RAC
and TRC. Some of these classes are used on the
Flows Lo determine the machine state to which an
instruction will go next.

During BSOPI| and BSOP2 data transfer cycles,
one of several types of bus cycles (DATI, DATIP,
DATO or DATOB) may be executed during a
given machine state. The type of bus cycle that is
executed during one of these machine states also de-
pends on the instruction class. These instruction
classes are described as follows:

P/CLASS - Dcfines a group of instructions which
require a DATIP instead of a DATI cycle when ob-
taining the word which is 1o be operated on. This
allows for madification of the word without requir-
ing memory to restore the word first during a
DATI and then again during a DATO. In addition,
it provides an interlock, i.e., the location cannot be
accessed by another device while it is being oper-
ated on. The following instructions are P/class:

0003 DD SWAB 07 4R DD XOR
Ws0DD CLR 1050 DD CLRB
0051 DD COM 1051 DD CCMB
00 52 DD INC 10 52 DD INCB
0053 DD DEC 1053 DD DECB
0054 DD NEG 1054 DD NEGB
0055 DD ADC 1055 DD ADCB
00 56 DD SBC 10 56 DD SBCB
00 60 DD ROR 1060 DD RORB
00 61 DD ROL 1061 DD ROLB
00 62 DD ASR 1062DD ASRB
0063 DD ASL 1063 DD ASLB
0067 DD SXT Nssbp MOVB
04 S DD BIC 148S DD BICB
05SS DD BIS 1588 DD BISB

06 SSDD ADD 168S DD SUB

I/CLASS - Defines a class of instructions which re-
quire a DATI during a BSOP1:

0057DD TS 07 IR 8§ DIV

00 65 58 MFPI 1057 DD TSTB
0288 DD CMP 10 65 88 MFPD
03SSDD BIT 128s DD CMPB
07 OR 8§ MUL 1388 DD BITB

0/CLASS — Defines a class of instructions which re-
gquire a DATO during a BSPi: 01 SS DD MOV
and X0 66 DD MTP

17-1-10

BIN(ayy) - All double-operand instructions; may re-
quire both source and destination calculations:

018S DD MOV 1188 DD MOVB
0288 DD CMP 1258 DD CMPB
03SS DD BIT 138Ss DD BITB
04 8S DD BIC 14SS DD BICB
05 8S DD BIS 158 DD BISB

06 SSDD ADD 16SS DD SUB

PPAC - (Destination Address Calculation) All
single-operand, rcgister to destination or BIN*SM0
instructions:

always:

0001 DD IMP 07 IR 8§ DIV

0003 DD SWAB 07 2R 8§ ASH
00 4R DD JSR 07 3R 8§ ASHC
0050 DD CLR 074R DD XOR
0051 DD COM 1050 DD CLRB
00 52 DD INC 10 51 DD COMB
00 53 DD DEC 1052 DD INCB
0054 D NEG 10 53 DD DECB
0055 DD ADC 1054 bD NEGB
00 56 DD SBC 10 55 DD ADCB
0057 DD TST (056 D> SBCB
0060 DI RO 1057 DD TSTB
00 61 DD ROL 10 60 DD RORB
0062 DD ASR 10 61 DD ROLB
0063 DD ASL 10 62 DD ASRB
00 65 S8 MFPI 10 63 DD ASLB
0067 DD SXT 10 65 8§ MFPD
07 OR 88 MUL

if SMO:

01SS DD MOV 1SS DD MOVB
0288 DD CMP 1288 DD CMPB
03Ss DD BIT [3SS DD BITB
04 SS DD BIC 1488 DD BICB
05S DD BIS 158 DD BISB

06 SS§DD ADD 16 8S DD SUB

E/CLASS - (Execute class) No address calculation
is required. These instructions use EXC.80 or
EXC.90 (Flows 3). In general, these are DAC*DMO
or BIN*SMO*DMU:

0003 DD SWAB 06 88 DD ADD
0050 bD CLR 074R DD XOR
0051 DD COM 10 50 DD CLRB
00 52 DD INC 10 51 DD COMB
00 53 DD DEC I0 52 DD INCB
00 54 DD NEG 10 53 DD DECB
00 55 DD ADC 10 55 DD ADCB
00 56 DD SBC 10 56 DD SBCB
0057 DD TST 1057 DD TSTB
00 60 DD ROR 10 60 DD RORB
00 61 DD ROL 10 61 DD ROLB
00 62 DD ASR 10 62 DD ASRB
00 63 DD ASL 1063 DD ASLB
00 67 DD SXT 1288 DD CMPB
01 85 DD MOV 1338 DD BITB
02SsDD CMP 14 88 DD BICB
03 85 DD BIT 1588 DD BISB

04 SS DD BIC 16 S8 DD SUB

05 S5 DD BIS

BSOP1 - (BuS OPeration 1) When the ROM Bus
Condition (UBSC) equals 6 during a bus cycle
(data transfer), a DATO is executed for an O/class
instruction, a DATIP for a P/class or a DATI if
the instruction is neither O/class nor P/class. This
condition is shown on the Flows as BC-BSOPI.

BSOP2 - (BuS OPeration 2) When UBSC=7 dur-
ing a bus cycle, a DATOB is executed for a byte in-
struction and a DATO for a word instruction. This
condition is shown on the Flows as BC--BSOP2,

J/CLASS - 00 01 DD JMP or 00 4R DD JSR -See
FJ/class.

F/CLASS - Floating Point Processor instructions
17 XX XX - See F]/class.

FJ/CLASS - F/class or J/class, which require one
bus cycle less after the destination address calcu-
lation c¢ycles than other DAC instructions (Flows 5
and 6).

II-1-11

1.2.4 Addressing Modes and Operand Fetch
In general, the following steps are required for the
execution of an instruction:

1, Iastruction Fetch: The instruction word
is read from memory. The PCB is used
as an address and a DATI is executed in
FET.10. The instruction word is stored
in the instruction registers (IR and
AFIR).

2. Source Operand Fetch: This step is re-
quired only by BIN instructions whose
source mode is not 0 (-SMQ0). This may
require up to three DATI bus cycles, de-
pending on the addressing mode (refer
te Paragraphs 1.2.4.]1 and 1.2.4.2),

3. Destination QOperand Fetch: This step is
required by all instructions that have a
destination operand when the destina-
tion mode is not 0 {(-DM0). Up to three
bus cycles may be required, depending
on the addressing mode. Address word
fetches are DATIs, operand bus cycles
may be DATIs (I/class instructions),
DATOs or DATOBs (O/class) or DA-
TIP/DATO(B)s (P/class).

4, Execution: After fetching the operand(s),
the operation specified by the op code is
performed. Execution may require sev-
eral cycles or may be part of the destina-
tion operand fetch.

PDP-11 instructions allow six bits for each operand
address. Three of these bits point to one of the gen-
eral registers; the other three define one of eight ad-
dressing modes, 0 - 7, which are defined in
Paragraphs 1.2.4.1 and 1.2.4.2, The position of the
bits in the instruction word is shown in Figure -5,
Unary, or single-operand instructions require only
a destination (DST) address, located in bits 05:00.
Binary, or double-operand instructions require both
a source {SRC) and a destination address; the SRC
is located in bits 11;06 and the DST in bits 05:0t},

BIMaFY OF DOUBLE
CPEFAND INSTRUCTION LBINE SIURE

1% hAl a9

E
o8

NOTE
In the KB11-C, those FPP instructions whose bits
<11:06> = 0 are also classtfied as Mode 0 (CFCC,
SETF, SETI, SETD, SETL, op codes 170000-
170012). These are FPP Register operations. Refer
to Paragraph 1.2.5.2.

The mode determines how the contents of the regis-
ter are to be used. Addressing is said to be:

DIRECT - when the contents of the register
are the operand (mode 0);

DEFERRED - when the contents of the regis-
ter are the address of the operand or the ad-
dress of the address of the operand (modes 1
-5and 7

INDEXED - when the contents of the regis-
ter are added to those of the word following
the instruction Lo obtain the address of the op-
erand (mode 6).

Mode 7 is indexed and deferred. Modes 4 and 5
decrement the contents of the register by 2 before
address determination. Modes 2 and 3 increment
the contents of the register by 2 after the address
determination.

Up to three bus cycles are required to obtain each
operand, one for each level of deferral, plus one for
indexing.

NOTFE.
Programming documentation sometimes refers to the
contents of bits 05:00 of an instruction word as a
Source address. The KB11-C logic, however, treats
any operand ficld in bits 05:00 as a Destination ad-
dress. For exampie, MFPL and MFPD are shown on
the PDP-11 Programming Card as 006555 and
1065S, where *SS* indicates the source; these two in-
structions, however, are DAC and are executed as
such: the contents of the SS field {bits 05:00) are
used in the same manner as the bits 05:00 (=DD) in
an INC {0052DD} instruction.

CESTINATIOR
a6 as a3 o [+]+]

‘IT"'[

GF CODE l

H T T T | T T
BF§ L HODE REG

UMARY DR SINGLE
CFERAND IMSTRUCTION (QAC]
|5

DESTINATION
08 o8 k] 03 L0

] T T | T T I

OF CODE

Figure 1-5 Source and Destination Mode Formats

I-1-12

1.24.1

General Register Addressing ~ “R” is any
general register but register 7 (PC). The number of

bus cycles listed below for each mode is that re-

quired for operand fetch.

Mode Name

Definition

0 REGISTER
Symbolic: BR

Example:
CLR %3=005003

1 REGISTER
DEFERRED
Symbaolic: (R)

Example:
CLR (3)=005013

2 AUTO-INCREMENT

Symbolic: (R)+

Example:
CLR (3)+=005023

3 AUTO-INCREMENT

DEFERRED
Symbolic: @R)+

Example:
CLR @(3)+=005033

Register R contains the
operand.

No bus cycle required.

Register R contains the
address of the operand.

One bus cycle is
required.

Register R contains the
address of the operand.
The register is incre-
mented after the
operand has been
fetched.

One bus cycle required.

Regisier R contains the
address of a location
which contains the ad-
dress of the operand.
The contents of the
register are incre-
mented after its use.

Two bus cycles are
required.

Mode Name Definition
4 AUTO-DECREMENT The contents of Regis-
Symbolic: -(R) ter R are decremented,
then used as the address
of the operand.
Example:

CLR -(3)=005043

AUTO-DECREMENT

DEFERRED
Symbolic: @(R)

Example;

6

CLR @-(3¥=005053

INDEX
Symbolic: X(R)

Example:

CLR 100(3)=005063
000100

One bus cycle is re-
quired.

The contents of register
R are decremented by
2. The register then
contains the address of
a locatien which con-
tains the address of the
operand.

Two bus cycles are re-
quired.

The contents of register
R are added to the
word X to which the

PC is pointing. This sum
is the address of the
operand.

The word to which the
PC is pointing is called
the INDEX word (engi-
neering term) or BASE
(programming term}.
This word may be the
second or third word of
an instruction.

Two bus cycles are re-
quired.

II-1-13

Mode Name Definition

Mode Name Definition

7 INDEX DEFERRED
Symbolic: @X(R)

Same as Mode 6, except
that the sum is the ad-
dress of a location
which contains the ad-
dress of the operand.

Example:
CLR @100(3)=005073
000100

Three bus cycles are re-
quired,

1.2.4.2 Program Counter Addressing — “R” is the
PC (general register 7). The number of bus cycles
listed below for each mode is that required for oper-
and fetch,

NOTE
Modes 2, 3, 6 and 7 are also used with the PC as the
register, The machine sequence for obtaining the oper-
and is the same in this case as that used when any
other register is used. Modes 0, 1, 4 and 5 are not il-
legal, but are of no practical usc,

Mode Name Definition

2 IMMEDIATE
Symbolic: #n

The PC, after the instrue-
tion fetch, contains the ad-
dress of the operand, which
is the word contained in
the memory location
following that in which the
instruction word is stored.
The PC is incremented by
2.

Example:
MOV #100,R0 ; MOVE 100(8) TO REGISTER 0
The operation of this mode is explained as follows:

The statement MOV #100,R0 asscmbles as two words.
These are:

700

ioo

012
000

Just before this instruction is fetched and executed, the
PC points to the first word of the instruction, The pro-
cessor fetches the first word and increments the PC by
two. The source operand mode is 27 (autoincrement the
PC). Thus, the PC is used as a pointer to fetch the
operand (the second word of the instruction) before
being incremented by two, to point to the next instruc-
tion.

One bus cycle is required.

3 ABSOLUTE
Symbolic: @#A

Same as Mode 2, except
that the word that follows
the instruction is the ad-
dress A of the operand,
instead of the operand
itself.

Example: CLR @#100 = 005037
000100

Two bus cycles are re-
quired.

6 RELATIVE
Symbolic: A

Relative mode is assembled
as index mode, using regis-
ter 7, the PC, as the index
register. The base of the
address calculation, which
is stored in the second or
third word of the instruc-
tion, is not the address of
the operand {as index
mode), but the number
which, when added to the
PC, becomes the address
of the operand. Thus, the
base is X-PC, which is
called an offset. The
operation is explained as
follows:

Example:

If the statement MOV 100,R3 is assembled at absolute
location 20, the assembled code is:

Location 20:

3
Location 22: 4 (54 =100-24)

II-1-14

Mode Name Definition

The processor fetches the MOV instruction and adds two
to the PC so that it points to location 22, The source
operand mode is 67; that is, indexed by the PC. To pick
up the base, the processor fetches the word pointed to
by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source
operand, the base is added to the designated register.
That is, BASE+P(C=54+24=100, the operand address.

Two bus cycles are re-
quired.

7 RELATIVE
DEFFERED
Symbolic: @A

Same as Mode 6, except
that the sum BASE+PC is
the address of a location
which contains the address
of the operand.

Three bus cycles are re-
quired.

1.2.4.3 A and C Forks: Operand Fetch - Afler an
instruction has been fetched and decoded, the oper-
and(s) are obtained from memory, if the addressing
mode is other than 0. The operation required by
the operation code is then executed.

The A FORK is used by all instructions:

1. Binary instructions that require source
mode calculation (-SMO0) calculate their
source address and fetch the source
operand.

2. Binary instructions that require no
source address calculation (SM0Q) and
single-operand instructions are DAC and
calculate the destination address and
fetch the destination operand.

3. Binary instructions with both SM0 and
DMO, single-operand instructions with
DMQ, and instructions that are not part
of any one of the classes listed on Flows
3 and 5 are executed.

The C Fork is used by F/class instructions or by
binary instructions with source mode other than 0
(-SM0) to calculate the destination address and to
fetch the destination operand after the source oper-
and has been obtained on the A FORK.

Figure 1-6 shows the A and C Fork source and des-
tination calculation cycles. After the instruction has
obtained its operand(s) on these forks, it is exe-
cuted on the B Fork.

1.2.5 Flowchart Description

The KBI11-C Processor flowcharts {drawing D-FD-
KBI11-C-1) are divided into 14 drawings that illus-
trate options of the flow. Where possible, a contin-
uous sequence of machine states is shown on a
single drawing. The succeeding paragraphs describe
the machine operations illustrated on each drawing.
The description does not attempt to give detailed in-
formation about each machine state shown on the
drawing; this information can be derived directly
from the flowcharts and the ROM map (Paragraph
1.3).

Data Transfers

Data transfers require two machine states; a prelimi-
nary or BUST cycle, which sets up the conditions
for the PAUSE cycle, during which the data is
transferred. Data transfers are described in detail in
Chapter 5.

1.2.5.1 TFLOWS 1

Iustruction Fetch

Flows 1 illustrates the instruction fetch sequence,
the address calculation sequence for five of the
source modes, a special sequence for the MTPI and
MTPD instructions, and the execution of the
branch type instructions.

Fetch States

The basic instruction fetch sequence requires two
machine states: FET.10 (fetch) and IRD.00 (IR de-
code), FET,10 completes a data transfer operation,
begun during the last cycle of the previous instruc-
tion, which moves the instruction word from an ex-
ternal storage location to the instruction register
(IR) and bus register (BR), and increments the pro-
gram counter by 2. The instruction address is also
stored in the FPA (FPA<BA), if the FP11-C option
is present. If the data transfer is not overlapped
(i.e., if the transfer was not begun before the end of
the previous instruction), an additional state is re-
quired to begin the data transfer.

The additional state, FET.00, also checks for as-
ynchronous operations (such as bus requests) that
must be performed before beginning a new instruc-
tion, and branches to BRK .90 (break) if necessary.
When the instruction fetch is overlapped, the ma-
chine state that begins the data transfer must also
perform the same check.

[I-1-15

F/CLASS DAC BIN
SHWE -SMg
l & FORK
SM1 SM23 SMan SMEBT
s A FORK l l l ¢
S13.00 $13.01 545,00 867.00
| (1 (1) i} 2)
F/CLASS DAC & DMP DAC »-OMB t ¢ ‘ i
l A FORK € FORK
DM12 om3 DM 45 OME?
robas } | | !
(2] 02,00 D3C.00 D45,00 baet.00
A FORK Diz.o 3] D45, 01 DE?. O
5] {6} {6])
-E/CLASS E/CLASS
{1,2.3)
A FORK
{(DFT + BRQ} -(DF 7 + BRO}
EXC. 90 EXC.80
(3} 13
C FORK
OMB * F/CLASS DM@ »-F/CLASS -DMO
SRE) SREL@) SRE (1) SR@{&)
OF ¥ -OFT7 Ui? -OF7 DTE DT! IE T DMET
FORSE 0O7.00 DOO.BO DOTAD Do0o.90 G290 03090 D45.90 D&T.90
(4) (4) (4} t4) ta) (5} t5) {s) (8)
LESEND:
SM: SOURCE MODE I I I I
DM: DESTINATION MODE
DF: DESTINATION FIELD buiz bM3 bM45 oMe7
SRE (N ODD BYTE ADDRESS
SRE (@) EVEN BYTE ADDRESS t1z.80 030.80 Da5.80 D6T.80
NOTE : (5) (5} (6] 13
Numbers in parenthesis show page 11-3449
of Nows where cycle ocours,
Figure 1-6 A and C Forks, General Case

il-1-16

Instruction Decoding

IRD.00 begins a new data transfer that fetches the
word following the instruction word. This data
transfer is used for address modes 6 or 7, and for
fetching the next instruction whenever the instruc-
tion being execuied does not require other data
transfers.

In some cases, the CONDITIONAL BUST is not is-
sued, i.e., when a data cycle is required but the PC,
which is specified as the address in IRD.0Q, is not
the required address. In this case, for example
D30,00 (Flows 5}, the DR is the address and a new
BUST is issued. CONDITIONAL BUST, which is
used only in IRD.O0 (UMSC=3), and BUST are
conirolled by RACH BUST H. Refer to drawing
RACH:

The lour AND gates must be negated to assert
BUST.

1. The top gate is negated when MCS=3
or 7.

2. The three other gates are enabled when
MCS=5 (CONDITIONAL BUST in
IRD.00).

3. The second gate from the top is asserted,
and negates BUST during an IRD.OO
that precedes S13.00 and S13.01
(BIN*SM123),

4. The third gate from the top is asserted,
and negates BUST during IRD.00, if the
instruction is a Branch and if there is a
Brake Request {(BRQ TRUE). FET.00,
which is a BUST cycle, follows IRD.00
in this case.

5. The last gate prevents BUST from being
asserted during an IRD.0O, if this cycle
precedes the threc cycles that calculate
destination modes 1, 2 and 3 on the A
Fork (D12.00, D12.01, DAC*DM12; and
D30.00, DAC*DM3; all on Flows 3).
These cycles fetch the destination oper-
and but use the DR as the address, in-
stead of the PCB used by IRD.00.

The NAND gate prevents the negation
of BUST during IRD.00 when the cycle
that follows it is S67.00 (BIN*SMé7,
Flows 2), if the destination mode of the
instruction is 1, 2, or 3. This cycle gets
the index word for source mode 6 and 7
of a binary instruction. The PCB is used
here as the address and the bus cycle
started in IRD.,00 is completed. The
NAND gate prevents BUST from being
inhibited if the destination mode of the
BIN instruction is 1, 2, or 3.

In other cases, this data transfer operation is
aborted by a Bus End (BEND) operation in the ma-
chine state following IRD.00. During this machine
state, the processor also loads the source and desti-
nation registers (SR and DR) with the contents of
the general registers specified in the source and des-
tination fields of the instruction; this operation is
also done in anticipation of the use of this data,
and in many cases the data toaded into the SR and
DR is ignored. However, when the data is needed,
the anticipatory transfers allow the processor to op-
erate at maximum speed. The instruction word is
stored in the FIRA (FIRA«BR), if the FP11-C op-
tion is installed.

Source Modes 1 - 5

The A Fork logic is enabled during IRD.00 (FEN
1), so the machine state that follows IRDD.00 is de-
termined by decoding the instruction and certain
other conditions. Six of the possible sequences that
follow IRD.0O are shown on Flows 1. These in-
clude the heginning of the data fetch sequence for
all binary instructions that have a source mode of 1
— 5. If the source mode is 1, 2 or 3, the external
data transfer is restarted with a new address and
the incrementation of the source register is started
for modes 2 or 3, If the source mode is 4 or 5, the
external data transfer can not be started until the
address has been decremented, so $45.00 performs
a BEND. After performing the data transfer to
fetch the word addressed by the source register, the
sequence conditionally enables the C Fork logic. If
the source mode is odd, another data transfer is re-
quired to fcteh the data addressed by the word just
fetched; otherwise the fork determines the next
state.

1-1-17

Moave to Previous Space Instructions

For an MTPl or MTPD (Move To Previous) in-
struction, MTP.O0 and MTP.10 read an address
from ihe stack pointer and begin a data transfer op-
eration to fetch a data word that will be transferred
to the destination address. The flow then transfers
to the last state of the source-data-fetch sequence,
because this state is alike for both the MTP se-
quence and the normal source data sequence.

Branch Instructions

For branch instructions, the A Fork logic deter-
mines whether the branch is successful, and if not,
whether a bus request has been sensed. If the
branch is successful, the PC must be changed be-
fore the next instruction is fetched; this is per-
formed by the BXX.00 - BXX.035 (branch) machine
state which aborts the previous data transfer. This
state also strobes any new bus requests. The BRQ
STROBE must be performed in the state preceding
ihe state that starts the instruction fetch; this in-
cludes FET.10 (in case the A Fork logic returns
control directly to FET.00), the next-to-last state of
instructions that overlap the instruction feich, and
the last state of instructions that do not provide
overlap. The machine state following BXX.00 is
FET.00.

If the branch is not successful and no bus requests
are sensed, the instrucion fetch continues the data
transfer begun in IRD.00; if a bus request is sensed,
the sequence returns to FET.00, which in turn trans-
fers the sequence to BRK.00. Table 1-3E lists the
ROM words used by each branch instruction for
the four possible sequences.

1.2.52 FLOWS2

Indexed Source Modes and Operate Instructions
Flows 2 illustrates the sequence of machine states
for the data feteh for source modes 6 or 7, for the
transfer of flouting-point instructions to the FPP,
and for the execution of five operate instructions.

Indexed Source Modes

For BIN*SM67, the indexed source modes for
binary instructions, the transfer begun n IRD.O0 is
completed and an increment from the source regis-
ter is udded to the duta word; the resulting data
word is used for a second data transfer. When this
transfer is complete, a conditional fork is used to

transfer to the sequence required for the current in-
struction, unless an indirect-indexed address re-
quires u third data transfer. In the latter case, the
scquence continues through three machine states
that are common to the sequences of all indirect
source modes 3, 5, and 7, and in part to the MTPI
or MTPD instruction,

Floating Point Instructions

When a floating-point instruction is recognized by
the A Fork logic, the sequence is transferred to
FOP.00 (floating-point operation). In this state, the
contents of the Destination Register are stored in
the BR; in the following state (FOP.10) the con-
tents of the BR are stored in the FDR. Thus, at
this point in the instruction execution, the instruc-
tion word, its address, and the contents of the Gen-
eral Register specified by the instruction are all
stored in the FPP,

The instruction flow then goes to the C Fork logic
to perform the address calcnlation:

1. For DMO (which also includes FPP op
codes 170000-170012, whose IR<11:062>
= (. CFCC, SETF, SETI, SETD and
SETL), the next cycle is FOP.50 (Flows
4),

2. For -DMO, the FPP uses the same ad-
dress calculation cycles as the processor
instructions.

RTI and RTT lnstructions

The RTI and RTT instructions differ only in the
clocking of T bit traps after the data transfers, so
the sequence of machine states is identical. This sc-
quence performs two data transfers to restore the
previous PC and PS words [rom the hardware
stuck, and performs two increment operations on
the stack pointer. The sequence then continues with
an instruction fetch.

RTS Instruction

The RTS sequence performs one register-to-register
trunsfer and one external data transfer to restore
the PC and the specified register, and updates the
Stack Pointer (SP) after the transfer. The sequence
then returns to the instruction fetch machine states,

11-1-18

SOB Instruction

The sequence of machine states for the SOB instruc-
tion first generates a new PC value, based on the
offset in the instruction, and then restores the old
PC value if the value in the specified register will be
0 after decrementing. This is done because the test
on the value of the register requires one machine
state in every case, which can be combined with the
calculation of the new PC value, and because the
branch is successful most of the time; thus, the ex-
tri machine state to perform the restoration of the
old PC value is executed iess often than if an exira
slate were required when the branch is successful.
The SOB sequence initiates the fetch of the next in-
struction during the last machine state, which also
performs the decrement on the specified register,

MARK Instruction

The machine state sequence for the MARK instruc-
tien iransfers the contents of general register 5 to
the PC. transfers the top word on the hardware
stack to register 5. then begins fetching the next in-
struction. The operation of the MARK instruction
assumes that the instruction has been fetched from
the top of the hardware stack: for a discussion of
the purpose and effects of the MARK instruction,
see Chapter 4.

1.2.5.3 FLOWS 3

No Memory Reference Execution

Flows 3 illustrates the machine state sequences for
a varicty of instructions that do not require mem-
ory references other than the instruction fetch. A
number of sequences are shown that transfer imme-
diately to machine states on other pages; they are
shown only to illustrate the routing from A Fork to
these states, These sequences include the breakpoint
trup (OP3), FOT trap, the EMT and TRAP traps,
and scveral groups of reserved op codes, including
OP7, OP22, and RSVD. The illegal instructions
JMP or JSR, with destination mode 0, also transler
directly 10 a point in the trap sequence. The four in-
structions ASH, ASHC, MFPI, and MFPD uare
shown on other pages which do not show the A
Fork flow line; therefore, off-page connectors are
shown on this drawing for these instructions with
destination mode 0 (for other destination modes of
these instructions, the sequence transfers to the des-
tination address calculation sequences shown on
Flows 5 and 6).

Multiply and Divide with Destination Mode 0

For the multiply and divide instructions, a special
sequence is used when the destination mode is 0. In
cither case, this sequence precedes the normal se-
quence for that instruction. MUL.80 (multiply) sets
up the step counter and transfers to MUL.10, be-
cause MUL.00 is used to complete the data transfer
begun in the destination data feich sequence. In
DVS.00 (divide start), the contents of the register
specified for the destination operand are transferred
10 the BR, which corresponds to the result of the
datu fetch sequence for other destination modes.

E/Class and Negate Instructions

For the majority of instructions that operate on
data. one machine state is required to perform the
duta manipulation. If both the source (if any) and
destination modes are 0, the data is already in the
SR and DR registers as a result of IRD.00. The
data manipulation (sclected by the subsidiary ROM
for all except the NEG.B instruction} is performed,
the data is stored in the general register specified by
the destination lield, and the sequence returns to
the instruction fetch. The NEG and NEG.B instrue-
tions require two machine states because the com-
plement and increment operations cannot be
perfermed on the duta during the same state; there-
fore the external data transier operation started in
IRD.O0 is aborted (a bus eperation cannot be car-
ricd across more than two machine states) and the
sequence returns o FET.00. The other instructions
complete the data operation and return to FET. 10,
unless a bus request has been sensed; because the
transler 1o the BRQ service sequence is performed
by FET.00, the bus operation must be aborted.

RESET Instruction

Three processor control instructions, RESET,
HALT and WAIT, are executed by sequences
shown on this drawing. The RESET instruction
transfers general register ¢ to the DR so that the
contents of RO can be displayed in the DATA
lights of the console during the reset operation, and
then triggers the initialization pulse. The in-
itialization is inhibited if the processor is not oper-
ating in the Kernel mode; in this case, the
instruction is, in effect, a NOP. The machine state
that triggers the pulse recyeles to itself until the
pulse (which lasts for 10 ms) is completed, and then
returns the sequence to the instruction fetch
sequence.

II-1-19

HALT Instruction

The HALT instruction does not actually stop the
processor; instead, control is transferred to the con-
sole service sequence, which waits for manual inter-
vention (0 determine further operations. This is
performed by setting the console flag and then re-
turning Lo the instruction fetch sequence where the
consele flag generales a BRQ, which in turn trans-
Ters 1o the break service sequence. The console flag
is set only if the processor is in Kernel mede; a
branch after HLT.10, {HALT) transfers control to
the trup service sequence il the processor is not in
Kernel mode, ie., a HALT instruction in Super or
User modes traps through location 4.

WAIT Instruction

The WAIT instruction is used 1o wait for an asynch-
ronous condition that either initiates the execution
ol o service program or enters the console service se-
gquence. The basic wait loop consists of two ma-
chine states, so that the BRQ STROBE in one state
is available Tor the hranch in the other state. When
any BRQ} is sensed, the sequence goes to the first of
two states that test for console requests and then
for interrupts or traps (other than T bit traps) that
supply vectors. Il netther is found, the sequence re-
turns (o the wail loop: otherwise, control is trans-
ferred Lo the appropriate sequence.

P'rocessor Status Change Instructions

Two ypes of instructions thal transfer data from
the instruction word to the PS word are the CCOP
imstruction and the SPL instruction. The former af-
fects only the condition code bits [P$(03:00)] and
the lutter alfects only the priority bits [PS(07:05)].
In the CCOP instruction, the external data transfer
begun by the IRD.00 stute is aborted because the
processor must maintain the data in the BR register
until the PS word is reloaded. In the SPL instruc-
tion, the [irst state does the actual transfer to the
priority. The second state also begins a new instruc-
tion letch and control transfers to FET.10. SPL is a
no-ep (ne change to the PS) unless the processor is
in Kernel mode,

1.2.54 FLOWS 4

Destination Mode ¢ Sequence

[Mlows 4 illustrates the five sequences used when the
destination mode is 0. These sequences ure entered
through the C Fork microprogram address caleu-
lation: this fork is used to determine the next ma-
chine state afler a source operand has been fetched.

For all instructions except floating-point instruc-
tions, these sequences correspond to, or join, the se-
quences used when both the source and the
destination modes are 0,

Not Register 7

When the destination specification in an instruction
refers to any general register other than register 7
(the POY, and the other conditions for the se-
quences shown on this drawing are met, the instruc-
tion is execuled by D00.90 (destination mode 0). If
the source address is odd, a byte-swap operation
must be performed on the contents of the BR be-
fore the instruction-dependent data maniputation
operition. 1 the source mode is also 0, no byte
swup is reguired, and the execution is performed by
the EXC.8 (execute) machine slate.

Register 7

When the destination register is 7. the PC is modi-
led. Because the PC is stored as a separate register
(not in the general register set). the execution is ac-
complished by EXC.90, which requires the source
data to be in the SR register. A machine state is
therefore required to transfer the source data from
the BR to the SR, A byte swap can be combined
with this transfer, il necessary.

Floating-Point Instructions

FOP.50 is the C Fork cycle used by all
DMO*F/CLASS instructions, which include FPP
Condition Code and accumulator to accumulator
operations, as well as FPP writes o the processor
general registers,

This sequence reads the FPP Status Register into
the BR. If BRQ is true, a branch to FOP.60 is exe-
cuted. In this cycle, the address of the FPP instruc-
tion is read into the BR; then, in FSV.90 (Flows
13), it is written back into PCA and PCB, and con-
trol is transferred to the service routine (BRK.00,
Flows 12). The FPP instruction is aborted at this
time and its address is saved. This same instruction
will thus be fetched again and executed afler the ser-
vice routine.

FOP.30 repeats FOP.50 and waits for FP SYNC. If
BRQ is true, control is transferred to the service
routine as described above. If FP SYNC is re-
ceived, FOP.40 is executed. FOP.30 cycles upon it-
self until either of these conditions is true.

FOP.45 instructs the FP11-C to execute the instruc-
tion {(FP START),

I1-1-20

1. In the case of a CFCC, the FPP Condi-
tion Codes are written to the PSW from
the BR.

2. I the instruction requires a write into a
processor General Register (FP REG
WR), the data is read into the BR in
FOP.65 then transferred to GR{DF] dur-
ing FET .08, as the next instruction fetch
is started.

3. If the instruction does not require a
write into a processor general register,
the instruction is done and control is
transferred to FET.06.

1.2.5.5 FLOWS 5

Destination Modes 1 - 3

Flows 5 ilustrutes the machine state sequences used
to fetch duta specified by destination modes |, 2, or
3. These sequences are entered from one of the two
forks: some are entered from the A Fork decision
point, lor instructions which either do not require a
source operand or have a source mode of 0, while
others are entered from the C Fork decision point
aller the source operand has been fetched and
placed in the SR,

Sequence Entry

All six sequences on this drawing start a data cycle
{BUST). It should be noted that the CONDI-
TIONAL BUST in IRD.,00 is not asserted when the
two A Fork scquences on Flows 5 are entered; this
is hecause the PC is not the address required for
the DM 123 dala cycles on this drawing.

The (our sequences entered from the C Fork deci-
sion point also start by transferring the contents of
the BR 10 the SR, so that the source data is avail-
able in both registers; the opposite transfer is per-
formed for the A Fork entry to move the source
data to the BR for the DATO that follows the desti-
nation address calculation. If the destination is 3,
there is no point in loading the BR from the DR be-
cause the address fetched by the first external data
transfer is stored in the BR for use in the next dala
{ransfer.

Destination Modes 1 and 2

There are two entrics rom the C Fork decision
point Tor address modes 1 or 2 because the source
dita may be an odd byte which must be swapped.

This is the only difference between D12.80 (destina-
tion modes | or 2} and D12.90. After one of these
states or D12,00 has been completed, the processor
performs a three-way branch, to separate JMP,
JSR, and floating-point instructions, and instruc-
tions that transfer the source operand to the destina-
tion unchunged (specifically, the MOV, MTPI, and
MTPD instructions) from all others. For floating-
point instructions, the external data transfer is
uborted, and the sequence continues through the B
Fork decision point te FOP.40. For JMP instruc-
tions, the sequence is directed to JMP.OO; for JSR
instructions. to JSR.00. For the three direct-transfer
(0 Class) instructions. the external transfer is forced
to be a DATOQ instead of a DATIP or a DATI,
and the transfer is completed before an instruction-
dependent, condition-code load operation is per-
formed. The last machine stute in the sequence for
0 Class instructions also begins the instruction fetch
for the next instruction and checks for asynch-
ronous conditions requiring service.

For all other instructions, the DATI or DATIP
transfer is completed, and the B Fork logic is condi-
tionally enabled in D12.10. If a byte swap is needed
becuuse the destination address is to an odd byte,
the extra machine state D12.30 is entered, and then
the B Fork decision point. Note that in all three of
the sequences shown (in DI12.60, DI12.10, and
DI12.70 the destination register is incremented by a
constant which can be cither 0, 1, or 2, depending
on the address mode and whether a word or a byte
operand is being fetched,

Destination Mode 3

The three sequences for destination mode 3 all en-
ter D30.10 (destination mode 3), which completes
the data transfer, increments the destination register
by the necessary amount, and transfers to D10.20,
which begins the fetch of the operand addressed by
the word just transferred. Because the first transfer
during a destination mode 3 sequence can only be a
full word, the increment used in the register update
is always 2, not 1.

1.2.56 FLOWS 6

Destination Modes 4 — 7
Flows & illustrates six machine state sequences that
are used to feteh the destination operand when the
destination address mode is 4, 5, 6, or 7. These six
sequences correspond to the six sequences for ad-
dress modes 1, 2, and 3.

11-1-21

Modes 4 and 3 require that the contents of the des-
tination register be decremented before the value is
used in the external data transfer. They are treated
by one of three sequences. Modes 6 and 7 use gen-
eral register 7 (the PC) first and then use the desti-
nation register. They ure treated by one of three
sequences.

In either case. two of the three sequences are en-
tered from the C Fork and one from the A Fork,
The two C Tork entrics diffcrentiate between
source operands that regquire byte swapping and
source operands that do not. There can be no re-
quirement for a byte swap on the A Fork entry, be-
cause the source operand would be address mode 0
and the high byte of a register cannot be specified.

C Fork Entries for Modes 4 and 5

D45.80 (destination mode 4 or 5) and D45.90 differ
mainly in the microprogram addresses contained in
the microprogram word. Fach state decrements the
DR by the value of the destination constant, which
is | for a byte operation in mode 4, and 2 for a
word operation. Byte operations in mode 5 use a
conslant of 2 because the data fetched from the ad-
dress taken from the DR is in turn used as an ad-
dress and must be a full word. The state following
D435.80 or D45.90 begins the external data transfer.
which may be a DATI, DATIP, or a DATO, de-
pending on the specific instruction. D40.30 and
130,30, which follow D45.90, also perform the
byte-swap operation on the source operand. In each
of the wo sequences, a different path is taken for
destination mode 4 where onty one data transfer is
needed, than for destination mode 5 where a sec-
ond transfer is needed. The second transfer is per-
formed by a sequence that is common for address
modes 3, 5, and 7; this sequence transfers the first
word that is fetehed from the BR to the DR and
then uses the DR as the address for a second
transfer.

A Fork Entry for Modes 4 and 5

D45.00, which is entered from the A Fork Decision
point, is similar 10 D45.80 and D45.90, except that
a BEND is performed to abort the transfer begun
during the IRD.00 machine state. The sequences
thal lollow D45.00 are similar to Lhe sequences that
follow D45.80 or D45.90, except that the source op-
crund. il any, is already in the SR.

Destination Modes 6 and 7 Entry
For address modes 6 and 7, the first machine state
entered Irom the C Fork decision point begins an

external data transfer, using the contents of the PC
as un address, and performs an increment operation
on the PC. The entry fromt the A Fork decision
point continues the transfer begun by the IRD.00
machine stute, so this entry is to D67,00 (destina-
tion mode 6 or 7) that follows the first state for the
other entrics. D67.10 adds the contents of the DR
to the data read into the BR, thus performing the
indexing operation, and then transfers to a machine
state in the flow sequence for destination modes 4
or 5. The transfer is to D10.30 (a state also used
for mode 4) il the mode is 6, or to D10.10 (a state
also used Tor mode 5) if the mode is 7. The shared
sequences perform the remaining one or two datd
transfers (o feteh or store the actual data word,.

Ending Sequence

When the last data transfer has been started, all six
sequences enter a combined conditional fork and
two-wuy branch that selects the next machine state,
For 0/class instructions (MOV, MTPI, and MTPD)
the last data transfer is a DATO operation, which
is compleled by D10.40; this state also louads the
condition codes. The processor then returns to the
instruction fetch sequence. For all other insiruc-
tinns, the DAT! or DATIP transfer is completed in
D060, leaving the destination data in the BR and
the source data in Lthe SR, and the B Fork logic is
conditionally enabled, If a byte-swap operation is
required for the destination data, D12.30, which
performs this operation for all destination modes 1
- 7. is entered, FJ/Class instructions go directly to
the B Fork.

1.2.5.7 FLOWS 7

ASH, ASHC, and Floating-Point Instructions

IFlows 7 illustrates the machine state sequences for
the Arithmetic Shift (ASH) and Arithmetic Shift
Combined (ASHC) instructions, and the first ma-
chine state of the floating-point instruction service
after the destination address caleulation.

ASH Instruction

When the machine stale sequence for the ASH in-
struction is entered from the B Fork decision point,
the destination data is in the BR register. The six
least-significant bits of the destination word are
used us a 2's complement number which is the shift
count lor the instruction. The DR is loaded from
the BR and this data is then loaded into the Shift
Counter {SC) from the DR in ASH.I0. In an
ASH.20. the condition codes are loaded, bused on
the value of the word in the source register, and the

1I-1-22

SC is tested for a 0 shift count. If the shift count is
0, the instruction is completed, and the processor re-
turns to the instruction fetch sequence; otherwise,
on¢ of two states is entered, depending on the sign
of the shift count. ASH,30 (Arithmetic Shift) and
ASH .40 perform the actual shift one bit at a time,
and increment or decrement, respectively, the shift
counter. These states also load the condition codes
with the results of each shift, so that after the last
shill the codes are correct, and test during cach
cycle 1o determine whether any further cycles are re-
quired. Note that the first change to the SC is per-
formed in ASH.20; all tests arc done on the value
before any changes are performed, so the last cycle
in ASH.30 or ASH.40 is performed with the SC=0,
and the final value in the SC is -0 (all 1s),

ASHC Instruction

The ASHC instruction operates in a manner similar
1w the ASH instruction. The difference is that two
words of data are shifted. ASC.00 and ASC.10 per-
form the same functions as ASH.00 and ASH.10,
and in additien, load the DR (after the SC has
been louded from the previous value in the DR)
with the contents of a general register which is se-
lected by ORing the destination register specifica-
tion with 1. When the destination register specified
by the instruction is an even-numbered register, the
OR produces the number of the next higher num-
bered register.

ASC .20 performs the first change of the SC, moves
the first data word to the BR, loads the condition
codes, and tests for ¢ 0 SC, just as ASH.20 does.
However, if the SC is 0, the sequence continues
with ASC .80 (urithmetic shift combined), instead of
returning immediately to the instruction fetch se-
quence. This state is required to test the second
data word. so that the Z condition code can be set
ot the contents of both words, ASC.80 also starts
the next instruction fetch, so the processor transfers
to cither I"ET. 10 or BRK.00 rather than FET.00.

Il the SC s not 0, ASC.20 is followed by ASC.30
or ASC.40. These states perform the same oper-
ations as the corresponding states for the ASH in-
struction, and also cause shifting of the DR (which
can be shifted internally, without passing the data
through the ALU or SHFR). The bit shifted into
the DR is sclected by processor hardware. When
the SC does reach 0, the next machine state is
5C.60. which performs the same operations as
ASC R0, but also stores the second word from the
DR into the appropriate general register.

Floating-Point Instructions

When the B Fork logic decodes a floating-point in-
struction, FOP.40 (floating-point operation) is en-
tered. This state aborts the last external data
transfer started by the destination-data-fetch se-
quence, and sends the destination address, not the
destination data, to the BR. A three-way branch is
then entered:

1. BRQ true: Control is transferred to
FSV.70 (Flows 13). In this cycle and the
two that follow it, the original DR and
PC are read back from the FP11-C and
the DR, PCA and PCB are restored to
the state in which they were prior to the
FPP instruction fetch, The service flows
(BRK.00 through SVC.90), and the inter-
rupt subroutine are then executed; the
FPP instruction is then fetched and exe-
cuted again.

2, SYNC+BRQ}) The processor cycles
on FSV.60 (Flows 13) until it receives ei-
ther an FP SYNC or a BRQ. In this last
case it executes the sequence described in
(1) above. In the first case (FP SYNC) it
executes the sequence in (3) below,

3. SYNC+-BRQ:. FSV.10 is entered. In
this state, a bus cycle is started, whose di-
rection (DATI or DATO) is determined
by FC (BC<FQ).

a. If the instruction is not a Floating
Pause Class (FPCLASS), up to
four 16-bit words are transferred
by the FSV.10-FSV.70 loop.,

b. If the instruction is FPCLASS, this
loop is expanded to include
F8V.30, FS8V.40 and FSV.50 which
cause the loop to execute a
read/modify/write operation.
FPCLASS instructions are ABSX
and NEGX,

After the CPU completes this loop, it ex-
ccutes FSV.20 where it can copy the
floating condition codes in the FP11-C,
if desired. From this state, the CPU se-
quences to FET.07 to start the next in-
struction fetch.

I1-1-23

1.2.5.8 FLOWS 8

Multiply Instruction

The sequence of machine states shown on Flows 8
performs a multiplication operation on two words
of data, one from u general register and the other
in a word specified by the destination field and fet-
ched into the BR. The results of the multiplication
are stored in two general registers: one is the regis-
ter specified in the instruction, and the other is a
register whose number is formed by ORing 1 with
the number of the specified register (Figure 1-7). If
the specified register has an odd number, only one
register is used.

SR [MULTIPLIER} |

L
/_

BR {PROGUCT) i—" DR (MULTIPLICAND)

I

(SiGN OF SR

OR
SIGN QF BR)

Figure 1-7 Multiply Instruction

The multiplier is in the SR, the multiplicand in the
DR, and the 32-bil productl is formed in the BR
und DR by an add and shift algorithm.

The multiplier (SR} is used as a 32-bit, not a 16-bit,
s complement number. This is accomplished by ex-
tending its sign bit into the BR after every shift.
The multiplication thus has as its operands a 16-bil
multiplicand, the DR, and a 32-bit multiplier, the
SR,

In 2's complement notation, a negative 16-bit num-
ber {-A) is equivalent to {2'% -A), and a negative 32-
bit number (-BY 10 (2% -B). When a combination of
[6- and 32-bit positive and negative numbers are
multiplied, Tour conditions are possible, as shown
in Tuble 1-2.

Note that correction of the product is required
when the DR {multiplicand) is negative.

In Case 1, where both SR and DR are positive, the
product is correct and no correction is required.

In Case 2, 232 X DR must be subtracted, but since
the product is only 32 bits wide, this term is out of
range and no correction is required.

In Case 3, 2'* X SR has to be subtracted from the
product. as this term is within the 32-bit product
formed in the BR and DR.

In Cuse 4. the first two terms are out of range, and
21 % SR must be added to the product. Since in
this case the SR is a 2's complement negative num-
ber, the addition is accomplished by subtracting it
as in Cuse 3 (- — = +).

The multiplication sequence begins with two ma-
chine states Lthat set up the four registers (BR, SR,
DR, and SC) used in the sequence, and performs
the Tirst test and shift on the DR, Note that all
branches refer o the state of the DR and the SC at
the heginning of the machine state preceding the
branch, not the values i the registers at the end of
that siate. This is because the RAR is clocked at
T3, The operand supplied by the destination-data-
feteh sequence is Joaded into the DR, and the SC is
loaded with the octul value 17 (decimal t5) in
MUL.00 (multiply).

In MUL.10, the BR is cleared; the other operand is
in the SR as the result of TRD.00., The SC is
decremented,

Fifteen multiplication cycles are then performed in
MUL.20 and MUL.30.

1. If the low order bit of the DR is 1
[DRO(1)], the SR is added to the BR
and both BR and DR are shifted right
in a combined shift, which forms the
product (MUL.20).

Table 1-2
Sign Correction for MUL Instruction
Case | SR | DR | Representation of Product Generated Product Correction
SR DR (2™ SR X DR) Should Be: { Required
1 =0 [>0 [SR DR (SRXDR) (SRXDR) None
2 <0 [=0 |2°*-SR | DR 232DR-(SRXDR) -(SRXDR) | None
3 20 | <0 |SR 21%-pR | 2!'*SR-(SRXDR) -(SRXDR) | -2'8SR
4 <0 | <0 [232-SR | 2'¢-DR | 2°%-2°2DR-2!SSR+(SRXDR) | (SRXDR) [+2'¢SR

Ii-1-24

2. If the low order bit of the DR is 0
[DRO®)], the shift is performed, but no
add (MUL.30).

At the end of these fificen cycles, SC=0 and DRO
contains the sign bit of the multiplicand (DR),

1. If DRO(I), the multiplicand was negative
and correction is required. MUL.50 sub-
tracts the multiplier (SR) from the high
order product (BR and DR). This is the
same as subtracting 2'% X SR from the
product.

2. If DRO{®). no correction is required
(MUL.40).

MUL.50 or MUL.40 store the more-significant half
of the result into the register specified by the source
field, and set the condition codes on the value of
this word.

MUL.60 stores the less-significant half of the result
in the register, whose number is formed by ORing
the source field with 1; if an odd register is speci-
fied, this value replaces the more-significant half of
the result, which is lost. This is done because many
multiplications produce a result which can be con-
tained in only one word, and this result is preserved
by this action. The condition codes are altered to
represent the value of the entire result; if all 32 bits
are 0, the Z bit is set, and if the result cannot be
contained in one word, the C bit is set. At the end
of this cvcle, the scquence returns either to the in-
struction fetch sequence, or, if an asynchronous con-
dition needing service was sensed by the BRQ
STRORBE in machine state MUL .40 or MUL.50, to
the break service sequence,

1.2.59 FLOWS % and 10

The Divide Instruction

Division is the process of counting the number of
times one number (the dividend) can be reduced by
another number (the divisor). The count of the
number of reductions is called the gquotient; the
part of the dividend that cannot be reduced by the
divisor is called the remainder. Division is more
complicated than multiplication, for several
reasons:

1. Division produces two results, not one.
2. During multiplication, the maximum re-

sult occurs when the maximum number
is multiplied by itself. This result fits

into two words; during division, the max-
tmum result occurs when the largest pos-
sible number is divided by a very small
number and the result does not fit into
any reasonable number of words. There-
fore, the division algorithm must recog-
nize the owverflow condition when the
quotient is too large.

3. During the division process, it is neces-
sary to recognize when the partial re-
mainder is smaller than the divisor;
usnally this is done by recognizing when
the last reduction passed through 0 and
changed the sign of the remainder. This
condition is called underflow and re-
quires that the results of the last reduc-
tion be restored in some way.

The simplest division algorithm is to subtract the
divisor from the dividend until underflow occurs, re-
store the remainder, and keep a count of all but the
last subtraction for the quotient (this algerithm as-
sumes all positive numbers). This procedure is very
tedious, particularly if an overflow condition exists,
s0 a shorter algorithm is used that is based on the
positional representation of numbers.

The result of the division is a quotient that can be
multiplied by the divisor to regenerale the dividend
(with a difference equal to the remainder). If, dur-
ing the multiplication, each bit of the quotient can
generate a partial preduct that becomes part of the
total sum, then during the division, each bit of the
quotient can be generated individually while reduc-
ing the partial remainder by an appropriate
amount. To determine what the most-significant bit
of the quotient should be, the number that is sub-
tracted from the dividend is equal to the divisor,
multiplied by the positional value of the most-sig-
nificant digit.

Figure -8 illustrates the division algorithm. At the
beginning of the division, the dividend occupies all
of a word register. The divisor has been multiplied
by 2 te the nth power, so that the number which is
first subtracted from the dividend is actually the
divisor times the positional value of the most-signif-
icant bit. Before each step of the division, the divi-
sor is divided by 2, so that the correct number for
generating the next bit of the quotient is formed;
the division by 2 is done by shifting the 2-word divi-
sor 1 bit to the right. In order for the division al-
gorithm to operate with negative numbers, the
reduction that is performed at each step of the divi-
sion must be the correct operation to reduce the re-
mainder; if the divisor and the partial remainder

I1-1-25

{ DIVIDE }

LOAD DD

LOAD HIGH HALF
OF DR AND CLEAR
LOW HALF

CLEAR Q

SHC =—N

DDaN?DReN

| ope—D0-DR | DD «+——DD+0R
DDZN=DR2N NO DDZN=DR2N
b
YES YES
Qe—Q¥2+1 Qe—Q%240
{SHIFT LEFT) {SHIFT LEFT)

DR=+—DR/2
{SHIFT RIGHT}
SHC #+—-—5HC -1

DDEN =
ORIGINAL
SIGN

{ DONE]

Figure |-8 Divide Algorithm

I-1-26

oD
2N]
N
" -
OR
oR
______ W]
LOAD
2N N
Q fo— SHC
M 4]

LEGEND: OD=DIVIDEND

{REMAINDER IS DD <N-1:02>)
DR=DIVISCR

Q=QUOTIENT

SHC=SHIFT COUNTER

1i-1070

{that is, the dividend) have the same sign, the divi-
sor is subtracted from the remainder, but if their
signs differ, the diviser is added to the remainder to
reduce its magnitude.

The algorithm that is illustrated does not perform a
restoration if an underflow condition occurs. In-
stead, while underflow exists, succeeding operations
are performed in the opposite manner to complete
the restoration; while an underflow condition exists,
the bits of the quotient are set only when the under-
flow is corrected and are cleared if the operation
does not complete the restoration. If the original
divisor and dividend are of opposite sign, the
quotient should be negative, so bits of the quotient
depend on the operation performed and its results,
as follows:

I. If the operation was a subtraction (the
signs of the divisor and the partial re-
mainder were the same), the quotient bit
is set if there was no underflow, and is
cleared if there was underflow.

2. If the operation was an addition (the
signs of the divisor and the partial re-
mainder were different), the quotient bit
is cleared if there was no vnderflow, and
is set if there was underflow.

The non-restoring division algorithm works because
an underflow at any step can be corrected to within
one multiple of the divisor by the succeeding steps.
This is true because a binary number that is repre-
sented by all 1s is changed to a number that is rep-
resented by a 1, followed by all 0s, when the
number 1 is added to it. Therefore, the multiple of
the divisor that is subtracted from the partial re-
mainder at any step is only one more multiple of
the divisor than can be expressed by all the less-sig-
nificant bits of the quotient. The remaining single
multiple of the divisor can be restored by a single
operation (which is always an addition, because un-
derflow exists and the divisor and partial remainder
have different signs) following the steps that gener-
ate the quotient bits; this step is also used to cor-
rect the remainder.

Divide Instruction Sequence

The divide {DIV} instruction is executed by the
longest and most complex sequence of machine
states used in the KB11-C Processor. This sequence
is illustrated on two drawings. Flows 9 shows the

register setup, the first two overflow tests, and the
cycle of states that perform the actwal division.
Flows 10 shows the quotient and remainder sign
corrections and the final overflow test,

The division is performed by a non-restoring divide
algorithm that is described above. The hardware im-
plementation (Figure 1-9} uses the SR to hold the
divisor and begins with the dividend in the BR and
DR registers. The BR contains the more-significant
half of the dividend, while the less-significant half is
in the DR, Each cycle of the division shifts the divi-
dend one bit to the left and shifts the next bit of
the quotient into the least-significant bit of the DR.
When the division terminates, the quotient is in the
DR and the remainder is in the BR.

l SR (DIVISORY |

I BR [REMAINDER} |'_| OR (QUOTIENT)

1

NOTE
Divigend m BR ond CR

1-uRad

Figure -9 Divide Instructions

The non-restoring divide algorithm can operate
with positive or negative operands; however, the
KBI1I-C always operates on a positive dividend to
simplify the detection of underflow. (The divisor
may have either sign.) The first two machine states
of the division sequence test for a 0 divisor or a
negative dividend, and set up the SR and DR regis-
ters. If a 0 divisor is sensed, the division is aborted
and the C, V, and Z condition codes are set to in-
dicate that an error has occurred.

Initial Setup

IT the dividend is negative, a sequence is entered to
complement the dividend. Notc that the branch on
the N condition code occurs after DIV.20, although
the condition code is loaded in DIV.10 {(divide), be-
cause the branch condition must be available at the
beginning of the machine state in which the branch
is used. Similarly, the branch on the Z condition
code after DIV.10 uses the condition code value set
by DIV.00, nat the new value set by DIV.10.

I1-1-27

Negative Dividend Processing

The sequence beginning with DVN.00 (divide nega-
tion) generates the 2’s complement of the 2-word
dividend as follows:

1. The 2’s complement of the less-signifi-
cant word is formed by first clearing the
DR, then subtracting the SR, which con-
tains the low order word, from the 0 in
the DR. The DR is cleared so that a sub-
tract from 0, which requires only one ma-
chine slate, can be used; normally a 2's
complement is generated by forming the
I’s complement and then incrementing,
as shown for the remainder of correction
steps. The 2’s complement of the less-
significant word is stored in the register
which originally held the less-significant
word.

2. DVN.20 generates a carry from the less-
significant word to the more-significant
word. That is, if a carry-out of the most-
significant bit of the ALU occurs during
the operations {which is repeated in
DVN.20), a | is shifted into the DR.

3. A | is subtracted from the DR. If a
carry occurred in Step 2, the DR con-
tains 0 and the 2's complement of the
more-significant word is formed; if no
carry occurred, the DR now contains a -
[, which cancels the carry insert during
the subtraction in DVIN.40, and the 1's
complement of the SR is formed, This is
the correct result if there is no carry,

After the 2's complement of the dividend is formed,
DVN.50 begins the restoration of the divisor to the
SR and the dividend to the BR and DR. However,
if the dividend is still negative, which occurs il the
dividend was the maximum negative number (be-
cause the 2s complement notation can express one
more negative number than positive number, the
largest negative number complements to itself), the
division cannot be performed and the sequence is
aborted,

Overflow Test and First Cycle

After the setup is compieted, the processor enters
DIV.30 with a positive dividend in the BR and DR,
17¢8) in the 8C, and the divisor in the SR. The next

portion of the sequence petforms the first cycle of
the division and performs a test for overflow. This
test is based on the fact that if underflow does not
occur during the first cycle, the quotient is too
large to be expressed in 16 bits. If the instruction is
not aborted because of overflow, the processor en-
ters the DIV.70 machine state to begin the main di-
vide cycle.

Dyivisien Process

The test for underflow that determines whether
DIV.80 or DIV.90 is enlered is based on the follow-
ing considerations:

1, If the divisor is negative, adding the divi-
sor to the dividend should produce a re-
sult closer to 0 than the original
dividend. If the result is negative, under-
flow has occurred and a 0 is shifted into
the DR.

2. If the divisor is negative and the divi-
dend is also negative, an underflow con-
dition already exists. The divisor is
subtracted from the dividend to return
the dividend to a positive number. If the
result is still negative, a 0 is shifted into
the DR; if the result is positive, the un-
derflow has been corrected and a 1 is
shifted in,

3. For a positive divisor and dividend, a
subtraction is performed. If the result is
positive, a 1 is shifted into the DR, but
if the result is negative, underflow has oc-
curred and a 0 is shifted in.

4. If the divisor is positive and the dividend
is negative, an addition is performed to
correct an existing underflow. If the re-
sult is positive, the underflow has been
corrected and a | is shifted into the DR,
otherwise a 0 is shifted in.

As a result of thesc considerations, the processor en-
ters DIV.80 il the divisor is positive and there is no
underflow (DRO is a 1), or if the divisor is negative
and there is underflow (DRO is a 0). DIV.80 per-
forms a subtract operation and shifts the carry-out
of the ALU into the DR, (A carry-out of the most-
significant bit of the ALU indicates that underflow
has occurred; if an uncorrected underflow existed,
the carry indicates that it has been corrected.)

I1-1-28

If the opposite conditions exist (SR is positive and
DRO is 0, or SR is negative and SRO is 1), DIV.90
is entered and an addition is performed, followed
by a shift of the DR. Note that the cases for which
a carry-out of the most-significant bit of the ALU
exist are equivalent to the cases described above for
which the least-significant bit of the DR is set.

Remainder Storage and Sign Check

After the divide cycle has been performed 15 times
(the first division cycle) and the first decrement of
the SC is performed in DIV, 30 - DIV.60, DVC.00
(divide correction) writes the remainder from the
BR into the appropriate general register, and trans-
fers control to one of four machine states, depend-
ing on whether a remainder correction is required
and whether the quotient has the correct sign.

Remainder Correction

If, after the last division cycle, the least-significant
bit of the quotient is a 0, an underflow condition
still exists. This condition can be corrected (unless
an overflow condition also exists) by adding a posi-
tive divisor or subtracting a negative divisor to cor-
rect the remainder. This is done by DVC.10 or
DVC.20. If no remainder correction is needed, or
following the remainder correction, DVC.30 or
DVC.40 begins complementing the remainder in
case the remainder has the wrong sign. The current
value of the remainder is not disturbed until a deter-
mination is made of the appropriate sign,

Quotient Sign Change

If the N condition code is set, the original dividend
was negative. The complemented remainder, which
is negative because the corrected remainder is posi-
tive (if all underflow conditions are corrected), is
stored as the final value of the remainder. If both
the dividend and the divisor were positive, the
quotient, which is also positive {the most-significant
bit of the quotient must be positive or an immedi-
ate overflow condition aborts the division), is writ-
ten into the appropriate general register. Similarly,
if both dividend and divisor are negative, the
quotient should be positive and is written in its pre-
sent form.

If the original signs of the dividend and divisor
were different, the quotient should be negative, The
quotient is complemented by DVC.80 and DVC.90;
one special case in which the quotient is the most
negative number is considered an error.

1.2.5.10 FLOWS 11

Memory Reference Execution Sequences

Flows 11 illustrates eight sequences thal execute the
data manipulation stages of a variety of instruc-
tions, when those instructions require external data
transfers to complete the instruction execution.
These sequences are entered from the B Fork deci-
sion point.

Standard Execution

The majority of instructions are executed by
EXC.00 (execute). When this state is entered, the
source operand, if any, is in the SR, and the desti-
nation operand is in the DR, EXC.00 performs one
data manipulation operation and loads the condi-
tion codes; both the operation performed and the
condition-code loading are controlled by subsidiary
ROMs (i.e., they are instruction-dependent).
EXC.00 performs the byte-swap operation in the
SHIFR automatically.

For any instruction that is operating on an odd-
byte destinaton operand, EXC.00 also begins an ex-
ternal data transfer operation that is completed in
EXC.10; this operation transfers the result data to
the destination address, which is taken from the
DR.

Negate Instructions

Several instructions, which are otherwise treated in
the same manner as those executed by EXC.00,
must be executed separately. The negate and negate
byte (NEG.B) instructions require two machine
states for execution because the 2’s complement of
a number is formed by first generating the 1's com-
plement and then incrementing that value, After the
negation is performed and the condition codes
loaded, the processor performs a byte swap if the
destination operand is an odd byte, and starts an ex-
ternal data transfer that is completed in EXC.10.

11-1-29

Shifter Instructions

Twa instructions, which are executed by EXC.00
when they operate on an even byte [DRO(0)], use
the SHFR to perform a right shift. These are the
ASRB and ROR instructions. When these instruc-
tions operate on a destination operand taken from
an odd-byte location [DRO(1)]), a second machine
state is required to perform the byte swap, which
also requires the SHFR. Therefore, SHR.00 (shift
right) performs the same actions as EXC.00, except
that no external data transfer is begun and no byte
swap is performed. These functions are performed
by SHR.10. Ne conflict occurs for the ASL and
ROL instructions because left shifts are performed
by the ALU, not by the SHFR.,

Test Instructions

The three instructions that set the condition codes
without modifying any stored data, TST, CMP,
and BIT, are executed by machine states that do
not start an external data transfer for the data
operand.

Jump I[nstruction

The jump (JMP) instruction performs only one op-
eration; it sets a new value in the Program Counter
(PC). The value loaded into the PC is the destina-
tion address, not the destination data word. The
last external data transfer to fetch the data word is
aborted, (BEND) the PC is loaded, and a transfer
to the instruction fetch sequence is performed by
the machine state JMP.00 (jump).

Jump to Subroutine Instruction

The jump to subreutine (JSR) instruction performs
two data transfers in addition to loading the PC.
The contents of a register specified by the instruc-
tion are saved on the hardware stack, and the pre-
vious value in the PC is saved in the specified
register. JSR.00 (jump to subroutine) the last exter-
nal data transfer, loads the destination address into
the PCA (but does not load the PCB from the
PCA, so that the PCB can be stored in the general
register until JSR.40), and loads the SR with the

contents of the specified register. JSR.10 transfers
the SR to the BR, which is the register that holds
data to be transmitted during external data trans-
fers, and loads the DR with the contents of general
register 6, the Stack Pointer (SP). JSR.20 decr-
emenis the SP by 2 (to allocate a word at the top
of the stack for the data to be stored); the new
value is stored in the SP and in the DR for use in
the external data transfer started in JSR.30. JSR.40
transfers the contents of the PCB to the specified
general register and loads the PCB from the PCA.
The data transfer begun in JSR.30 is completed in
this state.

Move From Previous Space Instructions

The MFPI or MFPD instruction transfers data
from the destination address to the hardware stack;
it acts like a “push” instruction, If Memory Man-
agement is on, the address space from which the de-
sination data is taken may differ from the address
space that the data is pushed into, but this does not
affect the operations within the processor. The
MFP.O0 state is entered with the data to be trans-
ferred in the BR; this stale loads the condition
codes and loads the SR from the hardware stack
pointer. The MFP.80 machine state is entered if the
destination mode is ; this implies that the data is
in a general register. This data is loaded into the
DR while the bus operation started by the IRD.00
machine state is aborted. The MFP.90 machine
state transfers the DR to the BR and loads the SR
from the stack pointer. The sequence for destina-
tion mode 0 then joins the sequence for the other
address modes in MFP.10. This state decrements
the SR (which contains the SP). SVC.80 and
SVC.90 (Flows 13) complete the instruction by
pushing the data onto the stack.

1.2511 FLOWS 12 and 13 - Flows 12 and 13
show the abort, trap, interrupt and floating-point
service routines. The abort, trap and interrupt se-
quences are described in Chapter 6. The FP11-C in-
structions are described in Paragraph 1.2.5.7 (Flows
7).

I1-1-30

1.2.5.12 FLOWS 14 - Flows 14 shows the se-
quences for manual Console operations. These oper-
ations are described in Part III of this manual
(Console),

1.2.6 Following an Instruction
Flowcharts

To follow a particular instruction through the flow-
charts, it is necessary to know which machine state
sequences apply to that instruction in the particular
state of the processor (specifically, which machine
state will be entered from various fork decision

points).

Through the

The tables and diagrams in this paragraph are de-
signed to help determine the exact sequence of ma-
chine states for a particular instruction. Starting
with either the binary code, or the symbolic name
of the instruction, the machine state entered from
each decision point, and what branches are taken at
some of the primary branch points within the se-
quences shown can be determined.

1.2.6.1 Figures and Tables - Figure 1-10 shows the
correspondence between binary op codes and in-
struction mnemonics,

1. Starting with the most-significant bit of
the instruction code, look down the cor-
responding celumn of Figure 1-10 to
find the number that matches the value
of that bit in the instruction.

2. The horizontal line to the right of that
number leads to another vertical col-
umn, for the next most-significant group
of bits in the binary code. Look down
that line to find the number that
maiches the value of the corresponding
bit or bits in the instruction.

3. Repeat Step 2 for each portion of the
binary code until the last number is fol-
lowed by the symbolic name and struc-
ture of an instruction instead of a
horizontal line. That instruction corre-
sponds to the given binary code.

When the symbolic code for an instruction is
known, the reader can find that instruction in
Table -3 which specifies the machine state se-
quences used to execute that instruction. The table
is in alphabetical order according to the mnemonic
codes used for the instructions, and lists both the in-
struction classes, if any, and the machine states en-
tered from various decision points, when used. The
instruction classes are groupings of the instructions
according to properties of the execution sequences
(e.g., I, P, and O/Class instructions perform a
DATI, DATIP, or DATO bus transfer as the last
transfer of the destination data fetch sequence).
While the A Fork decision point is used by all in-
structions (the A Fork decision point follows the in-
struction fetch sequence and is, in effect, the
instruction decoding system), not all instructions
use the B Fork or C Fork decision points; those
which do not are indicated by entry “N.U.” in the
appropriate column.

d-1-310

Table 1-3A

Instruction Microprogram Properties

Instruction Class A Fork B Fork C Fork Instruction Class A Fork B Fork C Fork
ADC.B P, E, DAC See Table 1-3B EXC.00 (11) N.U. IMP .DMO 1, F1, DAC See Table 1-3C IMP.00 (11) N.U
ADD: -SMO P,E, BIN See Table 1-3B EXC.00 (11) See Table 1-3D DMO RSD.00(3) N.U. NU
SMO P, E, BIN, DAC See Table 1-3C EXC.00(11) N.U. JSR -DMO 1, FJ,DAC See Table 1-3C JSR.00 (11) N.U
ASH .DMo DAC See Table 1-3C ASH.00 (7) N.U. DMO RSD.00(3) N.U. N.U
DMO DAC ASH.10(3) ASH.00 (7) N.U. MARK None MRK.00(2) N.U. N.U
ASHC -DMO DAC See Table 1-3C ASC.00 (7) N.U. MFP -DMoO I, DAC See Table 1-3C MFP.00 (11) N.U
DMO DAC ASC.10 (3) ASC.00(7) N.U. DMO I,DAC MFP.80 (3) N.U. N.U
ASL.B P,E, DAC See Table 1-3C EXC.00(11) N.U. MOV -SMO 0, E, BIN See Table 1-3B N.U. See Table 1-3D
ASR P, E, DAC See Table 1-3C EXC.00 (1) N.U. SMO 0, E, BIN, DAC See Table 1-3C N.U. N.U.
ASRB DRO(0) P,E, DAC See Table 1.3C EXC.00(11) NLUL MOVB -SMO P, BIN Sce Table 1-3B EXC.00(11) See Table 1-3D
DRO(1) P,E, DAC See Table 1-3C SHR.00(11) N.U. SMO P, BIN, DAC See Table 1-3C EXC.00(11) N.U.
Branch Instructions: BCC (BHIS), BCS (BLO), BEQ, BGE, BGT, BHI, BHIS — See Table 1-3E MTFP 0 MTP.00 (1} N.U See Table 1-3D
BICB -SMO P,E, BIN See Table 1-3B EXC.00 (11} See Table 1-3D MUL -DMO I, DAC See Table 1-3C MUL.00 (8) N.U.
SMO P, E, BIN, DAC See Table 1-3C EXC.00(11) N.U. DMO I, DAC MUL.80 (3) MUL.00 (8) N.U.
BISB -SM0 P,E, BIN See Table 1-3B EXC.00 (11} See Table 1-3D NEG.B -DMO P, DAC See Table 1-3C NEG.00(11) N.U.
SMO P, E, BIN, DAC See Table 1-3C EXC.00(11) N.U. DMQ P, DAC NEG.70(3) N. U N.U.
BIT.B -SMO 1,E,BIN See Table 1-3B TST.10(11) See Table 1-3D RESET None RES.00(3) N.U. N. U
SMO I E, BIN, DAC See Table 1-3C TST.10(11) N.U. ROL.B P,E, DAC See Table 1-3C EXC.00(11) N.U.
Branch Instructions: BLE, BLO, BLOS, BLT, BMI, BNE, BPL. — See Table 1-3E ROR P,E, DAC See Table 1-3C EXC.00(11) N.T.
BPT (OP3) | Nome | TRPOO(3) | N | N RORB DRO (0) P,E, DAC See Table 1-3C EXC.00(11) N.U.
Branch Instructions: BR, BVC, BVS — See Table 1-3E DRoO (1) P.E, DAC See Table 1-3C SHR.00 (11) N.U.
CCOP None | CCP.00 (3) N.U. N.U. RTI None RTL.OO(2) N. 4. N.U.
CLR.B P,E,DAC See Table 1-3C EXC.00(11) N.U. RTS None RTS.00(2) N.U. N.U.
CMP.B SMO I, E, BIN See Table 1-3B TST.10(11) See Table 1-3D RTT None RTLOL (2) N.U. N.U.
SMO I, E, BIN, DAC See Table 1-3C TST.10(11) N.U. SBC.B P,E, DAC See Table 1-3C EXC.00 (11) N.U.
COM.B P,E, DAC See Table 1-3C EXC.D0(11) N.U. SOB None SOB.00 (2) N.U. N.U.
DEC.B P,E, DAC See Table 1-3C EXC.00 (11) N.U. SPL None SPL.00 (3) N.U. N.U.
DIV -DMO 1, DAC See Table 1-3C DIV.00 (9) N.U. SUB -SMO P, E, BIN See Table 1-3B EXC.00(11) See Table 1-3D
DMO I, DAC DVS.00(3) DIV.00 (9) N.U. SMO P, E, BIN, DAC See Tabie 1-3C EXC.00{11) N. G.
EMT None RSD.00 (3) N.U. N.U. SWAB P, E, DAC See Table 1-3C EXC.00(11) N.U.
Floating Point: F,FJ SXT P,E, DAC See Table 1-3C EXC.00{11) N.U.
.;: ;gssfg:m ggg.'gg ((3 gbgho 10 ISqe'eU'l."able [-3D TRAP None RSD.00 (3) N.U. N.U.
FP PRES*DMO FOP.00 (2) FOP.40(7) FOP.50 (4) TST.B LE,DAC See Table 1-3C TST.10(11) N.U.
HALT None HLT.00 (3) N.U. N.U. WAIT None WAT.00 (3) N.U N.U.
INC.B P,E, DAC See Table 1-3C EXC.00(11) N.U. XOR P, E, DAC See Table 1-3C EXC.00(11) N.T.
10T None TRP.00(3) N. U N.U.

[1-1-32

¢

4
Table 1-3B G)OJ % Table 1-3C
A Fork, BIN*-SM0 // A Fork, DAC
Source Mode Machine State Destination Mede Machine State
1 $13.00 (1) L Pt 0 (DF7 + BRQ):EXC.90 (3),
2 $13.01 (13— L l/\-) ~(DF7 + BRQ):EXC.80 (3)
3 513.01 (1} Ty a 1 D12.00{5)
4 §45.00(1) fl/ 2 D12.00(5)
5 $45.00 (1) 3 D30.00 (5)
6 567.00(2) 4 D45.00 (6}
7 867.00(2) 5 D45.01 (6)
6 D67.00(6)
7 D67.01 (6)
Table 1-3D Table 1-3E
C Fork, BIN Branches
(All Cycles on Flows 1)
Destination Mode SRO Machine State
Instruction Branch Suceessful Branch Not Successful
0 0 DF7:D07.10 (4), -DF7:D00.90 (4) BRQQ Present BRQ Not Present BRQ) Present BRQ Not Present
1 DF7:D07.00 (4), -DE7:D00.80 (4)
BCC BXX.03 BXX.00 FET.0I FET.11
] 0 D12.80(5) . BCS BXX.04 BXX.01 FET.03 FET.13
i D12.90(5) BEQ BXX.05 BXX.02 FET.03 FET.13
BGE BXX.03 BXX.00 FET.02 FET.12
2 0 D12.80(5) BGT BXX.03 BXX.00 FET.0?2 FET.12
1 D12.90(5) BHI BXX.03 BXX.00 FET.01 FET.11
BHIS BXX.03 BXX.00 FET.0I FET.11
3 0 D30.80 (5)/ BLE BXX.05 BXX.02 FET.03 FET.13
1 D30.90 (5) BLO BXX.04 BXX.01 FET.03 FET.13
BLOS BXX.04 BXX.01 FET.03 FET.13
4 0 D45.80(6) BLT BXX.05 BXX.02 FET.03 FET.13
1 D45.90 (6} BMI BXX.04 BXX.01 FET.03 FET.13
ENE BXX.03 BXX.00 FET.02 FET.12
5 0 D45.80 (6) BPL BXX.03 BXX.00 FET.0i FET.11
1 D45.90(6) BR BXX.05 BXX.02 {always successful)
BVC BXX.03 BXX.00 FET.0! FET.11
6 0 D67.80 (6) BVS BXX.04 BXX.01 FET.03 FET.13
1 D67.90 (6)
7 L0 D67.80 (6)
} D67.90 (6)

I1-1-33

IR
15

IR IR IR IR IR IR
14-12 11-09 08 o7 -06 05-03 Q2-00
e o — . — . e e e e e e — -
I FC f-\ND PS CHANGE L1 0F 2}
o 1 10 o o 0 HALT l
| 1 BR OFFSET 1 1 OWAIT
{———————] 0 BNE OFFSET 2 2 RTIL I
| 1 BEQ OFFSET 3 RESERVED 3 %{F;
- 2 O BGE OFFSET 1+ JMP DST
DOUBLE OPERAN || BLT OFFSET 5 5 RESET |
' 1 oF 2} | 3—-——-! 0 BGT OFFSET 5 & ATT
t MOV SRC, DST 1 BLE COFFSET 7 X 7 Restnvgnl
| O L 2 s resos 2 P A
2 CWMP B3RC, D5T —_———— — —_—— —_——— — 2 RESERVED |
| ||_ SINGLE OPERAND (1 OF 2)] 3 SPLPRIORITY
3 SWAR DST |
BE BIT SRC, DST II 5 o 5 olR ber | 4 }ccoP MICROINSTRUCT ION |
1 EOM DST
| |+ exc sre.ost I]z INC DST I ?______.____J
3 DEC D%
5 SRC, DST | 1 O HEG DST |
| RIS II 1 ADC DST
2 SBC DST
|_ & ADD SAC, DSTJI 3 157 DST |
L 6 0 O ROR ©OST
\ ROL DST |
| 2 ASR DST
3 ASL DSY |
I_ T RESERVED 1 0 MARK OFFSET
e oo T || eI ske
[[REGISTER AND OPERAND i 1 5 owrLoeT |
1 } o0 MUL REG, SRC —_—— e —
[17 biv REG, sRé
2 ASH REG, SRC
| 3 ASHMC REG, SRC
4 X0R REG, SRC
I 5 RESERVED
& FESERVED
L 7_S08 REG. OFFSET _|
["PCTAND PS CHANGE (2 OF 2 1
o 0 10 BPL OFFSET
| 1 BMI OFFSET I
f——————— 0 BHI OFFSET
‘_________1| . 1 BLOS OFFSET I
o BvC OFFSET
DOUBLE OPERAND) BvS OFFSET
| {2 oF 2) | [3 O BMIS OFFSET laccnl
1 BLO OFFSET (BCS)
| 1 MOVE SRC,DST“ s 4 B oREs
2 CMPB SRC, DST — — _'1jAP_C0£ —]
| I' SINGLE OPERAND (2 OF 2} 1
| 3 @ITe snc,OSTll 5 e o & cLRe DST I
1 O
4 AICA SAC,0ST | ‘g gggg ggjr |
| ‘ 1 O NEGE OST
5 BISB SRC,0ST | [Y ApcH ST |
2 $BCH DST
!__ & SUB SRC.DSTJ' 6 o g gg\% gss]; |
| ROLB OST
| 2 ASRB DST |
3 ASLB DST
| 1 O RESERVED |
1 MFPD SRC
| Z MIPD DST
| 7 RESERVED 3 RESERVED |
| FLOATING FOINT | [FLOATING POINT OFERATE 7
i INGLE OPERAND I |
7 o 0 o G CFCC
119 Toees 1 1 SETE
2 STFPS Bar | l 2 SETI |
3 sTST DST 3 L0UB
t 0 QRipo) FOST I 4 M3N |
_— l i TST{F/D) I 5 STAO
[T FLOATING POINT aC AND OPERAND |] | 2 a8s (/D) §°ST_] S oo |
I {0 MuL(E/D) AC, FSRC [l NS IEDY_FOST | |, 4
1 MODIF/D] AC, FSRC 2 1 SETD
2 O ADD{F/D) AC, FSRC | 3 2 SETL I
I 17 Loer/ol ac, FSRC a 3
3———————— 0 SUBIF/D) AL, FSRC 5 i
1 CMPIFD) AC, FSRC | 5 5 |
4————— 0 STUF/D} AC, FOST 3 e
1 DIVLFID] AC, FSRC 3 N
I S—————— 0 STEXP AC, DST ke o L S
1 STCR/OMIZL) AC. DST
I §———— 0 STEIE/ONDm AClFost
1 LpeExp

Figure !-0 Determination of an Instruction from

LOCtI/LKF/DY
LoC IF.-'D)!DIF'F

I —

AC,
AC, SRC
AC, FSRCI

I1-1-34

the Binary Code

11 - 3440

Whenever possible, the entry for each active deci-
sion point specifies a machine state by its symbolic
name, with the number of the flowchart where that
state is illustrated in parentheses. If a particular ma-
chine state depends on additional conditions, those
condilions are shown preceding the corresponding
machine state and are separated from the state by a
colon.

To follow an instruction through the Flows with
Table 1-3, execute the following steps:

1. Find the instruction symbolic name in
the INSTRUCTION column (Table I-
3A).

2. Go to the A Fork cycle shown under “A
Fork™ and follow the Flows until a B er
C Fork, if any, is found.

3. Go to the B or C Fork cycle shown in
Table 1-3A. Repeat Steps 2 and 3 if the
instruction uses both the B and C Forks.

4. Determine the type of execute cycle from
the CLASS column of Table 1-3.

A sample instruction is taken through the Flows, us-
ing this documentation, in Paragraph 1.2.6.2,

1.2.6.2 Aw Instruction Example - This paragraph
traces one instruction through a sequence of ma-
chine states to illustrate the process of finding each
machine state and using the flowchart and ROM
map information to understand the operations per-
formed by the processor. The example instruction
and the environment in which it is executed is
shown in Figure 1-11.

The instruction is a CMP, which subtracts the desti-
nation word from the source word and uses the re-
sult to set the condition codes. These may then be
used by arithmetic and logic conditional branches.

BH1AEG @20FET BEBOLS L50180

FElife QOGEOQ THAR

Figure 1-11

Its Source mode is 2 (SM2) and its source field (reg-
ister} is 7 (SF7). After the Fetch cycles, the PC (reg-
ister 7) contains 1002, This value is the address of
the operand. A DATI is performed; it reads loca-
tion 1002 which contains 15, the source operand,

The Destination mode is 6 {(DM6) and the destina-
tion field is 7 (DF7). The PC contains 1006 after
the source operand fetch. The destination operand
is stored in the location whose address is the sum
of the present PC (1006) plus the contents of the in-
dex word, whose address is 1004, The index word
equals 100, and the destination operand is at loca-
tion 1106. Two DATIs are required to obtain the
destination operand: the first reads the index word,
the second reads the operand.

Immediately before the processor begins the ma-
chine state sequence for this instruction, the Pro-
gram Counter (PC) contains the value 1000(8), the
processor status word contains the value 000340,
there are no bus requests or other asynchronous
conditions, and the processor is about to enter the
FET.0X machine state, In this state, a DATI bus
operation is begun, using the contents of the PC as
the address.

FET.1X

Assuming that no requests have been strobed into
the request register (refer to Chapter 6), the next
machine state entered is FET.1X. In this state, the
PC is updated (the new value is loaded into the
PCA and does not disturb the PCB, which is still
being vsed for the address in the data transfer) and
the word that is read is loaded into the IR and BR.
Thz PCA now contains 1002, the IR and BR con-
tain 022767, and the PCB still contains 1000; fi-
nally, after the bus operation is completed, the PCB
is updated to 1002.

[RD.0O

The third machine state entered is IRD.0D. In this
state, the A Fork logic is enabled. According to Fig-
ur¢ 1-10, the binary number in the IR represents a

ZMF #13. CHAE

Instruction Execution Example

I1-1-35

CMP instruction; the entry for this instruction in
Table 1-3A refers to Table 1-3B, which indicates
that for a source mode of 2 (as specified by the
third octal digit of the instruction), the next ma-
chine state is $13.01. Since both the source and des-
tination fields are 7, the IRD.00 machine state also
loads the SR and DR with the updated PC value
(1002). Since CMP is a binary instruction and its
source mode is 2, RACH BUST is not asserted in
IRD.O0 (CONDITIONAL BUST, refer to Para-
graph 1.2.5.1).

Source Operand

In S$13.01 the DATI is started, using the contents of
the SR as the address. The contents of the SR
(1002) are incremented by 2, and this value is writ-
ten back into the PCA and PCB, which now con-
tain 1004,

The fifth machine state entered for this instruction
is the S$13.10 state. In this state, the DATI is com-
pleted, with the data that has been read-loaded into
the BR register. The new contents of the BR are 15
(the contents of the word following the instruction,
which is the source operand). The DR is loaded
with the updated contents of the register specified
by the destination field of the instruction (because
this is register 7, the DR is loaded from the PCB);
the new contents of the DR is 1004,

Destination Operand

For a source mode of 2, the branch condition in
513.10 enables the Fork C logic. The entry for the
CMP instruction in Table 1-3A refers 1o Tuble 1-
ID, which indicates that, for a destination mode of
6 und the least significant bit of thg SR equal 10 0
[SRO(0Y=even address], the next machine statc is
D67.80, which is shown on Flows 6. This machine
state transfers the contents of the BR (=source op-
erand) to the SR, and begins the third DATI bus
operation, using the contents of the PCB as the
address.

The next machine state is D67.00, which completes
the third DATI und increments the PCA by 2. Be-
citluse the DR is intended to reflect the current con-
tents of the specified register, the DR is updated to
reflect the new value in the PC, which is 1006, The
data read into the BR is 100. This is the indcx

word, which when added to the destination mode
register (R7 or the PQC), is the address of the desti-
nation word.

Following the D67.0 state, the processor enters the
D67.1 state, where the PCB is loaded from the
PCA and the contents of the BR is added to the
contents of the DR. The result (1106) is the index
word and is loaded into the DR. The branch condi-
tion in this machine state selects the D10.3 state to
follow the D674 state (-DM357).

In the¢ D10.3 muchine state, the processor begins a
fourth bus aperation, using the contents of the DR
(1106) as the address. The type of bus operation
performed depends on the instruction class, accord-
ing to Table 1-3A. A CMP instruction is an 1/Class
instruction, so a2 DATI operation is begun. This ma-
chine state also loads the BR from the SR, so that
both registers contain 13,

The next state cntered depends on the instruction
cluss. A CMP instruction is not F, J, or O/Class,
so the D10.60 state is entered. This state completes
the lfourth DATI operation, loading the contents of
the location addressed by the DR (location 1106)
into the BR. This word is the Destination Operand,
which equals 0.

Execule

The D10.60 machine state branch condition enables
the B Fork logic [DRO(0})]. The entry for a CMP in-
struction in Table 1-3A indicates that the next ma-
chine state is TST.10 (Flows 11).

The CMP instruction does not alter any data
words, so no further bus operations are required.
The TST.10 machine state performs instruction-de-
pendent ($ on Flows) data operations and condi-
Lion-code loading.

Flows |1 shows that the arithmetic operation is per-
formed with the A operand = BR (destination
word) and B = SR (source word). The ALU Con-
trol ROM Map on drawing GRAK shows that for
CMP.B, the operation is A - B - 1, and that the
SHFR does not change the result {except in the
case of an odd byle operation, in which case the
bytes ure swapped).

IT-1-36

In this example, the following operation is executed
by the ALU:

A input: 0 000 000 000 000 000
B input: -0 000 000 000 001 101
1111 111 111 110011
minus 1: -0 000 000 000 000 001
Result (to SHFR): 1111111 111 110010 + carry

The condition codes are then set as shown by
the CC Contral ROM Map on drawing IRCJ:

N is set if “SHFR(15)0" (SHFR bit 15=0).

Z is set if "A=B(1500" (four-input gate to
IRCF Z DATAI1 L),

VissctilrAI5*~Bi5*-ALUI5+-A15*BIS*ALU

15" (bottom two inputs to the lower IRCE
VDATA L 74565 A=AMX, B=BMX).

C is set if "ALU COUT 157 (DAPJ ALUCN
L).

. The N bit is cleared, since bit 15 of the
SHFR is 1.

2. The Z bil is cleared, since the output of
the AL.U is not O,

3. The V bit is cleared, since A15 and BIS
(AMX bit 15 and BMX bit 15) are the
same.

4. The C bit is set, since there is a carry
from ALU bit 15.

NOTE

The arithmetic and the N and
C condition code load oper-
ations are the opposite of
those described in the First
Edition of the PDP-11/70 Pro-
cessor Handhook, The instruc-
tion, however, performs as
specified in the Handbook.

1.3 ROM MAP
Reler (o drawing D-CS-M8123-0-1, ROM & ROM
CONTROL, sheeis 12 - 15,

These four drawings list all the ROM states in nu-
merical order. The following information is
provided:

1. In the STATE column, the name by
which the state is called on the Flows,

2. In the FLOWS column, the sheet of the
Fiow Diagrams on which the ROM state
is shown.

3. In the ADR column, the ROM address
of the state,

4, In the BRK — ALU columns, the value
of each of the ROM fields for each
state.

5. In the FEN column, the fork that is en-
abled, if any,

6. In the BEN column, the branch that is
enabled, if any.

7. In the UAD column, the base address
for the next ROM state, which may be
modified if the FEN or BEN fields are
other than 0.

14 ROM ADDRESS

Refer to Figure 1-12. The ROM Address Register
(RAR), which is clocked at T3, determines the out-
put of the ROM for the next cycle and supplies the
address for the next cycle. It also supplies the ad-
dress for the Memory Management ROM (refer to
Section V),

The input 1o the RAR [RACL RADR(07:00) H] is
the address selection logic shown on RACL. The
following are inputs to this logic;

I. The UADR field of the ROM. In the ab-
sence of uany of the modifying signals,
this is the ROM address for the next
cycle.

2. The Branch inputs. which are controfled
by conditions occurring in the rest of the
processor logic.

IM-1-37

TO MEMORY
MANAGEMENT ROM

PAR1.4.4 PAR.1.4.2 PAR.1.4.1 PAR.1.1
EXTERNAL Bfo“e’j‘é"
CONDITIONS
RA&CK
PAR.1.4.5 PAR.1.4.6
e > DA m—
RAGJ, H v RACE,F,H
} ROM
T PAR.1.4.8
FAR.1.4.% RADR RAR -
:> B FORK ﬁ UADR [
IRCB
IR
PARIA.T
Ty o™
IRCA IRCC
f RACA
. RACA RACH
™ > RACC RACC
RAGCL RACD RACD
T3

Figure 1-12

3. The Fork logic, which is controiled by
the instruction word there are three
Forks:

#. The A Fork, used by all instruc-
tions, is the instruction decoder for
the KB11-C.

. The C Fork, which is used only by
binary instruction that require ad-
dress calculation (SM not)

¢. The B Fork, which is used for exe-
cute cycles by instructions that re-
quire either source or destination
address calcuiation, or both.

Figure [-12 lists both the paragraph and the logic
druawings containing information about the ROM
address gencration.

- 3108

ROM Address

1.4.1 ROM Address Register (RAR)

There ure three identical copies of the RAR. Refer
to drawings RACA through RACD. In addition to
the twe copies (RARB and RARA) used to provide
sulficient fanout for the t6 ROM ICs, a third copy
(RAR, shown on RACD) is used to transmit the
current microprogram word address to the Memory
Management ROM (refer 1o Section 1V of this
manual),

The RAR is normally loaded from inputs generated
by the microprogram address selection logic shown
on druwing RACL. Under some circumstances, the
RAR is forced to address 200 by clearing all but
the most-significant of the eight bits, and setting
that bil. To permit setting the most-significant bit,
it is implemented by a separate flip-flop. The re-
maining seven bits ure implemented by 6-bit regis-
ters of the same type used for the ROM output
buffer.

[1-1-38

RACA ZAP L is the signal used to force the pro-
cessor into a known state to start the processing of
aborts and of the power-up sequence. The condi-
tions that can generate this signal are:

t. Power-up sequence or start sequence
(ROM INIT)

2. Parity error abort, which is flagged
UBCB PE ABORT during the micro-
program cycle which follows a pause

3. All other aborts (TMCC ABORT),
which are flagged during a pause cycle
(RACB UBSDOI).

PE ABORT uand ABORT are pated with TIGD
TS52 L, which remuains asserted longer than the
putse TIGC T3 L that clocks the RAR, and ensures
that the ZAP signal overrides the normal address.

ROM INIT and ABORT are described in Chapter
6 of this manual.

1.4.2 ROM Address Selection

Refer to druwing RACL. RADR{07:00) are the in-
puts to the RAR. An address bit is asserted (high),
when ull four of the negative-input-OR gates have
at feast one low input.

On all RADR 74564 gutes, there are four input OR
gales, Three of these gates are used for the forks,
one gate each for the A, B and C Forks. The
fourth gate is the OR of the ROM UADR field bit
and of the Branch Enable Bit (BRCAB) for that bit
position. Since there is no branch enable for bit 3,
the gute for RADRO3 has only one input,
UADRO3.

1, When all three fork inputs are negated,
the OR gate inputs for the forks are low.
The inputs to the fourth gate then deter-
mine the state of the address bit: if ei-
ther or both UADR and BRCAB bits
are asserted (low), the RADR bit is as-
serted (high).

2. Only one of the three UFEN bits is ever
asscried at one time (in a microprogram
word). When one of these bits is as-
serted, its input to its RADR OR gates
is high, and this OR gate is asserted if
one or more of their fork logic input sig-
nals is asserted (low), In this case, the
RADR bit is asserted (high).

From the above, it can be seen that:

l. A branch can assert an RADR bit for
which the UADR is not asserted:

2. Any Fork can negate an RADR bit for
which the UADR bit is asserted. For ex-
ampie, if UADROD is asserted (fow) and
ithe A Fork (lower gate) is enabled,
RADROD is negated if none of the AO,
Al, A2 RABOO signals are asserted
(low). The A Fork has an address of
377, or all eight UADR bits asserted;
any combination of these could be ne-
gated to generatc any address between
000 and 377.

Fork Inputs
The A Fork input, RACD UAFEN L s
unconditional.

The C Fork input, RACD UCFEN L, is disabled
by BENI!4 if the source mode is 3, 5 or 7. This
branch occurs during source mode operand fetch
when one more bus cycle is required te fetch the
source operaid, Refer to Flows 1, S13.10 and
Flows 2, §67.30: if -SM357, the next cycle starts the
DM operand fetch on the C Fork: if SM357, bath
cycles letch the operand in S13.20 - S13.40 and
then go to the C Fork.

The B Fork input, RACD UBFEN L, is disabled
by one of twe conditions, both shown at the bot-
iom of Flows 6:

[, BENIS. If the instruction is FJ/class, it
goes directly to the B Fork for execu-
tion; if it is not Fl/class, it branches to
one of two cycles, depending on whether
or not it is O/class, to complete its desti-
nation operand fetch.

2. BENO5. An insiruction that is neither
O/class nor Fl/class goes to the B Fork
if its destination address is not an odd
byte. If it is un odd byte [DRO(1) or
GRAB QBD] it first brunches to D12.30
to swap bytes in the BR, und then goes
to the B Fork.

1.4.3 Branches and Forks

Normally, the address of the next microprogram
word is derived from the contents of the micro-
address field (UADR) in bits 7 — 0 of the current

I1-1-39

microprogram word. Two Branch selectors allow 2-
way or 4-way branches on the conditions of various
processor circuits and on the coatents of various
dula registers. For most decision points encoun-
lered during the flow of machine states, this branch
capability is sufficient.

In certain situations, particularly after an instruc-
tion or data has been fetched by a state sequence
that is common to many instructions, it is necessary
to sefect 4 next machine state that is unique to one
or a small class of instructions. This requires a
much wider branching capability. In the KB{1-C
Processor, this capability is provided by the Fork
logic. Each of three lorks generates one of a large
number of possible addresses, based on the decod-
ing of the instruction, the address modes, and vari-
ous processor stutus indications. When a fork is
enabled by the corresponding fork-enahle bit of the
microprogrum. the address generated by the fork is
loaded into the ROM address register instcad of
the contents of the microaddress ficld,

1.4.4 Branch Logic

The processor is controlled by words fetched from
a microprogram ROM: euch word represents a ma-
chine state. The sequence of machine states is con-
trolled hy the sequence of ROM words fetched.
Normally, each ROM word contains the address of
the next word 1o be fetched. When it 1s necessary Lo
provide lor alterations in the sequence of machine
stites, two bits of the address conluined in the cur-
rent ROM word can be altcred by inputs that sense
processor conditions and data values. The altered
bils seleel different addresses, depending on their fi-
nal values, so that up o four different addresses
cun be selected. This 4-way branch permits a wide
variety of machine state sequences to use the same
microprogram words,

The two bits that can be aitered by branch condi-
tions are bits 5 and 4 of the microprogram address.
Therelore, when a branch is used, the addresses se-
lected for different conditions differ by 20, 40 or
60. There are 16 sets of branch conditions. One of
the 16 scts is selected by the four branch-enable bits
in the current microprogram word.

The Censole branch (Flows 14) can modily bits 7,
6 and 2:0; it is not tncluded in the explanation that

follows, but is described in Section I (Console) of
this manual,

RACK BRCAB(05:04) L are the outputs of the
branch logic: each signal is ORed with the corre-
sponding bit of the microprogram address from the
current ROM word on one of the input gates to
RACL RADR(05:04). When the 4-way branch is
used, bils 5 and 4 of the UAD address are both ne¢-
gated ¢high), and the two branch signals select one
of lour addresses, If only a 2-way branch is desired,
one of the UAD address bits is asserted (low), and
the corresponding branch bit is ignored, because
the result of the OR is always asserted.

Refer 10 drawing RACK., BRCABOS L and
BRCABO4 L urc both generated by identical logic
circuitry, which consists of two multiplexcrs and a
4-input AND-NOR gate. UBEF{03:00) controls the

cireuit.

UBEFO03 selects the multiplexer: when this signal is
not asserled, the 1op multiplexer is enabled and the
lower one disabled. The opposite occurs when
UBLFO03 is asserted.

UBEF{01:00) selects which input to each half of the
multiplexer 1C is selected, Each [C has two
(}LllpLIT..‘iA

UBET02 selects which of the two outputs of the
multiplexer selecied by UBEF(01:00) is gated
through the BRCAB gate.

When UBEIF(03:00) = 00, the DI inputs to the top
multiplexers are selected. Since these are both
ground, BRCAB(05:04) arc both negated (high),
and the corresponding ROM address bits, RACL
RADR{05:04) follow the UADR(05:04) inputs, i.e.
the address is not modified. The same is true for
UREF = 14, which is the Console branch.

Tahle 1-4 shows the inputs Tor cach branch.

1.4.5 Imstruction Registers

The instruction word is reud from memory during
FET.10. 1t is clocked into the Instruction Registers
al T1 ol TRD.00; this is shown us T6 of FET.10 on
the Flows.

11-1-40

Table 1-4

Branch Signal Sources
UBEF RACK BRCABOSL RACK BRCABR 04 L Comments
Value
00 : GROUND GROUND No Branch
0l IRCD DM357H GRAE SREQONEL
02 |[IRCFZ2(1)H TMCB (PWRF +INTR) L
03 GRAJSC=0L GRAJSCO5 L
04 |GRAIDIVSUBL IRCHN (1) H
05 |[GRABOBD(®)H GRAJDIVQUIT L BRCABOS: Disable B Fork if OBD,
Flows 6
06 |[DAPABRI4L SSRA PS RESTORE (1) H
07 |RACKBE75H RACK FP REQH
10 UBCC RIP+ FP SYNC H FRMB FP CLASS L
11 GRAJSC=0L GRAD DROO H
12 [TMCA CONF (1} H TMCB BRQ TRUE L
13 |[TMCBPF(() * (SF + TF)H TMCB PF(0) * (SF + -TF)H | Service Flows, Flows 12
14 | GROUND GROUND E?SI;E?CB?;T;;;EESS}:Flows 1&2
15 IRCBFICLASS L IRCCOCLASSL Disable B Fork if F/J Class, Flows 6
16 GRAD DROOH GRAH SR15 .H
17 |RACKRIP+FPSYNCL TMCB BRQ * (T+ CONF) L

*TMCB BRQ * (T+ CONF) L

I1-1-41

There are two copies of the Instruction Register
(IR);

I RAC) AFIR(15:00) (t}y H, which is
used only by the A Fork logic for rea-
sons of speed. For this same reason,
there is an cxtra copy of bits 9 and 10
[RACH AFIR(10A:09A) (1) H].

2. IRCA IR(15:00) (1} H, which is used by
the B and C Forks, the Condition Code
logic and the rest of the KB1}-C logic.

Both copies of the IR are clocked a1 Tl when the
UIRK bit ol the microprogram field is asserted in
FET.0.

1.4.6 A Fork Logic

1.4.6.1 Decode Logic - Refer to drawing RACE.
The logic iliustrated on this drawing is part of the
A Fork, This fork operates as the instruction deco-
der of the processor. Immediately after the instruc-
tion has been loaded inwo the Instruction Register
(IR} the A Fork begins to generate an address. Be-
cause this address must be available within one ma-
chine cyele, the A Fork is designed Lo operale at
maximum speed. Therelore, the amount of decod-
ing is mimmized: classes of instructions arc recog-
nized and the bits that differentiate members of the
class are used directly as low-order bits of the gener-
ated address. This technique can be understood by
examining Lhe address utilization by the forks, As
an example, consider the selection of addresses by
the A Fork lor the group of instruclions ranging
irom HALT (o RTT. The binary op codes for ali
these instructions are identical except for the three
least-significant bits. When the A Fork decode logic
recognizes Lhat all but the three least-significant bits
are 0, bit 3 of the ROM address is set, and the
three least-significant bits of the op code become
the three least-significant bits of the address.

1.4.6.2 Address Bit Generation — The logic shown
on drawing RACE generates address bits for cer-
Lain classes of instructions, These bits are then
QRed with other signals that gencrate the same bits
for vther classes of instructions to gencrate the A
Fork address. The address is then combined with

the address from the microprogram in a bit-clear
operation as shown on drawing RACL.

The signal names indicate the use of each logic cir-
cuit as follows:

1. The fork signals that are connected to
the microaddress logic on drawing
RACL have names that include RAB
(far ROM Address Bit), followed by the
number of the address bit to which the
signat is conhected,

2. In some cases, a signal is connected to
more than one address bit because the
samg conditions generate both bits.

3. Many RAB signals are connected to the
same address bit. They are distinguished
by u letter that tells which fork generates
the bit, and where morc than one signal
can be generated for the same fork,
Thus, the signal RACE A0 RABOO is
one of several signals used by the A
Fork logic 1o generate bit 0 of the
address.

Branch insiructions are described separately in Para-
graph 1.4.6.4,

Table -5 shows the RAB bits asserted by each in-
struction on the A Fork.

1.4.6.3 Instructions Other Than Branch

RACE AQ RAB (02:00)

RACE A0 RABDO L. RACE A0 RABOI L, and
RACE A0 RABO2 L are used to generate micro-
program addresses 00! - 007. No other A Fork bits
are enabled when these gates are enabled. The en-
abling conditions for all three signals are identical,
except that each signal corresponds to a different
bit of the Tnstruction Register. The IR bits passed
through the AND-NOR gates ure the destination-
maode hits for instructions thal require Destlination
Address Calculation {DAC), but no source address
catculation, If the destination mode is 0, the destina-
tion data is in the Destination Register and no ad-
dress calculation is required.

I1-1-42

This group of microprogram words is used for the
following groups of instructions:

1.

All single-operand instructions (with op
codes of 005XDD, 105XDD, 006XDD
and 106XDDY; this includes the instruc-
tion group from CLR to ASL (in both
word and byte forms), the variable ad-
dress-space moves, SXT, and XOR.
These instructions are recognized by
their op codes and generate the signal
RACE RCLASS H.

The register and memory instruction
graup, which includes MUL, DIV, ASH,
and ASHC. When one of these instruc-
tions is decoded, the signal RACE
(MUL:ASHC+MFP) H is generated.

Any binary instruction with a source
mode of 0. Because the source data is al-
ready in the Source Register, it is not
necessary to do the source data fetch.
These instructions generate the signal
RACE BIN*SMO H.

The three instructions IMP, JSR, or
SWARB. These three instructions use the
same address calculation as the single-
operand instructions. The sighal RACE
JMP + JSR + SWAB H is generated.

The instructions that use AQ RAB(02:00) are listed

helow:

0001 DD
03003 DD
00 4R DD
00 50 DD
00 51 DD
00 32 DD
00 53 DD
00 54 DD
0035 DD
00 56 DD
00 57 DD
060 DD
ol DD
00 62 DD
00 03 DD
00 63 88

0067 DD

JMP 07 0R S8 MUL

SWAB 07 IR 88 DIV

ISR 07 2R S8 ASH

CLR 07 3R S§ ASHC
COM 074R DD XOR

INC 1050 DD CLRB
DEC i051 DD COMB
NEG 1052DD INCB
ADC 1053 DD DECB
SBC 1054 DD NEGB
TST 1055 DD ADCB
ROR 1056 DD SBCB
ROL 1057 DD TSTB

ASR 1060 DD RORB
ASL {061 DD ROLB
MEPI 1062 DD ASRB
SXT 1063 DD ASLB

1F SM0:

0l S§ DD
0255 DD
03 85 DD
04 SS DD
0585 DD
06 SS DD

RACE AQ

MOV 1SS DD MOVEB

CcMmp 1288 DD CMPB

BIT 13SSDD BITB

BIC 14 8S DD BICB

BIS 1588 DD BISB

ADD 6 58 DD SUB
RABO3

RACE A0 RABO3 L is generated for the following
groups ol instructions:

00 00 00
00 00 01
00 00 02
G0 00 03

00 03 DD
00 50 DD
00 51 DD
00 532 DD
00 53 DD
00 35 DD
0036 DD
Q0 37 DD
00 60 DD

11-1-43

Branch instructions accompanied by a
Bus Request (BRQ); these instructions
generate A Fork addresses ranging from
330 - 336. Refer Lo Paragraph 1.4.6.4.

Op codes 000000 — 000007; these instruc-
tions range from HALT to RTT and use
microprogram addresses 010 - 017 {317
is for op code 000007 and traps through
location 4).

The instructions in this group are:

HALT (00 00 04 10T
WAIT 00 00 05 RESET
RTI 00 00 06 RTT
BPT) 00 07

F/class instructions, with the exception
of the binary instructions that have both
SMO*DMO, if these instructions have a
DF7 or there is 2 BRQ to be serviced
(DF7+BRQ). These instructions all go
to address 030 because AFIR(05:03) are
all 0s, which causes RACE RAB(02:00)
to be negated. RACF A2 RABO3 asserts
bit 3 for BIN*SM*DMO*(DF7+BRQ}).

The instructions in this group are:

SWAB*DMO 0061 DD ROL
CLR 00 02 DD ASR
COM 0063 DD ASL
INC 0067 DD SXT
DEC 074R DD XOR
ADC 105 DD CLRB
SBC 051 DD COMB
IST {032 DD INCB
ROR 1053 DD DECB

Table 1-5A

A Fork Address Generation
Instruction Class AQ RAB Al RAB A2 RAB Address Instruction Class AO RAB Al RAB A2 RAB Address
00 | ot | 02 |03 |05 00 |01 (02 03 03 | 05 & Flows ooj 01‘[02 103 (05|07 o1 |02 |04 |05 03 | 05 & Flows
ADCB P,E, DAC See Table 1-5B IMP -DMO 1, F1, DAC See Table 1-5C
ADD: -SMO P, E, BIN See Table 1-5B DMO 000 (3)
SMO P,E, BIN, DAC | See Table 1-5C JSR DMO 1, F1, DAC See Table 1-5C
ASH -DMO DAC See Table 1-5C DMO 000(3)
DMO DAC X X 052(3) MARK None X X X 047 (2)
ASHC -DMO DAC See Table 1-5C MFP .DMO [. DAC See Table 1-5C
DMO DAC X x |x 053 (3) DMO I, DAC X | X X 046 (3)
ASL.B B, E, DAC See Table 1-5C MOV SMO 0, E, BIN See Table 1-5B
ASR P E. DAC See Table 1.5C SM0O O,E, BIN,DAC | See Table 1-5C
ASRB DRO(0) | P,E,DAC See Table 1-5C MOVB -SMO P, BIN See Table 1.8
DRO (l) P E, DAC See Table '1/‘5C SMQ P, BIN, DAC See Table 1-5C
Branch Instructions: BCC (BHIS), BCS (BLO), BEQ, BGE, BGT, BHI, BHIS — See Table 1-7 MTP 0 X X 045 (1)
BICB -SMO P,E, BIN See Table 1-5B MUL -DMO I, DAC See Table 1-5C
SMO P,E,BIN, DAC | See Table 1-5C DMO [, DAC X 050(3)
BISB SMo P, E, BIN See Table 1-5B NEG.B -DMO P,DAC See Table 1-5C
SMO P,E,BIN,DAC | See Table 1.5C DMO P, DAC X 301(3)
BITB -SMQ LE,BIN See Table 1-5B RESET None X X 015(3)
SM0 IE,BIN,DAC | See Table 1-5C ROL.B P,E, DAC See Table 1-5C
Branch Instructions: BLE, BLO, BLOS, BLT, BMI, BNE, BPL - See Table 1.7 ROR P,E,DAC See Table 1-5C
BPT (OP3) None [x | | | x [x | | 013(3) RORB DRO(0) | P.E,DAC See Table 1-5C
Branch Instructions: BR, BVC, BVS — See Table 1-7 DRO (1) P,E, DAC See Tabie 1-5C
CCOP None X X 044 (3) RTI None X X 012(2)
CLR.B P, E, DAC See Table 1-5C RTS None X 040 (2)
CMPB -SMO IE, BN See Table 1-5B RTT None X X [X 016 (2)
SMO L E,BIN,DAC | See Table i-5C SBC.B P,E, DAC See Table 1-5C
COM.B P, E, DAC See Table 1-5C SOB None X X [X | X 057 (2)
DEC.B P, E, DAC See Table 1-5C SPL None X X 43 (3)
DIV -DMO I, DAC See Table 1-5C SUB -SMO P, E, BIN See Table 1-5B
DMO I, DAC X X 051 (3) SMo P,E,BIN,DAC | See Table 1-5C
EMT None 000(3) SWAB P,E, DAC See Table 1-5C
Floating Point: F, FI SXT P,E, DAC See Table 1-5C
-FP PRESENT 000(12) TRap None 000(3)
FP PRES 101 (2)
TST.B I, E, DAC See Table 1-5C
HALT None X 010(3} WAIT N X IE)
INC.B P, E, DAC Sce Table 1-5C one
XOR P.E.DAC See Table 1-5C
IOT None X X 014 (3)

I1-1-44

Table 1-5B
A Fork, BIN*SM0

Source

A RAB

Al RAB

A2 RAB

Mode

03 | 05

07

0o

02 05

03 | 05

Address
& Flows

R - R ¥ R O O S)

X

><><><><><><><g

e o M

021 (1)
022 (1)
022{1)
024 (1)
024 (1)
026 (2)
026 (2)

Table 1-5C
A Fork, DAC

Destination Mode

A0 RAB

Al RAB

A2 RAB

Address

02 (03

05

07

00

o1 |02 |04

05

0¢ |03 | 05

& Flows

0: -(DF7+BRQ)

0: BIN*(DF7+BRQ)

0: -BIN*(DF7+BRQ)
1

bt B RN ¥, R S PV N

E

MM M

4

020 (3)
030 (3)
030(3)
001 (5)
002 (5)
003 (5)
004 (6)
005 (6)
006 (6)
007 (6)

11-1-45

1055 DD ADCB 106! DD ROLB
10 56 DD SBCB 1062 DD ASRB
(057 DD TSTB 1063 DD ASLB
10 60 DD RORB

RACE A0 RAB04

RACE AQ RABO4 L is generated for any branch in-
struction. This signal is an input to bits 4, 6 and 7
of the microprogram address; as a result, all branch
instructions generate A Fork addresses with these
three bits set (addresses between 320 and 336). Re-
fer to Paragraph 1.4.6.4,

RACE A0 RABOS

RACE A0 RABOS L is generated for MUL, DIV,
ASH, and ASHC instructions with a destination
mode of 0. and for SOB instructions. RACE BIN L
climinates the binary instructions from U/class.
This RAB signal is alse connceted to RABO3 to
penerate addresses ranging from 050 to 0537.

These instructions are listed below:

07 OR 558 MUL
07 IR 8§ DIV
17 2R 8§ ASH

(7 3R S§ ASHC
07 7R NN SOB

RACH A% RARO7

RACH A0 RABO7 is asserted for a NEG or NEGB
instruction with DMO, Together with RACIT A2
R ABOO. it generates address 301,

RACF Al RAB{02:00)

RACHE Al RABOO L, RACF Al RABOI L, and
RACF A1 RABOD2 L generute the three least-signifi-
cant bits ol the ROM address for the classes of in-
structions described in the following paragraphs.

HALT Through Op Code 7 — These instructions
generale microprogram addresses ranging from Q10
- 017 the 1 in bit 3 of the address is generated by
RACE AD RABO3 L. The following instructions
are included in this group:

00 00 04 10T
00 00 05 RESLT
00 00 06 RTT

00-00 00 HALT
06 00 01 WAIT
00 00 02 RTI
00 00 03 BPT

X /Class — The X/Class instructions, MARK, MFP
with a destination mode of 0, and MTP, generate
addresses of 074, 046, and 0435, respectively. RABO2
is Torced to a 1, and the two low-order bits are the
complements of the corresponding bits from the In-
struction Register. Bit 5 of the address is set by
RACI" A2 RABOS L.

U/Class - U/Class insiructions include three
groups: the binary instructions; the SOB instruc-
tion: and the MUL, DIV, ASH, and ASHC instruc-
tions with a destination mode of 0.

The Binury instruction use four microprogram ad-
dresses, 021 for SM1, 022 for SM23, 024 for SM45,
and 026 Tor SM67. These bits are centrolled by
AFIR(11:09); bit 0 (A1 RABOO) can only be set by
SM1 {RACII BIN*(-SM01) L]. Bit 4 of these ad-
dresses is set by RACH Al RABO4 [(-BFI=T7)*(-
BF [=0)*(-SM0) = op codes with bits 14:12 from 1 -
6 und not source mode 0]. The instructions in this
gI'()llp ures

01 85 DD MOV {1 SS DD MOVB
0288 DD CMP 12 88 DD CMPB
03 88 DD BIT 1388 bD BITB
04 SS DD BIC 14 8§ DD BICB
05 88 DD BIS 1585 DD BISB
06 88 DD ADD 16 558 DD SUB

MUL, BIV, ASH and ASHC with DMO and SOB
use addresses 050 — 053 and 57, Bits 11:09 of the op
code gencrate bits 02:00 of the address; bits 3 and 5
of the address is asserted by RACE A0 RABOS,

RTS:CCOP - Op codes 0002XX (RST:CCOP) use
addresses 040 - 044. Bit 0 of the address is set
when TR(05:03) = 3 (SPL), bit 1 when IR(05:03) =
2 or 3 (OP22, Flows 3 and SPL), bit 2 when
IR(05:03) = 4 (CCOP). Bit 5 of the address is set
by RACF Al RABOS5S. The instructions in this
group include:

00 02 OR RTS

o002 10 Unused
through
00 02 27 Unused

00 02 3N SPL
00 02 40 NOP

00 02 41 CCcop
through
0c 02 77 CCOP

11-1-46

RACH Al RAB04
RACH Al RABO04 L is asserted for the following
instructions:

1. Binary instructions with:

a. Both source and destination modes
0 (addresses 20 and 30);

b. Any source mode except 0 (ad-
dresses 21, 22, 24, and 26);

The instructions in this group are the fol-
lowing, when either SMO*DMO or

SM(1:7),
01SS DD MOV 1188 DD MQVB
2SS DD CMP 1288 DD CMPB
03SSDD BIT 138§ DD BITB
4SS DD BIC 14 8§ DD BICB

1588 DD BISB
16SS DD SUB

05SSDD BIS
06 38§ DD ADD

2. R/Class instructions with destination
mode 0, except MFP and the NEG.B in-
structions (addresses 20 or 30);

The instructions in this group are the fol-

lewing, when DMO:

0 s0DD CLR 07 4R DD XOR

0051 DD COM 1050 DD CLRB
0052 DD INC 1051 D> COMB
00 53 DD DEC 1052 DD INCB
0055 DD ADC 1053 DD DECB
0056 DD SBC 1055 DD ADCB
0057 DD TST 10 56 DD SBCB
00 60 DD ROR 1057 DD TSTB
0061 DD ROL 1060 DID RORB
0062DD ASR 10 61 DD ROLB
0063 DI ASL 10 62 D> ASRB
00 67 DD SXT 1063 DD ASLB

3. SWAB instructions with a destination
mode of 0 (also addresses 20 or 30).

RACF A1 RABOS

RACF Al RABO5 is asserted for RTS:CCOP ex-
cept when IR(05:03) = 1 which are unused op
codes,

RACH A2 RABOO
RACH A2 RABOO generates bit 0 and 6 of the
ROM address. Tt is asserted in the following cases:

1. For NEG.B instructions with DMO0, ad-
dress 301, RACH A0 RABO07 asserts bit
7 in this case.

2. For branch instructions when RACF
TRUEI is asserted. Refer to Paragraph
1.4.6.4.

3. For floating point instructions, address
101,

RACH A2 RAB(02:01)
These bits are used by the branch instructions. Re-
fer to Paragraph 1.4.6.4.

RACF A2 RABO3

RACF A2 RABO3 asserts bit 3 of the address for
E/class binary instructions (= both source and des-
tination modes equal to 0; no address cafculation),
either when the destination field is 7 or a BRQ is to
be serviced. RACE A0 RABO3 asserts bit 3 for the
non-binary E/class instructions,

The instructions in this group are the following,
when SMO*DMO and (DF7+BRQ):

01SS DD MOV 11 8§ DD MOVB
028s DD CMP 128§ DD CMPB
03SS DD BIT 138§ DD BITB
04 35 DD BIC 14 88 DD BICB

1588 DD BISB
16 S8 DD SUB

0588 DD BIS
06 SS DD ADD

RACF A2 RABOS

RACF A2 RABOS asserts bit 5 of the ROM ad-
dress for MFP instructions with DMO, and for
MARK and MPT instructions.

1.4.64 Branch Instructions - Table 1-6 lists the
Branch Instructions, their op codes and the condi
tions on which they branch.

With the cxception of BR, which always branches,
the branch instructions are grouped in pairs, each
of which checks one condition (e.g.; BNE and BEQ
check the Z bit). Bit 08 of the op code determines
whether the instruction branches when the branch
condition is true (1 or asserted) or false (0 or ne-
gated). For example; BNE branches if Z=0 and
BEQ branches if Z=1,

I1-1-47

RACF TRUE! and TRUE2 are asserted when the Branch A Fork Address _
branch condition is met. TRUE1 checks the result Table 1-7 shows the generation of RACL
of branches that have a 1 in bit t5 of their op code; RADR(07:00) for branch instructions.

TRUE?2 does the same for branches with a 0 in bit

15 of their op code. These two functions cannot Refer to Flows 1. Branch instructions {BXX) are

both be asserted at one time. shown on three separate branches:
Table 1-6
Branch Instructions
Instruction Branch AFIR RACF (See Note 1)
Condition 15 114 113 J12 (11 [10] 09 | 08 | TRUE2 | TRUEI
BR Always 0 0 0 0 0 0 0 1 1 0
BNE Z o |0 |O JO |O [O 1 0 X 0
BEQ Z 0 0 0 0 0 0 1 X 0
BGE Nyv o o |0 |0 10O 1 0 X 0
BLT Nwv g (o0 |0 |0 |O 1 0 1 X 0
BGT Zv (NwV) o fo |0 |0 |O 1 1 0 X 0
BLE Zv (NwV) 0 |o 0 [0 |0 1 1 t X 0
BPL N 1 0 0 (0 JO |O 0 |0 0 X
BMI N 1 o (0 (0 [0 jO 0 1 0 X
BHI CvZ I c O {0 |O O 1 0 0 X
BLOS CvZ 1 0 0 0 0 0 1 1 0 X
BvVC v i 0 0o |0 |0 1 g |0 0 X
BVS \Y 1 o |0 [0 0 1 0 1 0 X
BCCBHIS | C | 0o |0 |0 |0 1 L 0 0 X
BCS,BLO C 1 0 0 v 0 1 i I 0 X

NOTE 1 — “X” in the RACF TRUE1 or TRUE2 columns means that the function is asserted if
the “Branch Condition” is asserted. For example, if the instruction is a BNE ora
BEQ, TRUE? is asserted if the Z bit is set.

NOTE 2 — The op code (AFIR < 15:08) for each pair of Branch Instructions differs only in bit
08. If bit O is set, the instruction branches, if the Branch Condition is asserted. If bit
08 is not set, the instruction branches if the condition is not asserted. For example:

BNE Z=0 Branch
Z=1 No Branch

BEQ Z=0 No Branch
Z=1 Branch

11-1-48

BXX*BCOK (Branch OK = conditien
met). In this case, c¢ycles BXX.00 -
BXX.05 (all identical) are executed,
Since the branch is successful, the PC
plus the displacement is moved to PCA
and PCB, a BRQ strobe is issued, the
bus cycle started in IRD.00 is ended,
and the microprogram goes to FET.00.
The instruction fetch sequence then fet-
ches the instruction pointed o by the
new PC.

BXX* — BCOK* ~ BRQ {(condition not
met and no break request). Since BRQ is
not true and the instruction does not
branch, contrel goes to FET.11 -
T'ET.13.

BXX* - BCOK* - BRQ (condition not
met and break request asserted). Control
remains with the current PC, but the
BRQ must be serviced; the next states
are FET.01 - FET.03, after which the
BRQ is serviced.

Table 1-7
Branch Instruction ROM Address
RACL RADR Result Next State
07 06 05 04 03 02 01 00
1 1 0 1 0 0 0 0 BCOK * -BRQ FET.0X
1 1 0 1 0 1 0 1
1 1 0 1 0 1 1 0
1 1 0 1 1 0 0 0 BCOK * BRQ FET.0X
1 1 a 1 1 1 0 1
1 1 0 1 1 i i 0
1 1 0 1 0 4] 0 1 -BCOK # -BRQ FET.1X
1 1 0 1 0 0 i 0
1 1 0 1] 1 0 0
1 1] 3 1 0 0 1 -BCOX * BRQ FET.OX
1 1 0 1 | 0 1 0
1 1 0 1 1 1 0 0
[1 | '}

L

11-1-49

Input to RACL RADR (07:00):

RACH A2 RABOO = TRUEL * BR INST
RACH A2 RABO1 = TRUE2 * BR INST
RACH A2 RABO2 = AFIR0S * BR INST
RACE A0 RAB03 = BRQ TRUE * BR INST
0=-BRQ
1=BRQ

RACE A0 RABO4 = BR INST

Refer to Table [-7.

1. RACI. RADR(07:06) H and RADRY4
H are asserted (high) for all branch in-
structions by RACE A0 RAB04, which
15 a decode of all branch instruction op
codes.

2. RACL RADROS is negated (low) for all
branch instructions.

3. RACL RADRD3 is asserted (high) when
BRQ is true during a branch instruction
and negated when BRQ is not true. This
bit is controtled by RACE A0 RABO3.

4. RACL RADRO2 is asserted when bit 08
of the op code is | {branch if condition
true).

5. RACL RADROI s asserted by RACH
A2 RABO! when RACF TRUE2 is
asserted.

6. RACL RADROQ is asserted by RACH
A2 RABOO when RACF TRUEI is
asserted.

It can be scen from Table t-7 that a branch is suc-
cessfut {BCOK) under the following conditions:

1. When the instruction requires a branch
on condition false or not asserted
(RABD2 = 0) and neither TRUEZ nor
TRUEI are asserted (RABOI = 0 and
RABOD = 0).

&)

When the instruction tequires a branch
on condition true or asserted (RABD2 =
1) and either TRUE2 or TRUEI are as-
serted (RABOI = | or RABOD = 1),

A branch is not successful (-BCOK) when the
above conditions are not met, i.e.. RAB02 asserted
and neither TRUED nor TRUE2 asserted, or
RABO2 not usserted and ¢ither TRUE] or TRUE2
asseried,

1.4.7 C Fork Logic
Refer to drawing TRCC. The logic shown on this
drawing decodes the address modes and register

specifications of the current instruction, and gener-
ates signals that control register selection and ad-
dress calculation in the processor. The logic also
generates addresses for the C Fork microprogram
address logic. The C Fork selects the address of the
next microprogram address when a destination oper-
and must be fetched.

Two 8251-1 BCD-to-Decimal Deceders are used to
recognize the source and destination modes, respec-
tlively, by decoding each 3-bit IR field. The source
and destination modes determine the operations per-
formed in the fetching of operands; these signals
are used throughout the TRC module, Destination
mode 0 is also used 1o separate the C Fork ad-
dresses for this mode and all other destination
modes, by connecting IRCC DSTMO L to the C
Fork inpul for bit 7 of the ROM address (as shown
on drawing RACL) and connecting IRCC DSTMO
H 1o the input for bit 6. In this manner, the C
Fork penerales microprogram addresses ranging
from 202 - 211 for destination mode 0, and micro-
program addresses ranging from [10 - 117 for
olther destination modes.

The address gencrated by the C Fork logic depends
on:

1. FFor mode 0, whether or not the instruc-
tion i{s F/class. If it is not F/class,
whetlher the destination field is 7 or not,
and whether an odd byte swap is re-
quired (SRO = 1 or 0);

!\J

For other modes, whether an odd byte
swaup s required.

The C Fork multiplexer is 745137 4-bit 2-Line-to-1-
Line Multiplexer that is controlled by TRCC
DSTMO L. Recognition of destination mode 0 gen-
crates the four low-order bits of the microprogram
address for the C Fork. The two high-order bits are
directly controlled by the destination mode and bits
4 and 5 are always 0. Bit 3 of the address is always
a b if the destination mode is not 0 (the input is a
around which generates a low output, which asserts
the input te the microprogram address assembly
logic on drawing RACL). For destination mode 0,
bit 3 is controlled by the instruction class; the bit is
sel Tor T /¢luss instruc tions and clear for all others.
Table -8 summarizes the C Fork multiplexer
aulpuls.

I1-1-50

Table 1-8

C Fork Address Generation
Instructions Flows ROM Cycle C Fork Multiplexer
Adrs Name Input Output: IRCC CO RAB
Enabled 03 02 01 00
DMO * -F/Class 4 202 DO7.00 A H H L H
* DF7 * SRO (1)
DMO * -F/Class 4 203 DO7.10 A H H L L
* DF7 * SRO(0)
DMQ * -F/Class 4 204 D00.80 A H L H H
*.DF7 * SR0{1)
DMO * -F/Class 4 205 D00.90 A H L H L
*-DF7 * SRO(0)
DMO * F/Class 4 211 FOP.50 A L H H L
DM12* SRO(1) 5 110 D12.90 B L H H H
DM{2 * SRO(0) 5 111 D12.80 B L H H L
DM3 * SRO (1) 5 112 D30.90 B L H L H
DM3 * SRO (0) 5 113 D30.80 B L H L L
DM45 * SRO (1) 6 114 D45.30 B L L H H
DM45 * SR (0) 6 113 D45.80 B L L H L
DM67 * SRO (1) 6 116 D67.90 B L L L H
DM67 * SRO (0) 6 117 D67.80 B L L L L

1.4.8 B Fork Logic

Refer to drawing IRCB. The B Fork logic gener-
ates microprogram addresses that are used to select
the next machine state after the destination operand
has been fetched. For each instruction that operates
on i« destination operand, there s 4 unique micro-
program word that controls the execution of the op-
crution for that instruction. The majority of these
instructions are included in the P/cluss group. The
PP/elass instructions are executed by a single micro-
program word that is stored in ROM location 031,
with the exception of the NEG, ASRB, and RORB
instructions. The exceptions are made because these

instructions may require 2 byte swap during the exe-
cution cycle, and must use other machine states
that permit a separate byte-swap operation for odd-
byle data.

The B IFork addresses are generated by a 748157 2-
input, 4-bit mulliplexer, and by two additional
eates. IRCB BO RABD4 L is connected to ROM ad-
dress bits 4 and 5, to generate ROM addresses rang-
g from 60 - 67. IRCB BD RABO3 L is connected
10 ROM address bits 3 und 4, 10 generate ROM ad-
dresses ranging from 31 - 36, The ROM addresses
used by the B Fork and the instructions executed
by cach address, are listed in Table 1-9.

I1-1-51

Table 1-9

B Fork Address Generation
Instructions Flows ROM Cycle IRCB Multiplexer Other
Adrs Name Inputs Outputs Signals
Enabled Asserted Asserted
P/Class * -[(ASRB 11 031 EXC.00 A B0 RABOO B0 RABO3
+ RORB) * DRO (1) + NEGB]
TST.B + BIT.B + CMP.B 11 033 TST.10 A BO RABO1 Bl RABOO
B0 RABO3
JSR 11 034 JSR.00 A BO RABO2 B0 RABO3
IMP 11 035 IME.00 A BO RABO2 B1 RABOO
B0 RABO3
F/Class 7 036 FOP.40 A BO RABO1 B0 RABO3
BO RABO2
MUL 8 060 MUL.80 B BO RABD4
DIV 9 061 DIV.00 B B0 RABOO
B0 RABO4
ASH 7 062 ASH.0O B BO RABO1
B0 RABO4
ASHC 7 063 ASC.00 B BO RABOO
BO RABO1
BO RABO4
[ASRB + RORB] * DRO(1) 11 064 SHR.00 B B RABO2
BO RABO4
MFP 11 066 MFP.00 B B0 RABO1
B0 RABO2
B0 RABO4
NEG 11 067 NEG.00 Multiplexer disabled,
output all 1s.

Note: Al Signals on IRCB.

11-1-52

When the multiplexer is disabled for a NEG instruc-
tion. the outputs are all 1s: this generates address
67. For all other addresses, the inputs are selected
by a signal that is generated for the MUL, DIV,
ASH. ASHC, ASRB. RORB, and MFP instruc-
tions. When this signal is asserted, the B inputs of
the multiplexer are used; RABO4 is forced 1o a
logic | by a 0V input. Conversely, the A inputs ure
used for F/class, J/class, K/class, and most P/class
mstructions; RABO4 is forced to a @ by a +3 V in-
pul. The instructions that use the A inputs of the
multiplexer also assert IRCB BO RABO3 L. IRCB
B0 RAB(02:00) L arc generated by connecting the
instruction group signals to the multiplexer inputs
in the order required lor euch signal.

1.3 CONDITION CODES

The four least-significant bits of the PS word con-
tain the processor condition codes. These bits slore
information about the value resulting from, duta ma-
nipufation during an instruction, The condition
codes are not altered to reflect the results of ad-
dress calculutions, but are chunged only when an in-
struction explicitly operates on a unit of data.

The condition codes can also be set to any specific
vilue by translerring & word containing that valve
te the PS address. The value of the condition codes
are ultered by every interrupt or irap respense func-
tion, and by every RTT or RTT insiruction. In addi-
tion, individual condition-code bits may be
manipulated directly, with the condition-code oper-
ate instructions. These instructions provide a means
lo set any one. or more, of the condition codes
with o single instruction that requires only one
memory reference; a similar set of instructions can
clear any one or more bils, The condition codes are
used in conditional branch instructions, so the vari-
ous meuns of manipulating the condition codes are
uselul bhecause they permit setting up the PS word
to respond in a particolar way to various branch
instructions,

1.5.1 Condition Code Storage

Reler to drawing IRCH. The circuits shown on the
top half of this drawing are used to store the pro-
cessor condition codes: the remainder of the draw-
mg shows circuits concerned with the subsidiary
ROMs used in condition-code calculation, instruc-
tion decoding, and Arithmetic and Logic Unit
(ALUY control.

The four condition-code bits, N, Z, V, and C, are
stored in the four least-significant bits of the Pro-
cessor Status {PS) word. The remaining bits of the
PS, und the PS loading and reading logic, are on
the PDR module and are shown on drawing
PDRID. (Refer to Chapter 3, Control Registers,)
The condition codes are normally loaded to reflect
the result of each instruction that operates on data.
When this is done (by clocking the data inputs to
each flip-flop), each bit takes on the value of the
corresponding signal from the condition code gener-
ation logic on drawings IRCE and IRCF. Two Z
bit flip-flops, provided to avoid the delay of a final
stage OR gate before the clock time, are shown on
drawing IRCF.

Clocked Inputs - IRCH CCLK H clocks the condi-
tion-code flip-flops immediately following each
ROM cycle (T6 is the Tl of the following cycle) ex-
cept when the clock is inhibited by a value of 2 in
the Condition Code Load (CCL) bits in the micro-
program. In many cases where the condition codes
are clocked, individual bits may remain unaffected
by loading the bit from itself, through the com-
binational logic that generates the condition codes.

AR Inputs - The condition code flip-flops can be
loaded directly from the BR. This is done whenever
the bus address transmitted by the processor ad-
dresses the low byte of the Processor Status (PS)
word. UBCB CC DATA (1) H indicates this condi-
tion and is used to gate the BR bits into the direct-
set and direct-clear inputs of the flip-flops. Com-
plements are upplied to set and clear inputs, so that
cuch flip-flop is correctly sct or reset.,

{R Inputs = A third method of modifying the condi-
tion codes allows bits to be set or cleared directly
from the CCOP instruction. The four least-signifi-
cant bits of the IR are connected to either the set
or clear inputs of the flip-flops, but not both. The
selection of inputs is done by two enabling signals
that are generated from opposite polarities of IR04,
The same polarity inputs from the IR are used for
either setting or clearing; only bits which are s in
the IR arc altered, the remaining bits are not
alfected.

When the condition codes are sel or cleared from
the IR, the normal clocking of the flip-Mops is in-
hibiled. When the condition codes are loaded from

I1-1-53

the BR, the loading signal is present beyond thc
time when the data inputs are clocked, so the BR
inputs take precedence. Unless one of these two
conditions is true, the normal clocked input is used.

The Z bit is stored in two flip-flops shown on draw-
ing IRCF, The flip-flop outputs are ORed to gener-
ate the value of the condition-code bit. If either
flip-flop contains a 1, the Z bit is considered to be
a 1, Both flip-flops are set or cleared together when
cither the BR or IR bits are transferred to the con-
dition codes.

1.5.2 Condition Code Load Field

The Condition Code Load (CCL) field of the ROM
is decoded as shown on drawing IRCF to deter-
mine how the PSW condition-code bits are to be al-
tered. The CCI. ficld is summarized in Table 1-10.

1.5.3 Instruction Dependent Control

When CCL = 1, the Condition Code loading is in-
strugtion dependent, 1.e., coatrolled by the oper-
ation vede field of the instruction: this control is
implemenied by two subsidiary ROMs, CC CNTL

ROM and the
shown on IRCH.

1.5.4 SUBROM Address Generation

IRCII SUBROM({04:00) H is the address, for the
Condition Code Control and Instruction Decode
ROMs: it is also the address for the ALU Control
ROM (refer to Chapter 2). This address is gener-
ated from IRCA IR(15:06). by the two multiplexers

and the OR gute on drawing IRCH.

Each subsidiary ROM contains 32 8-bit words. The
32 addresses are organized as follows (addresses in

actal):

d.

MARK, MFP, MTP, and SXT.
Addresscs

(14:09).
instructions.

Table 1-10
Condition Code Load
RACA UCCL
Output Asserted IRCF: Function
02 01 00
0 0 0] CC NON AFF L No change
0 0 1 CC INSDEP H Instruction-dependent. Condition codes determined by
subsidiary CC CNTL ROM.
0 1 0 (IRCH SETCC H)* Set or clear CC; dependent upon [R.
0 i | CCFP LOAD L Load CCs from floating-point processor
1 0 0 CCLD4 Zand N: ACC SHFR
Cand V: O
1 0 1 CCLD5 Z and N: ACC SHFR
C: AMXI15
V: Vold + (AMX ¥ ALU)
1 l 0 CCLD6 N, C, and V: not affected
Z: Z* SHFR =0
I I 1 CCLD7 Z, N, and V: not affccted
C: carry

* Generated on drawing IRCH.

1I-1-54

INSTR DECODE ROM, both

Addresses 0-7 are used for instructions
wilh op codes containing 06 in IR
{14:09). These include the rotates, shifts,

[0-§7 are used for instruc-
tions with op cedes containing 05 in IR
These are the single-operand

¢. Addresses 20-27 are used for binary in-
structions [IR {14:12) contains any value
from 1 to 6].

d. Addresses 30-37 are used for the register
destination instructions, which have a 7
in TR(14:12). These include multiply and
divide, the long shifts, and XOR.

Instructions included in 4, and b, above, have sub-
rom addresses equal to TR{09:06) via the T inpuls
Lo the multiplexers; SUBROMA4 is low.

I'or the register destination instructions, SUB-
ROM A4 is asserted, SUBROMAZ is driven by a
43V inpul to the multiplexer, and the remaining
three address bits take on the value of IR {11:09
through the C inputs of the muluplexer. For binary
instructions, the B inputs of the multiplexer are
used; SUBROMAM4 is asserted and SUBROMAS s
clear. This data is summarized in Table 1-11.

The SUB instruction is treated specially, to separate
the ADD and SUB instructions when generating
ROM uddresses. Both SUB and ADD would nor-
mally generate ROM address 26 (the op codes
differ only in bit 15). When the SUB instruction is
decoded, the Tour least-significant bits of the ROM
address arg Torced to 0s to generate address 20. Ad-
dresses 27, 35, and 36 are not used. For the SWAB
instruction, which i1s notl in any of the four groups
that generate ROM addresses, the contents of the
IR generate the same ROM address that is used for
the ASL instruction. The signal IRCH SWAB L is
used (o distinguish between the two instructions.
The UALU signals are used to recognize that the
AU control is instruction-dependent, and that the
oulputs of the ALU control ROM on drawing
GORAA arc active.

1.5.5 C Bit Data

The C (Carry) bit of the PSW is set when a pro-
CessOr operation causes a carry out of the most-sig-
nificant bit, The logic that generates the C bit data
is shown on drawing IRCF. Figure 1-13 is a sim-
plified diagram of the logic that asserts IRCF
CDATA L. Euch AND gate input covers a group
ol instructions that could cause a carry. The nota-
tion adjacent o each AND gate indicates the condi-
tiens or instructions that enable the gate and the
resultant C bit source that asscrts IRCF CDATA
L.

Table [-12 lists the instruction-dependent CC
CNTL ROM outputs that control the C bit for
eitch group of instructions, IRCE WOB CARRY H
and IRCE LOB CARRY H are derived from a
748153 multiplexer. These C bit inputs are deter-
mined from AMX 00, AMX 07, or AMX 15.

1.5.6 N Bit Data

The N (negative) bit of the PSW is set when a nega-
live result is produced by a processor operation.
The logic that generates the N bit data is shown on
drawing [RCI-. Figure 1-14 is a simplified diagram
of the logic that asserts IRCF NDATA L, Each
AND gate input decodes a particular group of in-
structions or processor aperations for which a nega-
tive result might be obtained,

For most of the instructions, the CC CNTI. ROM
outputs IRCH MODZN H and IRCH ENZN H
are asserted. These control outputs condition the
NDATA logic o ¢examine the SHIFR output to de-
termine when the N bit should be set. For word or
odd-byte operations, the input A logic tests
SHERALS, and sets N accordingly, For byte oper-
ations, the input C logic tesis SHFR AQ7. These in-
puts control the N bit for most operations.

Table 1-11
Subsidiary ROM Address Sources
Type of ROM Address Input Subsidiary ROM Address Source
Instruction Multiplexer Selected A4 A3 A2 Al AD
Select
81 S0

IR(14:09) = 05 or 06 H H D 0 IRO? | TRO8 [IRO7 | IRO6
Register destination H L C 1 1 IR11 [IR1O | IRO9
Binary L H B I 0 IR14 |[IR13 | IR12
Not used L L A Not Used

II-1-35

IRCE WOB CARRY H WORD OA OO0 BYTE CARRY

IRCE LOB CARRY H
IRCF €CLD 7 L — O CARRY o

IRCH {MQD 1 H
JIRCC CC INSDEFA H—

LOW BYTE CARRY:C+—AMXOT

__IRCF
CDATA L

GRAL AMXY O®ASH L
DAPJ ALUCK L

| ™ IRGF CEN1 HsERC#Ce [NSDEPa_ IRCH CMODOH
IACH ENC H Dﬁk

GRAD DROG H

CCLD T+ ROM 100 C==ALUCH
ASH: Ce—AMXO0D

R 010 L ALUCH

IRCH CMOBO H ASHC:Ca= DAOO

JRCF CEN2 H=EHC®CC INSDEPA® - CMOD
=CRIB®Z L+ (DRSS BR -1 SAVE (11 H)=IRCF X L
IRCE CC=—HA H=(P5 LDAD+LOAD FOC)

ENC®(C
INSDEFA* MOD1 DAFA BROD H

MUL: C§

IRCH CMODT H— wdab PS5+ LDAD FCC

.
[e] @

IRCF CC NDN AFF L

CCLDE + CC HOM AFF + ROMI0T
LRCF CCLDG L o

NON - AFFECTED

IRCE PS LDAD L
IRCH CONH
IRCE LOAD FCC L 1-cTea

Figure 1-13 Sources of C Bit Data, Simplified Diagram

IRCF CCLD4 L

IRCF CCLDS L—-—-———-—--—]
L
IACH MODZN H II_))—___J_-/ !s'

DaFJ SHFRAID W

INCH SWAB L GRAR WORD+(0B SWAP H ——iD_—)
3

D; MODZN H { 1

IRCF NENI H 12

IHAUT &

{WORD+DB SWARJICELDA +5+ SWABSMODZNRENZH)
SHFRA 16e1:Ne+—1

INPUT B8 _
CWF.B SHFR <0 : N==1 .

o

TRCF NDATA L

DAPJ SHFRAQT H

L A At o R

INPUT

SWAB*WORD+ OB SWAP
SHFRADT=1 N=1

SWAB +[WORD+ HB)SWAR

MODZN H

GRAA WORD+ OB SWAR L

-IRCE PS LOAD H
IRCE LOAD FCC HED-——— H
IRCF CELD 67 L IRCH N (1) H

IRCF C©C NONAFF L 3

INELT D
CCLOBT PMUL + DIV
N NON AFFECTED

IRCH ENZIN H

r|: DAPA BRO3 H INPUT E
[ACH CC I > LOAD PA+LOAD FCC
[NSDEP 1 IRGF MUL +DI¥ NZ¥ EN H IRCE CCBR H

IRCH MODZN W IRCF CHECKZ H

IRCF CCLDG L
LIELBg 2]

Figure !-14 Sources of N Bit Data, Simplified Diagram

11-1-56

Table 1-12

C Bit Data Sources
CC Control ROM
CMOD1 CMODO ENC Source
ROR.B, ASR.B 0 0 0 C < AMX00 (VMODO=1)
ROL.B, ASL.B 0 0 0 C + AMX08 (WORD)
C < AMXO0S8 (OB)
ASHC 0] 0 1 C < DROO
COM.B, NEG.B, 0 1 0 C+«-ALUCN
SBC.B SUB
MUL 0 1 1 C+«-X
CLR.B, ADC.B TST.B 1 0 0 C+ ALUCN
CMP.B, ADD
ASH 1 0 0 C < AMXO00
MFP, MTP, SXT
INC.B, DEC.B
MOV.B, BIT.B, BIC.B . 0 ! non-affected
BIS.B, XOR
DIV 1 1 0 C+1
C+~0if-DRIS5
SWAB C <0
Condition-Code Load Signals
IRCF CCLD4 C<0
IRCF CCLDS C < AMXI15
IRCF CCLDé6 non-affected
IRCF CCLD7 C + ALUCN

11-1-57

The input B logic tests for CMP.B instructions. Un-
der these conditions, if SHFRAIS is 0, the N bit is
set, and if SHFRAI5 is 1, the N bit is cleared. In-
put D covers all cases where the N bit is not af-
lected by the current operation, and is therefore
reloaded with the previous content, IRCH N(1) H.
Input E allows IRCF NDATA L. to be asserted by
BRO3 for load PS and load FCC functions. Table
[-13 summarizes the sources of N bit data.

1.5.7 Z Bit Data

The Z {Zero) bit of the PSW is set when the result
of a processor operation is 0. The Z bit data that
controls the condition code is generated by logic on
drawings IRCF and GRAB.

Figure [-15 is a simplified diagram of the logic that
asserts IRCF ZDATAIL L and GRAB ZDATAZ L.

These outputs are clocked into the Z1 and Z2 flip-
flops. whose contents are ORed to provide the 2
bit of the PSW condition code,

ZDATAI Sources - The input gates that asseri
IRCF ZDATAT L cover the special conditions that
control the Z bit, independent of the SHFR out-
puts being equal to 0. For example, during the DIV
instruction exccution, MODZN and ENZN are
both Tow und the Z bit is set. For the special case
of the CMP.B instruction, the logic tests for the
SHRF output = 1 condition to determine the Z bit.
The other input gates that assert IRCF ZDATAI L
test for load PS or load FCC operations and oper-
ations that have no effect on the Z bit. Under the
former conditions, the Z bit is loaded from BR02
und under the latler cenditions, the Z bit is un-
changed [Z(1)H controls ZDATA]. These special
conditions are summarized in Table 1-14.

Table 1-13
N Bit Data Sources

CC Contrel ROM

IRCF NDATA L

Instruction MODZN ENZN Source
CMP.B 0 1 N+ 1if -SHFRA15 = |
N« O0if SHFRALI5=1
Dlv 0 0 non-affected
MUL 1 0 non-affected
all other instruction- i 1 N« 1if SHFRA15 = |

dependent codes

(word or odd byte)

N <« 1 if SHFRAQ7 =]
(byte)

SWAB N« 1if SHFRAOB =1
Condition-Code Load Signal

IRCF CCLD4 N «if SHFR =0

IRCF CCLDS N«<if SHFR =0

IRCF CCLD6 non-affeeted

IRCF CCLD7 non-affected

I1-1-58

TRCF SET

¥ H

IRCH MQDZN H%
IRCF COLD? L

DIV: 2=—1
TRCF MUL+ DIV NIVEN H

1RCF CC NOMAFF LD

11
IRCF ZDATAY L do

CCLDT! NON AFFECTED

IRCH 2(1) h w_I 1RCF 20410 L
[RCH LOAD FCC L Dart BROZ H
IRCH PS LOAD LE‘:D_ IRCE COe R nE i est LoAD FOC - —|
IRCF NEN{ H=CC INSDEPeENTN I PO
IRCF ZINWY H= —HMOQODZN CMP, B ISHFR=1) T2
DAPY A=B(15:8) +BYTE H
DAPF A=B{T:0OFH
5y DIRCHZC‘}H
OARJ, H SHFR <1%.08> H —i é IACE EN HIB H=BYINAnMID I« NENI 2 HI BYTE D
b ¢ . ¢2
GRAA WORD DB SWAP L— -%- CLWDIN+ SWaR) MDY aE] L BYTE =
Héx = IRCE EN WORD H={CCLD4 +51+ GRAB ZOATAZ L _of, | ljpguze i1l
INVETTERS s (WDIN® - SWABS MODZN+ NENT]
iz
DARJ, F SHFR <OT:Q0=> H %
. CELDE+MUL SHFR=DO ¢
E IRCH T (11 H Z=—31 0D
GRAA OF SWAF H— 1RCF CHECKZ H
= JRCH CC CLK R
Figure [-15 Sources of Z Bit Data, Simplified Diagram
Table 1-14
Z Bit Data Sources
CC Control ROM
instruction Z Data Source
MODZN ENZN
CMP.B 0 1 Z+ 1ifSHFR =1
MUL 1 0 Z+«2(NHif SHFR=0
DIV 0 0 Z+1
SWAB Z+ 1if SHFR (D7:00) =0
all other instruction-dependent codes 1 1 Z+1ifSHFR=0
Condition-Code Load Signals
IRCF CCLD4 Z+< 1ifSHFR =0
IRCF CCLD53 Z+< 1ifSHFR =0
IRCF CCLD6 Z<Z(DHHIif SHFR =0
IRCF CCLD7 non-affected

11-1-59

£ZDATA2 Sources - The logic that generates
GRAB ZDATAL L tests the SHFR output for 0.
The open-collector inverters function as 0 detectors
for SHRF(15:08) and SHFR(07:00). The enabling
inputs, IRCE EN HIB H, IRCE EN LOB H, and
IRCE EN WORD H arc used to test each byte of
the SHER sepurately, or together. The additional
GRAB ZDATA2 gate tests the SHER output word
for 0 under CCLD6 or MUL conditions. If the
SHI'R output is 0, the previous Z hit condition,
Z{1YH, controls the new Z bit.

1.8 V Bit Data

The V (overflow) bit of the PSW is set when a pro-
cessor operation results in an arithmetic overflow,
The logic that generates the V bit data is shown on

drawing IRCE. The V bit is affected by two broad
categories of instructions: arithmetic operations,
and word or byle operations. The results of these
operations and other special cases determine IRCE
VIDATA L. To simplify the description, arithmetic
aperations and special cases arc grouped as VEN]
inputs. Word and byte operations are grouped as
VEN2 inputs. Table [-15 summarizes the V bit data
sources of both groups.

VENI

Figure [-16 is a simplified diagram of the V bit
data sources that are grouped in the VENI cate-
gory. A 745153 Dual 4-Line-to-1-Line Multiplexer
is used (o sclect the most-significant BMX bit for
the arithmetic operations that involve the B input.

Table 1-15
V Bit Data Sources
CC Control ROM
Instruction IRCE VDATA L Source*
YMOD1 { VMODO | ENV
VENI
INC.B, ADC.B 0 0 0 V<-A*ALUIS
DEC.B, SBC.B 0 | 0 V< A*ALUIS
NEG.B, ADD | 0 0 V< A*B*ALUIS + -A*-B*ALUIS
SUB, CMP.B I 1 0 V= A*-B*ALUIS + -A*B*ALUIS
VEN2
MFP, MTP, SXT, CLR.B, COM.B, 0 0 l V<0
TST.B, MOV.B, BIT.B, BIC.B,
BIS.B, MUL, ASH, ASHC, XOR
™V 0 0 1 Vel
ROL.B, ASL.B | 0 1 V < SHFRA15 ¥ AMX15
ROR.B, ASR.B 1 1 1 V < SHFRA15 ¥ AMX00
Condition-Code Load Signals
IRCF CCLD4 V<0
IRCF CCLD5 (VEN2) V <+ Vold + (SHFRAI5 ¥ AMX15)
IRCF CCLD6 (VENT) non-affected
[RCF CCLD? (VEND) nen-affected

*A = DAPF AMX SIGN H

B = DAPD BMX15 H {word) or DAPC BMX07 I (byte)

ALULS = DAPI ALUSIGN H

I-1-60

IRCF CC INSDEF H——— —— o IRCE VEMI L
IRCH ENV H

D 13
12] al2 4 YMODT: oaBedll
DAPE BMXOT H " DAPJ AMX SIGN H 2| VMDD A B ALU
10
N
IRCH YMOO! W 5
A 11,42 VHMODO f wE w ALU
— ! YMODO: BwBw ALY
3
_ . L DAPJ ALU SIGN M 3]
DARD BMX15 H |
51 50
LRED BYINA H——rm cimt oo o e e e e) IRCE YDATA L
IRGH YNMODG H
FROM YEN2 LOGIC
LREE CC—BR H
DAPA BROY H LOAD P8+ LOAD FCC: Va— BROY
pOIV: Vu—1
IRCF WUL+DIV NZVEN H
I oLy
vMODA|BYTE W |wmoDo W| FO F1 IRCF SET ¥ H {= MODZN}
1 |oiworn) @ ~BMXAS [BMX15 IRCH ¥ 1) H
1 |o 1 BMX 18 |- BMX13 IRCE LDAD FLC L .
[RCE PS LOAD L
1|1 exTE) o -BMX07 | emxo? NON AFFECTED
' 1 BMXOT |—BMXO? IRCF CC NONAFF L -2
LRCF CCLDS L
0 - - o ° IRCF COLDET L

11 079

Figure 1-16 VENI Sources of V Data Bit, Simplified Diagram

These are NEG.B. ADD, SUB, and CMP.B, as in-
dicated in Table £-15. For these instruction-depend-
enl codes, the CC CNTL ROM asserts IRCH
VMODI1 H., which gates the BMX outputs to the
multiplexer inputs, and IRCE VENI L, which en-
ables the multiplexer. TRCD BYINA H scleets
BMXIS or BMXO07 us the most-significant bit.
IRCH vMODD H scleets the BMX bit or its com-
plement at each output, as shown on the multi-
plexer truth table in Figure 1-16.

The notation on Figure [-16 indicates the condi-
tions and functions for which each AND gate input
asserts JRCE VDATA L.

For INC.B, ADC.B, DEC.B, and SBC.B instruc-
tion-dependent codes, CC CNTL ROM output
IRCH VMODI H is low. As a result, the BMX
multiplexer outputs are always 0. For these instrue-
tions, B is eliminated from the source function, as
listed in the source column of Table 1-15,

VEN2

Figure 1-17 is a simplified diagram of the V bit
duta sources that are grouped in the VEN2 cate-
gory. A 745153 Duul 4-Ling-10-1-Line Multiplexer
selects the most-significant AMX bit for the word,
oxdd-byte. or byte operations. The multiplexer truth
lable is shown on Figure 1-17. The mulliplexer is
only enubled by CCLDS, or those instruction-de-
pendent codes for which the CC CNTL ROM us-
serts [IRCH VMODI1 1 and IRCH ENV H. As
indicated in Table 1-15, these instructions include
ROL.B, ASL.B, ROR.B, and ASR.B. For these in-
structions, the notation on Iigure 1-17 indicates the
conditions and functions for which each AND gate
input asserts IRCE VDATA L.

[For the majority of the instructions included in the
VEN2 group of Table t-15, VMODI is low. As a
result, the AMX multiplexer is not enabled and
none of the AND gate inputs will be enabled be-
catse IRCE VEN L is not asserted, Therefore, pro-
cessing these instructions clears the 'V bit,

I1-1-61

IRCE VEN2 L

2
3 i }— WOB CARRY Hw# SHFRAYS

{WORD+ 0B SWAFP)

(CCLDS+VENZ)
SHFRA1S

H D1

FROM VEN!
LOGIC

IRCE
VDATA L

(WORD + 0B SWAP)

{CCLDS +VENZ2}
* SHFRAO?

LOB CARRY = SHFRAQT

IRCH-SWAB H IRCE WOB CARRY H
TRCH YMOD H
1RCF CC INS DEP H
IRCH ENY H
IRCF | [
COLDS L
13 -
]
2 F DAPJ SHFRA{S H
SRAA WORD +
= 0B SWAP H
DAPE AMXO0 H
AMXOT v OB SWAP + 10 IRCF CCLDS L
AMX1S # - AP
13- 08 W E1 TRCE VENZ L
4
DAPC AMXOT GRAA WORD +
5 7 08 SWAP L
5 FQ DAPJ SHFRAO? H
51 S0
GRAA WORD+0B SWAP L 4
IRCF CCLDS L
IRCH YMODO H IRCE LOB CARRY H
WORD OR
00D BYTE ¥MODO IRCE IRCE
SWAP ACTIBS | LOB CARRY WOB CARRY
YES NO o AMXO7 (ODD BYTE)
AMX{S (WORD)
YES YES 0 AMXD0
HO NG AMXOT 0
NG YES AMXOD 0

n-0Te

Figure 1-17 VEN2 Sources of V Data Bit, Simplified Diagram

11-1-62

Thix chapter describes the Data Paths of the KBI1-
C Processor. The Data Paths consist of the logical
clements that execute the data manipulations re-
quired by the Control section. The inputs to and
the outputs from the Data Paths, as well as the
Data Paths themselves, are described in this
chapter.

All the ¢lements of the Data Paths logic are con-
trolled by (he microprogram ROM; a separate field
of the ROM output word controls each of these ele-
ments, These fields, the values that they can as-
sume, and the function executed by the logic unit,
are listed on the block diagram, Figure 2-1.

The Arithmetic and Logic Unit (ALU)Y, performs
nost of the arithmetic and all of the logic (AND,
OQR. EXCLUSIVE-OR) lunctions required by the
instruction sel (Paragraph 2.1.1).

The ALU is the inpul to the Program Counter (PC)
and to the Shiflter (SHER). The PC (Paragraph
2.1.3) vonsists of two registers (PCA and PCB) and
is used both o keep track of the next program in-
struction and as an awvxiliary register during data
manipuletion. The SHFR is the input to the Gen-
eral Registers (GR) and to the Bus Register. The
SHER transfers data from the ALU or from the
PCR. The ALU data may be either unchanged,
shifled one bit (o the right, or byte-swapped (Para-
aruph 2.1.2).

The Generad Registers consist of two identical cop-
ies ol 16 registers (00-17,): one copy consists of the
Gieneral Source (GS) registers, the other consists of
the General Destination (GD) registers, Both of
IEse oy drewritten at e shifie Titve and are
identical (Parugraph 2.1.4).

CHAPTER 2
DATA PATHS

The Source Register und Destination Register multi-
plexers (SRMX and DRMX, Paragraph 2.1.3) trans-
mit data from the GRs (including the PC or GR7)
to the Source Register (SR) and to the Destination
Register (DR).

The SR and DR (Parugraphs 2.1.6 and 2.1.7), as
their nume implies, are used for source and destina-
tion address und operund storage. In addition to
this lunction. they are used as storage during cer-
tain instructions, such as MPY, DIV, ASH and
ASHC. The SR cannot change data, bul the DR
can shift enher right or left.

The Shift Counter {SC) is used only for instructions
that require multiple shifting: MPY, DIV, ASH
and ASHC. A value is loaded into the SC, which
counts 1o zera: al this lime the instruction is com-
pleted. The DR is the input to the SC (Paragraph
218}

The logic clements described above, plus the BR,
and the Constant Multiptexers (KOMX and
KiIMX) are the inputs ta the ALU, via two multi-
plexers (AMX und BMX). These two multiplexers
correspord to the A and B inputs of the ALU.
AMX. BMX, KOMX und KIMX are described in
Puragraph 2.1.9,

The Bus Register Multiplexer (BRMX, Paragraph
220y receives data from all inputs to the Data
Paths und selects one for storage in the Bus Regis-
lers (BR and BRA, Paragraph 2.2.3) and, during an
mstruction feich, into the [nstruction Registers (IR
and AFIR, Paragraph 2,2.4),

The inputs to the BRMX are the Cache, the
SHIR, the Unib s via the Bus Buffer Régiater, and
the Internul Data Bus (INTD, Paragraph 2.2.2).

H-2-i

ALU

PCB
{DAPF.H)

(DAPF H)

PCA(TZ){51]

0 NO CLOCK

1 LOAD
PCB(T2}[50-49)

O NOCLOCK 2 SFT:LQAD
1 LDAD 3 DFT:LOAD

ECI“#

SHF {T2) [48-47]
O SWAP BYTES

PCB{L 1 pce
= 2 NO SHIFT
| {DAS:FElJ:I I 3 RIGHT SHIFT
T
ALU(T [17-15) - -
o NOT A {} PAD (T1 HGE{:u 41 . PWE (TH) [45-44]
,‘] % GS 60 0O SF SF 4 5Fv1 S5Fv1 O DON'T WRITE
5 4 PS8 116 REGISTERS) v reaisters)) 1 3F RF 3 OF 0 BF 1 CONDITIONAL
ALU 4 NOT USED {GRAD EF H) GRADEFH | 5 Sor dep 7 & o $ NOT USED
{DAPF, DAPH) N i G G
e A SRX {T2} [61-60] s D DRX (T2) [59-58)
7 INSTRUCTION o SHER SHFR o SHER
TT TT perRRETIS 3 Frsun, SRMX I DRMX 2 gl!')?SHFR -DF 76D
eMx [T1} [21-20] AMX{T1)[23-22] -5F7:G5 {GRAD,E FH] (GRAD,EFH) 3 CLR D BAX (TNC38-371
O KOMX BMX I I AMX | o DR 3 NOT USED DRK{Tz}lse 351 SHC (T1) [34-33) 0 DR
T ORIMX {OAPBCD (0APBL,D) 1 PCB srK(T2) [57] 0 NO CLOCK 5C O NO COUNT i FCB
2 SR FANAN 2SS 2 SR D NO CLOCK SR oR 1 SHIFT RIGBHT | (GRAH 1 COUNT 2 SR
3 BR kl {k el [s 8] [p 5] [p 3 BR 1 LOAD {GRAD F, H} {GRAD.EFH) 2 SHIFT LEFT | 2 LOAD DR{ 50> 3 FP EALU {MAINT)
3 ;‘ r| |R R g rR! IR | | 3 LOAD R 3 LOAD 174 UNIBUS
x| {x ’> ADDRESS
P [SR] | g
> w | vetvaL | wemory
X :'1) MGMT
ADDRESS
[DAPB. (S AR.SSR
FROM FPP EALU <o) CACHE
ADDRESS
2 A
SHFR CACHE DATA FROM
[T CACHE MEMORY
DSTCON <r OATA TO/ FROM
BUS BUFFER
INT DATA BUS UNIBUS REGISTER FAN CACHE & UNIBUS
: s BRX (T2) [62] (PDRJ) 3 SHER u MAP REGISTERS)
0 SHFR oL
(PORA)) BUS(DETERMINED FROM F§:u032§£:> i T
BY ADDRESS) 2k
KIMX N > TO CONSOLE DATA LIGHTS
{DAPE) AE
BRK (T2) [63) IRK(T21[46] > L
g QO NO CLOCK aRn AFIR |0 NOCLOCK ar E
R 1 104D :mm} {PDRB) uReR) (RACJ) | 1LOAD ’T—DWDR”
BR ., DATA TO
> CACHE
BR i/[yaa {LBR BR AR MEMORY
KMX (T1} [19-18]
[PIRQ
KO MX K1 MK tPDRB] {IRCHPDRD] {PDRO} IPDRCJ tPch)
01 START VECTOR iﬂ>
12 TRAP VECTOR 1B5 (T} {36-35) SL/PB
2 SOURCE CONST. SOB B MARK OFFSET © NO COMMAND >
3 DEST. CONST, BXX OFFSET 1 READ SW b
2 LOAD PS "
3 READ PS PIRD X
INTERNAL >
DATA BUS rs
>u=-ons}
~
< LBR <p
{} 11-Z61R
DATA DATA TO MEMORY
FROM FPP MGMT REGISTER, DATA FROM MEMORY MGMT.,

Figure 2-1

Block Diagram

Data Paths

Ii-2-2

AND FPP DATA

SWITCH,CFU ERROR , AND

SYSTEM SIZE B ID REGISTERS.

The outputs of the processor Data Paths select and
supply address, data and display information:

t. The Bus Address Multiplexer (BAMX,
Paragraph 2.3.1) selects the virtual ad-
dress for transmission to Memory Man-
agement from gither the DR, the SR, or
the PC.

2. The (Unibus) Data Multiplexer (DMX,
Paragraph 2.3.2) selects the source of
data o the Unibus from the BR or from
the Control Registers (Chapter 3).

3, The BRA supplies data dircctly Lo the
Cache, the Memory Management regis-
ters, the Floating Point Processor and
the Control Registers (Paragraph 2.3.3).

4, The Display Muitiplexer is controlled by
the Data Display selection switch on the
Console and selects the source of the
Console data display from the SHFR,
the FPP und CPU ROM Address Regis-
ters, the Light Register or the BR (Para-
graph 2.3.4),

2.1 DATA MANIPULATION

Data manipulation is done mainly by the logic ele-
ments, shown in the top-half of the Data Paths
Block Diagram, Figure 2-1.

The ALU 1s the most complex of these elements
and is the only ane that can combine two operands.
It is the first one described. Its outputs are input 1o
the PC or to the SHFR, from where they may be
routed to the General Registers, to the SRs and
PRs and back 1o the ALU via the A and B
multiplexers.

2.1.1 Arithmetic and Logic Unit (AL1J)

The primary data processing element in the KBI1-
C (the only element that can combine two operands
to form a result) is the Arithmetic and Logic Unit
(ALUY. The ALU can perform a variety of arith-
metic operations on two variables (such as addition
or subtraction) and can perform a variety of logical
operations on one or two variables, such as com-
plementing or ANDing. The specific operation per-

formed at any time is selected by the processor

control on the basis of the microprogram word and
the current instruction. The manipulated operands
are selected by two multiplexers, one for each of
the ALU inputs. The operands can be the contents
of the SR, the DR, the BR, the PCB, or one of sev-
eral numbers generated by the constant
multiplexers.

The cutput of the ALU is gated either into PCA or
into the SHFR, from which it can then be routed
to any of the General Registers, or to the SR, the
DR. or the BR (and the IR, although this path is
not used). All of these destinations for manipulated
data are internal to the processor; when data is
transferred out of the processor, it must go through
thec BRA. When the ALU outputs are routed to the
PC. the signal paths do not pass through the
SHFR; this mecans that when shift or byte-swap op-
crations are attempted with register 7 us the destina-
tion, the datu that enters the PCA is unchanged.
For example, an ASR PC instruction does not shift
the PC but docs sel the condition code as would an
ASR,

2.1.1.1 Description of ALU - Refer to drawings
DAPEF and DAPH. The ALU does most of the
data munipulation in the processar, It operates on
two 16-bit words of data and a carry input to pro-
duce one l6-bit word of data and a carry output.
When the M input is high, the ALU operates in the
logical mode: when this signal is low, the ALU op-
crates in arithmetic mode. The curry signals are not
active when the ALU is operating in the logical
mude. Drawing DAPF shows the low byte and
DAPH shows the high byte of the ALU.

The 16-bit ALU is implemented with four 745181
4-bit Arithmetic Logic Units, Euch 745181 includes
fook-uhead carry generation for the four bits. A sec-
ond level of look-ahead carry generation is pro-
vided by the 74182-1 Carry Generater. The carry-
propagate (P} and carry-generate (G) outputs of
cach 748181 (except the most-significant four bits)
are connected to the corresponding inputs of the
74182-1, and the curry outputs of the 74182-1 are
conneeled to the appropriate carry inputs of the
ALUs, The least-significant bit carry input is con-
trolled by GRAA ALUC H, based on the output
of the subsidiary instruction-dependent ALU con-
trol ROM,

I11-2-3

The ALU can perform any one of 16 logical func-
tions (cach output hit is dependent only on the cor-
responding input bits) or any one of 16 arithmetic
functions (eauch oulput is dependent on the corre-
sponding input bits and on a carry propagated
from less-significant bits), The selection ol a particu-
lar Tunction is controlled by five signals from the
GRA module which select the mode (arithmetic or
logical} and (he function. The KB11-C uses only
ten of the possible 748181 functions. These ten func-
tions are listed ot the bottom of drawing DAPE.

The low order byte of the ALU is controlled by the
S0 - 83 inputs (DAPIF LSO H - DAPF L.S3 H) and
the M input {DAPEF LM 11). The high order byte is
similarly controlied by DAPII 1180 H - DAPH
HS3 H and DAPH HM H. All of these signals arc
derived from GRAA ALUSO L - GRAA ALUSI L
and GRAA ALUM L.

[n addition o the data and carry outputs, cach
ALU eclement has a comparalor oulput, which in-
dicates {if the ALU is in subtract mode) that the
two inputs are cqual. These outputs, which are
open-collectors, are wire-ANDed for each data byle
to generade equality signals that ure vsed in forming
the condition codes.

DAPF A = B(7:0) H indicates that the inputs to
the low data byte are equal.

DAPF A = B(15:0) L indicates that the inputs to
the entire word are equal, DAPH BUS A = B(15:8)
I is the wired-AND of the A = B outputs for the
high-byte AL.Us on drawing DAPH,

Four signals that are used in the generation of the
Condition Codes are derived from the ALU:

1. DAPI AMX SIGN H is the sign of the
A input to the ALU. This signal corre-
sponds to AMXI5 if the processor is op-
erating on word data, or to AMX07 if
the processor is operating on byte data,

2. DAP) ALU SIGN H is the sign of the
ALU output: it is taken from ALUIS
for word data or lrom ALUOT for byte
data.

3. DAPJ A = B(15:8) + BYTE H indicates
either that the high data byte is all Os or
that the processor is operating on byte
data. This signal is used in determining
whether all the active dalu is 0s for the
Z condition code,

4. DAPJ ALUCN L is the carry output of
the uctive portion of the ALU; it takes
the carry output from the high byte for
word data or the carry output from the
low byle for byte data. This signal is
used 1o generate the Carry (C) condition
code.

2.1.1.2 ALU Centrol - During each machine cycle,
the ALU performs the function that is specified by
the ROM ALU control bits [RACC UALU(2:0)
H]. The signals that actuaily control the ALU (and
also the SHIFR) operations are shown on schematic
GRAA.

If the UALU bits equal 0 — 6, the control signals are
independent of instructions being executed. If these
bits equal 7, the contro! signals depend on the
instruction code. In this last case (instruction depend-
ent), the notation “SALU” appears on the Flow
Diagrams.

The ALY control signals generated on the GRA
module are:

GRAA ALUS(3:0) L {ALU 80 - 83 control)

GRAA ALUML (ALU mode control)

GRAA ALUCH {Carry i)

GRAA ALU INSDEP L controls the two 748158
multipiexers that select the source of these ALU
control signals. GRAA ALU INSDEP L is low
when the UALU bits equal 7 (A inputs), and high
when the UALU bits equal 0 - 6 (B inputs).

Non-Instruction Dependent Control

The ALU control field in the main microprogram
ROM is a 3-bit lield that controls the values of six
control signals. There is not -a one-to-one relation-
ship between the ROM bits and the control signals,
and not all possible combinations of control signals
can be generated. Each controt signal is the result’
of decoding the ROM bits.

11-2-4

RACC UALUO and UALU2 are inverted by the
multiplexer and generatc GRAA ALUS3 and
ALUS2, respectively. If UALU = 1 or 6, the out-
put of the 74564 at the lower-leflt of GRAA goes
high and GRAA ALUSI goes low; for other values
of UALU, ALUSI is high. If UALU = 3, the B0
input to the multiplexer is high and ALUSO is Tow,

The M bit is asserted when UALU = 0 or [;
GRAA MODE H goes high and ALUM L goes
low. The carry hit is generated when UALU = 6
by GRAA CIN L, which goes low and causes
GRAA ALUC H to go high.

These control signals are all inverted on DAPF and
DAPH and input to the ALU. Table 2-1 shows the
operation performed by the ALU for cach value of
the UALU field, and the state of the control signals
at the 748181,

Iastruction-Dependent Controd

When the ALU control signals are instruction-de-
pendent. each of the six signals is controlled by a
separate output signal from the subsidiary ALU
control ROM, shown on drawing GRAA. The
ROM inputs [IRCII SUBROMA(4:0) H] are de-
scribed in Chapter [, Paragraph 1.5,

When UALU = 7, the multiplexer SG inputs are
Jow and the A inputs are selected. Two of the ALU
select signals, GRAA ALUSO and ALUSI, take on
the value of the ROM outputs. The other two,

GRAA ALUS2? and ALUS3, are forced high when
the SWAB instruction is being executed. The
SWAB instruction does not have a unique ROM
word, and uses the same word as the ASL instruc-
tion with some of the conirol signals medified in
this manner. Refer to the ALU Control ROM
Map, shown on drawing GRAK,

The ALUM (mode control} signal is taken directly
from the ROM, except when the SXT instruction is
exccuted with a negative operand [IRCH N(1) H is
high] or when both GRAA ROMM and ROMC
arc high {(GRAA CDEP L).

In the case of SXT and a positive operand [IRCH
N(1} H low]. GRAA ROMM is high, ROMC is
low: this forces GRAA ALUM low, DAPF LM
and DAPH HM high, which puts the ALU in the
logic mode, DAPF LS0O - L83 (and DAPH HS0 -
HS3) ure respectively L, L, H, H and the ALU out-
put is O (refer to the ALU table on DAPF). In the
case of u negative operand [IRCH N{I) H high],
GRAA ALUM is high, which puts the ALU in the
arithmetic mode. All other control sighals being un-
chunged, the ALU output is a 2's complement
mipus 1 (all 1%),

GRAA ROMM and ROMC are both high for the
ROL, ROLB, ADC, ADCB, SBC und SBCB in-
structions. In this case, GRAA CDEP L is low and
the ALU is put in the arithmetic mode instead of in
the logic mode.

Table 2-1
Non-Instruction-Dependent ALU Control Signals
UALU Operation Control Signals
DAPF or DAPH Negation of
LS3H { LS2H | LS1H] LSOH | LMH GRAA ALUCH
HS3H | HS2H j HS1H | HSCH | HMH
0 not A L L L L H
1 B H L H L H
2 A (plus carry) L L L L L
3 A plus B (plus carry) H L L H L L
4 not used
5 A plus A (plus carry) H H L L L L
6 A-B L H H L L H
7 instruction-dependent Instruction Dependent

iI-2-5

The ALU C (Carry-in) signal is modified for two
clusses of instructions. The DIV and ASHC instruc-
tions operate on 2-word operands, and the instruc-
tion-dependent state is one that shifts the two
words left. The cuarry-in must take on the state of
the most-significant bit of the less-significant word.
For the ADC on ROL instructions, a carry insert
signal is generated if the C bit is set; for the SBC in-
struction, the signal is generated if the C bit is
cleured. This data-dependent carry generation is
controlled by the assertion of both ROMM and
ROMC.

GRAA SGNEX MOVB is gencrated when a
MOVB instruction is being executed. This instruc-
tion is used o extend the sign of the byte into the
high byte when the destination is a General
Register.

GRAA WORD + OB SWAP L and H indicate
thut the significant SHFR outputs include the high
byte. and the sign of the output is bit 15 (rather
than it 7).

2.1.2 Shifter (SHFR)

The output of the ALU is input to the program
counter {PCA) and 1o the SHFR. The inputs 1o the
SHFR include, in addition o the ALU, the output
of PCB,

The SHIFR can perform right-shift or byte-swap op-
erations on the data, or substitute the contents of
the PC for the ALU outputs. In many cases, where
an instruction is performed for an odd-byte destina-
tion operand. the data manipulation required by
the instruction is completed in the ALU and the
transler of the result to the odd-byle data lines is
performed in the SHFR, ull during one machine
eyele,

In addition to its data manipulation (shifting and
byle swapping) aclivity, the SHFR is used as a rout-
ing clement. When General Register 7 (the PC) is
transferred o the SR or to the DR, PCB is routed
through the SHI'R. to the SRMX or DRMX, then
to the SR or DR.

The output of the SHFR goes to the General Regis-
tlers, GS and GD, to the SRMX and DRMX, to
the BRMX and to the display multiplexer - where
it provides the Data Paths display data,

11-2-6

2.1.2.1 Description of SHFR - The SHFR is a
four-input multiplexer that provides unshifted,
right-shifted and byte-swapped outputs from the
ALU inputs. It accepts PCB as the fourth input,
Left-shift operations are performed in the ALU by
using the A plus A mode. The sum of A added to
A is cquivalent to the product 2A, which in turn is
cuivalent to shifting A (as a binary number) one
bit 10 the left.

Bits {00:06) and {08:14) of the SHFR are similar,
and are shown on drawing DAPF and DAPH.

Special operations are required in the SHFR for
the most-significant bit of each byle. The SHFR
logic for data bits 7 and 15 are shown separately on
drawing DAPI.

BITS 00:06 AND 08:14
Reler to Figure 2-2, which shows a typical SHFR
bit 00:06 or 08:14.

ALU{n+1) D
ALUn C 172
——= SHFRN H
7451
PCBR g 00193
ALU(n£8)
1 30
I NOTE:
SHFRS1H. n=00-08
o814
SHFRSO H '

n-M07

Figure 2-2 Typical SHFR Bit

When o byle swap is required, the A inputs are se-
lected, and ALU(0R:14) are swilched to the outputs
of SHFR{00:06), and ALU(00:06) to the outputs of
SHFR{08:14). Inputs B switch the PCB to the multi-
plexer outputs. taputs C transfer ALLU(00:06) and
{0¥:14) to SHFR(00:06) and (0&:14) (no shift). A
right shifl is executed by using input D, which trans-
fers ALU (nt+ 1) to SHFR n (for example, ALUOS
1o SHEFRO4,

BITS 07 and 15

Refer to drawing DAPJ. The most significant bit of
the shifter is SHFR 15. The shifter inputs are sim-
ilar to the inputs for other shifter bits when the
byte-swap {A) or unshifted ALU inputs (C) are se-
lected. However, the input used for the right-shift
mode is dependent on the instruction being
executed.

For some shift operations, such as ASR and
ASRB, the sign of the data word is replicated. This
is done by routing ALUL5 (the most-significant, or
sign, bit) to the right-shift inputs of both DAPJ
SHFR 15 and DAPH SHFR 1{4. For right rotate
(ROR and RORB) instructions and multiply in-
structions, this procedure is modified by forcing a
second level 2-input 745157 multiplexer to select
GRAJ) SHFR DATA H instead of DAPH PCB 15
H. The signal GRAJ SHFR DATA consists in this
case of the carry (C) bit and the P/class instruction
decode for the rotate instruction, For the multiply
instruction, the input is used to extend the sign of
the result during the calculation and to correct the
sigh on the cycle, if necessary. In this last case, it is
high if the instruction is an I/class, and either the
SR is greater than 0 during an instruction-depend-
ent cycle, or the contents of the SR are negative
(SR 15 1) during 2 non-instruction dependent cycle.

The shifter logic for data bit 7 musl operate the
same as the nermal bits for word data, and as the
most-significant bit for byte data. The right-shift in-
pul must be able to receive one of three values;
ALUO8 for word duta; ALUO7? for byte shifts (if
not a rotuate instruction); or the Carry (C) bit for an
RORB instruction, This is accomplished by multi-
plexing the C bit with the PCB input and forcing
the SHFR to uccept input B for an RORB instruc-
tion: for any other byte shift, the SHFR is forced
to accept input €, the no shift input, so that
SHFRO? and SHFRO07 both receive ALUOQT.
SHEFRA15 and SHFRI15 signals and SHFRAO7 and
SHERO7 signals are logically identical and appear
only for additional loading capacity.

GRAB Z DATA2 L detects all Os at the SHIFR out-
put, Depending on the operation being performed,
cither the entire word of data or only one byte of
data may be significant, For word data, both
wircd-AND circuits must detect all Os. For normal
byte opcrations, only the low byte (SHFRO07 -
SHFRO0) must be all 0s. During operations on odd

bytes, or during a SWAB instruction, only the high
bytc is tested. A fourth input, enabled by IRCF
CHECKZ H, is used when the final result is two
words, to clear the 0 (Z) bit if the second word
does not contains all Os. If the second word is all
0s. the Z bit retains the previous value. Thus, only
il both words are all Os will the Z bit be set.

2.1.2.2 Shifter Control - The SHFR is controlled
by DAPF SHFRSO0 and SHFFRS1 H, which are in-
verted from GRAA SHFRS0 and SHFRSI L.
These signals, in turn, are generated by the same
subrom that controls the ALU, and they are instruc-
tion-dependent when the ALU control signals are.
Reler 1o Paragraph 2.1.1.2.

GRAA SHFRSO and SHFRSI1, when instruction-
dependent, take on the value of the subrom output,
excepl in the case of the ASRB, ROROB, NEG
und NEGB instructions if the destination mode is
not 0. und in the case of the SWAB instruction. In
both of these cases, DAPF SHFRS0 and SHFRSI
are forced low by GRAA SWAP L,

2.1.3 Program Counter (PCA and PCB)

The Program Counter (PC) provides the address of
the next instruction to be fetched. The PC is imple-
mented as twao 16-hit registers, PCA and PCB.

PCA aceepts data only from the ALU: this duta is
clocked in at TS by DAPJ CLKPCA H when the
PCA ROM bit =1. The output of PCA goes only
to PCB, und is the only input to PCB.

PCA is clocked into PCB at T1 by DAPJ CLKPCB
H when the PCB ROM bits =1, 2 or 3: 1 is an un-
conditional load: 2 loads if the source field =7; 3
loads if the destination field =7, unless the instruc-
tion is [/class and the UPWEOO ROM bit is high,

{1/cluss instructions are those that cause a high out-
put of the ITCH R {1 CILASS) output of the instruc-
tien decode subrom. They ure listed in the R
(1/CLASS) column of the table on IRCJ).

2.1.4 General Registers

In all instructions that transfer data, each address
reference specifies one of eight General Registers,
The specific register (of the 16 in the KB11-C Pro-
cessor) used for cach reference depends both on the
value of the 3-bit register specification and on the
processor stale, as represcnted by the contents of
the Processor Status (PS) word.

I1-2-7

Two of the eight General Registers that can be spec-
ified in the instruction code are also used by the
KB11-C us special-purpose registers. If the register
specification has u value of 7, it specifies the Pro-
gram Counter {PC). This always refers to the hard-
wiare PC register described in Paragraph 2.1.3. If
the specification has the value 6, it specifies the
hardware Stack Pointer (SP) register,

One of three hardware registers, within the General
Register data storuge elements, is selected in this
cuse, depending on the processor mode: register 6 if
the processor is in Kernel mode, 16 if it ts in Super
mode, or 17 if in User mode. If the register specifi-
cation has the value 0 - 5, one of two registers is se-
lected. depending on the register set selection bit
(bit 11 in the PS word).

Figure 2-3 illustratcs the General Register selection
in the KBEI-C Processor. Figure 2-4 shows the for-
ntal of the Processor Status word (PS).

REGISTER
ADDRESS

o]

1

2 GENERAL REGISTER
+ SET O
3 PS<iI>=0

7

}P5<15.’14> =00

& KERNEL 5P [(R6)

7 7 SEE NOTE//.

CELLLLLL _

10

{f

12 GENERAL REGISTER
- SET 1

13 PS> =

14

15
4

1€ SUPER SP(R8) }F5<!5:14>=01

17 USER SP {R6)} }P5<i5:|4>=11

NOTE :
Register 7 is the FC which is stored separaotely.

11-0963

Figure 2-3 General Register Storage in
GS and GD Storage Elements

Moow_ad 17w m 4 ? 54 i3 1]
‘Norum PRICIRTY |T}N1Z|\'IC|

W

Figure 2-4 Processor Status Word

[————
CIRREMT MOGE 0..—_,
PREVICHS MODE

GEMERAL WEGLSTER
1l

*MOOE: (0 KEANEL
D1 *SUPERVISOR
VI vUSER

Each ol the to Generul Registers is duplicated. The
duplication allows the processor to access more
than one register at a time. Each General Register,
with the exception of register 7, is implemented by
two copies in the two General Register storage
clements,

The General Source (GS) registers include [6 regis-
ters allocated as shown in Figure 2-3. The General
Destination (GID) registers contain 16 registers used
in an identical manner. When data must be written
into a General Register, it is written into both cop
ws to ensure that all attempts to read the data will
read the same value. However, by specifying differ-
ent register addresses to the GS and GD storage ele-
ments, it is possible to read the contents of a
dilferent register from each. This feature is used pri-
marily in reading the contents of the two registers
specified by double-operand instructions,

Whenever the General Registers, as a group, serve
as o dala sourge, the PC (register 7) can be selected
as one ol the General Registers. This is accom-
plished by sclecting the PCB input to the SHFR,
and allowing the source or destination multiplexer
to select the SHFR input, if register 7 is selected,
and the GS or GD inpud il any other register is
selected.

Refer to schemuatics GRAD-GRAH. The General
Registers are implemented in two sets of four
JIIA 64-bit random-access memories that are ar-
ranged in sixteen 4-bit words, Each General Regis-
ter is made up of one word from euch of four
memories, and the sume word selection signals are
sent 1o all Tour memories for one copy of the regis-
ters. A dilferent set of sclection signals can be sent
to the seccond copy of the registers while reading,
but not when data is heing written,

Datu is written when the W input is low. The write
enible signals are GRAC GRWE LOB L for the
low order byte, and GRAC GRWE HIB L for the
high-order byte. The conditions for these signals
are explained in 2 table on GRAC,

11-2-8

Individual registers are sclected for reading and
writing by GRAC GDA (0:2) H and by GRAC
GSA (0:2) H, all four of which go to the A0 - A2
inputs to the 3101As. The register sets are sclected
by GRAC GDREG SETI| H and GSREG SETI H,

The multiplexers are disabled when PAD =6, GSA
(0:2) and GDA (0:2) are low in this case.

. . Table 2-2
which go to the A3 inputs to the 3101As. Multiplexer Input Selection
General Register Selection GSAM and GDAM
Source and Destination Address Multiplexer
[GRAC GSA(0:2), GDA(0:2)] - The microprogram PAD GSAM GDAM
selects the sources of the scratch pad addresses. The 0 A A
microprogram includes a 3-bit PAD field that se- 1 A B
lects onc of scven sets of sources; the value of 3 in 2 C C
the PAD field is not used. Some of the sources are 3 ot used
constants, and are generated by +3V and 0V in- 4 3 Y
puts to the GDAM and GSAM multiplexers; oth- s B B
ers are l;lker} fro_m the IR source a{ld destination p G5 2nd GD MX disabled
register specifications of the instruction. Table 2-2 2 D)
shows the multiplexer inputs used for each PAD
value. Tuble 2-3 shows the values of these inputs.
Table 2-3
Multiplexer Input Values
Input Value
Bits 1 and 2 Bit 0

A Source Field [IR(07:08)] If IR06=1, high. If IR06=0, low, unless current mode is User
and the source field =6 or 7.

If PAD=4, same as above, but GRAC PLUS 1 is ORed with
TRO6 to force an odd register address. Used only during MUL,
DIV and ASHC,

B Destination Field [IR(01:02)] IF IR00=1, high. If IR00=0, low if the console is not active; or
if the destination field is not =6; or if PS15=0 (Kernel or Super
current mode) and the instruction is other than MFP or MTP
with destination mode 0; or if PS13=0 (Kerncl or Super previous
mode) and the instruction is MFP or MTP with destination
mode 0.

C GSA(2:0) and GDA(2:0)= 5

D If PS15=0, GSA(2:0) and

GDA(2:0)=6 (Register 6, Kernel
or Super)

If PS15=1, GSA(2:0) and
GDA(2:00=7 (Register 6, User)

I-2-9

Generul Register Set Selection (GRAC GDREG
SET | and GSREG SET 1) - The most-significant
bil of the scratch pad address selects which General
Register set is used. This selection is, in general,
done by the multiplexer; in several cases, the pro-
cessor forces the selection of General Register Set
1. Note that these multiplexers are always enabled.

Table 2-4 shows the multiplexer inputs selected for
each PAD value.

Table 2-4
Multiplexer Input Selection
GSREG and GDREG SET 1
PAD GSREG SET GDREG SET 1

0 A A
1 A B
2 C C
3 not used
4 A A
5 B B
6 C C
7 D D

GRAB SRC SET 1 L and DST SET 1 L are, re-
spectively, the A and B inputs to both source and
destination multiplexers.

Both pates are asserted (low) when the Console is
not aclive, PS11 is asserted, and registers 0 ~ 5 are
specified by the source [IR(06:08)] or destination
[IR(00:02)] fields of the current instruction; regis-
ters 0 ~ 5 are selected if not both IR08 and 07 (for
the source field) or IR02 and 01 (for the destination
field) are asserted.

Set | is aiso selected when the Console is not ac-
tive, PS14 is asserted (Super or User modes), and
register 6 1s specified by the instruction source or
destination ficlds, This, in conjunction with the
GRAC multiplexer outputs, forms address 16. If
PSES is asserted, the A input to GRAC GDAO and
GSAQD is forced high, thus generating address 17
{(GRAC PLUS 1), If the instruction is an MFP or
an MTP, and UPEW00 =1 {conditional), and the
destination field =6 or 7, and the mode is User or
Super, and the Ceonsole is not active, GRAB DST
SET1 L is also asserted.

The C input to the Set 1 multiplexers is PS1I,
which defines the register set.

The D input to these multiplexers is PS14(1)L
which, when asserted {low), specifies User or Super
modes.

The output of these multiplexers, when low, causes
the selection of General Register Set 1 through the
GRAC GDREG SET! H and GSREG SETI H
OR gates.

The two other inputs to the OR gates cause the se-
lection of SET]I:

i. During a Console operation, bit 3 of the
address selects the Register Set and is
clocked into TRO3; it is then input to the
OR gates to select the proper set.

[SF)

In the case of an MFP or MTP instruc-
tion with destination mode 0 and destina-
tion field =46, if UPWEQO=1
(conditional) and PS812=1 (previous
User or Super modes), set 1 is also se-
lected. In an MFP instruction, the
source is always specified in the field nor-
mally designated as destination. The des-
lination is the current mode stack.

2.1.5 Source and Destination Multiptexers (SRMX
and DRMX)

The SRMX and DRMX select the input to the
Source and Destination Registers (SR and DR). Re-
ier 10 drawing GRAD.

The select inputs to these multiplexers are GRAC
SRMX SEL L and DRMX SEL L, which are con-
trolled by the SRX and DRX ROM bits and by
IRCB SRCF 7 L.

When the SRX and DRX bits =0, the SHFR is se-
lected as the input to the SR and DR, When SRX
and DRX =1, the General Source and Destination
registers {GS and GD) are the SR and DR inputs.
If SRX and DRX =2, the inputs are ecither the
SHEFR, if the Source or Destination fields =7, or
the GS and GD if this is not the case. SRX =3 is
not used; DRX =3 clears the DR at GRA)
TP(3:5), which is u flip-flop set by T3 and reset by
TA.

11-2-10

2.1.6 Source Register (SR)

The Source Repister (SR) performs two major func-
tions. It is the output buffer for the General Regis-
lers when addressed as the SR in an instruction,
and it provides temporary storage during the source
Jata-fetch operations.,

All output from the GS registers must be trans-
ferred through the SR. When the PC is selected as
1 source regisier, the data from the PCB is routed
through the SHFR and the SRMX to the SR.
From the SR, data can be routed anywhere in the
processor through the ALU inputs, or the contents
of the SR can be used as an address for external
data transfers through the BAMX. The SR is also
used as u lemporary storage register during trans-
fers of data within the processor; e.g., when the old
PC and PS are being stacked during an interrupt or
trap service sequence, the SR holds the vector
address.

The SR is used as a data storage element for inter-
mediate results during instruction execution. The
register and operand group instructions, such as
multiply, divide, and the arithmetic shifts, use the
SR to hold both operands and results,

The outputs of the SRMX are connected directly 10
the inputs of the SR and are clocked by TI if cn-
abled by the microprogram bit RACA USRK H.
The outputs of the SR are routed to the ALU input
multiplexers and to the bus address multiplexer. Bit
0 of the SR is also sent to the IRC module for use
in one of the microprogram address generation cir-
cuits, the C Fork, Tor odd-byte source branches.

The output of the SR is checked for two condi-
tions: SR € 0 and SR = +1, by GRAE SR LEQ
ZERO H and SR EQ ONE L. The two flip-flops
are clocked by the same signal that clocks the SR.
They are both set if GS(01:15) = 0,

GRAL SR LEQ ZERO H is asserted if both flip-
flops are set and GRAD SR00 H is low (SR=0) or
if GRAIL SRIS L. is asserted (SR is negative).

GRAE SR EQ ONE L is asserted if both flip-flops
are sel and GRAD SR00 H is asserted (SR=+1).

2.1.7 Destination Register (DR)

In addition to performing two functions similar to
the major functions of the SR, the Destination Reg-
ister (DR) also operates as a data manipulation ele-
ment; specifically, the DR is used as a lefl or right
shift register during register and operand instruc-
tions-such as ASH, ASHC, MUL, and DIV,

All output from the GD registers {and from the
PC, when it is selected as a destination register)
musl be through the DR. Data from the DR can
be rouled anywhere in the processor through the
ALU, or used as an address in external data trans-
fers through the BAMX. To transfer the contents
of either the SR or the DR 1o an external data stor-
age location, the data must first be transferred from
the SR or DR through the ALU to the BR, and
then from the BR to the Cache, the Unibus, or the
Internal Drata Bus,

The DR is used as a control register and to accumu-
Iate the less-significant part of the result during reg-
ister and operand instructions such as multiply,
divide, or the arithmetic shifts. The DR is alse the
source for data to be loaded into the Shift Counter
(8C) register.

Refer to GRAD through GRAH. The DR can be
loaded with a left shift of one bit, a right shift of
one bit, or no shift. The shift inputs are used when
the processor must operate on two words of data at
the same time (for example, during a multiply or di-
vide instruction) and the operation includes shilt-
ing, The type ol loading is determined by RACA
URRK(OM®01), us shown on GRAD. During a right
shift, DAPF ALUOO is toaded into GRAH DRIS.
During a left shift, DAPY LEFT DATA is loaded
into GRAD DRO}; DAP] LEFT DATA is high
when both DAPJ COUTI(S H (the ALU carry out)
and the instruction is I/class. This input is used dur-
ing the DIV instruction, When no shifl is required,
DRMX(00:15) are loaded into DR(DO: 15).

The DR is cleared when the DRMX control bits
UDRX{00:01)=3.

Al T1, when UDREK{00:01)=3 (load DR),
DRMX00 is clocked into the GRAB OBD (Odd-
Bytc Destination) flip-flop. When set, this flip-flop
indicates thut the destination field contains an odd
hyte address.

I1-2-11

2.1.8 Shift Counter (SC)

The Shift Counter [GRAJ SC{00:05)] is used to
count the repetitive cycles of data manipulation in
the multiply (MUL), divide (DIV), arithmetic shift
(ASH), and arithmeti¢ shift combined (ASHC) in-
structions. The SC can be loaded either with the six
less-significant bits of the DR (for ASH or ASHC
instructions) ot with a constant, 17(8), (for MUL
or DIV instructions). The SC is controlled by the
RACC USHC(00:01) ROM bits. The outputs of the
8C are used in the Branch Conditions logic on
RACK.

The SC consisis of two 74191 counters and associ-
ated logic, They are loaded with the value present
al 1he D inputs when the LOAD input is low. The
74191 counts on the positive transition of the clock
signal, il the ENABLE input is low. The counter
counts down if the DN input is high, and counts
up if DN is low. The MAX/MIN output goes high
when the outputs arc all high (=1111}, and the
count direction is up (DN=low), or when the out-
puts are atl low (=0000) and the count direction is
down (DN=high). The R/CLK (ripple clock) out-
put goes tow when MAX/MIN is high and CLK is
low. The R/CLK from the low order SC clocks the
high order SC. If RACC USHC(01:00)=0, the SC
is inoperative,

If USHC=1, the ENB input is low and one clock
pulse is generated at GRAJ TP(3:5) H.

If USHC=2, the complement of DR{05:00) is
louded with the sign cxtended to the two unused
high order bits of the SC.

If USHC=3, the eight bits of the counter are
loaded with Is. This is used to count Lo 16(10)
(=17x) during MUL and DIV. [a this case, only the
four low order bits [SC(03:00)] are counted.

Refer 1o Figure 2-5. When 174 is loaded, SCO5L is
low, and the counter is made to count up, since
SCOSL is input to both DN inputs. At the first
clock pulse, SC(00:03) goes to all 0s (E111+0001).
Neither MIN/MAX nor R/CLK are generated at
this time, and SC(04:05) stay high. Each clock pulse
increments the contents of SC(00:03) by 1. When
their value equals 1111, MIN/MAX goes high, and
since SC{04:03) are still high, GRA) SC=0 L is as-
serled. This occurs on the sixteenth clock pulse.

SC3 J_—.
< | [[LJ L
aces L | I

n-308

Figure 2-5 SC Leaded With 00101

Refer to Figure 2-6. When an ASH or ASHC speci-
fies u right shift, bits (0:5) of the instruction word
contain ua negative value. This causes a positive
value to be loaded into the SC (8C05=0), and the
counier will count down (GRAJ SC05 L = DN are
high). Assume that a 6-bit shift is desired: -6 in
2's complement, or 11010, is entered into bits (5:0)
of the instruction word and then loaded into the
DR. The 1's complement of this value, or 00101, is
the number loaded into SC(05:00). Since the DN in-
put is high, successive clock pulses cause the
counter 1o count down to 00000. At this time,
MIN/MAX goes high, but since SCO05 is low,
GRAJ SCO L is not asserted. At the next clock
pulse, the sixth, R/CLK is asserted. Since the
counter is still counting down, all five SC bits
change from 00000 to 11111. GRAJ SCO05 L and
the DN input both go low, which defines count up.
MIN/MAX stays high, SC04 and SCOS5 are high,
causing GRAJ SC 0 L to be asserted, thus ending
Lhe count.

I11-2-12

SC#3 H—l

sc@e2 H—I

SC@AIH |

oo]|

H"

A
-

R/CLK I
)1
LR

SCES H
]}
L}

5CA4 H

MINSMAX

—
- L
LIRS

SCegFL I

2,1.9 ALU Inputs

The A multiplexer (AMX) is the “A’ input to the
ALU., It can select one of four signals: DR, SR,
PCB, or the Bus Register (BR).

The B multiplexer (BMX) is the “B” input to the
ALU. It can select the SR, the BR or one of two
constant multiplexers, KOMX or KIMX.

General information on these inputs is listed in
Table 2-5.

2.1.9.1 A Multiplexer (AMX) - The A multiplexer
(DAPB AMX00 H - DAPD AMXI15 H) is con-
trolled by RACC UAMX{01:00) and selects one of
four registers for input to the A operand of the
ALU. The values of RACC and the registers se-
lected are listed in the table on drawing DAPB.

2.1.9.2 B Multiplexer (BMX) - The B multiplexer
{DAPB BMX00 - DAPD BMXILS5 H) selects the B

13108 input to the ALU. It is controlled by RACC
. . UBMX(01:00) H. Table 2-6 shows the outputs of
Figure 2-6 5C Loaded With 17, the BMX for the several values of UBMX.
Table 2-5
ALU Input Multiplexers
Multiplexer Output To Input From Type of Input
AMX A input of ALU source register variable operand
destination register variable operand
bus register variable operand
program counter variable operand
BMX B input of ALU source register variable operand
bus register variable operand
KoMX constants
KIMX constants and sign-extended operands
KOMX BMX 1 fixed constant
2 fixed constant
source constant penerated constant
destination constant generated constant
KIMX BMX trap vector generated constant
start vector fixed constant
BR (S0B & MARK) shifted and sign-extended operand
BR {branch) shifted and sign-extended operand

I1-2-13

Table 2-6

BMX Qutput Selection
BMX RACC UBMX(01:00) H
o0 01 10 11
00 KOMXO00 0 SROO | BROO
01 0l | KIMX01 01 01
02 02 02 02 02
03 03 03 03 03
04 0 04 04 04
0s 0 05 05 05
06 0 06 06 06
a7 0 K1MX07 07 07
*08 KOEX KIEX*UKMX00 08 08
*09 KOEX K1EX 09 09
*10 KOEX KI1EX 10 10
*11 KOEX K1EX*UKMX00 11 n
*12 KOEX KI1EX 12 12
*13 KOEX ‘KIEX 13 13
*14 KOEX KI1EX 14 14
*15 KOEX K1EX SR15 | BRI1S

*Note: If GRAA SGNEX MOVBE L is asserted, KOEX H
becomes the output of BMX(15:08) H.

Stgn Extension — When RACC UALU(Z0) H = 7
(AL.U instruction dependent), and the instruction is
MOVB (IRCB MOVB H is high}, GRAA SGNEX
MOVB L is low, This forces the two signals that
control BMX(15:08) high (DAPD BMXS1 HIB L
and BMX S0 HIB L), thus putting DAPD KOEX
H on the high order byte BMX output line. KOEX
tukes on the value of BRO7 when the BR is selected
(UBMX =3), or that of SR07 when the SR is se-
lected (UBMX =2).

2.1.9.3 Constant Multiplexer ¢ (KOMX} - Con-
stant Multiplexer 0 [DAPD KOMX(03:00)] supplies
values required for incrementation of ALU oper-
ands. The KOMX is controlled by RACC
UKMX(0(1:00) H.

When UKMX=0, a constant of | is generated.
When UKMX =1, a constant of 2 is generated, ex-
cepl in the case where FRMJ ADDR INC L
{request by the FPI1 for an address increment) is
not asserted and TMCE FC H is asserted. FC
{Floating Point Condition) is asserted when the Bus
Condition bits (BSC)=4, signifving that the pro-
cessor is executing a memory operation for the
FPI1.

When UKMX=2, a constani of | is generated if
IRCC SRCCON-I1 H is asserted. A constant of 2 is
generated il IRCC SRCCON-1 H is asserted. The
conditions for these Tunctions are shown on draw-
ing IRCC und are mutually exclusive. They nor-
mally indicate an auto-increment or auto-decrement
addressing mode for the source register.

When UKMX=3, constants of [, 2, 4, or 10 may
be peneraled by IRCD DSTCON-I (or 2, 4, or 10}
H. Increments of 4 or 10 are only used for FPI1 in-
structions. The conditions for these functions are
shown on drawing IRCD.

DAPD KOEX H is described in Paragraph 2.1.9.2,
B Multiplexer (Sign Extension).

2.1.9.4 Constant Multiplexer | (KIMX) - Con-
stant Multiplexer 1 [DAPE KIMX{(07:01) H and
KI1EX H] generates vector addresses and program
counter oflsets. The KIMX is controlled by RACC
UKMX{GL-00) H,

Table 2-7 shows the output of the BMX for the sev-
erab values of UKMX when the KIMX is selected
{UBMX=1).

When UKMX =0, DAPE SV(07:02) H are selected.
This is the start vector, which is selected in ROM
stute 100 (PLP.0O on Flows 12) during the power
up sequence, The address may be selected either in
the range of 000 000 to 000 £74(R), or in that of
173200 1o 173 374(8), depending on the jumper for
SVO7. This s due 1o the logic for DAPE BMX08
and Il combined with the KIMX circuitry, which
extends the sign to all high order bits except bits 08
and I,

The trap vector (TV) is used to select a new PC
and PS§ lollowing a trap operation, The {rap vectors
lor a variety of internal conditions are defined by
the logic in the lower-left corner of the drawing.
The chart on DAPE defines the specific vector for
cach condition. If none of these coenditions is pre-
sent, but the processor is doing a trap operation,
the trap veclor is set to 4. This occurs for non-ex-
tslent memory references, memory parity errors,
udd address crrors, Tatal stack violation errors, and
executing the Halt instruction in User or Supervisor
modes of operation. The KIMX constants for
EMT and TRAP instructions are cne-half their as-
signed values, This is because they are executed by
the same muchine states (Flows 12} that cause the
veclor Tor reserved instructions to be left shifted (so
that vector 4 forms vector 10).

II-2-14

Table 2-7

BMX Output From K1IMX

Bit BMX RACC RACC UKMX(01:00) H

UBMX=1 00 01 LI i
00 0 0 0 0
01 KIMX01 0 VOl BROO
02 02 SV02 I 02 01
03 03 03 03 02
04 04 04 V04 03
05 05 05 TVO5*07 04
06 06 06 TVO06 BRO5
07 K1MX07 SV07 TVO5*07 0 BRO6
08 K1EX*UKMX00 0 0 0 BRO7
09 K1EX SV07 0 0 BRO7
10 KI1EX SV07 0 0 BRO7
11 K1EX*UKMX00 0 0 0 BRO7
12 K1EX SV07 0 0 BRO7
13 K1EX SVO7 0 0 BRO7
14 K1EX SVo7 0 0 BRO7
15 K1EX SV07 0 0 BRO7

The third input to KI1IMX, BR(07:00)H, is used for
the offsct in SUBTRACT | AND BRANCH
(SOB), and MARK instructions, This offset is al-
wavs. in full words and is always 4 positive quantity
that is subtracted from the PC in the ALU. Be-
cause all PDP-11 Systems use byte addresses, the
offset, us it appears in the instruction, must be mul-
Liplied by 2 Lo generate the proper value to be sub-
tructed from the PC. This is done by shifting the 6-
bit offset 1 bit to the left. For example, BROD is the
input to the multiplexer for bit 01. The BR is used
because il contains the same value as the Instruc-
tion Register (IR} at the time of the PC modifica-
ton, and is directly-accessible to the data path
logic.

The fourth input to KIMX is used for the offset in
successful branch instructions., The branch offset
cun be either positive or negative; the value taken
from the instruction is first multiplied by 2 (shifted
left) and then sign-extended, and the resulting 16-
bit number is added to the PC. The branch offset
can have values from +127 to -128,; words; BR
(07:00) provide the offset and the left shift provides
word (rather than byte) addresses.

2.2 INPUTS TO PROCESSOR DATA PATHS
The Processor Data Paths receive data through the
Bus Register Multiplexer (BRMX) from the Cache
Memory, the Console {Switch Register), the Mem-
ory Management registers, the optional Floating
Point Processor and the Umbus. The Unibus input
is buffered by PDRJ D{15:00) H, the Bus Buffer
Register, which is clocked at every TIGD T3 L.

The BRMX also has an input for internal data
from the SHFR. The most generally used path
from the SHFR to the ALU is through the BRMX
and the BR.

The BRMX is the input to the two Bus Registers
{BR and BRA) and to the two Instruction Registers
{IR and AFIR).

2.2.1 Bus Register Multiplexer {BRMX)

All data input to the processor is routed through
PDRA BRMX(15:00) H; in addition to the external
data from the Unibus, the BRMX also accepts in-
puts from the Cache Memory, the SHFR, and the
[nternal Data Bus.

[1-2-15

The four inputs to the BRMX are:

1. PDRJ D(15:00) H (Bus Buffer Regis-
ter clocked each T3 from the Unibus
lines);

2. PDRA INT D{15:00) H (Internal Data
Bus)

3. DTML CDM(15:00) H (Cache Memory
data)

4. DAPF-DAPJ SHFR(I5:00) H (Shifter
output).

Refer 1o Figure 2-7. These signals are selected by
PDRA BRMX S(1:0y H. The SHFR is sclected
when RACA UBRX H is tow, making S| and 50
both high.

The other three inputs can only be selected when
UBRX is high.

The Cache is selected when TMCF SEL MEM L is
low: the address is a Cache address, an interrupt
pause is not in progress, and the Internal Data Bus
is nol selected.

The Internal Data Bus is selected if TMCF SEL
INT L is low. One of three conditions may cause
this: an internal register is being addressed, or the
IBSOD ROM bit is asserted (read Switch Register or
read PS). or the BCT{02:00) ROM bits = | (read
Floating Point data).

The Unibus is selected when UBRX, TMCF SEL
MEM L, and TMCF SEL INT L are all high.

The BRMX is the input to both Bus Registers {BR
and BRA) and to both Instruction Registers (IR
and AFIR).

2.2.2 Internal Data Bus (INTD)

The Internal Data Bus [PDRA INT D(15:00) H} is
a wircd-CR bus that transmits the following data
to the BRMX;

. Switch Register (from Console)

2, Memory Management Registers (MMR3
1o MMRO and APR, which is a multi-
plexer that cun select either a PAR or a

PDR)

3. System ID and System Size Registers

51 |s¢ |ermx out
Lo | uniess
L 1H {NT D -
W | L | CACHE PORA
Ho|H SHFR
: SHFR— D
TMCF SEL ¢
SCGD INT REG (1) L INT L CACHE—
18588 L iNT 0—1|B
BCTER Ho) UNIBUS — A
' P $1
BCTOlL TMCF FP
READ L
acTez L— PDRA BRMX S@ H
RACA UBRX H
PORA BRMX St H
SAPN NOT CACHE ADR H—CD
TMCF SEL MEM L
25009 H : E
BSOdI L : L TMGE INTR PAUSE L
11-3110

Figurc 2.7 BRMX Selection, Simplified Schematic

1i-2-16

4. Processor Error Register (TMCD
TRAPS TO 4)

5. Processor Status Word (PS)

6. Floating Point Processor Data [FXPD
DOMX(15:00)].

Figure 2-8 is a block diagram of the Internal Data
Bus. The data put on the bus is a function of the
IBS {Internal Bus) and BCT (Bus Control) ROM
bits. Refer to schematic TMCF. TMCF GET OFF
H is asserted when the IBS field cquals | (Read
Switches), 2 (Load PS) or 3 (Read PS), or when the
BCT field equals 1 {(Read Floating Point Processor
Data), TMCF GET OFF H is inverted on SSRJ
and becomes SSRI GET OFF L.

When BCT=1, data from the FP11 is enabled onto
the bus and all the Memory Management inputs
are disubled by TMCF GET OFF.

When 1BS=1, 2 or 3, the Memory Management in-
puts are also disabled. IBS=1 selects the Switch
Register. IBS=3 selects the PS.

When 1BS=0 and BCT is not equal to 1, the Mem-
ory Management inputs are enabled. The selection
of the register that is to be put on the INT D bus is
made by register address decoding in Memory Man-
agemenl, Four schematic drawings (SSRJ, SCCH,
SCCM und SCCN) show the Memory Management
inputs to the Internal Bus. These inputs are:

MMRJ - MMR3

I

2. APR (PAR/PDR multiplexer)
3. System Size and ID registers

4, TMCD traps to 4 error register
5. Switch Register

One of these inputs is put on the Internal Bus if
SSRIJ GET OFF L is high, and if the operation is a
rcad {SSRJ C1 B L not asserted).

—_—— e —
=
TMCF 1 SCCH |
| | SWITCH REG—nli_
WX
I | sceL MMRB—-Ii I
READ SW | I
I 1951 } -} I
| ADDRESS DECORE -Jl |
I LL BUS INT D
| | e
= — ——— —
| I SSRJ =1
| SAPM APR—J— |
| SSAH MMRZ -
S5RI MMR1
I SERC ana—--\--| I |
ADDRESS DECODE —wf—— l
RACT IBS I }7
oo | [| PORA =
INT D
l —_—— e e ¢15:005 H I
| SCCN 1 e] |
TMECD | SCCM ‘ I _—
I TRAPS TO 4 | CACHE —] !
RACC BCT | | S5 10 400:07> | R
{02 00> I Y5 SIZE LO l_ _l
I . I SYS SIZE Hi | *
I l I 5¥5 S1ZE €O7-DO> |
o ADDHESS} I 3¥S D 15:08> I
| 1,2,3) }GET oFF ' becone J 1 } J
| | e ——
' PORD _I
I | RS 15:00> (1K BUS INT D
' w00 |
I I IES——I—[BS.:g I
| FF READ |

!ﬁPD_ —— — a0
+ FxPooDomx B <13:007 l
I 45003]

Figure 2-8

Internal Data Bus Block Diagram

I1-2-17

n-nag

Address decode determines which one of the inputs
goes onto the bus.

2.2.2.1 SSRJ Multiplexer — The inputs to the mul-
tiplexer on SSRJ are MMR0, MMRI, MMR2 and
the APR muitiplexer (PAR or PDR). This multi-
picxer is enabled when SCCC INT REG B H is as-
serted and SCCC MMRJ is cleared in addition to
GET OFF and C1,

Input select signals are SCCC MMR REG (1) H
(MMRO, 1, 2), SSRH VA(02:01) L {virtual address
bits 02:01) and SCCD APR REG L. VA(02:01) de-
fine which MMR is being addressed.

2.2.2.2 SCCH Bus Output - The Switch Register
[SCCJ SWR(I15:00) H] 1s transmitted from the Con-
sole to Connector J2 on SCCJ. It is multiplexed
with MMR3 Lo make up the second Memory Man-
agement input to the Internal Data Bus.

Since MMR3 consists of only five bits (00, 01, 02,
04 und 05), only these bits need be multipiexed.

The MMR3 input is selected when SCCC READ
MMRI L is asserted.

The Swilch Register is selected by SCCC SW REG
{0 H when the reference is an explicit one and by
TMCF READ SW L if the reference is implicit.
This last signal is asserted when the ROM IBS field
is cqual Lo |.

2.2.2.3 SCCM Multiplexer — The Multiplexer on
SCCM transmits the following data on BUS
INTD{07:00) L:

1. The System 1D Register, bits (07:00),

2. The CPU Error Register {refer to Chap-
ter 33, which consists of TMCD ILL
HALT H, ODD ADRS H, CACHE
NXM H, UBUS TIMEQOUT H, YEL
TRAP H and S1. RED ERR H, and

3. The two System Size Register low-order
bytes,

The Multiplexer is enabled by SCCD INTD REG
L. Address decode signals select the output signal
and, in conjunction with SCCC C1 B L and SSRJ
GET OFF L, enable the output drivers.

2.2.2.4 SCCN Multiplexer - The high-order bytes
ol the System ID Register [SCCN SYS 1D{15:08)
H] and the System Size Register are gated onto the
Internal Bus on S8CCN by their respective address
decode signals and by GET OFF and the negation
ol CI.

2.2.3 Bus Registers (BR and BRA)
The Bus register consists of two slightly different
registers, the BR and the BRA,

The BRMX is the input to both BR and BRA.
This lust register, however, also accepts the parity
bits from Cache Memory (DTML HI BYTE PAR
H and LO BYTE PAR H). These bits appear on
the BRA outputs as PDRB Hl PAR H and LO
PAR H and are used only to generate PDRH IND
HI PAR H and IND LO PAR H, which transmit
byte parity information to the Console indicators.

The BR outpuls are designated DAPA BR(15:00)
H and DAPA BRI14 L. The high outputs are the in-
puts to the AMX, the BMX and the KIMX,
DAPA BRI4 L is an input to RACK BRCAB 03
L. .

The BRA outputs are called PDRB BR{15:00) A
H. They are also inverted as PDRB BR(15:00) B L.
They ure the inputs to the Control Registers (LR,
PS, PIRQ. SL, PB), the DMX, the Display Multi-
plexer. Cuche Memory, Memory Management and
the FPP.

The BR and the BRA are clocked by TIGA CLK
BR H and CLK BRA H, during the 15 ns of the
duration of TIGC TPB L, when RACA UBRK H
(load BRY is high and TIGA GATE BR (1) L is
low. This fust flip-flop is set at the rising edge of
TPB L when the output of the OR gate 15 high.
This always occurs at T1 (refer to Chapter 4).

2.2.4 Instruction Registers {IR and AFIR)

When un instruction is fetched from an external
daty storage location, the data word enters the pro-
cessor through the Bus Register Multiplexer
(BRMX), and is loaded into the BR. To retain the
instruction word for decoding during the execution
of the instruction, while releasing the BR for other
duta transfers that may be required during the exe-
cution of the instruction, the outputs of the BRMX
are simultaneously loaded into the instruction regis-
ter [IRCA TR(I15:000] and into the A Fork Instruc-
tion Register [RACI AFIR(15:00)].

11-2-18

The IR and AFIR are clocked only during data
transfers that fetch instructions, The BR is clocked
during every external data transfer that brings data
into the processor. Both IR and AFIR are clocked
by TIGC Ti or TIB if RACA UIRK H is asserted
(Load IR).

The TR is used for decoding circuits which operate
the subsidiary ROMs, the program ROM B and C
Forks, and a variety of instruction class selectors.
The instruction decading logic is shown on the con-
trol section block diagram, Chapter 1. The AFIR is
used only hy the program ROM A Fork.

2.3 PROCESSOR DATA PATHS OUTPUTS
The output of the Data Paths is routed through
onc of four logic units:

a. The Bus Address Multiplexer (BAMX)
selects the source of the Unibus address

b, The Display Multiplexer selects the
source of the console data display

c. The Pata Multiplexer selects the source
of Unibus data

d. "The Bus Register (BRA) supplies data
directly to the Cache Memory, the Mem-
ory Management registers and the op-
tional Floating Point Processor,

2.3.1 Bus Address Multiplexer (BAMYX)

The Bus Address Multiplexer (DAPB BAMX00 H
to DAPD BAMXIS5 1) accepts as inpuis the DR,
PCB and SR registers, as well as an input, used for
maintenance purposes only, from the FPLI Float-
ing Point Processor. Its output is the program vir-
tual address, which is the input to Memory
Management, which in turn generates the physical
address for the Cache and the Unibus.

The BAMX ouiput is selected by RACB
UBAX{01:00), as shown on the table on drawing
DAPB.

2.3.2 Unibus Data Multiplexer (DMX)

Refer Lo drawing PDRE. The Processor data out-
put te the Unibus is BUS D(15:00) L, which con-
sists of DEC 8881 bus drivers. The input to these
drivers are thc Data Multiplexer (DMX), and
UBCA CPBSY B H, which gates the DMX outputs
onto the Unibus. CPBSY generates BUS BBSY L
during 1 Unibus transaction (refer to Chapter 5).

The inputs to the DMX (data outputs to the
Unibusy are:

a. The Bus Register (BRA), which is used
as the data output of the processor to
Unibus devices. BRA is always selected
during a processor DATO.

b. The Control Registers: PS (Processor
Status word), SL (Stack Limit), PIR and
PIA (Program Interrupt), PB (Program
Break). When explicitly addressed (by
Unibus address), these registers are read
by the program from the Unibus during
a processor DATILL

C. During any DATI other than those dur-
ing which the processor reads the Con-
trel Registers, the output of the DMX is
0. This is because the data is coming
from a Unibus device and the processor
dala lines must not be asserted.

The high order byte of the DMX corresponds to
BUS D{15:08) and is enabiled by TMCD HI BYTE
EN H: the low order byte cerresponds to BUS
[X(07:00) and is enubled by TMCD LO BYTE EN
H. When these signals are not asserted, the corre-
sponding outputs of the DMX are not asserted
{low), [n the case of the Control Registers (PS, SL,
PIR and PIA, PB), onc ar the other, or both, of
these signals are asserted when an internal address
is decoded (SCCE INTERNAL ADRS H) by Mem-
ory Muanagement and @ Unibus transaction has
been started {(UBCA MSYN SET H), Both signals
are asserted in the case of the BR (DATO =
TMCD C! B L),

The seleet signals (TMCD DMX S1 H and SO H)
are enabled by UBCA MSYN SET H and the nega-
tion of TMCD CI B L {=DATI), The combination
ol scleet signals for cach register is determined by
register address decoding on drawing SCCE. If
none ol the Control Registers are selected, both sc-
leel signals are low and the BR is selected.

During a4 DATO, both DMX SI H and S0 H are
low {C1 L is low) und the BR is selected.

Table 2-8 shows the selection of data outputs to the
Unibus,

I1-2-19

2.3.3 Bus Register A (BRA)

PDRA BR(15:00) A H transmits data to the Cache
Memory write multiplexer CDPE WRITE
MUX(15:00) 11, to which the other input is Unibus
data from the Unibus map [MAPA DATA(15:00)
H.

The BR is also the input to the Memory Manage-
ment registers, and the data input 0 the Floating
Point Processor.

2.3.4 Display Multiplexer

The Display Multiplexer [PDRF DISP(15:00) H] se-
lects the input to the Console data display [KNLA
DISP{15:00) H].

The multiptexer select signals (PDRF DISPS] L
and SO L) are the inversion of PDRH DISP DATA
SELI H and SELO H. which in turn are the en-
coded outputs of the Console Duta Display switch
(KNLID DISP DATA SEL1 H and SELO H).

Tuble 2-9 shows
swilch position.

the register displayed for each

Table 2-8
Data Output to Unibus
Unibus SCCE UBCE T™CD PDRE DMX
Output INT MSYN CL* Hi LO | DMX j DMX | Input Byte
ADRSH | SETH BYTE | BYTE | S1H | SOH
ENH { ENH
PS H H DATI H H H H A HI, LC
SL H H DATI H L L H C HI
PIR H H DATI H H L B HI, LO
PIA
PB H H DATI H L H C LO
BR L H DATO H L L D HI, LO
NONE L H DATI L L L None | None

*NOTE: TMCD C1 B L low = DATO, high = DATL

Table 2-9
Display Register Selection
Switch Position KNLD DISP Register Displayed
DATA SEL
1H OH
BUS REGISTER L L BR(15:00)
DATA PATHS L H SHFR(15:00)
DISPLAY REGISTER H L LR(15:00)
HADRS FPP/ H H FRMA/B CRAR(7:1)
CPU H §1 RACD RAR(7:1)

11-2-20

The KB11-C Processor contains registers which con-
trol processor operations ar provide information rel-
ative Lo these operations. These registers, which are
histed below, are described in this chapter (in order
of ascending addresses):;

Address Register
17 777 570 Swilch and Light Registers

17777 760 Lower Size Register

17 777 762 Upper Size Register

17777 764 Sysicm ID Register

17777766 CPU Error Register

17777 770 Microprogram Break Register
17777772 Program Interrrupt Request Register
17777774 Stack Limit Register

17777 776 Processor Status Word

Information on Memory Management, Unibus
Mup and Cache Registers are contained in Sections
IV through VI ol this manual.

3.1 SWITCH REGISTER (SWR)} AND LIGHT
REGISTER (LR)

The Switch Register is the output of the Console
switches, It shares address 17 777 570 with the
Light Register, whose mput is the BR and whose
only output is the Consele Display indicators
through the Display Multiplexer when the Console
Duta display switch is in the DISPLAY REGIS-
TLER position.

I1-3-1

CHAPTER 3

PROCESSOR CONTROL REGISTERS

The SWR is read-only and the LR [PDRB
LR(15:00)] is write-only. They are both described in
Section 111 of this manual,

3.2 LOWER SIZE REGISTER

This read-only register [SCCN SYS SIZE(21:14),
bits 13:06 are ali 1s] specifies the memory size of
the system. I indicates the last addressable block of
32 words in memery (the high order byte indicates
the number of 8K blocks of avuilable memory
minus L) Tt is used by Memory Management to de-
termine the validity of an address, It is read on the
Internal Data Bus (INTD) at address 17 777 760
(bit 0 is cquivalent to bit ¢ of the Physical Ad-
dress). Refer to Scetion 1V, Memory Management.

3.3 UPPER SIZE REGISTER

This register is an extension of the system size,
which is reserved for future use. It is read-only and
its contents are always rcad as zero. Its address is
17 777 762. It is read on the Internal Data Bus
(INTD).

3.4 SYSTEM ID REGISTER

This read-only register [SCUCN 3YS [D{13:08),
SCCM SYS 1D(07:00)] contains information
uniquely identifying each system, Its address is |7
717 764, 1t is read on the Internal Data Bus
{INTD).

3.5 CPU ERROR REGISTER

The CPU Lrror Register (Figure 3-1) is a read-only
register, consisting of six bits which identify the
source of the abort or trap that used the vector at
location 4. These bits, which are set when the error
VCCUrs, ure:

Bit Name Function

7 Iliegal Halt Set when trying to execute a
HALT instruction when the

CPU is in User or Supervisor

mode (TMCD ILL HALT).
6 Odd Address Set when a program attempts
Error to do a word reference to an
odd address (TMCD ODD
ADRS).
5 Non-existent Set when the CPU attempts to
Memory read a word from a location
higher than indicated by the
System Size register. This
does not include Unibus ad-
dresses (TMCD CACHE
NEXM).
4 Unibus Set when there is no response
Timeout on the Unibus within approxi-
mately 10 microseconds
{TMCD UBUS TIMEOUT).
3 Yellow Zone Set when a vellow zone trap
Stack Limit oceurs (TMCD YEL TRAP).
"2 Red Zone Set when a red zone trap

Stack Limit

occurs (TMCD SL RED ERR).

15

L]
ILLEGAL HALT .
Q00 ADIRESS ERROR -
MM -EXIS TEMT MEMSRY [CACHE
UHIBUS TIME-OLT -

FELLOwW IOME STADK LT — ——- -
RED 2OME SLACK Ligh"

L-ta0e

Figurc 3-1 CPU Error Register

I1-3-2

The CPU Error Register cannot be loaded by the
progrum. It is read via the Internal Data Bus
(INTD) at address 17 777 766. The individual bits
of this register remain set until they are cleared by
i# DATQ, The several bits of this register are de-
scribed in Chapter 6.

3.6 MICROPROGRAM
(PB)

The Microprogram Break Register (PB) is intended
for use as a maintenance tool. When the processor
is being operated under the control of the mainte-
nance card, the processor can be halted during any
specific microprogram state by loading the address
ol that slate in the PB and setting the switches on
the card to the proper positions. A sync point that
gencrates a pulse at T1 {when Lthe microprogram ad-
dress matches the contents of the PB) is provided
on TIGB. During normal operation of the pro-
cessor, any value can be loaded into the PB without
alfecting operation of the processor.

BREAK REGISTER

The PB is loaded directly from the BR whenever
the PB address is generated during an external data
transfer; refer to Chapter 5. The PB is an 8-bit regis-
ter that is loaded from the eight least-significant
bits of the BR. When the PB is read, the data must
be transferred through the DMX to the BR by a
Unibus data transfer operation. The PB is selected
by physicul address 17 777 770.

The PB [PDRC PB(07:00)] and its use are de-
scribed in detail in Chapter 4 of this manual.

3.7 PROGRAM INTERRUPT REQUEST REGIS-
TER (PIRQ)

The Programmed Interrupt Request register (PIRQ)
allows a program to schedule the execution of vari-
ous subprograms according to a priority scheme,
and al the sume lime, allowing various levels of
hardware interrupt priority 1o interact with the soft-
ware priority levels. The register stores interrupt
requests set by transflerring request data to the
PIRQ, and provides information about the requests
through encoded data transferred from the PIRQ.
Refer Lo Figure 3-2.

15 Ld 8 T 5 4 1 1 1]

n-3gaT

Figure 3-2 Program Interrupt Register

Data is transferred to the PIRQ through the BR
whenever the processor recognizes that the physical
address is the address assigned to the PIRQ (ad-
dress 17 777 772). The contents of the PIRQ are
then input to the priority arbitration logic of the
processor, which uses the information fram the
PIRQ with information from the Unibus and the
PS priority level to determine when requests should
be honored.

The data in the PIRQ can be transferred to other
devices or to other registers in the processor by ad-
dressing the PIRQ during an external data transfer.
Becuuse the only outputs from the PIRQ are to the
DMX (Unibus Data Multiplexer), all transfers
which access the PIRQ are Unibus data transfers.
Refer to Chapter 5.

PIRQ [PDRD PIR(15:09)] and PIA [PDRD
PIA{2:00)] are described in Chapter & of this
manual.

3.8 STACK LIMIT REGISTER (SL)

Because the number of locations occupied by a
stuck is unpredictable, some form of protection
against the stack expanding into locations contain-
ing other information must be provided. If the pro-
cessor is operating in Kerne! mode, the processor
provides for stack overflow detection through the
use ol the Stack Limit register (S8L). Refer to Fig-
ure 3-3.

15 3 7

I

2

n-1083

Figure 3-3 Stack Limit Register

The SL is an 8-bit register that is loaded from the
eight most-significant bits of the BR whenever the
SI. is s¢lected by the physical address generated in
an external data transfer. This requires address 17
777 775 during a byte transfer, or address |7 777
774 during a word transfer. The data is transferred
directly frem the BR to the SL: refer to Chapter 5.
To read the contents of the SL, however, the SL
must be selected by the DMX and the data trans-
ferred from the Unibus to the BR. This requires a
Unibus data transfer operation. Although the SL
and the PB registers share a common DMX input,
cach register uses a different byte, and only one set
is sclected at a time. Therefore, when the SL is
transmitted on the eight most-significant data lines,
all 0s are transmitted on the cight least-significant
dalta lines.

The SL [FDRC SL(07:00)] and the stack limit
check operations are deseribed in detail in Chapter
G.

3.9 PROCESSOR STATUS WORD (PS, PSW)
The Processor Status Word {PDRD PS(15:00), Fig-
ure 3-4] contains information regarding the pro-
cessor moede (both current and previous), the
register set currently in use, the processor priority,
the Truce bit and the Condition Codes. Table 3-1
lists the Melds of the PSW, The address of the PS is
|7 777 776.

oW @ b s 2 s & 3 3 1o
| NOILSED PRICIRITY J' N z‘v'c]

e T 1 -3cha
CLRRENT rDDE — 1
FEVIOS MOIDE
GENERAL REGIZTER
VD0

* MBLE: D KERMEL
G 14ELPERVISOR
14 =USER

Figure 3-4 Processor Status Word

Refer to drawing PDXRD. The PS8 stores several
types of data that are dependent on the process
being performed. This data must be stored when-
cver the processor changes processes; typically, this
oceurs every time there is an interrupt or a trap. Be-
cause the contents of the PS control many parts of
the operation of the processor, maodifications of the
contents are carefully controlled.

11-3-3

Table 3-1
Pracessor Status Word Bit Assignments

Bit Name Utilization
15-14 Current Mode Specifies the current processor mode as follows:
1. When PS(15:14) = 00, the processor is in Kernel mode; all opera-
tions are legal.
2. When PS(15:14) = 01, the processor is in Supervisor mode; HALT,
RESET, and SPL instructions are illegal; SUPER address space is
used if Memory Management is enabled.
3. PS(15:14) = 10 is an illegal mode; if Memory Management is
enabled, a Memory Management abort occurs (refer to Section IV
of this manual).
4. WhenPS§(15:14) = 11, the processor is in User mode; HALT,
RESET, and SPL instructions are illegal; USER address space is
used if Memory Management is enabled.
13—-12 Previous Mode Specifies the processor mode prior to the last trap, interrupt, or loading of the
Ps.
11 Register Set Specifies which General Register set is used; if PS11 = 0, register set 0 is
selected; if PS11 = 1, register set 1 is used.
10-08 Unused Unused
07-05 Priority Sets the processor priority; this priority determines which levels of programmed
and external device interrupt requests are honored.
04 Trace When PS04 = 1, the processor traps to the trace trap vector address after each
instruction fetch; this facility is used for debugging programs.
Condition Codes:
03 N This bit is set when the result of the last data manipulation is negative.
02 Z This bit is set when the result of the last data manipulation is 0.
01 v This bit is set when the result of the last data manipulation is incorrect because
of an arithmetic overflow.
00 C This bit is set when a carry occurs during data maniputation.

I1-3-4

The four fields of information in the PS are:
. Processor condition codes
2. Trace (T) bit
3. Processor priority

4. Processor mode control and register set
selection bits

Some of the PS bits control the opcration of the
processor, while others indicate the value of the re-
sult of the last data manipulation operation.

In addition to accepting inputs from the BR, the
PS rcceives inputs from the condition-code gener-
ation logic. In certain circumstances (the current
mode field replaces the previous mode field), some
bits of the P8 also receive inputs from other bits of
the PS. The outputs from the PS during data trans-
fers can be directed to the processor data paths
through the BR [by selecting the PS inputs 1o the
internal bus (IBS) and the IBS inputs to the
BRMX], or directed te the Unibus through the PS
inputs to the Duta Multiplexer (DMX). The IBS
path is used only for data transfers that implicitly
select the PS, such as the stacking operations dur-
ing interrupt and trap service sequences. When the
PS is addressed explicitly, the data is transferred on
the Unibus, ¢ven if the transfer is to the processor
duta paths (through the BR).

3.9.1 Reading the PS

1. Implicit reference - The PS word can be
gated to the I[nternal Data Bus by
PDRI» READ PS H, which is generated
by a microprogram IBS ficld value of 3.
This value is uscd in microstates
RSD.00, RSD.0OI, RSD.02, BRK.20,
BRK .80, TRP.00, TRP.G1, TRP.02, and
HLT.00 to get the current PS into the
BR. This is shown on the Flows by
BR-I’S.

2. Explicit refercnce — The PS word can be
read by the program with a reference to
address 17 777 776. In this case, the
PSW is gated onto the Unibus, from
where it is read during a DATI by the
processor.

3.9.2 Loading the PS

All used PS bits, with the exception of bit 04, (the
T bil} can be written by the program when the PS
address (17 777 776) is used (SCCE PS ADRS H is
asserted), In this case, the input is BR(ES:00) and
the clock is a function of MSYN and of UBCB HI
BYTE and L.O BYTE. These signals are both as-
serted if the PS is referenced as a word.

1. The Control Codes (hits 03:00) are
shown on IRCH and are clocked by
UBCB CC DATA.

2. The Priority bits (07:05) are clocked by
TMCE CLK LO PS.

3. The Processor Mode bits and the Regis-
ter Set bit (15:11) are clecked by TMCF
CLK HI PS.

The PS may also be loaded under microprogram
control (implicit reference). Since the loading logic
varics from bit to bit, it is explained with each bit

group.

3.9.3 Processor Mode Bits [PS(15:12)]

The current processor mode is stored in PS(15:14)
and the processor mode previous to the current one
is stored in PS(13:12),

[l the current mode is other than Kernel, the
HALT, RESET and SPL instructions are illegal: A
HIALT in Supervisor or User modes causes a trap
to 4: RESET or SPL in these modes are NOPs,

When Memory Management is enabled, the mode
bits affeet PAR/PDR selection, and thus the phys-
ical address generated from the virtual address. Re-
fer 1o Section IV, Memory Munagement.

1M-3-5

3.9.4 Current Processor Mode [PS(15:14)]

The Current Processor Mode bits determine
whether certain instructions are allowed or prohib-
ited. The processor mode can be set by moving a
data word 1o the PS at its Unibus address, or
through a (rap or interrupt service function (which
touds & new PS valuc from the trap or interrupt vee-
tor), or through an RTI or RTT instruction (which
restores an old PS from the hardware stack). In this
last case, PS(15:14) can only be changed to a higher
vilue (i.e., these bits can only be set and not
cleared). This allows a Kernel mode program to re-
turn to Kernel, Supervisor, or User mode; a Super-
visor mode program to return to Supervisor or
User mode: and a User mode program only to re-
turn to User mode. A User or Supervisor mode pro-
granmt cannol use the RTI instruction to enter the
‘Kernel mode. When a new PS is loaded from the
trap or interrupt vector, the old contents of PS15
und PSI14 are loaded into PSE3 and PSI12.

When Memory Management is enabled, the current
processor mode selects the mapping for the virtual
machine, except lor trap and interrupt processing.
Supervisor and User programs should not be al-
lowed to change the contents of this field, 1f the cur-
rent processor mode is changed, the mapping
registers in Memory Management are selected by
the set for the new mode. The result of attempting
e continue with the same PC value in the new vir-
tual address space is unpredictable.

The entire PS word can be protected from direct
trunsfers by being mapped only into Kernel address
" space. Refer to Section 1V,

PS bits PSI35 and PSi4 control and indicate the cur-
rent processor mode. The source of input data is al-
wiys BRISA and BRI4A, whether the PS is loaded
by an RTT or RTI instruction, or if a new PS is
loaded from a trap or interrupt vector, or explicitly
referenced.

395 Previous Processor Mode [P5(13:12)]

The previous processor mode is used primarily by
the MFP and MTP instructions to define which ad-
dress space 1e¢ communicate with. During User
mode operation, these bits are set lo reflect User
made, so that the User program cannof move data

1I-3-6

into or oul of any other address space. During trap
or interrupt service, these bits are set 1o reflect the
vitlue contained in the current mode bits prior to
the interrupt or trap. In this case, a KERNEL
DAT! data transfer is used 1o fetch the new PS
vilue from the vector address; this causes bits 13
and 12 of the PS to be loaded from the old value of
bits 15 and |4 instead of from BR(13:12).

During the return from a trap or interrupt service
program (via an RTI or RTT instruction), the old
PS wvalue is restored from the stacked value, The
previous mode bits are protected in the same way
as the current mode bits.

3.9.6 PS5(15:12) Implicit Write

Refer to Figure 3-5. PS(15:12) can only be set, and
not cleared, by their direct-set inputs; thev can be
both set and cleared when they are clocked. They
are clocked only in three machine states (RTI.50,
SVC.30 and ZAP.30) when appropriate conditions
exist,

When IBS = 2 (LOAD PS) bits 15 - 12 are direct-
set i the BSC bits do not require a KERNEL
IDATI] and if the corresponding DATA input is
high. These bits cannot be cleared in this manner.

IBS = 2 clocks PS(15:12), thus allowing bits to be
cleared, when one of threc conditions are present:

1. PS14 = 0, or the mode is Kernel. This is
used during RTI and RTT instructions
when IBS = 2 in RTL.50.

TMCE KERNEL DATI, which is as-
serted during the service flows (abort,
trap and interrupt service, see Chapter
6). IBS = 2 is asserted during SVC.30,
when the PS is loaded from the BR.

SSRA PS RESTORE is asserted when a
Memory Muanagement abort occurs dur-
ing the service flows. When this hap-
pens, the PC and PS of the instruction
that causcd the abort are restored before
servicing the Memory Management
abort. In ZAP.30, IBS = 2 and the old
PS value is loaded back into the PS.

RACE UIBS@I H ——_

PDRB [BS@@ B L

|— PORD LOAD PS H

U

*CLOCK-SEE TIMING
DIAGRAM BELOW

PDRD P514 {¢gh L
TMCE KERNEL DATI L

SSRA PS RESTORE H

) REFERETjE

**DATA-REFER TO TEXT

IMPLICIT

D
PDRD PS CLK H FS

|_ *o IS L-Hib
] " "
E L PDRD

-
™ Ps14 ONLY

T T

|—TMCF

UBLE HI BYTE H
| | EXPLICIT/
SCCE PS ADRS H)c REFERENCE

UBCB MSYN SETH

CLX HIPS L T4H I——I

TSH

4 4
—— DIRECT-SET PSi4

CLOCK PS4

DIRECT-SET P513,13,12
CLOCK PS§15,13,12
n-zn2

Figure 3-5 PSW Clock and Direct Set Simplified Schematic

Refer 1o drawing PDRD. Figure 3-5 shows the
DATA input to PS(15:12). This input is BR(15:12),
excepl in the case of KERNEL DATI. When KER-
NEL DATI is asserted, bits [5:14 are clocked from
BR(15:14) and bits 13:12 are clocked from
PS(15:14). The new processor mode is thus loaded
inte PS(13:14) and the old processor mode into
PS{13:12).

3.9.7 General Register Set Bit (PS11)

PS11 indicates thal General Register Set 0 is in use
(when cleured), or that General Register Set 1 is in
use {when set),

The input to PS11 is BRITA. This bit is loaded in
the same manner as PS15 (Paragraph 3.9.6),

3.9.8 Priority [P5{07:05)]

The proeessor priorily is stored in PS(07:05). The 3-
bit prierity field is interpreted as one of ¢ight prior-
ity levels. This level i1s compared with other
requests for control of the system. These requests

can be external to Lhe processor, in the case of
Unibus requests (BR), or internal, in the case of
Program Interrupt Requests (PIR). In general, the
purpose of requesting control of the system is 1o in-
ierrupt the current processor program and to run a
service routine ar higher priority program before re-
turning control to the interrupted program. Refer
to Chapter 6 for a descriplion of the priority
scheme.

The processor priority level may be set by directly
transferring data to the PS8, by popping a new PS
fcom the hardware stack, or by loading the P8
from an interrupt or trap vector. In addition, the
processor priority may be explicitly set by the set
priority level (SPL) instruction.

Reler Lo drawing PDRD. PS(07:05) are clocked in
a manner similar to the mode bits (Paragraph
3.9.6), but arec not direct-set. The 748157 multi-
plexer sclects the input: in all cases, except during
an SPL instruction, the input is BR(07:05),while

I1-3-7

during the SPL the input is BR(02:00) A, which car-
responds to the position of the new priority bits in
the instruction word. TMCE SET PRIORITY H
{MSC = 4) controls the multiplexer and gates the
clock.

In User or Supervisor modes, the processor priority
cun only be changed by a transfer to the explicit ad-
dress of the PS (17 777 776). This is possible only il
Memory Managemenl mapping allows it.

3.9.9 Trace Bit (T Bit, PS04)

The Trace (T) bit is provided as a sofiware diagnos-
tic aid. When this bit is set, a processor trap will be
veclored through location 4. This trap occurs at
the end of the instruction that is being performed
when the T bit is being set, unless:

. The instruction is a Return From Trap
(RTT) instruction. In this case, the trap
is deluyed untl the end of the foltowing
instruction,

2. The instruction is a Set Priority Level
{SPL} instruction. No BR(Q STROBE is
generated during the exceution of an
SPL.

3. Some other lrap or interrupt condition is
honored. In this case, the PS containing
the T bit is pushed onto the stack and
all Truce operations are deferred until
the PS word is popped off the stack at
the end of the trap or interrupt service
routine.

The T bit cannot be set by moving data to the PS;
the only way the T hit cun be set is by popping a
ward olT the hardwure stack with bit 4 set. This can
be done with an RTI, an RTT, or any trap instruc-
tion (TRAP, 10T, BPT or EMT), even when the
processar is not in Kernel mode. The purpose of in-
hibiting other methods of loading the T bit is to
prodect the user from madvertently setting the T bit
while changing the processor priority or condition
codes,

The presence of the T bit precludes the use of
EXCRO by L/class*13MO instructions, since the T
hit is g trap request. EXC.90 is executed in this
Cilse,

3.9.10 Condition Codes

The four least-significant bits of the PS word con-
tain the processor condition codes. These bits store
information about the value resulting from any
data manipulation during an instruction. The condi-
tion codes are not altered to reflect the results of ad-
dress caleulations, but are changed only when an
instruction explicitly operates on an explicit unit of
duta.

The condition vodes cuan also be set to any specific
value by translerring o word containing that value
1o the PS address. The value of the condition codes
are wdtered by every interrupt or trap response func-
tion. and by every RTI and RTT msteuction. In ad-
dition, individual condition-code bits may be
manipulated dircetly, with the condition-code oper-
ate instractions. These instructions provide a means
o set any one, or more, of the condition codes
with a single instruction that requires only one
memory relerence; a similar set of instructions can
elear any one or more hits, The condition codes are
used in conditional branch instructions, so the vari-
ous meuns of maniputating the condition codes are
uselub because they permit setting up the PS word
to respond in a particular way to various branch
instructions.

The logie that senses data conditions and stores the
selected indications is on the IRC module and is de-
seribed in Chaptler 1: the gates that control the read-
tng ol the condition codes onto the internal data
bus are shown on drawing PDRD. When the PS is
explicitly addressed st physical address 17 777 776,
the data transfer is on the Unibus: the intcrnul hus
is used only under direct microprogram control.

The condition codes are loaded automatically with
the results of most data manipulations. Tn addition,
the codes can be manipulated by a microcoded in-
struction that can set or clear individual condition
code bits. Any operation that transmits data
direetly 1o the processor stalus word inhibits the set-
ting of the condition codes, becuuse the dala trans-
mitted is loaded into PS(03:00) dircctly. This is
done for move instructions that address the PS,
RTI wstructions that pop a value off the hardware
stuck inte the PS, or interrupl service sequences
that load the PS from the interrupt vector.

11-3-8

The Timing Generator supplies the clock signals
which conirol the various operations of the KBI1-C
Processor System. The M8139 module contains all
the compenents of the Timing Generator.

Refer to Figure 4-1. The synchronizer selects one of
three clock sources: A 33 MHz crystal clock, an
R/C maintenance clock (variable) or a pulse gener-
ated by u manual stepper switch, The selected clock
signal is routed through a phase splitter/buffer, the
output of which consists of two 180° out-of-phase
clock signats. These two signals are buffered again
and are catled TIGC TPB H, TPB L, TF H and TF
L. TPB H and TF H are identical and are 180° out
of phase with TPB L and TF L, which are also
identical.

Separate TPB and TF pulses are provided to sepa-
rate the timing source required by the TIG module

CHAPTER 4
TIMING GENERATOR

(TPB) from that required by the other modules, A
TF failure does not stop the clock.

The TPB pulses drive a five-stage ring counter, the
output of which generates gates to generators for
time pulses T1 - T5 and for time states TS1 - TS5.

The ring counter is generally stopped during a
pulse cycle to allow the data transfer operation in
progress to uccept the duta. It is stopped in T2 for
Unibus., Internal Data Bus, interrupt and mainte-
nance operations, and in TS for Cache operations.
The ring counter is also stopped during mainte-
nance operations such as single cycle.

4,1 CLOCK SOURCES

The three sources of timing are the crystal clock,
the R/C clock, and the MAINT STPR switch SO
{on the maintenance card). These timing sources
are shown on drawing TIGB.

STQOP CLOCK
PAR. 4.4 CIRCUITRY. |22 PAR. 2.8 8 4.9
PAR.4.2 B 4,3 pAR. 4,4, | _FAUSE CYCLES PAR, 4.5
SCOURCE \g\ TIG A
CLOCKS
XTAL CLOCK SYNGHRONIZER RING COUNTER
%% MHz AND PHASE
SPLITTER
BUFFERED TIGA
TIMING PAR. 4.6
PULSES
{SELECTS ONE
R/C CLOCK OF THREE TIME PULSES PAR. 4.7
SOURCE CLOCKS!) TPB H
P8 L T-T%
TF H
TF L TiGC. TIGD TIME STATES
MAINTENANCE TSt-TSS
STEPPER SW.
XMAL 54 TIGE
TIGB T8 miec
1-3N6
Figure 4-1 Timing Generator Block Diagram

11-4-1

4.1.1 Crystal Clock

The crystal clock provides a constant square wave
vutput of 33 MHz. The oscillator frequency is deter-
mined by the LC iuned-collector network and is
stabilized by the crystal connected between emit-
ters. The bius network in the base circuits ensures
that the oscitlator will start when +5 V is applied
te the module. The amplified output, TIGB XTAL
H. is a +35 (o 0 V square wave with a 30-ns
period.

4.1.2 R/C Clock

The R/C clock is provided for maintenance pur-
poses und can be enabled only when the mainte-
nance card is plugged into the CPU backplane. The
requency of the square wave output, TIGB RC H,
cun be adjusted as high as 37 MHz by varying po-
tentiometer R104 in the RC feedback network.
Thus, the ctock pulse period can be narrowed to ap-
praximately 27 ns to test for race conditions in the
logic,

4.1.3 MAINT STPR Switch

The third source of timing is the manually-oper-
ated, single-step MAINT STPR switch 84, located
on the maintenance card. This switch is only en-
ubled when maintenance card switches 82 and $3
are both set o t. Euch operation of 84 creates one
transition of 2 given timing pulse. Tt therefore re-
quirgs iwo actuations of 84 1o complete a given
lime pulse.

42 SOURCE SYNCHRONIZER

The timing scurce synchronizer is shown on draw-
ing TIGB., The purpose of the source synchronizer
i5 to select only one timing source at any time and
to inhibit the two remaining sources. The synchro-
nizer prevents cycles of improper length and en-
sures that TIGB SOURCE CLOCK L is in the
high (non-asserted) stute when switching between
sources, Timing source selection is determined by
the setting of switches 81, 82, and S3 when the
muintenance curd is plugged in. If the maintenance
card is not instalied, the crystal clock is the only
source of timing. The following paragraphs describe
liming source selection when the maintenance card
1s plugged in,

4.2.1 Crystal Clock Selection
When muaintenance card switch 83 is not set,
XMAA S§3 L is high. When the RC EN and MS

EN flip-Mlops are nat set, the XTAL SYNC flip-
lMop is sel. With maintenance card switches S1 and
52 equal to 0, MS EN will be cleared, as will RC
SYNC und RC EN. Therefore, XTAL SYNC is set
and the source multiplexer output, TIGB SOURCE
CLOCK L. will follow the XTAL H inpul.

Nele that the XTAL EN flip-flop inhibits the
maintenance meodule switch 83 inputs to the RC
EN lip-flop. Therefore, the XTAL SYNC flip-flop
must be cleared before a timing source change can
be accomplished. The RC EN and MS EN gating
inpul to the XTAL SYNC f{lip-flop ensures that
these sources have been disabled before XTAL EN
is ullowed to gate the XTAL H pulse through the
source multiplexer.

4.2.2 RC Clock Selection

The RC clock is selected as the timing source when
maintenance card CLK switch 83 is on RC, and S2
and S| ure both set to 0. When the XMAA S3 L in-
put is low, the RC SYNC flip-flop will be set. As a
result, the RC EN flip-flop will be set and the
source multiplexer output, TIGB SOURCE
CLOCK L. will then follow the TIGB RC H input.
TIGB XTAL EN (0) H and TIGB MS EN () H
are fed back to inhibit TIGB RC SYNC D inputs
to ensure that the cnable flip-flops are cleared be-
fore the iming source can be changed.

4.2.3 MAINT STPR Selection

The maintenance card S2 and St switches are both
set to | 1o allow single timing pulses 1o be gener-
ated by MAINT STPR switch S4. The XMAA S|
L and XMAA 82 L inputs are both low, The result-
ant input to the M8 EN flip-flop D input causes
the flip-flop to be set. On the following TIGB
XTAL H and TIGB RC Il clock pulses, the XTAL
SYNC and RC SYNC flip-flops will be reset. Sue-
ceeding clock pulses will then reset the XTAL EN
and RC EN flip-flops. MS EN (1) H is ANDed
with STEP (1) H to assert the TIGB SOURCE
CLOCK L oulput of the source multiplexer. Each
time the MAINT STPR switch 84 is operated, the
STEP fip-Nop toggles. The MAINT STPR switch
must be actuated twice to complete a single TIGB
SOURCE LOCK L oulput pulse. Removing the 52
or S| input conditions the MS EN [lip-flop to be
cicared. MS EN {0y L direct-clears STEP to condi-
tion it Tor the next time the ING TP function is
selected.

11-4-2

4.2.4 Synchronization

A feature of the source synchronizer is that the out--

put levet is maintained high (non-asserted) while
the timing source is being changed. The timing dia-
gram in Figurc 4-2 shows the TIGB SOURCE
CLOCK L output as the maintenance card CLK
switch is changed from XTAL to RC. With the
XMAA S3 L input Tow (RC clock selected), the
XTAL SYNC flip-lop is cleared on the next TIGB
XTAL L clock pulse going low.

One XTAL H clock pulse later, XTAL EN will be
cleared, enabling the D input to the RC SYNC
fMip-Mop. The next time TIGB RC H goes low, RC
SYNC will be set. The difference in XTAL H and
RC H pulse widths is exaggerated in Figure 4-2 1o
indicate t(hat the clock pulses are completely
independent,

Note thut the SYNC and EN flip-flops are clocked
on the trailing edge of the source locks so that the
gating level 1o the source multiplexer is always re-
moved as the clock input is non-asserted. This pro-
vides i clean leading cdge for TIGB SOURCE
CLOCK L. Note also that only half a clock period

TIGB XTAL H

TIGE XMaa 53 L E%%a

is available Tor the cnable flip-flop to change states
and gate the associated clock source through the
multiplexer.

4.3 PHASE SPLITTER/BUFFER

The Phase Splitter/Buffer, shown on drawing
TIGB, is driven by TIGB SOURCE CLOCK L
fram the source synchronizer to produce timing
pulse outputs TIGB CLOCK L and TIGB CLOCK
H. The TIGB CLOCK L output pulses are in
phasc with TIGB SOURCE CLOCK L.

4.3.1 Level Converter

Trunsistors Q65 and Q66 convert the TIB
SOURCE CLOCK L. output to the level required
at the phase splitter inputs. A low Jogic input at the
hase of Q65 causes this transistor to cenduct, thus
grounding the common cmitter of Q65 and Q66.
The +V2 reference voltage applied at the base of
Q66 culs this transistor off, causing no current to
lNow through Q66 and R122. Thus, a low input pro-
vides a low output. When TIGB SOURCE
CLOCK L goes high, Q65 cuts off, and the +V2
reference ul the base of Q606 allows current to flow
through Q66 and R122 to provide a high output,

TIGE XTAL 5YNC | /

TIGB XTAL EN

TIGB RC H

TIGE ARG SYNC

TIGB RC EN

TIGB SOURCE
CLOCK L

Uy

1§-0788

Figure 4-2 Timing Source Synchronization

11-4-3

4.3.2 Phase Splitter

The phase splitter consists of two emitter-coupled
IN3OD9 transistors, Q61 and Q62. When TIGB
SOURCE CLOCK L is not asserted (high), Q6l
turns on. A fixed bias at the Q62 base holds that
trunststor cut off. Under these conditions, the
TIGB CLOCK H output provided by buffer Q53
and Q54 is low because Q61 is conducting. Q54 is
on.

When TIGB SOURCE CLOCK L starts to go low,
as the result of a clock pulse, the base of Q61 goes
negattive with respect to the Q62 base. More current
Mows through Q62, cuusing a greater vollage drop
across the Q62 collector resistor, R109-R{11. Less
voltuge is developed across common emitter resist-
ors RE9-R96, increasing the forward bias on Q62,
As u result, when Q62 starts to conducl more cur-
rent, Q61 starts o cut off. This circuil is a differen-
tial amplifier that responds to slight changes of the
input signal ut high speed. When TIGB SOURCE
CLOCK L starts to go positive, Q6! turns on and
Q62 cuts off in the same manner. The switching ac-
tion of Q61 and Q62 follows the TIGB SCURCE
CLOCK L. signal with about a 1 ns difference be-
tween TIGB CLOCK H and TIGB CLOCK L,

4.3.3 Buffers

Fach buffer stage consists of a 2N3009 and a
IN4258 transistor, When Q61 turns off as 4 result
ol a low source synchronizer output, Q353 is turned
on and Q54 is cut off, Thus, the TIGB CLOCK H
output goes high, 180° out-of-phuse with the TIGB
SOURCE CLOCK L input. Al the same time, Q62
turns on and the positive collector cuts off Q5 and
forward-biases Q56. Thercfore, TIGB CLOCK L
goes low in phase with the TIGB SOURCE
CLOCK [input from the source synchronizer,

44 TIGC TPB AND TF

The outputs of the Phase Splitter/Buffer, TIGB
Cl1L.OCK 1 and CLOCK L, are buffered to gener-
ale the Time Pulses Buffered, TPB H and TPB L
and the Free Clock pulses, TF H and TF L. TPB
H und TF H are in phase with TIGB CLOCK H,
and are the complement of TPB L and TF L.,

The TF pulses are used throughout the KBI1-C for
synchronization. The TPB pulses are used only on
the M&139 module.

TPB H and TF H are driven from CLOCK H;
TPB L and TF L are driven from CLOCK L. With
This exception, the circuits that generate these four
pulses are identical: when TIGB CLOCK is high,
the NPN transistors conduct, the PNPs are cut off,
and the output is high, When TIGB CLOCK is
low, the NPNs are cut off, the PNPs conduct, and
the output is low,

4.5 RING COUNTER

The Ring Counter is shown on drawing TIGA, [t
consists of the two edge-triggered D flip-flops, TI
and TIA, of the six J-K flip-flops T2 - T5, T2A
and TSA, and their associated circuitry. Refer to
Figure 4-7 for the descriptien that follows.

Start-Up and Normal Cycle

The ring counter is cleared by ROM INIT, which is
asserted on power-up, power-down, and when the
Console START switch is depressed while the
HALT/ENABLE switch is in the HALT position.
T4 is not cleared by ROM INIT directly, but by a
Mlip-flop that is set by ROM INIT. When ROM
INIT is negaled, the trailing edge of the next TPB
I clears this Mip-Mop.

When the ring counter has been cleared, the J input
of T4 is high [T5 {0y H, T2 (0) H and TtA (0) H
are all high) and the next TPB sets T4,

It should be noted that the D flip-flops (T1 and
TI1A} ure clocked by the trailing edge of TPB L,
while the J-Ks are clocked by the trailing edge of
TPB H. Both of these trailing edges occur at the
same time,

The next TPB after the one that sets T4, scts TS
and T4 complements (both J and K high) and is re-
sel. Il TIGA STOP T1 L is high, the next TPB com-
plements TS (resets it) and sets T1. T5 (0 H is now
high and asserts STOP T! L. The TPB that foilows
clears T1 and sets T2 but, since the common input
to T2-K and T3-1 is low at this time [due to T2 ()
H] T3 is not set. T2 (0 H is now low, and the next
TPB toggles T2 (clears i) and sets T3, T5 (0} H, T2
{(0) H und T1A (0) H are 4ll high, thus allowing T4
to be sel as T3 toggles,

I1-4-4

The ring counter flip-flops are used to gate the tim-
ing pulses T| -~ T5. Note that there are two T2 and
1wo TS flip-flops. In both cases, the second flip-flap
(T2A and T5A) is used to generate its correspond-
ing timing pulse. These flip-flops are used to pre-
vent the generation of morc than ane timing pulse
(T2 or T5) during Pause cycles: T2A and T5A are
reset by the TPB H following the ane that sets
them, while T2 and T35 remain on for the duration
of the Pause.

4.6 TIMING PULSES, Tt-T5

The switching times of the flip-flops used in the
ring counter ure not very precise; therefore, the flip-
lop states arc not used directly for processor tim-
ing. Instead, high-speed transistors are used to gen-
erate the timing pulses. The timing pulse generator
schematics are shown on drawing TIGC and
TIGD.

Each of the timing pulse generators gates the Phase
Sphiter/Buffer clock output, TIGB CLOCK H or
L. with a ring counter output to generate the tim-
ing pulse associated with that state. Figure 4-3
shows how TS5A (1) H and T5A (1) L are gated
with CLOCK H and CLOCK L to provide the T5
H and TS5 L timing pulses.

Note on drawing TIGC that the TIGB CLOCK T
and L signals arc carried by two separate lines to
the timing pulse drivers; these lines are terminated
al the TIGD T5 L circuits by diode terminators

and at T5 H by a 33 ohm resistor to ground. These
lines are transmission lines, designed to guarantee
the integrity of the CLOCK 1 and CLOCK L sig-
nals from the phase splitter to the intended pulse
generator.

The +V und -V veltages shown on the schematics
are taken from diode dividers shown on TIGR for
+V¥35 to +V1 and on TIGE for V3 to V1.

Since the circuits for T(1:5) H are identical, as are
those for T(1:3) L, only the T5 schematics are ex-
plained below.

Figures 4-4 and 4-5 are simplified schematics of
TIGD TS H and L, respectivelv. Q53 and Q54 on
the first figure and Q55 and Q356 on the second, are
the oulput of the Phase Splitter/Buffer, TIGB
CLOCK H and L. The diode terminators are se-
lected to produce a pulse amplitude of approx-
imately 0 1o +3.0 V for T5 H and of approximately
+3.0to 0V for TS5 L. Q32 and Q50 are not shown
on Figurces 4-4 und 4-5. These transistors are turned
off when TIGA T3A is asserted, thus allowing Q31
and Q49 10 conduct. Q32 and Q50 conduct when
TIGA T5SA is negated and turn Q31 and Q49 off.

NOTE
The voltages shown on Figures 4-4 and 4-5 are ap-
proximate. They are based on a diode voltage drop of
0.7 v,

I__T"rPICALI._Y
3Cns

LB

TIGB CLOCK L

TIGB CLOCK H I m

L L
7 I I

TIGA TSA (1)H_—%_:—m

TIGD TS H

H

TIGA TSA ML —%—%

TIGDTS L

L

11-078E

Figure 4-3 Timing Pulse Generation

II-4-5

46,1 TS5H

Refer to TIGD and to Figure 4-4(a). The output
transistor pair, Q1 and Q2, is arranged to give a
push-pull type output, Diode D2 between the two
bases. along with the resistor network consisting of
R12 (15K 1o +15 ¥} and R10 (3K to =15 V), biases
the transistor pair Q1 and Q2 so that a small volt-
age change at the base input turns one transistor on
and the other off. This arrangement has the effect
of reducing the propagation time from the CLOCK
H signal to the output time pulse TIGD T5 H.
Diode D1 clamps the bias at a level such that T5H
is at approximately 0 V when either CLOCK H is
low or the gate transistor Q31 is off, Diode D3 pre-
vents the bias circuit from saturating Q2 by clam-
ping the signal to +V5, or approximately 4 V.,

When TIGA T3A (1) H is low, Q32 conducts and
Q31 is cut off, When T3A (1) H goes high, Q32
cuts off. Q31 cannot turn on at this {ime, since its
emitier is negutive (CLOCK H at approximately 0
V. determined by the base voltage of Q54) with re-
spect to its base (=15 V ~ D36 to +V2 = approx-
imutely +0.7 V), The voltage at the base of Q1 is
approximately -0.7 V and that at the base of Q2 is
one diode drop more positive, Q2 is off and QI con-
ducts: TS5 H is low.

Figure 4-4(b) shows the circuit when TIGB
CLOCK H goes high. Q54 is now off and Q53 is
on, The emitter of Q54 is now positive with respect
1o its buse and it conducts, The vollage al the base
of Q1 and Q2 becomes more positive; Q1 conducts
and Q2 is turned off. T35 H goes high.

I1-4-6

+5V

©

Q453

av

+v5
TIGB CLOCK H +
_ﬁtl
f
-V3A
+¥5
a1
D3
Qv
10
Q32}) bz ¥
+0.7v ~O0.7V
a3
o]
= =15V
TIGB CLOCK H

~V3A

+4.2V

l iaa
TIGA TS{IJH] | =

TIGB CLOCK H | I |
TIGD TS H I |

Figure 4-4a

=313

TIGE CLOCK H t

a3l +3.8v

TIGE CLOCK H

-V3A

TIGA TS5 1) H

L
TIGB CLOCK H __I—l_
—IL

TIGD TS H

n-3ng

Figure 4-4b

Figure 4-4(c) shows the end of the TS H pulse.
TIGB CLOCK H goes low: Q53 turns off and Q54
turns on. TIGA T3A (1) H goes low and turns Q31
ofl. Q21 turns on and the voltage at the base of QI
and Q2 goes negative, turning Q2 off and QI on,
thus making TIGD T35 H low. Q21 speeds this tran-
sition by providing a discharge path for the charge
left in the base bias circuit.

TIGB CLOCK H

533
Q@r TIGATS{t}H I |‘ 7

TIGS8 CLOCK H | I I
TIGD TEH l I

l
I
|
|
|
|
|
l
|
I = =18V
Ly

-5

Figure 4-4¢
4.6.2 TS5
Refer 10 TIGD and to Figure 4-5(a). The output +5Y
transistor pair, QL9 and Q20, is arranged to give a l tva
push-pull type output. Diode D29 between the two
hases. along with the resistor network consisting of +
R61 {(IK to +15 V) and RI0 (4.7K to -15 V), e8s
biases the transistor pair Q19 and Q20 so that a 100
small voltage change at the base input turns one
trunsistor on and the other off. This arrangement Ty
has the effeet of reducing the propagation time +vd
from the CLOCK L signal to the output time pulse 630 030+
TIGD T35 L. Diode D30 clumps the bias at a level +3.5V
such that TS L is at approximately +3 V when ei- +36v (0
ther CLOCK L is high or the gate transistor Q49 is Y
ofl. Diode D28 prevents the bias circuit from satu- (D-‘f:%’v
rating Q19 by clumping the signal to ground. ' g

(TIGB CLOCK L
1)

Q439

When TIGA T35 (1) 1. is high Q350 conducts and

Q49 s cut off. When T35 (1) L goes low Q30 cuts = -15v +
oll. Q49 cannol turn on at this time, since its emit- ¥
ter is positive (CLOCK L at approximately +3.5 V, i *
determiined by the base voltage of Q55) with respect TIGA TS 1) L_l—’_

te its base {15 V - D49 to +V3 = approximately %€ 3a

+2.8 V). The voltage al the base of Q20 is approx- nescockr [] [T
imately +3.5 V oand that at the base of Q19 is one —| I—
diode drop more negative. Q20 is conducting and riep Tt noanr
Qi9is off: TS L js high.

Figure 4-5a

I1-4-7

Figure 4-5(b) shows the circuit when TIGB
CLOCK L goes low. Q55 is now off and Q56 is on.
the emiiter of Q49 is now negative with respect to
its base and it conducts. The voltage at the base of
Q20 and Q19 becomes morc negative; Q19 con-
ducts and Q20 is turned off. T3 L goes low.

Figure 4-5(¢) shows the end of the TS L pulse.
TIGB CLOCK L goes high: Q36 turns off and Q53
turos on. TIGA T5A | L goes high and turns Q49
off. Q30 turns on and the voltage at the base of
Q19 and Q20 gucs positive. thus making TIGD T5
I. high. Q30 speeds this transition by providing a
discharge path for the charge lelt in the base bias
cireuit.

058 TIGB CLOCK L

-0.7v

TIGA TR 1L l I =14
-¥3a
TIGE CLOCK L I l I
TIGD TS L |]
i1-318
Figure 4-5b
+5¥

+3.8Y
150}
LIV 4z av

Q49
) TIGB GLOCK L
T
M —— — — — — —— —
ase _]_l__ -ViA
-¥3a TIGA THI1IL
TIGB CLOGK LJ_U_
TIGD TS L | I
n-319

Figure 4-5¢

11-4-8

4.7 TIME STATES (TIGE TS1 L-TS5 L)

Refer to Figure 4-6. The Time State pulses, TIGE
TSI L through TS5 L are generated from the ring
counter flip-flops and TIGB TPB H. The leading
edge of these pulses corresponds to that of the tim-
ing pulse of the same number (e.g., TS! to T1)

The time states are used throughout the KB11-C
and are on for two time pulse durations (e.g., TSI
is on from the leading edge of T| to the leading
edge of T3).

These time state pulses are provided for use in
areas where timing is not critical, in order to reduce
the load requirement of the timing pulses,

TIGA T1(1}H] |]
TIGA T2A (D H | .' I | |
1 [
L
| I I
|
nearpan||||||||||]|||||
1
TIGE TSI L | i | :' | |
I
TIGE TS$2 L | |
TIGE TS3 L : | i I |
TIGE TS4 L | | i |
TIGE TSS L ; | |

TIGA T3 {1)H

TIGA T4 (11 H

TIGA THA 1) H.I

Figure 4.6 Time States

4.8 PAUSE CYCLES AND CLOCK BR

The ring counter is stopped during Pause cycles, ex-
cept in the case of a Cache read hit cycle. The stop
occurs during T5 for Cache Pause cycles and dur-
ing T2 for Unibus, Interrupt (INTR) or Internal
Data Bus (INT D) cycles. The INTR Pause cycle is
one where UBSD=1!; for all other Pauses,
UBSD=2 or 3 [TIGA PAUSE H=ROM 40 as-
serted (UBSDOI=1)).

Table 4-1 is a summary of Stop and Pause
conditions.

4.8.1 Synchronous Pauses

4.8.1.1 Internal Bus (INT D) Pause (T2) - Refer to
Figure 4-7. During a Pause for an INT D read, a
90-ns delay is inserted between T2 and T3 by the
S0 and 81 flip-ftops.

The ring counter is stopped by the low output of
the 74865 gates which cause a low input to the K
input of the T2 flip-flop. The flip-flop cannot be re-
set until this input becomes high. The low is caused
by the two gates that have SAPN NOT CACHE
ADRS H as inputs. Since the INT D registers have
Unibus addresses, this signal is high, S1 (0) H and
S0 (0) H are also high, as well as TIGA PAUSE H
(UBSD=2 or 3, Bus Pause). St and S0 are clocked
by TPB H and count up to 3. At this time, both S1
(0) H and 80 (0) H are low, the output of the
74565 gates goes high, and on the net TPB pulse,
T2 (1) H is cleared, T3 (1) H is set, and the ring
counter is restarted.

4.8.1.2 Cache Pause (5) — Refer to Figure 4-7. The
ring counter stops in TS5 during a Pause for a
Cache cycle. A read hit Cache Pause cycle is the
only Pause cycle in which the ring counter is gener-
ally not stopped; all other Cache cycles stop the
counter. CCBC MEMSYNC H is asserted by the
Cache when it has completed a memory cycle.

TMCF CACHE ADRS H is asserted during a
pause for a Cache cycle and, in conjunction with
TIGA PAUSE; if there is no abort pending, and if
TIGA MEMSYNC is not asserted, then TIGA
STOP TI L is asserted and prevents T1 from being
set until CCBC MEMSYNC H is asserted by the
Cache. When this occurs, TIGA MEMSYNC (0) H
goes low. The next TPB sets TI, clears T5 and res-
turls the ring counter,

4.8.2 Asynchronous Pauses

Synchronizing flip-flops are required during asynch-
ronous Pause cycles in order to minimize the pos-
sible instability of flip-flops when clocked at the
same time that their data input is changing.

4.8.2.1 Unibus Pause (T2) - Refer to Figure 4-7.
During a Unibus Pause cycle, the ring counter is
stopped during T2, as for the INT D Pause.

START-UP 'o—nomw. CYCLE —h‘d_—m‘r D PAUSE CYCLE —-|
TIGC TPE L |'||']|‘||'|r]|‘|r'|[‘||'|['||‘|['|ﬂ|‘|r'][‘||‘]|']r'||'|r|
] 1

t

1

i I I I
TIGA T1 (1) H 1 ! [I |1
] i I | -
TIGA T2 (1) H ' T L [i | N S I I :
H | |] ! |
TiGa s (N HZZZ7) ! L | L1 T
T I | l I1 I
TIGA S1(V R 772N ! n_ | M| | | : : |
I | [1 Ll
'
TIGAT3 (1) H , L I ! I O O B
| | F v I
1 |) I
TIGA T4 (1} H i1 | o ! M
ha H 1 T it | I |
ROM INIT ! |] | [
TIGA TS (1}H ' 1 | l I
| I | : | |
TIGC:D Tx M T n : L, : I
| | | | I
TIGA PSEUDO T3 | | r : |
| t
'
[|-—;umsus OR INTR PAIUSE |°Y°"E|h|'|
TIGA THDH [] X . L | L,
I . o L | o
: 2
TIGA T2 (1) H I| | |) "II—[: : :ﬂ.
NoTusep[TIGAsgmnu | L[L, L ! L
FOR INTR i |) .o ! P
PAUSE TIGA S1{}H_ | | L. P ' P
T | 'l L] I v
UBCB TIG RESTART H_ s m
! . [['
UNIBUS OR TIGA 1ST SYNC F/F * | l I [| I' '
INTR PAUSE $ N '

N

CACHE PAUSE {

*NOTE:
Rafer to figure 4-8 S

TIGA MEM SYNC (@) H™ I

TIGA 2ND SYNC F/F°

NN DUNSVIN DUNN) U DU U S—

|
4
|
|
!
i
|
|
|
I
I

]
' |
| |
TIGA T3 (1) H_ ot 1L !
2 t —t—
TIGAT4 (1)K . L 1
’ T —T
TIGATS (1) H_ 1
T b [| | |
TIGC:D Tx Hm I - I
L 11 N
I =12 |
TIGA PSEUDD T3 i | | e
le——— CACHE PAUSE c*rcu-:j—-l i
TIGA TH H I s [i [N
N] 1 1
TIGATZ{H | [1 N B B e A
= 2 — -
TIBAT3I (1DH_| | l s I [:
] - T)
TIGAT4 (1} | || . I 1
: *]
i
!

I 24
TIGA T8 (O H' | | o
e 45

» =+ §
FLIP-FLOP # 2 i I I

1
*FLIP-FLOP #1]' I|
I
TIGA CLK BR H_| . 1M ! .
. .‘... e :
TiGe 0 Tx M,y LA AR FIRLFL_FA_Fs

11-3121

Figure 4-7 Timing Generator and Pauses
(Figure repeated on next page)

11-4-9

START-UP |-— NORMAL GCYCLE —-|-——m‘r D PAUSE CYCLE —-I

I

]

. I I ! ol
TIGATI) H 1 | S I 1 | ¢
1]] |‘ | L |
TIGA T2 1} H : 1 L] ; | LN B I :
I | | i |
TicA 5¢ (WH 27727 ' 1 ! [: L 1 1.] | !
i | | |‘] }
TI6A $1{NH 222 l fl ' :—| |——|—H' | I !
! |
TIGA TS (1} H ' i l ! .. : I
]] ¥ RS |
TIGA T4 (11 H L 1! ! . : I :
T T ™
N ROM INIT l I P i Lo
TIBATS [1}H 1 1 | L : |
1 | ' | |
nec:o Tan __ fl ol LRl el fel ol L RARMR |
I i o |
TIGA PSEUDO T3 [' L, : -
] [}
|-—|umaus OR INTR PAUSE Icvm.el—:-|
TIGA THL(OH [T | | s L | j
t . b L P
TBAT2MH |] ! b L l A N
|) | | R
NOT USED| TIGA S (1DH | M 1, L ' -
FOR INTR | | M ¥ 1] i 1
PAUSE | TIGA S1MIH i L] L. L | L
|) . | ; . i
| b
i

UNIBUS 0R<
INTR PAUSE

CACHE PAUSE {

*NOTE: L

flafer 16 figure 4-8

UBCHE TiG RESTART H |

TIGA 1ST SYNC F/F |
|

|

R

|
]
LI
1
R i R ‘
TIGA 2ND SYNC F/F | | ;) I II '
I I]
TIGA T3 IH | | . L e !_
- t 2 T —t
TIGA T4 (11H ! | . P ™1 .
= I 2 - —
TIGATS (I H ! I L, o 1
o I - I |
TIGC:D T H II 2] | Ly LML,
| L | 1 1 I
TIGA PSEUDO T3 [:] | I
f4—— CACHE PAUSE CYCLE —T—% "
TeATI N [| — [i :
| 1
meaTzinH 1 .. I .
~ 22 L= .
TIGAT3 (IH | 1 . ')
ol) o |
TIATa (NH | 1 . 1] .
N N |
1

|
TIGA MEM SYNG {B) H° I

|
TIGA TS (1} th

.L_l

i

* :_I_
FLIP-FLOP # 2 i

*FLIP-FLOP #1 :
TIGA CLK BR H

|

R LM

I e
TIGC:D TX H T 4

Figure 4-7 Timing Generator

and Pauses

Mﬁ

-1

Table 4-1
Ring Counter Stop and Pause Conditions
STOPINT2
Internal Bus Pause Stop: SAPN NOT CACHE ADRS H
TIGA PAUSE H (UBSD = 2 or 3)
TIGA 80 (0) H or TIGA S1 (O)H
Restart: S0 and S1 count to 3 (90 ns).
Unibus Pause CPU Control Registers Stop: Samne as Internal Bus Pause
Restart: Same as Internal Bus AND
UBCB TIG RESTART H
(BUS SSYN)
Interrupt Pause Stop: UBSD = 1 {INTR Pause)
UBCD EXT BRQH
Restart: UBCB TIG RESTARTH
(Passive Release or BUS INTR)
Single ROM Cycle Stop: TIGB ROM+UPB (1) H
Restart: CONTINUE or MAINTENANCE
(XMAA S4) switches
STOPINTS
Cache Pause Stop: TMCF CACHE ADRS H
TIGA PAUSE H(UBSD =2 or 3}
Neo Aborts (not TMCC ABORT H)
Restart; TIGA MEMSYNC (1) H
Single Bus Cycle Stop: TIGB SINGLECY L
TIGA PAUSE H
Restart: CONTINUE or MAINTENANCE
(XMAA 84) switches

11-4-10

The Unibus Pause ts started by the same two gates
that start the INT D Pause, in addition to the gate
that has UBCA UNIBUS ADRS H as an input.
SCCD INTD REG (1) L is high, since the address
does not refer to an Internal Bus register.

There are two synchrenizing flip-flops for this gate:
the first runk flip-flop is the ong that has UBCB
TIG RESTART L as its inpul; the second rank
flip-Mop has the output of the first rank flip-flop as
its input, The output of the second rank synchro-
nizing flip-flop is high at this time, The output of
the 74565 gates is fow, T2 (1} H is not cleared, and
T3 (1) H is not set. The 50 and S1 flip-flops count
te 3, at which time the NOT CACHE ADRS gates
are disubled. When BUS SSYN is received, UBCB
TIG RESTART is asserted. The first rank synchro-
nizing flip-flop is set by the next TPB L, and the
second rank flip-flop by the TPB after that. This
disables the UNIBUS ADRS gate, and the output
of the 7485658 goes high, allowing the ring counter
10 restart.

When reuding the Control Registers (PS, SL, PIR,
PlA and PB - see Chapter 2, Paragraph 2.3.2)
SSYN is generated by the processor; in this case
the 90 ns 80-S1 delay and the synchronizing flip-
flop delays may be concurrent.

4.8.2.2 INTR Pause (T2} - Refer to Figure 4-7.
The interrupt (INTR) Pause cyele is similar 1o the
Unibus Pause cycle.

The ring counter is :-;t.oppcd in T2 by the UBCD
EXT BRQ H gule on the lower 74565, This gate is

L

T T) S

Tl At IaTd ¢ 1 . L

Trod TAGY |

TEC TRA K&
T e
l EEL

Fancs e dows i wE .

L
oA, o0

PRI

AACE A 4D L »—ﬂsd/

TS SdUSE o

LACH GBLx
ThGA MEA T)

Fechd AMEA TR AR
TEISC gL

asserted during an INTR Pause cycle (UBSD=1});
the output of the second rank synchronizing flip-
flop is high at this time. UBCD EXT BRQ H is as-
serted when any of TMCA HONOR BR(4:7) are as-
serted. The T2 fip-flop remains set and the T3 flip-
flop cleared until the second rank synchronizing
Mip-flop is set. 81 and 8O count up but have no ef-
feet, since they are ANDed with TIGA PAUSE H
(UBSD= 2 or 3), which is low., UBCB TIG RES-
TART H is asserted cither by the receipt of INTR
or by a passive release of the Unibus (UBCA PAS-
SIVE L). The first rank synchronizing flip-flop is
set by the next TPB L, and the second rank flip-
Mop by the TPB after that. This disables the EXT
BRQ gate. und the cutput of the 745865 goes high,
allowing the ring counter to restart.

483 CLK BR, BRA

During any cycle during which UBRK (load BR) is
asserted, the BR is loaded at the proper time. Dur-
ing a Cache Pause cycle, the data is loaded into the
BR at MEMSYNC+30 ns. During any other type
of cyele, the BR is loaded at T5430 ns. These oper-
ations are independent of when T occurs.

4.8.3.1 Non-Cache Cycles ~ Refer to Figures 4-8
and 4-9, TMCF CACHE ADRS H is asserted dur-
ing all Cache cycles. RACB ROM 40 L is asserted
and TIGA PAUSE H is high during all Bus Pause
cveles (UBSD=2 or 3). When either CACHE
ADRS or PAUSE are low, gate 2 is high, TSA(D) is
gated through gate 3 and the OR gate and sets flip-
flop 1 one clock period later. The following TPB L,
which occurs at T, asserts TIGA CLK BR (and
BRA) if RACA UBRK H is asserted.

s 7

2 |y & 557

4""‘3’& A B mad AAEM Sveds &
62:’//

[
o M;;a\\ -] 49 -
> 54/_/3_ :"3:

Az 2
”g?; /.'—"' Tgd ok SRL &

L

oar
Frod Sok Heow

i-3122

Figure 4-8 Clock BR Circuit (Part of D-CS-M8139-0-1, Sheet 3}

11-4-11

CLK BR,NQT CACHE PAUSE I
T3 T4 TS T1 Te T3

I T T I

CLK BR, CACHE PAUSE

TIGA T1 (M H

TIGA TS {1} H

*ELIP-FLOP #1

TIGA CLK BRH

CCBC MEMSYNC H_

TIGA MEMSYNC (43 H

* NOTE:
Refer 1o figure 4-B

TIGA STOP TIL

*ELIP-FLOP #2

Figure 4-9 Clock BR Timing

4.8.3.2 Cache Cycles - Refer to Figures 4-8 and 4-
9, MEMSYNC gates the data from the Cache into
the BR during a Cache DATI or DATIP. Flip-flop
2 is set prior to the Pause cycle by T3,

Upon entering a Cache Pause cycle, gate | is en-
abled. When CCBC MEMSYNC H causes TIGA
MEMSYNC to set, the output of gate 1 goes low,
the output of the OR gate goes high, and flip-flop |
is set al the same time as T1 (1} H (the ring counter
is restarted by TIGA MEMSYNC). Since RACA
UBRK is asserted, CLK BR is asserted 15 ns later
by TPB L, which occurs at the same time as T1.

Flip-flop 1 is on for only one clock period to en-
sure that only one BR clock pulse is generated.

4.9 MAINTENANCE STOPS

4.9.1 Single Cycle Mode

When the processor is halted and placed in the 8
BUS CYCLE mode of operation from the console,
the TIGA SNGCY flip-flop is direct-set to assert
TIGA STOP T1 and cause the processor to halt af-

ter each single bus cycle is completed (TIGA
PAUSE). When the CONT switch is pressed, TIGB
CONT is asserted and clocks the J-K flip-flop that
scts TIGA CONT (1) on the next TIGB TPB pulse
going high. This enables the K input to the
SNGCY Mip-flop so it will reset on the next TPB
pulse going high,

The processor enters T1 and proceeds through an-
other bus cycle. As soon as Tl is entered, the flip-
Mop controlled by the CONT switch is reset. The
CONT flip-flop resets on the next clock pulse and
the SNGCY flip-flop is again set on the trailing
edge of that clock pulse. As a result, STOP T1 is
again asscried to stop the processor after a single
bus cycle.

Since TIGA CLK BR is generated by either MEM-
SYNC or T5A (1), independently of T1, the data is
loaded into the BR 30 ns after T5. During Single
Cycle, the clock is stopped in T35, and the daia
from the current cycle could not be displayed if the
BR were clocked by T {after the clock has been
restarted).

11-4-12

492 ROM+UPB
SINGLE ROM CYCLE operation (St=0, §2=1)
stops the clock in T5 of every ROM cycle,

The UPB STOP (S1=1, $§2=0) operation stops the
clock in T5 when PDRC PB COMP H is high. This
signul is usserted when the microprogram ROM ad-
dress equals the contents of the Program Break Reg-
ister [PDRC PB(07:00)]. This read/write register is
accessed at address 17 777 770.

Muintenance module switch inputs XMAA §1 and
52 are decoded, ORed and input to the TIGB
ROM+UPB (1) H flip-flop, which is cleared by T3
(1) 1. and clocked by the following TPB L (at the
trailing edge of T1 (1) H). Since the CONT flip-
flop is cleared, the clock is stopped in T2,

4,93 TIGB CONT L

it should be noteu that, except for single clock
cvele operation, either the Console CONT switch
or the maintenance stepper XMAA S4 can be used,
XMAA S4 must be used for single clock cycling.

[I-4-13

This chapter examines the types of processor data
transfers (Paragraph 5.1), discusses the Unibus inter-
face, in general terms (Paragraph 5.2), -and de-
scribes processor data exchange with the Unibus
(Paragraph 5.3).

In order to executc instructions, the processor ex-
chunges data with the Cache and with Unibus de-
vices; i1 contains the Unibus arbitrator, which
decides which device obtains the use of the Data
Section of the Unibus. The Unibus arbitrator is a
part of the processor priority network, which is de-
scribed in Chapter 6.

In order to exchange data with either the Cache or
wilh 1 Unibus device, the processor must supply
the following information:

1. An Address, which defines the device or
the location in memory with which the
duta exchange is to take place; address
generation is described in Section 1V of
this manual.

P

Control information, which specifies the
direction of the data transfer; the C bits
dctermine the type of transfer and are de-
scribed in this chapter.

3 Data, in the case of a transfer from the
processor to the Cache or to the Unibus:
data is supplied to the Cache by the BR
and to the Unibus by the Data Multi-
plexer (DMX), both of which are de-
scribed in Chapter 2,

5.1 PROCESSOR DATA TRANSFERS

The processor requires two ROM states Lo execute
a data transfer; a BUST (BUs STart) cycle and a
Bus Pause cycle, during which the transfer of data

I1-5-1

CHAPTER 5
DATA TRANSFERS

likes place. A BEND (Bus END) cycle may replace
the Pause cycle if the transaction is not to be com-
pleted {cither due to error or to the microprogram).
Stack und Address crrors (aborts, refer to Chapter
6) are detected prior to the completion of a Bus
cycle and cavse a4 BEND. Conditions in the micro-
program which can cause o« BEND are those where
Bus cycles are started in anticipation of certain
forks or branches. If the fork or branch results in a
condition which does not require the Bus cycle to
be complcted, it is stopped by a BEND. An ex-
ample of this is found on Flows 5. D12.00, D[2.80
and DI12.80 all do a BUST and branch to one of
three cycles; one of these, D12.70, does not require
a Bus cycle and does 1 BEND,

Refer to Figure 5-1. During the BUST cycle, the vir-
tual address is generated from the BAMX; Memory
Munagement in turn generates the physical address.
RACH BUST H is received by the Cache, which
sturts a CPU cycle if it is idle. During the BUST
cycle, the type of transaction is determined by de-
coding the BSC ROM field (refer to Paragraph
5.0.1).

Cache Address

Il the physical address is a Cache reference, SAPN
NOT CACHE ADRS is negated and TMCE CON-
TROL OK is sent to the Cache, which allows the
data cycle to start. The clock is stopped in TS and
ts restarted upon receipt of the assertion of CCBC
MEMSYNC H, by which the Cache indicates com-
pletion of its data cycle, i.e., data is ready on read,
or laken in on write (refer to Section VI, Cache),
AL TIL, the data from the Cache is strobed into the
BR (refer to Chapter 4). In the case of a read-hit
(i.c., the word is in the Cache and a Main Memory
cycle is not necessury) the clock gencrally does not
stop, becuuse the data is ready and MEMSYNC is
asserted before T35,

BUST
T

BAMX

VIATUAL ADDRESS
‘BELECTED FROM

15SUE BEND TOQ
CACHE CONTROL.

T3 i o . m r —— ———— ———— — —
CACHE CONTROL
BEGINS CP CYCLE
IF IDLE
PAUSE I
T o o e r — — —
T2 o o e ———
PHYSICAL ADDAESS
IS FORMED. ADDRESS
DECODE IS COMPLETE.
TIMING GENERATOR
5 STOPRED FOR 80 ns
2;$%E§?f?£ 0DD ADDRESS MEMORY
CACHE uKR1BUS SL ERROR MANAGEMENT
ADDRESS | ADDRESS NEXM VIOLATION
T?”+HN— — — — — —_—— l
CP BUSY ISSETIF
—[NPR + NPG + SACK
+ OSACK + ABORT!,
1S5UE BEND TO
CACHE
IWTOI} INTDHO)
KEEP TIMING
CLEAR CP BUSY. GEREAATOR
DISABLE SETTING STOPPED, DESKEW
MSYN, COMPLETE ADDRESS AND
90 ns DELAY, DATA 160 ns AND
ASSERAT MSYN
TIMEOUT
RESTART TIMING ABORT CONDITION. ABDRT CONDITION.
GENERATOR. ZAP ROM TD 200. ZAP ROM TO 200,
DESKEW DATA VECTOR THRU 4. VECTOR THRAU 250,
75 ns V1A ISSLHE BEND TO ISSUE BEND TOD
SYNCHROMIZER. CACHE, CACHE.
T— - -
ISSUE CONTROL LOAD DATA TO
OK TO CACHE BUFFER. CLEAR
MSYN. DESKEW
ADDRESS FROM
™= T3-T1.
WAIT FOR MEMSY NC|
IF MISS + WRITE +
PARITY ERROR
T) = p—|—— — — — — - —_—_——-L———
LOAD DATA FO CLEAR CP BUSY CLEAR CP BUSY
BR IF READ IF —-DATIP, SHIFT IF UNIBUS
CYCLE BUFFER TO BR TIMEQUT

Figure 5-1

I1-5-2

Processor Data Transfers

113134

Unibus Address

IT the physical address is a Unibus reference, SAPN
UNIBUS ADRS L and SAPN NOT CACHE
ADRS H are both asserted and the clock is
stopped for a minimum of 90 ns in T2. TMCE
CACHE BEND H is asserted and causes the Cache
to stop its CPU data cycle. Refer to Section VI.

Thirly ns after the assertion of T2, UBCA CPBSY
is set, if all NPRs have been serviced and if no
abort 1s pending.

SCCD INTD REG (1) L is asserted if the Unibus
address is a reference 1o one of the registers that
are read on the Internat Data Bus (refer to Chapter
2. Paragraph 2.2.2). If this is the case, CPBSY is re-
sct, MSYN is disabled, the 90 ns 80-81 delay is
completed, the clock is restarted, and the contents
ol the register that is being referenced is clocked
into the BR at the end of the PAUSE ROM state.

[the Unibus reference is not to an INTD register,
a Unibus data cycle is executed, The TIG clock is
stopped and stays stopped past the 90 ns 50-S1 de-
lay. Address, type of transaction {C1, CO0) and, if re-
guired, data are put onto their respective Unibus
lincs and deskewed, MSYN is asserted. The Unibus
device that is being addressed executes the transuc-
tion and responds by asserting SSYN. The clock is
restarted 75 ns aflter receipt of this signal.

At T3, MSYN is negated and the data is clocked
into the PDRJ bulfer. At T1 of the next cycle, ex-
cept in the case of a DATIP, the Unibus lines are
cleared by negating CPBSY. If the transaction was
a DATIP, CPBSY is not negated, the address lines
are not changed {(except if the data-out is to be a
DATORB, in which case, AQD is changed from 0 to |
for an odd byl address), the C lines are adjusted,
and the data is put an the D lines.

In the cuse of a DATI or DATIP, the data is
clocked imto the BR at Tt.

Aborts

IT an abort ocecurs, the microprogram forces the
ROM address to 200 (ZAP.00). This occurs at T2
of PAUSE for all aborts except parity aborts,
which ZAP at T2 of the cycle following the

PAUSE. A Memory Management abort vectors
through address 250. A parity error abort vectors
through address 114. All other aborts vector
through address 4. (Refer to Chapter 6.)

5.1.1 Types of Data Transfers

FFour types of data transfers are used by the KBI1-
C. These types are defined by the condition of the
Control bits Cl and CO (TMCE Cl1 H and TMCE
COH):

C1=0, C0=0 - Data-in or DATI. One word
of data is transferred to the processor from
memory ot from the Unibus.

Cl1=0, C0O=1 -~ Dala-in, PAUSE or DATIP.
Same as DATI, but a data-out must be exe-
cuted to the same address immediately follow-
ing the DATIP. This type of data transfer
may be considered as the first part of a
read /modify /write operation,

Cl=1, C0=0 - Data-out or DATO. One
word of data is transferred from the processor
1o memory or to the Unibus.

Cl=1, C0=1 - Data-out, byte or DATOB.
Onc byte of data is transferred from the pro-
cessor to memory or to the Unibus. The high
order byte address is odd and its data is
storcd in bits 15:08 of a word; the low order
byte address is even and its data is stored in
kits 07:00 of a word.

The C1 and CO signals are obtained by decoding
the BSC hits as shown on drawing TMCE.

i, When RACC UBSC02 H is negated
(low or BSC = 0 ~ 3) the 748153 multi-
plexer is disabled, and both of its out-
puts are low. Thus, TMCE C] H and
CO H are low and call for a DATI.

2. When RACC UBSCO0O2 H is asserted
(high or BSC = 4 - 7), the BUS COND
multiplexer is enabled and its output is a
function of RACC UBSCOt and
UBSC00, as defined by the table on
TMCE.

[1-5-3

The BUS CONDITION (BSC) bits of the micro-
program ROM determine the type of data transfer
by its control of the C lines [TMCE CI (and C0)
H]. The significance of the BSC bits is defined
helow:

BSC=000 - DATI (data-in), a transfer of one
word of data from a slave to the processor.

BSC=001 - SRC1 DATI (SouRCe 1 DATH),
a DATI uvsed in odd address error detection
to distinguish the first bus operation of source
calculation. During a byte instruction, this
transaction cannol use an odd address if the
source mode is 3, 5 or 7. These are deferred
addressing modes and this transaction reads a
word conlaining the address of the operand;
this word cunnot be odd.

BSC=010 - KERNEL DATI; a DATI is cxe-
cuted, and Memory Management selects the
KERNEL PAR/PDR set (refer to Section IV,
Memory Management) used in the Trap and
Interrupt Service routines to obtain vectored
PC and PS from Kernel PAR 0. KERNEL
DATI ulso affects the processor mode bits
{PS(15:12)] as explained in Chapter 3.

BSC=011 - SRC2 DATI (SouRCe 2 DATI),
a DATI used in odd error detection to dis-
tinguish the second bus operation of a source
calcutation. During a byte instruction, this
transaction may use an odd address.

BSC=100 - FC (Floating Point Processor
Conditions). Used during FPP Unibus transac-
tion: TMCE Cl H follows the FPP CI line
(FRMJ FP CI H) and CO is always negated,
since the FPP does only word operations.

BSC=101 - DATO (data-out), a transfer of
one word of data from the processor te a
slave,

BSC=110 - BSOP1 {BuS OPeration 1) In-
struction-dependent bus transaction, specified
in execute ROM cycles, common to several in-
structions that require different types of bus
operations. An O/class instruction calls for a
DATO, u P/class instruction for a DATIP,
and onc that is neither O/ nor P/class for a
DATI. No instructions are both O/ and
P/class. Instruction classes arc defined in
Chapter 1 and on Flows 3 and 5.

BSC=111 - BSOP2 (BuS OPeration 2). In-
struction-dependent bus transaction. If the in-
struction is a byte instruction, a DATOB
(data-out, byte) is executed; if it is not a byte
instruction, a DATO is executed.

5.1.2 Types of BUST Cycles

There are two types of BUST cycles: conditional
and unconditional, which are described in Chapter
| (Paragraph 1.2.5.1).

A BUST cycle is one in which the MiSCellaneous
{MSC) bits of the microprogram ROM equal 5 or
7:

MSC=5 - CONDITIONAL BUST. This
vilue occurs only in IRD.00 (Flows 1), which
penerates the A Fork., RACH BUST H is as-
serted during this cycle, except when the cycle
thut follows is also a BUST cycle.

MSC=7 - BUST, unconditional.

5.1.3 Types of Pause Cycles

The BUS DELAY (BSD) bits of the microprogram
ROM determine the type of Pause cycle to be exe-
cuted, if any. The significance of the BSD bits is de-
fined below:

BSD=00 -~ No Pause.

BSD=0I - Interrupt Pause or INTR PAUSE.
The Timing Generator is stopped in T2, A
Bus Grant is issued. The Timing Generator is
restarted by INTR, NO SACK or Passive Re-
lease of the Unibus.

BSD=10, BSD=11 - Bus Pause. Used for In-
ternal Duta Bus (INTD), Unibus and Cache
transactions:

INTD - The Timing Generator is
stopped in T2 for 90 ns.

UNIBUS - The Timing Generator is
stopped in T2 and restarted after a min-
imum 90-ns delay by SSYN, Timeout or
TMCC ABORT.

CACHE - The Timing Gencrator is
stopped in TS and restarted by MEM-
SYNC or TMCC ABORT.

11-5-4

5.1.4 BEND Cycle

Refer 1o drawing TMCE, When the ROM BCT
(Bus Control) field equals 7, TMCE ROM BEND
L is asserted. This condition is indicated by
“BEND" on the Flows.

TMCLE CACHE BEND H causes the Cache to stop
a data cycle. It is asserted by a ROM BEND, when
the physical address does not indicate a memory ref-
erence (TMCF CACHE ADRS not asserted), by a
Memeory Management abort (SSRC KT ABORT
FLG), by a fatal stack violation (TMCD SL RED)
or hy an odd address error (TMCC ODD ADRS
ERR).

TMCE KT BEND L, when asserted, prevents the
modification of the contents of some Memory Man-
agement registers and the setting of the KT
ABORT FLAG.

5.2 UNIBUS INTERFACE

The Unibus is the transmission medium that inter-
connects the various components of the PDP-11/70
system, such as peripheral devices, the KB11-C Pro-
cessor and the Cache Memory via the Unibus Map.
The principal connection between the processor and
the Cuche, however, is direct and does not use the
Unibus. Main Memory can only be accessed
through the Cache.

The Data Section of the Unibus is used for data
transfers between a master device, which controls
the transaction, and a slave device, which responds
to the master. A master asserts BBSY (Bus Busy),
it determines the type of data transfer and is the
only device that may assert MSYN (Master SYNg¢),
a slave executes the transaction requested by the
master and asserts SSYN (Slave SYNc). The pro-
cessor is generally a master during Unibus transac-
tions, but in the special case of interrupts, it acts as
a slave device.

Only one data trunsfer may occur at a time on the
Unibus, and the priority arbitration logic decides
which device may use the data transfer lines on the
Unibus. (Refer to Chapter 6, Paragraph 6.3).

5.3 UNIBUS DATA INTERFACE
The KB11-C uses the Data Section of the Unibus
for the following types of data transfer:

I. To transmit or to receive data from
Unibus devices such as peripheral con-
troller control registers.

2. To access memory via the Unibus Map
and then through the Cache; this path is
used mainly for diagnostic purposes.

3. To read (only) its control registers (PS,
SL, PIR, PIA and PB).

4, To receive a vector during an interrupt
transaction.

The transactions listed in (1) and (2) above are iden-
ticul, und (3) is very similar. These operations are
described in this paragraph. The interrupt transac-
tion is ¢xpluined as part of the Unibus arbitration
interface in Chapler 6, Paragraph 6.4.

5.3.1 Unibus Data Transfer Protocol
In order to exccute a data transfer on the Unibus,
the processor must obey the Unibus protocol:

{. The processor obtains the use of the
Unibus from the Unibus priority arbi-
tration logic (refer to Chapter 6).

2. The processor asserts BBSY, thus becom-
ing bus masier.

3. The processor defines the slave device
with which it wants to communicate. To
do this, the processor puts a Unbus ad-
dress on the A lines [BUS A(17:00) L on
SCCL]. Memory Management generates
this address (refer to Section IV of this
manual),

4. The processor defines the type of data
transfer to be execuuted, which is deter-
mined by the C lines (BUS CO L and
BUS CI L. on UBCC). Data transfers
may be either from the processer to a
sluve {data-out: DATO or DATOB) or
from a slave to the processor (data-in
DATI or DATIP).

I1-5-5

6.

b,

If the intended data transfer is a DATO
or a DATQB, the processor puts the
data word or byte on the Unibus I} lings
[BUS D{15:00) L on PDRE], Data selec-
tion is described in Chapter 2, Para-
graph 2.3.2,

When these bits {Unibus A, C and D
tines) become valid, they are deskewed
for 150 ns to allow for decoding in the
slave and for variations in bus driver
and receiver characteristics (address
deskew).

The processor then asserts MSYN:

a. I it is executing a DATI or a DA-
TIP, when the negation of SSYN
from the previous Unibus transac-
tion has been received,

b. Ifitis executing a DATO or a DA-
TOB, 150 ns after receipt of the nc-
gation of SSYN from the previous
transaction.

The slave receives the assertion of
MSYN and either accepts the daia from
the D lines {DATO or DATOB), or puts
the data requested by the processor on
the D tines (DATI or DATIP). The
stave then asserts SSYN.

DATI or DATIP — Upon receipt of the
asseriion of S8SYN, the master deskews
the data received for a minimum of 75
ns. The master then strobes the data and
negates MSYN,

DATO or DATOB - The master may ne-
gale MEYN upon receipt of the asser-
tion of SSYN. The KBII-C, however,
waits 75 ns before negating MSYN,

The master waits @ minimum of 75 ns af-
ter negating MSYN, then removes the
address and control bits from the A and
C lings. The master then negates BBSY,
except in the case of a DATIP, where
this signal must remain asserted during
the DATO or DATOB thut follows the
DATIP.

Lt. The slave typically negates SSYN upen
receipt of the negation of MSYN,

12. If the assertion of 858YN is not received
within a specified amount of time (Time-
out Delay), the instruction is aborted.

5.3.2 Unibus Data Interface

The Unibus data interface is shown on drawings
UBCA, UBCB and UBCC. This interface imple-
menis the Unibus data transfer protocol.

The description that follows refers to processor

Unibus device references, which include the Mem-

ory via the Unibus Map. Processor Control Regis-

ter references differ in some details from these

transactions. These differences are described at the

end of this paragraph.

5.3.2.1 Unibus Device References

. During the BUST state, Memory Man-
agement generates the Unibus address,
which bhecomes valid by T1 of the
PAUSE state. SAPN UNIBUS ADRS
L, when asserted, informs the processor
thut a Unibus transaction is required,
The Bus Condition (BSC) ROM bits are
asserted during the BUST and during
the PAUSE states.

2. During T1 and T2 of the PAUSE state,
the Unibus Data Multiplexer (PDRE
DMX) selects the input to the Unibus
data drivers [BUS D{!15:00) L]. Refer to
Chapter 2, Paragraph 2.3.2).

3. Refer to drawing UBCA and to Figure
53-2. SAPN UNIBUS ADRS L enables
the gate that clocks the UBCA CPBSY
flip-flop.

The TIG clock is stopped in T2 of the
PAUSE state (refer to Chapter 4). TIGA
PSEUDO T3 H is asserted 30 ns after
T2.

When all NPRs have been serviced, and
if no abort is present, and when the pre-
vious master has negated BBSY, UBCE
CPBSY is clocked and the processor be-
comes master by asserting BUS BBSY
L.

I1-5-6

BUST | T2 T2 T2 PAUSE |
+ o+ 4
T¢ Tz T3 T4 TS T4 T2 30 €0 90 T3 T4 T5 TV T2

DATI-DATlP-oATo|||I|IIIILJI|II|IIJ

VIRTUAL ADDRESS /"

PHYSICAL ADDRESS W/ /

SAPN NOT CACHE ADRS H /

SAPN UNIBUS ADRS H /

]
1
|
1
1
{
1
|
I
|
|
L
1
1
I

TIGA PSEUDD T3 H

o

-

I
1
UBCA MSYN (1) H :

|
!
CP BUSY CLOCK H SEE NOTE # | ——-Fd . |
" 1

* 1. SEE

UBCA CP BUSY H [NoTe #2

s |
— |
4BCA START BUS (1) H SEE NOTE #3& 150NS ADRS | [\ |
DESKEW I 5 |
|
i
|
]

\\--__,_.

I
BUS SSYN H . I 1| s
L1 I
' |
TIGC T3 B L SEE NOTE #4 |
i l
TIGA BR CLK H . SEE HOTE # 5—4 I
NOTES:
1. Set CP BLSY if -INPR + NPG + SACK 3. Used to start DATO address deskew on
+DSACK + ABORT + BBUSY). DATIP/DATO operation.
2. CP BUSY is not cleared if DATIP cyele. 4. 75 ni data deskew is obtained by 2 stage
It is cleared on DATO portion of DATIP/ tynchronizer on TIGA, Unibus data is
DATO. loaded into PORH buffer regisver at T3,

8. Address & control are deskewed from
T3 to T1. PDRH buffer register 1oaded
to BA at T1.

11-3124

Figure 5-2 Unibus Data Transfers

11-5-7

6.

UBCE CPBSY B H gates the address
[BUS A(17:00) on SCCL]), the data
[BUS D(15:00) on PDRE] and the Con-
trol bits (BUS C1 and BUS C0 on
UBCC), onto the Unibus.

TIGA PSEUDO T3 also clocks and sets
URCE START BUS. I the transaction
is « DATO or a DATOB (UBCC CI B
H asserted) und SSYN is negated, the
150 ns address deskew is started. If the
transaction is a DATI or a DATIP, the
deskew is started without regard to the
state of SSYN.

Upon completion of the delay, if S8§YN
is negated, BUS MSYN is asscrted by
UBCA MSYN,

Upaon receipt of the assertion of (UBCB)
BUS SSYN from the slave, and since
MSYN is being asserted by the pro-
cessor [UBCLE MSYN (1) H], UBCB CP
S8YN is asserted. This signal clears
UBCA START BUS and thus disables
the direct-set inpul lo UBCA MSYN (1)
H.

UBCB CP S55YN 1. also causes UBCB
TIG RESTART to be asserted, This sig-
nal causes the clock to be restarted. T3
is asserted 75 ns (minimum) after TIG
RESTART is asserted (refer to Chapter
4). T3 clocks the UBCA MSYN flip-flop
oft und negates BUS MSYN.

If the transaction is a DATI or a DA-
TIP, the data is clocked into the Bus Buf-
fer Register {PDRI D{15:00) H] at T3.
The 75-ns delay between the assertion of
TIG RESTART and that of T3 is the re-
quired data deskew.

At T1 of the micreprogram state that fol-
lows the Pause cycle, in the case of a
DATI or of DATIP, the data from
PDRJ D{5:00) H is clocked into the BR.
This is shown as “Té BR<BUS” of
PAUSE on the Flows.

I1-5-8

At the same time (T1) CPBSY is direct-
cleured und BUS BBSY L is ncgated, ex-
cept in the case of 4 DATIP, when
BBSY must remain asserted until the
end of the DATO or DATOB that fol-
lows the DATIEP. This is controlled by
the 74574 Tlip-flop on UBCA whose D
input is UBCC DATIP L: UBCE
MSYN (1) H clocks this {lip-fiop, which
controls the direct-clear input to UBCE
CPBSY.

When UBCA CPBSY B H is negated,
the address, data and control bits are re-
muoved from the Unibus.

5.3.2.2 Unibus Timeout - If SSYN is not received
in response to the assertion of MSYN by the pro-
cessor within 10 gs a Unibus Timeout occurs.

1.

Refer 1o drawing UBCA. The 74193
hinury counter is kept cleared by UBCA
MSYN (0} H. When the MSYN flip-flop
is set, the counter is free to count up. It
is ctocked by UBCD FREE CLK (09 H
(30 ns pulse every 90 ns) refer to Para-.
graph 64.1). On the 16th clock pulse, a
curry is generated which scts the UBCA
START TIMEOQUT L latch. This
counter allows single clock cycle mainte-
nance module operations when referen-
cing Cache registers (or the Cache via
the Unibus Map). IT the Timeout one-
shot wus started immediately upon the
assertion of MSYN, the Cache, which
uses the processor time pulses, could not
complete the transaction and Timeout
would always oceur,

Refer to drawing UBCB. The latch
starts the timcout 74123 one-shot (10
ush

[l the assertion of BUS SSYN L is re-
cetved before the end of the 10 us, the
one-shot is cleared.

If the assertion of BUS SSYN L is not
received by the end of the 10 us the one-
shot times out, UBCB TIMEQUT is set
and disables the direct-set gate to UBCA
MSYN (1) H.L TMCC BUS ERROR L
and TMCC ABORT H are asserted.

3. Since the clock is stopped in T2 of the
Pause cycle (RACB UBSDOl H as-
serted), TMCC ABORT H asserls
UBCB ABORT RESTART H. This sig-
nal restarts the TIG clock as in (7
abhove. The microprogram goes to
ZAP.00, thus ending the data transfer
cycle,

UBCB TIMECUT B H sets TMCD
UBUS TIMEOUT H (bit 04 of the CPU
Error Register) when TMCC ABORT
CLK L is asserted at T3 of PAUSE. The
CPU Error Register may be read from
address 17 777 706,

5.3.2.3 Contrel Register Reference - The processor
Contro!l Registers {(PS, SL, PIR, PIA and PB} are
described in Chupter 3. They present a special case
ol datu trunsfers:

. They are written direcily from the BR,
whether they are referenced by Unibus
address or by the microprogram. A
Unibus cyclte is performed as described
below when the reference is by Unibus
address.

2. The PS can be read either via the Inter-
nal Bus (Chapter 2, Paragraph 2.2.2) or
via 1the Unibus. The SL, PIR, PIA and
PB can only be read via the Unibus, and
not via the Internal Bus.

When referenced by its Unibus address, the regisler
to he read is selected by the DMX. Refer to Chap-
ter 2, Paragraph 2.3.2.

The logic sequence is the same as that for Unibus
device references, with the exception that the pro-
cessor itself must generate SSYN,

Refer 1o drawing UBCC, SCCE INTERNAL
ADRS H is asserted when any one of the addresses
in the runge of 17 777 770 = 17 777 776 is decoded
by Memory Management. These addresses are
those of the Control Registers,

Fifty nanoseconds after UBCA MSYN (1) is as-
serted, BUS SSYN L (UBCC) is asserted. This sig-
nal is received by the bus receiver on UBCB and

asserts UBCB TIG RESTART H, which restarts

the TIG clock.

11-5-9

An Abort is the non-completion or interruption of
a data cycle due to error. This may be a non-recov-
erable error or, if Memory Management is enabled,
a prohibited transaction. Aborts are serviced imme-
diately, prior to the completion of the instruction
during which they occur,

A Trap is an interruption of the normal program
flow by internal machine conditions, These condi-
tions cun be, but are not necessarily errors. A Trap
i5 executed after the instruction during which it oc-
curs is completed.

An Interrupt is similar to a Trap, but is cavsed by
conditions external to the machine, These condi-
tions muy be program action {PIR) or external de-
vice service requests (BR). Interrupts are controlled
by bits 7 — 5 of the Processor Status Word (PSW).

All ol the ubove uvse the microprogram Service
Flows, which are described in Paragraph 6.1.
Aborts are explained in Paragraph 6.2, traps and
processor interrupts in Paragraph 6.3, and external
(Unibus) interrupts in Paragraph 6.4.

6.1 SERVICE FLOWS AND VECTORS

The microprogram Service Flows (Flows 12 and 13)
are used during all aborts, traps and interrupts.
During these cycles, the PC and PS of the sub-
routine that is required by the ubort, trap, or inter-
rupt are reud from memory and the PC and PS of
the instruction that caused the entry into the Ser-
vice Flows are pushed onto the new stack, as deter-
mined by the processor mode bits of the new PSW
[PS(15:14)).

CHAPTER 6

ABORTS, TRAPS AND INTERRUPTS

6.1.1 Vectors

During all uborts, traps and interrupis a Vector is
obtained. The vector is the address of the location
where the PC for the required subroutine is stored.
The vector+2 is the uddress of the location that
contains the new PSW.

During an external interrupt, the vector is provided
by the device cuusing the interrupt, and is read
rom the Unibus, Refer to Paragraph 6.4. During a
power-up, it is read from the Start Vector (8V).
During all aborts, internal traps and processor PIR
interrupts, it is read from the Trap Vector (TV)
logic.

Refer to drawing DAPE. The SV (power-up) is gen-
erated by jumpers and is input to the ALU by the
BMX. The jumpers may be cut to provide a SV be-
tween Q0 G00 000 and 00 000 174 or between 17 173
200 and 17 |73 374,

The TV bits [DAPE TV(01:04) H, TV06 H and
TV05*07 H] are controlled by funclions generated
on TMCB and IRCD, The vectors generated for

“cach function are listed on DAPE. If none of these

is asserted, the vector is 4 (TV02),

IRCD decodes the operution code of the [OT, BPT
(OPCODE3}, EMT and TRAP instructions, which
do nothing but generate an interrupt. They are
shown on Flows 3, on the A Fork,

11-6-1

6.1,2 CPU Error Register

The CPU Error Register allows the program to de-
termine which abort or trap to location 4 caused en-
iry into the Service Flows. It contains the following
bits:

Bit Name Function

7 Illegal Halt (trap) Set when trying to execute
a HALT instruction when
the CPU is in User or
Supervisor mode {not
Kernet).

6 Odd Address Set when a program

Error (abort) attempts to do a word
reference to an odd ad-
dress.

5 Non-existent Set when the CPU at-

Memory (abort} tempts to read a word
from a memory location
higher than system size
register. This does not in-

clude Unibus addresses.

Set when there is no
response on the Unibus
within approximately 10
microseconds.

4 Unibus Timeout
{abort)

3 Yellow Zone
Stack Limit (trap)

Set when a yellow zone
trap QCCUrs.

Set when a red zone abort
OCCUIS.

2 Red Zone
Stack Limit (abort)

The CPU Error Register is read on the internal
data bus (INTD) at address |7 777 766.

6.1.3 Service Flows

6.1.3.1 Entry into the Service Flows — Aborts and
Power-up cnter the Service Flows through ZAP.00;
trups and interrupts enter through BRK.90. The
EMT, TRAP and reserved operation codes (from
the A Fork, Flows 3) enter through RSD.C0. The
BPT (OP3) and IOT (also from the A Fork), and
the illegal HALT, enter through TR.00.

I1-6-2

RSD.00 and RSD.10 generate a trap vector (TV) of
4 and shift it left to obtain the correct vector,
which is (0. TRP.OO generates the correct TY.
These cycles all enter SVC.00 through TRP.10,

6.1.3.2 BRK.90 and ZAP.00 - These two cycles do
4 BEND, which ends any bus opcration that may
have been started during the previous cycle.

In addition, ZAP.00 does a BRQ STROBE, which
allows setting the CONF after BRK.00 if the
HALT switch is down and the § BUS CYCLES
INST switch is in § INST.

The BENO6 branch after ZAP.0O checks SSRA PS
RESTORE (1) H (Memory Management abort dur-
ing SVC.70 or SVC.90). Refer to Paragraph 6.2.1.3.

6.1.3.3 BRK.00 and BRK.10 — The INTR PAUSE,
during which the vector is read from the Unibus
during an external interrupt, occurs during
BRK.00. INTR PAUSE is described in Paragraph
6.4. The PC of the instruction preceding the service
sequence is stored in the SR,

During BRK.10, the INTR vector is moved into
the DR,

6.1.3.4 Branch Enable 13 - The logic that controls
Branch Enuble 13 (BENI3) is shown on TMCB.
All the errors and requests that might be honored
to cause an internal trap are ORed to provide an
output called TF (and its complement, -TF). The
74HS50 gates provide the following two outputs:
TMCB PF (0Y{SF+TF) H and TMCB PF (W*(SF+-
TF) H. These outputs control which of four micro-
branch paths will be followed:

1. PUPF (0) L - If the Power-up flag is set,
neither output will be asserted. Micro-
state PUP.00 (100} will be entered.

2. TF - When the Power-up and Stack Er-
ror flags are both cleared [PUPF (0) L
and -SERF (1) L} and a trap condition
exists, only the TMCB PF (0)*(SF+TF)
H output will be asserted. This output
causes microstate BRK.80 (140) to be
entcred.

3. -TF - When the Power-up and Stack Er-
ror flags are both cleared and no inter-
nal trap conditions are present (-TF),
only the TMCB PF (0)*(SF+-TF) H out-
put will be asserted. This causes micro-
state BRK .20 (120) to be entered,

4, SF - If the Stack Error flag is set and
the Power-up flag is not, SERF (1) L
will assert both outputs. This will cause
the SER.00 microstate {160) to be
entered.

The Power-up sequence is described in Paragraph
6.5 and the INTR in Paragraph 6.4,

6.1.3.5 Red Stack Error (SER.00 and SER.10) -
The PC and PS pushes in SVC.60 - SVC.80 must
be made to locations 0 and 2 of the stack. For this
reason, SER.00 and SER.10 set the stack pointer,
GR(6), to 4.

Afier this cycle, the Red Stack Error flows rejoin
the flows for all other internal traps by entering
BRK.30.

6.1.3.6 BRK.80 and BRK.20 - During BRK .80 the
trup vector is read into the DR, The PS is toaded
tnto the BR in both cycles.

The ACKN in BRK.20 clears the INTR flag.

6.1.3.7 BK.30 - This cycle is lollowed by SVC.00
- SVC.90, which are common to all aborts, traps
and intgrrupts. The ACKN in this cycle sets and
clears severa) functions reluted to the service flows,

6.1.3.8 Entry into SVC.00 - SVC.00 is entered
from either TRP.10 or from BRK.30. At this time,
the vector (itddress of the new PC, which is read
first) is in the DR, the old PC is in PCB and in the
SR, and the old PSis in the PSW and in the BR,

6.1.3.9 SVC.00 - SV.90 - During these cycles, the
PC and PS Tor the soflware service routine are read
from the Kernel stack during SVC.00 — SVC.20.
KERNEL DATI forces Kerncl mode but does not
change the status bits in the PSW [PS(13:14)]. Re-
fer Lo Chapter 3.

The new PS is loaded into the PSW during SVC.30.
SVC.40 loads the SP into the DR and SVC.50 decr-
ements the S)°.

SVC.60 - SVYC.90 push the old P§ and PC onto the
current mode stack as determined by the new PS. If
a4 Memory Munagement abort occurs during these
cycles, the PS RESTORE branch is taken after
ZAP.00. Refer to Paragraph 6.2.1.3.

SVC.90 does a BRQ STROBE. It is followed by
FET.00.

Table 6-1 shows in detail the movement of data in
the processor registers during these cycles.

6.2 ABORTS

Aborts are grouped under three headings in this
paragraph: Address, Stack and Parity. The several
errors, and their timing, are described under these
headings in this paragraph.

6.2.1 Address Errors

An address error causes the Address Error flag
(TMCC AERF (1) H) to be set. An address error
may be one of the following:

I. Odd Address error,

2. Non-Existent Memory error,
3. Mecmory Managément abort,
4. (Unibus) Timeout error,

provided the bus cycle during which the error oc-
curs is not a push to the Kernel stack.

6.2.1.1 Odd Address Error - An odd address is per-
missiblc only during a byte instruction, and then
only when the transaction is a SRC1 DATI and the
source mode is not 3, 5 or 7, a SRC2 DATI, a
BSOPI! or a BSOP2, TMCC ODD ADRS ERR L
is asserted when the address is odd (BAMX00=1)
and these conditions are not mel. The bus cycle is
aborted and a trap to 4 is executed.,

SRC1 DATI is the first bus operation of source cal-
culation; if the source mode is 3, 5 or 7 (all de-
lerred modes), this transaction reads the address of
the operand, which cannot be odd. SRC2 DATI
reads the apcrand, whose address during a byte in-
struction may be odd.

BSOP1 generates DATIP for a P/class instruction,
a DATI for an instruction that is neither P/class
nor O/class and a DATO for O/class instructions;
no byle instructions are O/class.

BSOP? gencerates a DATOB for byte instructinns
and a DATO for all others.

11-6-3

S#0]J U0 I 2 UMOUs [18 SINID0),

06044
1000144
(A90¥1S X014 10 JH7IS) .
SOV WVATD 00°1ad
JuMmd io .
JHAS 10u L IGOULS DUd " asnvd 06°3AS
v—ueum Mou 0] U& ﬁ.ﬂo N
N pECo9g M #dS mau *3d PIO $-dS mau lsnd 08°JAS
asnvd 0L OAS
45 ussLap
$IBIG MU O] 54 PO m $dS Mou Z-dS Mau z-d4S mau 1sng 09°JAS
:ysng ISy
dS watazad { 7-dS mou xdS mau 05°0AS
ua o1 ([9]1as) 45 asN +Sd pro 0P OAS
MSd 01 Sd MeN Sd Mau +2d #au Sd PIo | «Sd mau «Sd P10 0L DAS
+Sd Plo | Od mau +0d PO ASNVd 0T'JAS
“aveds ol X
[SuIaY hokf g 01 § MsN T+03A +0d +Z+0HA 1snd 01°DAS
asnvd 00'DAS
-aoeds Jauiay JOWIA Sd pio 1804 01 ddlL
woly g 01 3d mau NYIV 0 YHg
Sd Pio 2d PIO SdPlc | JdPIO| 1018A SUOTITPUN.) [EDIU]
spAar
SJUALIIOY) iskao Sd XHWVE 424 vad ud us ua Joaddy aphart

SMO[] 3NALG
1-9 31981

I-6-4

TMCD ODD ADRS ERR L is asserted under the
following conditions:

1. The address is odd {BAMX00=1) and
the instruction is not a byte instruction
(IRCD BY IN H negated). The third
gate from the top is asserted in this case.

2. If the address is odd and this gate is not
asserted, the instruction is a byte instruc-
tion, and either the top or the bottom
gate can cause ODD ADRS ERR to be
asserted:

i, Il the BSC field calls for a DATI,
a KERNEL DATI, a Floating
Point Bus Operation or a DATO
(BSC=0, 2, 4, or 5), the top gute is
asserted;

b. If the BS field calls for a SRCI
DATI or a DATI {(BSC=0 or 1)
and a source mode of 3, 5 or 7, the
bottom gate is asserted. Note that
a DATI causes the top gate to be
asserted without regard to the
source mode,

6.2.1.2 Non-Existent Memory FError - TMCC
NEXM L is asserted when an address is neither a
Unibus nor a Cuche address. This is determined by
ANDing SAPN NOT CACIE ADRS H and
SAPN UNIBUS ADRS L. Refer to Section 1V of
this manual for a description of these functions.

The bus cyele is uborted when reference is made to
an address larger than that specified by the System
Size Register. The Trap vector is 4 for an NEXM
error.

6.2.1.3 Memory Management Aborts - Memory
Managemenl aborts are described in Scction TV of
this manual, SSRC KT ABORT FLG L informs
the TMCC logic of such an abort condition. This
signal is inhibited when a Stack Limit Red, Odd
Address or Non-Existent Memory error is asserted
(TMCE KT BEND L). In other words, a Memory
Munagement abort is allowed if no Stack or Ad-
dress abort is flagged.

KT ABORT asserlts TMCC ABORT H and, at T3
ol the Pause cycle, sets TMCC SEG ABORTED
{1y H, except in the case of a Console operation
(UBCF CNSIL. ACT (0 H).

The SEG ABORTED flip-flop gencrates the Trap
vector for a Memory Management abort, This TV
is 250 unicss the bus cycle during which the error
oceurs is o push to the Kernel stack: in this case,
the vector is 4 (Stack error, see Paragraph 6.2.2).
Reler 10 TMCB: TMCB SEGT L, when asserted,
generates vector 250 on DAPE. SEGT is asserted
for an abort when TMCC SEG ABORTED and
AERF ure both asserted. AERF, however, cannot
be usserted when the crror is a Stack error (ie.,
when TMCC KERNEL R6 is asserted), In this last
case, the vector is 4 instead of 25.

PS RESTORE

The Service Flows first fetch the new PC and PS
from the vector address; the Kernel stack is used
for this operation (SVC.00 — SVC.50). The old PS
and PC are then pushed onto the new stack
(SVC.60 — SVC.90,

If the new stack is not the Kernel stack, and if
Mcemory Management is cnabled and causes an
abort during the pushes in SVC.70 or SVC.90, this
abort may be a length error, which in this case is a
non-Kernel stack error, (A Red Stack error would
have vecured if the Kernel stack was being used).

1. The microprogram goes to ZAP.00.
SSRA PS RESTORE (1) H has been as-
serted during the push cycle that causes
the abort and the microprogram
branches to ZAP.10, At this time, the
PC and PS of the instruction that caused
entry into the Service Flows are in the
SR and PCA. PCB and PSW contain the
values for the abort, trap or interrupt
that was being serviced.

2. ZAP.I0 - ZAP.30 restore the PC and PS
ol the instruction that caused entry into
the service routine. The Service Flows
are now reentered via BRK .00, BRK.10,
and BRK.80. This last eycle fetches the
trtap vector, which is 250 (Memory
Management).

3. BREK.30 - SVC.30 get the Memory Man-
agement subroutine PC and PS. This sub-
routine is typically a Kernel subroutine,
and the pushes in SVC.70 and SVC.90
are then to the Kernel stack, and no er-
ror should oceur,

11-6-5

4. At the end of the Service Flows, control
is transferred to the Memory Manage-
ment software subroutine. This sub-
routine typically finds the error that
caused the abort and corrects the error,
In this case, it may allocate more space
for the stack.

5. When the software subroutine returns
control to the main program, the instruc-
tion that originally caused entry into the
Service Flows is executed again and
causes 4 new entry into the Service
Flows. Since more stack space has been
allocated by the software subroutine, the
pushes are not successfully executed.

Refer 10 Section 1V of this manual for a description
of Memory Munagement aborts,

6.2.1.4 Timeout Error - UBCB TIMEOUT B L is
ussericd when a processor Unibus cycle cannot be
completed because no device responds to MSYN

within approximately 10 us. The bus cycle is
aborted in this case. Refer to Chapter 5, Paragraph
5.3.2. The Trap vector is 4 for a Unibus Timeout
Crror,

A Main Memory timeout on a processor {not a
Unibus) cycle is flagged by CCBD CP TIMECUT
L. This signal direct-sets PDRH CACHE PERF L,
the Cuche parity abort Nag, and a Main Memory
timeout is processed as a fatal parity error, Refer to
Paragraph 6.2.3, Parity Errors. The Trap vector is
114 Tor « Main Memory timeout error.

6.2.1.5 Timing of Address Error Aborts — Refer to
Figure 6-1. The timing diagram shows the approx-
imute time at which TMCC ABORT H is asserted
and negated by the several errors. It should be
noted that NEXM is derived from the BAMX and
is not guted: the times shown in this case indicate
the time during which NEXM is valid, i.e,, during
i Puuse cycle,

TMCC ABORT asserts RACA ZAP L at TS2 of
the Piuse cycle {(UBSDOT).

BuUST PAUSE _ _ ZAP.3® BRK. 3¢ $VC, 99 FET. 9@
T 5 T1 TS T 5T T ST T1 TSTH T 5 T
JLPELLE e et et il
0DD ADRS ODD ADRS
NEXM NEXM
KT ABORT KT ABORT
TIME OUT TIMEOUT
TMCC ABORT H / ////Z} IR
TMCC AERF (1) H A N | .

TMCC SEG ABORTED {1) H

e
-

TMCC BLOCK STROBE (1) H

UBCH ABORT ACKN L

TMCGC PRIORITY CLR L

TMCE BRQ STROBEH

Inhibited by

l__l/VsLocx STROBE

RACA ZAP L

Figure 6-1

- 3128

Address Error Aborts

I1-6-6

TMCC AERF (1) H is set during TS2 of a Pause
cycle by any of the address error conditions, if the
reference is not to the Kernel stack {(KERNEL Ré
is negated) and if the bus ¢ycle is not generated by
Console action (UBCF CNSL ACT (0) H).

TMCC ABORT ditect-sets BLOCK STROBE and
asserts PRIORITY CLR during TS3 of the Pause
cycle. BLOCK STROBE, while asserted, inhibits
BRQ STROBE by asserting TMCC STROBE INH.
BLOCK STROBE and PRIORITY CLR prevent
any requests previously strobed in from generating
vectors during an INTR PAUSE. In this case, since
BLOCK STROBE is cleared by its ACKN clock in-
put during BRK.30, the BRQ STROBE during
ZAP.OQ is inhibited, TMCC PRIORITY CLR
clears the request register on TMCA. This allows
new requests to be clocked in SVC.90, and a new
braw 1 to BRK.9Q after FET.00.

AERFI* and BLOCK STROBE are cleared by
ACKN in BRK .30

6.2.2 Stack Errors

A Stack is an area of memory set aside for tempo-
rury storage. Data is added to a stack (*pushed”
onte the stack) in sequential order and is retrieved
from the stuck (“popped” from the stack) in re-
verse order. A stack starts at its highest address
and expands loward its lowest address as data is
added 10 it

The address of the lust valid item pushed onto the
stuck is stored in a general register which is called
the Stack Pointer (SP). When an item is pushed
onto a stack, the SP is first decremented to the next
lower address, then the item is written using the SP
as the address. When an item is popped {rom a
stack. the item is read using the SP as the address,
then the SP is incremented to the next higher ad-
dress. Further details on stacks and their use are in-
cluded in Chapter 9 of the PDP-11/70 Processor
Handboolk.

There are three Hardware Stacks, one each for Ker-
nel, Supervisor und User modes. The particular reg-
ister (R6) for each mode is the SP for that mode’s

hardware stack, These stacks are word-oriented and
the SPs can only be incremented or decremented by
2.

The Kernel stack differs from the other two in that
il is hardwarc-protected.

The Supervisor and User stacks are not protected
by hardware, but may be checked by Memory Man-
agement and appropriate software. Refer to Para-
gruph 6.2.1.3 {PS Restore).

A stack error is one which occurs during a push to
the Kernel stack. When such a push occurs, TMCC
KERNEL R6 (1) H is asserted. If an error occurs
during this push, TMC SERF (1) H (the Stack Er-
ror flag) is set.

A stack error may be any of the address errors
listed in Paragraph 6.2.1 or a Stack Limit Red
error.

The above errors all cause aborts, Stack Limit Yel-
low is a stack error, but traps instead of aborting.
Refer to Paragraph 6.2.2.2,

Both SL YEL and SL RED vector to 4, with the ex-
ception of an SL RED that occurs during a power
lail. Refer 1o Paragraph 6.5.1.

6.2.2.1 Kernel R6 - TMCC KERNEL R6 (1) H is
a J-K ftip-flop that is clocked at T4, It is set during
a data-out (including DATIP) BUST cycle if the ref-
erence is to the Kernel stack, It is reset during the
Pause cycle that follows the BUST,

The J input to the flip-flop is a 74564 gate. All the
OR inputs to this gate must be asserted if the out-
put of the gate is to be high {asserted).

. The second gate from the top is asserted
during a BUST cycle that calls for any
typc of data transfer except a DATL

2. The third pate is usserted when General
Destination Register Set 0 is addressed
(GRAC GRA3 L is asscrted when GD
Set | is addressed).

i1-6-7

3. The top and bottom gates are asserted in
two cases:

4. When BAX = 0 or 2 and the
BAMX selects the contents of ei-
ther the DR or the SR (RACB
UBAXO00 H is negated) and Gen-
eral Destination Register 6 is se-
lected (GRAC GD6 L is asserted).
In this case, GD register 6, Set 0,
is used as the address for a data-
out operation: this is a push onto
the Kernel stack. During these cy-
cles, the General Registers are ad-
dressed using the destination field
(GD[DF}) on the Flows, and the
description of the cycle includes
the sentence: *Check Stack Limit,™

b. During a JSR, the contents of the
source field register are pushed
onto the stack. This is done during
JSR.30 (Flows 11) where BCT = 3
(STACK REFerence). If PDRD
PS14 (0) H is asseried, the pro-
cessor is in Kernel mode, and the
push is to the Kernel stack, The
74520 NAND gate is asserted, as
are the top and bottom gates of
the 74564,

The K inpul 1o KERNEL R6 (1)
H is TMCE PAUSES H, which is
asserted during Bus Pauses (BSD
= 2 or 3) to clear the flip-flop.

6.2.2.2 Stack Limit Errors — The lower limit of the
Kernel stack is set by program control of the Stack
Linit Register (S1.). Any bus cycle that docs a push
beyond this lower limit is aborted (Stack Limit
RED or SL RED). A warning zone of 16 words ex-
ists where any push causes a trap {Stuck Limit YEL-
low or §1. YEL).

The default boundary for stack addresses is 400.
This is the cuse when the SL contains 0. The Stack
Limit Register allows this lower limit to be raised,
providing more address space for interrupt vectors
or other data that should not be destroyed by the
program. This limit may be varied in increments of
400y words, up 1o a maximum virtual address of
177 400 by modifying the content of the Stack
Limit Register (SL). This register contains eight bits

I1-6-8

und can he addressed as a word at location 17 777
774, or us & byte at location 17 777 775. The regis-
ter is accessible to the processor and Console, but
not o any Unibus device. The 8 bits, PDRC
SL(07:00), contain the stack limit information and
are compared with BAMX(15:08). These bits are
cleared by System Reset, Console Start, or the RE-
SET instruction. The lower 8 bits arc not used. Bit
8 corresponds to a value of (400} or (256)0.

Stack Limit Violations

When instructions cause a stack address to exceed
{lo go lower than) a limit set by the programmable
Stuck Limit Register, a Stack Violation occurs.
There is a Yellow Zone (grace area) of 16 words be-
fow the Stack Limit which provides a warning 1o
the program se that corrective steps can be taken.
Operations that cause a Yellow Zone Violation are
completed. then a bus error trap is executed, The er-
ror trup, which itsell uses the stack, executes with-
oul causing an additional violation, unless the stack
has entered the Red Zone.

A Red Zone Violation is & Fatul Stack error, (Odd
stack or non-existent stack are the other Fatal
Stack crrors). When detected, the operation causing
the error is aborted, the SP is set 1o point to ad-
dress 4, und u bus error occurs, The old PC and PS8
are pushed into location 0 and 2, and the new PC
and PS are taken from locations 4 and 6,

Stack Limit Addresses

The contents of the SL are compared to the stack
address during a push to determine if a violation
has occurred.

If the contents of the SL are zero:
Yellow Zone = 340 - 376: execule, then trap;
Red Zone = 000 - 336: abort, then Lrap.

If the contents of the SL are grealer than zero:

Yellow Zone = (SL)+(340 — 376): execute,
then trap;

Red Zone =(81.)+(336): abort, then trap.

Stack Limit Yellow

Refer to Figure 6-2. PDRC STACK LIMIT H is as-
serted when the high order eight bits of the virtual
address [BAMX(15:08)] cqual the contents of the
Stack Limit Register [PDRC SL{07:00)].

When bits 7 — 5 of the virtual address are all ones,
the value of bits 7 - 0 of the address is between 377
and 340, TMCD YEL ZONE H is asserted.

Thus, when PDRC STACK LIMIT H and TMCD
YEL ZONE are both asserted, a Yellow Zone stack
violation exists.

TMCD SLIL YEL (1) H is then set at T2 + 15 ns of
4 Pause cycle (UBSDO1 H) that is pushing onto the
Kernel stack (KERNEL R6).

SL YEL is cleared by setting the SERF flip-flop
(ACKN in BRK.30); SERF inhibits the BRQ
STROBE in S8VC.90.

Stack Limit Red

Refler to Figure 6-2. If a Yellow Zone coadition ex-
ists und the address is further decremented, TMCD
YEIL. ZONE goes low and the bottom gate of

STACK LIMIT
REGISTER
«000(00Q0)

Q00400

l
LEGAL

TMCD SL RED is asserted. SL RED is a latch,
and is set by this gate at TS of the BUST cycle,

T35 is gated with KERNEL Ré. This gate is dis-
abled if BLOCK STROBE and SERF are both as-
serted, ie., SL RED cannot be asserted again
during the pushes to 0 and 2 in SVC.60 and
SVC.80.

SCCE STACK OVERFLOW H is asserted if the
virtual address equals 177 776. This gate asserts SL
RED in the case that the SP is decremented from 0
to protect the Processor Status word.

PDRC RED ZONE H is asserted when the virtual
address is less than the SL.

SL RED is cleared by ABORT ACKN in BRK.30.
Figure 6-2 is a summary of the conditions that
cuause 4 Stack Limit error.

STACK LIMIT
REGISTER
001000

01400

000376

TMCD SL YEL (11 H{ =200
000340

000338

PORC STACK LIMIT H { "=
x -TMCD YEL ZONE H

000000

SCCE STACK OVERFLOW H{ 177776
e e s e

N
I
|
——
|
|

4---
|

00376

[~ YELLOW L33) THED SL YEL (1) W

01340

CO1336

PDRC STACK LIMIT H »
Ty (- TMCD YEL ZONE H

001000

000776

L= }PDRC RED ZONE W

000000

177776
I il o

SCCE STACK OVERFLOW H

11-%128

Figure 6-2 Examples of Stack Limit

[1-6-9

6.2.2.3 Timing of Stack Error Aborts - Refer to
Figure 6-3. The timing for stack errors is similar to
that for address errors, with the following
exceptions:

1. TMCC KERNEL R6 (1) H is asserted
at T4 + 15 ns of BUST and cleared at
T4 + 15 ns of PAUSE.

2. KERNEL Ré causes TMCC SERF ()
H to be set (instead of AERF).

3. Since SERF is asserted, BLOCK
STROBE and therefore PRIORITY
CLR are asserted until TS3 of FET.00,
when SERF and BLOCK STROBE are
cleared by CLEAR FLAGS (BCT=3,
TMCC).

BRQ STROBE is thus inhibited, not only during
ZAP.00, but also during S8VC.90, thus guaranteeing
the execution of the first instruction of the error
subroutine before any other error can be processed.

6.2.3 Parity Errors
6.2.3.1 Description - A parity error may be de-
tecied either by the Cache or by a Unibus device.

Cache parity errors are cither “hard”, if bad parity
is detected in the word requested by the processor,
ar “soft”, if the Cache can recover without pro-
cessor intervention. Hard errors are signalled by the
assertion of CCBJ} PARITY ABORT H and cause
the processor to abort; soft errors are signalled by
CCBJ PARITY TRAP H and cause a trap.

It should be noted that Main Memory Timeout is
included in the Cache parity error logic: CCBD CP
TIMEOUT L direct-sets the flip-flop (PDRH
CACHE PERF) that stores CCBJ PARITY
ABORT.

All Unibus parity errors are hard and cause an
abort; a device asserts BS PB L {UBCB) when it
senses a parity error (BUS PA is never asserted).

BUST PAUSE ZAP. Q@ BRK. 3@ FET.g¢
-— — = - - -
T T T1 T5 T1 ™TE T TET1 T TS5 TH
POLERL et et ettt
ODD ADRS
SL RED 0DO ADRS
NEXM NEXM $L RED
KT ABORT KT ABORT
TIMEQUT TIMEOUT

TMCC ABQRT H

TMCC KERNEL R6 (1) H

—

/

33
et e

2 Jem

TMCC SERF (1Y H

TMCC BLOCK STROBE {1} 4

uace ACKN B H

TMCC PRICRITY CLR L q

{TMCC) CLEAR FLAGS L

{UBCT =3 (@) T53)

N

RACA ZAP L

A

1-3z7

Figure 6-3 Stack Error Aborts

11-6-10

The vector for both parity aborts and parity traps
is [14. UBCB PARITY ERR L enables the Trap
Vector on DAPE.

6.2.3.2 Timing of Parity Error Aborts - Refer to
Figure 6-4.

Unibus Parity Error

i. BUS PA L and BUS PB L are clocked
into the 745175 flip-flop (UBCB) at T3
of a Unibus Pause cycle (MSYN ne-
gated). At T1 of the cycle follawing the
PAUSE, the 74510 NAND gate is en-
abled by the negation of TMCE
PAUSES L. The output of the NAND
gate is asserted if PB is asserted and PA
negated (parity error), and if TMCE
PAUSEs is negated. PAUSES prevents
the assertion of the NAND gate and of
PE ABORT during the PAUSE state.

PAUSE ZAP.Gd
-— -— .

TS T1 T5 T1

LTI LT]

UBCB UBUS PAR ERR H resets trap
request flip-flop on CCBK (Refer to Sec-
tion VI, Chapter 4).

This Unibus parity error signal is ORed
with the Cache parity error signal and in-
put to UBCB PE ABORT L. This
NAND gate is enabled by the 74574
flip-flop, which is set during all cycles
that follow a Pause.

PE ABORT then asserts TMCC
ABORT H, BLOCK STROBE (1) H
and PRIQRITY CLR L, as in other
aborts, RACA ZAP L is then asserted
by PE ABORT at TS2 of the micro-
program state following the PAUSE
cycle.

BLOCK STROBE is cleared by UBCRB
ACKN during BRK.30, which allows a
BR(Q STROBE in FET.00.

BRK. 3¢ SVC. 90 FET.2P
TS T1 T TET1 TY TS T1

lllIIl A

(UBCB) PA, PB FLIP-FLOP

PDRH CACHE PERF L

TMCC ABORT H

UBCB PE ABORT L

TMCC BLOCK STROBE (1) H

TMCC PRIGRITY CLRL \..I |

UBCE ABORT ACKN L

TMGCE BRQ STROBE H r

BLOCK STROBE

¥

RACA ZAP L |_,

Figure 6-4 Parity Abort

I-6-11

n-Mze

Cache Parity Error

I. CCBJ PARITY ABORT H is clocked
into PDRH CACHE PERF L by TIGA
CLK BRA H, which occurs at T1 of the
cycle following a Pause. (CCBJ CP
TIMEGUT direct-sets CACHE PERF,
thus combining the Cache Parity and
Timeout errors).

2. This Cache parily error signal is ORed
with the Unibus parity error signed and
input to UBCB PE ABORT L. This
NAND gate is enabled by the 74874
flip-flop, which is set during all cycles
that follow a Pause,

3. PE ABORT then asserts TMCC
ABORT H, BLOCK STROBE (1) H
and PRIORITY CLR L, as in other
aborts. RACA ZAP L is then asserted
by PE ABORT at TS2 of the micro-
program state following the Pause cycle.

4. BLOCK STROBE is clearcd by UBCB
ACKN during BRK.33, which allows a
BRQ STROBE in FET.00.

6.3 TRAPS AND INTERRUPTS

Trap and interrupt requests are clocked into the
request storage (or Q) register on TMCA and
TMCB. TMCE BRQ CLK H clocks these requests
into the register at least once during the execution
of cach instruction {with the exception of SPL).
BRQ CLK may be inhibited by an abort which
may also clear the Q register in order to give high-
est priority to the abort (refer to Paragraph 6.2).

The requests are ¢xamined by the priority arbi-
tration network (TMCA, TMCB), which allows
only the highest priority reguest to be honored.
One of the signals in the Qutput column of Table
6-2 is then asserted,

If the request is not an external interrupt (UBCD
IEXT BRQ L) the ENB YEC flip-flop is set and en-
ibles the gates that generate the vector addresses
lor the requests. Tuble 6-3 lists the requests, the
gates enabled and the vectors that are generated.

All instructions except SPL end with a BENI12
branch to microaddress 240. If TMCB BRQ TRUE
L is asserted, BRK.90 is entered instead of a Fetch
cycle, and the Service Flows gre executed, followed
by the subrouting determined by the new PC.

6.3.1 lllegal Halt

A trap Lo 4 is executed, instead of a HALT at the
end of « HALT instruction, if the processor is not
in Kernel mode, as determined by PS14. If the
mode is Kernel, the Console Flag is set and a
branch to CON.OO is cxecuted.

Refer 1o drawing TMCE. During HLT.10 (Flows
3, MSC=3, SET CONF if Kernel mode; TMCE
SET HALT H is asserted. At TS83, if the processor
is in Kernel mode [PDRD PS§14 (0) H], the Con-
sole Flag is sel and the processor halts. This is
shown on Flows 3 as CONF«~1 IF PS14(0).

If, on the other hand, PS14=1 (Supcrvisor or User
muodes), BENO6, which examines BR U4, causcs a
branch 1o TRPOD, (The PS is stored in the BR dur-
ing HLT.00.)

6.3.2 Console Flag

TMCA CONF (1) H causes a processor HALT by
causing it to branch to CON.O0 (Flows [4). Refer
o Section HI (Console) of this manual,

6.3.3 Cache Parity Trap

CCBJ PARITY TRAP H is asserted by the Cache
il it deteets o non-fatal parity error, i.e., one which
does not affect the processor bus cycle in progress.
Refer to Section VI of this manual for a complete
description.

6.3.4 Memory Management Traps
Refer to Section 1V (Memory Management) of this
manual.

6.3.5 Yellow Zone Trap (SL YEL)
Refler to Paragraph 6.2.2.

6.3.6 Power Down Trap (PDNF}
Reler 1o Paragraph 6.5.

6.3.7 FP Exception Trap
Refer to Floating Point Processor Manual.

II-6-12

Table 6-2
Processor Service in Order of Priority

Order Condition Input Outpur* Result*
1 console flag UBCF STOP L TMCA CONF (1} H do censole control
function
2 cache parity CCBJ PARITY TMCB PART L trap {114)
TRAP H
3 memory management SSRD MEM MGMT | TMCB SEGT L trap (2500
traps TRAP L TMCA IIONOR SEGT H
4 warning stack TMCD SL YEL TMCA HONOR 5LY H trap {4)
violation
5 power Taijl UBCE PDNEF (1) H TMCA HONOR PWRF L trap (24}
[} floating-paint FRHH TMCA HONOR FPTRAPL | trap{224)
exception trap FPEXC TRAP L
CPLEV?T
1 priotity interrupt PDRD PIR1S (1Y H TMCA HONOR PIR7 L trap (240
request PIRQ7?
8 bus request, level 7 BUS BR7 L TMCA IIONOR BR7 L interrupt
interrupt
CPLEV 6
9 priority interrupl PDRD PIRI4 (11 H TMCA HONOR PIRG L trap (240)
reguest PIRQG
j11] us request, jevel 6 BUS BR6 L TMCA IIONOR BRO L IRteTRapE
interrupl
CPLEV S
11 priority interrupt PORD PIRE3I (1T H TMCA HONOR PIRS L trap (240)
request PLRQS
12 bus request, level 5 BUS BR5 L TMCA IEONOR BR5 L interrupt
interrupt
CIPLEV 4
13 priotity intemrupt PDRDPIRIZ(OH TMCA HONOR FIR4 L trap (240)
request PIRQY
14 bus request. level 4 BUS BR4 L TMCBE HONOR BR4 L interrupl
nlerrupt
CPLEV 3
15 priority intertupt PDRD PIRII {1} 11 TMCB HONOR PIR3 L trap {240}
request PIRQ3
CPLEV2
16 priority request PDRD PIR10{1}H { TMCB HONOR PIR2 L. trap (240)
PIRQ2
CPLEV]
17 priofity request PDRD PIRO2 {1} H TMCB HONOR PIRI L irap (240
PIRQI
18 T bit set and not RTT | PDRD PS04 {1y I TMCB HONOR T L trap (14)

and -(IRCD RTT L)

* Only if no higher poonily request has been reccived.,

1-6-13

Table 6-3

Trap Vectors Enabled

Trap Request Honored Qutput Trap Vector™
TMCB PART L UBCB PARITY ERR L 114
TMCA HONOR FPTRAP H TMCB FPTRAP L 244
TMCA HONOR SEGT H TMCB SEGT L 250
TMCA HONOR PWRF H TMCB PWRF L 24
TMCB HONORTH TMCB TOK L 14
TMCB HONOR PIRQH TMCB PIRQ L 240

(OR of PIR (7:1))

* Trap vector generator is shown on drawing DAPE.

6.3.8 Program Interrupt Request

The Program Interrupt Request (PIRQ) Register al-
lows a program to schedule the execution of vari-
ous subprograms, according to a priority scheme,
al the same time allowing various levels of hard-
ware interrupt priority to interact with the software
priority levels, The register stores interrupt requests
s¢l by transferring request data to the PIRQ, and
provides information about the requests through en-
coded data trunsferred from the PIRG.

A request is booked by setting one of the bits 15 -
9 (for PIR 7 - PIR 1) in the Program Interrupt Reg-
ister al location 17 777 772. The hardware sels bits
7-5 and 3-1 to the encoded value of the highest
PIR bit set. This Program Interrupt Active {PTA) is
used 1o set the Processor Level and also to index
through a table of interrupt service routines for the
seven software priority levels. Figure 6-5 shows the
layoul ol the PIR.

1] ® B Ei E} i 3 | L]

Figure 6-3 Program Interrupt
Request Register

When the PIR is granted, the processor traps to lo-
calion 240 and picks up the PC in 240 and the
PSW in 242. It is the interrupt service routine's re-
sponsibility 1o queue requests within a priority level
and to clear the PIR bit before the interrupt is
dismissed.

Refer to drawing PDRD. PIR(15:09) (1) H is
loaded from BR(15:09) when MSYN is set and if
the PIR address is decoded (SCCE PIR ADRS H).
The clock signal is TMCF CLK PIR H. The PIR
bits are encoded by the 9318, which generates
PDRD PIA(02:00).

Both PIR and PIA are read on the Internat Data
Bus (INTD). The PIR is read as bits 15:09, and the
PIA is repeated in bits 07:05 and 03:01. Bits 7 - 5 al-
low the program to move the PIA into the pro-
cessor status register and thus set the processor
priority to the level of the request honored, if de-
sired. This locks out all requests on the same level
or below. Bits 3 - 1 can be used as an index con-
stant in dispatching to an interrupt service routine
for the appropriate priority level request.

6.3.9 External Interrupt (BUS BR)
Refer to Paragraph 6.4.

6.3.10 T Bit Trap

When the T bit is set {refer to Chapter 3), and if
there are no higher priorities, a trap to 14 occurs
through RSD.00.

[Detailed information on the execution of the T bit
trap s contained in the PDP-[1/700 Processor
flandhook.

6.4 UNIBUS ARBITRATION AND INTER-
RUPT INTERFACE

An NPR irunsfer is a data transfer between a
Uinibus device and memory; the processor is not in-
volved in this trunsfer except to the extent that it
cannol use the Unibus or memory during its execu-
tion, AN NPR transfer can be executed at any time
that the processor is not using the Unibus.

i1-6-14

A BR transfer is a data transfer during which a vec-
tor is transmitted to the processor by a Unibus de-
vice, which requires the execution of a service
routine by the processor. The vector is the address
of the PC that is to be used for this subroutine. A
BR can only be executed at the end of an
instruction.

The priority arbitration nctwork (Paragraph 6.3) ex-
amines the requests received from the Unibus, com-
pares their priorities against that of the processor,
and decides which device may become master when
the Unibus is released by the current master,

The Unibus Request signals received by the KBI1-
C are listed below:

NON-PROCESSOR REQUEST, BUS NPR L
(UBCD): A signal from an asynchronous
running device requesting the use of the data
section of the bus, sent to arbitrator by a de-
vice that requires the use of the Unibus in or-
der to execute data transfers. These transfers
are muade without active participation by the
processor. They do not affect processor oper-
ations, except to the extent that Unibus de-
vices using the bus for a data transfer can
force the processor to wait in the PAUSE
state until all NPRs have been serviced.

NPR transfers are executed between processor
Unibus cycles (i.e., when the processor is not
using the Unibus), and not necessarily after
completion of an instruction. NPRs may be as-
seried at any time that the device is ready to
start a data transfer. NPRs have a higher pri-
ority than processor data transfers or than
any of the BR lines.

BUS REQUEST, BUS BR7 L - BUS B4 L
(TMCA, TMCB); A signal from an asynch-
ronous running device, requesting the use of
the data section of the bus. Typically, one of
these signals is sent to the arbitrator by a de-
vice that requires the use of the Unibus to
transmit an interrupt vector te the processor.

An interrupt is a transfer of control to a sub-
program that handles device or task servicing.
An interrupt vector points to the address of
this subprogram; the vector is transmitted to
the processor during an interrupt (INTR)
transaction.

inlerrupt transactions require processor ac-
tion, and can only be executed after the cur-
rent instruction is completed.

A BR may be asserted at any time that the de-
vice is ready to interrupt the processor, but
cannot be serviced until the processor is ready
to do so. BRs have lower priority than NPRs
and than a processor priority of the same
level (7 - 4).

Prioritics permitting, the KB11-C responds to these
requests by asserling one of the following GRANT
signals:

NON-PROCESSOR GRANT, UBCD PROC
NPG H - uniess INIT, RESET or ACLO are
asserted, or during a read/modify/write
(UBCC DATIP L), or if the Console
HALT/ENABLE switch is in HALT and the
S INST/S BUS CYCLE switch is in S BUS
CYCLE. During a DATIP, no grants are is-
sued in order to minimize NPR latency,

BUS GRANT, UBCD PROC BG7 - BG4 H -
il the priority arbitration network has asserted
the corresponding TMCA HONOR BR7 -
BR5 L.

Only one grant (NPG or BG) may be asserted at a
time,

The requesting device, upon receipt of a grant, as-
serts BUS SACK L, then negates its request. When
the assertion of SACK is sensed (UBCD), the grant
is negaled, No grants may be asserted while SACK
is usserted. When the requesting device negates
SACK, a new grant may be issued,

If no device responds to a grant by asserting SACK
within {0 us, UBCD NO SACK (1) H is asserted,
forces SACK, thus allowing the assertion of a new
grant. A NO SACK timeout does not cause a trap
or abort. It should be noted that some Unibus ter-
minators (e.g., 9302), when used at the end of the
Unibus that is opposite to the processor, receive
NPR (if no device has accepted it), and assert
SACK. The Timeout delay is thus not used.

An NPG may only be used by a device for data
transler. No interrupts are allowed on an NPG,
and the processor is not affected by an NPR
transaction.

11-6-15

WAT, 20 INTR PAUSE
RACBUBSD
BRK. 30 <00:01> =1

-{BR4 + BAS + BAG + BAT|

BH4 + BRE + BRG + BR?

SERVICE ALL
EXISTING NFR'S

NPA + SACK + NPG

—[NPR + SACK + NPG}

GRANT BA —1
DISABLE NPG'S

ASSERT BUS
GRANT ON
AFPROPRIATE
LEVEL

WAIT FOR BUS
SACK FROM
DEVICE

—SACKI1)

M ps: KO SACK TIME OUT

SACK(1)
USE NO SACKI1)
TO FORCE BUS
SACK
WAIT 90 ns AND |
THEN CLEAR
GRANT
WaIT FOR BUS
INTR AND VECTOR
OR BUS BBSY TO
GO AWAY: SERVICE
NPR'S WHEN
—(SACK + GRANT
BRI
-BBSY
BUS INTR
RESTAAT TIMING
AND DESKEW
VECTOR RESTART TIMING:
IF NO SACK TIME
] DUT GR PASSIVE
RELEASE
T3 .
$TROBRE VECTOR
TO PDRH BUFFER
REG
m [[Spa——] g
ROM STATE
CLOCK VECTOR
INTO BR

11-3136

Figure 6-6 BR -Interrupt Sequence

iI-6-16

A BG, on the other hand, is used for an interrupt,
Refer to Figure 6-6. When an interrupt is sensed,
the microprogram branches to the BRK sequence
(Flows 12). BRK.00 is the INTR PAUSE cycle
(BSD=1) in this sequence. A similar cycle,
WAT.20, is part of the WAIT instruction. The
INTR PAUSE cycle is the only condition in which
the processor acts as a Unibus slave (i.e., asserts
SSYN).

During the INTR PAUSE cycle, the clock is
stopped in T2 if an ¢xternal interrupt is to be ser-
viced (BR4+BR5+BR6+BR7). After all pending
NPRs have heen serviced, the Bus Grant (BG) is as-
serted on the level corresponding to the level of the
request that is o he serviced.

When the requesting Unibus device receives the BG
it acknowledges this by asserting SACK and then
negating its BR, The device that asserts SACK as-
serts BBSY when the previous muster negates it.

The processor negates the BG 90 ns after receiving
the asscrtion of SACK; typically, a device usserts
INTR and (he vector just before it negutes SACK.

Two purallel and generally unrelated sequences now
oceur:

. The assertion of EINTR s received from
the Unibus. The clock is restarted at T3,
the vector s strobed, and SSYN is as-
serted. The Unibus device negates INTR
when il receives the assertion of SSYN.
The processor negates S8YN when it re-
ceives Lhe negation of INTR.

2. The negation of SACK is received und,
alter a nminimum wait of 90 ns, allows
NPRs to be processed.

6.4.1 Unibus Arbitration Interface Logic

The Unibus arbitration interface logic is controlled
by URCD FREE CLK which consists of the two
745112 J-K Nip-Nops clocked by TIGC TF L. The
FREE CLK generates a 30-ns wide pulse within a
period of 90 ns. The D flip-flops (745748) on
UBCT use the inverted output of this clock, while
the J-K {lip-flops (7451125} other than those that
make up the ¢lock use the non-inverted output,
Thus, the two sets of Tlip-flops are clocked at the
same time, Figure 6-7 shows the output of the
IFRLEL C1LK.

30nn—l-| Ivo—

TIGC TF L

J+—— 900 —l

1 I
[]

FIRST FLIP-FLOP] |] | |
1
L usco rur-rioes cuooxen
1N-M29

UBCD FREE CLK (1H

Figure 6-7 UBCD Free Clock

The relationship between the FREE CLK and the
TIG timing pulses (T1-TS) and time states (TS]-
TS5y is such that the leading or trailing edge of the
IFREE CLK and the first FREE CLK flip-flop out-
puts always coincide with the leading edge of Ti-T5
and TS1-TSA, There is po other relationship to the
TIG clock.

6.4.2 NPR-NPG Sequence
Refer to drawing UBCD and to Figure 6-8.

. When BUS NPR L is asserted, and if
none ¢f the disabling conditions are pre-
sent, the I input te UBCD NPR (1) H
becomes high and this flip-flop is set by
the first FREE CLK pulse 1o occur.
UBCD NPR () H disables the input to
UBCD GRANT BR (1) H: no BRs may
be granted while an NPR is present. The
next clock pulse, 90 ns later, sets UBCD
NPG (1) H, which asserts UBCD PROC
NPG H on the Unibus, starts the [0-us
NO SACK timeout one-shot and neguates
UUBCD ENAB BR H, which also dis-
ables UBCD GRANT BR.

2. When a device receives and accept this
NIPG, il asserts BUS SACK L and ne-
gates BUS NPR L. The first clock pulse
to occur after receipt of these signals sets
the SACK and ¢lears the NPR flip-flaps.
The clock pulse after that sets UBCD
DSACK (1} H (delayed SACK, 90-ns de-
skew) and clears NPG. The only arbi-
tration signal now uasserled on the
Unibus is SACK.

11-6-17

UBCO FREE CLK H Il Il [l Il || II Il I‘ Il || Il || |I

]
L
BUS NPR L® 1
1
[

!
|

N !
{ 1

|
|
|
i
UBCD HPR (11 H :
\

-

. UBCD NP6 (1H
UBED PROC NPG H

BUS SACK L™

SACK F-F U}H

Ty

C

L

1
|
|
T
|
I
|
|
|
|
|

UBCD DSACK (1IN

=

*ASYNCHRONOUS SIGNALS FROM UNIBUS

H=330

Figure 6-8 NPR-NPG Sequence

1. The device asserts BBSY when the
Unibus is free (BBSY negated by pre-
vious master), executes its data trans-
fer(s) and negates SACK. The SACK
and DSACK {lip-flops are cleared by the
first and second FREE CLK pulses after
receipl of the negation of SACK. If an-
other NPR is pending, PROC NPG H
may he asserted 90 ns after DSACK is
cleared.

4. I the assertion of BUS SACK L is not
received 10 ps after UBCD NPG (1Y H
is set, UBCD NO SACK (1) H is as-
seried. This signal forces a sequence sim-
ilur to that deseribed in (2) above. When
UBCD NPG (0) H goes high, UBCD
NO SACK (1) H is negated and the
SACK and DSACK flip-flops are
cleared us in (3) above.

When the assertion of BUS SACK L is
received before the end of the 10 ps lime-
oul, the 745123 one shot is reset.

6.4.3 BR-BG and Passive

Release

The processor checks for both internal and external

Interrupt Sequence

traps {or interrupts) toward the end of every instruc-
tion. This is done by clocking all request lines into
the priority fip-flops on TMCA and TMCB
[TMCE BRQ STROBE H when RACC
UMSC(02:00y=6. at TS3). If a Unibus request
(BUS BR7 L - BUS BR4 L) is asserted, and if its
priority is higher than that of any other request pre-
senl. TMCA HONOR BRn L is asserted (n is the
same pumber as that of the request line being
serviced)

The BEN bits of the microprogram cycle, immedi-
ately preceding FET.10, always equal 12 and its
UADR feld, 240, 1f TMCB BRQ TRUE L is not
asserted (no interrupl request), the micreprogram
branches 1o VLET.10 (instruction Tletch). If TMCB
BRQ TRUE L is asserted, the microprogram does
not branch. but goes (o BRK.90 (Flows 12). This
eyele does 1 BEND 1o cancel the BUST in the pre-
vious cycle.

BRK .90 is now entered. If UBCD EXT BRQ H is
asserted (= any one of TMCA HONOR BR7 - R4
[. asserted) the clock stops in T2, since this is an
INTR PAUSE cycle (BSD=1) and UBCD EXT
BRQ H is asserted. Refer to drawing TMCA and
to Chapter 4, Timing Generator.

II-6-18

UVBCD GRANT BRU}H
UBCD PROC BGn H

{UBCC) BUS SSYN L"

1ST TIGA RESYNG F-F™

Refer to UBCD and to Figure 6-9.

TS2 and TMCE INTR PAUSE H gate
UBCD EXT BRQ H to the input of
UBCD BRQ (1) H. This flip-flop is
clocked by FREE CLOCK and its out-
put goes high.

When all NPRs have been serviced and
when all grant service is completed,
GRANT BR (1} H is set by the first
FREE CLK pulse following the one that
set BRQ (1) H. This signal gates the
TMCA HONOR BRn L signal that is as-
serted onto the Unibus as UBCD PROC
BGn H.

I‘*INTR PAUBE BRK @@ or WAT. 204-"— BRK. lﬂ—-l

*+TITATETITZTS T4 TS

UBCD FREE CLK "-I_|—‘—|—-,—I—|._|_L_I_I_,_L”_|_l |—I I—I |—L r

i

I

INPUT TO UBCD BRG (1) B ? N !
T$2 '

UBCD BRG {1) H

H_j:__..

|

|

T

L

|

[

L

UBCD ENAB BR H |
|
|
I -

UBCD CLR BGUINH

N

P 1k
BUS SACK L b\

|
(pe- UBCA PASSIVE

| FLIP-FLOP BET.
|
L

SACK F-F (1)H

B o e e Caal USSR U S SE—

UBCD DSACK (1) H

| __NP& MAY BE GRANTED
[T\ AT THIS TIME.

[—
14

\:,-'

UBCC INTR B H™™
UBGCP TiG RESTART H -

2ND TIGA RESYNC F-F"

TIGA T3 ()R

* NOT CLOCKED BY UBCD FREE CLK.
*% ASYNCHRONOUS SIGNALS FROM UNIBUS.

VECTOR CLOGKED INTO
PDRJ BUS BUFFER REG {T3)

VECTOR CLUGKED
INTO BR (T1)
H-3m

Figure 6-9 INTR Sequence

All NPRs have been serviced if no NPR
is pending [NPR (0) H high]. All grant
service has been completed if ENAB BR'
H is high; this is the case when the last
NPG is done [NPG (0) H high], the last
BG is done and no new grant has been
issued [CLR BG (0) H], and DSAK (0)?
H is high, |
When the assertion of BUS SACK is re-

ceived, the SACK flip-flop is set at the
first FREE CLK pulse, The next clock;
pulse sets DSACK (1) H. Since GRANT]
BR (1) H is high, the same pulse sets|
CLR BG (I) H, which causes ENAB BR
H to be negated. The same clock pulsq
also clears GRANT BR (1) H by com-
plementing it (3-K flip-flop with both in-
puts high).

The Unibus device now puts the vector
on the D lines, asserts INTR and ne-
gates SACK.

The first FREE CLK pulse after receipt
of the negation of SACK clears the
SACK flip-flop; the second clears
DSACK.

The assertion of INTR causes UBCB
TIG RESTART to be asserted. This sig-
nal causes the main clock to be restarted
(refer to Chapter 4). A minimum of 75
ns after the assertion of TIG RES-
TART, T3 is asserted. At this time, the
vector is clocked into PDRJ D(15:00)
from BUS D(15:00) L. At T4, the BRQ
flip-flop is cleared (-TS2 and FREE
CLOCK); the next clock pulse clears
CLR BG (1) H. ENAB BR H is as-
serted, and the NPR input to NPG (1)
H is enabled. An NPR can now be
serviced.

At TI of the next cycle (=T6 on Flows
12} this data is clocked into the BR
(BR~BUS). BUS SSYN L (UBCC) is
also asserted by the processor at T3, The
device responds to the assertion of
SSYN by negating INTR. This, in turn,
causes SSYN to be negated; thus ending
the INTR Unibus transaction.

BUS INTR L aiso sets UBCC INTRF
{1) H. After BRK.00, BRK.10 is exe-
cuted. TMCB PF(0)*(SF+-TF) H is as-
serted and TMCB PF(OYSF+TF) H is
negated at this time, and the branch is
to BRK.20(120). Since INTRF is set,
TMCB PWRF+INTRF L is asserted
and BRK.20 branches to BRK.30 and
the Service Flows (§VC.00 ~ SVC.90) be-
fore fetching the first instruction of the
subroutine pointed to by the vector.

The above is the general case. Passive
Release is said to occur when a device
that becomes master, by asserting a BR
and obtaining a BG, releases the Unibus
witheut doing an INTR. UBCA PAS-
SIVE flags this condition; after a min-
imum delay of 90 ns, following the
receipt by the processor of the negation
of SACK, the UBCA flip-flop, whose D
input is UBCD CLR BG (1) H, is
clocked by the trailing edge of UBCD
DSACK: when the device negates
BBSY. UBCA PASSIVE L is asserted
and restarts the clock via UBCB TIG
RESTART H.

BRK.00 is followed as in (4) above by
BRK.10 and BRK.20. UBCC INTRF
{1} H is not set in this case because BUS
INTR L was not received. TMCB
PWRF + INTRF L is thus not asserted,
BRK.20 branches to RTI.60, and the
program resumes at the instruction fol-
lowing that from which the INTR se-
quence (described above) was entered.

The NO SACK logic is the same as that
for the NPR-NPG sequence. The nega-
tion of DSACK clocks the PASSIVE
flip-Nop 2nd the sequence in (5) above is
followed.

6.5 UNIBUS POWER MONITOR
The processor monitors the condition of all power
supplies in the system.

1.

Two Unibus signals, BUS ACLO L and
BUS DCLO L, inform the processor of
the staté of tHe Unibus power supplies:
The assertion of BUS ACLO L informs

11-6-19

the processor that the ac power input to
a power supply, whose failure might
make the bus inoperable, has ceased to
be within specifications. The negation of
BUS ACLO L informs the processor
that all power supplies, whose failure
might make the bus inoperable, can
maintain dc power within specifications
long enough for a complete power-
up/power-down sequence.

The assertion of BUS DCLO L informs
the procesor that dc power to any bus
drivers, receivers or terminators, whose
failure would make the system inoper-

able, is about to fail. The negation of

BUS DCLQ L informs the processor
that de power to all bus drivers, receiv-
ers and terminators, whose failure would
make the Unibus inoperable, is within
specifications.

I

Two signals from the Cache, ADML
MAIN ACLO L and MAIN DCLO L,
monitor the Main Memory power sup-
plies. These signals have the same signifi-
cance and effect as the BUS ACLO and
DCLO signals, but are input only to the
processor power-up/power-fail circuits,
and not to BUS ACLO and BUS
DCLO.

These bus signals are input to the Cache,
which performs its power-up in-
itialization sequence upon receipt of the
negation of both BUS ACLO and BUS
DCLO.

ACLO is always asserted before DCLO; DCLO is
always negated before ACLO. Whenever ACLO is
asserted, the power supplies must be capable of sup-
plying cnough de power for 5 ms of system oper-
ation: this time allows for a 2-ms power-down
sequence, plus a 2-ms power-up sequence.

During the power-down sequence, the program
stores the contents of volatile registers into core

memory; this information is thus preserved during

a power failure or power down. It can be retrieved
hy the power-up sequence, and the program res-
tarted where it was interrupted.

ACLO and DCLO control the power-up and
power-down logic shown on drawing UBCE.

6.5.1 Power-Down

Refer 10 UBCE and to the timing diagram shown
in Figure 6-10, When BUS ACLO L is asserted dur-
ing normal operation, the Power-Down flag, UBCE
PDNF () H, is set, because UBCE BLOCK
DOWN (1) H has been reset at the end of the pre-
vious power-up sequence. PDNF is applied to the
priority arbitration logic on TMCE; the first BRQ

“strobe generates TMCE BRQ CLK H, which

clocks the interrupt Mags into the priority logic. If
no higher priority flag is up (CCBJ PARITY
TRAP, Memory Management Trap or SL YEL),
TMCE HONOR PWRF L is assertcd. At the end
of the current instruction, the ROM branches to
the Service Flows (BRK .90).

Al microstute BRK .20, UBCB ACKN B H goes
high at TS3 und sets TMCC BLOCK STROBE (I}
H. At microstate SVC.90, if no aborts are pending,
this signal and TMCE CLK CONF H (BRQ
STROBE ul T3} generate TMCC AC CLEAR L,
which clocks the UBCE PF CLR (1) H flip-flop.
This Mip-Nop is set at this time, since TMCA
HONOR PWRF L is asseried. The Q register is
cleared o ensure that the first instruction of the
power fail routine is executed, in case a request of
lower priotity than power fail is present.

PF CLR does the following:

1. It asserts TMCA BRQ CLR L, which re-
sets the TMCE priority flip-fiops.

b

It resets UBCE PDNF.

3. I starts the 2-ms timer which, at the end
of its delay, fires the l-us one-shot; the
pulse thus generated goes out on the
Unibus as BUS DCLO L.

4. It sets UBCE BLOCK DOWN (1) H,
which disables the set input to PDNF.

BRQ STROBE PELLLLLN J oo | FET.OS TiG cLocK
n T3 T 5T T T 5 T l—
I Tl ettt o
i
BUS ACLO L - N 1 L
- "
|

LBCE PONF (1] H

TMCA HONOR PWRF L

UBCE ACKN B H

TMCC BLOCK STROBE (1 H |

TMCE CLK CONF H

TMCC AC CLEAR L

UBCE PF CLR 1K

UBCE BLOCK DOWN (11 H

{UBGCE) 2ms ONE-SHAT

I'TMCC) CLR FLAGS L

BUS DCLO L [UBCE) (GENERATED 8y PROCESSOR)

UBCE PUPF (1} H

—

1

IUBCE} INIT L (a1}

*MNOTE: Power-Down subrowting sxecuted during this lime.

Figure 6-10 Power-Down

By this time, all the internal traps and service rou-
tines should have been executed; no further bus
transacltions can occur, because DCLO asserts the
infializing signals:

1. UBCE INT BUS INIT L - ciears inter-
nal registers PIR, SL, the priority arbi-
tration flip-flops (TMC) and Memory
Munagement.

2. UBCE ROM INIT H - lorces the ROM
to ZAP.0O (200), and stops and clears
the Timing Generator and the Cache
timing.

11-6-20

3. UBCE INIT - clears processor, Floating
Point Processor, and Cache registers.

4. BUS INIT L - initiaizes Unibus.

In addition. the DCLO generated by the processor
sets the UBCE PUPF (power-up) flip-flop, which
sets Mp the power-up sequence, should the DCLO
signal not be generated by the power supply, or
should ACLO be negated before DCLO is asserted
by the power supply.

SL RED During Power Fail

An SL RED abort can only occur during 2 push to
the Kernel stack. Two such pushes are executed dur-
ing the power fail service routine, in SVC.70 and
SVC.90.

IM an SL RED error is flagged during one of these
pushes, the trap vector is 24 (power fail) but the
pushes are made to locations 2 and 0 of the stack,
where no SL RED can occur (refer to Paragraph
6.2.24, Stack Limit Red). This allows the power
fail subroutine to proceed.

I. BLOCK STROBE, STROBE INH, and
HONOR PRF are asserted when the
abort occurs.

2. TMCC PRIORITY CLR is not asserted
because both HONOR PWRF and SL
RED are asserted.

ZAP B¢

3. SL RED sets SERF, which, together
with HONOR PWRF, asserts TMCB
PWRF L. This signal generates the
power-fail vector (24).

4. Since SERF is asserted, SER.00 is en-
tered instead of BRK.80. SER.00 and
SER.10 set the Kernel SP to 4.

5. The Service Flows can now be com-
pleted by doing the pushes to 2 and 0
without stack error.

6.5.2 Power-Up

Refer 1o UBCE and to Figure 6-11, When DC
power reaches a level at which the logic can oper-
ate, but before BUS DCLO L is negated, both
UBCE PUPF (1) H and UBCE BLOCK DOWN
(1) H are direct-set by DCLO. All INIT signals are
asserted by both DCLO and ACLO. While INIT is
asserled, the ROM address is forced to 200
(ZAP.00) and the clock is cleared.

PUP. B¢ RTL&Q

TIG CLOCK STARTS—l
1

T|4T5T

LR I R A]

[1111

TS?I'I T
L.

T-I- TS.'lr'l LEI
o I e 6 I I

Y

BUS ACLO L (UBCE)

o~ ol

end
BUS DCLO L {UBCE) I
e

R — A 3)

(RECEIVED FROM UNIBUS OR CACHE)

UBCE BLOGK DOWN {1} H/ﬂ

UBCE PUPF (HHZZE;

{UBCE) INIT L (alllz_; .

[UBCE) TOms ONE-SHOT L

TMCE BRQ STROBE H N 1l

s}] e} }

UBCE ABORT ACKN L

—) il Y]

C
V)
e

{UBCE) 2ms ONE-SHOT L

¢ 2ms —

*NGTE: Powsr -up subroutine sxecuted during ihis lima.
UBCE PONF {1} H cannot be set

;ZZZ DC powar coming up.

Figure 6-11

1-333

Power-Up

As the ac power level rises, BUS DCLQ L is ne-
gated. When ac power reaches its specified level,
BUS ACLO L is negated, UBCE ACLO L goes
high and, in conjunction with the assertion of
PUPF (1) H, starts the 70-ms timer. During this in-
terval, all INIT signals are asserted and the Cache
initializes its tag and data stores.

INIT is negated at the end of the 70-ms delay, the
TIG clock is started in T4 (refer to Chapter 4) and
the ROM cycles from ZAP.00 - BRK.10 to PUP.OO
are executed.

A1 T3 of PUP.0OO, UBCB ABORT ACKN L is as-
serted; this clears PUPF. When PUPF is cleared,
UBCE PUPF (0) L initiates a 2-ms delay by trigger-
ing the 74123 one-shot. For this period of time,
BLOCK DOWN remains set and prevents any
BUS ACLO L assertion from setting PDNF. This
ensures that the processor will complete the power-
up sequence before another power-down is in-
itinted, BLOCK DOWN is reset at the end of the
2-ms delay.

The power-up microprogram sequence (PUP.00 -
PUP.40) gets a new PC and PS from the location
specified by the start vector (S8V). Refer to Para-
graph 6.1,

6.5.3 PDP-11/70 System Power Control

Euch Main Memory drawer power supply and both
processor cabinet power supplies contain an 11086
Power Control Card. The ac power monitor circuits
{ACLO uand DCLO) are on this card. ACLO and
DCLO both have two independent open collector
output drivers on each 11036. Refer to the Engineer-
ing Print Set for a schematic of this circuit.

Table 6-4 lists the processor cabinet and Main
Memory cabinet ACLO and DCLO signals,

6.5.3.1 ACLO Connections — Refer to Figure 6-12.
The AC LOW signal from all Main Memory power
supplics are wire-ORed and transmitted to the
Cache (ADML) on the Main Memory Bus cable.
The signal is bulfered, renamed (ADML ACLO H)
and is one of two inputs to the processor power-
up/power-down circuits on UBCE.

Table 6-4
ACLO and DCLO Driver Outpuis
Sigeal Nam Unit Connector
& Pin
ACLO
AC LO 1 [Upper processor H7420 | P/J15-8
AC LO 2 |Lower processor H7420 | P/122-8
ACLO 3 |Lower processor H7420 | P/J22-10
AC LO 4 |Upper processor HT420 | P/JI15-10
AC LOW |Main Memory P/S P/J6-3
AC LOW |Main Memory P/A P/16-8
DCLO
DC LO | JUpper processor H7420 | P/J15-12
DC LO2 {Lower processor H7420 | P/J22-9
DC LO X [Lower processor H7420 | P/J22-12
DC LOY |Upper processor H7420 | P/J15-9
DC LOW |Main Memory P/S P/lg-1
DC LOW |Muain Memory P/S P/J6-2

The processor power supply AC LO 1, AC LO 2,
AC LO 3 und AC LO 4 signals are connected to
the Unibus AC LO line (BUS AC LO L) at the
buckplune, This signal is the other input to the pro-
cessor power-up/power-down circuits on UBCE,
where it is ORed with ADML ACLO.

The vutput of the OR, UBCE ACLO L, is also in-
pul 10 the Cuche power-up circuits (ADMJ).

6.5.3.2 DCLO Connections - Refer 1o Figure 6-12.
There are two separate DCLO lines in the PDP-
[1/70: BUS DCLO (Unibus) and MAIN DCLO
(Main Memory). Two signal lines are required
because:

1. The signal level on the Unibus (0 V -5
¥} is different from that on the Main
Memory Bus (O YV - 3.5 V), and

!-J

The impedance of the Unibus (120
ohms) is different from (hat of the Main
Memory Bus (75 ohms),

i-6-21

sy BUS DCLO L is the wire-OR of DC LO Y (upper try inhibits the memory write operations on power

= O SO et e e — processor H7420 power supply), DC LO X (lower down 3 us afier receipt of DCLO.
sy el | | wanas Wei4z —I processor H7420) and the DCLO signals from all
P PAM | 71 P9 | o s | 24 — = | devices on the Unibus. 1t is one of two inputs to 6.5.3.3 Power Down — In the PDP-11/70, these in-
1 oy ;ET\F; a3 e o i cacHE ""'“i | the processor power-up/power-down circuits on terconnections are such that a power failure from
tue 10 43 ij'—i T {] @ P oot | UBCE. any device (Unibus device, processor or Main
{PONER cONTROL 1 ac Low | e I \—rD_‘ |—1 J—— | Memory)
on sanosener [| | | MAIN DCLO is the wire-OR of DC LO 1 (upper
! 1 NI EpS (. _ e processor H7420), DC LO 2 {lower processor 1. Causes the processor to trap to location
| MM ueee _L_ | ks e atant oLz . H7420) and both DC LOW outputs from all Main 24 and to perform the power-down sub-
| "_I’ newoRy _'i wAN GO L |ADML waw |ADML MAM UBCE pCLD ubcE ACLo L Memory drawers (via the Main Memory Bus routine, and
I ! omoums 3 | e Jua S P P cable). MAIN DCLO is buffered in the Cache, re-
rM——T—= — T Le "1 named (ADML MAIN DCLO H), and is the sec- 2. Causes the Cache to prevent ail access to
e E Tanos! | M | In'ifas | ond input to the processor power-up/power-down Main Memory when DCLOQ is asserted
m 2 TAORESROR BACKPLANE | | | | circuits. at the end of the 2-ms power-down sub-
. rRocessan ac Lot yjous acto L o . B . i o L e . routine time allotment,
rowkR TuFFLT Be L0 L MAIN DCLD L :
£ JHUCNE 1N izq]II]_ i ID:D | I J_ l
UPPER TaED) F_I\ . r =l B e | BUS DCLO and MAIN DCLO are ORed (UBCE) In addition, when the power failure is a processor
B [| o B i—[—r‘l o | and input to both the Cache power-up and to the or a Main Memory failure, the Main Memory pro-
oot | ek e P -—- | processor power-up/power-down circuits. MAIN tection circuits are activated when MAIN DC
] ion o wospL wan | | DCLO, however, is the only input to the Maip LOW is asserted by eithe.r the processor or the
——oENIR e botoz |{uam oo ¢ | I I Memory protection circuitry (MCTH). This circui- Main Memory power supplies.
SRS W [1p]2022 G I | I
LOWER T4ZOI [L 8 I R |
B m = L BUS GELO L Fiaez N Precossar Powte-diwen ¢ piwbr-up circeil. Aster 4 KBN-B
uNIsUa Froceteor bhises Sectm 1, Chopme. 5.,
4 s > e

Figure 6-12 PDP-11/70 ACLO and DCLO Connections

11-6-22

SECTION III

CONSOLE

Unless otherwise indicated, references within this sec-
tion pertain to this section only.

CHAPTER 1

1.1
1.1.1
1.1.2
1.13
1.14
1.1.5
1.1.6
1.1.7
1138
1.19
1.1.10
1.2
121
122
123
1.24
1.2.5
1.3
1.3.1
132
133
1.3.4
1.35
1.3.6
1.3.7
13.8
14
14.1
14.1.1
14.1.2
142

CHAPTER 2

2.1
2.2
23
2.4
2.5
2.51
252
253
254
255
26
26.1
262
263
264

SECTION ITI CONSOLE

CONTENTS

Page

SWITCHES, INDICATORS AND OPERATION
OPERATIONAL SWITCHES i et e i e e e III-1-1
Power and Lamp Test Switches I-1-1
LOADADRS Switch v o v it e e i e e e s e e e e MI-1-1
EXAMSwitch e e I-1-1
DEPSwitch e e e e e e I1-1-1
Step Operations . . v v v i v i e e e e e e e e e e e e e e HI-1-1
CONT Switch i e e et e e e s III-1-3
ENABLE/HALT Switch o i i et it e e et et e e e e a e II1-1-3
SINST/SBUSCYCLESwitch v e it e i HI-1-3
START SWItch . . . & v i v e m-1-3
Switch Register I11-1-3
ADDRESSING AND DATADISPLAY I-1-3
ADDRESS SBELECT Switch i ettt e I1i-1-3
ADDRESS Display Indicators 0 i i e e .14
DATASELECT Switch e Nl.14
DATA Display Indicaterso i i 11I-1-4
PARITY Indicators @ . o 0 i i i e e e e e s I11-1-4
EXECUTION INDICATORS e e e e e e e e s I11-1-4
PARERRINGICAIOT . . v v v v v v vt et e e e e et e e e et e e e e a e s I1I-14
ADRSERRIndicator o v vt ittt e e 1I1-1-4
RUNIndicator @it i i i i i e i e I11.1-4
PAUSE Indicator i i e e iI.14
MASTER Indicator 0 i i i i e e s 1I-1-4
KERNEL, SUPER, USER, Indicators1l14
ADDRESSING (Mapping) Indicators 0 i I11-1-5
DATA (Space) Indicator 0 i e II-1-5
USAGE . . . o e e e e e e e e e e e e e 111-1-5
Memory Reference o L e e I-1-5
Unmapped Reference o . o e I11-1-5
Mapped Reference HI-1-5
General Register Reference I1I-1-6

LOGIC DESCRIPTION

POWER CONNECTORJ4(KNLA) it i II-2-1
POWER SWITCHS31(KNLA)Y e e e e e e e e e [I-2-1
81 —822: SWITCHREGISTER it i e e as 111.2-1
8§24 — 830 (“LOAD ADRS” — “START™} @ ittt it 1-2-1
CONSCOLEBRANCH e e e e k22
IdleState e e e e e e I11-2.2
LOADADRS, e e e e e e e e e e e e I11-2-2
RACK BRCAB(O2:00) L. i e e e e e e e I-2-2
START and CONT ., it e e e e e e e e I11-2-2
EXAMand DEP Switches 0 i i e 1-2-2
ENABLE/HALT SWITCHIN HALTPOSITION 111-2-3
Single Instruction L e a e e I11-2-3
COMENUE . v . v ot et e e i e e e e e e e e e e e e e e e e e n-24
Single Bus Cycle o 0 o 0 i e e e e e 1124
Console Reset i i i e e e e e e e e e I11.24

I11-ii

27
2.7
272
273
28
29
2.10
2.10.1
2.10.2
2.11
2.12

Figure No.

11
2-1

Table No.

-1
2-1

CONTENTS (Cont)

Page

ENABLE/HALT SWITCH IN ENABLEPOSITION 1I-24

Continue i e e e e e e e I11-2-4

SingleBusCycle e 11124

Console Start e e if-24

LOAD ADDRESS e 11.2-5

EXAM AND DEP OPERATIONS s e e HI-2-5

ADDRESS DISPLAY e e e e e I1-2-5

General Register (GR) Address I11-2-5

Memory Address e e e -2-5

DATA DISPLAY e e e e 11-2-6

MISCELLANEQUS INDICATORLOGIC i it I11.2-6
ILLUSTRATIQONS

Title Page

PDP-11/70Console e e Ii.1.2

Step Branch Address Modification, I11-2-3

TABLES

Title Page

General Register Addresses L e e e e 1-1-6

Address Display L. L e e e e HI-2-5

HIELY

INTRODUCTION

The PDP-11/70 Console, drawing D-CS-54-11294-
0-1, altows direct control of the KB]11-C computer
system, The Console is used for starting, stopping,
reselting and debugging. Its power switch may be
used us the masler switch for a system. Indicator
lights und the other switches provide facilities for
monitoring, system control and maintenance oper-
ations, during which the KB11-C can be made to ex-

MI-I-1

INTRODUCTION

ccute single instructions or single Unibus or
Memory cycles. The contents of any memory loca-
tion or of any register can be examined, and data
cun be entered manually from the switches,

Chapter | describes the various components of the
Console und their use; Chapter 2 describes the logic
that controls Console operations.

CHAPTER 1

SWITCHES, INDICATORS AND OPERATION

Refer to Figure 1-1.
1.1 OPERATIONAL SWITCHES

1.1.1 Power and Lamp Test Switches
The POWER switch is a three-position, key-oper-
ated switch.

QFF - Causes power {o be removed from the
switched outlets of the Power Controller. Ren-
ders the system inoperative.

POWER - Power is applied to the system. All
switches are operational.

LOCK - Same as POWER, except that the
LOAD ADRS, EXAM, DEP, CONT, EN-
ABLE/HALT, § INST/S BUS CYCLE and
START switches are disabled. All other
switches are operational.

The LAMP TEST switch is the white switch be-
tween Switch Register 0 and LOAD ADRS. When
ruised, it wrens all the indicators on. It is used for
nlaintenance,

1.1.2 LOAD ADRS Switch

The LOAD ADRS switch is a momentary action
switch, When this switch is depressed, bits 21 - 16
ol the Switch Register are loaded into SCCK
SWR(21:16) B (1) H, and bits 15 - 00 into the PCA
and the SR. The address displayed in the AD-
DRESS display indicators is a function of the AD-
DRESS SELECT switch (Paragraph 1.2.1 below).

1.1.3 EXAM Switch

The EXAM(in¢) switch is a momentary action
switch, When it is depresscd, the contents of the lo-
cation specified by the ADDRESS display is shown
by the DATA indicators, if the DATA SELECT
swilch 15 in the DATA PATHS position.

The ADDRESS display shows cither a virtual or a
physical address, as determined by the ADDRESS
SELECT switch. Refer to Paragraph 1.2.1.

1.1.4 DEP Switch

The DEP(osit) switch is a momentary action
switch. When it is raised, the contents of bits 15 -
00 of the Switch Register are written into the loca-
lion specified by the physical address generated by
the last LOAD ADRS operation. The data written
is shown by the DATA indicators if the DATA SE-
LECT switch is in the DATA PATHS position,

The ADDRESS display shows either a virtual or a
physical address, as determined by the ADDRESS
SELECT switch. Refer to Paragraph 1.2.1.

1.1.5 Step Operations

Il several consccutive EXAM operations are per-
formed, the address is incremented by 2 for each op-
eration after the Mirst one. Thus, it is possible to
examine a series ol consecutive word uddresses with-
out doing a LOAD ADRS for each EXAM.

In the same manner, it is possible to exccute a
scrics of DEP operations without doing a LOAD
ADRS for each one.

The following sequence illustrates these operations:

Location Shown in
ADDRESS Display

Operation
{ Activate Switch)

LOAD ADRS X
IXAM X
DIP X
EXAM X
EXAM X+2
(Result is EXAM - STEP)
DEP X+2
EXAM X+2

NnI-1-1

QL-TEEL

srosuo)) 0L/11-dAd

1-1 21031y

im-1-2

1.1.6 CONT Switch

The CONT(inue) switch is a momentary action
switch whose action depends upon the position of
thec HALT/ENABLE switch:

ENABLE - Resumes program excculion at
the point where it was stopped by the HALT
switch or by a HALT instruction.

HALT - Used in conjunction with the S
INST/S BUS CYCLE switch. See Paragraph
[.1.8,

The CONT switch has the same effect as the
Muintenance Module Stepper Switch, XMAA 54,
when executing single ROM cycles or UPB stops,
but not when executing single clock cycles.

1.1.7 ENABLE/HALT Switch
The ENABLE/HALT switch is a iwo-position
switch:

EFNABLE - Used in conjunction with the
START or CONT switches, allows program
execution.

HALT - Stops program execution.

LLLL8 S INST/S BUS CYCLE Switch

The S(ingle) INST(ruction)/S{inglc) BUS CYCLE
switch is used in conjunction with the CONT
switch when the HALT/ENABLE switch is in the
HALT position:

S INST - When CONT s depressed, a single
instruction s executed and the processor stops
in CON.O0. EXAM and DEP operations may
then be executed. The contents of the DATA
Display indicalors may only be determined by
examinglion of the microprogram Flows for
the instruclion that hus just been executed,

S BUS CYCLE - When CONT is depressed,
execution is resumed but stops in TS of
PAUSE of the lirst Unibus or Memory cycle
Lo be execuled.

The ADDRESS display then conlains the ad-
dress of the location al which the bus cycle
was performed (virtual or physical, depending
on the position of the ADDRESS SELECT
swilch).

If the DATA SELECT switch ting
BUS REG (Bus Register), the DA May
lights, on a read operation, will contain the
data that was read (this could be an instruc-
tien or data). During a writc operation, the
lights will contain the data just written {except
during a stack operation or Floating Point in-
struction). LOAD ADRS, EXAM and DEP
are disabled in this mode. If an EXAM or
DEP operation is desired, the § INST/S BUS
CYCLL switch should be changed to § INST
and the CONT switch should be depressed
once. (This will cause execution until the end
of the current instruction). The system will
then be ready to perform an EXAM or DEP.

The switch has no effect when the
HALT/ENABLFE switch is set to ENABLE.

1.1.9 START Switch

The START switch is & momentary action switch
whose action depends upon the setting of the
HALT/ENABLE switch:

ENABLE - Starls program execution at the
address previously loaded by a LOAD ADRS,
alter resetting the system (INIT).

HALT - Resets the system.

The START switch has no ceffect when the pro-
cessor i in the RUN state.

1.t.10 Switch Register

The Switch Register consists of the 22 switches la-
beled 0 through 21, These numbers correspond to
the hil positions of their respective switches. The
Switch Register is used to manually enter both ad-
dresses and data into the KB11-C, and its bits, 15 -
00, may be read under program control; its address
is 17 777 570, which is the sume as that of the Dis-
play Register.

1.2 ADDRESSING AND DATA DISPLAY

1.2.1 ADDRESS SELECT Switch
The ADDRESS SELECT switch is an eight-posi-
Lion rotary swilch:

VIRTUAL - Six positions: KERNEL, SU-
IPER and USER [space and KERNEL, SU-
PER und USER D space. The address
displayed is o 16-hit virtual address; bits 21 -
16 are always off,

ITI-1-3

During Console DEP or EXAM operations,
bits 15:00 of the Switch Register are consid-
ered to be a Virtual Address. If Memory Man-
agement is enabled, this Virtual Address is
relocated. The set of PAR/PDRs indicated by
the switch paosition is used.

CONS PHY - (Console Physical). The 22-bit
address entered by a LOAD ADRS is the
physical address of the Console operation.

PROG PHY - (Program Physical). Displays
the 22-bit physicul address generated by Mem-
ory Munagement for the current Unibus or
Memory cycle.

The ADDRESS SELECT switch indicator lights
are driven directly by the switch.

Reler to Puragraph 1.4 which explains the use of
the ADDRESS SELECT switch.

1.2.2 ADDRESS Display Indicators

The ADDRESS display indicators show the address
of the data deposited or being examined. The ad-
dress is interpreted as a4 virtual or physical address
in accordance with the position of the ADDRESS
SELECT switch. {(Paragraph 1.2.1 below).

1.2.3 DATA SELECT Switch
The DATA SELECT switch is a four-position
rotary switch:

DATA PATHS - Displays the output of the
Shifter. This position is the normal display
mode, and is used to show the data examined
or deposited by Console operations.

BUS REG - Displays the output of the Bus
Register (BR).

uADRS FPP/CPU - Bits 15 ~ 08 display the
current address of the Floating Point Pro-
cessor microprogram ROM,

Bits 07 — 00 display the current address of the
processor microprogram ROM.

DISPLAY REGISTER - Displays the con-
tents of the Light Register. The LR may be
written into by using address 17 777 570,
which is the same as that of the Switch
Register.

1.2.4 DATA Display Indicators

The DATA indicators display the output of the
Data Display Multiplexer, The output of the multi-
plexer is selected by the DATA SELECT switch,
Refer to Paragraph 1.2.3,

£.2.5 PARITY Indicators

The PARITY indicators display the parity bits asso-
ciated with the HIGH and LOW bytes of the word
read from Cuche Memory. These indicators are off
during a write operation,

1.3 EXECUTION INDICATORS

1.3.1 PAR ERR Indicator
The PAR(ity) ERR(or) indicator is on when a Un-
thus or & memory parity ecror is flagged.

1.3.2 ADRS ERR Indicator

The ADRS (Addressy ERR (Error) indicator is on
wlicn an addressing error occurs. Address errors
are: non-existent memory, access control violation,
puge length error, Stack Limit Red, odd address er-
ror and Unibus Timeout. This is a dynamic in-
dication of uddress errors that occur during
program cxecution. [t is a static indication during
Console functions (i.e., EXAM or DEP).

1.3.3 RUN Indicator

The RUN indicator is on when the processor is ex-
ecuting instructions, but is off during Pause cycles,
The RUN indicator is on during a WAIT
instruction.

1.3.4 PAUSE Indicator

The PAUSE indicator is on during all Bus Pause
and [nterrupt Pause cycles, indicating that the pro-
cessar s wailing for either Memory or a Unibus
device.

1.3.5 MASTER Indicator

The MASTLR indicator is on either when the pro-
cesser is Unibus master (UBCA CPBSY) or during
Console operations [TMCA CONF (1) L asserted].

1.3.6 KERNEL, SUPER, USER, Indicators

The KERNEL, SUPER and USER indicators show
the actual mode in which the processor is operating
during cach cycle. Refer to Section I'V of this man-
ual (Memory Management).

111-1-4

1.3.7 ADDRESSING (Mapping) Indicators

The 16-, 18-, and 22-bit indicators show the Mem-
ory Managemen!l mapping that is being used during
each cycle.

1.3.8 DATA (Space) Indicator

The DATA indicator shows whether I or D space
is used during each cycle. It is on when D space is
usced and off when 1 space is used.

1.4 USAGE

1.4.1 Memory Refercnce

Memory references from the Console may be either
muapped (i.e., using a virtual address) or unmapped
{(using u physical address), when Memory Manage-
ment is enabled. Mapped references are possible
only when Memory Munagement is enabled.

1.4.1.1 Unmapped Reference

1. Set the ADDRESS SLELECT switch to
CONS PHYS,

2. Enler the 22-bit physical address into the
Switch Register.

3. Depress the LOAD ADRS switch. The
physicul address in shown by the AD-
DRESS display.

4. Set the DATA SELECT switch to
DATA PATHS.

Su. If the EXAM switch is depressed, the
contents of the physical memory loca-
tion entered by the LOAD ADRS oper-
ation is displayed by the DATA
indicators,

b, If the DEP switch is raised, the contents
of bits 15 = 00 of the Switch Register are
written into the physical memory loca-
tion entered by the LOAD ADRS oper-
ation.. This same data is displayed by
the DATA indicators.

1.4.1.2

5a.

Sh.

T1I-1-5

Mapped Reference

Set the ADDRESS SELECT switch to
one of the virtual positions (refer to Par-
agraph 1.2.1).

Enter the [6-bit virtual address into the
Switch Register.

Depress the LOAD ADRS switch. The
virtual address is shown by the AD-
DRESS display. Bits 21 - 16 are off.

Set the DATA SELECT switch to
DATA PATHS.

IT the EXAM switch is depressed, the vir-
tual address loaded by the LOAD
ADRS operation is relocated by Mem-
ory Management. Memory Management
(if it is enabied) uses the mapping shown
by the ADDRESSING indicators (Para-
graph 1.3.8) and the PAR/PDR pair is
selected by the ADDRESS SELECT
switch, The contents of this address are
read znd displayed by the DATA
indicators.

Il the DEP switch is raised, the virtual
address is relocated as in the EXAM op-
crulion. The contents of the Switch Reg-
ister arc written inlo the physical
memory location pointed to by the phys-
ical address, The new contents of this lo-
cation are displayed by the DATA
indicators.

If the ADDRESS SELECT switch is
now wurned to PROG PHY, the physical
address corresponding to the virtual ad-
dress used during the EXAM or DEP op-
cration is displayed by the ADDRESS

indicators,

1.4.2 General Register Reference Tabte -1

EXAM and DEP references to the processor Gen- General Register Addresses

eral Registers may be executed by entering the ad-

dress of the register (see Table I-1) into the SET 0

SWITCH REGISTER, depressing LOAD ADRS,

and then EXAM or DEP. as required. The AD- Register 0 17 777 700

DRESS SELECT switch setting is ignored: map-
ping to a General Register is not possible. . .
Register 5 17 777 705

EXAM-STEP and DEP-STEP operations can be Register, 6 Kernel 17 777 707
perfurmed on the General chiSlCFS, in a manner Program Counter 17 71T 707
similar to that for memory locations, except that:
SET 1
t. ADDRESS display is incremented by | Register @ (7 777 710
(instead of 2). . .
2. The STEP afier address 17 777 717 is 17 Register 5 17 777 715
777 700, such that the addresses are Register 6, Super 17 777 716
looped. Register 6, User 17 777 717

3. Itis not possible to STEP up to the first
General Register (17 777 700) from 17
777 676.

I111-1-6

The Console assembly consists of a printed circuit
board, drawing D-CS-5411294-0-1 (KNLA -
KNLD), an indicator panel, drawing D-lA-
7413126-0-0, and a bezel, E-TA-7409306-0-0, This as-
sembly is mounted on the front of the processor
mounting box. It is connected to the PDP-11/70 by
the power harness, whose Pl plug connects to the
Console J4 connector, and by three flat ribbon cab-
tes. One of these connects JE on the Console to JI
on the ME8134 module {PDRH). Another connects
J2 on the Console to JI on the M8140 module
{(SCC)). The third cable connects J2 on the Console
1o J2 on the M8140,

This chupter deseribes the Console Power Con-
nector and the logic that controls the Console
Switches (Paragraphs 2.2 through 2.9) and the Dis-
pluys (Paragraphs 2,10 through 2.12), in that order.

2.1 POWER CONNECTOR J4 (KNLA)

J4 connects 1o the Power Harness. [consists of the
following lines: +5 VA, which powers the light
emitting diode (LED) indicators: GND A which is
the return for the LAMP TEST switch (KNLD
LAMP TEST L) and with the Power Controller
GND IN und GND QUT (refer to Paragraph 2.2).

2.2 POWER SWITCH 831 (KNLA)

The Power Switch controls power to the sysiem
through the GND OUT/GND IN connections to
the Power Controller, and enables/disables switches
S24 - S30 (LOAD ADRS, EXAM, DEP, CONT,
ENABLE/HALT, § INST/S BUS CYCLE und
START).

Power Controller — Pins 3 and 4 of J4, GND IN
und GND QUT go to the Power Controller by way
of the power hurness, When there is no connection
between these two pins, power is removed from the

CHAPTER 2
LOGIC DESCRIPTION

switched outlets of the controller. When the pins
arc connected, power is applied to these outlets.
GND IN and GND OUT are not connected when
the power switch is in the OFF position; they are
connecled when the switch is in the ON (terminals
9 and 10) or in the LOCK positions (terminals |1
and 12).

524 - 830 (KNLC) use the KNLA SWITCHED
GROUND from the power switch; there is na
ground connection in the LOCK position, and
these switches ure then disabled. In addition,
KNLA PNL LOCK L is also generated in this posi-
tion, and forees the HALT/ENABLE switch out-
put to the ENABLE logic value (fow), Thus, when
the power switch is in the LOCK position, the pro-
cessor s enubled, the HALT switch is inoperative,
and the other switches are disabled, since they can-
not be used when the KB11-C is ruaning. KNLA
SWITCHED GROUND is connected to GND B
when 831 is in the OFF position (terminals 2 and
3) and in the ON position (terminals 4 and 3).
KNLA PNL LOCK H is brought out to the KBII-
C backplane by the SCC module, but is not used
by any other part of the processor.

2.3 51 - 822;: SWITCH REGISTER

The Switch Register, S1 - 822 [KNLC SWR(21:00)
H} is transmitted from KNLC J3 to J2 of the
M8140 module (SCCJ), where it becomes SCCJ
SWR(21:00) H. It is read by the processor on the
Inicrnal Bus from the multiplexer on SCCH.

2.4 Sl4 - S30 (“LOAD ADRS” - “START")

8§24 - 830 ure input to latches (KNLC) for bounce
suppression and transmitted from J3 of the Console
lo I12 of SCCJ (8CCJ CONT SW H - SCCJ HALT
SW H). CONT. SINGLE CYCLE, LCAD ADRS,
START and HALT are buffered on SCCI.

MI-2-1

SCC) EXAM SW H and DEP SW H are gated
with SCCF GEN RG (1) H and (0) H to generate
SCCF REG EXAM H and REG DEP H when a
General Register address has been decoded during
i LOAD ADRS operation. When any address
other than u General Register address is detected,
SCCF GEN REG (0) H is high and SCCF EXAM
H or DEP H uare generated.

The signals derived from $24 - 830, with the excep-
tion of ENABLE/HALT (528), clock the flip-flop
shown on UBCF. When any of these switches is ac-
tuated, und if the Console Flag is asserted, UBCF
CNSL ACT is set at TS3.

These flip-flops are reset at T4 when BCT=2
(CNSL ACKN), at T2 when BSD=1 (ITR
PAUSE), or by INIT.

When the processor is halted, it cycles in the
CON.00 microprogram state,

When uany of the LOAD ADRS, EXAM, DEP,
CONT or START switches are activated, a micro-
program bruanch ltom CON.0O occurs.

2.5 CONSOLE BRANCH
The Console microprogram flows are shown on
Flows 4.

2.5.1 Idle State

CON.00 is the KBI11-C idle state which is entered
upon a HALT. This cycle loops upon itself until
one of the Console switches sets UBCF CNSL
ACT (1) H. This function is low during the idle
state: the Branch Enable field of CON.O0 is 14,
making both RACK BEF(3:2)3 H and RACK
BEF(1:000 H high. RACK BRCABOG L is thus as-
serted. Since the UADR field of CON.00 is 070, bit
6 is forced to 1, the ROM address [RACL
RADR(07:00}) H] becomes 10, the address of
CON.00, which thus succeeds itself. RACK
BRCABO6 L is not used by any other microstate,

2.52 LOAD ADRS

I the LOAD ADRS swiich is now depressed,
UBCF CNSLO7 (1) H and UBCF CNSL ACT (1)
H are both asseried: this causes RACK BRCABO7
to he asserted, thus generating a ROM address of
270 (ADR.OO). [UBCF CNSLO7 (0) H forces
UBCH CNS§(02:00) H low]. RACK BRCABO7 L is
used only by LOAD ADDRESS,

2,53 RACK BRCAB(02:00) L

These bits determine the branch required by the
eight remaining functions: START, CONT,
EXAM. DEP, STEP EXAM, STEP DEP, REG
EXAM/DEP and REG EXAM/DEP STEP. The
bits are shown on UBCH.

2.54 START and CONT

START and CONT are encoded on UBCH. Since
BCEF CNSLO7 (0) H is high (LOAD ADRS is not
depressed), UBCH CNSL(02:00) cquals & for
START uand 7 for CONT. Since the processor is in
the idle state, RACK BRCAB(02:00) L force the
next eyele microaddress respectively to 076 or 077,

255 EXAM and DEP Switches

As deseribed in Chapter 1, every successive depres-
sion of the EXAM switch after the first one causes
the address to be incremented, thus making it pos-
sible Lo examine successive locations without reload-
ing the address. This same procedure is followed
for DEP, or when operating on General Registers.
Opcrations following the {irst one are called STEP
operations, Refer to Flows 14,

The logic shown on UBCH stores UBCH
CNSL{02:00) H and UBCH MSB DATA L, in the
745175 register, the output of which is decoded by
the 74428, The functions generated by the outputs
ol these decoders are gated with the outputs of the
UBCH switch Mip-flops and thus generate a modi-
lMed UBCH CNSL(02:00) H wvalue, which in turn
causes o dilferent branch uddress to be generated
when EXAM or DEP are depressed more than
once. Note that when R3(1) of the 748175 is high,
the lower 7442 decoder is disabled (no ouwtputs {0 -
iI7 can be true), while the upper 7442 is enabled,
since R3O is low; if R3 is reset, the opposite is
Lrue,

Repister operations are similar to Memory oper-
ations, The branch after CON.00 determines
whether the operation is or is not a STEP oper-
ution. A second branch after this executes either an
EXAM oru DEP.

Figure 2-1 shows u sequence of operations, shown
above the waveshapes, the condition of the various
modifying functions, and the inpuis to the RACK
logic.

[11-2-2

REG REG
LOAD EXAM DEP LOAD REG EXAM REG DEFP
ADRS EXAM STEP DEP STEP ADRS EXAM STEP DEP STEP
' 1 1 1 1 1 1
—
1 I 1
1 |
uBcF cowsmmu_l R A N N N A S N
= T - !
i | H i
J !) I i
{UBCH) R3 {1) H) ' f }
I i | l ! i
I ! ! '
0o, 0 0 | O 1 o] |] 1
UBCH CONS@2 W . J . :
l d : i 1 i' 1 |
I H I !
1o 1 0 |0 1 01 0 1 o 1 0
UBCH CONS@1 H _| : !
T ' T
H 1
t 0 o Py o1 0 | 0 ! 0 1
UBCH CONS@B H i & | | !
: I : ;
i I ! !
UBCH REG EXAM+STEP H L. | !
i I | ' :
! | i |
UBCH REG EXAM+STEP L) | : |
t i i 1
I ! : I
UBCH REG DEP+STEP H . | | g
I ! | |
i ! . i |
UBCH REG DEP+STEP L ! : i :
1
L |
3
UBCH STEP DEP+DEP H i |
H |
I i
UBCH STEP DEP+DEP L | I
L :
!)
UBCH EXAM+STEP EXAM H | \
1=-3137
Figure 2-1 Step Branch Address Modification

2.6 ENABLE/HALT SWITCH IN HALT
POSITION

Paragraphs 2.6.1 through 2.6.4 describe the effect
of the operational switches when the EN-
ABLE/HALT switch is in HALT. When this is the
case, KNLC HALT SW H und SCF HALT H are

high

2.6.1 Single Instruction

I the S INST/S BUS CYCLE switch is in the S
INST position, KNLC SINGLE BUS CYCLE §W
H and SCCF SINGLE CYCLE H are low, and

UBCI STOP L is asserted. At the next BRQ sirobe
(MSC=6), TCE CLK CONF H is asserted at T3
and scts the Console Flag [TMCA CONF (1) H].
TMCB BRQ TRUE is then asserted and the instruc-
tion currently being executed branches (when com-
pletedy to BRK.9Q (refer to Flows 12) on a
microprogram cycle where BEN=12 and
UAD=240. BRK.0@ follows BRK.80, and its BEN
hits= 12, with UAD=130. Since the Console Flag is
set (CONF), the next microprogram statc s
CON.0OO (Flows 14), in which the processor cycles
until Console uction is initiated by the operator.

I11-2-3

2.6.2 Continue

Il the CONT switch is now depressed, CON.I0 is
entered, followed by BRK.10 and BRK .20 (Flows
[2). Since neither BUS INTR nar power-down
(TMCA HONOR PWRF L), nor an internal trap
has caused entry into the BRK sequence, UBCC
(PWRT+INTR} L is not asserted and a branch is
made to RTL60 (Flows 2). During this cycle, the
Console Flag is cleared during TS3 by UBCH CLR
CONF L [BCT=2, or CONS.ACKN and UBCF
CONT (!} H]. The CONT switch flip-flop [UBCF
CONT (1) H] is cleared st T4 by UBCF ACKN T4
(BCT=2 and TS4).

The instruction following the one at which the pro-
cessor stopped is now fetched (FET.00) and exe-
cuted: since the ENABLE/HALT switch is still in
the HALT position, the Console Flag is again set
by the BRQ strobe and the processor stops after ex-
ecuting one instruction,

2.6.3 Single Bus Cycle

If the S INST/S BUS CYCLE switch is in the S
BUS CYCLL position, the processor stops in TS of
the current Unibus or Cache cycle. Refer to Section
[, Chapter 4 (Parugraph 4.9) of this manual. NPRs
are not allowed when the switch is in this position
(UBCF DISABLE NPR L).

2.6.4 Console Reset

If the START swilch is depressed when the EN-
ABLIF/HALT switch is in the HALT position,
UBCF CNSL RESET L. is asserted. This signal gen-
erates all three INIT signals and sets the Console
i“lag.

2.7 ENABLE/HALT SWITCH IN ENABLE
POSITION

Paragraphs 2.7.1 through 2.7.3 describe the effect
of the operational switches if the ENABLE/ITALT
switch is put into the ENABLE position. When this
is the cuse. KNLC HALT SW H and SCCF HALT

H go low.

2.7.1 Continue

When the processor is halled and the CONT switch
depressed, the sequence is similar to that described
in Paragraph 2.6.2. The Console Flag, however, is

not sel al the end of the first instruction, and pro-
gram cxecution coatinues instead of stopping.

2.7.2 Single Bus Cycle

The SINGELE BUS CYCLE swilch is disabled when
the HALT/ENABLE switch is in the ENABLE
position.

2.7.3 Console Start

UBCF START (1) H can only be set if the Console
Flayg has previously been sel. START asserts UBCF
STATUS CLR L which sets the processor mode
bits [PS(15:14)] to 00 or Kernel. The START
switch signul, UBCF START L, clocks SCCF
HALT H into a flip-flop on UBCE; this flip-flop
sets if the HALT/ENABLE switch is in the EN-
ABLE position,

The KST.00 (Flows 14), RES.00 and RES.I0
{Flows 3) cycles ure then executed.

In RES. 10, BCT=4 {INIT if Kernel Made). Since
PS(15:14)} huve been set o 00 by UBCF STATUS
CLR L, UBCC START INIT (1) H is set at T3,
This function:

1. direct-sets UBCC RIP+FPSYNC H and

2. starts the 100 us UBCC RESET WAIT
ane-shot,

RES.20 is now executed, and the microprogram cy-
cles in this state until RIP+FPSYNC H is negated.

1. RESET WAIT is still on. When it goes
off, at the end of the 100 us, the RESET
ABORT (I us) and UBCC RESET (1) H
(10 ms) one-shots are started.

[)

RESET (1) H clecars UBCC START
INIT (1) H and keeps RIP+FPSYNC H
asserted,

3. RESET (1) H is ANDed with the flip-
Mop on UBCE that was set by the
START switch. This asserts UBCE
START INIT L, which in turn asserts
all the INIT signals with the exception
of ROM INIT.

I1i-2-4

4. At the end of 10 ms, RESET (1) H goes
fow and [NIT is negated. RESET {0) H
goes high and a T3 RIP+FPSYNC H is
also negated. This causes a branch to
FET.03 instead of to RES.20 at the end
of the cycle (BEN=10, UADR=1334),
and the instruction whose address is dis-
played is fetched and exceuted.

5. The BUST in FET.03 clears (at T3) the
{flip-flop on UBCE that was set by the
START switch.

2.8 LOAD ADDRESS

During CON.0O, bits |5 - 00 of the Switch Register
are louded into the BR. During ADR.OO (LOAD
ADDRESS), the contents of the BR are loaded
into the SR and into the PCA. These bits are vused
in any subsgquent Console operation other than a
LOAD ADRS.

The actual physical address used during these oper-
ations is determined by Memory Management from
the pusition ol the ADDRESS SELECT switch.

2.9 EXAM AND DEP OPERATIONS
EXAM, DEP, REG EXAM/DEP and their respec-
live STEP operuations are described by Flows 14,

2.10 ADDRESS DISPLAY

The ADDRESS DISPLAY indicators are driven by
KNLB VA(0300) and KNLB DISP ADRS(21:04)
H. These signals are received on J2 by the Console.
They originate on the M8140 module (SCCJ}y con-
nector J1. SCCA VA(0300) H., SCCF DISP
ADRS(05:04) [l and SCCK DISP ADRS(21:06) H
are the sources for the KNLB signals.

Refer te Table 2-1. The address displuyed depends
on whether or not it is 4 General Register (GR) ad-
dress (17 777 700 - 17 777 717).

2.10.1 General Register (GR) Address

il the address is a GR address, bits 00:03 display
the register number (0 to 17), bits 4 and 5 are Os
(off), and bits 06:21 are Is (on).

SCCF GEN REG ADRS is asserted (Switch Regis-
ter bils 28 - 06 high, bits 05 and 04 low) and SCCF
GEN REG (1) H is sct when the LOAD AD-
DRESS switch is depressed. This forces SCCF
DISP ADRS(05:04) low and their corrcsponding in-
dicators off, and also forces low both select inputs
to the SCCK DISP ADRS(21:16) H multiplexer,
thus selecting its A inputs {(+3 V) and forcing the
corresponding indicators on. The SCCK DISP
ADRS(15:06) H multiplexer is disabled by SCCF
GEN REG (1Y H and its outputs are high, thus
forcing their corresponding indicators on,
VA(03:00) determine the state of address indicators
£13-00).

2.10.2 Memory Address

Il the address is not o GR uddress, the address dis-
play is a function of th¢ ADDRESS SELECT
switch, described in Puragraph 1.12. The output of
this switch is encoded on the Console board. Three
signals, NLID DISP ADRS SEL(2:0) H arc thus
generited. They are decoded on SSRK and used in
the Memory Management logic. Two of these sig-
nals contrel the multiplexers on SCCK and deter-
mine the source of the address display, us shown in
Tuble 2-1. VA{05:00) are used for all three map-
pings, since these bits never change (they are not
relocated). VA(15:06) is used for the VIRTUAL

Table 2-1
Address Display
Address Select Switch General
Display Virtual CONS PROG Register
Indicators (6 positions) PHY PHY Address
00--03 VA(00:03) VA(00:03) VA(00:03) VA(00:03)
04,05 VA04,05 VA04,05 VA04,05 OFF
06--15 VA(06:15) VA(06:15) VA(06:15) ON
16-21 OFF SWR{16:21) PA(16:21) ON

I11-2-5

and CONS PHYS positions (the Switch Register is
loaded into the SR after a LOAD ADRS and read
from the BAMX). In VIRTUAL, bits 21:16 are
forced off. In CONS PHY, SCCK SWR(21:16) H
are read. | PROG PHY, PA(21:06) are displayed.

2.11 DATA DISPLAY

The DATA indicators [KNLA DISP D(15:00) H
and DISP PAR HI {and 1.O) H] reccive their input
from (he [Data Display multiplexer, PDRF DISP
DO15:00) H, and from two Rip-Nops. PDRH IND
HI {or LOY PAR H.

PDRIDISP DUI5:00) H selects one of lour inputs.
{Reler to Paragraph 1.20.) The select inputs to this
multiplexer are cncoded from the DATA SELECT
swilch {KNLD DISP DATA SELL {or SEL0} H]
and input o 81 and S0 of the multiplexer (PDRF
DISPSI L. and DISPS0 LY after being inverted.

The PARITY indicalors receive their input from
the parity flip-flops on PDRH. The Cache parity
bits, DTML HI {or LO)Y BYTE PAR Il are clocked
into the same [tip-flop IC as PDRB BR(15:12)A H.
The output of these NMip-lflops, PDRB HI (or 1.O)
PAR EE are clocked into PDRH DISP HI {or LO)
PAR by UBCA IND CLK H. This signal is as-
serted al T4 during the ROM stute following the
Pause cyele of all Cache DATI/P cycles. The in-
dicators are cleared at T4 of PAUSE of all Unibus
cyceles or Cache DATO/B cyeles by UBCB CLR
IND () H.

2.12 MISCELLANEOUS INDICATOR LOGIC
The Console indicators not described in Paragraphs
210 und 2.1L are driven by the logic signals listed
betow (in the same order as they appear in Chapter
N

ADDRESS SELECT SWITCH (1.2.1) - The
indicators are driven directly by the switch.

DATA SELECT SWITCH (1.2.3) - The in-
dicators are driven directly by the switch,

PARITY (1.2.5) - PDRH IND HI PAR H
and LO PAR H.

PAR ERR (1.3.1) - UBCB IND PAR ERR
H

ADRS ERR (i.3.2) - SCCF IND ADRS
ERR H

RUN(1.23y - TMCF IND RUN H.

PAUSE (1.3.4) - TMC IND PAUSE H.
MASTLR (1.3.5) - UBCF IND MASTER H.
KERNEL, SUPER., USER (1.3.6) - Driven
by u decode {on the Console board) of SSRB
MMRO MODE ¢ H and MMR0O MODE I H.

ADDRESSING (Mapping) (1.3.7) ~ SCCF
IND 16 {or I8 or 22) BIT MODE N,

DATA (Space} (1.3.8) - SAPK IND DATA
H.

I11-2-6

SECTION 1V

MEMORY MANAGEMENT

Unless otherwise indicated, references within this sec-
tion pertain to this section only.

SECTION IV MEMORY MANAGEMENT

CONTENTS

Page
INTRODUCTION — PDP-11/70 ADDRESS SPACE
CHAPTER 1 GENERAL DESCRIPTION
CHAPTER 2 MEMORY MANAGEMENT MAPFING FUNCTION
2.1 CONSTRUCTION OF APHYSICALADDRESS 1v-2-1
22 MANAGEMENT REGSITERS it it et e e e e e e e e V22
CHAPTER 3 PAR AND PDR ADDRESSING DURING RELOCATION
31 MEMORY MANAGEMENTROM(SSRA) IV-3-1
32 ROMOUTPUTS, 04 — 16 i e e et e e e [v-3-1
3.3 K,S,ORUMODESELECTION(SSRB) Iv-3-3
34 I10R D SPACE SELECTION [SAPK ADDR3(K,SORU)L] IV-34
3.5 REGISTER SELECTION [SAPK ADDR(2:0)L]c... IV-3-5
CHAPTER 4 GENERATION OF THE PHYSICAL ADDRESS
4.1 I6-BITMAPPING e e e e ee e Iv-4-1
4.2 VIRTUAL ADDRESS i i s e e e et e e eea V4.2
43 I8-BITMAPPING e e e et e e e e e e e Iv-4-2
4.4 22BITMAPPING et e e e ettt s e V44
4.5 RELOCATIONLOGIC i it Iv4.7
CHAPTER 5 ADDRESS VALIDITY
51 UNIBUS ADDRESS et et e e e et e et e Iv-5-1
52 NOTCACHEADDRESS it ittt i e s e e e et i et e Iv-5-1
521 IB-BitMapping e 1V-5-4
522 Z2-BitMapping e .54
523 Console Mapping e e e 1V-3-4
CHAPTER 6 DESCRIFTION OF PDR
6.1 ACCESS CONTROL FIELD(ACF) i it e IV6-1
6.2 ACCESS INFORMATION BITS {Aand W) Ive-2
6.3 EXPANSION DIRECTION BIT{ED) .« « v v v v e e e et e e e e e IV-63
6.4 PAGE LENGTHFIELD(PLF) e e e e e e e e e Iv6-3
6.4.1 Example of Upward Expansion,, IV-6-3
642 Example of Downward Expansion, V64
CHAFTER 7 ADDRESS DECODERS AND READING/WRITING OF PAR/PDR REGISTERS
7.1 REGISTER ADDRESSDECODINGttt einn o 1v-7-1
72 ADDRESSING OF PAR AND PDR REGISTERS FROMTHEUNIBUS Iv-7-3
7.2.1 PAR/PDR Addresses v v v v e e e e e e e e e e e e e e e e e Iv.7-3
7122 Addressing L L L e e e e Iv.7-3
723 PARPDRRead ittt ittt i et e e e 1v-7-3
7.2.4 PARWrite e e e e 1V-7-3
7.2.5 PDRWrite o e e e e e e e Iv-7-3

IV-iii

CHAPTER 8

81
8.11
812
8.2
82.1
822
823
8.3

CHAPTER 9

2.1
9.1.1
9.12
9.13
214
9135
5.1.6
9.1.7
9.1.8
9.19
92
9.3
94
9.5
26

Figure No.

1-1
12
13
14
21
222
23
2-4
2.5
3-1
4.1
42
4.3
44

SECTION IV MEMORY MANAGEMENT

CONTENTS (Cont)
Page

MEMORY MANAGEMENT ERROR HANDLING

PAGELENGTHABORTS i it i i b e V82
Length Fault e e e 1v-8-2
Iegal ProcessorMode i i e e e e e IV-8-2

ACCESS CONTROL FIELD ABORTS ANDTRAPS 4., IvV8-2
Non-Resident and Read-Only Protection V.82
Access Faults{Aborts) e e V3.3
AbortFlag e e e e e Iv-8-3

MEMORY MANAGEMENT TRAPS i e i e e a s 1v.8-3

MEMORY MANAGEMENT REGISTERS (MMRO, 1, 2, and 3)

MMRO e e e e e e e e IV-9-1
ABOIIS . . L L e e e e e e e e e Ive-2
Trapsand TrapEnable Iv.9-2
Maintenance/Destination Mode L L ... e e e Iv9.2
Instruction Complete o i i i e e Iv.9.2
ProcessorMode L e e e 1vV-9-3
Address Space and Page Number oo e ive3
Enable Relocation Ao e e e e 1V-9-3
Read/Write Under Program Control IvV.9-3
Bits Controlled by Memory Management Iva.5

MMRI . .. e e e e 1V9-5

MMRZ e e i e e e Va7

CLEARING STATUS REGISTERS FOLLOWING TRAP/ABORT IvV.9-7

MULTIPLE FAULTS o ot et e e e e e e e e e e e e e et e e e e e s 1vV9-7

MMR3 . L. e e e e e e e Iv9-7

ILLUSTRATIONS
Title Page

Example of Physical Memory Page o e e IvV-1-3

Construction of PA . . . L . L L L e e e e e e e v-1-3

Relocation i i i i i e e e e e e e e e e Iv-14

Block Diagram o v i i e e e e e e e e e e e e e e e e e e IV-1-4

Interpretationof VA e e e Iv-2-1

Displacement Field i i e e e Iv2-1

Construction of PA. & i i e e e Iv.2-2

MM Relocation Function o 0. o i s e e e v-2-3

PAR/PDR Read/WrHte o i i i et e e e e c et e e e e e s V24

Addressing of PAR/PDR i e e e Iv-3-2

I6-Bit Mapping o o e e e e e e e e e e Iv4.1

16-Bit Mapping: Generationof PAo e Iv4.2

I8-BitMapping o o i e e e e e e e e e e e 1v-4-2

18-Bit Mapping: Cache Address i V4.3

IVdiv

4.5
4.6
4.7
4.8
4.9
4.10
5.1
52
53
6-1
6-2
6-3
64
8.1
82
9.1
9.2
9.3
94
9-5
9.6

Table No.

7-1
72

SECTION IV MEMORY MANAGEMENT
ILLUSTRATIONS (Cont)

18-Bit Mapping: Unibus Address i
22 Bt Mapping e e e e e e e e e e e e e
22-BItMapping e e e e e e e e
Physical Address Generation: Example 1
Physical Address Generation: BExample 2 v a
Generation of Physical Address o 0 bt e
Wraparound e e e e e e e e e e e e e e e e e
18-and 22-Bit Overflow o o i i e e e e e e e s
Console Overflow o . i i i i e e e e e
Page Descriptor Register (PDR} 0 . v it v v oo i e e e
Aand W Bit Timing e e e e e e e e
Upward Expansion v i i i it i e e e e