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INTRODUCTION

This manual describes the KB11-A Central Processor Unit, which is the basic component of the PDP-11/45 Pro-
grammed Data Processor System. The purpose of this manual is to:

a.  provide an overall understanding of how the KB11-A functions in the PDP-11/45 System.

b.  describe how the KB11-A logic works in sufficient detail to enable maintenance personnel to perform
on-site troubleshooting and repair.

Chapter 1 introduces the purpose and use of the KB11-A and describes how the processor interfaces with the
other components and options in the PDP-11/45 System,

Chapter 2 summarizes the KB11-A address modes and instruction set. This summarized information is presented
in Instruction Set Processor (ISP) notation. Complete descriptions and examptles are provided in the PDP-11/45
Processor Handbook. '

Chapter 3 describes console control and indicator functions and basic opetating procedure. This information is
presented to enable maintenance personnel to perform maintenance tests, using the consele switches and indica-
tors, and to load and run the PDP-11/45 diagnostic programs.

Chapter 4 introduces the KB11-A principles of operation to familiarize maintenance personnel with the processor
features and characteristics.

Chapter 5 provides a block diagram description of the KB11-A architecture, including the data paths and the in-
ternal control structure. The notations on the block diagrams included in this chapter provide a key index to the
detailed logic schematics in the KB11-A engineering drawing set.

Chapter 6 presents an analysis of the KB11-A flow diagrams, The flow diagrams, which are included in the
KB11-A engineering drawing set, provide an essential understanding of how the KB11-A executes instructions and
hardware subroutines. Chapter 6 includes an example that traces the execution of a single instruction completely
through the flow diagrams.

Chapter 7 contains a detailed logic description of each of the modules in the KB11-A Central Processot Unit
(CPU). Simplified diagrams of complex logic and sample timing diagrams are included. However, the descriptions
refate directly to the block schematics for each module, which are part of the KB11-A engineering drawing set.
These block schematics are referenced throughout the chapter in a short-form notation. For example, the overall
drawing number for the 8-sheet block schematic of the M8100 DAP module is D-CS-M8100-0-01. In short-form
notation, these sheets are referenced alphabetically as drawings DAPA through DAPJ. This short-form notation is
also used as a prefix for each signal mnemonic, to indicate which block schematic shows the logic that asserts

each signal.
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This manual is to be used with the following PDP-11/45 System manuals and related publications:

PDP-11/45 System Maintenance Manual DEC-11-H45B-D
MS11 Semiconductor Memory Systems Maintenance Manual DEC-11-HMSB-D
FP11 Floating-Point Processor Maintenance Manual DEC-11-HFPA-D
KT11-C Memory Management Unit Maintenance Manual DEC-11-HKTB-D
PDP-11/45 Processor Handbook DEC, 1971

PDP-11 Unibus Interface Manual (Second Edition) DEC-11-HIAB-D
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CHAPTER 1
GENERAL DESCRIPTION

This chapter describes how the KB11-A Central Processor Unit interfaces with other components and options in
the PDP-11/45 System. It also provides a brief functional description of the KB11-A. Additional descriptions of
the KB11-A structure and functions are provided in succeeding chapters.

1.1 SYSTEM DESCRIPTION

A PDP-11/45 System block diagram is shown in Figure 1-1. The system includes the following PDP-11/45 com-
ponents, options, and related peripheral devices:

the KB11-A Central Processor Unit

Unibus A and B, connected to core memory, input/output (I/O) devices, and mass storage peripherals
an MS11 Semiconductor Memory System

an FP11 Floating-Point Processor

a KT11-C Memory Management Unit option (or the SJB module)

oan o

In addition to these components, the system may include additional Unibus-connected components, including
other processors.

1.1.1 The Basic System

A basic PDP-11/45 System is composed of the KB11-A Cenfral Processor Unit, core memory, and 1/O devices,
connected by Unibus A. Such a system can perform virtually all operations that can be performed by any
PDP-11/45 System configuration. Information enters and leaves the system through the peripheral I/O devices
(and the KB11-A console). As the central processor for the system, the KB11-A fetches instructions from mem-
ory and executes the instructions.

Many of the instructions specify operations to be performed on data, which ¢an be data that is stored in the
memory, in the processor, or data transferred with the peripheral device.

When the processor executes instructions, both the instructions {(including any address constants used by the in-
structions) and the data are transferred on the Unibus, under the control of the processor. The processor can
also respond to special conditions that can occur at any time (i.e., asynchronously). These conditions can be in-
ternal conditions, such as power failure, bus errors, or stack overflow; or they can be external conditions, which
are indicated to the processor by interrupt operations initiated by the peripheral devices. The processor responds
to these asynchronous conditions by performing a series of data transfers which change the processor’s operating
context. In other words, the processor may execute a different program (or series of instructions) for each type
of asynchronous event, and the processor can save the status of one program for later resumption while running
another program.

1-1
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The system jumper board provides a simple, invariable mapping between the 16-bit addresses used by the
KB11-A processor and the 18-bit addresses used on the Unibus. The address mapping is dependent on the three
most-significant of the 16 bits in the KB11-A processor address; if these bits are all 1s, the two most-significant
bits of the Unibus address are forced to be 1s; otherwise, the two most-significant bits of the 18-bit Unibus ad-
dress are forced to be Os.

1.1.2 A Faster Basic System

The data processing capacity of a PDP-11/45 can be increased, for many applications, by increasing either the
speed of the memory or the speed at which data operations are performed.

An MS11 Semiconductor Memory System increases the memory speed in two ways:

a. The access time of the memory is much less (typically 300 ns or less) than the access time of the Uni-
bus memories (typically 500 ns or more).

b. The MSIi1 is connected to the KB11-A processor by a Fastbus, which provides faster transfer times
than the Unibus.

The FP11 Floating-Point Processor provides faster data manipulation in two ways:

a.  Floating-pcint arithmetic operations can be performed at hardware speed, without the fetching and in-
terpretation of sequences of instructions (i.e., the execution of a subroutine).

b.  Other instructions can be executed in parallel with a floating-point instruction, because the KB11-A
processor is free to fetch and execute other instructions while the FP11 processor completes a floating-
point instruction.

Figure 1-1 illustrates 2 PDP-11/45 System that includes an MS11 Semiconductor Memory System, and an FP11
Floating-Point Processor. The KB11-A processor performs all data transfers among parts of the system. All ad-
dress information for transfers between the processbr and memory, or between the processor and the Unibus pe-
ripherals, is provided by the SJB system-jumper board. Transfers between the KB11-A processor (CPU) and the
FP11 processor (FPP) do not require address information; instead, the processors use control signals that specify
the type of information to be transferred, and that also control the timing and direction of the transfer.

1.1.3 A Virtual Machine System

The PDP-11/45 computer system is particularly well-suited to a type of operation in which the computer system
provides a “virtual machine” for cach user program. In the virtual machine, the user program operates in isola-
tion from all other programs; the computer system provides many high-level services such as device-independent
I/0, memory management, program scheduling, and protection of the system from the user program. Many of
the high-level functions are provided by system programs; the KB11-A processor can execute a variety of trap in-
structions used for communication between these system programs and the user program. The processor also has
special operating modes for user programs, in which certain processor operations are prohibited to protect the
system from improper use of these operations.

One of the major functions of the virtual machine is memory management. This can take two forms:

a. The management of a scarce resource; programs larger than the available memory can be run by loading
each part of the program as it is needed.

b.  Control of a resource of increased size; although the KB11-A uses only 16 address bits (and can thus
address only 216 locations), other system components use 18 address bits (i.e., there can be 28 loca-
tions, or 4 times as many as the processor can address directly), so the processor needs some means of
specifying how the 16-bit addresses are to be mapped into the 18-bit addresses,
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The KT11-C Memory Management Unit is an option that replaces the SIB System Jumper Board to provide both
forms of memory management. By allowing a virtual address space to be mapped partly into the physical address
space, and partly (through non-resident traps) on secondary storage devices, the KT11-C Memory Management
Unit enables the KB11-A processor, with appropriate system software, to simulate a much larger available space.
This requires the use of a mass storage device on the Unibus,.as shown in Figure 1-1.

The KT11-C can also be used to map the address space of the processor onto the larger Unibus address space by
converting the 16-bit addresses to 18-bit addresses. The mapping can be changed dynamically, at any time, so
that a program can access the entire Unibus address space a part at a time,

The memory management unit also provides some of the system protection against user programs. The KT11-C
can map different programs into different parts of the physical address space, providing a different context for
each program; this is done so that both user mode and system programs can be in the memory at the same time,
without conflict. In addition, the KT11-C Memory Management Unit provides various types of access protection
to prevent a user from inadvertently altering or destroying valuable data.

When the memory management system is used to control scarce resources, large blocks of data must be trans-
ferred between a mass storage device and the memory. To prevent these transfers from using too large a part of
the processing time, the mass storage device is allowed to conduct the transfers without processor intervention,
using the Unibus. The KB11-A processor arbitrates the use of the Unibus, so that the data transfers between the
mass storage device and the memory are interleaved with the data transfers between the processor and memory.
The mass storage device uses interrupts to inform the processor when the transfer is completed or when an error
occurs.

The control section of the MS811 Semiconductor Memory System has two data transfer ports. One is used by the
KB!1-A processor, and the other is connected to Unibus B, so that a mass storage device can transfer directly to
the MS11 memory. The PDP-11/45 System makes use of the two data paths to reduce the interference between
the mass storage device and the processor on the Unibus, This is done as follows:

a. When the mass storage device is using the Unibus to transfer to, or from, Unibus memory, the processor
can transfer to, or from, MS11 memory without conflict.

b.  There can be up to two memory controllers in the MS11 memory system; when the mass storage de-
vice is operating with one controller, the processor can operate with the other.

These considerations can greatly reduce the system overhead by allowing both the processor and the mass storage
device to operate at maximum speed most of the time. In expanded systems, bus swiiches can be used to further
improve the capacity for simultaneous operation.

1.1.4 Expanded Systems

The elements that distinguish a PDP-11/45 System have all been introduced in the three preceding paragraphs.
These elements are the following:

the KB11-A Central Processor Unit

the MS11 Semiconductor Memory System
the FP11 Floating-Point Processor

d. the KT11-C Memory Management Unit

oo

All PDP-11/45 Systems include the KB11-A; however, all other components are optional.

In addition to these components, a PDP-11/45 System can include any Unibus device or memory, and can be
structured to have more than one Unibus.



A bus switch can be used to separate the Unibus into two parts. Normally, the system operates with the two
parts connected; however, after a data transfer operation has been started between the mass storage device and
the MS11 memory, the bus switch is opened so that the KB11-A processor can transfer data to, or from the Uni-
bus memory without conflicting with the transfers of the mass storage device. This improves the parallel opera-
tion described in Paragraph 1.1.3.

The system shown in Figare 1-1 uses a more-complex bus switch to connect the KB11-A processor and a second
processor to a third shared Unibus. In this multiprocessor configuration, both processors can access the MS11
Semiconductor Memory System, and both processors can control devices on the shared Unibus. One application
for this structure is to have the second processor control the main mass storage device in the system, performing
optimization programs and error recovery. This relieves the KB11-A processor of much of the burden of the
memory management and program swapping functions, thereby allowing the KB11-A to proceed with data pro-
cessing at maximum efficiency.

1.2 FUNCTIONAL DESCRIPTION

The basic functions performed by the KB11-A processor include the following;:

manipulating data

transferring data among other devices
fetching and executing instructions
responding to asynchronous conditions

oo o

1.2.1 Data Manipulation

Figure 1-2 is a functional block diagram which iltustrates the structure of the KB11-A processor data paths. The
data manipulation elements can perform arithmetic, logic, and shift operations on data from various sources, and
the result of each data manipulation can be distributed to various destinations. The primary area for the storage
of data in the processor is the general registers, which are used to store data and address constants. Another regis-
ter that is connected to the data manipulation elements is the bus register (BR); this register is a central point in
the data paths because all data that enters the processor from other devices enters through the BR, and all data
that is transmitted from the processor to other devices is transmitted from the BR.

DATA FROM

EXTERRAL
DEVICES {} \/L
SPECIAL BuUS DATA GENERAL
REGISTERS REGISTER MARIE L ATON REGISTERS

R J[ ﬁ_

DATA TO
EXTERNAL <
DEVICES

1H-£022

Figure 1-2 Data Paths, Functional Block Diagram

1.2.2 Transferring Data

Data transfers between devices in a PDP-11/45 System take place on the Unibus or for certain devices, connect
directly to the processor (the KT11-C, the FP11, and the MS11 system) on an internal bus or Fastbus. These
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buses are part of the processor. Some Unibus data transfers occur without processor intervention; they are per-
formed by devices that can become Unibus master and can directly provide address and control information. For
most simpler devices (especially memories) and for devices on the Fastbus, the KBI1-A processor controls the
data transfers and provides address and control information.

The KB11-A processor provides address information from the general registers; the control signals for data trans-
fer are provided by the control section of the processor, All data that enters and leaves the processor does so
through the BR register. Data transfers can be combined with data manipulation; most PDP-11 instructions pro-
vide the ability to operate directly on data from other devices (such as memory), and to return the data to the
devices in the same instruction.

1.2.3 Handling Instructions

The users specify the data manipulation and transfer operations that the KB11-A processor is to perform by a
series of instructions. The instructions are stored in the memory of the PDP-11/45 System and can be trans-
ferred as data. Each instruction, in turn, must be transferred from the memory to the processor, where it is de-
coded and used to guide the processor in executing a series of operations.

Figure 1-3 illustrates the control section of the KB11-A processor on a functional block diagram level. The con-
trol logic of the processor produces control signals which cause vatious operations in the data paths of the proces-
sor, and are external to the processor on the Unibus and Fastbus. The states of these control signals are selected
by various inputs. The inputs that are most important in determining the sequence of operations executed for
any instruction are the inputs from the data paths and from the instruction register (IR).

FROM SPECIAL FROM DATA TO DATA

REGISTERS PATHS PATHS
INSTRUCTION /\'
REGISTER
FROM
CONTROL
i N R
EXTERNAL <

DEVICES

1-1021

Figure 1-3 Control Section, Functional Block Diagram

The data paths’ inputs are selected information about the data that is currently being processed. These inputs are
used as conditions to determine which variation of the instruction sequence should be used. The IR register is
loaded from the same inputs as the BR; however, the outputs of the IR are used only for instruction decoding,
and the IR is loaded only when the data has been fetched specifically as an instruction (i.c., the contents ol the
IR are seldom changed when the BR is loaded).
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1.2.4 Handling Asynchronous Conditions

The KB11-A processor responds to various types of asynchronous. conditions. In general, the response of the
processor is to store the current operating context (the processor status and the address of the next instruction of
the current program, as well as the operating mode and register set selection), load a new context, and then begin
executing a service program for the recognized condition. The service program begins at an address specified in
the new context information.

This response to asynchronous conditions is controlled by a sequence of signals generated in the control section
of the processor. The control section produces this sequence when certain inputs are recognized, provided that
the processor is in a state where the response is allowed (many asynchronous conditions are ignored until the
processor has completed an instruction). The inputs to the control section that are important for recognizing
these conditions are the inputs from devices external to the processor and the inputs from the special registers.
The special registers are treated by the KB11-A processor as external to the processor; they are loaded from the
BR and read into the BR. These registers include the stack limit and programmed interrupt request registers
which contribute signals used by the control section of the processor to determine what asynchronous conditions
exist. The processor status register is also included in the special registers; it is used by the control section to de-
termine the asynchronous conditions to which the processor should respond.






CHAPTER 2

ADDRESS MODES AND INSTRUCTION SET

This chapter summarizes the KB11-A Central Processor Unit address modes and instruction set. Its purpose is to
define the KB11-A and provide tabular, quick-reference information, A complete description of KB11-A address
modes and instructions, with additional details and examples, is provided in the PDP-11/43 Processor fHandbook.

Instruction Set Processor (ISP) notation is used to define the processor operations for cach address mode and in-
struction. Table 2-1 defines the modified ISP symbology used in this chapter. Appendix A of the PDP-1]/45
Processor Handbook provides a more detailed description of 15P notation.

Table 2-1
ISP Symbology
Symbol Definition
() Defines the limits of an expression, such as word length (15:0).
[1] Defines the limits of a memory declaration; Mw [SP] specifies the address of the
stack pointer in memory.
~ The expression to the left of this symbeol is replaced by the expression to the right
of this symbol,
Z < 1 indicates the Z bit is set,
PC «< PC + 2 indicates the program counter register (PC) is incremented by 2.
cat Indicates concatenation; registers to the left and right of this expression are consid-
ered to be 1.
equiv Designates that expressions to the left and right are equivalent,
& Logical AND
OR Logical inclusive-OR
~ Negate
XOR Logical exclusive-OR
’ Indicates that a reference to the expression with which this symbol is used may
cause side effects, e.g., registers may be changed as a result of the operation.
; Used as a delimiter
;next A sequential delimiter, the operation to the left must occur before the operation to
the right.
m Designates an address mode; address mode 1 is indicated by m = 1,

(continued on next page)



Table 2-1 (Cont)

ISP Symbology
Symbol " Definition
e General register 7 (program counter)
ai Auto-increment; by 2 for word instructions, and by 1 for byte instructions.
r Indicates a result; used many times with limit symbols as an intermediate registcf
(r(15:00).
+ Addition; expression to the left is added to expression to the right.
- Subtraction; expression to the right is subtracted from expression to the left.
X Multiply ; expression to the left is multiplied by expression to the right,
/ Divide; expression to the left is divided by the expression to the right.
sign-extend The sign bit of a byte, bit 7, is extended through bits 8 to 15.
Mw Memory word declaration; the address in brackets points to the memory location.
nw’ Indicates next word, as pointed to by the PC with side effects (*). The word is at
the next sequential PC address, or the word pointed to by the next word (deferred
addressing).
R [dr] Indicates that a register (R) address as a memory declaration is that of a device
register.
D Destination
Db By te destination
S Source
Sb Byte source

2.1 ADDRESS MODES

The instruction set of the PDP-11/45 implements the flexibility of the general purpose registers through the ad-
dress modes. Table 2-2 lists all the address modes, including the program counter (PC) register address modes.
These address modes, along with the general purpose register designation, determine the instructions’ operands
(source and/or destination) and form part of the 16-bit instruction format (Figure 2-1).



Table 2-2

Address Modes
Mode Designation Symbolic ISP Description
General Purpose Register Addressing
0 register R if (m=0) then Rr (w!l:0}; The register (R, Rr) is the opcrand.
1 register @R or (R) | if (m=1)thcn M[Rr]; Defer to operand through register
deferred (R, Rr) as addrcss.
2 auto-increment | (R)+ if (m=2) and (rg#7) then Defer to operand through register
(M[Rr]; next (R, Rr) as address, then increment,
Rr < Rr + ai);
3 auto-increment | @(R)+ if (m=3) and (rg#7) then Defer to operand through (R), Mw
deferred (M{Mw [Rr]]; next [Rr] as address, then increment
Rr+«Rr+2; register (R, Rr).
4 auto-decrement | ~(R) if tm=4) then (Rr < Rr - ai); | Decrement register (R, Rr), then defer
next M[Rr]; to operand through register (R, Rr) as
address.
5 auto-decrement [ @-(R) if (m=5) then (Rr < Rr - ai; | Defer to operand through (R), Mw
deferred next M[Mw[Rr]]),; Rr after decrement of register (R, Rr).
6 indexed £X(R) if (m=6) and (rg#7) then Index via register = (R, Rr) by the
M[nw’' + Rrl: amount specified in next PC word (X).
7 indexed @t X(R) or} if (m=7) and (rg#7) then Defer to operand through index of
deferred @(R) M[Mw[nw’ + Rr]]: register (R, Rr) specified in next PC
word (X) as address.
PC Register Addressing
2 immediate #n if (m=2) and (rg=7) then Defer to operand through PC value
nw’ (wl:0} (next word); next word is immediate
operand.
3 absolute @H#A if (m=3} and (rg=7) then Defer via next word (PC address) as
M[nw’] address to operand; absolute address-
ing.
6 relative A if (m=6) and (rg=7) then Relative to PC; uses next word as de-
M[nw’ + PC]; ferred address of operand.
7 relative @A if (m=7) and (rg=7) then Defer relative to PC; uses next word as
deferred M[Mw[nw +PC]]; address of deferred address of the op-

erand.

NOTE: The following symbols are used in this table:

R = Register
X, n, A = next program counter (PC) word (constant)




2.2 KBI11-A INSTRUCTIONS
The KBI11-A instruction set is divided into the following six groups of instructions:

a.

b.

e * blsd

I j MODE ; ¢ I An |
8 s, F e 1 2 s,
op 6ODE ———F . T

DESTINATKON ADDRESS

#=SPECIFIES DIRECT OR INDIRECT ADDRESS
¥ =SPECIFIES HOW REGISTER WILL BE USED
%% =GPECIFIES ONE OF B GENERAL PURPOSE REGISTERS

Wa W Xk W
l 0F CODE ]moe]o R wooE i@ | #n I
® . W 9 8 &0 4.3 % T,
SOURCE ADDRESS — 1

OESTINATION

M=DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
%%»SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED
HMSPECIFIES A GENERAL REQISTER

Figure 2-1 Single and Double Operand Address Modes

Double Operand — Arithmetic, logical, and move instructions are included in this group (Table 2-3).

Register and Operand — Multiply, divide, and arithmetic shifts that specify a register, and an operand,
are included in this group (Table 2-4).

Single Operand — Shifts, multiple precision instructions, and rotates are in this group (Table 2-5).

Program Control — This group includes all the instructions that explicitly change the PC and processor
status word (PS), such as branches, subroutines, and traps (Table 2-6).

Operate Group — The processor control instructions such as Halt and Wait are included in this group

Condition Code Operators — This group includes the instructions that clear and set the PSW condition
codes (Table 2-8).

The format of each group of instructions is illustrated in Figure 2-2.

In addition to these instructions, the KB11-A decodes all floating-point instructions that are executed by the
FP11-B Floating-Point Processor. The floating-point instruction set is described in the FP} [ Floating-Point Pro-

cessor Maintenance Manual, DEC-11-HFPA-D.
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Single Operand Group

Double Operand Group
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Figure 2-2 Instruction Formats



Table 2-3
Double Operand Instructions

Mnemonic
Instruction ISP Notation Description
and Op Code
MOV r < §7; next Move source to intermediale register, r.
Move N« r{15 Set N if negative.
{Sic to Dst) if (r{15:0) = Q) then (Z < | else Z + 0), Set Zif 0.
01SSDD Vo Clear V.
D+ Transmit result to destination.
MOVB r < Sb’; next Move source to intermediate register, 1.
Move Byte N1 Set N if negative.
{Src to Dst) if (r (7:00=0) then (Z + 1 else Z < 0), Set Zif 0.
11SSDD Ve Clear V.
Db’ <1 Transmit result to destination.
CMP r{16:0 « § - D’; next Source and destination operands are compared, but unaffected.
Compare Only condition codes are affected, as follows:
(Stc to Dst) N« 115 Set N if r is negative.
0288DD if (r {15:00 = 0) then (Z < 1 else Z < O); SetZifris Q.
(S5 =~D5N & (515 XOR r (15} then | Set V if operands have opposite signs and the sign of the source
(V+1else V<O) is the same as the result, r.
C+r{l® Set C if 17th bit is carry.
CMPB r{8:0)« Sb’ - Db’; next Same as CMP, except operands are bytes.
Compare Byte| N« (7
1255DD if (r (7:00 =0) then (Z « 1 else Z < 0);
if (Sb (7} =~ Db (7) & (Sb {7 XOR 1 {7) then
(V< 1lelse V<0);
C+1r(®
BIT r< D’ &S next Logical AND of source and destination operands.
Bit Test N« {15 Set N if negative.
03SSDD if (r {15:00 = 0) then (Z < 1 else Z < 0); Set Zif 0.
V<0 No overflow.
BITB r < Db’ & Sb’; next Same as BIT, except byte
Bit Test, N+ {?;
Byte if (x (7:0) =0} then (Z + 1 else Z <+ 0);
1388DD V<o
BIC t< D &~ 8§ next AND destination operand with complemented source operand.
Bit Clear N<r1{l5; Set N if negative.
0455DD if(r (15:0»=0) then (Z < 1 else Z < 0); Set Zif 0.
V<0 Clear V and put result in
Der destination address.
BICB 1+ Db’ & ~ 8b’; next | Same as BIC, except byte.
Bit Clear, N<«r{h;
Byte if (r {7:0) = 0) then (Z < 1 else Z + 0);
148SDD V <0;

Db+r

(continued on next page)



Table 2-3 (Cont)
Double Operand Instructions

Mnemonic
Instruction ISP Notation . Description
and Op Code
BIS 1 <D’ OR §'; next Inclusive OR of source operand and destination operand.
Bit Set N« {15) Set N if negative.
0588DD if (r (15:00=0) then (Z + 1 else Z < 0); Set Ziif 0.
V0 Clear V.
D+t ‘Put result in destination.
BISB r + Db’ OR Sb’; next Same as BIS, except byte.
Bit Set, Byte | N<r {7
158SDD if (r {7:00 = Q) then (Z < 1 else Z = 0);
Vi
Db+r
ADD r{16:0)« 8 + D', next Add source and destination to provide 17-bit sum.
Add N+r{l5; Set N if negative result.
068SDD if (r {15:00 = 0) then (Z < 1 ¢lse Z « 0); Set Zif 0.
f (815 equivD{15) & (S{15YXOR r {15) Set V if both operands were same sign and the result is of
then (V + 1 else V < 0); opposite sign.
C+r{la) Set Cif carry.
D «¢{15:0} Put result in destination.
SUB t{16:0) < D~ §'; next Subtract source operand from destination operand.
Subtract N« r{l5); Set N if negative results.
16SSDD if (r (15:00 = 0) then (Z < 1 else Z < Q); Set Zif 0.

if (D{15) XOR §{15) & (D {15} XOR r {15))
then (V < 1 else V < 0);

C+r{l6)

D+r1r (150

Set Vif operands had different signs and result is opposite
sign from destination.

Set C if a carry.

Put result in destination.




Table 24
Register and Operand Instructions

if ((R[sr] (15) = 0) & (x (79:48)5= 0) OR
(R[sr] (15> =1) & (1 (79:48) # - 1)) then
(V+1else V<0);

N < R[sr] {15%

(D {Sy=1)then C +r 31);

if (D {5)=0) & (D (5:0) # 0) then
C+ra8)y,

if(DG:00=0)thenC+0

Mnemonic
Instruction ISP Notation Description
and- Op Code
MUL r 31:0y« ¥ X Rsr]; next Muitiply contents of source register and destination to form
Multiply . 32-bit product.
QO70RSS if {r 31:0) =0) then (Z + 1 else Z « 0); Set Z if product is 0.
N < r31); . Set N if product is negative.
if (r G31:00<-2B) OR (r 31:0) > 2%) then Set C if product is more than 16-bit result.
(C+lelse C+ Q) ) - .
V<, - No overflow possible; clear V.
R[sr] (15:0) <1 31:16); next Store the high-order result in R.
Rfsr OR 1] <15:00 < {15:0); Store the low-order result in succeeding register if R is even
number. Otherwise, store in R.
DIV rl {31:0 < R[sr] cat R[sr OR 1]/D’; next- The 32-bit dividend, R, R OR 1, is divided by source operand
Divide . D. R must be even number.
071RSS r2{15:0) < R[sr] cat R[sr OR 1] -(r1 X D); Determine the remainder.
next N «r] {15, Set N if quotient is negative.
if(r1431:00=0) then (Z < 1 else Z < 0); Set Z if quotient is 0.
if(D=0)then (C+ 1 else C « 0); Set C if divide by 0 attempted.
if(r1 {15 =0)&(r1 31:16)#0) Set V if divisor is O, or if the result is too large to be stored
OR as a 16-bit number.
FElUD =1)& ¢l G1:16#-1)
OR
if (D =0) then (V< 1 else V+Q);
Rfsr] < rl {15:0) Store quotient in R.
Rfsr OR 1] <12 Store remainder in ROR 1.
ASH 1 {79:0) < sign-extend (R[sr] (15:00X 2 ¢ Contents of R are shifted NN places right or left, where NN
Arithmetic (D’ {(5:0) + 32) mod 64); next equals the six low-order bits of DD.
Shift NN =-32 to +31.
072RDD R[st] {15:00 < r (47:32); next Store result in R,
if (R[sr] = 0) then (Z « 1 else Z « 0); Set Z if result is 0.

Set V if sign of register changed during shift.

Set N if result is negative.
Load C from last bit shifted out of register.

(continued on next page)



Table 2-4 (Cont)
Register and Operand Instructions

Mnemonic
Instruction ISP Notation Description
and Op Code
ASHC r (95:0) < sign-extend (R[sr] cat R[sr OR 1] X | Contents of R, and R ORed with 1, form a 32-bit word (R =
Arithmetic 2 1(" {5:0) + 32) mod 64); next 31:16, ROR 1 = 15:0) that is shifted right or left NN places,
Shift specified by six low-order bits of destination operand, DD,
Combined Risr] < r {63:48); next Storc results in Rand ROR 1.
073RDD R[sr OR 1} < r @7:32); next
if (R[sr] cat R[sr OR 1] =0) then (Z « 1 else Set Z if result is O.
Z<0); R
N« R[sr] {15); Set N if result is negative.
if (r 63>=0) & (r (95:64)# 0) OR Set V if sign bit changes during the shift.
if (r (63 # 0} & (r (95:64) # - 1) then
(V+1else V<Q)
if (DSy=1)thenC « r 31% Load C with high order if left shift,
if (D {5y =0) & (D (5:0; # 0) then Load C with low order if right shift,
C < ried,
if(DGE:0=0)thenC <0 Otherwise, clear C.
XOR r < R[sr] XOR D*; next The exclusive-OR of the register and the destination operand
Exclusive-OR is stored in the destination address.
074RDD if (t =0} then (Z < 1 else Z <+ 0); Set Z if result is 0.
N<r{l5; Set N if result is negative.
V0 Clear V; no overflow possible.
Rlsr] «r '
SOB r< R[sr] -1; next Decrement register by 1. If result is not equal to 0, branch.
Subtract Rsr] «r;
One and if (r # ) then (PC < PC -2 X df {5:09) Subtract 2 X 6-bit offset from PC to get new PC,
Branch
077R offsct
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Table

2-5

Single Operand Instructions

Mnemonic
Instruction ISP Notation Description
and Op Code
CLR D'« 0; Clear destination, N, V, and C; set Z.
Clear dst N+« 0;
0050DD Z+1;
V<0,
C<0
CLRB Db’ < 0; Clear destination byte.
Clear Byte dst | N< O
1050DD Z+1;
V<0,
C+0
COM 1<~ D’ next Complement destination.
Complement | N« (15} " | 8Set N if negative.
dst if (r {15:00=0)then Z < L else Z « 0); Set Zif Q.
0051DD V< Clear V.
C+1; Set C.
D+t Put result in destination.
COMB r < ~Db’; next Same as COM, except byte.
Complement | N« (7
Byte dst if (r (7:0 = 0) then (Z < 1 else Z < 0);
1051DD Ve
C+«1;
Db+1
INC r<IX+];next Resutt is sum of D plus 1.
Increment dst | N« {15 Set N if negative.
0052DD if (r {15:00=0) then (Z « | else Z < Q); Set Zif O,
if (7 {15:0) = 1000005} then (V « 1 else V < 0); | Set V if result equals 100000, (dst was 077777,).
D+r Put result in destination.
INCB 1< Db’ + [;next Same as INC, except byte.
Increment N <1 {7
Byte dst if (r {7:0) = 0) then (Z « 1 else Z «+ 0);
1052DD if (r (7:00=200) then (V < 1 else V < 0); Set V'if result equals 200, (dst byte was 177;).
Db+r
DEC r < D’ -1; next Result is destination operand minus 1.
Decrement N« r{15) Set N if negative.
dst if (r {15:0) = 0) then (Z + 1 else Z < 0}, SetZif 0.
0053DD if (r {15:00 = 77777) then (V< lelse V<0); | SetVifresult equals 77777 (dst was 100000,).
D+r Put result in destination.
DECB r+ Db -1;next Same as DEC, except byte.
Decrement N+r{?;
Byte dst if (r {7:0 = Q) then (Z < 1 else Z < Q);
1053DD if (r (7:0) = 177 ) then (V + 1 else V < 0); Set Vif result is 177, (dst byte was 000,).

Db<r

2-10
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Table 2-5

(Cont)

Single Operand Instructions

Mnemeonic
Instruction ISP Notaticn Description
and Op Code
NEG r<-D’; next Negate D by 2’s complement,
Negate dst N<r{l5; Set N if negative result,
0054DD if (r{15:0) = Q) then (Z < 1 else Z < 0); Set Z if 0.
if (r{15:00= 100000,) then (V + 1 else V < 0); [ Set V if destination operand was 100000,.
if (r {15:0) = 0) then (C = Q else C < 1), Clear C if result is 0, otherwise set C.
D<r Put result in destination.
NEGB r +<-Db’; next Same as NEG, except byte.
Negate Byte N<{?;
1054DD if (r{7:00=0) then (Z < 1 else Z < 0);
if (r {7:0) = 2004 ) then (V « I else V< 0);
if (r ¢7:00=0) then (C + Oelse C + 1);
Db «r
ADC 1< D’ +C; next Add the C bit to the destination.
Add Carry N<r{lsky Set N if negative.
0055DD if (r {15:0) = 0) then (Z < 1 else Z+ 0); Set Z if 0.
if(r{15:Q = 100000,) & (C=Dthen(V<1 Set V if destination was 077777 and C was 1.
else V < 0); next
if (r{15:00=0)& (C=1) then (C « 1 else Set C if destination was 177777, and C was 1.
C<oy
D+<r
ADCB 1 < Db’ + C; next Same as ADC, except byte.
Add Carry N1 (P
Byte if {r {7:0> = 0) then (Z + 1 else Z < 0);
1055DD if (r(7:00 = 2005} & (C = 1) then (V < 1 else
V < 0); next
if (r{7:0y=0) & (C = 1) then (C+ 1 else C<0);
Pb<r
SBC t < D’ -C; next Subtract € bit from contents of destination.
Subtract N<r{15; Set N if negative,
Carry if (r{15:0)=0) then (Z < 1 else Z < 0); Set Zif 0.
0056DD if (r {15:0) = 100000,) then (V + 1 else V + 0); [ Set V if result is 100000,
if (r{15:0) = 0) & (C=1) then (C + O else Clear Cif result s Qand C=1.
Ce1y
Der Put result in destination.
SBCB 1< Db’ -C; next Same as SBC, except byte.
Subtract N« (7
Carry Byte if (r (7:0y=0) then (Z « 1 else Z < 0);
1056DD if (r (7:00 = 200, ) then (V + 1 else V < Q);

if (£ 7:00= 0) & (C = 1) then (C « O else C < 1);’
Db <1y

2-11
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Table 2-5 (Cont)
Single Operand Instructions

if (N XOR C) then (V < 1 else V< 0);
D<r

Mnemonic
Instruction ISP Notation Description
and Op Code
TST r <D’ =0; next Sets N and Z condition codes according to contents of
Test destination address.
0057DD Ner{s; ‘
if (r (15:00 =0) then (Z < 1 else Z < 0);
Ve
C+0
TSTB r < Db’ -0; next Same as TST, except byte,
Test Byte N<r{
1057DD if (r {7:0y=0) then (Z < 1 ¢lse Z < 0);
V<0
C <0
ROR r {16:0} < D’ {0) cat C cat D’ {15:1); next 17-bit intermediate result is C and contents of destination
Rotate Right rotated right one place.
0060DD N<r{l5); Set N if high order bit is set.
if (r {15:00 = Q) then (Z « ] else Z< 0); Set Z if result is Q.
C cat D (15:0) < 1 {16:0); next Put 17-bit result into C bit and destination.
if (N XOR C) then (V « ] else V < 0) Load V with exclusive-OR of N and C (after rotation is
complete).
RORB 1 {8:0} < Db’ (0) cat C cat Db’ (7:1}; next Same as ROR, except byte.
Rotate Right | N«1{7);
Byte if (r {7:0)=0) then (Z < 1 else Z < Q);
1060DD C cat Db < r (8:0); next
if (N XOR C) then (V « 1 else V< 0)
ROL r{16:0) « D*{15:0) cat C; next 17-bit result is C and contents of destination rotated left one
Rotate Left bit.
0061DD N+<r(15) Set N if result is negative.
if (r 15:0)=0) then(Z+ 1 else Z « 0); Set Z if result is 0.
Ccat D < r {16:0); next Put result into C and D. Bit 15 into C bit and previous C bit
into bit 0.
if (N XOR C) then (V < 1 else V < 0} Load V with exclusive-OR of N and C after rotation is
complete.
ROLB r (8:0) + Db’ {7:0) cat C; next Same as ROL, except byte.
Rotate Left N+
Byte if (r {7:00 = 0) then (Z+ 1 else Z < 0);
1061DD C cat Db < 1 {8:0); next
if (N XOR C) then (V < 1 else V< 0)
" ASR r < D’/2; next Contents of destination shifted right one place (= 2).
Arithmetic C<D{ Least-significant bit loaded into C.
Shift Right N<«r15),; Set N if result negative.
0062DD if (r {15:0)= 0 then (Z < 1 else Z + 0); next Set Z if result 0.

Load V with exclusive-OR of N and C after shift is complete.
Put result into destination.

2-12
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Table 2-5 (Cont)
Single Operand Instructions

Mnemenic
Instruction ISP Notation Description
and Op Code
. ASRB t < Db’f2; next Same as ASR except byte.
| Arithmetic C + Db O,
! Shift Right | N«r(T;
,': Byte if (r {7:00 = Q) then (Z <« 1 else Z < 0); next
i 1062DD if (N XOR C) then (V < | else V< 0);
‘ Db<r
‘i\ ASL r < D' {15) cat D’ {13:0) cat O; next Shifts contents of destination left one place, butms_ig*nﬂlzi_tm
| Avithmetic oS In Tost SETIGERTIag
! Shift Left C < D (14; next "Bit M4 loaded ST
0063DD N<+1 {15k Set N if result negative.
if (r {15:0) = 0) then {Z < 1 else Z < O): next Set Zif result 0.
if (N XOR C) then (V < 1 else V< 0); Load V with exclusive-OR of N and C after shift completed.
. D<r Put result in destination.
: ASLB r < Db’ (7 cat Db’ (5:0) cat 0; next Same as ASL, except byte.
Arithmetic C «< Db {6); next
: Shift Left N+ {7
: Byte if (r (7:00 = 0) then (Z < 1 else Z < 0); next
i 1063DD if (N XOR C) then (V « 1 else V < 0);
bt Db «r
MARK SP < 8P + (2 X df (5:00); next Adjusts stack pointer by the number of words indicated in the
Mark low 6 bits of the instruction {2 X nn locations).
00641in PC < R[5] ;next Puts old PC (R5) into PC.
R[5] <« Mw [SP]; Contents of old RS popped into RS5.
SP+<SP+2
MFPL r < D' next Get destination operand from previous I space.
Move From SP+SP-2; Push stack.
Previous N<+ 15, Set N if negative.
Instruction if (r {15:0) = 0) then (Z < 1 else Z < 0}, Set Zif 0.
Space V0 Clear V.
0065DD Mw [SP] <t Put operand into current address space.
MFFD t < D’; next Get destination operand from previous D space.
Move From SP < SP-2; Push stack.
Previous N+r{15; Set N if negative.
Data Space if (c {15:00=0) then{Z < 1 else Z < 0); Set Zif 0.
1065DD V<, Clear V.
Mw [SP] «r Put operand into current address space.
MTPI r+Mw [SP]; Get data from current stack.
Move To 8P + SP + 2; next Pop stack.
Previous N<r(15); Set N if negative.
Instruction if (r {15:0» = Q) then (Z < 1 else Z + 0); Set Z if 0.
Space V<0 Clear V.
0066DD D'+ Move to previous I space destination.

(continued on next page)
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Table 2-5 (Cont)
Single Operand Instructions

Mnemonic

Instruction ISP Notation Description
and Op Code
MTPD r < Mw [SP]; Get data from current stack.
Move To SP <SP + 2; next Pop stack,
Previous N<«r{15h Set N if negative.
Data Space if (r{15:00=0) then (Z+ L else Z < 0); SetZif 0,
1066DD V0 Clear V.

DPer Move to previous D space destination,

SXT if (N = 1) then (r {15:0) < —1 else r {15:00« 0); | If the N bit is set, then - 1 is placed in the destination operand.
Sign Extend next Otherwise, 0 is placed in the destination operand.
destination if (r (15:00 = 0) then (Z < 1 else Z < Q); Set Z if result is 0.
0067DD D’ «r
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Table 2-6
Program Control Instructions

Mnemonic
Instruction
and Op Code

ISP Notation

Description

BR

Branch
Unconditional
0004 loc

BNE
Branch
Not Equal
0010 1oc

BEQ
Branch on
Equal
0014 loc

BGE

Branch if
Greater than
or Equal (zero)
002010c

BLT
Branch on
Less Than
0024 loc

BGT

Branch on
Greater Than
0030 loc

BLE

Branch on
Less Than

or Equal {zero)
0034 loc

BPL
Branch on
Plus

1000 loc

BMI
Branch on
Minus
1004 loc

BHI
Branch on
Higher
101010c

PC < PC + sign-extend (instr (7:0) X 2)

if (Z =0) then (PC < PC + sign-extend
(instr {7:00 X 2))

if (Z = 1) then (PC < PC + sign-extend
(instr {7:0) X 2))

if (N equiv V) then (PC + PC + sign-extend
{instr {7:0) X 2))

if (N XOR V} then (PC + PC + sign-extend
(instr (7:0) X 2))

if (~Z & (N equiv V)) then (PC < PC + sign-
extend (instr (7:0% X 2))

if (Z OR (N XOR V}) then (PC < PC + sign-
extend (instr (7:0> X 2))

if (N = 0) then (PC + PC + sign-extend
(instr (7:0) X 2))

if (N = I} then (PC « PC + sign-extend
(instr (7:0) X 2))

if ~(C OR Z) then (PC < PC + sign-extend
(instr (7:0) X 2))

Always branch.

PC changed as follows:

Eight least-significant bits of instruction are multiplied times 2
and added to PC with sign extended,

Branch if Z is ¢,

Branch if Zis 1.

Branch if N is equivalent to V.

Branch if exclusive-OR of N and V equal 1.

Branch if Z not ¢ and N equals V.

Branch if Z equals 1 or if exclusive-OR of N and V equals 1.

Branch if N is 0.

Branch if Nis 1.

Branch if C and Z are 0.

2-15
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Table 2-6 (Cont)

Program Control Instructions

Mnemonic
Instruction ISP Notation Description
and Op Code
BLOS if (C OR Z) then (PC « PC + sign-extend Branch if Cor Z is 1.
Branch on (instr {7:0) X 2))
Lower or
Same
1014 1oc °
BVC if (V =0) then (PC < PC + sign-extend Branch if V is 0.
Branch on (instr (7:0) X 2))
Overflow
Clear
BVS if {V = 1) then (PC + PC + sign-extend Branch if Vis 1.
Branch on (instr {7:00 X 2))
Overflow Set
1024 loc
BHIS if (C = 0) then (PC « PC + sign-extend Branch if C is 0.
Branch on (instr (7:0} X 2))
Higher or
Same
1030 loc
BLO if (C = 1) then (PC « PC + sign-extend ‘Branch if Cis 1.
Branch on (instr {7:0) X 2))
Lower
1034 loc
JSR SP <SP -2; next Push contents of R onto stack.
Jump to Mw [SP] « R[sr]; -
Subroutine R[st] «PC Store current PC in R.
004RDD PC «+ D address Load subroutine address into PC.
RTS PC < R[dr]; Load contents of R into PC.
Return from | R[dt] «Mw [SP]; Pop stack pointer into R.
Subroutine SP+SP+2
00020R
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Table 2-7
Operate Group Instructions

Mnemonic
Instruction ISP Notation Description

and Op Code

HALT Off < true Processor halts with console in control. No aclivities or

Halt instructions can be executed until a console actions restarts

000000 the processor.

WAIT Wait < true Processor relinquishes bus and waits for an external interrupt.

Wait

000001

10T SP « 5P -2; next Push PS onto Stack.

1/O Teap Mw |SP] < PS;

000004 SP < SP-2; next Push PC onto stack.
Mw [SP] < PC;
PC + Mw {20}; Get new PC from location 20.
PS < Mw {22] Get new PS from location 22,

RESET Init < I; Send INIT on Unibus for 20 ms.

Resetl Delay (20' milliseconds); next

External Bus | [nit <0

000005

SPL PS (7:5) « df (2:0 Load three least significant bits, N, into PS.

Set Priority

Level

00023N

RT1 PC + Mw [SP]; Pop PC off stack.

Return from SP +~ SP + 2; next

Interrupt PS < Mw [SP]; Pop PS off stack.

000002 SP+SP+2 (RTI permits trace trap.)

RTT PC < Mw {SP]; Pop PC off stack.

Return from SP < SP + 2, next

Interrupt PS « Mw [SP]; Pop PS off stack.

000006 SP<SP+2 (RTT inhibits trace trap.)

EMT SP + SP-2; next Push PS onto stack.

Emulator Trap| Mw [SP] < PS;

104 Code SP< SP-2; next Push PC onto stack.

(104000 — Mw [SP] < PC;

104377} PC < Mw [30]; Get new PC and PS from locations 30 and 32.
PS « Mw [32]

TRAP SP « SP - 2; next Push PS onto stack.

Trap Mw [SP] < PS

104 Code SP« SP-2; next Push PC onto stack.

(104400 — Mw [SP] < PC;

104777) PC «Mw [34]; Get new PC and PS from locations 34 and 36.
PS « Mw [36]
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Table

2-8

Condition Code Operators

Mnemonic
Instruction ISP Notation Description
and Op Code
CLC if (instr H=08& instr {0y = 1) then C <0 When bit 4 of the instruction is Q bits 3, 2, 1, and 0 clear
Clear C carresponding bits in PS.
000241
CLV if (instr ()= 0 & instr {1 = 1) then V < 0
Clear V
000242
CLZ if (instr @ =0& instr (= 1) thenZ <0
Clear Z
000244
CLN if (instr () =0 & instr 3} = 1) then N« 0
Clear N
000250
cCcC if (instr 4 = 0 & instr (3:0) = 17) then
Clear alt (C«0;
Condition V+<0;
Codes Z<0;
000257 N+ 0)
SEC if (instr @) =1 & instr Oy = 1) then C < 1 When bit 4 of the instruction is 1, bits 3, 2, 1, and O set corre-
Set C sponding bits in PS.
000261
SEV if(instr{@® =1 & instr (1) = 1) then V< 1
Set V
000262
SEZ if(instr @) =1 & instr {2 =1) then Z « 1
Set Z
000264
SEN if (instr =1 & instr {3)= 1) then N« 1
Set N
000270
sCC if (instr (4:05 = 37) then
Set all (C+1;
Condition V<l
Codes Z <1,
000277 N+1)




CHAPTER 3
OPERATION

3.1 CONSOLE CONTROLS AND INDICATORS

The operator’s control congole is shown in Figure 3-1. Control and indicator functions are summarized in

Tabte 3-1.

ADDRESS
HSER § SUFER | LERNFL ¢ PROG PHY

HBER D SUPER O KERNCL T LONS PHY

TATA PATHE # ADRS FPP/CPY

BUS HEGISTER DEPLAY REGISTER

ADRSERR RUN PAUSE  MASTER USEH SUPER KERNEL BATA

PvARL %

1oAn
oM praw oost

Figure 3-1 KB11-A Control Console

Table 3-1
Control and Indicator Functions

Control or Indicator Function

Power Control

OFF Disconnects power from all units except semiconductor mem-
ory system.

POWER Applies power to all units. All console controls are operable.

LOCK Disables all console controls except switch register.

{continued on next page)



Table 3-1 (Cont)
Control and Indicator Functions

Control or Indicator Function
DATA Display Register 16-bit data display, source selected by data display setect switch

as follows:

DATA PATHS Displays current data output of ALU shifter.

BUS REGISTER Displays current contents of bus register A (BRA).

DISPLAY REGISTER Displays curtent contents of light register located at physical
address 777570.

uwADRS FPP/CPU Displays current floating-point processor ROM address in high

byte, and current central processor ROM address in low byte,

ADDRESS Display Register An 18-bit address display. When the KT11-C Memory Manage-
ment Unit is implemented and enabled, the displayed address is
selected by the adjacent address display select/mode control
switch as indicated in Figure 3-2:

PROG PHY Program Physical Address. Constructed by adding virtual ad-
dress bits VA {12:06) to the contents of a KT11-C page address
register (PAR) to provide physical address bits PA {(17:06.

CONS PHY Console Physical Address. After LOAD ADRS, PA (15:06
equals sum of switches (15:06) and PAR contents; PA (17:16)
equals switches (17:16).

USER I, USER D These six address display select switch positions display a 16-bit
SUPER I, SUPER D virtual address. Address bits 17 and 16 light only if address bits
KERNEL I, KERNEL D {15:13) are lit.

These positions provide console control of the processor mode
(kernel, supervisor, user) I or D space. The same address infor-
mation is displayed for each position.

Switch Register An 18-bit switch bank used to load addresses or data, depending
upen whether LOAD ADRS or DEP switch is operated. The
contents of the switch register are accessed by the processor in
kernel mode at physical address 777570,

LOAD ADRS Loads switch register contents into program counter (PCA). If
KT11-C is not implemented, switch register bits {17:16) are not
used.

EXAM Displays contents of current ADDRESS display (CONS PHY)

in the DATA display. Each consecutive time EXAM is pressed,
the ADDRESS display increments by 2 and the contents of the
next word location are presented on the DATA display.

CONT Causes the processor to continue operation from the point at
which it stopped. Function depends upon ENABL/HALT and
S INST/S BUS CYCLE as follows:

If ENABL: CONT returns bus control from console to the processor and
program operation continues,

(continued on next page)



Table 3-1 (Cont)

Control and Indicator Functions

Control or Indicator

Function

If HALT:

ENABL/HALT

S INST/S BUS CYCLE
START
If ENABL:

If HALT:
DEP

REG EXAM
REG DEP

ADRS ERR

RUN
PAUSE
MASTER
USER

SUPER

Pressing CONT causes processor to execute a single instruction,
if S INST, or continue until a bus cycle has been completed, if
S BUS CYCLE.

ENABL allows processor to run in normal operation. The HALT
position halts the processor and passes control to the console,
HALT affects CONT and START switch functions as described
for those switches,

Allows the processor to step through program operation cither
oné instruction at a time (8 INST), or onie bus cycle at a time
(S BUS CYCLE).

Function depends on ENABL/HALT switch position, as follows:

Pressing START provides system clear and initiates processor
operation at address ¢stablished by LOAD ADRS function.

Provides system clear only,

When lifted, deposits current contents of the switch register into
the location indicated by the ADDRESS display. Each time
DEP is lifted in succession, the location is incremcented by 2 and
the switch register contents are deposited into the next word
location.

Displays contents of the gencral register specified by the four
low-order bits of the ADDRESS display.

Deposits contents of the switch register into the general register
specified by the four low-order bits of the ADDRESS display.

Indicates one of the following abort-condition errors has been
detected:

odd address error

fatal stack violation
non-existent memory addressed
parity error

memory management

s oo gp

Indicates processor is executing program instructions. Indicator
not lit in pause cycle, or while console flag is set.

Indicates processor is in pause cycle, waiting for completion of
Unibus or Fastbus transaction.

Indicates processor is in control of Unibus as master device or in
console mode.

Indicates processor is in user mode. When KT11-C option is en-
abled, all addresses are in user virtual address space.

Indicates processor is in supervisor mode, When KT11-C option
is enabled, all addresses arc in supervisor virtual address space,

(continued on next page)
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Table 3-1 (Cont}
Control and Indicator Functions

Control or Indicator Function

KERNEL Indicates processor is in kernel mode. When KT11-C option is
enabled, all addresses are in kernel virtual address space.

DATA Indicates last memory address reference was D space when lit,
If not lit, last memory address reference was I space.

17 16 15 06|05 00
L) L}
PROG PHY ——— PAIT:06> ——-—'j-‘—VA <05:00> —-I
L
. LN »
VA<12:06> PLUS (PAR) PROCESSOR

BAMX <05:00>

17 16 (15 061056 00
T
CONS PHY | , | PA <15:06 > —————wpa—VA <05100>—j
. ~ N ;
VA<12:06>PLUS (PAR) PROCESSOR
BAMX <05:00>
CONSOLE SWITCHES 17,16

AFTER LOAD ADDRESS

USER, SUPER, 17 16| 15 oo

CR KERNEL, '
10R D POSITIONS 1

-———————VAL15:1 00 ————

— A ’
PROCESSOR
BAMX <15:00>
BITS 17,16 = EX MEM FLG

EX MEM FLG = BAMX <15:13> H=1
1n-0843

Figure 3-2 Sources of ADDRESS Display with
KT11-C Memory Management Unit

3.2 POWER ON

When the console power control switch is turned from OFF to POWER, all internal registers. and buses are initial-
ized. A 70-ms delay allows time for magpetic core memory power to stabilize, Power distribution to the MS11
Semiconductor Memory System is not affected.

The power-up initialization logic forces the central processor ROM address to ZAP.00 (CPU pADRS 200). At
that point, the sequence of microprogram-controlled events is determined by the setting of the ENABL/HALT
switch on the console.

3.2,1 ENABL Function

When powet is turned on at the console with ENABL/HALT set to ENABL, the processor executes the power-up
microprogram sequence and halts at the address determined by the start vector. The start vector is determined
by jumper connections on DAP Module M8100. On most processors, the jumpers are cut so that the processor is
vectored to virtual address 24, , which is the power-fail trap location. For those processors, the ADDRESS
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display will be 30. When the console START switch is pressed, the processor will execute program instruc-
tions, starting at that location.

3.2.2 HALT Function

When power is turned on at the console with ENABL/HALT set to HALT, the processor is forced to ZAP.00 and
then branches to CON.00 (CPU yADRS 170). The processor remains at rest in the CON.00 microstate until a
console control function is injtiated. The functions of the console switches are described in the following para-
graphs,
NOTE
If the START switch is pressed while ENABL/HALT is in HALT
position, a console reset occurs. As a result, the processor is sus-

pended in ZAP.00 and the timing generator is cleared. As soon as
the START switch is released, the processor reverts to CON.00.

3.3 CONSOLE OPERATIONS

This paragraph provides additional information on console operations related to processor functions described in
Chapter 6.

3.3.1 HALT Switch Functions

If the HALT switch is pressed while the processor is running, the console flag is set, causing the processor to enter
a rest state at microstate CON.Q0, at location 170. This microprogram ROM address is displayed in the low byte
of the DATA display when the data display select switch is set to pADRS FPP/CPU, Succeeding operations de-
pend upon console control settings.

3.3.1.1 HALT/CONT with S INST — With the § INST/S BUS CYCLE switch set to S INST, the processor will
execute a single instruction each time the CONT switch is pressed. At the end-of-instruction microstate associ-
ated with each instruction sequence, a strobe occurs to set the console flag and cause the processor to enter the
CON.00 microstate. The time state generator continues to run.

3.3.1.2 HALT/CONT with S BUS CYCLE — With the S INST/S BUS CYCLE switch set to S BUS CYCLE, the
processor will execute the program until the next bus cycle is completed, each time the CONT switch is pressed.
The time state generator is suspended in time state T2 of the next bus cycle after PAUSE.

NOTE
Single-step operations are provided for maintenance operations.
Detailed descriptions of their use with special maintenance
cards are provided in Chapter 4 of the system maintenance manual.

3.3.2 EXAM Switch Functions

Use the following procedures to examine the contents of a memory location or internal register:

Step Procedure
1 Set up address of location or register on switch register.
2 Set address display select switch to CONS PHYS.
3 Set data display select switch to DISPLAY REGISTER.

(continued on next page)
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Step Procedure

4 Press LOAD ADRS switch and check ADDRESS display for selected
address.
5 Press EXAM and observe DATA display.

Each successive time EXAM is pressed, the contents of the next successive word location are displayed. The
ADDRESS display will indicate the location. However, the initial address, loaded into the program counter (PCA)
will not be incremented. 1f the START switch is pressed, execution starts from the initial address.

3.3.3 DEP Switch Functions

Use the following procedures to deposit data into a memory location or internal register:

Step Procedure

1 Set up address of location or register on switch register.

2 Set address display select switch to CONS PHYS.

3 Press LOAD ADRS switch and check ADDRESS display for selected
address.

4 Set up data to be deposited on switch register,
Lift DEP switch.

6 Set data display select switch to DATA PATHS and check DATA display

for correct input,

Each successive time DEP is pressed, the contents of the next successive word location are accessed. There is no
need to increment the address manually.

NOTE
The address cannot be incremented beyond the current 32K-
word boundary using the step-examine or step-deposit features,

3.3.4 REG EXAM and REG DEP Functions

These switches permit the operator to examine the contents of the general register and to deposit the contents of
the switch register into the general registers. Table 3-2 lists the general register addresses.

To examine the contents of the general register and deposit the contents of the switch register into the general
register, use the following procedures:

Step Procedure

1 Set the switch register to the general register address.

2 Press LOAD ADRS. The ADDRESS display will indicate the selected register ad-
dress.

3 To examine the contents, press REG EXAM, The contents will be displayed by the
DATA display.

4 To deposit, set the data into the switch register, then press REG DEP. The DATA
display will indicate the deposited data.

NOTE

The REG EXAM and REG DEP switches do not pro-
vide automatic address stepping. Each general register
must be addressed individually, using the LOAD ADRS
switch.
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Table 3-2-

General Register Addresses
Address (octal) General Register Name

0 RO — General Register Set 0

I R1 — General Register Set 0

2 R2 — General Register Set 0

3 R3 - General Register Set 0

4 R4 — General Register Set 0

5 R5 - General Register Set 0

6 R6 — Kernel Mode Stack Pointer (SP)
7 R7 — Program Counter (PC)
10 RO — General Register Set 1
11 R1 — General Register Set 1
12 R2 — General Register Set 1

13 R3 — General Register Set 1

14 R4 — General Register Set 1

15 R5 — General Register Set 1

16 R6 — Supervisor Mode Stack Pointer (SP)
17 R7 -~ User Mode Stack Pointer (SP)

3.4 ADDRESS DISPLAY SELECT

The source of the ADDRESS display is determined by the 8-position address display select switch; it depends on
implementation and enabling of the KT11-C Memory Management Unit. For example, the KT11-C option may
be available but is not enabled if bit 0 of KT11-C status register SRO (physical address 777572) is cleared. Figure
3-2 shows the source of the ADDRESS display with memory management implemented and enabled. Virtual ad-
dress (VA) bits are logically identical to processor bus address multiplexer (BAMX) bits. The six low-order bits,
VA (05:00%, indicate displacement within a 32-word block and are not affected by relocation or address display
select switch positions.

3.4.1 PROG PHY Function

Use this address display select switch position to display the current 18-bit physical address. The physical address
is constructed by adding virtual address bits VA (12:06) to the contents of the 12-bit page address register (PAR).

3.4.2 CONS PHY Function

Use this address display select switch position to display results of loading an address from the console switch
register. Physical address bits PA (17,16} are generated directly from switch register bits SR {17,16.



3.4.3 USER, SUPER, or KERNEL Functions

The ADDRESS display source for each of the USER, SUPER, and KERNEL switch positions is the 16-bit virtual
address VA (15:00). The two most-significant bits are logic 1 if bits 15 through 13 are all logic 1.

The primary purpose of these six mode-related switch positions is to provide direct console-controlled access to
the I and D space PAR groups associated with each mode of operation. The following chart lists the PAR group
associated with each switch position.

Address Display Select Switch Page Address Register (PAR) Group Physical Address Ranges*
USER 1 © UIPARQ — UIPAR7 777640 — 777656
USER D UDPARO —- UDPAR?7 7717660 — 7177676
SUPER 1 SIPARO — SIPAR7 772240 — 772256
SUPER D SDPARO - SDPAR7 772260 — 772276
KERNEL1 KIPARO — KIPAR7 772340 — 772356
KERNEL D KDPARO — KDPAR7 772360 — 772376

*Virtual address bits VA {15:13) select one of cight specific PAR addresses within each group.

NOTE
If the KT11-C option is not implemented, the 16-bit virtual
address, VA (15:00), is always the ADDRESS display source.
Bits 15, 14, and 13 are ANDed to provide bits 17 and 16.

3.5 HOW TO LOAD AND RUN PROGRAMS

Figure 3-3 is a flowchart which shows the procedure required to load and run programs. The following paragraphs
detail the procedures indicated in the flowchart.

3.5.1 Loading the PDP-11 Bootstrap Loader

Use the following procedures to manually load the PDP-11 Bootstrap Loader program, DEC-11-L1PA-LA (Table

3-3) ‘
Step Procedure
1 Set ENABL/HALT switch to HALT to give bus control to the console when
powering up the processor. '
2 Turn OFF/POWER/LOCK switch to POWER. Press START to clear system,
including KT11-C option, if implemented.
NOTE

Because the primary purpose of these procedures is
to instruet maintenance personnel in loading and
running diagnostic programs, be sure the KT11-C op-
tion is initially disabled.

3 Set starting address of Bootstrap Loader into the switch register. Be certain that
the correct value of xx is used (017744 for 4K memory, 037744 for 8K memory,
057744 for 12K memory, etc.) (Table 3-3).

4 Set address display select switch to CONS PHY and press LOAD ADRS. The start-
ing address should be displayed by the ADDRESS indicators.

(continued on next page)
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Step

Procedure

Set first instruction of Bootstrap Loader program into the switch register (Table
3-3). Lift DEP switch. The switch register contents should be displayed by the
DATA indicators, with the data display select switch set to DISPLAY REGISTER.

Set contents of the next address of the Bootstrap Loader program into the switch
register and lift DEP switch.

NOTE
It is not necessaty to load addresses after the start-
ing address has been loaded because the address is in-
cremented by 2 each time the DEP switch is lifted
sequentially.

Repeat Step 6 to deposit the Bootstrap Loader program. When loading the con-
tents of xx7766, make certain the correct xx value is used. When loading the con-
tents of the last address, make certain the correct device address, yyyyyy, is used,
as indicated in Table 3-3.

Load the starting address of the Bootstrap Loader and use the EXAM switch to
verify that the program has been loaded correctly.

PROGRAM
LOAD

YES
15
ABSOLUTE vEs | USE ABSOLUTE
LOADER LOADER TO —»
LOAF?ED LOAD PROGRAM
¥ No
15 USE
AINTENANCE™YES | MAINTENANCE
LOADER LOADER TO —*
LOADED LOAD PROGRAM
NO
USE BOOTSTRAP | oo
TO LOAD YOU HAVE PROGRAM
ABSOLUTE OR A BOOTSTRAP RUN
MAINTENANCE ROM
NO
LOAD ADDRESS
LOAD BOOT AND START
L
PROGRAM {1=1023

Figure 3-3 Flowchart of Procedure Required to Run a Program



Table 3-3

PDP-11 Bootstrap Loader
DEC-11-L1PA-LA

Address™® Contents Symbolic

xx7744 016701 START: MOV DEVICE,R1
xx7746 000026

xx7750 012702 LOOP: MOV #-LOAD+2,R2
xx7752 000352

xx7754 005211 - ENABLE: [INC @R1

xx7756 105711 WAIT: TSTB @R1

xx7760 100376 BPL WAIT

xx7762 116162 MOVB  2(R1),LOAD(R2)
xx7764 000002

xx7766 xx7400

xx7770 005267 INC LOOP+2
xx7772 xx7756

xx7774 000765 BRNCH: BR LOOP

xx7776 YYYYYY

NOTES: 1. The highest available 4K page of memory is represented by xx.
In a PDP-11/45 with up to 28K of memory, the first address of
the Bootstrap Loader is one of the following, depending upon
the total memory available; xx will be the same for all subsequent

addresses.
Available Memory Starting Address
4K 017744
8K 037744
12K 057744
16K 077744
20K 117744
24K 137744
28K 157744

2. Location xx7776 contains device address of paper-tape reader.

3. Use address 177560 for teletypewriter paper-tape reader; use
address 177550 for high-speed paper-tape reader,

* Starting address, Xx, is determined by memory configuration,

3.5.2 Loading the PDP-11 Absolute Binary Loadér

Use the following procedures to automatically load the PDP-11 Absolute Binary Loader program, DEC-11-L2PC-LA

Step . Procedure
| Set ENABL/HALT switch to HALT and press START to clear the system.
2 Make certain that the PDP-11 Bootstrap Loader has been stored in memory, as

described in Paragraph 3.5.1, or the equivalent ROM bootstrap is supplied.

3 Set starting address of Bootstrap Loader into the switch register. Make certain the
correct value of xx is used (017744 for 4K memory, 037744 for 8K memory,
057744 for 12K memory, etc.) (Table 3-3).

4 Set address display select switch to CONS PHY and press LOAD ADRS. The start-
ing address should be displayed by the ADDRESS indicators.

(continued on next page)

3-10



Step Procedure

5 Set teletypewriter LINE/OFF/LOCAL switch to LINE. This connects the tcle-
typewriter to the processor.

NOTE
If a high-speed paper-tape reader is used instead of
the teletypewriter, make sure that the device address
in the Bootstrap Loader program corresponds to the
device, as described in Table 3-3.

6 Place the PDP-11 Absolute Binary Loader tape in the paper-tape reader, with the
special leader (a sequence of 351 punches) under the reader station. Blank leader
does not work.

7 Set ENABL/HALT switch to ENABL and press START switch. The tape will
be read into the memory and the processor halts when the entire program is loaded.

3.5.3 Loading the Maintenance Loader

The Maintenance Loader program, MainDEC-11-D9EA, provides an alternate method of loading diagnostic pro-
grams that can be used if the Absolute Binary Loader fails to work because of a hardware failure. Fhis loader
should only be used to load diagnostic programs if the Absolute Binary Loader malfunctions.

Use the following procedures to automatically load the maintenance loader:

Step Procedure
1 Set ENABL/HALT switch to HALT and press START to clear the system.
2 Make certain that the PDP-11 Bootstrap Loader has been stored in memory, start-
ing at address 017744,
NOTE

The Maintenance Loader operates in the lowest 4K
page of memory. If some other page must be used,
several locations must be changed as listed in Table
3-4 after the Maintenance Loader program is loaded.

3 Set starting address of Bootstrap Loader, 017744, into switch register and press
LOAD ADRS,
4 Set teletypewriter LINE/OFF/LOCAL switch to LINE,
5 Place the Maintenance Loader tape in the paper-tape reader.
6 Set ENABL/HALT switch to ENABL and press START switch. The tape will be
read into memory. The processor halts when the entire program is loaded.
NOTE

If the Maintenance Loader is not loaded into the
lowest 4K page of memory, make location changes
listed in Table 3-4 at this time.



Table 3-4
Maintenance Loader Changes®

Change Contents Of: To:
xx7502 xx7470
xx7510 xx7474
Xx7542 xx7475
xx7566 xx7475
xx7624 . xx7776
xx7674 xx7474

Where xx equals: 03 for 4—8K page
05 for 8—12K page
07 for 12—16K page
11 for 16—20K page
13 for 20—24K page
15 for 24-28K page

*No changes are required when Maintenance Loader pro-
gram is loaded into the lowest (0—4K) page.




CHAPTER 4
PRINCIPLES OF OPERATION

The purpose of this chapter is to introduce several concepts used in the design of the KB11-A processor and in
the PDP-11/45 System. Some of these concepts are used throughout the descriptions of the KBI11-A operation
and implementation; other concepts are presented because they illustrate why the processor has certain features
and is structured the way it is.

The concepts presented in this chapter are general in nature and they apply to many different computer systems.
The specific applications of each concept in the KBI11-A processor and in the PDP-11 /45 System are not all de-
scribed in this chapter. The reader who is primarily interested in the details of the KB11-A operation may wish
to skip this chapter and read just Chapters 6 and 7; the reader who wants an overview of the processor’s structure
may wish to read just Chapter 5. However, many of the concepts introduced in this chapter are used throughout
the succeeding three chapters and are helpfu] in gaining a complete understanding of the KB11-A processor,

4.1 MICROPROGRAMMING

The KB11-A processor uses a microprogram control section which reduces the amount of combinational logic in
the processor. This paragraph introduces the concept of microprogramming by first describing a digital computer,
then dividing the computer into various parts, and finally, describing how some of these parts differ for a micro-
programmed processor.

4.1.1 DBigital Computer Description

Although a computer can effect complicated changes to the data it receives, it must do so by combining a large
number of simple changes in different ways. The part of the digital computer that actually operates on the data
is the processor. (The KB11-A is the processor of a PDP-11/45 computer,) A processor is made up of logical ele-
ments; some of these elements can store data, others can do such simple operations as complementing a data op-
erand, combining two operands by addition or by ANDing, or reading a data operand from some other part of
the computer. These simple operations can be combined into functional groups; such a group is called an instruc-
tion, and it includes operations that read data, operations that combine, change, or simply move the data, and op-
erations that dispose of the data, Instructions can be further combined into programs, which use the combined
instructions to construct even more complex operations,

The logical elements of a processor can only perform a small number of operations at one time. Therefore, to
combine operations into an instruction, the instruction is divided into a series of operations (or groups of opera-
tions that can be performed simultaneously). The processor does each part of the series'in order, One way to
describe how the processor executes an instruction is to call each operation (or group of operations) a machine
state. An instruction then becomes a sequence of machine states which the processor enters in a specific order.
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The processor can be completely described in terms of machine states by listing all the machine states in which
the processor can perform (i.e., all the different operations or groups of operations that it can perform) and al
the sequences in which these machine states can occur. The sequence of machine states is determined by the cur-
rent state of the computer; this includes such information as the instruction being executed, the values of the
data being operated on, and the results of previous instructions.

In terms of the machine state description, the processor can be divided into two parts. The first part, called the
data section, includes the logic elements that perform the operations which make up a machine state. The second
part, called the conrrol section, includes all the logic that determines which operations are to be performed and
what the next machine state should be. The data section and control section are discussed in the following para-
graphs,

4.1.2 The Data Section

Figure 4-1 is a simplified block diagram that shows the divisions of the processor in a digital computer. During
each machine state, the data section performs opcrations selected by signals from the control section. The data
section provides inputs to the control section which help determine the next machine state; the data section also
exchanges data with other devices external to the processor.

DATA DATA DATA DATA
DATA INTERFACE ROUTING MANIPULATION STORAGE SECTION
_— SECTION SECTION SECTION
Ly TL{% |
CONTROL
SIGNAL
DATA L I 1 OUTPUTS
SENSING ‘ .
INPUTS
SENSING SEQUENCE FUNCTION CONTROL
LoGic . CONTROL GENERATOR SECTION

TT CONTROL SIGHAL U
INTERFACE

Figure 4-1 Simptlified Processor Block Diagram

n-oae2

The data section can be divided into three functional sections; each section is discussed in one of the following
paragraphs.

4.1.2.1 The Data Storage Section — For the processor to combine data operands it must be able to store data
internally while simultaneously reading additional data, Often, a processor stores information about the instruc-
tion being executed, about the program from which the instruction was taken, and about the location of the data
being operated on, as well as a number of data operands. When the processor must select some of the internally
stored data, or store new data, the control section provides control signals which cause the appropriate actions
within the data storage section.



4.1.2.2 The Data Manipulation Section — This section includes the various logic elements that actually change
data. Many of these elements are controlled by signals from the control section which select the particular opcra-
tion to be performed. Data manipulation is performed on data being transferred between the processor and the
rest of the system, and on data that remains within the processor. In some cases, the data that remains within the
processor is used to contro! the processor by providing inputs to the sensing section of the processor control.

4.1.2.3 The Data Routing Section — The interconnections between the logic clements in the data storage section
and the elements in the data manipulation section are not fixed; they are set up as required in each machine state,
The control section generates signals that cause the logic elements in the data routing section to form the appro-
priate interconnections within the processor, and between the data interface and the data storage and manipula-
tion sections,

4.1.2.4 The Data Section in the KB11-A — Paragraphs 5.2 through 5.6 of this manual describe the data section
of the KB11-A on a block diagram level; the paragraph is divided info three subsections which correspond to the
storage, manipulation, and routing sections discussed above.

4,1.3 The Control Section

The simplified block diagram in Figure 4-1 shows that the control section of a processor receives inputs, which
are used by the sensing logic to help select the next machine state, from all parts of the data section of the pro-
cessor. The control section also generates control signals to all parts of the data section and communicates with
other parts of the computer system through control signals, The following paragraphs describe the three parts of
the control section,

4.1.3.1 The Sequence Control Section — The primary control of the processor is the selection of the sequence
of machine states to be performed. This is done by the sequence control section which selects the next machine
state on the basis of: .

a.  the current machine state
b. inputs from the data section (such as the instruction type or the data values)
¢. information about external events

The sequence control section maintains information about the current machine state, and receives information
from the data section and the external environment through the sensing section.

4.1.3.2 The Function Generator — In each machine state, the data section performs operations selected by sig-
nals from the control section of the processor. The function generator produces these control signals on the basis
of the current machine state (and sometimes, to a very limited extent, on inputs, from the sensing section, of in-
formation such as the instruction type).

4.1.3.3 The Sensing Logic — In generai, the sequence control section requires inputs that select one of a limited
number of machine states to follow the current state. Because the conditions used to distinguish which state
should follow the current state may be different for different current states, the sensing section acts as a selector
to provide only the currently-needed inputs to the sequence control section.

4.1.3.4 The Control Section in the KB11-A — Paragraphs 5.7 and 5.8 of this manual describe the control sec-
tion of the KXB11-A processor on a block diagram level. The function generator comprises the microprogram
ROM, its output buffer, and several logic elements that generate control signals based on sensed inputs (notably
through the subsidiary ROMs). The sequence control comprises the microprogram address generation logic. The
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sensing section includes the various logical elements that receive inputs from the data section, especially the
condition-code generator, the subsidiary ROMs, and the branch logic. The external interface includes parts of
the sensing and function generation togic, while the timing module includes part of the lowest level of sequence
control.

4.1.4 Microprogramming in the Control Section Implementation

This paragraph describes two methods of implementing the control section of a processor. The first method,
which is called the “conventional”’ method for the purposes of this discussion, uses combinational networks, with
many inputs combined in varying ways to produce each output, The second method, which is called “micropro-
gramming”*, replaces most of the combinational networks with an array structure, The array requires a small num-
ber (approximately 10) of inputs to select the output states for a large number (approximately 100) of signals,
Because the array is a regular structure, it is simpler to construct and understand, and less expensive.

4.1.4.1 Conventional Implementation — In a conventional processor, each control signal is the output of a com-
binational network that detects all the machine states (and other conditions) for which the signal should be as-
serted. The machine state is represented by the contents of a number of storage elements (such as flip-flops),
which are loaded from signals that are, in turn, the outputs of combinational networks. The inputs to these net-
works include:

a.  the current machine state )
b. sensed conditions within the processor
c. sensed external conditions

The number of logical elements in the processor is often reduced by sharing the outputs of networks which gener-
ate intermediate signals needed in the generation of several control signals, or even in the generation of conirol
signals and machine states. Unfortunately, while this reduces the size of the processor, it increases the complexity
and difficulty of understanding the device because it is no longer obvious what conditions cause each signal. In
addition, the distinction between the sequence control and the function generator is blurred, which makes it more
difficult to determine whether improper operation is caused by a bad machine state sequence or, more simply, by
the wrong control signals within an otherwise correct machine state.

4.1.4.2 Microprogrammed Implementation — The microprogrammed implementation is based on the following
observation: each control signal is completely defined if its value is known for every machine state. The function
generator section can therefore be implemented as a storage device: the storage is divided into words, with each
word containing a bit for every control signal; there is one word for each machine state. During each machine
state, the contents of the corresponding word in the storage element are transmitted on the control lines. For
most control signals, the output of the storage unit is the control signal, and no additional logic is required.

The two tasks of the sequence control section are to select the next machine state, and to provide information
about the current machine state to the function generator. The only information that the function generator in a
microprogrammed processor requires is which word to use as control signats. Therefore, the sequence control
simply provides an address that selects the correct word. The sequence control must also select the address of the
next word to determine the machine state sequence. Because the next machine state is determined in part by the
current machine state, information is stored in the microprogram that helps to select the next state; the micropro-
gram word contains the control signal values and the address and sensing control information required by the
microprogram address generation logic (i.e., by the sequence control).

In a microprogrammed control like the ohe described above, the two major portions of the control section have
been simplified to regular logical structures. The function generator is entirely separate from the sequence con-
trol, so it is easy to isolate malfunctions to the microprogram storage or to the address generator. In addition,

44



the sensing logic is simplified, because each sensed condition is reduced to a single signal and the sensing logic
selects the appropriate signals for the current machine state based on signals output from the microprogram stor-
age. To summarize this discussion, a microprogrammed processor has a simpler, more regular, more easily re-
paired control structure, based on the generation of control signals from stored information, and the selection of
each machine state based on information stored in the current machine state and on information from a simpli-
fied sensing section,

4.2 PARALLEL OPERATION (PIPELINING)

In a digital computer system, the processor is usually the fastest part of the system. In order to achieve the maxi-
mum speed of operation, all parts of the processor should be used as much of the time as possible. To prevent
the processor from wasting time waiting for other parts of the system, the processor must make use of the exter-
nal data transfer interface as much as possible. Because any one operation that the processor performs uses only
part of the processor’s available resources, the two considerations above require the processor to petform several
operations in parallel.

In general, the sequence of operations required for each instruction uses various parts of the processor at differ-
ent times. Some parts of the processor, such as the program counter, are used only during the early parts of the
instruction; others, like the shift counter, are used only during later parts of the instruction. The processor can
only be fully utilized if different parts of the processor can be used for parts of different instructions during the
same machine state.

When the processor works on the early part of an instruction at the same time that it completes the previous in-
struction, this form of parallel operation is called pipelining. The processor attempts to make continuous use of
the external data interface by fetching each word addressed by the program counter (PC) in succession (incre-
menting the PC during each transfer), on the assumption that the next word required will be the one following
the current instruction. In the pipelining analogy, the processor attempts to fill a pipe, corresponding to the dif-
ferent parts of the processor used successively by each instruction, with a series of instructions.

The current instruction often requires some other words from the external storage. At times, the next instruction
does not follow the current instruction because the PC has been explicitly changed by the current instruction.
When either of these two conditions occurs, the processor must stop the data transfer begun after the instruction
fetch, and begin a data transfer with a different address. In the pipeline analogy, this is a break in the smooth
flow of instructions through the pipe; some time is lost before the pipe drains (the current instruction is com-
pleted) and can be refitled (a new instruction fetched and a transfer begun to read the word following that in-
struction).

A second form of parallel operation occurs in the KB L-A to further improve the utilization of the processor.
Because the processor includes several types of data storage and data manipulation elements, with different inter-
connections, several data transfers can take place within the processor simultaneously. As an example, during the
same machine state that completes an external data transfer, the processor can read a general register into a tem-
porary storage register, and perform an addition that adds a constant to the program counter.

The use of parallel operations within an instruction reduces the number of machine states (and therefore the total
time) required to execute each instruction; the use of pipelining further reduces the number of machine states re-
quired to execute a program by effectively eliminating the elapsed time between many external data transfers.



4.3 VIRTUAL MACHINES

As described in Chapter 1 (and in more detail in the following chapters), the KB11-A processor can perform
many functions. The processor executes instructions and operates on data, both of which are stored in memory,
and it responds to various asynchronous events.

The response to an interrupt or trap is not entirely designed into the processor. Instead, the response is con-
trolled by a series of instructions (a program) which is selected by a simpler hardware response when the asyn-
chronous event is detected. Often, a number of programs are requited to respond to a number of events, and the
scheduling, coordination, and interaction of these programs is one of the most important (and difficult) parts of
programming a computer system.

In many applications, the user programs that are written for the system are treated as though they are interrupt
response programs. This is done to simplify the scheduling, to allow each user program to operate with a termi-
nal (some form of character input/output device), and to allow several user programs to operate at once. By run-
ning several programs at once, the processor can be utilized more fully than is generally possible with only one
user program, which would often be waiting while devices other than the processor completed data transfer op-
erations. With several programs to be run, the processor can be switched among the programs so that those ready
to run have the use of the processor while others are waiting. The use of the processor for several programs at
the same time is called multiprogramming,

Running programs in 2 multiprogrammed system presents several difficulties. Each program can be run at arbi-
trary times, but all the programs must be capable of running together without conflict. A failure in one program
must not be allowed to affect other programs. Each program must be abie to use all features of the system in a
simple, easily-learned manner, preferably in such a way that the program does not need to be modified to run in
a different hardware configuration,

These difficulties are overcome by providing each program with a virtual machine, The programmer writes his
program as though it is to run by itself; the program uses any system resources (such as memory or peripheral de-
vices), and the system provides the services necessary to support the program and coordinate it with other pro-
grams in operation. The physical hardware in the system is combined with a control, or executive program to
simulate a more powerful hardware machine; it is for this more powerful, but abstract, machine that the programs
are written.

Based on this discussion, the hardware machine and the executive program must combine to fulfill the following
four major objectives of the virtual machine:

a.  Mapping — The virtual machine of the program currently in operation must be assigned to some part of
the hardware machine.

b.  Resource management — The scheduling of programs, and the allocation of parts of the hardware
machine, must be performed by the executive program.

¢.  Communication — The virtual machine must be able to request services from the executive program,
and the executive program must be able to transfer data back and forth with the user programs.

d.  Protection — The system that supports the virtual machine, and all other virtual machines, must be
protected from failures in any one virtual machine.

Each of these subjects is discussed in one of the following paragraphs.
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4.3.1 Mapping

Each time a program is run (or, if the multiprogramming system is running several programs in a round-robin
manner, each time a program resumes operation), it has some of the system hardware allocated to it. This gener-
ally includes some part of the memory to contain the instructions and data required by the program, some of the
processor’s registers, a hardware stack (which is actually an area in the memory and a pointer to that area ina
processor register), possibly some peripheral devices, and perhapé a fixed amount of the processor’s time. All of
these allocations must be made in such a way that the hardware machine can then execute the user program with
a minimum of extra operations; i.e., so that the execution of the user program requires as few additional memory
cycles, or additional machine cycles, as possible. Therefore, the allocation is done entirely in the hardware ma-
chine: registers in the hardware contain all the allocation (mapping) information, and all references to virtual ad-
dresses, virtual stack locations, virtual register contents, or virtual devices converted by hardware to physical refer-
ences.

In a PDP-11/45 System, the mapping is done by two devices. The mapping of virtual registers into processor reg-
isters, of the virtual stack, and of the virtual program counter, is done by loading the appropriate values into the
processor registers; one of two sets of general registers can be selected for the user, and the processor has a separ-
ate stack pointer for user mode, while the program counter is changed by interrupt and trap operations and by
the return from interrupt (RTI) or return from trap (RTT) instructions.

The remaining mapping functions distribute the virtual memory into the physical memory. In the physical mem-
ory, many specific addresses are reserved for special functions; the lowest addresses are used for interrupt and
trap vectors, while the highest addresses are used for device registers. Because all the functions that require re-
served addresses in the physical memory are performed either by the physical machine or by the control program,
these addresses need not be reserved in the virtual machine. Therefore, the programs written to be run in the vir-
tual machine can use any addresses; specificalty, these programs can start at address 000000 and continue through
ascending addresses to the highest address needed.

In discussions of the virtual memory and the physical memory, it is often necessary to describe the addresses used
to select data items within the memory. The range of addresses that it is possible to use is called the address
space. The maximum range of addresses that can be used in the virtual machine (which in the PDP-11 /45 is the
maximum number that can be contained in a 16-bit word) is called the virtual address space, while the maximum
range of physical addresses that can exist in the hardware system is called the physical address space {in the PDP-
11/45 this can be all the addresses expressed by an 18-bit number).

If the user program is to use addresses in the virtual address space that are reserved in the physical address space,
then the virtual address space must be relocated to some other part of the physical address space. In a multipro-
gramming system, several user programs, each in its own virtual address space, may be sharing the physical address
space. Therefore, the relocation of the virtual address space into the physical address space must be variable; each
time a program is run, it may be allocated a different part of the physical address space. The KT11-C provides
the capability of varying the relocation for each user program by storing a map of the memory allocation in a set
of registers.

4.3.2 Resource Management

In a multiprogramming system, each user program operates in a virtual machine that can utilize any of the pos-
sible devices or functions of the physical machine, as well as many functions performed by the executive program.
The resources that exist in the system must be allocated to each user program as required, but without allowing
conflicts to arise where several user programs require the same resources. The physical machine and the executive
program must resolve any protective conflicts by scheduling the resources for use by different programs at differ-
ent times, and must schedule the user programs to operate when the resources are available.
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The management of input/output or peripheral devices is beyond the scope of this discussion, which is primarily
concerned with the basic PDP-11/45 System. Within the system, the two most important resources, which re-
quire the most care and effort to control, are the memory and the processor.

4.3.2.1 Processor Management — The processor can only operate on one instruction at a time (this is not strictly
true, as discussed in Paragraph 4.2, because of the pipelining of instructions and because of the parallel operation
of the FP! 1 Floating-Point Processor, but these overlapping operations do not affect this discussion). When sev-
eral programs are sharing the use of the processor, the processor operates on each program in turn; either the pro-
cessor is shared among the programs by using periodic interrupts to allow the executive program to transfer the
processor to another user program, or each user program runs to completion before the next user program begins,
To share the processor on a time basis, the executive program must perform the transfer from one virtual machine
to another. Each virtual machine is given control of the physical machine by loading the map of that virtual ma-
chine into the physical machine. That is, the executive program changes virtual machines by changing the con-
tents of the processor registers used by the virtual machine, and by changing the contents of the registers in the
KT11-C which map the virtual address space.

4.3.2.2 Memory Management — Memory management is rmuch more complicated than processor management,

If a program uses a large proportion of the virtual address space, and only a small amount of memory is physically
available in the system, the program may be too large to fit into the memory all at once. Fortunately, in most
programs only a small part of the program (or possibly several small parts, one for the instruction stream and one
or more for blocks of data) is used at any one time. To take advantage of this fact, the virtual address space is
divided into pages so that each page can be mapped separately. Only the pages that are in use in the current in-
struction are required to be in the physical memory during the execution of that instruction.

As described in Chapter 1 of this manual, a system which uses the KT11-C memory management unit to permit
each virtual machine to have a larger address space than the available physical memory must also include a mass
storage device to hold those parts of each virtual memory that are not in the physical memory. As a program pro-
ceeds through a sequence of instructions, it requires different pages of the virtual memory. The memory map in
the KT11-C includes relocation information for each page of the virtual address space, and also includes informa-
tion specifying which pages are currently in the physical memory. If the processor attempts to perform transfers
with a virtual address which is on a non-resident page, the KT11-C stops the execution of the instruction and,
through a trap function, begins the execution of a part of the executive program which transfers the required page
into the physical memory and changes the map in the KT11-C to reflect the newly available page.

4.3.2.3 Memory Use Statistics — If it is necessary for the executive program to bring a page into the physical
memory, but all of the physical memory is already in use, the executive program must remove some other page
(from the same virtual machine or, in a multiprogramming system, from some other virtual machine) from the
physical memory. When a page is removed from the physical memory, a copy of that page must be stored in the
mass storage device; if a copy of the page is already on the mass storage device, and none of the data (or instruc-
tions) stored on the page have been changed, the writing of the page onto the mass storage device can be bypassed.
Each time a page must be replaced, the executive program attempts to predict which page is least likely to be used
in the future, so that it will not soon need to be moved back into the physical memory.

The KT11-C Memory Management Unit includes hardware to permit choosing the page to replace and to deter-
mine whether that page must be written onto the mass storage device. Each external data transfer performed by
the KB11-A processor requires that the KT11-C Memory Management Unit convert a virtual address into a physi-
cal address. At the same time, the KT11-C keeps track of which virtual pages have been accessed and which vir-
tual pages have been written into. The executive program operates on the assumption that pages which have been
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recently accessed will also be used soon in the future. To find a page which can be replaced, the executive pro-
gram looks for a page which has not been used, preferably from the address space of a user other than the current
user. If there are no virtual pages currently in the physical memory that have not been accessed, the executive
program looks for a page that has not been written into, to avoid having to copy a page to the mass storage de-
vice. If all the virtual pages in the physical memory belong to the current user, the executive program looks for a
page that has not been used recently, again preferably one that has not been written into. By use of the hardware
memory management unit and of a variety of scheduling and allocation algorithms in the executive program, the
PDP-11/45 System can provide a number of user programs with virtual machines of great power and flexibility,
with a minimum burden on the user program,

4.3.3 Communication

A program running in a virtual machine must be able to communicate with the executive program, to request vari-
ous services performed by the executive program, or to determine the status of the system. The same type of
communication can be used for communication between virtual machines, by providing inter-machine communi-
cation as a service through the executive program. The same hardware functions that provide a means for the
user program to communicate to the executive program are also used by the executive program to determine the
status of the user program when a trap or abort condition cccurs.

The user program Tequests services by executing trap instructions (such as EMT, TRAP, or IOT). Abnormal con-
ditions caused by a program failure, such as an odd address for a word data transfer, or an attempt to execute a
reserved instruction, cause internal processor traps. In either case, the trap function performed by the processor
serves to notify the executive program that an instruction is required.

4.3.3.1 Context Switching — The executive program must then begin executing instructions to perform the re-
quested service or to correct the failure condition, if possible. However, in order for the hardware machine to
operate on any program other than the user program, the mapping information must be changed to reflect the al-
locations used by the new program.

The trapping function performs the change of most of the mapping information., The contents of the program
counter (PC) and the processor status (PS) registers are changed directly; the old contents are stored on a stack in
memory pointed to by a stack pointer, and the new contents are supplied from locations called a trap vector. The
address of the trap vector is provided by the processor and depends on the type of trap instruction or trap condi-
tion, so that for each trap instruction or condition, a different PC and P8 can be supplied.

The KT11-C Memory Management Unit stores the maps for both the executive program and one user program, in
separate registers, The processor indicates which map should be used to relocate virtual addresses. During the
execution of instructions (as opposed to the interrupt and trap service function), the address space map to use is
specified by bits 15 and 14 of the PS. These bits also specify which stack pointer register in the processor to use
(there is a separate register for each virtual machine). Because the trap and interrupt service function loads the
PS register with a2 new value, this function changes almost the entire virtual machine context directly.

The only remaining parts of the virtual machine context that require changes are the general registers in the pro-
cessor. These can be changed either by saving the contents of the registers from the previous virtual machine on
the hardware stack and loading new contents, or by selecting the alternate set of general registers (the processor
has two sets of general registers 0 through 5). Register set selection is controlled by bit 11 of the PS register, so
this method can be used in conjunction with the trap service function.
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To summarize the change of virtual machines, the mapping in the hardware system includes the selection of a
register set, a stack pointer, a program address (in the program counter), an address space, and a processor status.
The trap and interrupt service function, which is performed by the processor as an automatic response to trap an
instruction or abnormal condition, can change all of these selections as follows:

a,  The program counter and processor status are changed directly.
b.  Bits 15 and 14 of the PS select the new address space and stack pointer.
c.  Bit 11 of the PS selects the new register set.

The mapping and selection information for the previous virtual machine is completely saved, either by remaining
in unselected portions of the processor and the memory management unit, or by being stored on the hardware
stack. If the selected register set is shared with other virtual machines, the register contents must be changed by
an instruction sequence.

4.3.3.2 Inter-Program Data Transfers — When the new virtual machine begins executing a service program for
the programmed request (if a trap instruction was executed) or abnormal condition (if a trap condition occurred),
the service program must get information from the previous virtual machine. This information may define the
status of the previous virtual machine after an abnormal condition occurred so that the service program can cor-
rect the condition and restore the correct status before returning control to the previous virtual machine. If the
service program is performing a service, the information required from the calling program may define the spe-
cific type of service to perform, or provide the addresses of data buffers, or specify device and file names.

Most information required by the service program is stored in the calling program’s address space. To get this in-
formation, and to return information to the calling program, the service program must be able to operate in the
present address space and transfer data in the previous address space, at the same time. The KB11-A processor
provides instructions to do this.

The special instructions that transfer data between virtual address space make use of the processor status register
to specify which address space is being used by the current virtual machine, and which address space was used by
the previous machine (this is identified by bits 13 and 12 of the PS). The data is transferred between the hard-
ware stack of the current address space and atbitrary addresses of the previous address space. The calculations of
the virtual address in the previous address space are performed by the processor, in the normal data fetch se-
quences, using data in the current address space; i.e., any index constants or absolute addresses used to generate
the virtual address are taken from the current address space, just as the instructions are.

Each virtual address space is divided into an instruction (I) space and a data (D) space, as described in Paragraph
4.3.4. Each I or D space has a full set of 218 virtual addresses. Therefore, the communication instructions are
available in two versions; one to transfer with the previous instruction space, and one to transfer with the previ-
ous data space. A different instruction is needed for each transfer direction, as well, so there are four communi-
cation instructions: move to previous instruction space (MTPI), move to previous data space (MTPD), move from
previous instruction space (MFPT), and move from previous data space (MFPD),

4.3.3.3 Returning to the Previous Context — Because all the mapping and context information for the previous
virtual machine is saved when the trap and interrupt service function sets up a new virtual machine, the hardware
system can resume the execution of any program at the same point that it was interrupted. This is done with a
return from interrupt (RTI) or return from trap (RTT) instruction, which replaces the program counter and pro-
cessor status values of the current virtual machine with the stored values from the previous virtual machine.

The processor status selects most of the mapping information, as described previously, so the return instructions
completely restore the previous context.
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4.3.4 Protection

The hardware system and the executive program must be protected from programming failures in each virtual
machine. In addition, most systems provide protection so that no program operating in a virtual machine can
take control of the system or affect the operation of the system without authorization. A third form of protec-
tion that is useful in a large and complex system is the protection of the executive program against itself. The
executive program is divided into a basic, carefully written kernel, which is allowed to perform any operation,
and a broader supervisor, which can not perform privileged operations, but which provides various services useful
to the executive program and to the user programs.

The forms of protection provided include the different address spaces for different types of programs, a variety
of restricted access modes, and restricted processor operations. The address space protection can be used with
any type of program, whether operating in user, kernel, or supervisor mode. The restricted processor operations
are usable only in kernel mode; supervisor mode has the same restrictions as user meode,

4.3.4.1 Separate Address Spaces — The most basic protection against modification of the executive program by
a user program (or of the kernel section by the supervisor section) is the separation of the address spaces. A pro-
gram operating in user mode operates in the user address space. 1t can not access any physical addresses that are
not in that address space, regardless of their correspondence o addresses in any other virtua! address space. The
executive program can prevent a user program from accessing other virtual address spaces through the communi-
cation instructions (MTPL, MTPD, MFPI, MFPD) by forcing bits 13 and 12 of the stored processor status word to
1s (to reflect user mode) before executing an RTI or RTT instruction to return control to the user program. This
forces the previous mode bits in the processor status register to take on user mode, just as the current mode bits
are set to user mode, and the communication instructions operate only within the user address space (Paragraph
4.5).

4.3.4.2 Access Modes — Within one address space, it is often useful to be able to protect certain parts of a pro-
gram from unintentional modification. This can be done by allowing the data in those addresses to be read, but
prohibiting transfers into the addresses. This is known as read-only (or write-protected) access. Areas in a virtual
address space that contains alterable data must permit read/write access, but arcas that contain unmodified in-
structions may be read-only.

Another useful form of access protection distinguishes between read accesses that fetch instructions (or address
constants) and any accesses that transfer data. If instructions can be accessed by the processor only as instruc-
tions, they can be executed but can not be read or transferred to any other part of the address space. This pre-
vents the user from determining what the instructions are in order to tamper with the instruction sequence or at-
tempt to modify the program in undesirable ways. This type of access restriction is called execute-only access.

The KT11-C Memory Management Unit provides read/write, read-only, and execute-only access modes in the
PDP-11/45 System. The access mode is stored in the mapping registers along with the relocation information; in
fact, when a page of the virtual address space is not in memory, a special access code that identifies the page as
non-resident is used. The execute-only access mode is not a separate access mode, but is provided by separating
the address space into two address spaces that are used for the different kinds of transfers. One address space is
used for all transfers that fetch instructions, and is called the instruction (I) space, while a second address space is
used for all data transfers, and is called the data (D) space. If the two address spaces are mapped separately, at-
tempts to use the same address for an instruction and for data may address different physical locations, If no ad-
dresses in the D space correspond to the physical addresses used in the I space, then the instructions can not be
accessed as data and an execute-only access mode has been achieved. This mode must be used with caution;
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however, tables that are accessed by indexed address modes must be in D space and MARK instructions, which
are stored on the hardware stack as data and then executed, require the stack to be in the same virtual addresses
in [ and D space.

4.3.4.3 Frivileged Instructions — Certain PDP-11 instructions that affect the operation of the hardware machine
must be prohibited in the virtual machine. These include the HALT instruction, which stops the physical ma-
chine and thus prevents any virtual machines from operating, the RESET instruction, which stops all input/
output devices, regardless of which virtual machine they are allocated to, and various processor status change in-
structions. These instructions are allowed only in kernel mode so that the executive program can control the en-
tire hardware system; they are ineffective in the supervisor or user mode. The RESET and set priority level (SPL)
instructions are allowed to execute in these modes, but have no effect; the HALT instruction activates a trap
function so that the executive program may stop all action for the virtual machine that executed the HALT, but
continue other virtual machines.

4.4 RE-ENTRANT AND RECURSIVE PROGRAMMING

A program can generally be divided into routines, each of which performs a function that is built up from a se-
quence of instructions. Often the function performed by a routine is needed in several other routines, so it is de-
sirable to be able to call the routine from many other routines in the program; i.e., the program should be able to
transfer the processor to the instructions that execute the function, and then have the processor resume the exe-
cution of the instructions following the calling instruction. A routine which is called from other routines is said
to be subordinate to those routines and is called a subroutine; the special instructions that transfer the processor
to the beginning of a subroutine and that return the processor to the calling routine are called subroutine linkage
Instructions.

4.4.1 Recursive Functions

There are some procedures that are most easily implemented as a subroutine that either performs a part of the
procedure and then calls itself to perform the rest of the procedure, or completes a computation and returns a
partial (and finally, a complete) result. This is called recursive operation. The common example of a recursive
procedure is one that calculates the factorial of a number (the factorial is the product resulting from the multipli-
cation of a number, n, by all smaller numbers). The recursive procedure to calculate a factorial is as follows:

NOTE
This procedure works only if the original number is a positive
integer.

a. Ifnis1 or0,return 1 as the vatue of factorial n.

b.  If nis greater than 1, compute the factorial of n minus I, multiply that number times n, and return
that value.

For example, to compute the value of factorial 3, the procedure is to compute the value of factorial 2 and multi-
ply by 3. However, the value of factorial 2 is the value of factorial 1 times 2. The value of factorial 1 is found
by Step a to be 1, so the final resuit is 1 times 2 multiplied by 3, or 6. The same recursion computes the factorial
of any positive integer, in n recursions for a number n,

4.4.2 Use of a Stack in Recursive Routines

When a subroutine is called recursively, the linkage information for each call (the information required to return
to the calling program) must be saved during subsequent calls, Since a recursive subroutine can be called again
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before it returns from the first call, the linkage information should not be stored in a fixed location; instead, it is
stored in an area, with each linkage in a different location and a peinter that identifies the specific location for
each linkage.

Because a subroutine must return control to the routine that called it before that routine can return control to
any routine that called the latter routine, the last linkage which has not been used for a return must be the first
one used; i.e,, the linkages must be used in a last-in, first-out sequence. A storage area whose locations are used
for last-in, first-out storage is called a stack; a pointer is used to point to the last entry placed on the stack, and
the subroutine linkage instructions that put information on the stack (a push operation), or remove information
from the stack (a pop operation), change the contents of the pointer so that it always points to the correct word
for the next linkage operation.

In the PDP-11/45 System, one of the KB11-A processor’s general registers is used by the subroutine linkage in-
structions as a stack pointer. This register is called the hardwate stack pointer (SP) and it must be initialized to
point to the first word in a stack area. The same stack is also used for storage of context or linkage information
by the trap and interrupt service function, which is described in Paragraph 4.3.3. The traps, interrupts, and sub-
routine calls are all handled in the same last-in, first-out manner,

A subroutine that can be called recursively should not move data into fixed locations, because later executions of
the same subroutine (before the current execution is finished) may also execute the same data {ransfer instruc-
tions. The best way to keep the data storage for each execution of a subroutine separate is to store the data on
the stack in the same manner as the linkage information.

4.4.3 Re-Entrant Functions

Keeping the data storage separate from the program is particularly important for programs and subroutines that
can be called from more than one virtual machine, If several virtual machines are executing the same program, it
is desirable to have only one copy of the program in the physical memory, and to map each virtual address space
into the same physical address space. However, in a multiprogramming system, one virtual machine may begin
execution of a program and then be interrupted; a second virtual machine may begin execution of the same vir-
tual program and then run out of time; the original virtual machine may resume execution and complete the pro-
gram: and the second virtual machine may resume execution. The programmer can not make any assumptions
about where each virtual machine stops, so the program must be capable of being re-enfered at any time, regard-
less of what other virtual machines have done with the program.

Programs designed to store all their data on a stack, so that each virtual machine that uses the program simply
uses a different stack, are called re-entrant programs. A different stack pointer is selected each time a different
virtual machine is selected (if the executive program changes the context of the user virtual machine, torun a
different user, it changes the address mapping of the stack area and the contents of the stack pointer), so each
activation of a program executes the program in complete isolation from other activations by other virtual ma-
chines.

4.4.4 Indexed Addressing of Parameters

When a program or routine calls a subroutine, the calling routine may send data to the subroutine. The amount
of the data to be “passed” to the subroutine may vary, as may the amount of data returned by the subroutine.

By placing all the data on the stack, the amount of data becomes unimportant. The subroutine may read differ-
ent data ifems on the stack by using the indexed addressing modes with the stack pointer as the base register,
Complex subroutines may require that the last word placed on the stack (the word with the lowest virtual address,
because the stack expands towards low addresses) contain the number of parameters passed so that the program
does not use other data also on the stack but not intended as parameters.
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4.4.5 Separate Stack and Index Pointers

Using the stack pointer as the base address for indexed addressing presents problems if the subroutine must, in
turn, pass data to another subroutine. Each time the first subroutine calculates a parameter for the second sub-
routine, it pushes the parameter onto the stack, The address in the stack pointer changes to reflect the new data
on the stack. As a result, all instructions in the first subroutine which contain index constants are invalid, be-
cause the base value that the index constants are supposed to modify has changed. It would be very difficult, if
not impossible, to write a subroutine that could use different index constants as the stack pointer changes (be-
cause to remain re-entrant, the program cannot change any part of the instruction code). A much simpler solu-
tion is to separate the base register from the stack pointer by copying the stack pointer value into another general
register before using the stack for any other data. This is still re-entrant because any change of virtual machine
also changes the conients of (or the selection of) all the general registers.

The register commonly used as a separate index pointer is register 5. The standard method of calling subroutines
in re-entrant programs uses register 5 as the index pointer, register 6 as the stack pointer, and a word on the
stack (at the address contained in the index pointer) that indicates the number of parameters on the stack. In ad-
dition to providing a straightforward and completely re-entrant structure, this method is completely compatible
with a similar form of non re-entrant subroutine call, The same subroutine can be called both by re-entrant pro-
grams and by simpler programs that are not re-entrant.

4.4.6 Subroutine Call Compatibility

In g non re-entrant program, the parameters passed to a subroutine are placed in-line; i.e., they are in the addresses
immediately following the address of the calling instruction. The subroutine catl and return instructions use a reg-
ister to store the program counter value for the calling program; the value in the program counter at the time the
subroutine call Gump to subroutine or JSR) instruction is executed is the address of the word following the JSR
instruction. The standard register specified in JSR instructions is register 5; register 5 can be used as an index
pointer while the stack is used for data storage during the execution of the subroutine, The JSR instruction does
not destroy the previous contents of register 5 when it stores the return address in that register; the previous con-
tents are pushed on the stack, and are automatically restored by a return from subroutine (RTS) instruction.

When the RTS instruction restores the program counter (PC) value stored by the JSR instruction, the calling pro-
gram must have some means of bypassing the stored data to get to the next instruction. The word immediately
following the calling instruction must contain the number of words occupied by the parameters. Both of these
requirements can be fulfilled by placing a branch instruction in the return location; the branch instruction ad-
vances the PC so that the first word after the line parameters, and the offset in the eight least-significant bits of
the branch instruction, contain the number of words (the offset is multiplied by 2 before use to generate a byte
address) used for the parameters.

The calling sequence and in-line parameter structure used by non re-entrant routines permits the subroutine to
return control to the calling routine with an RTS RS instruction. For compatibility, the re-entrant subroutine
call must also permit the same RTS RS instruction to perform the return. However, when a subroutine has been
called in a re-entrant manner, RS points to a location on the hardware stack, not to the calling program. In addi-
tion, the space in the stack area nsed by the subroutine call must be released (the stack pointer must be adjusted
to point to the first location after the parameter area) so that any additional information on the stack (such as a
return linkage to a routine that called the routine that called the current subroutine) is accessible. Thus, the word
pointed to by RS should contain an instruction, whose least-significant bits are the number of parameters passed
to the subroutine, which can adjust the stack pointer and also complete the subroutine return sequence.
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4.4.7 The MARK Instruction

The PDP-11/45 System uses the MARK instruction to perform this function. The MARK instruction is depen-
dent on the correct setup of registers 5 and 6 (the index pointer and the stack peinter) for its correct operation.
It is executed after an RTS RS instruction that loads the PC from the index pointer, and loads R5 with the old
PC of the calling routine from the stack. The MARK instruction then adjusts the stack pointer and effectively
performs another RTS RS to finally return control to the calling routine.

Figure 4-2 illustrates examples of the two types of subroutine calls for a call with three parameters and the fea-
tures that make them compatible to the subroutine. Figure 4-2A shows the standard non re-entrant call; after the
JSR instruction has been executed, R5 and the SP (R6) point to the location shown. Figure 4-2B shows the cor-
responding situation after the JSR instruction for the standard re-entrant subroutine cail. Note the following sim-
ilarities between the two types of calls:

a. In either ease, RS points to a word that contains the number of parameters in the least-significant bits,

b. The words following the word pointed to by RS contain the parameters in ascending order (in the illus-
trations, the addresses increase going from the top of the illustration to the bottom).

¢.  The stack pointer (SP or R6) points to the last word on the stack used in the call,

d. The first word of the stack area used in the call contains the original contents of R3S,

When the subroutine executes an RTS RS as its last instruction, the RTS and the following instruction (either a
BR or a MARK instruction) return control to the address containing the next instruction of the calling routine,
and restore the SP to point to the previous contents of the stack. In the re-entrant case, the RTS instruction does
not restore the PC directly from R35; instead the old PC is moved from the stack to RS, to be moved from R5 to

the PC by the MARK instruction.
B

MOV RS, —(SP)
MoV P3, —(SP}

A
MOV P2, —(SP}
JSR RS, SUBR MOV P1, —(5P)
RS —] BR .46 MOV ## (MARK 3},~(5P)
P1
P2 MOV SP, RS
P3
JSR PG, SUBR

NEXT INSTRUCTION

NEXT INSTRUCTION

SP = OLO PC se aLD PC
PREVIOUS CONTENTS RS — MARK 3

P

P2

P3
OLD RS

PREVIOUS CONTENTS

11-1074

Figure 4-2 Non Re-Entrant and Re-Entrant Subroutine Calls
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4.5 PROCESSOR STATUS OPERATIONS

The processor status (PS) word contains several types of information that control the operation of the Processor,
and of the PDP-11/45 System. Table 4-1 lists the fields within the PS, and the paragraphs of this chapter that dis-
cuss the effect of each field.

This paragraph discusses the interaction of the PS ficlds with asynchronous events in the PDP-11/45 System and
the changes that occur to these fields as a result of those interactions. The following discussion is divided into
paragraphs according to the fields of the PS worg.

4.5.1 Current Processor Mode

The current processor mode selects most of the mapping for the virtual machine and determines whether certain
instructions are effective or prohibited. The processor mode can be set by moving a data word to the PS at its
Unibus address, or through a trap or interrupt service function (which loads a new PS value from the trap or inter-
rupt vector), or through an RT1 or RTT instruction (which restores an old P$ from the hardware stack).

Programs running in virtual machines should not be allowed to change the contents of this field. If the current
processor mode is changed, the mapping registers in the KT11-C Memory Management Unit that are selected are
replaced by the set for the new mode. The result of attempting to continue with the same PC value in the new
virtual address space is unpredictable,

The entire PS word is protected from direct transfers by being mapped only into the kernel address space. No
other virtuzal machine has any virtual address that corresponds to the physical address of the PS register, so there
is no way to transfer data to the register through instructions. The new value of the PS used during the trap or
interrupt service function is taken from a vector (whose location is specified by a vector address supplied by the
interrupting device or by the trap recognition logic) that is located in the kernel address space; again, other pro-
grams can not access the vector storage, and thus, can not modify the vector contents to affect the PS value. The
RTI and RTT instruction can only set, and not clear, these bits, so user programs are prevented from entering
other modes while kernel programs can return control to any mode.

4.5.2 Previous Processor Mode

The previous processor mode is used primarily by the communication instructions to define which address space
to communicate with, During user mode operation, these bits are set to reflect user mode, so that the user pro-
gram can not move data into or out of any other address space. These bits are set to reflect the value contained
in the current mode bits prior to an interrupt or trap operation, A special kernel mode data transfer is used to
fetch the new PS value from the vector address; however, bits 13 and 12 of the PS are not loaded from the data
read but from the old value of bits 15 and 14,

During the return from a trap or interrupt service program (via an RTI or RTT instruction), the old PS value is
restored from the stacked value. The previous mode bits are protected in a way that prevents user mode pro-
grams from altering the bits to allow access to other address spaces. This is done by permitting the bits to be set,
but not cleared; since user mode is represented by all 1s, user mode programs can not alter these bits, but other
types of programs can gain access to user address space.
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Table 4-1

Processor Status Fields
Bits Function . Description Refer to Paragraph
15—14 current mode select the processor operating mode: 4.3.3,4.34,4.5.1
00 = kernel '

01 = supervisor
10 = not used
11 = user

13-12 previous mode holds the processor mode that was in 4.3.3,4.5.2
effect prior to the last trap or inter-
rupt, for use in communication

(MT/FP) instructions

11 register set selects one of two register sets for 43.1,4.3.2,453
general registers O through 5

10-8 not used

7-5 priority selects one of eight processor priority 4.5.4
levels that control scheduling of in-
terrupt service routines

4 trace bit controls operation of a trap function 4.5.5
used in program debugging

3-0 condition codes used to store information about the 4.5.6,7.2
value of the result of the last data
operation

4.5.3 Register Set Selection

The register set selection field controls which of two sets of general registers is used. In general, a user program
should use only the register set assigned to it by the executive program; the protection of this field is similar to
that for the mode fields, so user programs should run with register set 1 selected to prevent the user from chang-
ing the selection.

4.5.4 Processor Priority

In a PDP-11/45 System, the processor spends most of its time executing instructions in programs that are running
in virtual machines. However, a certain part of the processor time is spent servicing inferrupts from other devices,

The interrupts indicate that the processor must execute an interrupt service routine to control the operation of
the device; for different devices, the interrupts indicate different conditions that have occurred. Different de-
vices can tolerate different amounts of delay before the execution of their service programs; the system uses a
scheduling system to determine which interrupt service programs should be honored first.
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4.5.4.1 Device Priorities — The scheduling system is based on a structure of priorities. Each device that causes
interrupts is assigned to a priority level. When the processor is executing a service routine, the processor priority
is set to the same level as the interrupt that started the service routine; this blocks all interrupts on the same (or
any lower) priority level. Higher priority interripts are still honored by stacking the context of the current inter-
rupt service routine and loading a new context from an interrupt vector. The use of a hardware stack to store the
context information for interrupted routines permits any number of routines to be nested, because each higher
level routine must execute to completion and exit (through an RTT instruction) before the lower level routine re-
sumes operation. This last-in, first-out discipline corresponds to the operation of the stack.

4.5.4.2 Program Priorities — In some cases, it is desirable to be able to reschedule part of an interrupt service
routine at a different priority, This can occur, for example, when a service routine that normally executes
quickly detects an error that requires a long procedure to correct; the error routine should run at a much lower
priority. It is preferable to schedule the lower priority section separately, and return control to the interrupted
program, so that other high-priority interrupts can be serviced without tying up stack space and other resources
with the current interrupt routine.

4.5.4.3 Programmed Interrupt Requests — The same type of program scheduling is useful to the executive pro-
gram for scheduling different user programs at different priority levels or for scheduling periodic supetvisor func-
tions. The KB11-A processor provides a mechanism for scheduling different priority requests, in the form of a
programmed interrupt request (PIRQ) structure. This structure consists of a processor register in which bits can
be set to represent interrupt requests at different priority levels, and an interrupt vector generator that supplies a
fixed vector address whenever the processor honots an interrupt request from the PIRQ register. The PIRQ regis-
ter is intended to be accessed only in kernel mode so that it is protected from alteration by programs operating
in virtual machine; because there is only one request bit for each priority level, there must be a control program
for each level that determines what other programs must be run when the request at that level is honored.,

The kernel program can alse vary the processor priority level directly, either by moving data containing a desired
priority to the PS address, or by means of the set priority levet (SPL) instruction. The SPL instruction has the
advantage that it modifies only the priority level and that it can be executed with only one memory cycle, while
a data transfer to the PS address requires many more memory cycles and requires additional processing to avoid
changing other parts of the PS word.

4.5.5 The Trace Bit

In some forms of debugging operations, it is useful to be able to trap to a debugging program after the execution
of each instruction in the program being checked. The trace trap is provided to perform this function. The trace
{T) bit in the PS word generates a trace trap, through a fixed vector, whenever it is set to a 1. This trap occurs
after the execution of each instruction while the T bit is set,

The T bit is protected against unintentional modification. It can only be set or cleared during the interrupt or
trap response function, from a vector containing a new P8 value; or during the execution of an RTI or RTT in-
struction, from an old PS value on the stack. When data is transferred to the PS address by any other instruction
the value of the T bit is unaffected despite any value in the transmitted data.

]

4.5.6 The Condition Codes

The four least-significant bits of the PS word contain the processor condition codes. These bits store information
about the value resulting from any data manipulation during an instruction. The condition codes are not altered
to reflect the results of address calculations, but are changed only when an instruction explicitly operates oh an
explicit unit of data.
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The condition codes can also be set to any specific value by transferring a word containing that value to the PS
address. The value of the condition codes are altered by every interrupt or trap response function, and by every
RTI or RTT instruction. In addition, individual condition-code bits may be manipulated directly, with the
condition-code operate instructions. These instructions provide a means to set any one or more of the condition
codes with a single instruction that requires only one memory reference; a similar set of instructions can clear any
one or more bits. The condition codes are used in conditional branch instructions, so the various means of ma-
nipulating the condition codes are useful because they permit setting up the PS word to respond in a particular
way to various branch instructions.

4.6 STACK LIMIT PROTECTION

Each virtual machine, and the kernel mode program, has a separate stack area which is used by the hardware
stack pointer (SP) for that machine. The stack pointer contains the virtuat address of the last word of the stack
area used to store data. As more data is stored on the stack, the value in the stack pointer changes to lower ad-
dresses.

The area available for stacked data is not unlimited. If the program continues to add data to the stack, or if an
unexpectedly large number of traps and interrupts should occur, the hardware stack mechanism may attempt to
store data in locations which have been reserved for other uses; this occurs if the stack pointer overflows beyond
the boundary of the stack storage area.

In each of the virtual machines, stack overflow protection can be provided through the memory management
unit, The stack area is placed in a virtual page that is not used for any other data and is isolated from other vir-
tual addresses used by the program. The isolation required consists of an area of non-resident virtual addresses
immediately below the stack area. If the stack pointer moves below the stack area, any memory references using
the contents of the stack pointer as an address will be aborted and trapped to the executive program which can
take corrective action.

This technique can not be used for the kermel mode stack, however, because the response to a stack overflow in
kernel mode is to trap to kernel mode; the trap service operation attempts to push two additional words onto the
stack. Therefore, the processor provides a warning trap when the kernel stack first overflows, and provides an
emergency recovery sequence that is executed whenever the stack overflow becomes severe,

The kernel mode stack overflow detection is based on the stack limit (SL) register. The register permits the stack
overflow address to be adjusted to reflect the position of the stack in the kernel address space. Whenever the
processor initiates a data transfer to store data, based on the stack pointer as an address, the address that is trans-
mitted is compared to the contents of the stack limit register. If the transmitted virtual address is higher than the
contents of the SL, the stack is still within the stack storage area, and the stacking operation is permitted to pro-
ceed. If the transmitted virtual address is less than or equal to the value in the SL, a trap occurs, and the stacking
operation is aborted.

The type of trap that occurs depends on the amount by which the transmitted address is less than the contents of
the SL. The first 16 words directly below the stack area are reserved for stack overflow. If the stack expands
into these words, a special stack overflow trap occurs. This trap uses two of the 16 words for storage, and uses a
vector that initiates a special service program to recover from the stack overflow,

If, however, the stack continues to expand beyond the 16 words reserved for stack recovery operations, an emer-
gency stack trap occurs. This trap ignores the current location of the stack and stores the current program con-
text at addresses 0 and 2. The stack overflow program is then initiated. The 2-word emergency stack is provided
to prevent the stack from continuing to advance into the prohibited area; if the stack is not adjusted to remain
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within the stack storage area before expanding through the 16 reserved words, some failure of the recovery pro-
gram must be suspected and the emergency measures are taken.

The 16 words reserved for the recovery program are called the yellow zone, and the stack overflow trap that
occurs whenever the stack expands into these words is called a yellow zone trap. If the stack expands below the
yellow zone, it enters the red zone, and the emergency red zone trap occurs. If any type of bus error or memory
management error occurs while the processor is responding to a yellow zone trap, or while the processor is at-
tempting to use the stack pointer as an address (in kernel mode), that error is treated as a red zone error because
the processor may not otherwise be able to recover the correct stack information,

4.7 THE MULTIPLY AND DIVIDE INSTRUCTIONS

Two of the instructions performed by the KB11-A processor are sufficiently complex to require treatment on a
conceptual level as well as on the more detailed level of the implementation used to perforim them. These two
instructions are the multiply (MUL) and divide (DIV) instructions,

4.7.1 Number Representation

Before describing the algorithms used for the MUL and DIV instructions, it is helpful to review some aspects of
number representation that are important in the following discussions. Numbers are a means of describing quan-
tirjes. In a number system (such as the decimal system that we normally use, or the binary system that is used in
digital computers), each number has a unique representation. It is important to distinguish between the quantity
indicated by a number and the representarion of that quantity.

For example, the number system used in the PDP-11 computer systems is catled the 2’s complement number sys-
tem, The phrase “2’s complement representation” describes the use of this system, The 2’s complement repre-
sentation of the quantity 1 is a string of Os followed by a single 1 in the least-significant position (for a 16-hit
representation, this string is ¢ 000 000 000 000 001). Similarly, the representation of the quantity minus 1 isa
string of all 1s (for a 16-bit representation, this stringis § 111 111 111 111 111). There is also a 2’s complement
operation. When the 2’s complement operation is performed on the representation of the quantity 1, the result
is the representation of the quantity minus 1, That is, the 2’s complement (not the representation) of 1is—1.

Number systems like the decimal and binary systems are called positional representations. The same symbol,
used as a different digit, has a different meaning because of the difference in position within the number, For
example, the 1 in the binary number 10 has the value 2 in decimal representation, but the same symbol 1 in the
binary number 100 has the value 4 in decimal representation. The value of the position, which modifies the
value of the digit, is linked to the value of the base of the number system. Each more-significant position has a
value that is equivalent to the value of the position immediately preceding it, multiplied by the base of the sys-
tem. If the value of the number system base is represented by &, the values of the three least-significant digits of
integer numbers, in ascending order, are 1 (actually b®), b (that is, b!), and b times b (that is b?). Representing
the digits of a number by the symbols a, through a,, the complete representation of a number is:

a,b" +a_b™! +.. . +a,b% +a,b' +a,b%. The representation consists of n+1 digits, and can express a total of
b**! numbers.

If a positional representation is used only for positive numbers, it can express numbers up to b®*1-1. However,
if the representation uses a complement system to represent negative numbers, the range of numbers that can be
expressed is from ~b*1/2 to +(b"*1-1)/2, For binary numbers, b is 2, so the range of numbers that can be rep-
resented is from ~2" to +2"- 1. As a result, the 2’s complement operation can be expressed as finding 21~ A,
where A is the original number.
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4.7.2 The Multiply Algorithm

The process of multiplication is, effectively, one of repeated addition. One number, called the multiplicand, is
added together a number of times to form a product; the number of times the multiplicand is added to the pro-
duct is determined by the value of the other number. That is, the multiplicand is added as many times as the
value of the multiplier.

Using 16-bit numbers, the largest number that can be represented in the muitiplier is o111 111111 111 511,
which can also be represented as 216-1, To multiply a number by this quantity would require 216_1 additions,
which is too much processing to be practical. Fortunately, there is a much more efficient method that is based
on the principles of positional notation, as discussed in Paragraph 4.7.1.

The multiplier can be represented as the sum of the values of the individual numbers that form the digits of the
number. The multiplicand can then be multiplied by each of the digit values of the muitiplier; the resulting par-
tial products are then summed to develop the final product. Each of the partial products has the form a_2". For
16-bit numbers, only 16 partial products are formed, which takes much less time than 216 gperations. The gener-
ation of each partial product is divided into two parts: first, the multiplicand is multiplied by 2", and second, the
resulting number is multiplied by the value of the digit, a, .

When the digits are treated in sequence, starting with the least-significant digit and working up to the most-
significant digit, the first factor used to form each partial product differs by 2 for successive bits; that is, the mul-
tiplicand times 2% is equivalent to (multiplicand * 23y * 2, Therefore, the multiplicand is multiplied by 2 before
each partial product (except the first) is formed. Muliiplication by 2 is the same as shifting one place to the left
in binary number systems,

Each a,, can only have the value 1 or the value 0. If the value is 0, the value of the entire partial product is 0; if
the value is 1, the shifted multiplicand is added to the sum that becomes the final product. Because the multipli-
cand is shifted for each digit of the multiplier, and the shifted multiplicand is added to the product if the corre-
sponding bit of the multiplier is a 1, this algorithm is called the “add and shift” multiplication algorithm.

4,7.3 Sign Correction During Multiplication

The 2’ complement representation permits the simplest implementation of logical circuits for addition and sub-
traction, but it requires corrections during multiplication and division operations. As an example of the require-
ment for cotrections, the representation of - A is 2"~ A; when - A is multiplied by B, the actual multiplication is
(2"~ A)*B and the result is the representation of 2% B- AB, instead of the representation of - AB. Therefore, a
correction factor of - 2" B must be added to the result to generate the correct representation. Table 4-2 illustrates
the corrections required for each combination of signs for the multiplier and multiplicand.

In the KB11-A processor, most of the correction operations are avoided by using a modified representation for
the multiplier. Normally, the multiplier would be considered a 16-bit number, and the 2’s complement represen-
tation of negative numbers would be 216 minus the corresponding positive number. However, for use in the mul-
tiplication, a different 2’s complement representation is available in which negative numbers ate represented by
232 minus the corresponding positive number. The advantages of this representation are illustrated by repeating
the example shown in the previous paragraph: the representation of - A is now 232_A, so~A times B is equiva-
lent to (232~ A)*B, or 232 B; the factor 2°2B is shifted beyond the 32-bit product, and does not appear in the
final result, which is just the representation of - AB.

Figure 4-3 illustrates the conceptual hardware structure needed for this multiplication algorithm, using the special
2s complement representation for the multiplier, and illustrates the algorithm in a flowchart fashion. The
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Table 4-2
Sign Corrections for Add and Shift Multiplication

R Representation | Representation Product as Product .
Multiplication of A of B Generated Should Be Correction
(| a8 A B AB AB none
Normal -A*B 2"-A B 2"B-AB -AB -2°8
2’s Complement . o n o
Representation A*-B A 2-B 2"A-AB -AB -2A
-A*-B 2"-A 2°-B | 220-2"A-2"B+AB AB +27A+2"B
L
r
A*B A B AB AB none
Special 2 2
2’5 Complement < -A*B 2 n"A B 2 HB_ AB ~AB none
Representation A*B A M-B MA-AB -AB —atp
(see Paragraph 4.7.3) 5 3 2
q -A*B 2°0-A 2"-B 2°M.250B-2"A+AB AB +2"A

NOTES: 1. Subtracting negative numbers is the same as adding positive numbers, sc the correction factors can always be generated
by subtracting the appropriate variables,

2. The product is expressed in 2n bits, which can contain numbers up to 2"~ 1. Any factor which is greater than or equal
to 2" can be ignored. :

CLEAR SUM
LOAD MR

LOAD LOW HALF
QF MR AND
EXTEND SIGN
SHC +— N

SUM «+— SUM+ MD|

MD«—MD ¥ 2
(SHIFT LEFT)
SHC #—SHC — §

SUM «+— SUM=-MD

LEGEND: SUM=RESULT REGISTER
MD = MULTIPLICAND

MR= MULTIPLIER
DONE SHC = SHIFT GOUNTER

1H-1072

Figure 4-3 Multiply Algorithm and Register Structure
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hardwate structure represented in the illustration is not the structure used in the KB11-A processor; that struc-
ture is ilustrated in Chapter 6. See the discussion of the MUL instruction in that chapter for more information
on the implementation of the algorithm,

4.7.4 The Divide Instruction

Division is the process of counting the number of times one number (the dividend) can be reduced by another
number (the divisor). The count of the number of reductions is called the quotient and the part of the dividend
that can not be reduced by the divisor is called the remainder. Division is more complicated than multiplication,
for several reasons: '

a.  Division produces two results, not one.

b. During multiplication, the maximum result occurs when the maximum number is multiplied by itself,
and this result fits into two words; during division, the maximum result occurs when the largest pos-
sible number is divided by a very small number and the result does not fit into any reasonable number
of words; therefore, the division algorithm must recognize the overflow condition when the quotient
is too large.

¢.  During the division process, it is necessary to recognize when the partial remainder is smaller than the
divisor; usually this is done by recognizing when the last reduction passed through 0 and changed the
sign of the remainder, This condition is called underflow and requires that the results of the last reduc
tion be restored in some way.

The simplest division algorithm is to subtract the divisor from the dividend until underflow occurs, restore the re-
mainder, and keep a count of all but the last subtraction for the quotient (this algorithm assumes all positive nun:
bers). This procedure is very tedious, particularly if an overflow condition exists, so a shorter algorithm is used
that is based on the positional representation of numbers.

The result of the division is a quotient that can be multiplied by the divisor to regenerate the dividend (with a
difference equal to the remainder). If, during the multiplication, each bit of the quotient can generate a partial
product that becomes part of the total sum, then during the division, each bit of the quotient can be generated
individually while reducing the partial remainder by an appropriate amount. To determine what the most-
significant bit of the quotient should be, the number that is subtracted from the dividend is equal to the divisor
multiplied by the positional value of the most-significant digit.

Figure 4-4 illustrates the division algorithm. At the beginning of the division, the dividend occupies all of a 2-
word register. The divisor has been multiplied by 2", so that the number which is first subtracted from the divi-
dend is actually the divisor, times the positional value of the most-significant bit. Before each step of the division
the divisor is divided by 2, so that the correct number for generating the next bit of the quotient is formed; the
division by 2 is done by shifting the 2-word divisor 1 bit to the right. In order for the division algorithm to oper-
ate with negative numbers, the reduction that is performed at each step of the division must be the correct oper-
ation to reduce the remainder; if the divisor and the partial remainder (that is, the dividend) have the same sign,
the divisor is subtracted from the remainder, but if their signs differ, the divisor is added to the remainder to re-
duce its magnitude.

4-23



DIVIDE

LOAD DD

LOAD HIGH HALF
OF DR AND CLEAR
LOW HALF

CLEAR Q

SHC +—N

DDzp® OR2N

YES

DDzN*DR2y

DDgn=DRaN

YES

Qea—Q¥2+1

{SHIFT LEFT}

Qe—Q¥2+0

(SHIFT LEFT)

NO

DR=+—DR/2
{SHIFT RIGHT])
SHC +—SHC -1

DD =
ORIGINAL,
SIGN

0D +—DD+DR

{ DONE )

2N 0

°

LEGEND: DD=*DIVIDEND
[REMAINDER 15 DD <N—-1:03>)

Q=QUOTIENT
SHC=SHIFT COUNTER

1§-9070

Figure 4-4 Divide Algorithm and Register Structure

424



The algorithm that is illustrated does not perform a restoration if an underflow condition occurs, Instead, while
underflow exists, succeeding operations are performed in the opposite manner to complete the restoration; while
an underflow condition exists, the bits of the quotient are set only when the underflow is corrected and are
cleared if the operation does not complete the restoration. If the original divisor and dividend are of opposite
sign, the quotient should be negative, so bits of the quotient are set only if underflow does occur. As aresult of
these considerations, the value generated for each bit of the quotient depends on the operation performed and
its results, as follows: "

a.  If the operation was a subiraction (the signs of the divisor and the partial remainder were the same),
the quotient bit is set if there was no underflow, and is cleared if there was underflow.

b. If the operation was an addition (the signs of the divisor and the partial remainder were different), the
quotient bit is cleared if there was no underflow, and is set if there was underflow.

The non-restoringdivision algorithm works because an underflow at any step can be corrected to within one mul-
tiple of the divisor by the succeeding steps. This is true because a binary number that is represented by all 1s
changes to a number that is represented by a 1 followed by all Os when the number 1 is added to it. Therefore,
the multiple of the divisor that is subtracted from the partial remainder at any step is only one more muliiple of
the divisor than can be expressed by all the less-significant bits of the quotient. The remaining single multiple of
the divisor can be restored by a single operation ¢which is always an addition, because underflow exists and the
divisor and partial remainder have different signs) following the steps that generate the quotient bits; this step is
also used to correct the remainder.
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CHAPTER 5
BLOCK DIAGRAM DESCRIPTION

This chapter introduces the KB11-A Central Processor Unit architecture by describing the block diagrams, which
show all major logic elements and interconnections in the processor, The description of the processor is divided
into two major sections: data paths, and control. The data paths section includes all logic elements that operate
on data that is used external to the processors. The data paths block diagram is shown in Figure 5-1. The control
section, which includes all logic elements that operate on data used entirely within the processor (control informa-
tion), is shown on the control section block diagram, Figure 5-3. A drawing prefix, which indicates where each
element is shown in the block schematic, is included within each block on the diagrams.

5.1 DATA PATHS BLOCK DIAGRAM

The data paths block diagram (Figure 5-1) includes data storage elements, data manipulation elements, and data
routing elements.

The data storage elements are divided into three groups:

a.  general storage registers (Paragraph 5.2)
b. temporary storage registers (Paragraph 5.3)
¢.  special purpose registers (Paragraph 5.4)

The data manipulation logic elements include:

the ALU (Paragraph 5.5.1)

shifter logic (Paragraph 5.5.2)

constant multiplexers (Paragraph 5.5.3)
destination register (Paragraph 5.5.4)
shift counter (Paragraph 5.5.5)

PRLeFP

The data routing logic elements consist of:

a.  ALU interface multiplexers (Paragraph 5.6.1)
b, temporary storage register input multiplexers (Paragraph 5.6.2)
¢. external interface multiplexers (Paragraph 5.6.3)

5.2 GENERAL STORAGE REGISTERS

This group of registers includes the program counter (PC), three stack pointer registers (SP), and two sets of gen-
eral registers (RO through RS5) (Figure 5-2).

5.2.1 Program Coumter (PC)

The PC provides the address of the next instruction to be fetched. For some address modes, instructions that
transfer data can consist of more than one word, In these cases, the PC points to each word of the instruction in
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the order that the words are needed, When the PC is used as an address source, the contents of the PC are gated
to the virtual address lines by the bus address multiplexer (BAMX). The PC can be updated while it is being used
as an address source, To accomplish this, the PC is implemented by a buffered pair of registers, so that the PCA
can be loaded with a new value, while the PCB maintains the old value; the PCB can then be loaded from the
PCA when the old value is no longer needed.

The processor can transfer data to the PC from any source that can supply data to the other general registers, and
can transfer data from the PC to the same destinations that can be loaded from the other general registers. Spe-

) cifically, all data loaded into a general register must come through the ALU, which also supplies the inputs to the
PCA. The only exception to this rule is for right shifts and byte swaps. If the processor attempts to right-shift
the contents of the PC, the PCA is loaded from the ALU outputs, not the shifter (SHFR) outputs, so the data in
the PC is unchanged.

During the interrupt and trap service sequences, when new PC and PS values are read from locations specified by
a vector address, the old PC and PS8 are temporarily stored in the PCB and PCA (during internal machine cycles).
This is the only time that any data, other than the contents of general register 7, is stored in the PCB. However,
the PCA is often loaded in parallel with the general registers so that the PCB can be loaded if the specific register
used is number 7.

5.2.2 Stack Pointers (SP}

The KB11-A has three stack pointet (SP) registers, Each SP is used as the hardware stack pointer during one of
the processor operating modes, The kernel, supervisor, or user mode is selected by two bits in the processor
status (PS) register. All the SP registers are also addressed as general register 6. The selection of a particular SP
register is performed by the general register control logic (Paragraph 5.8.3), depending on the current or previous
processor state. The previous state, which is used during certain cycles of MTPI, MTPD, MFPI, and MFPD (move
to/from previous instruction/data space) instructions, is determined from bits 13 and 12 of the PS, through logic
in the general register control.

The SP registers are implemented in the two general register storage elements. These storage elements are the
general source (GS) registers and the general destination (GD) registers. The two sets of storage elements contain
duplicate copies of all the general registers except the PC. The use of the duplicate copies, and the specific ad-
dresses of the different SP registers within the storage elements, are described in the following paragraph.

5.2.3 General Register Sets

In all instructions that transfer data, each address reference specifies one of eight general registers. The specific
register (of the 16 in the KB11-A processor) used for each reference depends both on the value of the 3-bit regis-
ter specification and on the processor state, as represented by the contents of the processor status (PS) word.

Two of the eight general registers that can be specified in the instruction code are also used by the KB11-A as
special purpose registers. If the register specification has a value of 7, it specifies the program counter (PC) regis-
ter. This always refers to the hardware PC register described in Paragraph 5.2, . If the specification has the value
6, it specifies the hardware stack pointer (SP) register. One of three hardware registers, within the general regis-
ter data storage elements, is selected depending on the processor mode (Paragraph 5.2.2). If the register specifi-
cation has the value Q through 5, one of two registers is selected, depending on the register set selection bit (bit
11 in the PS word). Figure 5-2 illustrates the general register selection in the KB! 1-A processor.
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Figure 5-2 General Register Storage in GS and GD Storage Elements

Each of the 16 general registers is duplicated. The duplication allows the processor to access more than one regis-
ter at a time. Each general register, with the exception of register 7, is implemented by two copies in the two
general register storage elements. The general source (GS) registers include 16 registers allocated as shown in
Figure 5-2. The general destination (GD) registers contain 16 registers used in an identical manner. When data
must be written into a general register, it is written into both copies to ensure that all attempts to read the data
will read the same value. However, by specifying different register addresses to the GS and GD storage elements,
it is possible to read the contents of a different register from each. This feature is used primarily in reading the
contents of the two registers specified by double operand instructions.

Whenever the general registers, as a group, serve as a data source, the PC (register 7) can be selected as one of the
general registers, This is accomplished by selecting the PCB input to the SHFR, and allowing the source or desti-
nation multiplexer to select the SHFR input, if register 7 is selected, and the GS or GD input if any other register
is selected.

5.3 TEMPORARY STORAGE REGISTERS

Temporary storage registers include the source register, the destination register, and the bus register. The source
and destination registers are used primarily with the general register sets. The bus register is used primarily to
communicate with external data handlers.
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5.3.1 Source Register (SR)

The source register (SR) performs two major functions. It is the output buffer for all the general registers when
addressed as the source register in an instruction, and it provides temporary storage during the source data-fetch
operations.

All output from the GS registers must be transferred through the SR. When the PC is selected as a source register,
the data from the PCB is routed through the SHFR to the SR. From the SR, data can be routed anywhere in the
processor through the ALU inputs, or the contents of the SR can be used as an address for external data transfers
through the BAMX. The SR is also used as a temporary storage register during transfers of data within the pro-
cessor; ¢.g., when the old PC and PS are being stacked during an interrupt or trap service sequence, the SR holds
the vector address.

The SR is used as a data storage element for intermediate results during instruction execution. The register and
operand group instructions, such as multiply, divide, and the arithmetic shifts, use the SR to hold both operands
and results.

5.3.2 Destination Register (DR)

In addition to performing two functions similar to the major functions of the SR, the destination register (DR)
also operates as a data manipulation element; specifically, the DR is used as a shift register during register and
operand instructions such as ASH, ASHC, MUL, and DIV.

All output from the GD registers (and from the PC, when it is selected as a destination register) must be through
the DR. Data from the DR can be routed anywhere in the processor through the arithmetic and logic unit (ALU),
or used as an address in external data transfers through the BAMX. To transfer the contents of either the SR or
the DR to an externai data storage location, the data must first be transferred from the SR or DR through the
ALU to the BR, and then from the BR to the Fastbus or the Unibus.

The DR differs from the SR in its ability to act as a 16-bit, left or right shift register. This is shown in Figure 5-1
by the values of the DRK microprogram field. The DR is used as a control register and to accumulate the less-
significant part of the result during register and operand instructions such as multiply, divide, or the arithmetic
shifts. The DR is also the source for data to be loaded into the shift counter (SC) register.

5.3.3 Bus Register (BR and BRA)

The bus register is the data interface between the KB11-A processor and all external devices. All data entering
the processor data paths, and atmost all data transmitted from the processor, is transfetred through the BR. The
BR provides many of the inputs to the ALU and is the source of data input to all the special processor control
registers.

Because of the wide utilization of the BR outputs, the BR is duplicated to reduce the ¢lectrical loading on the
register outputs. The second copy of the BR is called BRA. In addition, two registers (IR and AFIR), which
share the same inputs as the BR (but are clocked separately), serve to hold instructions and provide inputs to the
instruction decoding circuits.

Data inputs to the processor enter the processor on one of three data buses:

a.  The Unibus, which connects the processor to a variety of Unibus devices, including memories, mass
storage devices, and input/output peripherals.

b. The Fastbus, which connects the processor to the high-speed, semiconductor memories.

¢. The internal bus, which connects the processor to the FP11 Floating-Point Processor, the KT11-C
Memory Management Unit, and some of the special purpose registers.
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Any of these buses can be selected as the input to the BR by the bus register'multiplexer (BRMX). The bus
selected is dependent only on the physical address used in the external data transfer.

The BR can also be loaded from the processor data paths. In data transfers from the processor to an external de-
vice, or to any of the processor control registers, the data is loaded into the BR from the SHFR after passing
through the ALU. The BR is used as a temporary register in the same way as the SR or DR during the execution
of instructions. In particular, the BR accumulates the more-significant half of the result during multiply and
arithmetic shift instructions.

The BR can provide outputs to any of the devices on any of the three data buses. Devices on the Unibus use
bidirectional data lines. There are separate data lines on the Fastbus for each direction of transfer. The internal
bus, which is used only for transfers into the BR, is paralleled by data lines for transfers out of the BR.

5.4 SPECIAL PURPOSE REGISTERS

The data section includes a number of special purpose registers that provide control information for use by the
control section, or provide communication between the console and the processor. The majority of these regis-
ters are loaded from, or in conjunction with, the bus register (BR), and can be read into the BR via the internal
bus. These registers include the instruction register, the shift counter, the processor status register, the pro-
grammed interrupt request register, the stack limit register, and the microprogram break register.

5.4.1 Instruction Register (IR)

When an instruction is fetched from an external data storage location, the data word enters the processor through
the bus register multiplexer (BRMX), and is loaded into the BR. To retain the instruction word for decoding
during the execution of the instruction, while releasing the BR for other data transfers that may be required dur-
ing the execution of the instruction, the outputs of the BRMX are simultaneously loaded into the instruction reg-
ister (IR). The IR is clocked only during data transfers that fetch instructions. The BR is clocked during every
external data transfer that brings data into the processor.

To reduce the electrical loading on the outputs of each register, the IR is duplicated. The second copy of the IR
is used only by the fork A logic, which has particularly stringent timing requirements, and is therefore called the
A fork instruction register (AFIR). The primary instruction register (IR) is used with decoding circuits which
operate the subsidiary ROMs, the B and C forks, and a variety of instruction class selectors. All the instruction
decoding logic is shown on the control section block diagram, Figure 5-3, and is described in Paragraph 5.7,

5.4.2 Shift Counter (SC)

The shift counter (SC) is a register that performs a data manipulation function. However, the data loaded into
the SC is used only for processor control information, and can not be transferred out of the SC.

The SC function is to count towards 0. The direction of counting depends upon the current sign of the SC con-
tents. The contrel data loaded into the SC is considered a repetition count, which indicates the number of cycles
required to execute a complex data manipulation, such as an arithmetic shift or a multiplication. The only indi-
cation that the processor receives of the contents of the SC is an indication that the SC does, or does not, contain
0; the counting function is completely defined once the initial count has been loaded.

5.4.3 Processor Status Register (PS)

The processor status (PS) register contains a number of individual bits. Some of these bits control the operation
of the processor, while others indicate the value of the result of the last data manipulation operation.



In addition to accepting inputs from the BR (Fighre 5-1) the PS receives inputs from the condition-code genera-
tion logic. In certain circumstances (the current mode field replaces the previous mode field), some bits of the
PS also receive inputs from other bits of the PS. The outputs from the PS during data transfers can be directed
to the processor data paths through the BR (by selecting the PS inputs to the internal bus (IBS) and the IBS in-
puts to the BRMX), or directed to the Unibus through the P_S inputs to the Unibus A data multiplexer (DMX).
The IBS path is used only for data transfers that implicitly ;elect the PS, such as the stacking operations during
interrupt and trap service sequences. When the PS is addressed specifically, the data is transferred on the Unibus,
even if the transfer is to the processor data paths (through the BR).

The specific bit utilization in the PS is detailed in Table 5-1. See Chapter 7 for a detailed description of the con-

trol functions performed by the PS, and the loading and reading control logic that supports the register.

Table 5-1
Processor Status Word Bit Assignments

Bit Name . Utilization

1514 Current Mode Specifies the current processor mode as follows:

a. When PS {15:14) = 00, the processor is in kernel mode;
all operations are legal.

b. When PS {15:14) = 01, the processor is in supervisor
mode; HALT, RESET, and SPL instructions are illegal,
and the SUPER address space is used.

¢. When PS (15:14) = 11, the processor is in user mode;
HALT, RESET, and SPL instructions are illegal and
the USER address space is used.

13-12 Previous Mode Specifies the processor mode prior to the last trap, interrupt,
or loading of the PS; the values are the same as for the current
mode,

11 Register Set Specifies which general register set is used; if PS11=0, register
set 0 is selected; if PS11=1, register set 1 is used.

10—-038 Unused Unused

07-05 Priority Set the processor priority; this priority determines which levels
of programmed and external device interrupt requests are
honored.

04 Trace When PS04=1, the processor traps.the trace trap vector address;
after each instruction fetch; this facility is used for debugging
programs.

03 N This bit is set whenever the result of the last data manipulation
is negative.

02 Z This bit is set whenever the result of the last data manipulation
is Q.

01 v This bit is set whenever the result of the last data manipulation

is incorrect because of an arithmetic overflow.,

00 C This bit is set whenever a carry (generally out of the most-
significant bit) occurs during a data manipulation,
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5.4.4 Programmed Interrupt Request Register (PIRQ)

The programmed interrupt request register (PIRQ) allows a program to schedule the execution of various subpro-
grams according to a priority scheme, at the same time allowing various levels of hardware interrupt priority to
interact with the software priority levels. The register stores interrupt requests set by transferring request data
to the PIRQ, and provides information about the requests through encoded data transferred from the PIRQ.

Data is transferred to the PIRQ through the BR whenever the processor recognizes that the physical address is

the address assigned to the PIRQ (address 777772). The transfer is entirely internal to the KB11-A processor.
The contents of the PIRQ are then output into the priority arbitration logic of the processor, which uses the in-
formation from the PIRQ with information from the Unibus and the PS priority level to determine when requests
should be honored,

The data in the PIRQ can be transferred to other devices'or to other registers in the processor by generating the
physical address of the PIRQ during an external data transfer. Because the only outputs from the PIR(Q are to
the DMX (Unibus A data multiplexer), all transfers which read the PIRQ must be Unibus A data transfers.

5.4.5 Stack Limit Register (SL) :

The KB11-A processor performs hardware stack operations, as described in Chapter 4. Because the number of
locations occupied by a stack is unpredictable, some form of protection against the stack expanding into loca-
tions containing other information must be provided. The basic form of protection is the address relocation pro-
vided by the KT11-C Memory Management Unit; however, if the processor is operating in kernel mode with the
address relocation inhibited, the processor provides for stack overflow detection through the use of the stack
limit register (SL). ’

The SL. is an 8-bit register that is loaded from the eight most-significant bits of the BR whenever the SL is
selected by the physical address generated in an external data transfer, This requires the bus address 777775,
during a byte transfer, or the address 777774, during a word transfer. The data is transferred directly from the
BR to the SL; no bus operations are required. To read the contents of the SL, however, the SL must be selected
by the DMX and the data transferred from the Unibus to the BR. This requires a Unibus data transfer operation.
Although the SL and the PB registers share a common DMX input, each register uses a different set of eight data
lines, and only one set is selected at a time. Therefore, when the SL is transmitted on the eight most-significant
data lines, all Os are transmitted on the eight least-significant data lines.

5.4.6 Microprogram Break Register (PB)

The microprogram break register (PB) is intended for use as a maintenance tool. When the processor is being
operated under the control of the maintenance card, the processor can be halted during any specific
microprogram state by setting the address of that state in the PB and setting the switches on the card to the
proper positions. During normal operation of the processor, any value can be loaded into the PB without affect
on the operation of the processor. The specific procedures are detailed in Chapter 4 of the PDP-11/45 System
Maintenance Manual,

The PB is loaded directly from the BR whenever the PB address is generated during an external data transfer.
The PB is an 8-bit register that is loaded from the eight least-significant bits of the BR. When the PB is read,
the data must be transferred through the DMX to the BR by a Unibus A data transfer operation. Refer to
Paragraph 5.4.5 for a description of how the DMX inputs are shared by the SL and the PB. The PB is selected
by physical address 777770.
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5.4.7 Console Switches (SW) and Light Register (LR}

The light register (LR) and the console switches (SW) are not, strictly speaking, data storage elements, but arc
included in this paragraph because they act as a data sink and a data source, respectively.

The console switches are a form of input to the processor. When an external data transfer with the physical ad-
dress 777570 attempts to transfer data into the processor, the value set in the SW is transferred to the BR on the
internal bus. The LR is a form of output from the processor. Any attempt to output to the same physical ad-
dress transfers the contents of the BR to the LR, which can be displayed in the console lights. There are no con-
nections between the LR and the SW, so data stored in one can not be retrieved from the other. Although both
input and output to the physical address is successful, there is no correspondence between the values output and
the subsequent input data.

5.5 DATA MANIPULATION

The major data manipulation elements in the KB11-A processor are the arithmetic and logic unit, with the ac-
companying constant multiplexers, and the shifter. In addition, two registers perform specific data manipulation
operations.

5.5.1 Arithmetic and Logic Unit (ALU)

The primary data processing element in the KB11-A (in fact, the only element that can combine two operands

to form a result) is the arithmetic and logic unit (ALU). The ALU can perform a variety of arithmetic operations
on two variables, such as addition or subtraction, and can perform a variety of logical operations on one or two
variables, such as complementing or ANDing. The specific operation performed at any time is selected by the
processor control on the basis of the microprogram word and the current instruction. The manipulated operands
are selected by two multiplexers, one for sach of the ALU inputs. The operands can be the contents of the SR,
the DR, the BR, the PCB, or one of a variety of numbers generated by the constant multiplexers.

The output of the ALU passes through the shifter, and can then be routed to any of the general registers, or to
the SR, the DR, or the BR (and the IR, although this is not used). All of these destinations for manipulated
data are internal to the processor; when data is transferred out of the processor, it must go through the BRA.
Note that when the ALU outputs are routed to the program counter (PC), the signal paths do not pass through
the shifter; this means that when certain shift or byte-swap operations are attempted with register 7 as the desti-
nation, the data that enters the PCA is unchanged. For example, an ASR PC instruction is executed as a TST PC
instruction.

5.5.2 Shifter (SHFR)

In general, the data operand formed by the ALU is routed through the shifter (SHFR) to its ultimate destination.
The SHFR can perform right-shift or byte-swap operations on the data, or substitute the contents of the PC for
the ALU outputs. In many cases, where an instruction is performed for an odd-byte destination operand, the
data manipulation required by the instruction is completed in the ALU and the transfer of the result to the odd-
byte data lines is performed in the SHFR, all during one machine cycle.

In addition to its data manipulation (shifting and byte swapping) activity, the SHFR is used as a routing element.
When a general register is transferred to the SR or DR, if that register is register 7 (the PC), the PCB is routed
through the SHFR to the SRMX and DRMX.



5.5.3 Constant Multiplexers (KOMX, KI1MX)

The constant multiplexers (KOMX, K1MX) are primarily routing elements, but they can perform certain limited
data manipulation operations. The source and destination constants which can be selected by the KOMX are
numbers generated by the processor on the basis of the instruction type. These numbers are used to add or sub-
tract from addresses during the data fetch sequences. The offsets generated by the K1MX are formed from the
contents of the BR by shifting and sign-extending the least-significant bits of the data word.

5.5.4 Destination Register (DR)

The destination register (DR) is primarily a temporary storage register (Paragraph 5.3.2); however, it is also used
to manipulate the less-significant half of a 2-word operand by performing shifts on the operand. A word of data
that is stored in the register can be shifted one bit to the left or right. The bit that is shifted into the register to
fill the vacated bit position is generated by special logic in the processor, based on the data in the more-significant
word being manipulated and on the instruction type. .

5.5.5 Shift Counter (SC)

The shift counter (SC) performs incrementing and decrementing operations on data loaded into it during the exe-
cution of certain instructions. This register is primarily a processor loop counter register; its data manipulation
capability is a function of its utilization and can not be used for data operands because the SC can not be read.

5.6 DATA ROUTING ELEMENTS

When the processor performs an operation on data operands, the operation is defined by the selection of the
data operands, the storing of the resuit, and the manipulation of the operands. While the last function is per-
formed by the data manipulation elements, the first two functions are performed by the data routing elements.

Data routing is performed in two ways. First, the selection of inputs to storage and manipulation elements is per-
formed by a varicty of multiplexers. Second, the loading of data storage elements is controlled to select which
elements are loaded at any time. Therefore, all operand selection is performed by multiplexers, and all result
storage is performed by generating load signals only for the desired storage elements.

This paragraph describes the multiplexers, which are the data routing elements in the KB11-A processor. The
loading of data storage elements is described in Paragraphs 5.2 through 5.4 The multiplexers are organized in the
following three groups:

a. ALU interface multiplexers (Paragraph 5.6.1)
b. temporary register input multiplexers (Paragraph 5.6.2)
¢, external interface muitiplexers (Paragraph 5.6.3)

5.6.1 ALU Interface Multiplexers

The ALU has two sets of inputs and one set of outputs. Each input is connected to a number of data storage (or

manipulation) elements by a multiplexer, and the output is passed through a data manipulation element that acts
as a multiplexer. One of the input multiplexers can select inputs from two other multiplexers. Table 5-2 lists the
inputs and outputs for cach of the five multiplexing elements that control the flow of data through the ALU,

5.6.2 Temporary Storage Register Input Multiplexers

Each of the three temporary storage registers (SR, DR, and BR) receives inputs through a multiplexer which
selects one of two or four inputs. Table 5-3 lists the inputs and outputs for each multiplexer.
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Table 5-2

ALU Interface Multiplexers
Multiplexer Output To Input From Type of Input
AMX A input of ALU source register variable operand
destination register variable operand
bus register variable operand
program counter variable operand
BMX B input of ALU source register variable operand

KOMX BMX

KIMX BMX

bus register
KOMX
KI1MX

1
2
source constant

trap vector
start vector

destination constant

variable operand
constants
constants and sign-extended operands

fixed constant
fixed constant
generated constant
generated constant

generated constant
fixed constant

BR (SOB & MARK) shifted and sign-extended operand
BR (branch) shifted and sign-extended operand
SHFR general registers, ALU variable operand (can swap bytes or perform
SR, DR, BR, Disp. right shift)
BC variable operand
Table 5-3
Temporary Storage Register Input Multiplexers
Multiplexer Output To Input From
SRMX source register general source (GS) registers
shifter (SHFR)
DRMX destination register general destination (GD) registers
shifter (SHFR)
BRMX bus register shifter (SHFR)
Unibus
Fastbus (SEMI)
internal bus (IBS)

5.6.3 External Interface Multiplexe:

TS

The KB11-A Central Processor Unit external interface is divided into three parts:

a. the explicitly addressed interface

b. the implicitly addressed in
¢. the display interface

terface

The explicitly addressed interface is used in all data transfers where the address is specified by the processor. The
address is supplied to the interface through the bus address multiplexer (BAMX), from one of three sources.
These sources are the PC and the two temporary registers, SR and DR, that are used as buffers for the general
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registers. In addition to these inputs, the BAMX can select an input from the exponent arithmetic and logic unit
(EALU) of the FP11. This input is used only to allow this data to be displayed in the console lights during speci-
fic machine states when executing floating-point instructions. Data is supplied to the interface through the data

multiplexer (DMX) for Unibus transfers, and directly from the BR for Fastbus transfers or internal bus transfers.
On data transfers into the processor, one of the three buses is selected by the BRMX.

Implicitly addressed transfers (e.g., to the FP11) do not requirebsending an address. The data is transmitted by
sending a load signal to the appropriate device, or to a register in the processor if the transfer is into the Pprocessor,
Data is transferred on the internal bus. The internal bus is, therefore, a form of data routing element; selection is
accomplished by gating specific data onto the bus from a device, and by loading only specific registers, The dis-
play interface selects the data that is to be displayed in the console lights. There are two sets of lights which dis-
play program-dependent data; the DATA lights and the ADDRESS lights. The DATA lights display one of four
data words selected by the display multiplexer; the ADDRESS lights display addresses based on the outputs of
the BAMX. Both displays are controlled by switches on the console; note that the ADDRESS display is also af-
fected by the KT11-C option, if it is implemented.

5.7 CONTROL SECTION

The control section of the KB11-A processor determines the sequence of operations performed by the processor,
and controls the interaction of the processor with other devices in the PDP-11 System. Control of the Processor
is based on the signals generated by the microprogram read-only memory (ROM), while the control of processor-
system interaction is performed primarily by asynchronous circuits on three control modules.

The control elements shown on the control section block diagram, Figure 5-3, are divided into three groups:

a.  the microprogram ROM, together with the ROM address generation logic and the ROM output buffer
logic

b.  the external interface, which comprises the UBC, TMC, and TIG modules shown at the bottom of the
drawing

¢.  the combinaticnal logic circuits that interact with the microprogram outputs and with data from the
data paths section of the processor to generate some of the processot control signals

Each of these three groups is described in the following paragraphs.

5.7.1 ROM Microprogram Control

The microprogram ROM, shown in Figure 5-3, contains 256 stored processor control words. For each processor
machine cycle, one of these stored words is output to the data paths section and to the other processor control
circuits. The ROM word is divided into fields, and each field controls a different (but always the same for a given
field) part of the processor. A review of the concept of microprogramming is provided in Paragraph 4.1, In
Figure 5-3, each control field is listed by a mnemonic name and by bits of the microprogram word occupied by
the control field. The control selection that is made, or the action that takes place for each value that can be
stored in the field, is listed under the field name. Where possible, the field name and description are placed next
to the logical element controlled by that field. For example, Figure 5-4 illustrates the B multiplexer as shown on
the block diagram, with the BMX control field description to its left.

The microprogram ROM outputs that control other parts of the processor must be stored in a buffer register, so
that the next microprogram word can be selected while the current word is being used. Therefore, a ROM buffer
register (RBR) is provided for these outputs. The three output fields that are used to select the next micropro-
gram word (FEN, BEF, and ADR) are not buffered because they are used immediately and the resulting address
is buffered.
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Figure 5-4 Control Field Description Example

Immediately after the beginning of a machine cycle, when a new microprogram word is available, the ROM-address
generation circuits begin the calculation of the next ROM .‘i\ddress to be selected. This corresponds to selecting
the next machine state. The generated address is assembled by the address gating logic and loaded into the ROM
address register (RAR). There are three copies of the RAF&i to accommodate the output loading required for 16
ROM elements, and to transmit the ROM address to the K:[‘l 1-C paging unit (when it is implemented).

is the address (ADR) field of the current microprogram word. The ADR is ORed with the outputs of the branch
logic, which is controlled by the BEF field of the microprokram word. The branch control logic selects a set of
condition inputs from signals received from the processor ciata paths, the condition codes, and from the processor
interface modules (specifically, the TMC module). Depending on the state of the selected inputs, the branch con-
trol generates one or two signals that are used to modify th%e ADR.

The address gating logic assembles the address from five seois of inputs. The basic input, which is always present,

The three other inputs to the address gating circuits are froin the fork logic. The three forks are similar in imple-
mentation and purpose. Each fork uses combinational logiqf: to decode the instruction type and a variety of pro-
cessor conditions, and generates one of a large number of a@idresses that is combined with the ADR input by
masking. Each fork can be enabled by one bit in the fork-gnable (FEN) microprogram field; normally all forks
are disabled. No more than one fork is ever enabled at a til?w.

The fork A logic, used to select the machine state to follcmir an instruction fetch, requires a separate instruction
register (AFIR) because this fork must operate rapidly and Etherefore puts a heavy load on the IR outputs. The B
and C forks decode inputs from the primary IR and use the:; outputs of a subsidiary ROM, which decodes some
classes of instructions. These forks are used after a destination operand fetch and a source operand fetch,
respectively. ;

To summarize the operation of the microprogram ROM coxjutrol logic, during each machine cycle, an address is
assembled from any enabled fork combined with the addregs field of the microprogram word and any enabled

branches. This address is loaded into the ROM address regiéter to select a new microprogram word. At the be-
ginning of the next machine cycle, the new microprogram word is loaded into the ROM buffer register and the

sequence is continued. :
5.7.2 External Interface Control '

The interaction between the KB11-A processor and the othELr parts of the PDP-11/45 System is controlled by
three modules in the processor. These modules include the Easynchronous circuits that perform timing adjust-
ments, the circuits that generate and receive interlocking bu!s control signals, and the basic processor timing cir-
cuits. The functions of each module are discussed in one of the following paragraphs.
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5.7.2.1 Unibus and Consocle Conirol {UBC) Module — The Unibus and console control (UBC) module includes
the circuits that control transfers with external devices (and some processor special registers), and the circuits
that allow the processor to be controlled by the console. The data transfer control circuits perform the necessatry
operations to gain control of the required data buses, select the address that is to participate in the transfer, and
complete the transfer. The console control circuits provide information to the branch control circuits so that the
microprogram control can be used to execute various console operations.

5.7.2,2 Traps and Miscellaneous Control (TMC) Module — This module is used to recognize a variety of asyn-
chronous conditions and change the sequence of processor operations in response to these conditions. The T™C
module detects various abnormal conditions within the processor, such as power faiture, odd address on word
transfers, stack overflow, or reserved instructions. When any of these conditions occur, the processor enters a
trap service sequence of microprogram states, and the TMC module generates a trap vector that is used to transfer
system control to a specific trap service program. The TMC module can also handle a variety of trap-type instruc-
tions, which are legal in programs that use them in a defined manner and that have set up the trap vectors for
those instructions. '

The TMC module also performs priority arbitration for Unibus A, which is controlled by the KBI1 I1-A processor.
The priority arbitration determines which device shall be bus master, based on the priority level of the bus or
non-processor request, and the priority level of the processor. The processor normally assumes the role of bus
master when no other device is requesting the bus; the processor must be bus master in order to perform any data
transfer on Unibus A. Fastbus transfers can be performed even though the processor is not Unibus A bus master.
One of the devices that can request bus mastership, but only to perform an interrupt operation, is the processor’s
programmed interrupt request (PIRQ) register.

5.7.2.3 The Timing Generator (TIG) Module — The timing generator (TIG) module controls all timing of opera-
tions within the processor. All register loading, all data path transfers, and all microprogram word selection is
controlled by timing signals from the TIG module which gate the control signals to the respective processor ele-
ments. The TIG module contains the processor clock, the time pulse generators that produce timing signals from
the basic clock output, and a variety of control circuits that can stop and restart the clock based on asynchronous
conditions detected by the UBC and TMC modules. The timing of the processor operations thus interacts with
the timing of data transfers in the PDP-11/45 System, and with the console control operations.

5.8 SPECIAL CONTROL LOGIC

There are three special control circuits in the processor which use combinational logic to increase the flexibility
of the processor control. Two of these circuits use subsidiary ROMs to define specific operations for individual
instructions, and the third performs the additional decoding necessary to control the general register sets. Each
of these circuits is described in one of the following paragraphs.

5.8.1 Arithmetic and Logic Unit (ALU) Control

The arithmetic and logic unit (ALU) used in the KB11-A processor can perform 16 different arithmetic operations
and 16 different logical operations. Only a subset of these operations are used in the KB1 1-A. The ALU control
circuit transforms the ALU microprogram field (which is compressed into three bits, and can only express cight
different operations) into the six control signals necessary to select the appropriate ALU operations. The ALU
control circuit can also substitute control signals derived from a subsidiary ROM (whose output is selected by the
individual instruction being executed) for the signals detived from the ALU field. This allows the same micropro-
gram wotd to be used for the execution machine state of a large number (32) of instructions.
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The subsidiary ROM is one of two used for a group of data manipulation instructions. When these instructions
are being executed, the subsidiary ROM control converts therinstruction type to a 5-bit address that selects one
word in each of the subsidiary ROMs. This word contains the control signals that correspond to the value re-
quired for that instruction. Through the use of the control signals in the subsidiary ROM, any ALU function can

be performed.

NOTE
The SHFR operation is also affected when the output of the
ALU subsidiary ROM is used. See Chapter 7 of this manual
for details of the effects of the subsidiary ROM on the SHFR.

5.8.2 Condition Code Control

The KB11-A processor condition codes are used to store information about the results of each instruction, so that
this information can be used in following instructions. The conditions recorded in the condition-code bits differ
for each instruction type, and often for the part of the instruction being executed. In addition, the sources of
the information to be recorded in the condition codes can vary for different types of instructions.

The condition-code control circuit uses the CCL microprogram field and a subsidiary ROM to determine what
data shall cause each condition-code bit to be set or cleared. For most machine cycles, only the CCL field is re-
quired to determine what function the condition-code control logic performs. When the CCL field contains a
value that specifies that the operation is instruction-dependent, the outputs of the subsidiary ROM (which de-
pend on the current instruction, as described in Paragraph 5.8.1) determine the exact operation,

5.8.3 General Register Control

The KB11-A general registers include two register sets that are duplicated for extra speed in reading the registers.
The selection of registers within each implementation is controlled by the PAD microprogram field, and all input
in the registers is controlled by the PWE microprogram field,

Because the specific register to be selected can depend on the contents of the instruction register (IR), the con-
tents of the switch register (during a console operation), or directly on the PAD field, combinational logic is used
to combine all the different sources according to the requirements of the current machine state. The combina-
tional logic also determines, for conditional write operations, whether the register that is selected is in the general
register set or is register 7 (the program counter). In the latter case, no write operation is done within the general
register storage area.
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CHAPTER 6
MICROPROGRAM FLOW DIAGRAMS

This chapter describes and explains the microprogram flow diagrams that are included in the KB11-A print set.
These flow diagrams illustrate the operation of the KB11-A processor on a machine state level; each operation
shown on the flowchart corresponds to one processor time cycle, which, in turn, corresponds to one cycle of the
microprogram ROM. The information presented on the flowcharts for each microprogram cycle is described in
Paragraph 6.1.

6.1 HOW TO READ THE FLOWCHARTS
The succeeding paragraphs describe the flowcharts and the ROM map according to the following three categories:

a. the operations performed by each machine state

b. the microprogram words that are associated with the machine state (i.e., the addresses of the ROM
words containing information about the machine state)

c. the flow of control from each machine state to the possible successor states

The symbols used in the flowcharts can be divided in a similar manner. Each machine state is represented by a
box on a flowchart. The box contains information about the operations that take place during the machine time
cycle for the microprogram word represented by the box. The microprogram word is identified by a symbolic
tag and an octal address directly above the box. In many cases, several microprogram words are used for the same
microprogram state; the name and address of each word is shown above the box, and the contents of each word
are identical (all 64 bits of each word that represents the same state must be identical). During the time cycle for
each microprogram state, the KB11-A processor constructs the address of the next machine state; i.e., the proces-
sor determines the sequence of machine states, The sequence determination is represented on the flowcharts by
the lines of flow; these lines show the variations in machine state sequence that can be affected by branches and
forks.

6.1.1 Machine State Description

On the flowcharts, each machine state is represented by a rectangular box like the one shown in Figure 6-1. A
symbolic notation is used within the box to describe the major operations that occur during the machine state,
while other symbols outside the box are used to describe the machine state sequence and the correspondence of
machine states and microprogram words. This paragraph describes the notation used inside the box; the remain-
der of the flowchart information is desctibed in the following paragraphs.

Each box includes a comment that describes the purpose of the machine state, The comment is at the top of the
box and is separated from the remaining information by a line across the width of the box. In Figure 6-1, the
comment reads SUCCESSFUL BRANCH, FIX PC, which indicates that this machine state updates the program
counter as the result of a decoded branch instruction with the branch conditions met.
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Figure 6-1 A Typical Machine State

The remainder of the symbols in the box describe data transfers, data manipulation, and timing operations. Data
transfers move information between data storage and data selection elements in the processor that are represented
by mnemonic names. For example, PCB is an acronym for program counter B, which is the name of a data stor-
age element that usually contains the address of the next instruction to be executed. In a similar manner, BA is
an acronym for the bus address multiplexer, which is a data selection element that selects one of four data items
for use as an address during the current machine state.

Data transfers are indicated by a left arrow (this is the replacement operator of the ISP notation described in the
PDP-11/45 Processor Handbook, DEC 1972). Data transfers to a data storage element update the contents of
the element. The symbols PCB < PCA indicate that the contents of the PCB are replaced by the contents of the
PCA. Transfers to a data selection element indicate that the element selects the contents of the data source, and
that the data is passed to other data elements. The symbols BA « PCB signify that the BA selects an input which
is provided from the PCB; the output of the BA is used as an address during data transfers with external devices.

Data manipulation operations change a unit of information or combine units of information. These operations
are represented by arithmetic and logical symbols that correspond to the operations performed by the arithmetic
and logic unit (ALU), the shifter (SHFR), and various counting and shifting registers. For example, the symbols
PCB + BXX DISP. indicate the binary sum of two data words, one the contents of the PCB, the other formed by a
sign-extension operation on the displacement that is part of the branch instruction word. The source data for a
data transfer operation can be the information resulting from a series of data operations, as in the line PCA «
PCB + BXX DISP..

In several machine states on the flowcharts, the data manipulation operator that is shown is a dollar sign. This
indicates that the specific operation performed is instruction-dependent; a subsidiary ROM provides control sig-
nals to the ALU and SHFR from a word selected by an address that corresponds to the instruction. The dollar
sign is also used to indicate instruction-dependent condition-code load operations. A similar subsidiary ROM pro-
vides control signals that alter the sensing used for the condition codes.

In addition to operations on data, the processor must provide timing control for synchronization with external
events. Some timing operations are used to sense external conditions which are then decoded as inputs to the
machine state sequence control. The symbol BRQ STROBE indicates an operation of this type; the results of
this operation affect the machine state sequence through branches on the BRQ condition. Other timing opera-
tions start or stop asynchronous cycles within the processor; BUST (bus start) and BEND (bus end) control the



external data transfer cycle, while BUS PAUSE and BUS LONG PAUSE control the processor clock that is used
during machine state execution. While these two cycles must be interlocked in a specific sequence, each cycle
operates asynchronously except at the occurrence of the timing operations that control the interlocking.

The machine state is the basic unit of time in processor operation because each machine state must be executed
completely: i.e., sequence changes can only affect the order of execution of machine states, not the time periods
within the state. However, the machine state is divided into five smaller intervals based on the processor clock.
These smaller intervals provide clock signals that indicate when data may be loaded into data storage elements,
and they are used in synchronization operations,

Each data transfer or manipulation operation, and each timing control operation, occurs at a particular time with-
in the machine state. These times are indicated by lower case “t’’s on the left side of the box. Only the time in-
tervals in which significant operations occur are shown, in order from top to bottom; each interval is identified
by a subscript number. In Figure 6-1, the timing operations BEND & BRQ STROBE occur in the third of five
time intervals, as indicated by the t, at the beginning of the same line in the box; the data transfer operation

PCB + PCA occurs on the clock cycle following the last of the five time intervals, as indicated by the t; on the
same line (i, corresponds to the t; of the next machine state unless the machine state sequence pauses for an ex-
ternal data transfer; in this case, the t, operations are not delayed).

In principle, all operations performed by the processor affect the stored information. However, some operations
do not produce lasting effects; these operations are performed only to provide indications of the internal proces-
sor data during maintenance operations. In other words, these operations allow internal data to be displayed
when the processor is being manuaily clocked using a maintenance module. These operations are distinguished
by angle brackets to indicate that they do not affect any stored information. In Figure 6-1, the operations at ¢,
are for maintenance purposes only.

6.1.2 Machine State Information in the ROM Map

The symbolic representation used in the flowcharts does not indicate all the operations that occur during each
machine state, nor does it indicate the actual control signals generated to control the operations that are repre-
sented. A more detailed representation of the activity in each machine state is provided by the microprogram
ROM map, which is reproduced in drawing K-CS-M8103-0-1 in the engineering drawing set.

The microprogram ROM contains 256 control words of 64 bits each. The ROM map lists the values of every bit
in every word of the microprogram. The bits are grouped into control fields; each field controls the operation of
one part of the processor as shown on the data paths block diagram, drawing D-BD-KB11-A-02. The value of the
bits in each field is represented by an octal number.

Each microprogram word is represented by one line of numbers in the ROM map. Each word corresponds to a
unique box on the flowcharts; however, each box on the flowcharts may correspond to several words in the ROM
map. The correspondence is indicated in two ways: first, each microprogram word is assigned a symbolic name,
with the names of all the words corresponding to a particular machine state differing only in the last character;
second, the ROM address of each microprogram word is listed above the corresponding box on the flowcharts,
along with the symbolic name, The symbolic names are also shown on the ROM map at the left end of the line
representing the microprogram word,

The box illustrated in Figure 6-1 corresponds to six microprogram words. The symbolic name of the machine
state is BXX.0; the symbolic names of the corresponding microprogram words add a second digit after the period
that serves to differentiate among the actual ROM words. These names, ranging from BXX.00 to BXX.05, are
listed to the left of the sequence flow line above the box. The ROM address of each word is shown in parentheses
to the right of the flow line.



Each microprogram word contains several fields that are used to calculate the address of the next microprogram
word. One of these fields contains a microprogram address. This is not the address shown on the flowchart; it is
important to distinguish between the address of the microprogram word and the address in the word. The several
words corresponding to a specific machine state are located at different addresses, but they must all contain the
same address. The address contained in a microprogram word is shown by a number below the lower right corner
of the box, or the address can be found by reading the ROM map line for any of the microprogram words corre-
sponding to the machine state.

When the flowcharts and the ROM map are used to determine the sequence of processor operations, the flow-
charts provide a summary of the important operations and a visual representation of the sequence. After gaining
an overall picture from the flowcharts, examine the ROM map to learn the details of the control signals generated
during each machine state and the exact addresses of the microprogram words accessed.

6.1.3 Machine State Sequence Information

Most machine states specify a unique successor state through a microprogram address in the microprogram word.
However, the sequence of machine states can be varied between machine states; this allows a particular state, or
sequence of states, to be used for several procedures that follow different sequences after that state, For in-
stance, all instruction fetching is done by one sequence of machine states, followed by the sequence that is ap-
plicable for the instruction fetched.

There are two basic ways of determining the next machine state when the sequence is variable. When only a
small number (four or less) of successor states is required, a microprogram branch is performed. A branch modi-
fies the microprogram address contained in the microprogram word on the basis of a pair of sensed conditions, to
create the actual address of the next microprogram word. Figure 6-2 illustrates a branch of this kind. During the
BRK.0 machine state, the address 130 contained in the microprogram word is modified if the console flag
(CONF) is set, The modification affects bit 5§ of the address to create the address 170.

When a large number of successor states is required, the address is calculated by combinational logic in the pro-
cessor and replaces a non-significant address contained in the microprogram word. This type of generalized se-
quence selection is called a fork, and is illustrated in Figure 6-3, While machine state FOP.3 is executed, the fork
C logic calculates an address based on the destination mode and instruction type, The current microprogram
word contains the microprogram address 377, which allows the fork address to take on any value. (See Chapter 7
for a description of the address calculation logic.) The forks are also called decision points; fork C is decision
point 1, and is sometimes represented by the tag DPT.01 in the flowcharts.

The operation of the fork logic and the branch logic is normalty mutually exclusive. Sometimes, however, it is
necessary to conditionally enable the fork logic; in the example illustrated by Figure 6-4, an extra operation is
sometimes necessary to move an odd byte into the even byte position before selecting a machine state sequence
to operate on the data. The final selection is done by the fork B (DPT.02) logic. The fork B logic is condition-
ally enabled during the machine state preceding the D12.3 state; if the destination address is even (DRO is a (),
the next microprogram state is selected from the address calculated by the fork B logic. However, if the address
is odd (DRO s a 1), the fork B logic is disabled and the address contained in the previous machine state selects
microprogram word D12.30, In this word, the fork B logic is unconditionally enabled. The conditional enabling
of the fork logic therefore saves one machine state cycle time when the extra state is not needed. The address
contained in the machine state preceding D12.3 is 137; the condition that enables the fork also modifies this ad-
dress to 177, which allows the fork B logic to generate addresses ranging from 0 to 177.
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Figure 6-4 Conditional Enabling of Fork Logic

6.1.4 Sequence Symbols in the Flowcharts

The flowcharts illustrate the sequence of machine states with three types of symbols:

a. flow lines

b. connectors, including entry points and off-page connectors
¢.  branch conditions

Each of these symbol types is described in one of the following paragraphs.
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6.1.4.1 Flow Lines — Figure 6-5 illustrates the types of flow lines used in the KB11-A processor flowcharts.
The normal sequence of flow is vertically, from top to bottom, on a flowchart. The flow lines connect the
boxes that represent the machine states; a vertical line descends from each box to the successor box, as shown in
Figure 6-5(a).

L

(b ©

| | | B —

CONDITION CONDITION
(a)

—

) (g)

(d) ()

11-0848

Figure 6-5 Types of Flow Lines Used in Flowcharts

When the sequence is variable, the flow must show branches or forks. Figures 6-5(b) and 6-5(c) illustrate branches.
In Figure 6-3(b), the flow follows either the vertical or the horizontal path, depending on the matching of condi-
tions specified as shown in Figure 6-6. In Figure 6-5(c), the flow follows one of the two horizontal paths, depend-
ing on conditions. Figure 6-5(¢) illustrates the symbol for a fork; one of many paths is selected by uniquety
matching the conditions specified on that path. The horizontal line connecting all the possible paths may con-
tinue over several pages of the flowcharts, through the use of connectors as illustrated in Figures 6-7(c) and 6-7(g).

In some cases, several sequences combine to use the same machine states for common operations. When the se-
quences that combine are close together, on the same page, the combination is shown as flow tines like those in
Figure 6-5(¢). The differing sequences provide descending flow lines that join in a horizontal line from which the
common flow line descends. Another method of illustrating combining flows is shown in Figure 6-5(f).

When several flows all branch to a common set of variable sequences, a flow symbol like that shown in Figure
6-3(g) can be used to illustrate the combination and re-division of the sequences.

6.1.4.2 Connector Symbols — Two types of connector symbols are used in the KB11-A processor flowcharts.
Entry symbols are used to indicate that a particular sequence of machine states may be executed following other
machine states which are not connected to the sequence by flow lines. Figure 6-7(a) through 6-7(c) illustrate
entry symbols for entry points at the beginning of an illustrated sequence to a specific machine state in a
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sequence, and to the horizontal line for a decision point or fork flow, respectively. The entry point symbol in
Figure 6-7(a) or 6-7(b) contains the name of the first succeeding machine state, or in Figure 6-7(c), the name of

the fork or decision point.

The second type of connector symbol is the off-page connector. This symbol
is used to terminate a connected sequence on a flowchart and to tell what
machine state is entered next. When a unique state follows the connector,
the symbol is used in the manner fllustrated by Figure 6-7(d). When a branch
condition determines the next state, the connector symbol can be used in
this manner or as shown in Figure 6-7(¢). When the next state is determined
by a fork, the symbol is used in the manner shown in Figure 6-7(f). If a fork
extends over several pages, the connection from each page to the next page
on which the fork appears is shown by a symbol like that in Figure 6-7(g).

An off-page connector contains two pieces of information: first, the connec-
tor lists the machine state or fork to which the sequence goes; second, the
connector indicates the page of the flowcharts on which the succeeding state
or sequence appears. In some cases, the off-page connector is accompanied
by a microprogram address in parentheses. This is the address of the micro-
program word for the next machine state.

6.1.4.3 Branch Condition Symbols — The sequence symbols discussed in the
preceding paragraphs illustrate the variations in flow, but do not indicate
what selects a specific sequence. This is done by listing the conditions for a
specific sequence in the flow line that teads to that sequence. =

T T

a )
(d) (e}
(2

Figure 6-7 Use of Connector Symbols

(a) CONDITION

(b) [ conpiTion
(c) CONDITION - 2
CONDITION -1
11- 0846
Figure 6-6

Branch Condition Symbols
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)
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Whenever possible, the condition that selects a sequence is shown by superimposing the condition on a vertical
flow line, as shown in Figure 6-6(a). This indicates that the condition must be met in order for the sequence to
follow that path. When a branch is shown by a horizontal line, the condition is listed directly above the horizon-
tal line, close to the branch point, as shown in Figure 6-6(b). In some cases, the branch-enable value correspond-
ing to the conditions at a branch point is listed fo the left of the flow line, as shown in Figure 6-6(c); the number
in the branch-enable value is the contents of the branch-enable value of the microprogram word cortesponding to
the machine state preceding the branch.

-

6.1.5 Locating a Machine State in the Flowcharts

Several tables are provided in this chapter fo assist the reader in finding the paragraphs in the chapter that discuss
any machine state. Table 6-1 lists the machine states in the numerical order of the ROM word addresses; for each
machine state the table lists the mnemonic name of the state, the page of the flowcharts on which it is iltustrated,
and the number of the paragraph that describes the state. Table 6-2 contains the same information, but it is or-
ganized differently; the machine states are listed in alphabetical order according to the mnemonic names.

Tables 6-4 through 6-7 provide information on the machine states entered when the fork logic is enabled. See
Paragraph 6.3 for a description of these tables and an explanation of their use.

6.2 FLOWCHART ORGANIZATION

The KB11-A processor flowcharts are divided into 14 drawings that illustrate portions of the flow. Where pos-
sible, a continuous sequence of machine states is shown on a single drawing. The succeeding paragraphs describe
the machine operations illustrated on each drawing. The description does not attempt to give detaited informa-
tion about each machine state shown on the drawing; this information can be derived directly from the flow-
charts and the ROM map (Paragraph 6.1).

6.2.1 Instruction Fetch

Drawing D-FD-KB11-A-03 (Flows 1) illustrates the instruction fetch sequence, the address calculation sequence
for five of the source modes, a special sequence for the MTPI and MTPD instructions, and the execution of the
branch type instructions.

6.2.1.1 The Fetch States — The basic instruction fetch sequence requires two machine states: FET.1 (fetch)
and IRD.O (IR decode). The FET.] state completes a data transfer operation, begun during the last cycle of the
previous instruction, which moves the instruction word from an external storage location to the instruction regis-
ter (IR) and bus register (BR), and increments the program counter by 2. If the data transfer is not overlapped
(i.e., if the transfer was not begun before the end of the previous instruction), an additional state is required to
begin the data transfer.

The additional state, FET.0, also checks for asynchronous operations (such as bus requests) that must be per-
formed before beginning a new instruction, and branches to the BRK.0 (break) machine state if necessary. When
the instruction fetch is overlapped, the machine state that begins the data transfer must also perform the same
check.

6.2.1.2 Instruction Decoding — The second state in the basic instruction fetch sequence begins a new data trans-
fer that fetches the word following the instruction word. This data transfer is used for address modes 6 or 7, and
for instructions that do not require other data transfers. In all other cases, this data transfer operation is aborted
by a bus end (BEND) operation in the machine state following the IRD.0 state. During this machine state, the

processor also loads the source and destination registers (SR and DR) with the contents of the general registers
(continued on page 6-15)
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Table 6-1
Machine States According to ROM Addresses

ROM ROM

Mnemonic  Page Address Paragraph Mnemonic  Page Address Paragraph
RSD,08 12 233 6,2,11,9 EXM, 208 14 771 642,134
piz.se¢ 5 701 612,5.1 RAD.,PP 14 272 612,133
pie,s1 5 ng2 6124543 DEP,108 14 272 6,2,13,4
n3p, 00 3 23 642,544 nEP, PP 14 774 6,2,13,4
D48,80 6 ap4 612,642 ROP, 2P 14 575 £,2,13,3
D45,81 6 g3 612:6,2 KST,20 14 a7¢ 6,2,13,5
ne7,28 6 306 612,6,3 CON,10 14 877 6,2,13,6
ne?,81 6 5@7 6,2,6,3 PUP,RE@ 12 199 £,2,11,3
LT, 0 3 i 6|2|3g4 FOP,PE 2 161 61242,°2
RY! .20 2 g12 612243 nyeP,1@ 9 123 £42,9,1
TRP,01 12 713 42,11,9 DVN,18 9 194 6,2,9,2
TRP,02 12 14 442,119 DyN,28 9 185 642,9,2
RY].01 2 ALé 6,2,2,3 DYN, 700 9 1d7? £32,9.,.2
RSD,Z1 12 317 6,2,11,9 ni2,.%¢ 3 117 642,51
EXC,80 3 220 6,2,3,2 6i2,82 B 111 6,2,5,1
13,02 12 %231 £,2,4,3 pip,s¢ 5 112 612,5,1
45,108 1 n23 £,2,1,3 D45,92 6 114 £,2,6,1
$45,090 1 f24 632;1)? N45,88 6 113 642,6,1
sye,62 13 nas 6,2,12,4 &7, 9@ 6 116 6120613
567,28 2 ngé 6,2,2,1 pevY, 80 6 117 6¢246,3
$43%,1¢ 1 227 6y2,1,3 BRK,20 12 127 6,2,11,7
EXC,98 & #3d 6,2,3,2 D4p, 28 6 121 £,2,56,1
EXC,02 131 N3, 642,181 DLB,36 6 122 £12.6,4
TST,20 11 n¥2 £,2,19,4 SHR,1?¢ 11 123 642,12,2
TST.18 1% 33 6,2,10,4 TRP .02 12 124 6,2,11,9
JSR,P0 i1 234 642,10,6 Dve,20 19 125 £12,9,5
JMP, BB 11 n3s 5,2,19.,5 FET,05 1 126 6,2,1,1
FOP,48 7 n3é 6;2'71? WAT,3R 3 127 6,2,3,5
sSyg,50 13 737 6,2,12,3 BRK,12 12 132 6,2,11,2
sve,74 13 #44 642,12,4 EX8,18 11 132 £,2,12,1
RSD,P2 12 242 6:2,11,9 FOP,18 2 133 6,2,2,2
SPL,B8 3 043 6412,3,6 EXM,30 14 134 £,2,13,4
MTP, B2 1 "45 642,144 ASE,61 7 136 £,2,7,4
MFP,80 1t na5 6542,18,7 pLz,.32 5 137 6,2,5,2
MRK,28 2 747 612,2,6 BRK,82 12 1449 6,2,11,6
MUL,8¢8 3 759 6,2,3,1 367,22 2 141 642,201
nys,oa 3 51 5.2!3‘11. 867,302 2 142 612,241
ASH, 12 7 a52 642,721 513,38 2 143 £,2,2.1
ASC 10 7 A53 6:.2,7,2 DVD B 10 144 £42,9.,7
567,108 2 2%4 642,2,% DVE,20 9 145 £12,9.3
PDVYN,48 9 738 642,9,2 $13,40 2 146 6,2,2,1
DVYN,5@ 9 n54 $¢2,9,2 ojv,3¢ 9 147 642,93
08,08 2 757 642,245 FSV,180 12 154 6,2,11,8
MUL,. 2@ 8 -1z 622,8,1 MTP,18 1 151 612,14
giv,z0 9 261 £4249,1 BRK,3% 12 152 6,2,11,6
ASH, @@ 7 £62 642,741 EXM,20 14 153 6,2.13,4
ASC,09 7 663 642,72 BRK,P0 12 154 6,2.11,2
SHR,22 13 764 642,18,3 pLz,69 5 153 £,2,5,2
sVe,12 13 B65 612,12,2 RTI.18 2 154 6,2,2,3
MFP,28 11 ALY 6,2,18,7 0la,40 6 157 6,2,6.4
NEG,08 1t} 667 642,18,2 SER, O 12 160 6,2,11,5
‘(continued on next page)
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Table 6-1 (Cont)
Machine States According to ROM Addresses

6-10

Mnemonic  Page Al:lgrb:ss Paragraph Mnemonic Page Al:lgr]\:ss Paragraph
pLo,2@ 6 162 £:2,6,4 BRK,11 12 253 6:2,11,2
NEG,20 11 163 6.2,12,2 DIV,18 9 254 6,2,9,1
FET,24 1 164 6024148 RES,18 3 255 6,2,3,3
piv,78 9 165 642,94 pve,3g 12 256 6,2,9,6
ASH,41 7 166 642,7,1 . ASH,428 7 257 642,7,1
CON, 1 14 167 6:2,13,1 FET,18 1 269 6e2,1,1
CON,B@ 14 174 6,2,13,1 DYN,20 9 261 £02,9,2
RTI. 60 2 172 612,23 DVE,18 9 263 642,92
FOP .38 2 173 6:2,2,2 WAT,19 3 264 6:12,3,58
FOP,20 2 174 6¢2,242 FET,29 1 267 612,11
D12,12 5 175 612,52 MUL,20 8 266 6:2,8,2
ASC,31 7 176 642,7,4 ASC,4d 7 267 612,7,4
018,68 6 177 612644 ADR,P¢ 14 279 6,2,13,2
ZAP,BF 12 20 642,11,1 NEG,1¢ 11 274 642,182
JSR,18 1%t 241 612418,6 DVE,.p0 9 272 642,91
pey,og 4 282 6,2,4,2 WAT, 11 3 273 $12,3.5
pe7,18 4 283 6.2,4,2 JSR, 2@ 11 274 642,10,6
peo,s0 4 204 6,2,4,1 JSR,32 11 27% 6,2,18,6
nEe,9¢ 4 205 6¢2,4,1 DVC, 48 12 276 £:2,9,6
‘MUL,42 8 206 6,2,8,3 ASH,38 7 277 6,2,7.1
ASC,80 7 207 6,2,7,3 SVE,%0 13 30 6,2,12,4
NEG,90 3 214 6,2,3.2 NESG, 77 3 2A1 £41243,2
FOP,528 4 211 642,4,3 ZAP, 38 12 292 6,2,11,1
RTI.20 2 212 642,2.3 DEP,20 14 g3 6,2,13,4
RT],38 2 213 €42,2,3 MFP,92 11 304 6,2,10,7
RT],40 2 214 642,243 ASH,28 7 295 612,71
RYI,58 2 215 $,2,2,3 ASC,20 7 236 612,73
ove,10 10 216 612:9,6 RDOP,19 14 327 6,2,13,3
FET,20 1 217 6r241.1 MUL 6@ 8 314 6,2,8,3
n3g,1@ S 221 6,2,9,3 pi2,28 & 312 6,2:5,2
sve,82 13 222 6,2,12,4 plv,68 9 313 6,2,9,3
RTS,18 2 223 61202,4 RAD,12 14 214 6,2,13,3
]Ts,20 2 224 6!,2!2;‘4 ZAP,20 12 313 6,2,11;1
FSv,228 1z 225 6¢2,11,8 FOP,78 4 216 642,4,3
MUL,5R2 8 226 6,2,8,3 513,20 2 317 6,2,2,1
ASC,60 7 227 612,7,4 BXX,20 1 220 641241,5
CON,20 14 230 6y2,13,1 FET,11 1 321 642,1,1
pig,i@ 6 231 6124644 FET,12 1 122 6424144
clv,z20 ¢ 232 64249.1 plv.88 9 323 642,49,4
pig,20 6 233 6124644 FET,13 324 612,14
MRK,38 2 234 6,242,6 BXX,81 1 325 642,1,5
MRK,208 2 235 £:2,2,6 BXX,82 1 226 6,2,1,5
ove,22 12 236 612,96 HLT,.12 3 227 6121344
FET,27 1 237 642,104 BXX,B3 1 T30 6:2,1,5
HRK.98 12 240 6:2,11,2 FET,01 1 231 6124141
DVP.RQ 9 241 642,941 FET,22 1 232 612,401
s0B8,12 2 242 6,2,2,5 PUP,20 12 333 642,11,3
WAT, 28 3 244 6:2,3,5 BXX,24 1 235 €12,1,5
FSV,00 12 245 6,2,11,8 BXX,05 1 336 642.1.5
MUL,32 8 246 6.2,8,2 XXX, XX 13 337 2
ASC,32 7 247 612,74 PUP,30 12 242 6,2,11,3
MFP, 10 11 250 642,18,7 PUP, 40 12 341 $12,11,3
né7,.1 6 251 642,6,3 RTS,32 2 242 6,2,2,4
MRK,18 2 252 £32.2,86 IRD, 2 1 343 64241,2
(continued on next page)



Table 6-1 (Cont)
Machine States According to ROM Addresses

g
2

Mnemouic  Page A';g‘:ss Parageagh Muemonic Page Aﬁgr“:ss
SER,1@ 12 344 6.2,11,5 FOP,60 4 362
RSD,12 12 345 612,11,9 DIV,99 ¢ 763
plv,40 9 346 6¢2,9,3 XXX, XX 13 3164
PUP,10 12 347 642,11,3 XXX XX 13 365
ove,70 i@ 350 6:2,9,7 DIv,58 9 146
pyve,88 19 351 612,9.7 SVC,.40 13 367
BRK.a1 12 352 62,112 DVG,50 12 370
DVD.1 17 353 6,2,9,7 pve,68 13 7
TRP,48 12 354 6¢2411,9 EAP, 1@ 12 372
sye,0@ 13 %55 612,12,1 FET,06 1 373
FET,28 1 356 6:2,1,1 RES,2@ 3 374
SVC,20 13 357 6,2,12,2 FOR,92 4 375
sV .30 13 RT.Y 6,2,12,2 FOP,8@8 4 376
sPL,1@ 3 361 6:2,3,6 XXX, XX 13 377
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Mnemonic

ADR, A0
ASC .00
ASC,10
ASC, 20
ASC, 30
ASC,31
ASC, 40
ASC, 60
ASC, 61
ASC, 80
ASH, B0
ASH, 12
ASH, 20
ASH,30
ASH, 49
ASH, 41
BRK , 72
BRK.90
BRKX,02
BRK, 10
BRK,11
BRK, 20
BRK, 38
BRK,8Q
BXX,20@
BXX,81
BXX,02
BXX,03
BXX,P4
BXX,75
CCP, 28
CON.ED
CON, 21
CON,1#
CON, 208
neEg, R
nee,92
Da7,a0
D@7 .12
plo,oe
Did,10
pig, 28
pie, 30
Dia@, 4
nin,5e
D1, 60
niz, g
012,81
Dl2,1¢
piz,.2e
Di2,34
Diz2,6d
piz,74¢
piz,.82
niz, 9@
p3g, 24
D3, 18

AVJIRSIIRC IR BLECIRN IR LS IR BN 3R % 1 e s e e N e N NI N SO N N

325
277
257
166
174
249
352
139
253
127
152
147
329
325
326
ERE
335
336
n44
174
167
277
232
2014
225
202
263
162
231
233
122
157
311
177
ue1
a2
17%
312
137
15%
135
111
118

ags -
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Table 6-2

Machine States According to Mnemonic Names
i

Paragraph
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Mnemonic

n3Q,88
D3@, o
D4d, 20
D4g, 30
D45, 00
D45,21
D45,80
D45, 58
n5@,20
n5a,30
D67,00
067,01
067,10
067,80
D&7,90
pEP, 02
DEP, 1@
DEP,20
niv,o8
piv,18@
Dlv,22
Olv.32
Bly,.40
DIV,50
plv,60

Tpiv.7@

CIv,80
Dlv,90
pve, 00
oye.1p
ove, 20
ove,3e
D10
DVC . 47
DVD .10
pve.5e
DYC, 60
Ve, 7e
ove,8e
ove,9¢
DYE ., 2@
DVE,1@
DVE, 20
DVN,20
DVN,12
DVYN,20
DVN, 32
DVN, 4D
DVN,52
DVN, 60
DVN,78
DVF,dp
DVP.1P
ovVsS, 0@
Exc,ae
EXC, 10
EXC,80
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Mnemeonic

EX0,90
EXM, R0
EXM,10
EXM,20
EXM, 30
FEY . 00
FET .24
FEY,22
FET,03
FET,04
FET,25
FET, 06
FET,27
FEY,®8
FET,29
FET,18
FET,11%
FET,12
FET .13
FOP,20
FOR,10
FOP .28
FOP,32
FOP,40
FOR,50
FOP, 40
FOR, 70
FOP,80
FoP,%9
FSV,09
FSV, 10
FSv,28
HLY, 22
HLYT, 1@
IRG, P2
JMP , 28
JSR,00
JSR,18
JSR, 20
JSR,30
KST, 3@
MFP, 248
MFP,1@
MFP,88
MFP,90
MRK , 28
MRK, 1@
MRK , 20
MRK, 30
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MUL 60
MUL + 80
NEG,Q0
NeG,19
NEG,20
NEG, 78
NEG, 90
PUP, 20
PUP, 10
eUP, 20
PUP, 32
PUR, 40
RAT, GO
RAD 1R
RDP, 00
ROP, 102
RES, B0
RES, 12
RES, 20
RSD,208
RSD,01
RSD,02
RSD,10¢
RT!,00
RY1.921
RT1,18
RYI.20
RTI,32
RT1,40
RT1.,54
RTI,68
RTS, 00
RTS,18
RTS,20
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513,01
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545,00
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567,20
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SER, 00
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SHR, 2P
SHR, 11
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Table 6-2 (Cont)
Machine States According to Mnemonic Names

ROM ROM

Mnemonic  Page Address Paragraph Mnemonic Page Address
sve,12 13 265 6.,2,12,2 TST.1@ 14 "33
sve,29 13 357 &.,2,12,2 WAT,B0 3 11
SvVC,39 13 369 6,2,12,2 WAT,10 3 264
sve,48 13 367 6,2,12,3 WAT,11 3 . 273
SYE.50 13 a3? 6,2,12,3 WAT .20 3 244
sVe,. 62 13 res 6,2,12,,4 WAT .38 3 127
sVE,78 L3 441, 6,2,12,4 XXX, XX 13 337
svC,88 13 222 6.2,12,4 XXX, XX 13 364
sVe,%0 13 329 6,2,12,4 XAX XX 13 365
TRR,81 12 713 6,2,11.9 XXX XX 13 377
TRP. @2 12 214 6,2:14,9 ZAP,00 12 287 -
TRP.OP 12 124 6,2,11,9 ZAP,10 12 372
TRP,18 12 154 £e2,11,9 BAP, 228 12 315
TST. 00 331 232 6,2,124 BAP,30 12 g2
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specified in the source and destination fields of the instruction; this operation is also done in anticipation of the
use of this data, and in many cases the data loaded into the SR and DR isignored. However, when the data is
needed, the anticipatory transfers allow the processor to operate at maximum speed.

6.2.1.3 Source Modes 1 Through 5 — The fork A logic is enabled during IRD.0, so the machine state that fol-
lows IRD.0 is determined by decoding the instruction and certain other conditions. Six of the possible sequences
that follow IRD.0 are shown on Flows 1. These include the beginning of the data fetch sequence for all

binary instructions that have a source mode of 1 through 5. If the source mode is 1, 2, or 3, the external data
transfer is restarted with a new address and the incrementation of the source register is started for modes 2 or 3.
If the source mode is 4 or 5, the external data transfer can not be continued until the address has been decre-
mented, so the $45.0 state performs a BEND. After performing the data transfer to fetch the word addressed by
the source register, the sequence conditionally enables the fork C logic. If the source mode is odd, another data
transfer is required to fetch the data addressed by the word just fetched; otherwise the fork determines the next
state.

6.2.1.4 Move to Previous Space Instructions — For an MTPI or MTPD instruction, the MTP.0 (move to previous)
and MTP.1 states read an address from the stack pointer and begin a data transfer operation to fetch a data word
that will be transferred to the destination address. The flow then transfers to the last state of the source-data-
fetch sequence, because this state is common to both the MTP sequence and the normal source data sequence.

6.2.1.5 Branch Instructions — For branch instructions, the fork A logic determines whether the branch is suc-
cessful, and if not, whether a bus request has been sensed. If the branch is successful, the PC must be changed
before the next instruction is fetched; this is performed by the BXX.0 (branch) machine state which aborts the
previous data transfer. This state also strobes any new bus requests. The BRQ STROBE must be performed in
the state preceding the state that starts the instruction fetch; this includes FET.1 (in case the fork A logic returns
contro! directly to FET.0), the next-to-last state of instructions that overlap the instruction fetch, and the last
state of instructions that do not provide overlap. The machine state following BXX.0 is FET.0.

If the branch is not successful and no bus requests are sensed, the instruction fetch continues the data transfer

begun in IRD.0; if a bus request is sensed, the sequence returns to FET.( which, in turn, transfers the sequence
to BRK.0. Table 6-3 illustrates the exact ROM words used by each branch instruction for the four possible se-
quences.

6.2.2 Indexed Source Modes and Operate Instructions

Drawing D-FD-KB11-A-03 (Flows 2) illustrates the sequence of machine states for the data fetch for source
modes 6 or 7, for the transfer of floating-point instructions to the FPP, and for the execution of five operate
instructions.

6.2.2.1 Indexed Source Modes — For the indexed source modes, the transfer begun in machine state IRD.0 is
completed and an increment from the source register is added to the data word; the resulting data word is used
for a second data transfer. When this transfer is complete, a conditional fork is used to transfer to the sequence
required for the current instruction, unless an indirect indexed address requires a third data transfer. In the latter
case, the sequence continues through three machine states that are common to the sequences of all indirect source
modes (i.e., modes 3, 5, and 7), and in part to the MTPI or MTPD instruction.

6.2.2.2 Floating-Point Instructions — When a floating-point instruction is recognized by the fork A logic, the
sequence is transferred to the FOP,0 (floating-point operation) state. In this state, the processor restores the PC
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to the value used to fetch the instruction, so that this value can be transmitted to the FPP (which stores the value
for use in reporting abnormal conditions during the execufion of that instruction, and for restarting the instruc-
tion if interrupted), and notifies the FPP that a floating-point instruction is ready to be processed. The processor
then enters a wait loop, consisting of two machine states, until the FPP acknowledges the FPATTN (FPP atten-
tion) signal and reads the contents of the IR. (The data is actually read from the BR, which at this time contains
the same information.) If the FPP is busy with a previous floating-point instruction, the processor may have to
wait for several microseconds; during the wazit period, the processor looks for other external requests and releases
control if any occur. If an interrupt must be processed, the stored PC value allows the floating-point instruction
to be re-fetched after the interrupt service is completed. After the IR and PC have been transferred to the FPP,
the sequence is determined by the fork C logic to perform the address calculation for the floating-point data.

Table 6-3
Branch Sequences
Conditions: Successful ' Unsuccessful
Bus Request: Present Not Present Present Not Present
Instruction

BCC BXX.03 BXX.00 FET.01 FET.11
BCS BXX.04 BXX.01 FET.03 FET.13
BEQ BXX.0S BXX.02 FET.03 FET.13
BGE BXX.03 BXX.00 FET.01 FET.11
BGT BXX.03 BXX.00 FET.01 FET.11
BHI BXX.03 BXX.00 FET.02 FET.12
BHIS BXX.03 BXX.00 FET.02 FET.12
BLE BXX.05 BXX.02 FET.03 FET.13
BLO BXX.04 BXX.01 FET.03 FET.13
BLOS BXX.04 BXX.01 FET.03 FET.13
BLT BXX.05 BXX.02 FET.03 FET.13
BMI BXX.04 BXX.01 FET.03 FET.13
BNE BXX.03 BXX.00 FET.02 FET.12
BPL BXX.03 BXX.00 FET.01 FET.11
BR BXX.05 BXX.02 (always successful)

BVC BXX.03 BXX.00 FET.01 FET.11
BVS BXX.04 BXX.01 FET.03 FET.13

6.2.2.3 RTI and RTT Instructions — The RTI and RTT instructions differ only in the clocking of T bit traps
after the data transfers, so the sequence of machine states is identical. This sequence performs two data transfers
to restore the previous PC and PS words from the hardware stack, and performs two increment operations on the
stack pointer. The sequence then continues with an instruction fetch.

6.2.2.4 RTS Instruction — The RTS sequence performs one register-to-register transfer and one external data
transfer to restore the PC and the specified register, and updates the stack pointer (SP) after the transfer. The se-
quence then returns to the instruction fetch machine states.

6.2.2.5 SOB Instruction — The sequence of machine states for the SOB instruction first generates a new PC
value based on the offset in the instruction, and then restores the old PC value if the value in the specified register
will be 0 after decrementing. This is done because the test on the value of the register requires one

machine state in every case, which can be combined with the catculation of the new PC value, and because the
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branch is successful most of the time; thus, the extra machine state to perform the restoration of the old PC
value is executed less often than if an extra state were required when the branch is successful. The SOB sequence
initiates the fetch of the next instruction during the last machine state which also performs the decrement on the
specified register.

6.2.2.6 MARK Instruction — The machine state sequence for the MARK instruction transfers the contents of
general register 5 to the PC, transfers the top word on the hardware stack to register 5, then begins fetching the
next instruction. The operation of the MARK instruction assumes that the instruction has been fetched from the
top of the hardware stack; for a discussion of the purpose and effects of the MARK instruction, see Chapter 4.

6.2.3 No Memory Reference Execution

Drawing D-FD-KB11-A-03 (Flows 3) illustrates the machine state sequences for a variety of instructions that do
not require memory references other than the instruction fetch. A number of sequences are shown that transfer
immediately to machine states on other pages; they are shown only to illustrate the routing from fork A to these
states. These sequences include the breakpoint trap (OP3), IOT trap, the EMT and TRAP traps, and several
groups of reserved op codes, including OP7, OP22, and RSVD. The illegal instructions JMP or JSR, with destina-
tion mode 0, also transfer directly to a point in the trap machine state sequence. The four instructions ASH,
ASHC, MFPI, and MFPD are shown on other pages which do not show the fork A flow line; therefore, off-page
connectors are shown on this drawing for these instructions with destination mode 0 (for other destination
modes of these instructions, the sequence {ransfers to the destination address calculation sequences shown on
flowcharts § and 6).

6.2.3.1 Multiply and Divide with Destination Mode 0 — For the multiply and divide instructions, a special se-
quence is used when the destination mode is 0. In either case, this sequence precedes the normal sequence for
that instruction. The MUL.8 (multiply) machine state sets up the step counter and transfers to the MUL.1
machine state, because the MUL.0 state is used to complete the data transfer begun in the destination data fetch
sequence. In the DVS.0 (divide start) state, the contents of the register specified for the destination operand are
transferred to the BR, which corresponds to the result of the data fetch sequence for other destination modes.

6.2.3.2 E CLASS and Negate Instructions — For the majority of the instructions that operate on data, one ma-
chine state is required to perform the data manipulation. If both the source (if any) and destination modes are
0, the data is already in the SR and DR registers as a result of the IRD.O state. The data manipulation (selected
by the subsidiary ROM for all except the NEG.B instruction) is performed, the data is stored in the general regis-
ter specified by the destination field, and the sequence returns to the instruction fetch. The NEG and NEG.B in-
structions require two machine states because the complement and increment operations can not be performed
on the data during the same state; therefore the external data transfer operation started in the IRD.0 state is
aborted (a bus operation can not be carried across more than two machine states) and the sequence returns to
the FET.0 state. The other instructions complete the data operation and return to FET.1 unless a bus request
has been sensed; because the transfer to the BRQ service sequence is performed by the FET.0 machine state, the
bus operation must be aborted.

6.2.3.3 RESET Instruction — Three processor control instructions, RESET, HALT, and WAIT, are executed by
sequences shown on this drawing. The RESET instruction transfers general register O to the DR so that the con-
tents of RO can be displayed in the DATA lights of the console during the reset operation, and then triggers the
initialization pulse. The initialization is inhibited if the processor is not operating in the kernel mode; in this
case, the instruction is, in effect, 2 NOP. The machine state that triggers the pulse recycles to itself until the
pulse (which lasts for 10 ms) is completed, and then returns the sequence to the instruction fetch sequence.
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6.2.3.4 HALT Instruction — The HALT instruction does not actually stop the processor; instead, control is
transferred to the console service sequence, which waits for manual intervention to determine further operations.
This is performed by setting the console flag and then returning to the instruction fetch sequence where the con-
sole flag generates a BRQ, which, in turn, transfers to the break service sequence. The console flag is set only if
the processor is in kernel mode; a branch after the HLT.1 (HALT) machine state transfers control to the trap ser-
vice sequence if the processor is not in kernel mode.

6.2.3.5 WAIT Instruction — The WAIT instruction is used to wait for an asynchronous condition that either ini-
tiates the execution of a service program or enters the console service sequence. The basic wait loop consists of
two machine states, so that the BRQ STROBE in one state is available for the branch in the other state. When
any BRQ is sensed, the sequence goes to the first of two states that test for console requests and then for inter-
rupts or traps (other than T bit traps) that supply vectors. If neither is found, the sequence returns to the wait
loop; otherwise, control is transferred to the appropriate sequence,

6.2.3.6 Processor Status Change Instructions — Two instructions that transfer data from the instruction word to
the PS word are the CCOP instruction and the SPL instruction. The former affects only the condition code bits
(PS{03:00)), and the latter affects only the priority bits (PS{07:05)). In the CCOP instruction, the external

data transfer begun by the IRD.0 state is aborted because the processor must maintain the datz in the BR register
until the PS word is reloaded. In the SPL instruction, the first state does the actual transfer to the priority. The
second state also begins a new instruction fetch and control transfers to the FET.1 state. SPL is a no-op (no
change to the PS) unless the processor is in kernel mode.

6.2.4 Destination Mode O Sequences

Drawing D-FD-KB11-A-03 (Flows 4} illustrates the five scquences used when the destination mode is 0. These
sequences are entered through the fork C microprogram address calculation; this fork is used to determine the
next machine state after a source operand has been fetched. For all instructions except floating-point instruc-
tions, these sequences correspond to, or join, the sequences used when both the source and the destination
modes are 0.

6.2.4.1 Not Register 7 — When the destination specification in an instruction refers to any general register other
than register 7 (the PC), and the other conditions for the sequences shown on this drawing are met, the instruc-
tion is executed by the machine state D00.9 (destination mode 0). If the source address is odd, a byte-swap oper-
ation must be performed on the contents of the BR before the instruction-dependent data manipulation opera-
tion. If the source mode is also 0, no byte swap can be required, and the execution is performed by the EXC.8
(execute) machine state (Paragraph 6.2.3.2).

6.2.4.2 Register 7 — When the destination register is 7, the PC is modified. Because the PC is stored as a separate
register (not in the general register set), the execution is accomplished by the EXC.9 machine state, which re-
quires the source data to be in the SR register. A machine state is therefore required to transfer the source data
from the BR to the SR. A byte swap can be combined with this transfer if necessary.

6.2.4.3 Floating-Point Instructions — For most floating-point instructions, the destination specification refers
to a floating-point accumulator if the destination mode is 0. However, this sequence is also entered for the
CFCC instruction and for the load and store status instructions, for which the destination specification refers to
the general registers if the destination mode is 0. Therefore, if the instruction is a CFCC instruction, the first
machine state transfers the floating-point condition codes from the internal bus to the PS word. The contents of
the DR, which contains the data read from the destination register during the IRD.0Q machine state, is transferred
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to the BR so that the FPP can read the destination if necessary, and an FPATTN signal is sent. The processor
then waits in a one-machine-state loop which tests for the FP SYNC signal; if the FPP sends a data word to be
stored in the destination register, the FOP,8 (floating-point operation) machine state is entered, otherwise the
sequence returns to the instruction fetch sequence. ‘After receiving data from the FPP, the processor again sends
the FPATTN signal and enters the wait loop; if the FPP is operating with double precision integers, the data re-
ceiving sequence is entered twice and the second word (which is the lower half of the 2-word variable) is stored in
the same destination register, overlaying the first word. When the FPP has no more data to send, the processor re-
turns to the instruction fetch sequence.

6.2.5 Destination Modes 1 Through 3

Drawing D-FD-KB11-A-03 (Flows 5) iltustrates the machine state sequences used to fetch data specified by desti-
nation modes 1, 2, or 3. These sequences are entered from one of the two forks; some are entered from the fork

A decision point, for instructions which either do not require a source operand or have a soutce mode of 0, while
others are entered from the fork C decision point after the source operand has been fetched and placed in the SR.

6.2.5.1 Sequence Entry — For all six of the sequences shown on this chart, the external data transfer begun dur-
ing the IRD.0 machine state is continued, but a BUST is issued to inform the data transfer logic that the address
has changed and that all the deskewing delays must be restarted. The four sequences entered from the fork C de-
cision point also start by transferring the contents of the BR to the SR, so that the source data is available in
both registers; the opposite transfer is performed for the fork A entry if the destination mode is 1 or 2. If the
destination mode is 3, there is no point in loading the BR from the SR because the address fetched by the first
external data transfer is stored in the BR for use in the next data transfer.

6.2.5.2 Destination Modes 1 and 2 — There are two entries from the fork C decision point for address modes 1
or 2 because the source data may be an odd byte which must be swapped. This is the only difference between
machine states D12.0 (destination modes 1 or 2) and D12.9. After one of these states or D12.0 has been com-
pleted, the processor performs a three-way branch, to separate JMP, JSR, and floating-point instructions, and in-
structions that transfer the source operand to the destination unchanged (specificaily, the MOV, MTPI, and
MTPD instructions) from all others. For floating-point instructions, the external data transfer is aborted, and the
sequence continues through the fork B decision point to the FOP.4 machine state. For JMP instructions, the se-
quence is directed to the JMP.0 state; for JSR instructions, to the JSR.0 state. For the three direct-transfer (O
Class) instructions, the external transfer is forced to be a DATO instead of a DATIP or a DATI, and the transfer
is completed before an instruction-dependent condition-code load operation is performed. The last machine state
in the sequence for O Class instructions also begins the instruction fetch for the next instruction and checks for
asynchronous conditions requiring service,

For all other instructions, the DATI or DATIP transfer is completed, and the fork B logic is conditionally enabled
in machine state D12.1. If a byte swap is needed because the destination address is to an odd byte, the extra ma-
chine state D'12.3 is entered, and then the fork B decision point. Note that in all three of the sequences shown
(in machine states D12.6, D12.1, and D12.7) the destination register is incremented by a constant which can be
either 0, 1, or 2, depending on the address mode and whether a word or a byte operand is being fetched.

6.2.5.3 Destination Mode 3 — The three sequences for destination mode 3 all enter the D30.1 (destination mode
3) machine state, which completes the data transfer, increments the destination register by the necessary amount,
and transfers to the D10.2 machine state, which begins the fetch of the operand addressed by the word just trans-
ferred. Because the first transfer during a destination mode 3 sequence can only be a full word, the increment
used in the register update is always 2, not 1.
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6.2.6 Destination Modes 4 Through 7

Drawing D-FD-KB11-A-03 (Flows 6) illustrates six machine state sequences that are used to fetch the destination
operand when the destination address mode is 4, 5, 6, or 7. These six sequences correspond to the six sequences
described in Paragraph 6.2.5 for address modes 1, 2, and 3.

The four destination modes are divided into two pairs: modes 4 and 5, which require that the contents of the
destination register be decremented before the value is used in the external data transfer, are treated by one of
three sequences; modes 6 and 7, which use general register 7 (the PC) first and then use the destination register,
are treated by one of three sequences. In either case, two of the three sequences are entered from the fork C de-
cision point, and one from the fork A decision point. The two fork C entries differentiate between source oper-
ands that require byte swapping and source operands that do not. There can be no requirement for a byte swap
on the fork A entry, because the source operand, if any, must be address mode 0 and the high byte of a register
can not be specified.

6.2.6.1 Fork C Entries for Modes 4 and 5 — Machine states D45.8 (destination mode 4 or 5) and D45.9 differ
mainly in the microprogram addresses contained in the microprogram word. Each state decrements the DR by
the value of the destination constant, which is 1 for a byte operation in mode 4, and 2 for a word operation.
Byte operations in mode 5 use a constant of 2 because the data fetched from the address taken from the DR is, in
turn, used as an address and must be a full word. The state following D45.8 or D45.9 begins the external data
transfer, which may be a DATI, DATIP, or a DATO, depending on the specific instruction. Machine states
D40.3 and D50.3, which follow D45.9, also perform the byte-swap operation on the source operand, In each of
the two sequences, a different path is taken for destination mode 4 where only one data transfer is needed', than
for destination mode 5 where a second {ransfer is needed. The second transfer is performed by a sequence that
is commeon for address modes 3, 5, and 7; this sequence transfers the first word that is fetched from the BR to
the DR and then uses the DR as the address for a second transfer.

6.2.6.2 Fork A Entry for Modes 4 and 5 — Machine state D45.0, which is entered from the fork A decision
point, is similar to machine states D45.8 and D45.9, except that a BEND is performed to abort the transfer be-
gun during the IRD.0 machine state, The sequences that follow D45.0 are similar to the sequences that follow
D45.8 or D45.9, except that the source operand, if any, is already in the SR.

6.2.6.3 Destination Modes 6 and 7 Entry — For address modes 6 and 7, the first machine state entered from

the fork C decision point begins an external data transfer, using the contents of the PC as an address, and per-
forms an increment operation on the PC. The entry from the fork A decision point continues the transfer begun
by the IRD.0 machine state, so this entry is to the D67.0 (destination mode 6 or 7) state that follows the first
state for the other entries. The D67.1 machine state adds the contents of the DR to the data read into the BR,
thus performing the indexing operation, and then transfers to a machine state in the flow sequence for destination
modes 4 or 5. The transfer is to D10.3 (a state also used for mode 4) if the mode is 6, or to D10.1 (a state also
used for mode 5) if the mode is 7. The shared sequences perform the remaining one or two data transfers to
fetch or store the actual data word.

6.2.6.4 Ending Sequence — When the last data transfer has been started, all six sequences enier a combined con-
ditional fork and three-way branch that selects the next machine state. For MOV, MTPI, and MTPD instructions,
the last data transfer is a DATO operation, which is completed by machine state D10.4; this state also loads the
condition codes. The processor then returns to the instruction fetch sequence. For all other instructions, the
DATI or DATIP transfer is completed in machine state D10.6, leaving the destination data in the BR and the
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source data in the SR, and the fork B logic is conditionally enabled. If a byte-swap operation is required for the
destination data, the D12.3 machine state, which performs this operation for all destination modes | through 7,
is entered.

6.2.7 ASH, ASHC, and Floating-Point Instructions

Drawing D-FD-KB11-A-03 (Flows 7) illustrates the machine state sequences for the arithmetic shift (ASH) and
arithmetic shift combined (ASHC) instructions, and the first machine state of the floating-point instruction ser-
vice after the destination address calculation.

6.2.7.1 ASH Instruction — When the machine state sequence for the ASH instruction is entered from the fork B
decision point, the destination data is in the BR register. Theé. six least-significant bits of the destination word are
used as a 2’s complement number which is the shift count for the instruction. This data is loaded into the shift
counter (SC) from the DR, so the DR is loaded from the BR in the first machine state (ASH.0). This state also
maintains the address and transfer (bus conditions) information used during the preceding data transfer, so that
all deskewing delays can be completed. The following state performs the loading of the SC and stops all external
data transfer activity; in a third machine state, the condition codes are loaded based on the value of the word in
the source register, and the shift counter is tested for a 0 shift count. If the shift count is 0, the instruction is
completed, and the processor returns to the instruction fetch sequence; otherwise, one of two states is entered,
depending on the sign of the shift count. Machine states ASH.3 (arithmetic shift) and ASH.4 perform the actual
shift one bit at a time, and increment or decrement, respectively, the shift counter. These states also load the
KB11-A condition codes with the results of each shift, so that after the last shift the codes are correct, and test
during each cycle to determine whether any further cycles are required. Note that the first change to the SC is
performed in the ASH.3 machine state; all tests are done on the value before any changes are performed, so the
last cycle in ASH.3 or ASH.4 is performed with the SC equal to 0, and the final value in the SCis -0 (all is).

6.2.7.2 ASHC Instruction — The ASHC instruction operates in a manner similar to the ASH instruction, with
differences to account for the fact that two words of data are shifted. The first two machine states for the ASHC
instruction perform the samne functions as the ASH.Q and ASH.1 machine states, and in addition, load the DR
(after the SC has been loaded from the previous value in the DR) with the contents of a general register which is
sefected by ORing the destination register specification with 1. When the destination register specified by the in-
struction is an