DEC-11-HR2B-D

KA11 |
processor manual

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

tst Printing September 1970
2nd Printing (Rev) March 1971
3rd Printing October 1971

4th Printing February 1972
5th Printing May 1972

Copyright © 1970, 1971, 1972 by Digital Equipment Corporation

The material in this manual is for information-
al purposes and i1z subject to change without

notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
£ LIP CHIP FOCAL
DIGITAL COMPUTER LAB

UNIBUS

CONTENTS

CHAPTER 1

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.2
1.2.1
122
1.2.2.1
1222
1223
123
1231
1232
1.3
1.3.1
1.32
1.3.3
1.3.3.1
1.3.32
1.3.3.2

CHAPTER 2

2.1
22
23
24
235
2.6

CHAPTER 3

31

32
321
3.2.2
3221
3222
3223
3224

BLOCK DIAGRAMS

Basic Block Diagram

Data Sections

Controi Section

The Unibus

Summary Description
Bit-Slice Block Diagram
Control Signals

Structure of the Data Flow
Latches

Adders

Qutput Gating

Registers and Bus Interface
Registers

Bus Interface

Module Block Diagram
Module Distribution
Processor Structure
Control Section

Machine State Storage
Machine State Selection
Control Signal Generation

THE INSTRUCTION SET

Purpose

Scope

ISP Notation

PDP-11 Data Structurs
Address Modes

Instruction Execution Process

MACHINE STATE FLOW CHARTS

Purpose of the Flow Charts
KA1l Flow Chart System
Signal Names

Symbols

System Clock (SCLK)
Major State Entry and Exit
Major Operation

Delays

Page

1-1
1-1
1-1
1-1
1-2
12
1-2
1-2
12
1-4
14
14
14
14
1-4
14
1-5
1-5
1-5
1-5
1-5

2-1
2-1
2-1
2-2
2-2
2-3

3225
3226
3227
3.2.28
3229
3.2.2.19
323
324
325
3.25.1
3252
326
3.3
3.3
332
3.33
334
34

35

3.6
3.6.1
362
3.6.3
3.64
3.7
37.1
372
373
3.74
375
376
377
378
38

39
39.1
39.1.1
39.1.2
39.1.3
3914
3915
3.9.0.0
39.1.7
38.2
393
3.10

Time States

Signal Block

Parallel Operation Connector
Arrows

Page Interconnection

Pulse

Signal Statements

Comments

Time State Sequence

Time State Sequence — Without Bus Operation
Time State Sequence — With Bus Operation
Composite Layout
Information in the Flow Charts
Current Machine State

Input Information

Next Machine State

Output Signals

A Note on Processor Description
Processor Timing

Major State Flow

Feich

Source and Destination
Execute

Service

Unibus Operations

Processor Contrel of Data Transfers
BSR1

BSR3

BSR7

BSR15 and 14

BSRO for Qutput Transfers
BSR12

BSR&

Fetch Major State

Operand Access Major States
Address Modes

Address Mode 1

Address Mode 2

Address Mode 3

Address Mode 4

Address Mode 5

Addruss Mode o

Address Mode 7

Disposition of the Operand

Entries to and Exits from Source and Destination

Execute Major State

Page
32

3-2
33

33
3-3
33
33

33
34
34
34
34
34
34
35
35
35

3-6
3-6
3-6
36

3-6
36
37
3-7
3-7
37
37
37
3-8
38
3-8
3-8

3-8
3-8
3%
3-8
3-8
38
3-8

iif

CONTENTS (cont.)

iv

3101
3.10.1.1
3.10.1.2
3.10.1.3
3.10.2
3103
3.140.4
3.10.5
3.1
3.11.1
3112
3113
3114
3113
3.11.6
3.11.6.1
3.11.62
311.63
31164
3.11.6.5
31166
3.12

CHAPTER 4

4.1
4.2
4.3
44
4.5
4.6
4.7
4.7.1
472
47.3
4.8
4.9
4.10
4.10.1
4.10.2
411

Data Manipulation Instructions
Entries intc Execute

The Extra ISR Siates
Disposition of the Result

ISR Instructions

Branch Instructions

RTS Instruction

RTI Instruction

Service Major State

Condition Code Clocking in [SR2
Priorities for Service in ISRO
Wait Service

Request Service

Interrupt Recognition

Trap and Interrupt Service
1SR1

ISR3

ISR?

ISR15 and ISR14

ISR12 and ISR&

Exits from the Service Sequence
Operations Done When the Halt Flag is Set

KA11 PROCESSOR LOGIC DESCRIPTION

Intreduction

Print Organization
Logic Usage

Logic Discussions
Timing & States

State CNTL

Priority, M824
Priority

Power Fail

Bus Receivers and Drivers
Register CNTL, M821
Register, M225

Data Path CNTL
Register Data Transfer
Unibus Data Transfer
Data Paths,. M224

Page
3-8

3-8
3-9
3-9
39
39
39
39

39

3-10
3-10
3-10
3-10
3-10
3-10
3-10
310
310
3-10
3-10

4-1
41
4-1
4]
4-3
4-7
410
410
411
411
412
415
417
4-18
4-19
4-23

4.11.1
4.11.2
4.11.3
4.11.4
412
4.13
4.13.1
4.13.2
4,133
4.13.4
4.14
4.15
4.16
4.17
4.17.1
4.17.2
4.18
4,19
4.20
4.20.1
4.20.2

CBAFTER 5

5.1
52
5.3
5.4
5.5
5.6
3.7
58
59
5.10
5.1
5.11.1
5.11.2
5.11.3

General

Input Gating and Latches
Adder

Rotate/Shift Gating

Data Paths |

Data Paths, M224
General

Input Gating and Latches
Adder

Rotate/Shift Gating

Data Paths 2

Bus Interface & IR

IR Dceode

Codes Data, MR23
Generat

Qutput Signals

Flag CNTL, M822

Bus & Conscle CNTL
PWR FAIL & CNTL, M825
Power Fail

General Control Gating

MAINTENANCE

Scope

Test Equipment and Tools
Installation of ECOs

Module Identification and Lavout
Module Component Identification
Uniibus Connections

Multipie Box Systems

Power Control

Processor Clock Adjustment
Removal/Installation

Muaintenance Tips

Diagnostic Programs

KM 11 Maintenance Set
Observation of Service Major State Operation

APPENDIX A PROCESSOR SIGNALS

5-1
5-1
5-1
5-1

5-2

ILLUSTRATIONS

Figure No. Title

i-1 KA11 Simplificd Block Diagram

1-2 Processor Block Diagram Showing One-Bit (03)
Data Slice

1-3 Latch Input — Logic Diagram

1-4 Latch Input — Functional Diagram

1-5 Input Timing Constraints

1-6 KA1} Component Block Diagram

3 Parallel Operation — Main Path

32 Portion of EXECUTE * ISR Flow Chart

3-3 Portion of EXECUTE * RTI Flow Diagram

34 PDP-11 Processor Flow Chart Composite Layout
and Symbol System

3-5 KA1l Major State Flow

4-1 Typical Gate Showing State Indicators

4-2 Basic Processor Clock Timing Thagram

4-3 4-by-4 Address Matrix

4-4 Register Data Transler Timing Diagram

45 Unibus Data Transfer Timing Diagram

4-6 Latch Input Gating

4-7 Latch Input Gating

4-8 Console CSR Timing Diagram

4-9 Power Fail Timing Diagram

5-1 Typical System Layout

5-2 Mounting Hardware

Art No.

11-0141
11-0142

11-0140
11-0139
11-0138
11-0281
11-0245
11-0246
11-0247
11-0248

11-0137
110136
11-0135
11-0143
11-0134
110133
113131
11-013!
11-0132
110130
11-0128
110129

DRAWINGS

Page Drawing No. Title
12 D-FD-KC11-0-BF (2 shects) KA11 Bus Flow
1-3 D-FD-XKC11-0-KIF {6 sheets) KAtll Instruction Elow
14

14

1-4

4 TABLES

33

>3 Table No. Title

33

4 2-1 ISP Summary

36 2-2 Memory and Processor State Structure
e 2-3 Instruction Format

44 2-4 Address Modes

415 2-5 Instruction Execution

418 3-1 Flow Chart Svmbols

419 32 KA1l Major States

43 5-1 Engineering Drawings

495 5-2 Test Equipment and Tools

4-44

4-45

5-2

5-3

Page

3-11
313

Page

22
22
2-2
2-3

3-1
3-5

5-1

FOREWORD

INTRODUCTION

This document describes the KA1 Processor, which operates as a device on the Unibus data transmission path.
The KA1l Processor is a component of a Programmed Data Processor 11 (PDP-11) and operates on data supplied
by other devices (such as core memory) or: the Unibus,

SCOYE

The information included in this documenti pertains only to the KA1l Processor. Other devices attached to the
Unibus are covered in similar documents of this series, and the operation of the Unibus is detailed in the Unibus
Interface Manual. The processor is described in terms of the set of instructions that it executes and the machine
states thal implement these instructions.

Sections of this document describe:

The logical structure of the processor
The theory of operation

The logical implementation

o & R

Basic maintenance procedures.

PURPCSE

This document provides the reader with the information necessary to understand the normal operation of the
KA1l Processor. The processor is a complex digital device. To fully use its capabilities or to recognize and
correct the cause of improper operation, the user must understand the normal operation of the processor. This
document provides the information on processor operation. In addition, the information is organized to serve as
a reference for specific data on the level of detailed operations and specific circuit implementation.

ORGANIZATION

The discussion of the KAll Processor is divided into four sections. Four sections describe the processor as
foltows:

a. Fhe hlock diagram

b Instruction set

c. Machine siate flow

d Module-by-module logic description level.
The fifth section presents general maintenance information.

The overall structure of the KAl Processor and the {low of data are presented in 2 series of block diagrams,
which also intreduce the connection of the processor to the Unibus. The interaciion of lhe processor with
cxternat devices and with the data from those devices is covered in the discussion of the instruction set. The
sequence or flow of machine states that determines what cperations will occur is detailed in the description of
the flow charts, while the tmnplementation of this control sequence and of the operations performed on the data
are shown in the iogic descripiions.

vi

CHAPTER 1
BLOCK DIAGRAMS

This section presents three block diagrams of the KA1l Processor to illustrate the overall structure of the
processor from different viewpoints. The block diagrams also serve to relate the information contained in other
sections of this document to an overview of the processor.

The first block diagram concentrates on the flow of data and machine states within the processor and describes
the control signals that effect the data flow required by the individual machine states.

The second block diagram is a one-bit slice of the machine; the interconnections of all the data paths in the
machine are shown for a single bit of the 16-bit word. All the control signals required to select a route for each
data transfer are shown on this diagram.

A third block diagram breaks the processor down by medules, illustrating the general physical implementalion of
the structure and relating the block diagrams to the module descriptions.

1.1 BASIC BLOCK DIAGRAM

Figure 1-1 is a simplified block diagram that shows the relationship of data flow and machine state flow in the
KA1l Processor. In addition, the diagram iHustrates the relationship of the processor to the Unibus. All data
inputs to the processor {such as instructions and data from core memory) are lransmitied on the Unibus;
equally, all cutputs, whether to core memory or to [/O devices, are on the Unibus.

The block diagram divides the processor into four areas: the Bus Interface; the Data Paths; the Register; and the
Control section. As the other block dizgrams show, this breakdown is only basically correct and omits several
exceptions or qualifications. However, this breakdown is useful to explain the interaction of data and machine
states to generate new data and new machine states.

1.1.1 Data Sections

Three of the processor sections ave concerned with the flow of data. The Bus Interface controls the galing of
information [rom and to the processor; the Data Paths include all logic which performs modification on the data;
and the Register is used for temporary storage within the processor. All data transfers within the processor, that
is, from the Bus Interface to the Registers or from the Regisicr 1o the Bus Interface, are through the Data Paths.
As this structure shows, the KA1l Processor is a general register machine; an instruction may use any one of
eight program-selecled rcgisters as data, as an address, or as a pointer to a stack. Stacks can be formed within
address modes of any instruction, One of the cight regisiers is also the Program Counter (PC); thus, the address
calculation to fetch the next instruction uses the same Register-to-Data Palhs-to-Bus Interface flow that is used
to fetch operands. This feature gives a very simple structure a great deat of flexibility and power.

1.1.2 Control Section

The fourth section of the block diagram is labeled Control. 'This section is concerned with the flow of machine
states, which include the timing siates (such as the Major States shown in the diagram), the instruction being
executed, and various flags and condition code bits. The KA1l Processor is a variable state sequence machine;
unlike computers that step throngh a fixed sequence of states and are active in only some of these states for each

instruction, the KA1l enters only the states necessary to execute the current instruction. Therefore, the machine
state flow is not a simple loop but includes many points at which not only the next operation on data, but also
the next machine state, is selected by the current state and inputs.

The KA1l Processor has five major states: fetch, source, destination, execute, and service. The first four states
are used during normal processor operation, while the last state (service) is used during special operatlions, such
as traps and interrupts.

The fetch (F) major state locates and decodes an instruction. When this major state is completed, the
processor enters another major state, depending on the type of instruction decoded. It is possible to go

from feich to any other state, including back to fetch. Every instruction must first enter the fetch major
state.

The source (So) major state decodes the source field of a double-operand group instruction and transfers
data to appropriate locations. The source major state is entered only if the instruction belongs to the
double-operand group.

The destination (D) major state decodes the destination field of the appropriate instruction. Destination
fields are present in all double-operand, single-operand, rotate/shift, and subroutinc call instructions.

The execute (E) major state uses the information from previous major states to perform the specified
operation, During this state arithmetic operations, logic functions, and tests are performed,

The service (Se) major state is used to execute special operations, such as interrupts, traps, etc.

Although the major states follow the sequence of fetch, source, destination, execute, and service, not all major
states are required for every instruction. The minimum sequence is from fetch of one instruction directly to
fetch of the next instruction, A more normal sequence might be fetch, source, destination, exceute and then to
fetch of the next instruction. Maximum sequence is fetch, source, destination, execute, service, and back to
fetch.

The Control section of the processor selects data operations by transmitting control signals to the other three
sections of the processor. These control signats, which are discussed in more detail in the bit-slice block diagram,
control the routing of data, which in turn controls the type of modifications performed on the data.

Inputs to the Control section consist of the present instruction, which is transferred from the Bus Interface
section, and data from the Data Paths which generates the condition codes to indicate arithmetic and logical
values of the data (such as positive or negative and zero or non-zero). These inputs, together with the control

signals transmifted by the Control section constitute the only communication between the controlling and data
handling sections of the machine.

1.1.3 The Unibus

Communications with externat devices (with the exception of the consolel is entirely through the Unibus. All
external data transfers that the processor executes are under the control of the Bus Interface: the data enters and
icaves the processor through the Bus Interface gating. Inputs to the Control section from the Unibus and the
console do not transfer data. Their sole function is to determine the next bus master, which may require
stopping or madifying the machine state flow in the control section.

OTHER DEVICES
ON UN|BUS UNIBUE

A s

KA
FROCESSOR

/\

/ -
-l
— — - — — — — | = - — — ™
e
. P
_ - DATA
CORE MEMORY [t - —m] Pt > FLOW
» -
P Phe
-~
U
N v,
1 BUS INTERFACE [GATING} DATA PATHS {MODIFICATIGN) REBISTER {STORAGE)
8 I b L
U CONTROL CONTROL CONTROL
s SIGNALS $1GNALS SIGMALS
¥ Y]
CONTROL -
[/0 DEVICE |t - —po
MACHINE
e - - - - - F » 50 L n E i SE % STATE
FLOW
\/ <

H=olH

Figure 1-1 KA1l Simplified Block Diagram

1.1.4 Swmmary Description

Figure 1-1 can relate the structure of the KA1l Processor to the organization of this document. The control
signals transmitted by the Control section are detailed in the bit slice block diagram, along with the structure of
the data flow. The structurc at the Control section is described in the module block disgram. The machine state
flow is detailed by the flow charts, which also include sections on the priority transfers which allow the console
or devices on the Unibus fo interrupt or cycle steal from the processor. The logical implementation of the
structure is presented in the module descriptions.

1.2 BIT-SLICE BLOCK DIAGRAM

Figure 1-2 fllustrates the data flow structure of the KA1l Processor. Only cone bit of the 16-bit word is shown,
because this bit sfice is representative of any of the 16 similar parallel paths in the processor. The block diagram
includes the logic that routes and manipulates the data, the interconnection between these elements, and the
contzol signals that determine the routing.

The logic elements appearing on the block diagram afso appear on the module schematics, but the block diagram
illustrates the interconnections more clearly. In some cases, the data pass through additional selection logic
between the elements shown, as in the inpuis to the Processor Status word (STATUS); for clarity, these have
been omitted. The paths shown represent all the paths on which data, rather than machine states, can flow in the
processor.

1.2.1 Control Signals

The control signals that appear on the block diagram are generated .in the Control section of the processor.
Because the processor uses a variable state sequence, a signal may be asserted at various times during the
execution of an instruction; many of the signals are generated by combinational logic arrays.

The inputs to the combinational logic are time states, instructions, flags, and condition codes that are decoded to
select the specific machine states during which each signial is asserted.

1-2

The hit-slice block diagram illustraics more clearly several of the distinctions made in the discussion of the basic
block diagram: the only communication with external data is via the Bus Interface to the Unibus; all transfers
between the Register and the Bus Interface pass through the Data Paths; and the only data inputs to the Control
section are to the Instruction Register (IR} and,

(STATUS).

+I1|"f\llgl'l the sadeg data]f\gi!:’ tn the Prnr-nssnr anfns regisfer

The structure of the Control section as related to the generation of the control sipnals is discussed in the
description of the module block diagram,

1.2.2 Structure of the Data Flow

The heart of the data flow structure is the Data Paths scction, where all combination and modification of data
are performed. The Data Paths are divided into three parts: the input gating, including the latches; the adder; and
the output, or rotate/shift, gating,

The input gating consists of two similar structures, the A input and laich and the B input and latch. Each

structure includes three input gates, each controlled by a gating signal, and a latch input gate. The purpose and
operation of the latches is discussed first.

1.2.2.1 Laiches - The latches performn two functions. In Register-to-Register or Bus-to-Bus transfers, data are
stored in a latch during the transition from a read operation to a write operation, In addition, combining two
variables, by addition or by a logical OR, reguires the temporary storage of one variable in the data path while
the secand variable is being fetched from the Regisier,

Each input structure (as shown in Figure 1-3) is basically a Set/Reset flip-flop with three gated set inputs and
one resel input. This structurc is better illusirated in Figure 1-4, which is logically identical to Figure 1-3. Note
that the Latch signal acts as a reset input when it is unasserted, not when it is asserted, and also that the output
f0 the adder is asserted when low.

BUS A LINE O3

=

{I ’ { K3-Z GATE BUS+DH
|

o

ASSEMELY 5408269

! SWITCH REG.
I PTT7ETOLEY.
|

13- ZHATE BUS ~ 3R B

BUS INTERFACE
BITS15-3 WE24, K3
BITS 7-0 M7Z5, K&

e
et

2

BUS ADDRESS HE,B ADDRESS &
DATA DECODE SN R

BUS D LINE O3

—f— .

C | K3-2 GATE BUS=—BALR

o

H

[ConsolEwormrear -V [oRmeatAs wezakar MR

LDa3H

K&-3 GATE RiGH™ 1570 H
D4 L

-B-3 GATE LEFT 150 H
ADD 002 L
K&-3 GATE ADD 7/C H

&
B=3 GATE GYTE F/0H
-z abb 1L

F CARRY FM C2

X MpE
=]

3 ADDER TaB2

¥ SE

111

wezs. ks .o .

REGISTER M225,K5
L ,!‘

=

LECT

m'rz 70 H |—_

KE-4 GATE B-—STF’M H
K12-3 STPM O3 H

K&-4 GATE B= R7/0 H
KG-4 GATE B+ BDIS}DH
K&-2 LATCH B15/0H

K&-2 LATCH 41570
W&-3 GATE A — R15/1
KE=3 GATE A== -R15/1

o3

H
H
H
WE-4 GATE A= -BO15/0 H

. fv\t-‘t_;*‘v*' -

I
J
I
I
|
I
|
I
I
I
I
|1
I
I
I
I
'_{).Qo.u [:

R

’ g__h:)___i Snes

o3

|
* SE
._91

I

LECT

Figure 1-2 Processor Block Diagram Showing One-Bit (03) Data Slice

o3
K13+3 CL& BAR c
U £ l
- - Jd - I = e
CONTROL sy k3 |
| Ce e KE3TL)
I STATUS REG. INSTRUCTION REG.mM725,K2 ke b~ 1
RES SR o |— e oyl
— = ' st 5 TO IR DEGODE GEy e e I
] K10-4 CLEN,ZY |, ; IR % Wi I
l ‘ KB-2 CLK IR el
- A . E—— I
l c{
I K5-2 GATE BUS =~ 5T H |
e e e e

I
|
!
|
|
|
|
|
-

li=al42

QUTPUT DUTPRUT
LATCH
GATE C
GATE C r— GATE B
LATCH ——— GATE B ——— GATE A
—— GATE A
DATA A B <
DATA A B c 1-o138

11 -0140

Figure 1-3 Latch Input — Logic Diagram Figure 1-4 Latch Input — Functional Diagram

In use, the Latch input is cleared whenever new data are to be gated in {(except when these data are to be ORed
with the data already in the latch) and then reasserted before the gated data are removed. Often the latch is
cleared (although no input is gated) to ensure that there are no unwanted inputs to the adders. Figure 1-5
iflustrates the timing constraints placed on the input gating, latch, and data signals.

LATCH |
0 T)
1
GATE | rL
i 1
o l |
H i
DATA | = e e e — — —
" 1
0——-——-—-—“————'5—&———'——
L} L}
DATA MUST
BE CORRECT
GURING THIS
TIME

11-0128

Figure 1-5 Input Timing Constraints

Each latch has three inputs. The A lgjch veceives an input from the registers and com inputs from both

Ihe registers and the Bus Interface. The B latch receives inputs from both the Registers and the Bus Interface,

gnd a third, special inpui to gene esses (this input will not be discussed further here). The
gating signals, present at different times. are selected by combinational logic and determine the action to be
taken on the input data.

The input gating can also be used to generate constants for use in the adder. For instance, a two’s complement
-1 can be generated by gating both register data and its complement into Latch A (X + X =1). The constants
that can be generated include -F, -2, and +1. The constant +2 is generated by a combination of +1 in Latch A
and the setting of the carry flip-flop.

1.2.2.2 Adders — The KA1l Processor uses a standard binary adder. The A, B, and carry inputs, and the sum
and carry outputs are Iow when asserted. More information on the circuit of the adder is available in Chapter 4.
Often only one input to the adder is used; in this case, the adder does not modify the input, but transmits the in-
put unchanged.

1.2.2.3 Output Gating — The output, or rotate/shift, gating sefects the form in which the information from the
adder outputs is to be transmitted. This information is transmitted to both the Bus Interface and the Register,

1-4

where other control signals determine the routing (destination) of the information. The shift gating can transmit
the outputs of the adders unmodiiied, shified one bit right or left, or with {he 8-bit bytes swapped. The
unmodified output is the one most commonly used; most data transfers and the results of moest summations are
unshifted.

The shift and swap outputs are selected by the Rotate/Shift and SWAB instructions, respectively. However, these
outpui gates are ako used by the processor to perform data conversions necessary in the execution of
instructions. The offset of a branch instruction is shifted left during the calculation of the relative address; byte
data from an odd address are swapped into the even byte (D{07:00)) on the data lines before calculations are
performed and swapped back to the odd byte (D{15:08)) data lines before being retransmitted. (The data also
appear on the cven byte data lines for condition code sensing.)

1.2.3 Registers and Bus Interface

Quiputs from the Data Paths are connected to the inputs to the Register and to the Bus Interface. There are
other destinations, which include the Address decoding logic and the Processor Status word (STATUS), but
these destinations are not part of the direct flow of data. The Register is used for the temporary storage of data
that the processor can use in later calculations, or as address data, or to calculate address data. Two of the eight
program-accessible registers and two that are not accessible to instructions are used by the processor; these
nclude the Program Counter (PC) and Stack Pointer (SP), which are Registers 07 and 06 respectively, and two
inaccessible registers labeled Temp and Source, which are registers 10 and 11 respectively.

1.2.3.1 Registers — Register sclection is a function of logic in the Control section. The register selected is a
function of the Instruction Register (1R) or of the logic, depending on the machine state.

The registers are implemented by logic elements that store 16 bits each, These bits are accessible individually,
not simultaneously, so each logic element contains one bit and it is the same bit in each register. There are 16
elements, 1 element for each bit of the processor word. The logic element shown on the bit-slice block diagram
contains 1 bit (bit 03) of each of the 10 registers used by the processor.

The logic elements of the registers function like Set/Reset flip-flops; thus, gating is provided on the > inputs to
prevent changes in t the ister, whi of the Data Paths arc routed
elsewhere, Set/Recet flin-flons do not provide usable outputs while new datz is being writfen, and only one
register can be addressed at a time, so the latches are used for temporary siorage during register-to-register
transfers.

1.2.3.2 Bus Interface - - Data is received from the Unibus and gated onto the Unibus through the Bus Interface.
The receivers are ungated, because selection of the input data (and selection of word, low byte, or high byte
data) is done by the Data Paths input gating. The output gating is controlled by a signal from the Conirol section
of the processor.

The Bus Interface also includes the Bus Address Register (BAR), which selects the bus address that is to respond
to a transfer. The BAR is loaded frem the Data Paths outputs and gated to the bus address lines by twao signals
from the Control section.

1.3 MODULE BLOCK DIAGRAM

The KAl Processor is constructed on 14 modules. The logic of the processor has been allocated to these
modules by function, where possible; this scheme reduces the number of interconnections between moduics,
provides functional sub-units for testing and modification, and facilitates fault isolation to the module level.

1.3.1 Module Distribution

Figurc 1-6 is a block diagram of the processor that segments the processor logic following the module allocation.
Several modules that perform functions both of control and of data transmission aze divided into more than one
block. Only the major paths of data flow are illustrated; this data flow structure expands the structure in the
bit-slice block diagram but is not as detailed. The modules are also interconnected by control signals, which are

not shown. Two modules that perform control functions for external operations (bus and console data transfers
and release of control to the bus or the console) appear in the Bus Interface scetion. These modules are Priority
{K3) and Bus and Console Control (K13).

Figure 1-6 inctudes the console in the block diagram. The console is not discussed in this document, and the
discussion of that part of the block diagram is limited to mentioning the interconnections between the conscle
and the processor.

1.3.2 Processor Structure

The processor can be divided into two major sections: the data handling section and the control section. The
data handling section can be further divided into the three previously mentioned sections: the Bus Interface, the
Data Paths, and the Register. These seciions perform gaiing, modification, and storage of data respectively. The
data handling section is discussed in defail in the bit-slice block diagram description.

1.3.3 Control Section

The control section can also be divided in three subsections that perform functions of storing machine states,
controlling transformations from one machine state to another, and generating control signals for the current
machine state. These three functions can be generalized to the same storage, medification, and gating functions
described for the data handling section.

1.2.3.1 Machine State Storage — The KAIl Processor performs operations on data; these operations are
determined by the machine state. This state is defined by the current instruction, the current time staie within
that instruction, and the vatues of several types of lags and conditions. Information on these state variables is
stored on several modules as follows: the current instruction is held in the Instruction Register (IR) on module

K-9; the time states are generated by logic on the Timing and States module, K-1; the condition codes and
processor priority are stored in the Processor Status word (STATUS) on module K-9; the current operand
address is stored in the Bus Address Register (BAR) on module K-9; and other flags for asynchronous conditions
and error conditions are stored on the Flag Control module, K-12. The IR, the BAR, and STATUS are connected
to the data flow structure of the processor.

1.3.3.2 Machine State Selection — The variable state sequence used by the KA1l Processor reguires the
processor to specify lhe next state cxplicitly. The new machine state is a function of the current machine state
and of the data being processed. (If the next state were a function of the current state only, and were not
influenced by the data, the processor would not be a stored program computer and would be limited to linear
calculations without decision points or branches.)

The logic that selects the next machine state by generating new inputs to the state storage logic is contained on
the following modules: condition codes are generated by the Codes Data moduie, K-11; time states are selected
by the State Control module, K-2; flags are selected by the Flag Control module, K-12, and the Power Fail and
Control modules, K-13 and K-3. The Instruction Register Decode module, K-10, provides signals that are nsed as
inputs by the State Control, Codes Data, and Timing and States modules, as well as by the logic that provides
control signals to the data handling logic.

1.3.3.3 Control Signal Generatton — 'our modules contain the logic that generates control signals to the data
handling logic, the consocie, and the Unibus. These modules are: Register Control, K-4; Data Paths Control, K-6;
Bus and Console Control, K-13; and Priority, K-3. The [unctions of each module are indicated by the name;
Priority controls the release of bus control by the processor to requesting devices of various bus priority levels.
Combinaticnal logic on the modules selects combinations of inputs from the Instruction Register Decode (IRD)
and Timing and States modules; these inputs represent specific machine states. For cach selected machine state,
the logic determines the control signals to generate.

— emmy wee— m—— s s MBS S IR IR TEEES MEm e R A

CONSOLE (PDP11/20}
ASSEMBLY 5408569

—™J] ADDRESS REGISTER

-
|
|
|
I
I
|
I

CONNECTIONS , K14 [18Y-1-2-1]

— DISPLAY
Lid CONTROL DISPLAY |
KY
DATA DISPLAY 1
Ky N :
< SWITCH REGISTER CONTROL SWITCHES
l (77570} KY XY I
I_.... —_——_—— e e e, mFm,— e, - e e e m e e, — e — . — ——
BUS INTERFACE I CATA PATHS REGISTER I
I BUS & CONSOLE GNTL | '
M724.K13 | | I
< | BUS INTERFACE |1 I
BITS 15-8 M824,K3 N {l
P | I 1 > BITS 7-0 M725K9 | | | l ' |
g ADDER & ROTATE /SHIFT REGISTER
1] | BITS 15-B M224,K8 | Re (777100) |
BITS 7-0 M224,KT
! I BUS ADDRESS REGISTER | | RS (177705
U | [BAR},AEEES?): BODATA | 4} 4} R2 {777704) I
? < I A INPUT GATING & LATCH B INFUT GATING 8 I, ATCH l Raise) (7r7708)
8] M725,K9 l R7(PC) (TT77OT) I
| M224 K8 @ K? M224,KB B KT TEMP ITTrT1G)
u i I SOURCE (777711}
s (:] ﬁ ? f T 1 UNUSED {T77732-777717) I
1
> PRICRITY I M275,K5 I
= | L] | z |
| | SPECIAL TRAP MARKERS i
|- m e e e | | m e —— __________________.......___..._________I..............._________I
CONTRGL
| NOTES:
| {.0Cnly major doto flow lines cre shown intercannecting
| V I blocks, Numerous contrel signal tines (not shown) olso
interconnect blocks.
| STATUS (7777776) INSTRUCTION REGISTER TINING & STATES DATA PATH CNTL I
<: {PRIGRITY & CONDITION M725,K9 S LK MO T M820,K6
| CODES) s b REGISTERS) |
”:) M725,K9 IR DECODE M728,Ki REGISTER CRTL.
I M726,K10 MB21,K4 |
I CODES DATA - STATE CNTL |
L/\/" I Me23, K1 | PWR FAIL B CNTL M727,K2 FLAG CNTL
KA11 BUS & POWER | MS25,K15 MB22,Ki2 |

Figure 1-6 KA1l Component Block Diagram

CHAPTER 2
THE INSTRUCTION SET

The KAll Processor is defined by its instruction set. The sequences of processor operations dre selected by
decoding instructions. A knowledge of the instruction set is basic to understanding what the processor is
attempting to do during the execution of a program. This chapter describes the KA1l instruction set from an
internal point of view; for further information on the instructions, see descriplion in the PDP-11 Handbook,
Appendix B, the Unibus Interface Manual (DEC-11-HIAA-ID), and the Faper Tape Software Manual
(DEC-11-GGPA-D).

2.1 PURPOSE

This chapter treats the instruction set as a description of the processor on a level between that of the block
diagrams and the more detailed leve! of the flow charts. For this purpose, each instruction is defined in terms of
the data manipulations and transfers which are performed to execute that instruction. These definitions illustrate
the use of the processor data logic and the operations that the processor can perform.

2.2 SCOPE

This chapter describes the instruction set in a notation called the Instruction Set Processor (ISP) language. This
notation is a concise method of describing the operations of any digital computer on a register or data transfer
level. The ISP notation is described briefly, then the processor staie information that affects the execution of the
instructions is described in ISP notation. The addressing modes used by the instructions to access operands in
Unibus locations or in processor general registers are listed; all the instructions are given with the ISP
descriptions.

The TSP language description of the instruction set omits the processor response (o:

a. Illegal or reserved instructions
b. Reference to nonexistent bus locations
¢ Internal traps such as stack overflow or power failure

d Console operations.

2.3 ISP NOTATION

The Instruction Set Processor (1SP) noiation is a more concise and more carefully defined form of the common
method of describing instructions. For each instruction, the operations that take place are illustrated by a string
of symbols.

[he string of symbols 1s cailed an instruclion eXpression. Each CXPpression nas lwo paris: e conaitions and the
action. The expression defines a set of conditions, often a code in the Instruction Register {IR), and the actions
that take place if those conditions exist. The conditions are followed by a right arrow, which is followed by the
actions.

The action sequence, which is usually interpreted as ene or more actions taking place simultaneously, consists of
one or more pairs of destination expressions and data expressions. A desfination expression specifies the location
that will be set cqual to the value of the data expression.

A data cxpression consists of location expressions combined by operators. The operators include all the standard
arithmetic and logical operalors (+, -, *,/, =, <, &, <, =, %, A, V, and 2) and a variety of other operators such as
modulo (ignore carry). Concatenation (consider the combined registers as one, with length equal fo the sum of
the lengths) is indicated by a ©. Each location expression defines the address of a register (or Unibus location)
the contents of which will be operated on in the manner required by the operators.

The ISP language has several additional features relating to the assignment of names for locations. Each name can
have several forms (aliases), such as a [ull spelling and an abbreviation. These forms are presented in sequence,
separated by slashes (/).

A name can be followed by one or more array declarations. Each declaration is a pair of numbers, separated by a
colon, within squarc brackets, and represents a sequence of numbers from the first to the last, inclusive, to be
used as addresses with the name. Multiple array declarations signify a multi-dimensioned array.

Following the array declarations, if any, may be a length declaration. This has the same form as an array
declaration with angle brackets substituted for the square brackets. The length declaration signifies that the
name represents bits or characters numbercd from the [irst to the last number, inclusive. The examples clarify
the use of array and length declarations.

Examples

A register declaration defines a name and the data format that it represents by giving the array declarations
and length declarations with the name.

The declaration:
R/Registers [0:7) €15:0

defines a data structure called Regisrers (abbreviated R) which consists of 8 words numbered from O to 7,
where each word includes 16 bits numbered from 15 to 0, going from most significant {leftmost) bit to
least significant (rightmost).

Similarly, an instruction declaration of the form:
ADD(:=bop+0010y+(CC,D<D+S)

defines an ADD instruction, where the sum (+} of the Source (8} and Destination () operands replaces the
contents ot the Destination operand, and sets the condition codes (CC). The comma signifies that the
leftmost portion of the memory expression (LC,1}) is treated 1n a manner detined elsewhere. ihe
equivalence symbol (:=) signifies that the information following it defines the name (ADD) preceding it.
The parenthetical statements are added for clarity,

Table 2-1 summarizes the information presented in the preceding paragraphs.

[
h

Table 2-1
ISP Summary

a/b alias

ab conditional

a:=b equivalence

ab replacement

ab length declaration
a:b array declaration
“next” sequential execution

+ [add operators

- fsubtract

* /multiply

[{divide

A fand

v for

& fexclusive or
™{not

= fequal

[not equal

> fgreater than

<< fless than

= /greater than or equal
< /less than or equal
4 fconcatenation

— the names may be used interchangeably; g means the same as b.

— the action sequence b is performed if the condition expression ¢ is
true.

— wherever g appears, the value of » may be substituted for it.

— the value of the data expression » replaces the contents of the
MEermory expression q.

— the expression describes a series of bits or characters, numbered
from g to & inclusive, @ is the most significant, & the least
significant.

- the expression describes a series of words, each of a length
determined by a following length declaration, numbered from a to
b inclusive.

— the action sequence following a *“next” is performed aftes, not
simultanecus with, the sequence preceding the “next”.

used in data expressions to define operations performed on the
data which are the conlents of the locations represented by the
narme symbols,

2.4 PDP-11 DATA STRUCTURE

The data structure used by the processor is defined as the structure of the processor state (those storage
locations within the processor that define the current state) and the current instruction, and the structure of the
Unibus locations used as processor memory. The structure of the processor state and of the memory is described
by the ISP notation in Table 2-2, Table 2-3 illustrates the instruction format.

Table 2-2
Memory and Processor State Structure

Table 2-2 (Cont)
Memory and Processor State Structure

Carry[C: = CCO

NegativefN: = CC(3}

ZerofZ: = CC2

QuerflowfV: = CC{1}

Trace/T: = ST{4»

Undefined(7:0}: = PS{15:8}
Run
Wait

CC/Condition i Codes(3:00: = PS{3:0;

Under program control; when
set, each insiruction execnted
will trap; used lor interpretive

* and breakpoint debugging

A result condition code indica-
ting an arithmetic cairy from bit
15 of the last operation

A r1esult condition code indica-
ting last result was negative

A result condition code in-
dicating last result was zero

A result condition code in-
dicating an arithmetic overflow
of the last operation

Denates whether instruction
trace trap is to occur after cach
instruction is executed

Unused
Denoies normal execution

Denotes waiting for an interrupt

Primary Memory State
M/Mb/Memery [0:24 —1]{7:0}

Processor State (9 words)
R/Registers{0:7]{15:0
SP(15:0; = R[6)€15:0p
PC{15:0): = R[7]{15:C}

P&(15:0
Priority{P(2:Gy: = PS(7.5)

Mw [0m2? 52 1]415:00: = M[0:2' 51170

Byte memory
Word memory mapping

Word general registers
Stack pointer
Program counter

Processor state register

Under program control; priority
level of the process currently
being interpreted a higher level
progess may interrupt or trap
this process

Table 2-3
Instruction Format

Instruction Format

ifinstruction{15:0}

bop(3:0: = (1512

uop{15:6): = i{15:6}

bropd15: 8y = i15:8

sop(15:6): =i{15:6)

sfsourced5:0y: = i{11:6)
sm{0: 1) : = 5(5:4)
sd Y
st =520

dfdestination(5:(: = i{5:00
dm{0:13: = d{5: 4
dd 1 =43
dr{2:0} : = d(2:0)

offset{7:0): = {7:0)

addressea increment/ai

(Bit assignments used in the various instruction formats)

Binary operation code
Unary operation code
Branch operzation code
Shift operation code
Source control byte
Source mede control
Source defer bit
Source register

Destination control byte

Signed 7 bit integer

Implicit bit derived from i to
dencte byte or word length
operations

2.5 ADDRESS MODES

The data used by an instruction is often determined by a complex address calculation, depending on the address
modes and registers used in the instruction format. The address modes and the resulting operations are describad

in ISP notation in Table 2-4.

Table 2-4 Table 2-5 (Cont)

Address Modes Instruction Execution
Source/$ and Destination/D Calculation TST(: = uop = 0573) =+ (CC < D); Test
S/Source{l5. 0} = (~—sd = (Direct access TSTB(: = uop = 10575) + (CC « Db); Test byte -
(sm = 00) + R[s1]; Register Shift operations: D < D x 2,
(sm = 01) A (sr # 7) = (M[R [5r]]; next R[st} « R[st] + ai); Auto increment ROR(: = sop = 060;) ~ (CoD — CoDf2 [rolate]); Rotate right
(sm=0D) A{st = Ty (M[PC];PC < PC +2): Immediate RORER(: = sop = 10603) = (CODb + CoDb/2 [rotatc]); Byte rotate right
{sm=10) = (R[st] = R[sr] — ai; next M[R[sr]]): Auto decrement ROL{: = sop = 0614) ~ (CCD « CaD x 2{rotaie]); Byte rotate left
(sm=11)Alsr # 7y (M[M[PC] + R[sr]1; PC =PC+2); Indexed ROLB(: = s0p = 10614) = (CoDb + CoDb x 2[rotate] ; Byte rotate left
(sm =1 A(sc = 7) > (M[M[PC] +PC]; PC < PC+2)); Relative ASR(: = sop = 0624) > (CCD < Dx 2); Arithmetic shift right
sd > { Indirect uccess ASRB(: = sop = 10625) = (CC,Db < Dbf2); Byte arithmetic shift right
{sm=00) =~ M[R[s1] |; Indircct via register ASL{: = sop = D634)~ (CC,D < D x 2); Arithmetic shift left
(sm=01) A (s =7y~ (M[M[R[s1]]]; next Rfsr] « R[st] + ai); Indirect via stack, ASLB(: = sop = 10634 > (CC,Db <« Db x 2); Byte arithmetic shift lelt
auto decrement ROT(: =sop =064,) = (CaD « D x 2%); Rotate
(sm=01) A (st =7y M[M[FC]] PC < PC +2; Direct absolute ROTB(: = sop = 10645) — (CoDb « D x 25); Byte rotate
{(sm=10) > (R[sr] « R][sr] — ai; next M[R[sr} }); Indirect via stack, SWAB(: = sop = 3) - (CC.D < IX7:0, 15:8}) Swap bytes
auto increment

(sm=11)A (v £ 7) > (M[M[PC] + R[sr] }; PC <PC + 2); Indirect, indexed Logical Operations
{sm = 11) A (st = 7) = (M[M[M[PC] + PC]]; BC « PC 42)) Indisect relative BIC(: = bop = 0100) > (CC,D <D« DA — 8); Bit clear

BICB(: = bop = 1100) - (CC,Db < Db A~ 5b); Byte bit clear

BIS(: =bop = 0101} > (CCD <+ DV S); Bit set

BISB(: = bop = 1101} > (CC,Db « Db v/ Sb); Byte hit set

The operations done for the same address modes in destination operands are identical, except for the JMP and
SR instructions, in which the final data is replaced by the calculated address.

BIT(: = bop=0011} = (CC « DA 8); Bit lest under mask
BITB(: = bop = 1011) > (CC « Db A §h); Byte bit test under mask

Branches and Subroutine Calling: PC +f;

2.6 INSTRUCTION EXECUTION PROCESS
Instructions are fetched from memory by the process:

(i~ M[PC}; PC<PC+2

The instruction is decoded and the operations that are done are illustrated in Table 2-5.

Table 2-5
Instruction Execution

Instructionexecution: = (

CMP(: = bop = 0010} (CC = D — S);
CMPB(: = bop = 1010) = (CC « Db - Sb);

INCB{: = uop = 10525) > {CC.Db < Db + 1);
DEC(: = uop = 053,) = (CCD+D - 1);
DECB(: = uop = 10533) > (CC.Db < Db — 1),
NEG(: = uop = 0545) > {CCD = — D}
NEGB(: = uop = 1054} -» (CC Db « — Db);
ADC(. = uop = 0555) > (CCD <D +C);
ADCB(: = uop = 103355 »(CC.Db Dby,
SBC(: = ugp = 0565) = (CCD+D-C);
SBCB(: = uop = 10564) = {(CC Db+~ Db - C);

Word compare
Byte compare

Increment byte

Decrement word

Decrement byte

Negate

Negate byie

Add the carry

Add Lo Byic i ey
Subtract the carry

Subtract from byte the carny

MP(: = sop = 00015) = (PC < DY)

BR(: =brop=01,,) = (PC + PC + offset),

BEQ(: = brop =03,¢) —+ (Z = (PC « PC + offset));

BNE{: = brop=02,¢} =+ (= Z = (PC < PC + offset));

BLT(: =brop=05,4) » (N @V — (PC < PC + offset));

BGE(: =brop=or,;3} = (N =V = (PC < PC + offset));

BLE(: = brop=07,4) ~(Z V{N 8 V) = (PC + PC + offset});
BGT(: =brop=08,4) ~+ {=a(Z V{N & V) = (PC + PC + offser));
BCS/BHIS(: = brop = 87, 6) —~ (C » (PC « PC + offset));

BCC/BLO(: = brop = 86,4} » (C—C —+ (PC < PC + offset));
BLOS(: =brap =83,4) »{CA Z + (PC < PC + offset));

JSR(: = sop = 00405) = (
SP + SP -- 2; next
M[SP] < R[st];

Miscellaneows processor state modification:

RTI(: = i = 2,) - (PC < M[SP];
SP « SP + 2; next
PS < M[SP];
SP <SP + 2);
HALT(: =i=0)~ (Run + 0);
WAIT{: =1=1) > (Wall < 1),
TRAP(: =i=3)—> (8P < 5P + 2: next
M[SP] < PS;

Jump unconditional

Branch unconditional

Equal to zero

Not equal to zero

Less than {zero})

Greater than or equal {zero)
Less than or equal (zero)
Less greater than (zero)}
Carry set; higher or same
(unsigned)

Carry clear; lower (unsigned)
Lower or same {(unsigned)

MOV(: = bop = 0001) - (CC,D < $b); Move word BHI(: = brop = 82,4) + {(—=CV Z) = (PC + PC + offset)); Higher than (unsigned)
MOVB(: = bap = 1001) - (CC.Db < Sb; Move byte BVS(: =brop = 85,4) > (V ~ (PC < PC + offset)); Overflow
.) . BVC(: = brop = 84,4} = { mV = {(PC + PC + offset)); No overflow
BmaryA)];rS(hmett:;:: D (;?(I)J]S; DDty Add BMT(: = brop = 81,4) ~ (N = (PC « PC + offset)); Minus
:=bop= ~LL b= Ds) BPL(: =brop = 80,4 - (™ N = (PC < PC + offset));
SUB(: = bop = 1110) - (CC.D « D — S); Subtract L(P 16) > (® et}) Plus

Jump to subroutine by putting
R[sr], PC on stack and loading
R[stf with PC, and going to

Unary Arithmetic D < uS; R[si} ~PC; subroutine at D
CLR{(: = uop = 050,)+ {CC,D + 0); Clear word PC + D);
CLRB(: = uop = 10504} - (CC.Db <+ 0); Clear byte RTS(: =i= 00200,) —+ (Return from subroutine
COM(: =uop=0515)}—+(CC,.Dx < — D}, Complement word PC « R[dr];
COMB(: =uop = 10315) =+ {CC,Db <= — Db); Complement byle Ridr} < M|SP];
INC(: = uop = 052, } > (CCD « D+ 1); Incrernent word SP <SP+ 2):

Return from interrupt

Trap to M [345] store status and
PC

Table 2-5 (Cont)
Instriction Execaiion

SP < 8P+ 2;next
M[SP] < PC,
PC <M[344];
PS<M[12]),
EMT(: = brop — 82;5) +(
SP < 8P + 2; next
M[SP] <PS;
8P <SP + 2; next
M[5P] < PC;
PC +«M[30:1;
PS +~M[32:])
IOT(: =i=4) — (see TRAF)}
RESET(: = i=5)— (not described)
OPERATE(: =i5:15y=5) = (
{4 — (CC + CCV ¥3:00);
—i@) —(CC ~CCA=i3:0)):
end Instruction Legexecution

Enter new process

Emulator trap

[/Q irap to M[205]
Resel to exlemal devices
Condition code operale
Set codes

Clear codes

CHAPTER 3
MACHINE STATE FLOW CHARTS

The instruction set of the KA1 Processor is implemented by control logic that produces a variable sequence of
states, depending on the instruction and on the previous state of the processor. The structure of the control log-
ic is described in the block diagram discussions and detailed in the module descriptions. This chapter describes
the machine states in more detail and illustrates the sequences of states that the processor follows fo execute var-
ious instructions. The flow charts presented in this chapfer list the machine states, the control signals generated
in each state, and the transfers from one machine state to the next.

The flow of data through the processor is implicit in the operation of the control section, because the data flow
is controtled by the signals generated in each machine state. The flow charts do not explicitly describe the data
flow, although most data transfers are described in the comments accompanying the line of flow, To follow the
flow of data through the processor, study the Bit-Slice Block Diagram (see Figurc 1-2), and determine the effects
of the control signals generated during each machine state.

3.1 PURPOSE OF THE FLOW CHARTS

The flow charts provide information for {wo purposes. First, the reader who is learning the KA 11 Processor for
the first time can follow the sequence of control statements and indirectly follow the flow of data to gain an un-
derstanding of the instruction set and its implementation and to learn more about the interaction of the proces-
sor with other devices on the Unibus.

Second, the reader who is familiar with the normal operation of the processor can use the flow charts as a guide
for troubleshooting when working with a processor, Often a good way to determine the cause of improper pro-
cessar operation is to check the flow charts to determine the signals that should be present during the affected
portion of the processor sequence. Then, check the particular signals to determine which ones are not present.
The conditions listed on the flow chart for the generation of the signal will appear on the print sct as inputs to
the combinational logic that generates the signal. These inputs can be tested and the logic traced to determine
where the failure occurred.

3.2 KA1l FLOW CHART SYSTEM

The flow chart system used for the KAl Processor provides a unique departure from standard flow charts. In-
formation given on the [low chart enables the user to look at a circuit schematic and identify a specific gate, or
gates, which normally causes peneration of a specified logic signal during a certain machine timing state, The sys-
tem used to provide this information is discussed in subsequent paragraphs.

3.2.1 Signal Names

Signals, when generated, are shown in the following manner on the flow chart:
K134 CONSF #—] HALT F (1}

The alphanumeric symbol preceding the signal name is the page number of the circuit schematic where the signal
is generated (in the above case, schematic K13, sheet 4), The Boolean statement within the box to the right de-
fines the gate, or pates, of the combinational logic that are active for generation of the signal. A signal name
with no box to the right indicates unconditional generation of the signal at that time.

3.2.2 Symbok

There are 14 special symbols used on the flow charts. These symbols are shown in Table 3-1, which also includes
the name of each symbol, its general function, and the number of the paragruph containing a detailed expiana-
tion of the symbol.

Table 3-1
Flow Chart Symbols
Symbol Name ' Function Paragraph
Reference
; E System clock (SCLK) Indicates that a system clock cycle begins 3221
at this point.
v Major state entry and Denotes an entry into, or exit from, some 3222
exit processor major state.
DATI Major operation Indicates that some special sequence is to 3.2.23
P CLK RESTART be performed before continuing in the
flow.
Delays Indicate that some additional time is re- 3.2.2.4
quired before proceeding in the flow.
™ Time states Indicate that the time state within the 3.225
symbol has been entered and is contrel-
ling the operations.
|| Signal block — A gathering point for various signals that 3226
1| general occur at, or during, the point encountered.
N/ || Signal block — used Indicates those signals that are genérated 3.2.2.6
N I| with system clock as a direct result of SCLK.

(:_{ Signal block — used Indicates the signals that generate the 3.2.246

with time state next possible time state.

(} Signal block — used Indicates the signal(s) that may be gener- 3.2.2.6
——i below time state ated in the time stafe for control of oper-
4| ations.

| Paralle! nperatinn fndicates that mar than ~re rath -an 20 RN

] | I connector cur and that, if an operation refercnee

statement is cncountered down the leg,
then that condition must be met before
proceeding.

3-1

Table 3-1 (Cont)
Flow Chart Symbols

Symbol Name Function Paragraph
Reference
-+ AITOWS Indicate direction of flow; used only for 3228
' clarity on flow chart.
Page interconnection This symbol contains a letter and identi- 3229
fies the exit point ol one page and the
entry point on the new page.
O Pulse Designates that pulse signal which causes 3.2.2.10
the next sequential operation that is per-
tinent to machine flow.

3.2.2.1 System Clock (SCLK) — The system clock (SCLK) symbol (see Table 3-1) indicates that a SCLK cycie
begins at this point. This symbol implies that once the clock cycle is started, it completes the cycle and that all
of its associated clocking levels (R/W0, RfW1, R/W3, RfW2) are generated in their proper sequence hefore the
next SCLK symbol is encountered. This conforms to the KC11 clock circuit, which, once a cycle is started, can-
not be stopped until RfW2. The R/W states are implied in the signal condiiions, when used, except at those
poinis on the flow chart where they are shown for clarity.

3.2.2.2 Major State Entry and Exit — The major state entry and exit symbol (see Table 3-1) denotes entry into,
or exit from, some major state. The states that may be encountered are:

Mnemonic Name
F Fetch
5 Source
D Destination
E Executc
sSvC Service
C Console
DATI Datain
DATIP Data in, pause
DATO Data out
DATO# Modified data out
EXIT Exit

The appropriate mnemonic from the above list is located within the symbol. When used for entry, the symbol
indicates that this is the major state being entered and the state is retained until another symbol, used as an exit,
is encountered.

The DATI, DATIP, DATO, and DATO# states are entry points into the bus operatfion sequence and ure a result
of a major operation symbol encountered in the instruction flow charts. (Refer to Paragraph 3.2.2.3 for a de-
scription of major operations.)

The EXIT state is the normal termination point for 2 bus operation. This symbol indicates that it is necessary to
return o the instruction flow signal point that initiated the bus operation (refer to Paragraph 3.2.2.3).

3.2.2.3 Major Operation — The major operation symbol (see Table 3-1) indicates that some special sequence
must be performed before continuing in the flow chart. It may, or may not, require time delays and SCLK tim-
ing to perform the required operation. The initial statement within the symbol (DATI in the example shown in
Table 3-1) indicates the operation to be performed. The final statement (P CLK RESTART in the example) is
the signal that terminates the operation when asserted. In the example given in the table, the major operation
symbol indicates that a DATI bus operation is to be performed and that flow on the chart continues when
P CLK RESTART occurs. It also implies that the DATI operation can be seen by following the bus flow chart
and that the EXIT symbo! on the bus flow chart returns the user to the main fiow where the symbol was cn-
countered. In some instances, the termination statement is an OR function, and the output then encounters a
parallel operation connectlor symbol (Paragraph 3.2.2.7) in order to proceed.

3.2.2.4 Delays — The delay symbol (see Table 3-1) indicates that additional time is required before proceeding
in the flow. In most cases, this time element is defined and an indication given as to the amount of time in-
volved. Ifit is a control operation, the name of the operation is indicated, followed by the time quantity, or just
the time quantity is shown. If a delay is used in order to wait for a specific signal, then the time quantity is listed
foliowed by the signal required in order to proceed.

3.2.2.5 Time States — The time state symbol (see Table 3-1) indicates that the time state indicated with the
symbol has been entered and is controlling the operations being performed. The state indicated within the sym-
bol is either ISR or BSR with its associated numerical value.

3.2.2.6 Signal Block — The signal block symbol {(see Table 3-1) is a gathering point for the various signals that
occur at, or during, the point where encountered.

If the signal block symbel is used in conjunction with the SCLK symbol {see example in Table 3-1), it indicates
those signals that are generated as a direct result of the system clock.

1£ the symbel is used in conjunction with the time state symbol (see example in Table 3-1), it indicates the sig-
nals that generate the next possible time state. At this point, the instruction flow charts also include the set-up
signals for bus flow timing changes, when applicable,

If the signal block symbol is used below the time state symbol (see example in Table 3-1), it indicates the signal,
or signals. that may be generated in the time state for control of operations. The signal block closest to the time
state symbol encompasses the operation control signals. The lower signal block, when used, contains major state
change signals only. This latter block is found just prior to the exit symbols.

Whenever the signal block symbol is encountered in a flow path and is independent of & time state symbol line, it
indicates that the signal(s) occurs as controlled by the conditions associated with that point on the diagram.

3.2.2.7 Parallel Operation Connector — The purallel operation connector {see Table 3-1) indicates that more
than one path can occur and that, if an operation reference statement is encountered down the leg, then that con-
dition must be met before proceeding.

There are cases where operations are performed at the same time and, in this instance, no operation rsference
statement is given. In those cases where operations are performed in parallel but only one path is the main path
for continuous flow, the operations are indicated in the manner shown in Figure 3-1.

=, =

1-0245

Figure 3-1 Parallel Operation — Main Path

3.2.2.8 Arrows — The arrow symbol (see Table 3-1) is shown at those junction points where it is not obvious as
to what is expected, or at those points where more than one signal meet, or at those points where clarity is neces-
sary to properly define the flow.

3.2.2.9 Page Interconnection — The page interconnection symbol (see Table 3-1) contains a letter designation
within the symbol to correlate an exit point on one page with the associated entry peint an the new page. A
comment accompanies the symbol te indicate which new page the flow is continued on.

3.2.2.10 Pulse — The puke symbol (see Tabie 3-1) is inserted into a flow linc at a point where the pulse would
occur in time, The symbol designates that pulse signal which causes the next sequential operation pertinent to
machine flow. A signal block may be appended to this symbol.

3.2.3 Signal Statements

Signal statements are those signal names that do not include circuit schematic references and that define the sig-
nal requirements in order to proceed. A typical statement of this type is BUS SSYN, which states that if, or
when, this signal occurs, the user proceeds down the flow path concerned. If {BUS SSYN) is the statement, then
it indicates to proceed when the frue signal is not present. The previous example is an operation reference state-
ment. A time state reference statement is: BSR < 15 or ISR < 0. An exit reference statement is; FETCH < 1,

3.2.4 Comments

Comments that are required to clarify an operation arc shown to the left of the time state symbol. These com-
menis present an overview of what can be expected to occur during that time state, The comment may be sup-
plemented with a symbol such as ® or These symbols indicate a read from, or a write into, one of the
KA11 general registers.

3.2.5 Time State Sequence

Time state flow sequences may exist in one of two major configurations depending on whether or not a bus oper-
ation is involved. An example of each of these configurations is presented in the following paragraphs.

3.2.5.1 Time State Sequence — Without Bus Operation — Figure 3-2 shows part of the EXECUTE * JSR flow
chart, at the point where the ISR1 time state is entered. The comments indicate that register 7 (PC) is read into
Latch B. The time state symbol signal block shows that the ISR shifts to its next state since this is not a unary
(single-operand), binary (double-operand), or rotate/shift operation. During the time state, the PC is gated from
the register output into the latch by gating each individual byte. The operation signals occur as a function of
EXEC * JSR * ISR.

READ (FC)

TO LATEH B ISR K2-2 SHIFT iRS —(U+B+R/S)

®4-2 RA/PC
® K6-4 GATE B #— R15/8
KE-4 GATE B+—RT7/0

x)

11-0245

Figure 3-2 Portion of EXECUTE * JSR Flow Chart

3.25.2 Time State Sequence — With Bus Operation — Figure 3-3 shows a portion of the EXECUTE * RTI flow
chart with EXEC * RTI at the entry point. The system clock {(SCLK) clocks EXECUTE to a 1 and BSR to a 1.
Simultaneously, the ISR is clocked to 15 and the DATI bus operation starts. The comments indicate that the
stack pointer (SP), which is general register 6, is to be used for the bus address. This address is incremented after
it is used and then retoaded into register 6. The data contained in the address location specified by register 6 is
retumed and stored temporarily in latch B. When the clock restarts, via P CLK RESTART, the ISR goes to 14.
The DATI bus operation used twe additional SCLK cvcles (BSR3 and BSR7) to perform zll of its operations
while the ISR remained at 15.

There is no connection below the ISR15 time state symbol; thus, the flow chart indicates that primary flow pro-
ceeds through the major operation path.

RT1

K1-4 EXEC (1)
K1-3 BSR 1

(sPre—tsPi+2{ 1SR 15)—| K4-2 SHIFT IRS BUS IN DONE PoLr ReSTaRT
LATCH 8=—EUS DATA

Ké4-2 RA/SP

110247

Figure 3-3 Portion of EXECUTE * RT! Flow Diagram

3-3

3.2.6 Composite Layout

Figure 3-4 illustrates all of the flow chart designations and symbeols in a manner in which they may normaily be
encountered on the flow chart. This figure provides the user with one illustration of maost of the flow chart sys-
tem components discussed in previous paragraphs,

3.3 INFORMATION IN THE FLOW CHARTS

The flow charts contain four major classes of information about the processor, The present machine state is in-
dicated by the position on the flows; the signals that are generated in each machine state are named; the inputs
that determine the signals to be generated are shown as conditions; and the selection of the next machine state as
a function of the inputs {conditions) is shown.

3.3.1 Current Machine State

The machine state represented by any point on the flow charts is determined by the time states entered by the
fine of flow in reaching that point and by the instruction being executed. For brevity and clarity, only a few of
the components of a machine state are shown at any point on the flow; the reader must keep track of the time
states and conditions that the flow has entered, as welk as the instruction and major state represented by the flow.

TIME STATE OR UPERATION REFERENCE

1 7
SYSTEM
CLOCK SIGHAL ACTIVATED BY
SYMBOL SYSTEM CLOCK

3.3.2 Input Information

At various points in the flow where signals are generated, the flow charts show the conditions required to gener-
ate each signal. These conditions are composed of groups of input signals. The input signals include both parts
of the machine state and input information from the data handling section of the processor. The name assig;ned
to a conditior on the flow chart represents some specific combination of signals that can often be found as phys-
ical inputs to the combinational logic that generates the control signal or data handling control signal shown.

3.3.3 Next Machine State

The control signals generated in a machine state can be divided into two major groups: the signals that generate
the nexi machine state and the signals that control the data handling. Each machine state is followed by one or
mote machine states, which are selected by the control signals generated in the machine state, These control sig-
nals are shown, along with the conditions (inputs) that generate each signal.

3.3.4 Output Signals

The remainder of the control signals are outputs to the data handling section; these signals control what opera-
tions are performed on the data and are shown with the inputs that select the activity to occur.

MAJOR STATE QR SPECIAL

FARALLEL CPERATION CONNECTOR

TIME STATE

(TIME STATE) _‘CH.QNGE SIGNALS
OPERATION
SIGNAL (5

MAJOR STATE
CHANGE SIGNAL {S}

COMMENTS

:

MAJOR OPERATION

DEL AY

!OP‘ERM'ION
SIGNAL (S]

I
EXIT REFERENCES

EXIT REFERENCES

H-pz4a

Figure 3-4 PDP-1} Processor Flow Chart Composite Layout and Symbol System

3.4 ANOTE ON PROCESSOR DESCRIPTION

This manual presents the information needed to acquire a practical understanding of the KA11 Processor opera-
tion. However, it is interesting to consider the processor in a more general theoretical manner to enable compari-
sons between the KA1l Processor and other machines. This section is presented for information only and is not
necessary to the discussion of the KAIl Processor flow of operation.

The most general description of an information processing machine considers the machine in terms of an object
that can be in any one of a finite (for digital devices) number of states. In each state, the machine is subject to
cerfain inputs that determine both the next state the machine will be in and the outputs from the machine. One
way of representing the structure and operation of such a machine is to list each possible combination of ma-
chine state and inputs, with the corresponding next machine state and outputs., This listing takes the form of a
series of quadruplets (CS,I,NS,0), where C8 is the current machine state, [is the input, NS is the next machine
state, and Q is the output.

For a digital computer, the number of quadruplets that can be listed is much too large for such a listing to be
practical, Therefore, the listing is replaced by a shorthand description {such as the flow charts presented here)
from which the reader can assemble the information for each quadruplet when he.needs it. Each point in the
flow chart represents a machine state, which is specified by the information about time states, instructions, and
processor conditions which lead to the selected point. The possible inputs to this machine state are represented
by the conditions listed at that point; some, or ail, of the possible inputs may be present.

Each combination of a machine state and possible inputs leads to a next machine state. The possible next states
for a given state are represented by the branching flow leading from the point on the flow chart that represents
the present state; often the conditions that select a particular next state are given at the branch peint.

The outputs possibie in a given machine state are also a function of the inputs; thus, various outputs are pre-
sented at the appropriate point on the flow chart with the input conditions that generate them.

To compile the information corresponding to a given quadruplet, the reader must examine the flow charts to de-
termine all the state information that specifies a location on the flow and examine all the inputs or conditions at
that location 1o determine the ones that are involved in the specific operation of interest. The signats shown with
the active inputs are the corresponding outputs; these outputs determine both the next machine state and the ac-
tual outputs from the control section.

Note that this discussion is concerned only with the control section of the KA11 Processor. Some outputs are
control signals to the data handling section of the processor. When considering the processor as a whole, the in-
puts and outputs are the data on which the processor operates. However, because the processor operation is con-
trolled by the data that pass through the processor only to a very limited extent, it is helpful to consider the data
handling section as a separate device under the control of the processor. The operations that can be performed
on the data have been described in the discussion of the instruction set and in the discussion of the data flow
siructure,

3.5 PROCESSOR TIMING

The processor timing comsists of five major processor states (or cycles) during which specific processor
operations are carried out {such as fetching an instruction from memory). In addition, each major state is divided
into a number of ISR states during which individual steps of the operation are performed. The ISR states may
also consist of a number of BSR states which are entered when the processor needs to obtain informatien from
the bus.

The major states are so called because each major state controls the performance of a series of functions that
result in one everall action, for nstanve, the Feteh inajor state controls the transfer of an insivaeciion word {ron,
memory to the Instruction Regisier and the decoding of that word to determine the next activity. This action
requires operations in two ISR states, one of which is divided into several BSR states,

The major states are shown in Figure 1-1 and their functions are listed in Table 3-2.

Table 3-2
KA11 Major States
Siate Abbreviation Function
Fetch F The instruction word is transferred from memery to the Instruction

Register and decoded to determine the next state to enter.

Source So This state is used by two address instructions only to perform the same
funciion for a first operand that Destination performs for a second.

Destination D The address of an operand is calculated and the operand is transferred
from a storage location to the processor.

Execute E Manipulates the operands and transfers the results to the storage location
the address of which was calculated in Destination.

Service Se All trap and interrupt service routines, as well as certain processor

housekeeping functions, are performed in this state.

Euch major state is divided into several time states by the operations of the Instruction Shift Register. Typicalty,
each ISR siate results in the execution of a data transfer; the individual steps in the transfer arc controlled by the
detailed timing of the processor. In external transfers over the Unibus, the [SR state is divided into several states
of the Bus Shift Register (BSR). The BSR is similar in implementation to the ISR and controls the execution of
detailed address calculations and Unibus control during a data transfer. The detailed timing within BSR states is
controlled by the Read/Write Shift Register (R/W), in a similar manner as the detailed timing within ISR states.

The following sections discuss the prints, which contain the flow charts for the various major states of the KA11.
Each section covers one major state, and refers to the prints that illustrate that state.

First, a basic flow chart of the flow of control among the major states is discussed; then, the execution of the
external data transfers is discussed by reference to the Bus Operation Flow Charts. The major states are
described in the order given in Table 3-2,

3.6 MAJOR STATE FLOW

The major staie flow is shown in Figure 3-5, which is an enlarged version of the major state flow portion of
Figure 1-1.

3.6.1 Fetch

At the beginning of the processing of each instruction, the processor enters the Fetch major state, performs a
DATI bus operation to transfer the new instruction from memory to the Instruction Register (IR), and then
decodes the contents of the Instruction Register. Depending on the operations required by the current
instruction, the processar may perform maodifications on the processor state or processor control flip-flops during
the current major stafe, or the processor may transfer to any other major state (including entering Fetch again, to
get the next instruction).

For the purposes of this discussion, the instructions can be divided into two categories: data manipulation
instructions, which can access information stored outside the processor, and processor control instructions,
which generally work on the processor state and information stored in the processor. There is a2 good deal of
overlap between the two categories (such as jump and branch instructions). For data manipulation instructions,
the processor usually enters Source or Destination major state from Fetch, then enters Execute and finally enters
either Service or Fetch (for the next instruction). Many processor control instructions are completed in Fetch,
wisile others are linished in Execute and do not require entry inio Source or Destination, in general, istructions
are compleied before the processor enters the Service major state, which is primarily involved in trap and
interrupt service.

35

FETCH

r

SOURCE 1

ERROR CONDITIONS

L

DESTINATION

»

EXECUTE

i

™

SERVICE

3

N-o0137

Figure 3-5 KA1l Major State Flow

3.6.2 Source and Destination

Source and Destination aré the operand acquisition major states; any necessary address calculation is done in
these states. Because the KA1l Processor uses a variable state sequence that enters only the machine states
necessary to process the current instruction, the processor skips an operand acquisition siate if the comresponding
address mode is zero (ie., if the operand is in a progessor register and no Unibus transfers are needed).
Two-address instructions can therefore use any sequence of operand acquisition major states; both Source and
Destination, Source oniy, Destination only, or neither state. The last sequence occurs when both operands are in
processor registers that can be accessed directly in the Execute major state.

Certain processar control instructions use the Destination major state to calculate addresses and, thereby, replace
the contents of the Program Counter. These instructions include the JMP and JSR instructions. The Destination
major state is aborted before the contents of the specified address are transferred. The address contains the next
instruction, which wilt be transferred in the next Fetch major state.

3.6.3 Execute

‘The Execute major state controls all manipulation done on data (with the exception of address calculations) and
controls all transfers of data from the processor to Unibus locations (except during trap and interrupt service).
Because of the varying sequences of major states which can be used to access operands, Execute can be entered
from Fetch, Source, or Destination.

3.6.4 Service

The final major state of the KA1l Processor is called Service. Only 2 few instructions (e.g., the trap instructions,
wait, and halt and reset) require entry into the Service state. For all other instructions, Service may be entered if
bus Tequests, interrupts, or console switch operations, are presenf. Some demands are internal to the processor;
these include traps for iflegal or reserved instructions and for conditions such as low power supply voltage.

3-6

3.7 UNIBUS OPERATIONS

The Unibus executes data transfers in four types of bus operations. These operations are conducted by a Master
device that controls transfers with a Slave device. The processor is never a Stave device in data transfers; it can
acl as a Slave device only during Interrupt bus operations. The direction of a bus data transfer is described in
terms of the Master device; a data in (DATI) or data in, pause (DATIP) fransfers data from the Slave into the
Master, while a data out (DATQ) or data out, byte (DATOB) transfers data out of the Master to the Slave. A
more detailed discussion of the theory of operation of the Unibus is in the Unibus Interface Manual,
DEC-11-HIAB-D.

3.7.1 Processor Conirol of Data Transfers

Whenever the processor executes a Unibus data transfer, the processor enters a sequence of machine states in
which the Bus Shift Register (BSR) controls a series of operations. At all other times, the BSR is in a state
decoded as BSR siate 0. The specilic scquence of BSR states depends on which of the four types of transfers is
being done; normally the BSR state 1 is the initial non-zero state, but the modified DATOQ cycle, which is used
following a DATIP transfer, begins in BSR state [2.

The following discussion refers to the flow diagrams of the KA1l Bus Flow (drawing FD-KA}1-0-KBF, 2
sheets). The flow chart illustrates the timing and all the significant signals involved in Unibus transfers and
processor control; therefore, only a general discussion of the purpose of each operation is given.

Each data transfer can be divided into three or four major paris. First, the address with which the transfer is to
be conducted is calculated and stored in the Bus Address Register (BAR). Second, the data are feiched into the
data paths. Optionally, some manipulation of the data may occur at this time. Finally, the data is transferred
from the processor data paths to the destination of the transfer. For DATI and DATIP transfers, the destination
of the transfer is one of the latches on the data paths; thus, no further operations are required. For DATO and
DATOB transfers, the data is transferred into the data paths from the latches, and the destination is the bus ad-
dress specified by the calculaied address.

Address calculation is done in BSR states 1, 3, and 7. Modified DATO and DATOB transfers (DATO#) bypass
these states, because the address used in the preceding transfer (a DATIP) is still in the BAR and is reused. This
address calculation should not be confused with the total calculation of operand addresses, which requires the
usge of the Source and Destination maior states and sequences of this simpler aneration,

Non-processor requests (NPRs) can occur at the end of any bus cycle (except DATIP), During sach bus cycle,
the arbitration logic first checks for an NPR request (since these requests always take precedence over processor
use of the bus). If an NPR is present, the logic issues an NPG signal and receives a selection acknowledge (SACK)
signal in retumn from the requesting device. This procedure occurs simultaneously with the current data transfer.

3.7.2 BSR1

During BSR1, the instruction, major state, and ISR state are monjtored by the Register Control module to select
a processor register that contains the address base of the Unibus location with which the transfer is being done.
In some cases, the conternits of the register are decremented before the BAR is loaded. Decrementing is done by
loading a constant (-2 for word transfers and for all references to the SP or PC; -1 for byte transfers) into Latch -
A st the same time that the contents of the register are loaded into Latch B. :

The contents of the selected register are gated into Latch B except during a Deposit console function or during
certain operations of the operand access major states. For the last transfer to access an indirectly addressed
operand, the address is already in Latch B from the previous transfer, and no register is gated. This occurs in
ISR3 for address modes 3 and 5, and in ISR7 for address mode 7. In ISR3 with address modes 6 and 7, the
contents of the selected register are added to the contents of Latch B, which contains an index or offsel word
accessed by the previous transfer. The contents of the register are therefore gated into Latch A.

3.7.3. BSR3

At the beginning of BSR3, the cutput of the adder paths is clocked into the BAR. The processor register
addressed in BSR1 continues to be accessed, and positive constants (i for a byte address or 2 for a word address)

can be added by forcing Latch A and Carry 00 to the adder to the appropriate value. The sum will appear at the
outputs of the data paths and may be written back into the addressed register during BSR7. If no canstant is
added, the sum is simply the address clocked into the BAR; this may include a negative constant. The only time
that a value other than +2, +1, 0, -1, or -2 can be added to the contents of a register is during ISR3 of Source or
Destination with address mode 6 or 7; the contents of the regisier remain unchanged during such an indexing
operation, as no write is done during BSR7.

Also during BSR3, the processor senses the state of the Bus SSYN signal. If SSYN is asserted, the slave device
from the previous bus transfer is still active, and the bus is not available. Therefore, the processor stops until
SSYN is cleared and the processor can enter BSR7. If the bus aperation that the processor is doing is a DATI or
DATIP, MSYN is asserted at the beginning of BSR7; the BAR is always gated to the bus A lines provided the
pProcessor or console has bus control.

From BSR3, the processor shifts to BSR7, unless an odd address error has been detected. An odd address for
anything other than a byte operand causes the processor to enter BSRO instead of BSR7 and simultaneously
enter Service major state to execute a trap service sequence.

3.7.4 BSR7

The address calculaiion and setting of the BAR is the same for all types of bus data transfers and is completed in
BSR 1 and 3. In BSR7, the operations performed depend on the type of transfer. For an input transfer (a DATI
or a DATIP), MSYN is asserted; the register contenis are writlen into the register; and the processor stops to
await either a SSYN signal or a timeout restart. For an output transfer (a DATO), the register contents are
written and the processor enters BSRO. The actual transmission of data on the bus is delayed to allow the
processor to get the data from a processor register and put it in the data paths,

After the processor has transmitted an address and MSYN for an input transfer, the processor stops untit it
receives an SSYN signal. If no signal is received for 25 ps, the processor restarts, enters Service major state, and
does a trap service sequence for a Timeout Error. Otherwise, the processor receives SSYN, waits 100 ns for the
data lines to settle, and gates the data in Latch B (except for operands in certain instructions that complement
the data; these are received in Latch A).

The processor release function, which allows other devices access to the Unibus, occurs at the end of the bus
fransfer in an input operation as well and, in addition, can occur after the byte swapping operation which
follows the input of an odd byte of data.

3.7.5 BSR15 and 14

The processor determines whether to use the entire word of data or only one byte; if only the low byte is
required, the data is handled as a complete word, and the processor must keep ifrack of signs, overflows, and byte
sums until the data is transferred ount of the processor. A byte with an odd address is referred to as a high byte
and requires special handling to permit the proper operation of the data paths. The byte must be shifted to the
even, or low, byte half of the data paths for proper operation. This shift is done by passing the data from the
high byte through the byte swapping gates on the outputs of the data paths, writing the modified word into the
Temp register, and then reading the word back into the appropriate latch.

NOTE
The following discussion refers only to DATI and DATIP
operation since output data is not handled under the bus
cycle.

The swapping and writing are done in BSR15, the reloading of the latch in BSR14. Following these operations
tha nraresser enters BSRO simubtaneously shifting to the next 1SR <fate as required v the present machine
state. The processor release function, which allows other devices access to the Unibus, occurs at the end of the
bus transfer in an input operation as well and, in addition, can occur after the byte swapping operation that
follows the input of an odd byte of data. When no byte swapping is done, the processor enters BSRO directly
from BSR7 for input transfers.

3.7.6 BSRO for Output Transfers

For outpui transfers, the processor enters BSRO from BSR7. Note that the only time that the processor does
byte output transfers is for byte operands. Because the DATOB done during execute follows a DATIP, the
DATOB is modified and the BSR enters BSR12 directly without entering BSR7. Any justification of odd-byte
data is done by the rotate/shift gating data paths. In BSRO the contents of the appropriate processor register are
foaded into Latch B, and Latch A is cleared. The processor then enters BSR12. This use of BSRO for an cutput
transfar does not compromise the use of BSRQ as a rest state in other situations.

3.7.7 BSR12

When an output transter follows a DATIP bus operation, the address with which the transfer is done remains the
same (in the BAR), and the data are supplied directly from the data paths, rather than from a register. Therefore,
a modified form of the DATO and DATOR operations is possible {this modified form is called DATO#), and the
variable state sequence used by the processor accomplishes this DATO# output transfer by entering BSR12
directly. This occurs only in Execute major state, {ollowing the DATIP that terminates the Destination major
state. The value placed in the BAR during the DATIP is used again, and the data transmitied are the outputs of
the data paths, which are the result of whatever manipulations of data have occurred. Justification of output
odd-byte data occurs in the rotate/shift gating of the data paths in the Execute major state. Unlike input
justification it is not part of the bus cycle.

For either type of output transfer, the address is in the BAR, and the data are in the data paths at the beginning
of BSR12, The processor [irst determines the state of the SSYN bus line, delaying any operations if SSYN is
asserted, to allow previous bus operations 1o be completed. Then the processor gates address, data, and conirol
lines to the bus and shifts to BSRS.

3.7.8 BSR&

As the processor enters BSR8, MSYN is asserted and the processor stops. The processor clock is restarted by
either a SSYN sipnal or, after 10 us, a Timeout. If the clock is restarted by a SSYN signal, the processor clears
the bus lines and, if no other device has control of the bus, proceeds with the next machine state. If the restart
was caused by a timeout trap, the processor enters Service major state to execute the trap service sequence. The
processor release funciion, which allows other devices access to the Unibus, ocrurs at the end of the bus transfer

in an input operation as well, and in addition can occur afier the byte swapping operation which follows the
input of an odd byte of data,

3.8 FETCH MAJOR STATE

Drawing D-FI>-KA11-0-KIF, Sheet 1 illustrates the Fetch major state. When the processor is first turned on, or
receives a reset instruction, it is in SERVICE*ISR0. When the start switch is pressed, Fetch and ISRO (alsa
BSR1) states are entered. In Fetch and ISRO, the processor does a DATI bus transfer, using the contents of the
Program Counter (PC) register for the address, The address is incremented by two before being re-writen into
the PC, and the data received from the Unibus are clocked into the Instruction Register (IR} as well as into
Latch B.

The processor then shifts to ISR1 to decode the contents of the IR, The specific instruction decoded determines
the next major state and the next ISR state and, in addition, may cause the setting of certain flags and condition
code bits. The latter are set if the instruction that is decoded is a condition codes operate instruction. Halt and
reset instructions set the halt flag, while trap instructions set a trap flag. If the trace bit in the processor status
word (PS) is set, the trace flag is set.

Branch instructions which have conditions unmet do not enter other states besides Fetch, nor do condition code
apergte instroctons. The conditinn code opetate instructinn changes the condition eode hite in the STATIIS
word. This change in the status word does not require entry into Service and ISR 2. All other instructions
enter at least one major state besides Fetch. For HALT, WAIT, RESET. EMT and TRAP instructions, the only
other state entered is Service; the rest of the legal instructions require operations upon data from the Unibus or
from the IR, and cnter either Execute or an operand access major state.

3-7

Note that TRAP instructions include all illegal instructions and reserved instruction codes; the trap vectors for
these classes of codes are different from the trap vectors for the trap type instructions, but the basic trap service
sequence in Service major state is the same.

3.9 OPERAND ACCESS MAJOR STATES

The operations that are done in the Source and Destination major states are very similar. Therefore, the two
major states are illustrated by a common flow chart (Drawing D-FD-KA11-0-KIF, Sheet 1) and are discussed
together.

The operations that transfer an operand from a Unibus location to the central processor are entirely dependent
on the address mode by which the operand is selected. These major states are the clearest example of the variable
state sequence by which the processor performs only the operations required and avoids unproductive machine
states,

3.9.1. Address Modes

For an instruction that can access data from the Unibus, an operand access major state is entered only if the
address mode is not zero (data in a general register). As discussed in Paragraph 3.6.2, the processor skips the
major state if the address mode is zero and gets the operand from the processor register during the Execute
major state. Address mode zero is illegal for the JMP and JSR instructions.

if an operand access major state is entered, the processor first calculates the address of the operand and then
transfers the operand to the processor. In Source major state the processor stores the operand in the Source
register until the beginning of the Execute major state, when it is transferred to a latch; this frees the data paths
during the Destination major state, The address calculation that precedes the operand transfer may be as simple
as loading the BAR from a processor register, or as complex as performing two Unibus transfers, with additional
address calculation to load the BAR for each one, The following paragraphs discuss the specific operations that
perform the address calculation for each non-zero address mode; in every case the address calculation is followed
by the remaining steps of a DATI (or DATIP) bus operation, as described in Paragraph 3.7.

3.9.1.1 Addsess Mode 1 — For address mode 1, a single bus operation is done. The address calculation is
performed by the bus operation in fetching the address from the specified processor register; the data are
obtained and stored.

3.9.1.2 Address Mode 2 — Address mode 2 is similar to address mode 1, with the distinction that the bus
operation increments the contents of the register. The register is incremented by one for a byte operand or by
two for a word operand: if the register is the PC or the Stack Pointer (SP), the increment is atways by two., The
increment is performed after the register contents are used as an address.

3.9.1.3 Address Mode 3 — Address mode 3 performs a bus operation identical to that performed for address
mode 2 but does not store the transferred data. Instead, the data are loaded into the BAR, and z second bus
operation is performed to fetch the data, The appropriate register is incremented after use.

3.9.1.4 Address Mode 4 — Address mode 4 is similar to address mode 2, except that the change in the contenis
of the accessed register is a decrement rather than an increment. The decrement is performed before the contents
of the register is used as an address.

3.9.1.5 Address Mode 5 — Address mode 5 is the same as address mode 3, except that a decrement is performed
instead of an increment.

3.9.1.6 Address Mode 6 — Address mode 6 requires iwo bus operations. The first is a DATI, which uses the
same address calculation as the DATI in Fetch major state; the PC is loaded into the BAR, incremented by two,
and written back into the PC. The second transfer uses a unique address calculation; the contents of the specified
register is added to the contents of the first word that was transferred, and the sum isloaded into the BAR. The
word transferred by this DATI is the data,

3-8

3.9.1.7 Address Mode 7 — Address mode 7 uses three bus operations. The first two are the same as the two in
address mode &, but the result is not stored as data; instead it is loaded into the BAR, and a third bus operation
occurs, which transfers the desired operand to the processor.

3.9.2 Disposition of the Operand

The major difference between the two operand access major states is the disposition of the data. Where the
Source major state temporarily stores the operand in a processor register, the Destination major state forces the
last bus transfer to be a DATIP and leaves the result in a latch (unless the instruction is a JMP or JSR, for which
a DATI is aborted and the address is stored in the PC or Temp register, respectively).

3.9.3 Entries io and Exits from Source and Destination

Both Source and Destination are entered in ISR1. The last ISR state in Feich is also 1SR1; therefore, if the
processor enters an operand access major state from Fetch the Instruction Shift Register is not changed, and two
ISR1 states are performed in succession. Because both. operand access states end in ISRO, the ISR must be
shifted to a 1 state if the processor eniers Destination from Socurce. The ISR state entered when entering
Execute major state depends onr the instruction fo be executed; the exits from the Fetch, Source, and
Destination major states select the appropriate ISR state {and BSR state) as shown on the flow charts.

3.1¢ EXECUTE MAJOR STATE

The operations that take place in the Fetch major state are generally the same for all instructions; the operations
done in the operand access major states are controlled by the address mode, not the specific instruction. In the
Execute major state, the sequence of events that takes place varies for almost every instruction. (See Drawing
D-FD-KA11-0-KIF, Sheets 2 through 4).

TFhe flow charts for Execute are divided into five major sections. The first section (Sheet 2) illustrates the
operations done for zll datz manipulation instructions. The remaining sections illusirate the sequences of
operations for four types of processor control instructions; Branch, RTI, and RTS instructions, which do not
require operands transferred from Unibus locations during an operand access state, and the JSR instruction,
which requircs an address only.

3.10.1 Data Manipulation Instructions

Data manipulation instructions include three groups of instructions and one unique instruction. The three groups
are: two-operand instructions; one-operand instruetions; and rotate/shift instructions. In addition, the SWAB
instruction is performed by a similar sequence of operations.

2.10.1.1 Entries into Execute — There are two entries into Execute for data manipulation instructions. If the
destination operand is specified with an address mode of zero, the entry is in ISRO to perform a transfer from
the selected register to a latch. The particular latch that the data is gated into is a function of the specific
instruction, as shown on the flow charis. If the address mode of the Destination operand is not zero, the cntry
into Execute is an entry into ISR1; the destination operand must be in the appropriate Latch as a result of the
operations conducted in the Destination major state.

3.10.1.2 The Extra ISR States — For most data manipulation instructions, the data modifications are complete
when the data have been loaded into the latches through the selected gates; for example, a COM instruction
joads the operand into Latch A through a complementing set of gates, while the BIS instruction loads both
operands into Latch B, holding the latch set for both operations, to produce the inclusive OR of the operands.
The only remaining operation is to store the data in the destination address.

However, two double-operand instructions (BIT and BIC) and Rotate/Shift Byie instructions operating oa an
odd byte require exira machine states to complete the data manipulations. The BIT and BIC instructions
perform variations of a logical AND on the operands by complementing the OR of the complements (using de
Morgan’s principal); this procedure requires a second pass through the data paths to perform the final
complement. Therefore, the partial result must be stored in the Temp register in ISR3 and then gated into Latch
A in ISR7.

Normally, the Rotate/Shift instructions use the shifi gating on the outputs of the data paths in ISR¥5, when the
data from the Latches is transmitted through the shift gating to the bus gating or Register input. However, when
a byte operand with an odd address is manipulated, the swap byte gating must be asserted in ISR15; thus, the
shift gating operation is performed in the two extra states. This situation requires the same operations of wriling
the operand into a register and then rcading it back into Latch A that is required for the BIT and BIC
instructions, but the data manipulation is performed during the write portion, rather than during the read
poriion.

3.10.1.3 Disposition of the Result — The final ISR state entered for the Execute major state of data
manipulation instructions is ISR15. In ISR15, the result of the data manipulation is transferred to the
destination operand address. If this address is external, the processor does a modifisd DATO or DATORB
operation, This DATO# operation follows the last transfer in the Destination major state, which was a DATIP
transfer; therefore, the same address is left in the BAR, and the processor enters BSR12 at the same time it
enters ISR15.

If the destination operand is internal, the processor writes the data into the selected register. For Test
instructions, which include BIT, CMP, and TST, the only operation donc is the loading of the status register
from the selected source as shown in the flow charis. A DATIP was not the last bus operation and no DATO or
DATOB is necessary; the Destination data is unchanged.

The Processor Status word (STATUS) includes the condition codes, which are nommally clocked after the
outputs of the data paths are settled. If the destination operand address is the address of STATUS, the processor
must enter an additional ISR siate in SERVICE to allow the new STATUS to be compared against any previous
commitment to servicing a BUS REQUEST. This time state is provided by entering ISR2 of the Service major
state.

3.10.2 JSR Instructions

When the processor enters Execute for the JSR instruciton, the address of the destination operand is in the
Temp register, and the processor is in ISRC and BSR1. A bus operation is done, which is a DATO using the
decremented Stack Pointer (SP) register for the address, to store the contents of a register (which is sclected by
hits & through 6 of the IR) in a bus location that acis as a location on the push down stack. If the transfer is
successful and the stack pointer does not decrement 10 a value of less than 400 (the lowest 400 locations of bus
addresses are reserved for interrupt and trap vectors and are protected from the hardware stack by an overflow
trap), the processor enters ISR1 to load the contents of the PC into Latch B.

The processor then sequences into ISR3 to write the contents of the data paths into the register, the previous
contents of which were transferred to the stack. This register is selected by the same bits of the IR that select the
register used to address source operands.

The next two ISR states repeat the process of reading a register into Latch B and then writing the contents into a
register, the previous contents of which have been saved. The contents of the Temp register, which represent the
address calculated in an aborted Destination major state, are iransferred ic the PC. This step completes the
processing for a JSR instruction, and the processor exits from the Execute major state into either Feich or
Service; the state entered depends on cxternal requirements for control of the Unibus and on the state of the
flags in the processor.

3.10.2 Branch Instructions

When a branch instruction is unconditional or has conditions that are met by the presenti state of the processor.
the sequence of operations transfers directly from Fetch to Execute. The processor reenters ISRI1, with the
instruction word in Latch B. The offset portion of this word is wrtten into the Temp register with onc
modification, it s shifted one bit pusition [oX, whicl is cqubvaieni to ualliply ing the offsel vdine by two.

The ISR then shifts to ISR3 state, and the contents of the Temp register are read into Latch B. The offset is a
two’s complement number, but it is only eight bits long, so the sign bit must be extended to the rest of the high
byte by the sign extension logic.

A second read operation occurs in ISR7 fo transfer the contents of the PC to Laich A. The sum of the numbers
in the two latches is written back into the PC in ISR15. This sum is the offset address at which the next
instruction to be execuied is stored.

The exit from Exccute for a branch instruction is dependent only on the state of the processor flags and on
requests for control of the Unibus.

3.10.4 RTS Instruction

The Return from Subroutine {RTS) instruction is the reverse of the JSR instruction. The order and direction of
the transfers of data are reversed. The processor enters Execute and ISR15 directly from the Fetch major state
and transfers the contents of a register specified by bits 2 through 0 of the IR (the same bits that specily the
selected register for a Destination operand) to Latch B.

The processor then shifts to ISR14 and writes the output of the data paths into the PC, which reverses the
storing of the PC during the execution of the JSR. The processor continues by entering [ISR12.

In ISR12, the processor does a DATI bus operation, using the contents of the SP register for an address. The SP
is incremented by 2. When the outputs of the data paths arc written into the selected register, this reverses the
stacking of the contents of the selected register in the JSR instruciion.

3.10.5 RTI Instruction

The Return from Inferrupt (RT1) instruction has the same relationship to the Interrupt and Trap service
sequence (occurring in the Service major state) that the RTS instruction has to the JSR instruction. The transfers
of data are made in the opposite order and in the opposite direction from those made in Service.

The RTI instruction, like the RTS insiructlion, scquence directly from the Fetch major state to Execute and
ISR15. In ISR15, a DATI bus operation is done, similar to that in ISR12 for the RTS instruction, to transfer a
word from the hardware stack to the processor. In ISR 14, this word is written into the PC, reversing the stacking
of the PC that occurs in ISR7 of Service.

The processor continues into ISR12, where a second unstacking bus transfer occurs. The data are writien into
the processor Status word (STATUS) in ISR8 and in ISR2 of Service, reversing the stacking operation that
occurs in ISR3 of Service. ISR2 of Service is also entered.

3.11 SERVICE MAJOR STATE

Service major state is not a part of most instructions; with the exception of trap, halt, wait, and reset
instructions, Service is entered only if externat BUS REQUESTS for Unibus control or internal processor flags
require the asynchronous processes that take place in Service.

The Service major state consists of two parts: the processes that occur in ISR2 and ISRO and the trap and
interrupi service sequence performed in seven ISR states beginning with ISR1.
3.11.1 Condition Code Clecking in ISR2

When the Service major state is entered from Exccute with data to be loaded into the Processor Statns word
(STATUS) (This occurs after the execution of an RTI instruciion or after any data manipulation instruction that
addresses STATUS as a destination operand.), the processor enters ISR2 to reclock the priority determination
circuits for BUS REQUESTS. This is necessary because the processor priority has been altered.

ISR?2 is separate from the rest of the Service major state, because the processor can proceed either to Service and
ISRO or to Fetch and ISRO. The major state entered is defermined by the presence or absence of requirements
for the granting of BUS requests.

3.11.2 Priorities for Service in ISRO

When ISRO is entered, the processor determines what requirements for bus mastership are present and performs
the operations nccessary for the highest priority requirement. The priority is determined by the order in which

39

the need for processor action is determined: traps (such as trap instruction, illegal instructions, power fail traps,
or the halt flag) are serviced first; if there are no traps to be serviced, requests for Unibus control are serviced, if
there are neither traps nor requests, the wait state can be entered.

Because the frap service sequence enters other ISR states and the request and wait service sequences normally do
not, the sequences are discussed in the reverse order from their priority.

3.11.3 Wait Service

When a WAIT instruction is decoded in the Fetch major state, the processor enters the Service major state. The
processor continues to recycle through Service and ISRO until a higher priority requirement for service takes
precedence, Typically, a program will execute the WAIT instruction after setting up conditions where a device
will cause a BUS REQUEST; when the BUS REQUEST from the device is received, the processor will release
control of the bus because the request service sequence has higher priority than the wait service sequence. If the
BUS REQUEST results in an INTR sequence, the processor leaves the wait loop.

3.11.4 Request Service

At the end of every processor-controlled bus transfer and several times during each major state, the processor
clocks requests for bus mastership into a set of flip-flops (ene for each bus request level). The priority arbitration
logic in the processor determines whether any request has a higher priority than the processor; if such a request
exists, an NPR is immediately granted or at the end of an instruction the processor enters the Service major state
and responds to a BUS REQUEST.

When the processor services a request, the processor clock stops, the processor clears the BBSY bus line, and the
highest priority requesting device is granted control of the Unibus., The console has a higher priority than any
other device, When the SACK and BBSY bus lines are both cleared, the processor clock is restarted.

3.11.5 Interrupt Recognition

If the device which gained control of the Unibus under a BUS REQUEST performs an INT (interrupt) bus
operation, the processor responds as a Slave device by clocking the contents of the bus D lines into Latch B and
setting the Interrupt flag (INTRF). When the processor restarts after the peripheral releases control, the
processar enters the irap and interrupt service sequence, If the device that had control of the bus did not do an
interrupt operation and the last instruction was a WAIT instruction, the processor continues to cycle through
Service in a wait service seguence. If neither a wait service sequence nor an interrupt service sequence is required,
the processor enters the Fetch major state.

3.11.6 Trap and Interrupt Service

Either an intemnal trap (such as a trap instruction or a stack overflow) or an inferrupt from a bus device can cause
the processor te enter the trap and interrupt service sequence. For an interrupt, the vector address is loaded into
Latch B by the INTR bus operation; for a trap, the vector address is loaded into Latch B during ISRO from the
Special Trap Markers (STPM) input. The vector address is used to locate iwo words, which are loaded into
processor registers to begin a program for servicing the cause of the service requirement, Refer to logic
descriptions and prints K3-2 (Priority} and K15-2 (Power Fail) for a discussion of power fail servicing.

3.11.6.1 ISR1 — The processor shilts to ISR1, and the contents of the data paths are written into the Temp
register to be stored until ISR15. The processor then shifts to ISR3 unless the power up flag (PUPF) is set; for a
power-up trap, the contents of the registers (particularly the stack pointer) are unknown, so the stacking
operations must be avoided by transferring directly to ISR15.

3.11.6.2 ISR3 — In ISR3 the processor does the first of two stacking operations. The contents of the Processor
Status word {STATUS) are transferred to a Unibus location, the address of which is the contents of the Stack
Pointer {SP) decremented by two. This transfer is done by a DATO bus transfer. The contents of the SP are
loaded into Latch B, and Latch A is loaded with a -2 during BSR1; the Bus Address Register (BAR) is loaded in
BSR3; in BSR7 the decremented contents of the SP are written back into that register; in BSRO the confents of

3-14

STATUS are loaded into Latch B;in BSR12 the processor transmits the data and address and stops the processor
clock; and when the clock restarts, the processor enters BSR8 and completes the transfer.

3.11.6.3 ISRT — The processor shifts to ISR7 and repeats the stacking operation with the contents of the PC as
data. The daia are transferred to a word the address of which is two less than the address of the word storing the
contents of the PS.

3,11.6.4 18R15 and ISR14 — When the processor enters [SR15, the contents of the Temp register are loaded
into the BAR, and the processor does a DATI bus operation to load the contents of the word addressed by the
BAR into Latch B. The contents of the Temp register are incremented by two after the BAR is loaded. The
processor shifts to ISR14, and the contents of the data paths are written into the PC, replacing the previous
contents with the address of the first instruction of the service routine.

3.11.6.5 ISR12 and ISR& — The processor now does a second DATI operation in ISR12, again using the
contents of the Temp register for an address and refoading Temp with the result of incrementing that address.
The second word is loaded into the processor status register during ISR8, replacing the old STATUS word which
includes the processor priority, the contenis of the condition ¢odes, and the trace bit. The contents are replaced
with new values appropriate to the service routine.

3.11.6.6 Exits from the Service Sequence — When the service sequence is done, the processor checks that no
internal flags have been set during the performance of the sequence. The overflow flag may be set if the trap and
interrupt service sequence has caused the stack to store words at locations with address below 400;. If the
overflow trap or any other flag is present, the processor reenters Service to handle the flag; otherwise, the
processor enters Feich to get the first instruction of the program that services the original interrupt or trap.

3.12 OPERATIONS DONE WHEN THE HALT FLAG IS S8ET

The Halt Flag (HALTF) is set by one of three occurrences: a halt instruction, a reset instruction, or a bus error
(such as an odd address error) occurring before a previous bus ervor is serviced. If the HALTF is set, the
processor releases control of the Unibus to the console, thus effectively siopping uniil operator intervention can
be supplied. For a Reset instruction, the halt is accompanied by a 20 ms initialization level, which resets the
processor and all devices on the Unibus te a starting condition; a restart pulse occurs afterward. The processor
can also be halted with control transferred to the console by the assertion of a Console Bus Request (CBR) or a
Console Non Processor Request (CNPR), which occurs when the Halt/Enable switch on the console is in the Halt
position and the Single Instruction/Single Cycle switch is in the Single Instruction or Single Cycle position,
respectively; however, these transfers of control occur only if no higher priority (internal) requirements for
service occur.

—g-T[ada [
8 7 s 5 | 4 3 | [[F8g ™) 2 1
e e S s
oot bl fgloflon £t mTI wTr DATD
il el
K13-3 WSV (1)
K2 3BSR 4| [souaczmw;zsr m]*Bu]s
he-2 [SR—e-B,2/SERVICE—) [INDONE % _(ADRS DONE
L4 BUS =~ NSTN WERT K2-3 BSR—=-15 TINE U7 (1) D
b {NER) = (REGIPLUS K1-3 BSked BAE (1) * TIHE 00T (B)
AT APPLICABLE
© CONSTANTS O MODIF |ERS ¥E-2 DATA BAIT~-1 TOATO_ENTRY * (JBF+15R) ¥
R | K1-3 SHIFT BSR ADRS DOME]
AERD BUS APPLICABLE LATCH -3 W/ENABLE (5/0 [Eiﬂ[5§ TE) < 1SR (3]
S5 AMD sr o0
gg:IFEEHENT K&-3 GATE & ~ RY5/1 A> (30 + DE) ™ISAI "ADRS = BUS DATA) T _
£ fiaeo e e e Nt Lt e e o0 e/ 0
KE-3 GATE A— -RY) ﬁﬁ:l‘m‘ o Mt BTE A--Bolsie nesmus%n «" KoRS DONE
KB-3 GATE A -= R15/1 » N FEITH (1)
KE-3 GATE A—a -RI5/1—T] ')mgo(: JELCISKI SADRS K4-2 RA/FE B 150+ ABRE MODE (Be7)
L) SERYICE {h *|5h !3 + 1) o2 RA/SP A) EXEC {1) * ISRI2
K TE l LJL73] (50 + BE) TSR3 * 4 B) EXEC (1) * ISR1S * RTI
SSHTIBE i XY ® § e
DEFY*— {[(50 + OE) & [SA7] + |03 SERYICE (1) * 1SR (3.7)
- Kud CATE 8 - M58 ——) 1 - U Ke-2 RA/TEWP, SERVILE (1) * ISR (12+18)
X&-4 GATE B — R}/F s+ ni} [R5 SOURCE (1) * |sml-
Ay EXEC (1) *JSH - =[ADRS MODE (8+7)
ﬁ z:maru: g B et () (@ | -3 GATE M~ SOURCE——— ¢, SOURGE (1) = ISRa "~
® Kin2 OATI == 1 {DATU ENTAY™ OATIP —— 1) 5 ng:: ‘(“]";E.(T;;: .
K132 DATIP ~=) JDEST (1) *ADRS DOWE + —(TEST) -
KiS~2 OATOR — 1 DATD # ENTRY * BYTE OF | M T R BT i
A) BATO ENTAY ADRS MODE (837)
c K32 D10 =1 B) DAT & EMIRY o -(0ATOR = K12-3 W ENTRY WP ERRBLE * ~[TIRE QUTCT) c
Ki-2 RAPL 4 Ferea (1) + BSR =15 « DATIP]
B) ISXI * ADRS MODE (§+T) §2-2 PROC RELEASE WY+ 1= W
:1 E:E:E (:) . lsmg . Ki-2 CLK RUN +— g DATA WALT =— |
Ka-2 RAsSP) mEI;‘lﬂl ISR
Ri-2 RA/TEWF FSERVICE (13 * ISR (12+15)
A} SDIWCE {\} * I5A3 *
@ | M- SATE Ra - soumer WODE” (6+7)
[1] m [y |5|'I| .
[
Ay DESE a * ISIH . K6-2 LATCH #}g i
ACH aipl P CLR LATCHES
— @ | 13 GATE WA = DEST n ne;"rnuw:;:;m DA+ DATI® Ko 2ERY o —
RS _WOOE (8+7) KE-2 P CLA LATCHES TETa WAL 1T |
708 CIK :
K13-2 B0 (1) BUS SSYN+ TIMEQUT (1 e
K13-2 BCI (1) DATD + DRTOR __'L"_“]
K2-3 BSR — T 1
TRANSEER ADORESS NSR3 - —{DOD_ADRS ERROR} BUS SSYN - [TIME CJ'UT i
0 BAR THEN Ki-3 R = A Ki-2 CLK FUN — 8 BUS SSYN e
INCREMENT BY § paarizh) . K2-2 | SR 2 /SERVICE |; :
OR 2TF REQUIRED K6-5 CARRY g9 —- | FrRREREEGE — S 1pons K2 Mo B) B
AT =
B X " A) FETCH - {BUS S5YN} LATCH EAIS DATA ~ _ il-2 P CLK RESTA =
e _;MMJ_ -t F OATA KI&%%SKYEIRMJ ————{FETCH i1 % I5RA mzx; ;-Er:%cf -— g
Ay EIEC(1) * ISK1Z TART
e BB a7 o S Zi
n; SEH'II(:E)(I) * ISR (37} b Ke2 LATCH B {f) | Ha
Ki-2 EA/TENP CYENE T TR (S sve
) SDURTE (1) * ISR1 * o K22 (SA — 8 2/SERYICE {PROC RELEASE} RE| LEASE B
~(BUS 55YW) (%) | K&-3 BATE HA -+ SOURCE . -Emg lllﬂ.(l:;;;l_ Ki—4 SERYICE == |
) MRS lutle)uq_; K12-3 TRAPS f—=—— KI-Z F (LK RESTART RELEASTE
¥} TESY () = (SAL ~
—_ R - TADRS MODE (27} |
@) | F4-3 BATE RA - DEST 0T LD e sk e [
ADRS (6+7}
Kis-3 HSYN = | e ey :‘!‘,’E.f'};i,‘“ Kz-2 BUS IN DOME — T e Casr § (PROC RELEASE)
* fows - k-2 CLK RUN LI}
] K13-3 £LK BAR [~ ceTmi - nm :
]
DR =1 CONTINUE ON
e SHEET 2,
; . EQUIFPMENT
LEEEREER] CoRPORATION
A - s weeswenn 1 A
£ (I} sHIFT BSR=BSRI +BSRI24BSRB
(Z) SOURCE = |6 X IRDT % I RE
§ (3 DEST = iAgf % IRl *IRG2
- e B T
10§ Dj KL~ D -KBF l i
Joer.§ § ¢t 1 § 1 1 1 I 1)
LT PO WO
= 3 7 I 6 | 5 1 4 | 3 | 2 1

KA1l Bus Flow

311

8 | 7 6 1 5 | 3 | T ey 2 | i
Thin rwwiel ol wbptilagiiong, harsin, s T WOp —
iy ot Dl Exlprmant Corpurwtion sisk phidl bk ba L L
T o o s o e i
puotogdetule cougli_‘hélﬁql FROM
CONTINUED, FROM
SHEET "I
DATD #
! D
D BSR ~- 15
BSRw [+ BSR—e— g
BUS DATR AVAILABLE [TrN] 62-3 BSR == 12— ['UKTY BWTRY |
1N LATCK
W2 mae——— T SERWICE (1) * ISR T
MAN IPULATE BYTE bsk 15 O K1-3 SHIFT BSR - R4-1 RATE RA = SOMCE —— EXEC (1) * ISR B " J5R
Ke—d GATE B = MIE/4 -
AN SRAKSFER 10 @ Mg SME B M 1] aTo ENTRY + -(£34M + 06Y)
Ki~2 M/ TEWP K5 CANRY 80— B— | paro eNTwy
@ —| Ke-3 W/ENABLE 15/8 Wa-2 CER LATEH &
Xi-3 GATE BYTE 7/0 -t
— KE-3 GATE ALO 15/8 -
Ki3-2 BC1 {I———————{DAT0 | T DaTog =) I
Wi3-2 BOB Ul DATOR we—) I
LATCH = (TENP) BSR (4 KI-3 BSR B
DDO BYTE IN Posl'llﬂllm [m
Fob FURTAER Fhocess Ki-2 RasTEMP serwe romoaa (ase DQI K13 SHIFT BSR s S
¥5—4 BATE B = RIS/E Xict CLK fUN — p
T ME T | —(ENBLE A~ 1) TRAMSFER
K3 BHE A pgo 1| DESTD) = A = DEST/ISTR K2 BATE WS = 0 Goure ot e S0 T
KI2-3 NPR ENTRY WPR EMABLE * -[TIMERIT (1) + A2 CATE WS = 57 { SERYICE (1) * ISR 3 * BGSYF (1) -{BUS S5TH)
C | BSR « 15 4 DATIM__________ | K13-2 GATE WIS~ S& BEF — cC
¥2-2 PROC RELEASE WPR EHTRY = [CHPNFL1} + RPRF] —(uS SSYN} K32 MSYH = | ——{ €12 P GLK RESTART
EI-2 CLK Fist— § | FROC RELEASE
]
~{PROC AELEASE} PROC FELEASE g KI3-3 WS (1)
pp— TRANSFER DATA KI-1BSR— 1
RELERSE Bk B
P CLK REETART
—— - BESTE (1) * —[(BATE BUS = $T) «
— K5-2 GATE BUsS—0 BATE MiS— SR})
-] K9-2 GATE BUS =57 SERVECE (17 * ISAY * BasTF (1}
K9-7 GATE BUS - 5R DEP [i
PERIF RECEASE - [NSR 14 * . WPR EWABLE * —[TIME OUT {1}
___| k2-2 BUS IN DONE PRAC_RELEASE K12-3 WP EWTRY B5H —~=— 153 » “#I” ’
KZ-2 #ROC WELERSE WeR EWTRY = [U
OATI + DATIP T <
BUS SSYM + TINE OUT (1) LN
I L
B | | e
ws SSTH TINE OYT (1)
K12-3 TRAPS
K2-2 ISR =~ 8 2/SERYICE FE
s o g
)
%1-2 PLLK RESTART
| 1 K22 ISR = B
PADC RELEASE syc
(D SHIFT BSP - BSR+ BSR 12 + BSR 15 ~(PROG RELEASE)
—i K1-2 P CLK REETARY TELEASE
— P_GLK_RESTART _—
sl T
p——————] K2~2 M5 OUT DoNE ———— [TINE OCT (1) + PROG RELEASE] |
DATO
PARTS LT
g " EQUIPMENT
R« EREERE cORFPORATION
Al T e —— e A
TLE
2|
213
i DFDIKCI-@-KBF
1] o | | [T 1 1 T 7 1 1
== 8 7 6 5 t] 1

KA1l Bus Flow

312

8 7 é I 5 l 4 l 3 I [o] 3ADL2-1OM[CH4a]2 1 1
T ———— e ey—
iy o Diglied Eagmbiovamnt COrpempiion s vl mut b —
T L I e
; ; K1—4 SURCE (1) SOURTE = 1 D
x— KI-4 DEST (1) DEST —=- 1 1
®1-3 BSR 1
}(I K1-4 FETCH (1)
K1-3 BSR 1
Kz-2 SHIFT ISR BUS (N DOME * —(ADRS DONE + iSR &)
I XDRS DONE # TTSURCE (1 BUS TN
BAR - (PT) K2-1 SHIET |k ———— [BUS iN DONE] WS 0158 = (|snD—— NZ-2 (SR =8 Dol ¢ (OEST() + sk » PR
[PC) = (PD) + 2 DATq OPERAND IF (NP + J3R) 1} T
LATCH B "IR === [(PL)] P CLK RESTART| MDRS %0DE ITESTCL; * (U + 9 + A/5) * BUS P AT
[(PC) 1 = INSTRUCTION Kd-2 RA/PC —— (l+2+8 K2-2 15k =1 IN DOWE * EDRS DOWE
()| x12-2 oveLF =1 ADRS WO0E 4+ 5) " REG 0 * U (5/8
K2-2 (SR~ 8 2/6RvicE{ (DR INSTR = -(BOARCH;] + TRAP K10-3 ADRS 0% ———{ (50 + D * [AORS WODEC1 1+ 7+ 4)]
T~ zfsvcﬂ)zsr WODE B % Ki-2 RA/PC [(CERI]
DECOBE W LSR | Ki-1 15R—= B C LR/ HBINARY ¥ SONRCE MODE @0
Ki-3 1SR —= 15 + |
FETGH = 1 + DEST == | + SOURCE SMIFT LSR
Ri-3 BShe- | I Tekee = > Usem (Sk=t- 8+ ISR~ |
K10-3 CHANGE GODES EX k-3 B58 1
D] Kiz-2 waLTF =1 RESET + HALT c
K12-3 TRAPF—=- 1 TRAF INSTR * -{RESET + HWALT)
8 K12-3 TRACF —= | T () K1-2 SHIFT 158 BUS INIDOME * -(AGAS DOME + ISREY
Ka-i RAPC ADRS DONE * {[SDURCE (r] * M5 N ——
B D 130 [IsR2 Ki-2 |5k - B DOMED + [DEST(1) * BSAY GAT1 + DETIP
ey Fefed s = e T =y
* -3 15k = —_—
K1-4 FETCH = | TRAPS + ISR~ 2 + CERF} B35+ 805 1 BOME * ADRS OONE
Kl-d SOUREE =t |~ - - m0-2 xors powe ———————{ 750 .+ OF) * [ADRS WOUE (3 « 5 + 6]
~(IEST WORE §) * [U » /S &
K1—4 DEST =1 JSA + JWP + {EBIMARY * SU.!IH'.'E |
Tg:e l)is T SHIFT 158 ISR—= 8 + ISR - | e
—— + +
Ki-d EXEC~=-) INTERMAL RDRS (i3 B3R 1 L—
Ki-d SERYICE —=- | ISR = B 2/SERYICE * —(FETCH =1} E
ACFS OONE * {[SOLRCE(i) * BUS N
K2~} |5A—=+J ———————uq3 DONE] +~ POEST{I)] * BSRT * (IWP -
J3R) [} p—
FETEH-—! suum:z--t nesr-+| :m-.-l SERI'II:E -1 BUs DI%/W - G“ L ESTCT s O s B RS s DATF + DATIP A
OPERAND IF ¥2-3 15R—a= 1|] . P CLK RESTART Hw
ADRS MCDE 7 - IN DOME = ADRS DONE §=|C
| KI0-2 ADAS DOME 750 + BE) = AORS WOGE 7 =
‘ S
| 4
158 -8 ISR == | [:]
| £XEC = 1 {OEsT (1)] Ea
FETCH = 1 + DEST = |
8 (@3] k12 nsR—=-1 TEKEC —m—] » (ISR + RT(3]
K2-2 SHAFT ISR SOURCE (1) * —(DEST WODE 8} J B
2 ISR SERY ICE —{ DEST {1} *
@ SIGUL W, LS SUCH. DOES NOT EX)ST. @ K2-2 ISR~ §, Z/SERYIC 1y~
T 1§ THE mlTlUN OF ALL
ISSII.‘IITEIJ TITH THE FLIP FLOP BEARING K2 Rk;SOURCE SCOURCE(|}
THIS MAME AND WHICH TOULD CAUSE THE Ni—2 RASPE DEST (1) * JWP
SETTING 10 THE COMDITION INDICATEQ. Kimr RA/TEWP TEST (1) +)58 I
Ki-3 WEMABLE 1548
(Z) SIGMAL MAME EXISTS ON K2-3 AS
PARTIAL B5R == | COMPLETE 5|BNAL
15 COMPOSED OF WARIQUS SIGMALSE, 1SR = 0.3/ SERVICE % -{[(WA|7
LNCLUGING THE OHES INDICATED, Ki—d FETCH —=1 BEOEST) = —(SERYIEE * (SR)] +
WHICH WiLi CAUSE THIS TUMDITION BTy s Ehr)
TO DCCUR AND THEY MRE LOGATED ﬁ
N Kl K14 DEST -1 SONREE (1) * —(DEST WODE B erno R
[SIURCEC 1) + DEST VOO€ 9] -
. K14 EXEC — | EIEST EQUIRPMENT
g Ni=d SERYILE —a | —— ' = - | CORPODRATIOMN
R i thehi Y
1 | i |
o FETCH == | TEST === | EAFC == 1 SE“:CE--—T
: I |
? F] E e/ i —n [P
<) EXT WIGHER A5ST
i \/ \/ \/ \/ ARl D " RN L. |
MAE NONE 1DIFDIKCH-@-KIF
H I ‘f—""f—Esmluslw.llllllll'lll
=8 7 6 5 1 4 | 3 | 2 1

KA1l Instruction Flow

3-13

-
~ - a
: ! s ! 4 3 | T Sog-mouds) | !
Tt Nirityy o8 ppacicaiim, bmrnin, mmy lu g
iy of Cigml Eaulprinil Cicpormiian and shall nat
gl O Clghil 0f B fu by o b et
Tt el Tor The reprepliciuli F Main 07 e Wil
Ty V
< B RS
D eh D
ISRB + I3 = B
K1+ EXEC(1) *_.~—| K1-3 B3R 12 TO # ENTRY
CATAIH DPERAND I }
FOA DEST MoDE B IsA 8 K2-2 SMIFT IR @) Ki-3 osR =1 rFETE =] ~(DATO # EMTRY) DATD # ENTRY
- B3 OUT DONE + ST ADRS +
@[b2 oa7E B~ mesT ST woE 4 MUK USRI oo pestuanes |
KA-3 GATE &~ B3/ BIT + BIC + CHP » L0 + NEG o ISRE-;‘I'& l,ﬁgin\“ﬁg ; ST AORS =
o L . WANIPULATE AWD (1S }——1 KI-3 152 =2 ~(TEST » DEST)
— @ K-3 GATE A~ R/ STORE FIL OATA =
W4 GATE & —= RIS/# (NOV + ELR) * —(ENABLE X -) K22 ISK =g | TSR — § Z/SERWICE —_—
Kb4 EATE Bm R1E—] SET P CONC)TION = BaT0 ¥
KE-2 CLN LATGR A ——— T q5p) COOE CHAMGES P CLK_RESTART
K§-2 CLR LATCH 9 Ki-3 GAYE LEFT 15/ — [POT5AF L * GAR ol ly | 7T
- KB-3 GAFE RIGHY 1578 ROT/SHE_A_* $AR BR(8)
SHAR o+ [(J + B - R/S) *
_ M4 EIEEC) TR] K83 GATE GYTE 18/0 — i BRBNC1) * —(DEST WOIE 9)
{5)| K2-2 SHeFT FSR £ITM K8-3 CATE BYTE 78 Shn
OBTAN SOURCE 1SR K2-3 138 =15 -(EXTRA) Ki1=2 BATE £ ~ BYTE (BYTE OF + SHAD) *
CPERMND Am/OR K2-3 BSR ~- 12 ———|_DATU # ENTRY & , —(GATE 5]~ D) c
C (D|x1i-2 847 ¢&— w0 L ~(BYTE OF + 54A8) = ~(RATE §T=0)
K4-2 RA/SOURCE BIRARY + —(SOUREE WODED)
SH1FoR A1S + Big + 077 O ta-2 GATe 1= sturer —— ioary © So0tce w0 g
Mot RTE A= M1 a0« iz s DEC + (386 * C(N) [rsér ernns
Ka-3 GATE A+ —RI5/1 SGb » BFT + OEC
KE-3 BATE A — 1]+ [58C * B(ID] DEST oot 3
KE—4 GATE 0 — MO~y TWIE TR 15
® X84 GATE B RIZA ——— {0 * "0 * 7 (5EX) @ © Ki3 WEmBLE 1578 K10-4 GATE ST-+D.{ 158§, 2/SERVICE
WY 3 IRISCE) * REICD) R4-3 LEWABLE T/8 -
kb4 RATE SEX Ll s & 59, venLaL K2-3CLK BR[ST PTR LLK
SN+ O - MER + INC
, F-5 CARKY 8 =1 s _[ADE * C(Y - e
Ne-2 CLR LATCH B N
15K —= V& % (DEST WOGE @]
K2-3 OATO # EWTRY o TEST ¢ STADRS 150 —- §, 2/SERVICE % _JOCBALT = H
K14 FETEH = | REQUES?) ¥ (1SR4 ¢ SERVILE}] » -
TRAPS + [SK—=-2 + COAF)
TSF == §, 2/SERVI CE *
NI SERYICE —=- | | (FETCH [} &
e
s
Ki3 ZDATIB=—1 DATOBENTAY X BYTE OF FETCH —= | smml - =
B SHIFT ISR Ki3 2 DATG — | DATGH ENTRY X —IDATGE=—1] @ vest = 1aap = 1R~ LR o
(D SOURCE « IRSS = INSD * IAse <
() CLOCKING OF STATUS DATA [
OCOURS AT THE NEXT 3 Za
15A3 K2-2 SHIFT ISR () SIGMAL MMFE EXISTS DH K2-1 AS
PARTUAL BSR —e- I CIMPLETE $18u. B
COuG F YARTDUS 51GHALS,
ﬁjﬁﬁéﬁiﬁf 159 EXTRA INCLIOING THE DWE [WOICATED,
T+BITIA YWICH TILL CAUSE TWIS CONDIT)ON
EXTRA X ~(B T OCCUR AND THEY ME LOCATED
Kli-2 GATE CC +—BTTE {NDATA -+ DATA + ZDATA +C DATA) ™ -2,
— K& 3 GATE RIGHT 15/ ROT/ SHF R & EXTRAz BT +BIC + (ROT/SHF%0f) —
6 3 GATE LEFT 15/ ROT/SHE L @ TEST = TSTHEIT +cwP
;,%.__i Kip 4 CLK M2VL EXTRA ¥ —(BIC + BIT
¥2 2 SHIFT 1SR |
) | K5 $BoRaiz —{ DATO ¥ ENTRY
(qrr. TERCHPTION [erma I",a'
(B w4 2 RASTEMP —— T EXTRA L1
] K& A GATE A a—R18/1 ROT/zHF R EQUIRPMENT
E__ e SCATEA afi — 1] diigital CORPGRATIGN
A K6 3GATE &4 —RIS{I T — A
O ke 3CATE Ae— _pp -{_exTRA % - (RpT/SHE) e
zl2 (©)1 k2 3DATOHENTRY (st hoDE B +
% g (3] ke 2CLRLATCH B {EXTRA
T] N
Al {okD|kCi-g-kIF |
Jow. | |] 1 T T 1 T T 1
R R] N T

KA1l Instruction Flow

3-14

8 | | s | 3 {2 S a2 | i
Thiy digming e wemiigpfips, nvels, my S ey — —
o o e T e \ /
ey s by S vevedeiers o sl of Beey sl
WA
°
K14 €1EC (1)
P"lmm: K1-4 EXEC (1)
1% 1 K2-2 SHIFT ISR ——————— (1 + B+ W)]
MEG CONTENT D_|
M it { 1=» A2-2 SHIFT 15K BUS 1N DONE
TO STACK A2 fh/TEMP
O s12-2 vFF -1 —— O8] Ki-3 WEMABLE 15/0
M T (D) K-35 GATE LEFT 15/
BAR == ($P)-2 %4-3 GATE RA == SOURCE ——— 3§ § -
it A ® B3 GATE A~ B 1571 Ty
8- GATE = R3] —H]
Ko+ GATE B Rif/n (o oY+ e < |
W64 GATE B w70 ChMALE K e B
W5 CARRY BB g | ISRl (GATO EWIRY + BShR) 130 1 K1-7 SHIFT ISR
LR LATON & —————d GATO ENTEY ¥ 650] K42 R/ TEMR
i bare Bt L K64 GATE D= RIS/d
K64 GATE D= R7/H
KE—d SATE $EX —] WBA(1) KSEX % REG GATE 1
K64 $EX
READ (PC) 10 1SR 1 k-2 SHIFT IS8 — T T 5) }
LATEH @ c
K-z RA/RC | K22 SMIFT 15
FA—d BATE B - Ri5/0
@ K4 GATE B -= R7/N Kd=2 RA/PE
K83 GATE A~ RI3/1
@ £0-3 CATE A = 09
TRANSFER LATCH 15 3 ¥2-2 SHIFT ISK
0 RS KI=) kin 1
—
K4-3 RATE RA = SOURCE S oF LATCHE Fixgrfod i FETGH — 1 1
® Ke-1 WEWAALE i3/0 = NN {PC) K22 |SRee 0 e [T, T73ERFICE] P
Fae2 MPC —
4{ K43 WENAMLE 15/ I*
PEAD (TEWP) TO 138 7 K2-1 SHIFT ISR ® —
Hion s Ki—t FETCH == 1 REUEST) s EeR s STVIEE)] o
- - +
Vs EATE B RIS/ T2 ork &
@ K§-4 CATE B-o K7 ¥
Kl=4 SEWYICE ~= | 158 g, 2/SERVICE * F i
~{Fl - 1} =S
K= BSR-= { o JFETEH = |] -
LATCH = WEW PC ERE K-z 1SR~ 8. T/SENVIE o
K7 SRea- B (TSR o W, 2/SERVICE] X
SERVICE —- | () SIGWAL NAME, AS SUCH, OOES M7 EXIST.
K2 RAPE 1T |5 THE SUMMATION OF ALL SIGMALS
————|u-s 1/EHABLE 1578 l ASSOCIATED WiTH THE FLI® FLOP SEARING E
THIS WAME AND WKTCH BOULD CAUSE THE
@ = ”EfE:{"f T H . e SETTING 10 THE COMDITION INDICATED
- -
Kyt FETCH =+ | TRAPS » KSR 2 » CBRF) () SOURCE < IRSM * IRST ¢ |RMM B
Kid SERVICE wa- | =T, um.uuuxlm O E2-3 A5
~(FETEN -=—1) @ ATl T =1, CONPLETE SIGNAL
13 COMPOSED OF YARIOUS SIGMALS, |MC-
iR N Lt AT
FETEH - 1 SERVICE - | M) THET ARE LOCATED ON KI-3
PARTY LIET
s EQUIPMENT
] digital GORPORATIDN
A
§ Hy
== 8 7 6 | 2 1

KA1l Instruction Flow

315

3 i - i ! l i | e .
gy L d l 6 | 4 | 3 [o | 4D-0 hi)rlgédlz { i
g Ry i m g T Ll 2
Mgl o Copled wr vanld W vl o T
e hamin for B masmincius ar anis of Sy wilisal
TR v
m
D n;|
K10 EXEC {1) | X1t Fxic 1
Ni-3 WS4
FEAD COMTENT 15k 15 Ka-2 SHIFT ISk
§ ()] *a-2 BATE RA = DEST il (3T
® Kt GATE & = R0 R i e e R T S —
KR4 GATE B —= KT/0 R
WRATE REG COMTENT gy K2-2 SHIFT b5k
INTG ¢ K23 SR == |
Ka-z WAPE W22 SMIFT ISR
@ Ki-3 U/ENMILE 130 5"!%&{2)% 158 14 K23 BSR - |
>Hn-a Sk i Ke-3 m/RC
K43 WEWILE 15/8
)ﬁ—”m | T
—l— i
¢ =t 2 15k 12 K2 SMFT IS ——— TR h o] =
+*
%I?(D:!TF& g#:!l ez RS P’l;(?) o2 [ELH K21-2 WHIFT HR WE IN OOEE
: LR = B Game Ké-z WA/SP
N |
I
DATR TATD R (_1sra) P I g
— @l 2o - | ——— Loy =1 1 STACEED STATHE e K32 13K = 0.2/5EMICE -
D SET OF FOR b |ll-l 150 =] ————————{ QATE 3T =1
@I K4-3 GATE RA — DEST TRANSFER 10 STATUS
%4~ W/ENABLE 15/1 : ; KId—4 GATE §T= D
ISR = W, 2/SERVICE » — —'ll-‘ SERICE ~- | —————{ish = g \E |
Kl FETRH —= | — n:;t;]nflum : ={Ishn L/SERY
| 1SR~ 3 ¢ CBRF)
Ki—4 SERYICE -1 120 —w- B, 2/5ERVICE * —(FETCH == 1} S¥C
B
FETCH =+ | SERVICE = |
: i l
|
(D ©oEST - tham A9 ¢ Im2
(Z) SIGNL HANE EXISTS ON K2-3 AS
PARTIAL §SR =~ 1. COWPLETE SIGMAL
15 COMPOSED GF YARIMUS 5{GMALS
THCLUD (NG THE ORE_IMDICATED,
WHICH WILL CAUSE TH{S
TONDITH0M T0 OCCOR AMD THEY
ARE LOCATED ON R1-3.
[5F oo o BN
—— (; . CORPORATION
A | bgort d
5 TME
2|2
gl
H
mET] 7 6 | 4] 3 l 1

KA Instraction blow

3-16

8 7 5 5 4 | 3 | L] oz o)2 |]
Adb H3Ew 300 3208|
iy deieating arul apitiications, harun, s the e
acty &l Dt Equiomenl Corporetion s wire¥ not by
e o copid o uaid Wi o oF 0 Dut
ey b for T gyl OF WA B My ol
Wi reriiteh.
1. DOUBLE BUS ERRGR = BERRF{I1 % [TIME GUT (I} + ODO ADRS ERROR]
2.TF KFIl MULTIPLE BUS REQUEST OPTION IS INSTALLED THIS
SIG:IAL WILL BE KBR 2 FHOC BG <74.5. .
D 3 - {BUS 5BSYI SIGNAL COMSTITUTES A PASSIVE BUS RELEASE. D
4 BUS INTR SIGMAL CONSTITUTES AN ACTIVE BUS RELEASE.
I5R &2
R
K1-4 SERVICE
KIg-4 CLK NZ¥C T K4 SERVICE (11
Ka-LISRq-@aKSERVItE
TSR 2 K2 I5 . T 1
K23 BSR 1—! o3 1S | VT | TRE(CI% TRAPS % REQUEST TRAFS HALTF 1}
TSR 47,2 FSERVICE £~ {L[WALT ISR ¢ S I5he- - e TF(
Ki4 FETCH o= | —————RREQUE ST -(13768 STRVICEN] K23 BSH | ETCH w—1 K2-2 FROC RELEASE
+ THAFS + [5R +—2+ CBRF KI-2 CLK RUN 40 R
— Toh w— () 2/SERVECE & K152 SERV CONSF KI2-3 CONS GRANT (I} ——fR(E:
\ Kra SERVICE w—|————1_ = (FETCH +—1) KE-SCARRY 80— oY K134 CONE £ {]] ———C0hS GRANT (11
' 123 BBSYF {@)————{CONSF (1]
L SERVICEw—| KE-2 CLR LATCH A [SERY Q¥ [TRAPS + (WAL}]
FETCH +—1 KE-2 CLR LATCH B PIERYER A
o BUS 8BS Y T AT
- (NPHF +'REQUEST))%'KH QK BR (Twie-(TRaPsl __ } | o
| ¥ RESET HALT + DOUYBLE BUS ERROR
|
NPRF REQUEST ¥ F——RUS TIT (26 M3
c Ki5 NPR ENABLE i c
BAQ]
KI2-3NPR ENTRY CONEOLE CONTROL
#US PROC NPG K2-3 GRANT BR —]W: KI2-3 CONS GRANT(] —RWe R 1TSSy TBMS
K22 PROC RELEASE ——] K52 FROC BG4 ——1GRAN K22 CPEE(RRELE&S% — =
Kl-2 CLK RUN #— ¢ — 33 2-2 PROC RELEASE ——{ —{TRAPS] : UN -+ £
Ki2-3 BBSYF[EI]'D— C HELGASE WL i (LK RUN %28 1P KI34 CONSF (1) ——— T
KIZ-3 BBSYF (@) —— FROX_HELEASE % CLE RUN Ki2-3 EBSYF @) ———
BUS BESY CONSF (1)
_Y
o 1 _
—n CLK OFF (1) c
|
L
Z 04 0 AT \/ N
BUS SACK WO SACK]
- s =L (Yo — K23 ~GRANT) K32 P RESTRT —
K2-3 FEFIF RELEASE— (BB KIS 2 GATED P RESTART P EESTART % DN TS BAL L)
—1 K2 P CLK RESTART il RE K KIZ4 CONSF (@) — | GAYED F HeeTAR .
» - [EUS BBSY! —CONSE g N
¥ Kig-3 BBSYF +—I B £
. \ PERIF RELEASE %- (WAL K2-3 FERIF RELEASE—{ - T §
[KIS-2 FETCH 4—SYC A ik Ki-Z P ELK RESTART —| B
B MPRF (=1 Y Kl2-3 BESYF #—I ;gER SRELEA |
- TF RELEASE % - (W =
“TBFESYE G GoTNE | r KI52 FETCH 4—VC —|% - (7R4PS] % INTRF (B} O
Ke-3 ':‘ERTKREESE::&T GRANT# D & SACK) 30 &) ¥
K2 P C —IBFe]
K23 BBSYF * | EERTE fELEace |- fBuS BBSY) BU INTR
-IB EBEY % E SSTH* KI33 GATEL B INTR —BESTE 18] I z 0
K23 PERIF RELEASE GRANT £ DB SACK) KIZ3 SSYN (|| ———aTeD & INTR
KI-2 P (LK RESTART T KE-Z P SET DATA WALT —
| § KI2-3 BBSYF +— | Ki2-3 INTRF {1}
WAIT K2-3 PERIF RELEASE —
- T
(WA} KI-2 POl RESTART ——I
k5% BV)]
SERVQ ¥ [TRAPS + -IWAIT)] iKE-4 GATE B #—B D 156-]
PERLF RELEAGE ¥ IV]RFIRT __J _ KEE LR LATCH A s 2% TTRARS ¥ alTT)
CUWATT (T ‘ |kE-8 GATE 34— STPM ¥ TFAPS ¥ TAL
e
—————{KF4 FETCH 4| 224 T, M —
CONTINUE OM SHEET SIX
[DESCHIPTION PART ND. TeM
PARTS UST
F N] IFIED_JORN. - 7 pATE - EQUIPMENT
A s oo seones L) [RIRE corromaron
I SR~ i o -3 ru A A
w | S % .0OA x IX4 =
& |3 WEMCYE BuRrS ahl ML tadhe
HE CnERS [PROO. DATE
®]x
o MATERIAL T
o R Ty
i ¥ l—msu DI {RC4P-KIF i i
*ML EET_ 5 OF & ost.] T T T T T T T T 11
FORB M)
oAE L2 a 7] 5 4 3 | 2 I 1

KA1l Instruction Flow

3-17

3 | [] Rep-1ogda)2 | 1

VR

KC 1-@ -KIF

65

“m‘ﬁmmﬂ““
iy of Dighad mm-l--n\u
L e vt o s o8 s wowet | COWT (NUED FROM
vt pp— SHEET §
D K22 SA(FT |su:!1—rr @] SET U WER PO G@—' K22 SHIFT (3R,
TRANSFER YECTOR 156 1 K2-3 1SR =— 15 PE (1)]
™ TEW 23 BSR = | K42 RA/PC
@ N3 ENSLE 188
WA-2 RATENF @Ol -2 00~ l——'{um (B) * O¥FLF {8) |
. K- W/ENKBLE (34
% (-3 BSA |
SUIFT 158 ISR=- I3
F@ K1-3 BSK | .
piR—- @@—| Kz SMIFT IR — B TWORE]
H?&‘.‘* (Eis'ﬂl ATI
K2-2 SH\FT I5W - Ka-2 RA/TEWS P CLN RESTART
i @‘D—‘ ¥2-3 BSR —— 1 :}—{_lus T Dowe K§—i GATE B—=8 D154 DATH TAIT (1} I —
it I _ K83 GAIE A= M
()] %12-2 OVFLF - 1 ——— T CLK WAR » D15/8 ZERD —iie— K3 %:;511;'-_:1' D0 « 2
FA-1 RA/SP &R (1+1-+7) ¥ _CER RESTART INTRF () * TRACF {B) *
N6 GAFE B—- RI5/W BER) + DATO EWPRY * —(ELAM ~ OGP} E— N17=2 OYFLF = § — .
M e @ K122 OVFLF TRAAPE (H} * BERRF ()
M-1 GATE A = FiS/1 MO
KE3 GATE h— -miBs 1 — 1 " D)
KE5 CARRY Op-w-p — | BSK @ © DATO ENTRY |
€ k8- GATE BUS—= 57— BBSYF{/) " BSR (15 + 14 + 12+ B)
Ki3-2 DEID ENTRY
o nal ek - ey 7 T |
ISR B R2-2 (5= 8 - I
%' KI-3 SR $ET Ur N STATUS o bR I__Femi-—l]
KE2-3 TRACF = § ———
KZ-2 SHAFT (SR £)i-1 TRAPF —=- 8
BAR ~=~ (SP}-2 150 7 F223 BSR = | :‘-l WS W DONE K92-3 INTRF = B ~——— 1 ¢ 0 FLAGS
. 5P}
[rtfves ey (D) x13-3 vEmRF = 0
()| kiz-2 WL ~ t ~——-——CLX Mk = DI5/8 ZEW
— N2 RAAP ——————— " BER (1 + 3 + 1
K&-4 GATE @ -~ RISA BSAR * DATO ENTAY * —(EXANM + DEP) ——r @ K104 GATE 5T - D
KE—4 GATE B-=N1/0 DATD
K§-3 BATE A —= R1%/1 ADD (-2) P_CLE RESTART 158 - §, 2/5ERYICE {;&“IT N
K83 BATE - -RIS/I —_— KI—4 FEICH =+ { —————{ REQUEST} = —¢SER¥ICE *
K§-5 CARNY B~ § —— B5K § * DATO ENTRY +—(TRAPS + IS4~ 7 + LBRF)
BBSTE (1) % WSA (18 + T4 + 12 + L) - f | ISR @ 2/SERVICE * ~(FETCH = |
K$-2 GATE BUS ~ D T it ST GATE M S Ki—4 SERY|CE ~- 1 2.2/ (-1}
K2 RAPC []
Ki3-2 DATG ENTRY
-t FETCH - | sznm:s -
B
X1-3 BSRI
BAS -~ (TENP) G};E—| 52-2 SHIFT 150 —— {505 [N oW] _
[TEWP) —- {TEWP} + 2 -wm
LATCH B BUS DATA R4-2 RA/TEWP P CLA RESTART
K§—3 BATE A —=- 29 ==~
$£-3 GATE A= -RIE—— L
KE-5 CARRY B == 1
N84 GATE B~ 9018 0——{ DATA WAIT (1) @ ﬂ"l‘;“:‘ As Tﬂ':'m“‘:ﬁ ’;?u:;“
p— ASEOCIATED WITH THE FLIP FLDP BEARING
THIS MABE AND WHICH BOULD CAUSE THE
SETTING TO THE COWATTON INGICATED
(Z) SIGNAL KAME EXISTS OM KZ-3 45 PARTIAL
BSR~ {, CONPLETE SIGNAL 15 COMPOSED
DOF ¥ARIDUE SIGMALS. IHCLUDING THE ONE
THOICATED, BHICH ¥ILL CAYSE THIS
COMDITION JG OCCUR AWD THEYANE LOCATEQ O R1-1.
(@ CLDCKING OF STATUS DATA OCDURS AT MEXT Y qrv. CEIRPTION | AT WO I"ﬂ'
WATS LT
: FE EQUIRMENT
] LALERS OTMERNIE SPECIAED = Ll [corPoRATION
AVTT IT — e wcner SoaroReToN
@) PAINT PREFIX GECOMES KP2 INTHE | sasics bt s WhE
&= . a 1 = -
2l¢ Kei gy
a3 AR S G TN, AN
5% TER,
~ EXT HIGHER AS¥Y
-+
e OMEN LA
—— o, DF D{K Cil-@ - KIF
| |5 LA BEIT_E of 6 T
o FOMM O
= 3 7 3 5 ¥ 4 3 2 | 1

KA11 Instruction Flow

3-18

17

CHAPTER 4
KA11 PROCESSOR LOGIC DESCRIPTION

4.1 INTRODUCTION

Beyond the theory of machine operation is the actual implementation and associated logic description. The logic
description consists of those drawings and discussions that relate directly to implementation and hardware. In
the KA1l, these discussions and drawings are physically and conceptually integral. The location of text adjacent
to the logic drawing eases cross-reference, while the previous preseatation of operational theory allows the
discussion to concentrate on implementation.

A measure of information exists in the mechanics of presentation. Certain conventions in the logic drawings,
logic usage, and discussions convey information; these are noted below.

4.2 PRINT ORGANIZATION

The KAL1 prints and wire list correlate all signal names and allow the forward or reverse tracing of signals. The
prints conform, in general, io DEC STD 056, “Distinctive Shape Logic Symbology.” The foHowing
charactenistics arc imporfant;

a. L'he logic drawings comprise individual print sets ordered foward the individual modules. The TIMING
& STATLS print set, for instance, contains four sheets that document the TIMING & STATES module,
M728. A cover sheet (K1-i) provides: component reference and placement; supply voltage filter
capacitors; and notes upon signal and circuit conventions. The remaining sheets (K1-2, K1-3, K1-4)
provide the logic drawings of the module. Signal names within the logic relate this logic to the rest of
the processor. It is this interrelationship between the several modules that allows separate print sets to
adequately document the processor.

b. Sigral names contain a print prefix (K1-2, for instance) and a polarity suffix (H or L).

The print prefix identifies the logic prini from which the signal originated. In the KA1ll, there are
fifteen such multiple-page print sets with the print prefix located in each title block. In the print prefix.
the number immediately after the K identifies the print sef, while the nexi number identifies the page
within the sct. The print prefixes KY and KM refer to the KY11-A Console and KM 11-A Maintenance
Panel, respectively. Signal names beginning with “BUS" are an exception; they represent a “wired-or™
sttuation with multiple sources.

The polarity suffix identifies the logic Ievel at which the naumed condition is true. Thus for the signal
K1-2 DATA CLR H, DATA CLR is true when the signal level is high, Logic gates are enabled by the
named signal condition when the input signal’s polarity suffix coincides with the input state indicator.
The gate is disabled by the named condition if a conflict occurs. For example, the logic gate below is
enabled by the named conditions A, B and €, and disabled by the named condition D.

KX-XA L —(
KX-%B H — R
KX-XC L uj— AxBRCH-0

Kk -AD H

11-0138

Figure 4-1 Typical Gate Showing State Indicators

¢. Signal flow, as indicated by gate orientation, is from left to right or from bottom fo top. The majority
of prints fow left to right with all module output signals brought to the extreme righi. This technique
cases the search for a source signal referenced from another module set. For example: on the K6-2 print
(DATA PATH CNTL) at drawing reference 4C, the signal Ki-2 REG LATCIH H is used; the source of
this signal is easily found on the K1-2 print (TIMING & STATES) on the extreme right at drawing
reference 1C. If the source signal is within the same print set, it is on the same module and may not have
a module pin. If no module pin cxists, the signal source would be within the drawing and not at the
extreme right.
The DATA PATHS prints (K7 and K8) have signal flow from the bottom to the fop. Module output
signals end in vertical lines; input contrel signals have horizontal lines; input data signals begin in vertical
lines.

d The wire list supplemnents the logic drawings and discussions. It lists those module pins under common

signal name that arc wired together, and allows a signal to be traced from its source to all inputs. [tis
also possible to trace from inputs Lo source, but this is more easily provided for in the print prefix of the
signal name.
Each signal name entry. in the wire list notes: the sighal name (RUN NAME and A/P); the module pin
for this entry {(PIN NAME); the order in which the pin is wire wrapped (BAY ORDER); the level at
which the wrap is made (Z); and the drawing(s) upon which the module pin appears (DRAW). Since
multiple prints exist for a given module, a single module pin might appear on several prints; such
situations are noted by entres under DRAW with comma’s separating the sheet numbers (K1-2,3.4, for
example). The manufaciure process ensures that specific module pins are interconnected; the order or
level of interconnection is not tested or guaranteed.

Some differences in nomenclature exist between the prints and the wire list. Most notable are:

1. The use of leading (s in numerica} fields to order signals. The print signal K1-2 S CLK H
becomes K01-2 § CLK H in the wire list.

2. The wire list substitutes the letters FM for a left arrow. The print signal K2-2 ISR < (0L
becomes K02 ISR FM 00 L in the wire list.

3. Some signal symbols have been changed. For example, the print signal K2-3 DATO#
ENTRY H becomes K2-3 DATO = ENTRY H in the wire list.

4.3 LOGIC USAGE

The logic descriptions assume knowledge of logic conventions (MIL STD 806B, for instance) and usage. The
majority of logic is combinational with simple NAND and NOR gates; sequential logic. in general, utilizes either
a simple D-cdge flip-llop or a shift register with shift or direct toad capabilities. Certain medium scale integration
{MS5I) circuits are used throughout the processor and are noted in the £0.P-11 Corventions Manual.

+.+ LOGIC DISCUSSIONS

The logic discussions are directed at the moduie output signals that interconnect the separate modules. A flexible
formal is utilized to present maximum usable information directly adjacent o the prints. The discussion consists
of: a peneral module description; specific moduie signal descriptions; and equations of combinational logic
signals.

4-1

The general moduie description provides introductory information and relates the module te processor
operation. The specific module signal descriptions are concerned with the effect or use of the signal; this section
is expanded for a sequential logic signal to show derivation. The logic equations provide an cconomical
presentation of signal content or what activates the output. The equations’ location next to the logic prints is
most necessary in maintenance sitnations.

In presenting the discussions on the logic prints, certain assumptions have been made:

a. A knowledge of logic circuits and operation is basic.

b The use of machine state sequences (as noted in the Flow Diagrams) to enable data and sequence
alteration is known. Specifically, within the discussions, the uses of the various machine states on the
TIMING & STATES module are not detailed.

¢. Certain machine procedures are known. Specifically, the clearing of machine states by the INIT signal is
not noted in cach discussion.

d The theory of processer operation has been gained from previous sections; these discussions are
concerned with the implementation.

NOTE
The remaining paragraphs in this section refer to specific en-
gineering drawings which are contained in the second volume
entitled, KA 11 Processor, Engineering Drawings.

The information on each of the following pages relates to
only one specific print. The print number is in the upper cor-
ner of the page. For example, if a page has K2-3 in the upper
corner, then all material on that page refers to print K2-3.

4.5 TIMING & STATES

This module provides: the basic processor clock and its contral logic {(RW0, RW1, CLK OFF and CLK RUN
flip-flops); machine states for instruction and bus cycles (Instruction Shifi Register and Bus Shifi Register); and
major machine states (STATE SR). Many of the outputs have driving or inverting logic.

Internal processor timing is synchronous with the major processor clock being the System CLocK (K1-2 8§ CLK
H, K1-2 § CLK I); all machine states are based upon this timing interval. This clock is derived from the
Read/Write shift register (E3) and the basic oscillator {E12 and associated discrete components). Both phases of
the basic oscillator (K1-2 CLK H and K1-2 CLK L} are used to clock the Read/Write flip-flops (R/W0, R/W1)
through their transient-free cycle (00, 01, 11, 10) with one bit change per clock. The outpuls provide the noted
S CLK signals, as well as other clocking signals. A liming diagram in the logic discussion for Print K1-2 shows the
relationship of these various signals.

Asynchrenous processor operation is required for the transfer of data and bus contrel. This is provided for by
the CLK RUN and CLK OFF f{lip-flops (E¥} which control the basic oscillator and the gating of basic clocking
signals, respectively. The basic oscillator and clocking is halted during the R/W?2 state for asynchronous fransfers.
Since this state is the fourth guarter of a 5 CLK period, extended machine states occur upon such transfers.
Overall machine operation appears as segments of synchronous operation with asynchronous pauses,

The Instruction Shift Register (ISR), Bus Shift Register (BSR), and State Shift Register (FETCH, SOURCE,
DEST, EXECUTE and SERVICE) provide the time state signals used throughout the machine to direct and alter
machine flow. The shift and load input terminals of these shift registers have combinations of fime states,
address mode, and instructions as their input signals; and are clocked at 8 CLK intervals. The shift register can be
shifted or Joaded according fo the enabled input control; the clock is disabled if neither the shift or load inpuis
are enabled. This latter feature allows simplilication of the state cantrol logic: an enabling signal is needed only
when a change in machine state is necessary. Instead of defining the input c¢entrol signal for all timme only the
boundary (of the state change) need be defined. The ISR utilizes this and remains constant while the BSR cycles
through data transfers; major states are held in the STATE SR unless a change is needed. The load signals (K1-4
FETCH <« 1 L, for example) provide the data input to the shift register as well as enable the load control input
on these boundaries.

The use of shift registers and the proper selection of consecutive machine states can provide transient free
fransitions between machine states. Within the KAll, this technique is ntilized only for bus gating signals
derived from K1-3 BSR (15 + 14 + 12 + 8) H. The other machine states outputs cannot be considered transicnt
free near the machine state boundaries affected by the clocking of the § CLK signal. (The use of decoded shift
register outputs and the usual depth and complexity of the combinational logic coniribute to these transienis.}
Various clocking signals against these machine states and signals derived from them eliminate the effecis of these
transients.

The basic purpose of the processor timing and machine states is to provide a series of disctete machine states that
control machine operation. To this end, the registers are loaded or shifted to various maching states; no
particular importance should be attached to the name assigned to an TSR or BSR state (ISR 1 or 3 or 7, for
instance) or the manner of entry (load or shift). Since the machine siates and the clocking signals are used
throughout the machine, driver gates and inverters are provided.

4-3

K1-2

4-4

K1i-2 DATA CLR H direct clears the MSYN flipflop (K13-3 MSYN (i)H) and enabics the direct clear of
the processor’'s BBSYF (K 12-3 BBSYF (1)H) for transfer of bus mastership io a requesting peripheral,

K1-2 P CLK RESTART L provides a test point for the 100 nanosecond pulse that direct sets the CLK RUN
flip-flop (EY) to restart the processor’s basic oscillator.

K1-2 CLK RUN {0)H enables the direct clear of the processor’s BBSYF flip-flop (K12-3 BBSYF (1)H) for
transfer of bus mastership. Primarily the CLK RUN flip-flop controls the processor’s basic oscillator (E12):
enabling the oscillator when set; and disabling the oscillator when loaded to zero.

Ki-2 CLK H _,I_I‘—I_I—’_L

! i 1] 1
t I | ! 1 1

| A

[BASIC OSCILLATOR QUTRUT

! 1
KI-2 RAW 1 (1) H ! : !
N .
| | |
| |
| 1 I_
|

r R/W SHIFT REGISTER

i
W R/W R RIW, R/W

|
I
|
i
Ki-2 R/W O (1) H . -

1 |
I I
) 3 02, 0 1

{ INITIAL STATE

I L 1
REST STATE

[] [

K1-2 R/W 1 H
K1-2 R/W 3 H | L
KI-2ZR/W 2 H —=q —

L

SCLK L —l—,—‘_

ISk OR 8SR
TIMING INTERVAL

1-H35

Figure 4-2 Basic Processor Clock Timing Diagram

K1-2 8§ CLK H provides the basic processor clock. It is derived from the R/W shift register and utilized
throughout the processor. Its period of 280 nanoseconds is the period of single, synchronous, 18R or BSR
machine states. See K1-2 Timing Chart.

K1-2 8 CLK L provides the inverse phase of K1-2 S CLK H and is utilized throughout the processor. See
K1-2 Timing Chart.

K1-2 R/W] H| provide specific timing signals within each § CLK period. These signals are used throughout
K1-2 RfW2 H| the processor and are derived, transient free, from the R/W shift register (E3). See K1-2
Ki-2 R/W3 L | Timing Chart.

KI-2R/W3H

K1-2 CLK OFF (1}H is used to enable machine state changes for console functions {K2-3 PARTIAL BSR +
1 L)L

The CLK OFF flip-flop (E9) is used to enable console timing when the processor’s basic oscillator is
disabled; it also provides a disable during the first cycle after restart. In both cases, a delay between CLK
RUN alteratien and CLK OFF alteration is desired, When CLK RUN is clocked to zero, CLK OFF is
clocked to one only after the rest state R/W2 has existed for 50 nanoseconds — this allows completion of
processor timing. When CLK RUN is direct set and processor clocking begins, the CLK OFF is not direct
cleared until R/W1 time state - this allows a recycle in SERVICE * ISR to obtain trap vectors.

Ki-2 CLK OFF (0) H provides the entry into a DATO bus cycle for the console function, DEP (K13-2
DATO ENTRY H); the disabling of processor timing inputs to K1-2 REG LATCH H and K1-2 REG GATE
H for console operation; and a restart recycle in SERVICE * ISRD to obtain trap vectors by inhibiting K2-3
ISR « 1 L. Details of CLK OFF flip-flop (E9) operation are noted in signal discussion K1-2 CLK OFF (1)H.

Ki-2 REG LATCH provides the LATCH flip-flops of DATA PATH CNTL with a direct set signal for
non-Unibus data transfers. Both processor basic timing (R/W2 state) and console timing (P3 CSR state)
contribute. Details of LATCH control are noted in the DATA PATH CNTL discussion.

K1-2 REG GATE provides the LATCH flipflops of DATA PATH CNTL with a clocking signal for a
conditicnal load to zero; the signal is also used to enable this module’s control signals to the DATA PATHS
inputs. Both pracessor basic timing (R/W1 (1) state) and console timing {P2 CSR state) contribute. Details
of LATCH control are noted in the DATA PATH CNTL discussion.

K1-2 WRITE I5/8 H provides the write pulse for bits {15:8) of the processor’s internal memory,
REGISTER. Both processor basic timing (R/W3 state) and console timing (P1 CSR state) contribute.

K1-2 WRITE 7/0 H provides the write pulse for bits {07:00) of the processor’s internal memory,
REGISTER. Both processor basic timing (R/W3 state) and console timing (P1 CSR state) contribute.

K1-2 CARRY 00 L provides the timing signal to the carry flip-flop (K6-5 CARRY 00 (DL)}, which is set or
cleared according (o enabling inputs., Both processor basic timing (R/W3 state) and console timing {P1 CSR
state) contribute.

KI1-2CLK L
are test points for each phase of the basic oscillator cutput.

KI-2CLKH

K1-2 WRITE i15/8 H = W/ENABLE 15/8 * (P1 CSR + R/fW3)
K1-2 WRITE 7/0 H= W/ENABLE 7/0 * (Pl CSR + R/W3)
K1.2 CARRY 00 L = P] (SR + R/W3

K1-2 DATA CLR H = CLK OFF (1) * PROC CNTL * B SSYN * BSR8 + P DATA START

K1-2 P CLK RESTART L = -(REG ADRS} * P1 CSRO * (EXAM + DEP) + D PERIF RELEASE + P TIME OUT + -(B SSYN) * CLK OFF (1) * BSR
(3+12)+ PROC RELEASE { CLK OFF (1) * PROC CNTL * B SSYN * BSR8 + P DATA START } +P CLK RESTART

K1-2CLK RUN < 0L = (DATA WAIT < 1)+ PROC RELEASE + BSR8 + B SSYN (BSR3 + BSR12)

Both the Bus Shift Register (BSR) and the Instruction Shift Register (ISR) provide numerous machine states
that are used throughout the processor. Both polarities are usually provided. Since these signals are used as
conditions in most of the combination logic, no details of usage are presented here; this information is available

in the flow diagrams.
K1-3 ST CLK PTR L provides an addiiional clocking signal (K2-3 CLK BR L) to the PRIORITY bus

request bulfer and associated PTR flag flip-flops. This clocking oceurs prior to machine entry in SERVICE
* ISRO and accommodates changes in the processor’s STATUS word that would affect priority

determination.

K1-3 8T CLK PTR L = (GATE 51 < D) ¥ - |SERVICE (ISRO + iSR¥)| * RyW3

K13

4-5

K14

The State Shift Register provides major siate information throughout the machine. Since these register states
exist singularly, they are represented as flip-flop outputs at their respective butfered drive outputs. No details of
usage are presented here; this information is available in the flow diagrams.

K1-4 EXEC < 1 H provides the entry signal (load contrel and data to the State Shift Register) to
EXECUTE major state. It is also utilized as an enabling condition for entry into BSR 1 state (K2-3
PARTIAL BSR <1 L).

Ki-4 EXEC < 1 H =B FETCH (1) * ISR1 * { (ISR < 15) + BRANCH + INTERNAL ADRS } + DEST (1) { (ISR + 1) + (JSR * ISRO) } + { DEST
MODE 0 * SOURCE (1) * ISRO }

K1-4 SOURCE « 1 L=BFETCH (1) * ISR1 * ~80URCE MODE 0 * BINARY
Ki-4 PART 2 DEST < 1 L = B SOURCE (1) * ~(DEST MODE 0) * I[SR0
K1-4 PART 1 DEST « | L=BFETCH * ~DEST MODE 0) * iSR1 * { (U +R/S)+ISR+ IMP +(SOURCE MODE 0 * BINARY}}

Ki-4FETCH <1 H= {FE"IiCH « SVC) * SERVICL + [{ISR < 0,2/SERVICE) * ‘= ~(ISR < 2) * SERVICE * ISR * (WAIT + REQUEST)} * -TRAPS *
-CBRF |]

Ki-4 DEST < 1 H=(PART 1 DEST + 1) + (PART 2 DEST < 1)
K1-4 LOAD STATE H = {SOURCE <« 1) + (PART 2 DEST <+ 1} + (PART | DEST < 1} + (EXEC + 1) + (SERVICE < 1) + {FETCH « 1)

4.6 STATE CNTL

The module provides signals to alter ISR and BSR time states during instruction and priority transfer operations.
Depending on machine condition, time state changes occur by loading or shifiing to the appropriate 1SR and
BSR time state.

Combinational circuitry detects completion of instructions and bus data transfe.» to enable non-processor granis
(K2-3 BUS PROC NPGH) and to gate processor bus granis (K2-2 GRANT BRH). Clocking for bus request and
non-processor request flip-flops (K2-3 CLK BRL) is provided to gate new requesis. The clocking is derived from

K2-1

the processor and bus data transfers. The clocking is inhibited if bus grants are in process or if BUS SACK is
asserted, Priority transfer flip-flops (BR PTR, NPR PTR) are clocked 220 ns after K2-3 CLK BRL if no bus
interrupt is present, to gate grants to the Unibus. Direct clearing of BR PTR and NPR TRP occurs 100 ns after
BUS SACK is asserted and drops the enabled bus grants. Inhibit (K2-2 PROC RELEASE L) and restart (K2-3 B
PERIF RELEASE L) signals are provided for control of the processor’s clock during priority iransfers, Further
discussion on priority transfers can be found in the PDP-11 Unibus Interface Manual

47

K22

4-8

K2-2 SHIFT ISR H enables the shift input of the Instruction Shift Register (ISR).

K2-2 BUS IN DONE H detects the completion of a bus data in transfer and is used to enable K2-2 SHIFT
1SR H in ISRO of FETCH or, if additional bus transfers are needed, to compleie the address calculation in
SOURCE or DEST; and to enable K2-2 ISR < 0 L during the last bus data transfer in SOURCE address
calculation.

K2-2 BUS OUT DONE H detects completion of a bus data transfer out and is used: to enable K2-2 SHIFT
ISR H in ISRO of EXECUTE; to enable K2-2 ISR « (,2/SERVICE L in 1SR15 of executing a Unary,
Binary, or Rotate/Shift instructions.

K2-2 PROC RELEASE L detecis a NPR request to be honored at completion of a bus cycle, or a HALTF
or bus request (BR {7:4}) to be honored in ISRO of SERVICE. The signal is used: to direct clear the BBSYF
and 1o enable K1-2 CLK RUN « Q L to stop the processor’s clock.

K2-2 ISR + 0,2/SERVICE H provides for the entry into ISRO or ISR2 and SERVICE which occurs at the
end of EXECUTE, K13-2 TIME OQUT (1) or K103 ODD ADRS ERR L during a processor bus data
transfer. 1t is used: to enable K1-4 SERVICE < 1L if traps or bus requests are to be serviced; and to enable
Ki-4 FETCH <« 1L allowing the processor to skip the SERVICE major state if no traps or bus requests
exist.

K2-2 ISR « OL enables the ISR load input to ISR0 for a machine state alteration.

K2-2 INTERNAL ADRS enables K1-4 EXEC « 1H during ISR of FETCH if a double operand {Binary)
instruction has SOURCE MODE ¢ and DEST MODE O or a single operand (Unary) or Rotate/Shift
instruction has DEST MODE .

K2-2 WAITING L = (SERVICE * ISRO} * WAIT * - CONSF (1)

SOURCE (1)

ISR}

K2-2 PROC RELEASE L = SERVICE * ISRO * (HALTF (1) + (REQUEST * - TRAPS) + NPR ENTRY * (CNPRF (1) + NPRF)
K2-2 BUS IN DONE L =PERIF RELEASE+ - PROC RELEASE * { BSR7 * - BAROQO * - TIME OUT (1) + BSR14 }
K2-2 BUS OUT DONE H = BSR8 * - TIME OUT (1) * - PROC RELEASE

K2-2 SHIFT ISR H = EXEC[ISR] * EXTRA * - (U + B+ R/S) + ISRO { BUS OUT DONE+{(U+B + R,"S)} 1 + BEXEC (l){ ISR (3+7)+ RTS + ISR15
}+ BUS IN DONE { B FETCH (1) * ISRO+ -B EXEC (1} * ISR (12+15)* (U+B + RE'S)} +I5R14 + SERVICE ‘IISRl * . PUPF
(1) + ISR {3+7) * BUS OUT DONE} + BUS IN DONE * - ISR) ¥ (S0 + DE) * - (ADRS DONE) + - DEST MODE 0 * ISRO *

K2-2 1SR < 0,2/SERVICE = TIME QUT (1) * BSR (7+8) + BSR3 * ODD ADRS ERR +ISR8 + [SR2 + BDEST (1) * JMP * ISRO+ BFETCH (1) * F
INSTR * ISR1 + B EXEC (1) * ISRI5 * { (U+ R+ R/fS) * (BUS QUT DONE + ST ADRS + TEST + DEST MODE 0) + BRANCH +

K2-:2 ISR < 0 L = (ISR « 0,2/SERVICE) + ADRS DONE { B SOURCE (1} * BUS IN DONE + B DEST (1} * BSR7 (JMP + JSR}} + INTERNAL ADRS
K2-2 INTERNAL ADRS L =+ B FETCH (1} * ISR1 * DEST MODE 0 {BINARY * SOURCE MODE 0 + (U + R/8) }

K2-3 BSR + 12 L provides for the entry into BSR |2 machine state during bus data out transfers.

K2-3 PARTIAL BSR < 1 L provides some of the entry signals into BSR1 machine state for the beginning of
a bus data transfer.

K2-3 DATO # ENTRY H provides for the data out transfer to return an operand that the instruction has
modified. This DATO# transfer utilizes only the latter portion of the processor data out cycle; the address
of the data is already determined and in the Bus Address Register (BAR).

K2-3 ISR < 15 L enables the ISR Load input to ISR15 and is used to enable K1-4 EXEC < 1 Hin ISR1 of
FETCH for a ReTurn from Interrupt or ReTurn from Subroutine instruction.

K2-3 ISR < 1 L enables the ISR load input to ISR 1 when destination address calculation is complete for a
Unary, Binary, or Rotate/Shitt instruction or when servicing an INTR F or a processcr trap.

K2.3 PERIF RELEASE L detects that the Unibus is clear of BBSY, SSYN, GRANT, and SACK signals.
The signal is used to provide data to set the processor’s BBSYF when the processor clock restarts; and to
enable K2-3 D PERIF RELEASE L to restart the clock. This signal is the means by which bus control is
transferred back to the processor.

K2-3 D PERIF RELEASE L is enabled 600 ns after K2-3 PERIF RELEASE is asserted. The signal direct
sets the CLK RUN flip-flop to restart the processor’s clock.

K2=REQUEST H detects a console bus request {K3-2 CBRF(1)L) or a qualified bus request (K3-2BRQ L)
and enables K2-2 PROC RELEASE L in ISRO of SERVICE if no traps are present.

K2-3 BSR « 15 enables the BSR load input to BSR15 in BSR7 if the BAR contains an odd address. The
processor bus cycle is extended to right justify odd byte bus data.

K23

K2-3 CLK BR L provides the clock signal to the Bus Reguest flip-flops BR (7:4 NPRF, CBRF, and
CNPRF. If no peripheral is waiting for bus mastership and no grant is being issued, the signal is enabled by:
K1-2 R/W 1 H during a WAIT instruction; assertion of K13-3 BMSYN H without console control; or K1-3
ST PTR CLK L. The clock also activates the 220 nanosecond one-shoi (E43}, which clocks the PTR
flip-flops after time out. This delayed clock is inhibited during the INTR cycle.

The delay in clocking the PTR flip-flops is necessary to allow the settling of the PRIORITY comparison
logic. If an NPR or BR is to be serviced, the respective PTR flip-flop is activated; these flip-flops (NPRPTR
or BR PTR) provide the flag signals for altering the processor operation.

K2-3 GRANT BR H enables the processor bus grants (K3-2 PROC BG (7:4)) to the Unibus in ISRO of
SERVICE if no traps, interrupts or NPR’s exist.

K2-3 GRANT L inhibits K2-3 CLK BR L when bus grants are gated to the Unibus to prevent a grant
priority level change during grani.

K2-3 GRANT H clocks the TIME SACK flip-flop to a (1) state to begin a 10 microsecond time out for
peripheral Selection ACKnowledgement (SACK). If no SACK occurs, the signal K13-2 NO SACK (1) L
activates the 100 nanosecond pulser, (E44, pin 11) to clear the PTR flags; processor operation continues.

K2-3 BSR < 7 L if no ODD ADRS ERR is detected during BSR3; the signal enables the BSR Load input
and provides input data to change the BSR time state to BSR7.

K2-3 BUS PROC NPG H is the non-processor grant issued to the Unibus.

K2-3 BSR < 12 L = BSRO { DATO ENTRY + DATO# ENTRY}

g

K2-3 DATO# ENTRY H = B EXEC (1) {- DEST MODE 0 * - TEST *- ST ADRS } * (U + B + R/S) * {ISR7 + ISR« 15}

K2-3ISR < 15 L=1ISRI [BEXEC({1)*-EXTRA *(U+B+R/S)+ BFETCH (I) # {RTI + RTS } + PUPF]

K2-3 PARTIAL BSR < 1 L = SERVICE {ISRI + BUS OUT DONE * ISR (3+7)} + (EXEC < 1) * (JS5R + RTI) + CLK OQFF (1) * - (REG ADRS} *
(EXAM + DEP) + BUS IN DONE * - (ADRS DONE) * - ISRO * (80 + DE)

K23ISR<1L=B DES:I (1) * BUS IN DONE * ADRS DONE *{(U+ B+ R/S) + SERVO {INTRF (1} + TRAPS * - { RESET + CLK OFF {1) + HALT

K2-3 PERIF RELEASE H = - BUS BUSY * - B 85YN * - GRANT * - BUS SACK
K2-3CLKBR L= {ST CLK + CONSF (0} * B MSYN + WAITING * - TRAPS * R/W1 } * - BUS SBACK * - GRANT

49

4.7 PRIORITY, M824

The PRIORITY module provides: priority buffering, comparison and selection; trap flags for power fail
operation; and the bus receivers and drivers for upper byte data. {Refer also to KY11-A Console flow diagrams in
the KY[1-A Programmer’s Console Manual, DEC-1I-HR6A-D.)

4.7.1 Priority

The priority portion of the module consists of a register buffer, comparizson logic, and bus grant gating. The
incoming requests for bus control are strobed (K2-3 CLK BR L} into the buffer and then compared to the
processor status. If the comparison indicates that a requesting device has higher priority, appropriate signals alter
machine flow and grant to the specific request. The manner of this response is dependent upon the request type.

Console requests occur in the HALT mode and result in either a Console Non-Processor Request Flag (CNPRF
flip-flop) for a SCYCLE mode or a Console Bus Request Flag for a S-INST mode. Since console operations have
highest priority comparison is inhibited and bus control is transferred directly from the processor to the console
by setting the CONS GRANT flip-flop (K1-3 CONS GRANT (1) H) and CONSF flip-flop (K13-4 CONSF (1) H).
After the transfer of control, the K13-4 CONSF (1) H clears all the request buffers except CNPRF, which it sets.

The release of bus conirol by the console results in K13-4 CONSIF (D) L clearing even CNPRF.

Requests from the bus result in 2 Non-Processor Request Flag (NPRF flip-flop) and Bus Requests (BR {7:4}
flip-flaps). The comparison and subsequent gating of thesc requests are made according to the following:

a. console requests have priority over processor status and requests from the bus.

b Noo-Processor Requests (NPRs) have priority over Bus Requests (BRs).

¢. With no NPRs, the highest existing BR is granted if processor status (K9-4 ST {07:052 (1) H) is lower.
If the réguesting bus device has higher priority, appropriaie signals (K3-2 NPRF H or K3-2 BRQ L) load the PTR
flags on STATE CNTL and machine flow is allered (K2-2 PROC RELEASE H). A specific grant is enabled
according to the request level (BUS PROC NPG H or K3-2 PROC BG (7:4; H) and gated by K2-3 GRANT BR H.

The term PROC appears in the above grant signals because the signals pass through the two general peripheral
slots (CDEF 13 and 14) before physically becoming a Unibus signal.

Note that the control logic for the Prierity register and combinational logic is located on STATE CNTL.

4,7.2 Power Fail

The power fail portion of PRIORITY consists of a power down flag (PDNF flip-flop) and a power up {lag (PUPF
flip-flop), each flagging a trap routine fo bus address 24.

On power down, the AC LO asynchronous transition is synchronously clocked to PNDF by K15-2 CLK PDNF
H. A load to 1 is effected unless XY-3 HALT L is enabled; if HALT is enabled the power down trap does not
occur and bus control is transferred to the console. If PDNF is set both K3-3 PWRF H and K3-3 PWRF L are
active and the power fail trap will occur in sequence after all internal processor iraps and before any requests
from the bus. This sequence is apparent in the generation of the Special Trap Markers (STPM) on FLAG CNTL
and in the clearing of the flags. The PNDF flag is cleared only after other internal flags are cleared (K12-2 SVC
CLR OVFLF and K12-2 OVFLF (Q) L).

On power up, the initializing signal (K13-2 PWR UP H) sets the PUPF {lip-flop unless KY-3 HALT L is active. If
HALT is enzbled then K13-2 INIT H clears the PUPF as it does masi other flags.

In this mode CONSF (K13-4 CONSF (1) H which is set by K13-2 INIT H} is not cleared by K15-2 GATED P
RESTART; the machine does not restart and is halted under console control. No power up trap is sequenced on
START or CONT as the PUPF is cleared.

Without KY-3 HALT L, power up results in the PUPF flag set. Since other flags are cleared when K15-2 GATED
P RESTART restarts the machine, a power up trap to bus location 24 is immediately sequenced. (Since the
location and sequence are similar to power down, a combination flag K3-3 PWRF H or L is used for PUPF and
PDNF). The K3-3 PUPF (0) H does, however, alter the usual trap sequence to avoid the DATO operations; the
address basc for these is a solid state register and unknown on power up. The PUPF js cleared after the trap
sequence.

4.7.3 Bus Receivers and Drivers

High impedance bus receivers effect the Unibus input interface for upper byte data from BUS D (15:08) L to
provide buffered inputs, K3-3 B D {15:08 H. The Unibus driver gates enable upper byte data from the DATA
PATHS outputs K82 D (15:08) H. Note that BUS D {15:08) L signals are “wire or’ed” and receive outputs from
the other sources both within the processer (console SR) and without {(general peripheral slots and the bus).

K3-2 CBRF H = CBRF (1) * - CNPRF (1}
K3-2 NPRF H = NPRF (1) * - {CNPREF (1} + CBRF (1)]

PROC STATUS 7

PROC STATUS (7+6)

PROC STATUS (74+6+5)

PROC STATUS (7+6+5+4)

K3-2 PROC BG7 H = (GRANT BR) * BR7 (1) * - [CNPRF (1) + CBRF (1) + NPRF (1)} + 8T07 (1) * ST06 (1) * STOQ5 (1)}
K3-2 PROC BG6 H = (GRANT BR) * BR6 (1) * - [CNPRF (1) + CBRF (1) + NPRF (1) + BR7 (1) + 8TO7 (1) * §T06 (1)]

K3-2 PROC BG5S H = (GRANT BR) * BR5 {1} * - { CNPRF (1} + CBRF (1) + NPRF (1) + BR7 (1} + BR6a (1) + STO? (1} * [STO6 (1) + STO5 (])]}

K3-2 PROC BG4 H = (GRANT BR) * BR4 (1} * -{CNPRF (1)+ CBRF (1) + NPRF (1) + BR7 (1) + BR6 (1) + BRS (1) + STO7 (l)]-

K3-2 BRQ L = PROC BG7 + PROC BG6 + PROC BG5S + PROC BG4

K3-3

K4-1
4.8 REGISTER CNTL, M821

The REGISTER CNTL module consists of the combination logic necessary to the control of REGISTER.
Machine state, flag and instruction information is combined to select the address source for the REGISTER.
Selection of a specific source, and providing the source for Specific ADdress (SADY), is a “read”; the “write” ulso

requires write signals from TIMING & STATES. Some other logic signals, unrefated to memory, are formed on
REGISTER CNTL.

Signal discussions and cquations of the output signals follow.

4-12

K4-2 JMP H provides the logic inversion of signal K10-3 JMP L.

K4-2 GATE RA « SAD H enables the Specific ADdress bits to the Register Address. It is active when
spucific processor registers are called in the machine flow. This address selection differs from the gating of a
register’s unknown bit combination to obitain one of a group of registers. A specific register is selected:
Program Counter (PC); Stack Pointer (SP); TEMP register; and SOURCE register. Which of the registers is
selected depends upon the respective internal signals: K4-2 RA/PC L; K4-2 RA/SP L; K4-2 RA/TEMP L;
and K4-2 RA/SOURCE.

K4-2

K4-2 SAD {03:00) H provides the individual bit inputs to the REGISTER for selection of a Specific
ADdress. Certain bit patterns are enabled by the internal signals: K4-2 RA/PC L; K4-2 RA/SP L; K4-2
RA/TEMP L, and K4-2 RA/SQURCE L. The SAD bit patterns and selected registers are, respectively:
(0111}, or R7 for PC; (0110), or R6 lor SP; (1000), or R& for TEMP; and (1001), or R9 for SOURCE.

K4-2 SADO3 H = RA/TEMP + RA/SQURCE
K4-2 SADOO H - RA/SOURCE + RA,PC
K4-2 SADO2 H = RA/PC + RA/SP

K4-2 5ADO1 H = RA/PC + RA/SP

K4-2 RA/PC L = B FETCH (1) + B EXEC (1) [BRANCH {ISR7 + ISRIS } + ISR {ISR1S + ISR}] + ISR14 + (S0 + DE) § IMP * ISRO + ADRS
MODE (6+7) * ISR1} + START * CSR3 + BSRO * ISR7 * SERVICE

K4-2 RA/TEMP L = B EXEC (1) { BRANCH * ISR (1+3) + EXTRA * ISR (3+7) + JSR * ISR?} + SERVICE { ISR] + ISR (12+15) } + BSR14 + BSR15
+ CSR3 { LOAD ADRS + (EXAM + DEF) l' + CSR1 (ST + EX + DEP) + B DEST (1) * ISR0 * JSR

K4-2 RA/SOURCE L = B SOURCE (1} * ISR0 + B EXEC (1) * ISR1 * BINARY * ~SQURCE MQDE 0
K4-2 RA/SP L =B EXEC (1) [ISR12 + ISR15 * RTI + ISRO * JSR * BSR (14+3+7}] + SERVICE * BSR (1+3+7) * ISR (3+7)
K4-2 GATE RA + SAD H = RA/PC + RA/TEMP + RA/SOURCE + RA/SP

4-13

K43

K4-3 (EXEC * JSR) H provides a logical signal of major state and instruction from a convenient internal
point.

K4-3 GATE RA <+ SOURCE H enables the bits of the Instruction Register which specify a SOURCE
operand. The selected register is unknown znd a [unction of the specific bits, but gating occurs when
SOURCE operands are necessary in machine flow.

K4-3 ADRS MODE (6+7) L provides a logical signal for indexed or indexed deferred SOURCE or DEST

address calculations.

K4-3 GATE RA + DEST H enables the bits of the Instruction Register which specify a DEST operand. The
sctected register is unknown and a function of the specific bits, but gating occurs when DEST operands are
pecessary in machine flow.

K4-3 W/ENABLE 7/0 L enables the write signal to REGISTER for lower byte. The enable is not direct but
15 coupled with console and processor timing signals on TIMING & STATES.

K4-3 W/ENABLE 15/8 L enables the write signal to REGISTER for upper byte. The enable is not direct,
but is coupled with console and processor timing signals on TIMING & STATES.

K4-3 TEST L provides the logical inversion of signal K10-4 TEST H.

K4-3 GATE RA « BAR H cenables the bits of the Bus Address Register to the Register Address during
console operation. All sixteen words of the REGISTER may be addressed as a function of the approgriate
BAR bits.

K4-3 REG ADRS L provides the logical inversion of signal K9-2 REG ADRS H.

K4-3 GATE RA <~ BAR H = CSR0 * REG ADRS (EXAM + DI

K4-3 GATE RA < SOURCE H = B EXEC{1) [JSR{ BSRO * ISRO + ISR3} + SOURCE MODE 0 * BINARY * ISR1] + B SOURCE (1) * BSR (1+3+7)
[ISR3 * ADRS MODE {6+7) + ISR1 * - ADRS MODE (61+7)]

K4-3 GATE RA < DEST H = B EXEC (1} [DEST MODE 0 (U + B + R/S) { ISRD + ISRIS} + RTS8 «l ISRE + ISR]S} +B DEST (1) * BSR (i+3+7) *
[1SR3 * ADRS MODE (6+7) + ISR1 * - ADRS MODE (6+7)]

K4-3 W/ENABLE 7/0 L = B EXEC (1) [ISR3 (EXTRA + JSR) + ISR15 (JSR + BRANCH) + ISR] * BRANCH + RTS * ISR8 + ISR15 (U + B + R/S) *
DEST MODE 0 (- ST ADRS + - TEST) + BSR15 + ISR14 + CSR3 + ISR1 * SERVICE + ISRO * (SO + DE) + BSR7 { ISR (3+7) * -
(SO + DE) + - CONSF } + CSRO * REG ADRS * DEP

K4-3 W/ENABLE 15/8 L =-W ENABLE 7/0+ [BEXEC (1} * (U + B + R/S) * DEST MODE 0 * ISR1S * (- ST ADRS + - TEST) * {WORD + MOV)]

49 REGISTER, M225

The REGISTER module provides data storage essential to the instruction set and processor data flow. Sixteen
words, each of 16 bits, are available; the KA1l utilizes eight registers for data, address, program counter and
stack pointer; and two registers for femporary storage. The REGISTER maodule consists of storage elements,
address selection drive, and selection of address inputs.

Register storage is effected by sixteen Medium Scale Integration circuits, each 1 bit x 16 words. The parallel
output of the sixteen circuits provides a memory of 16 bits x 16 words. Selection of a specific word requires the
activation of one of four X address lines and one of four Y address lines in each circuit (se¢ Figure 4-3). A
“Read” is accomplished by this address selection;a “Write™ is accomplished by address selection and the enabling
of set and reset inputs by a write signal and appropriate data.

The address seleckion consists of a 4 X 4 matrix of address lines. The address selected is at the intersection of the
specific X line activated and the specific Y line activated.

100 Ho1 110 ™
1t
10 1 1 101
Yio 025 0g! org ol
0100 fale) oo s
Yot !
000 000 pmwm oot
4]
Yoo f !

Xo¢ Xo 10 xn
N-Ot43

Figure 4-3 4-by-4 Address Matrix

Prior to these drive circuits, decoding and selection of address scurces is made. Decoding relates the X and Y
address lines fo the bits of the selected address sources. Four possible sources exist: three of these sources are
direct gating of portions of registers {IR and BAR) and represent instruction or console selection; one source
represents specific address (PC, SP, TEMP) necessary for internal processor operation.

K3-1

K5-2

Since the REGISTER is important to the processor’s data flow and the storage of operand data and address
information, both the inputs and ocufputs (K.5-2 prefixes) are discussed.

4-16

K5-2R {15:000 (1) H provides the data output of the selected word. This output can be either data or
address information and is used within or passed through the DATA PATHS modules. The circuit output is
open collector with resistor pull-up and clamp provided to limit signal amplitude.

K52 Y 11, 10, 01, 00 H provides test points for the Y drive lines of the address sclection matrix. Each of
these drive lines goes 1o the sixteen memory circuits. A discrete transistor switch provides high current drive
from an open collector ¢ircuit with resistor pull-up and clamp. No requirement is made on the drive lines
that the same absolute address be selected in each memory circuit; it is necessary that a unique bit is
selected for each address.

The activation of a specific Y drive line (Y11, Y10, Y01, Y0O) results from the decoding of the two low
order bits of the selected address source. The decoding network selects YOO when it is inactive.

K5-2 X 11, 10, 01, 00 H provides test points for the X drive lines of the address sclection matrix. These
lines are similar to the Y lines noted above except that the upper two bits of the selected address source are
decoded to activate the specific X drive line (X11, X10, X01, X00).

K82 D {15:07> H provides the upper byte data inpuf to the REGISTER from the output of DATA
PATHS 2.

K7-2 D {08:000 H provides the lower byte data input to the REGISTER from the output of DATA
PATH 1.

K1-2 WRITE 15/8 H cnables a write into the upper byte of the address selected word. The actual write is
accomplished by address selection and the combination of the write signal with the data input to set or
reset the appropriate memory bits, For example: if K&2 D 15 H was true, the application of K1-2 WRITE
15/8 H would activate the set (§) input {pin 13) of R15 (E31);if the data input had been untrue, the reset
(R) input (pin 9) of R15 (E31} would have been activated.

K1-2 WRITE 7/0 H enables a write into the lower byte of the address selected word. The write operation is
similar to that noted for the upper byte.

K1-2 GATE RA < SOURCE H enables specific bits of the Instruction Register (SOURCE} for use in the
Register Address (RA) selection. This input would be activated during the major states SOURCE or
EXECUTE.

K9-4 IR (0B:06) H provides the binary address bits for the selection of one of eight possible SOURCE
registers. These Instruction Register (IR) bits are noted in instruction discussion with the selected addresses
being the registers RO through RE.

GND12 provides a low signal input for the higher order bit on SOURCE and DEST selection. This disabling
input limits the register address to the lower eight registers, RO through R3.

K4-3 GATE RA < DEST H cnables specific biis of the Instruction Register {DEST) for use in the Register
Address (RA) selection. This input would be activated during the major states DEST or EXECUTE.

K9-5 IR ¢02:00) H provide the binary address bits for the selection of one of eight possible DEST registers.
These Tnstruction Register {IR) bits are noted in instruction discussion with the selected addresses being the
registers RO through R8. See the signal GND12 for additional information.

K4-3 GATE RA <« BAR H enables specific bits of the Bus Address Register (BAR) for use in the Register
Address (RA) selection. This input would be activated during Console operations; the processor registers
respond to explicit bus addresses only during these operations.

K9-5 BAR (03:00 (1} H provides the binary address bits for selection of one of 16 possible registers. Four
address bits are provided and the full sixteen words of the REGISTER may be addressed.

K42 GATE RA « SAD H enables bits of a Specific ADdress code for use in the Register Address (RA)
selection. Input activation occurs throughout machine operation whenever certain registers (PC, SP, TEMP,
SOQURCE) are needed for specific operation. The registers, PC and SP, may also be called as general registers
{R7 and R6) in Instructions or by the Console. Register address selection, in this case, occurs by selecting
DEST, SOURCE or BAR inputs.

K4-2 SAD {(03:000 H provides the binary address bits for selection of one of four specific addresses: PC, SP,
SOURCE and TEMP. These registers are selected under SAD in the following instances: PC is specifically
selected during Fetch, in jump or branch instructions, and as a Stack operand; SP provides the address of
the Stack; SOURCE register temporarily stores the SOURCE operand in two operand instructions; and the
TEMP has general use as temporary storage, especially in the movements of operands [rom the output to
the input of the data paths.

4.10 DATA PATH CNTL

This module provides: all gating signals (control) for both DATA PATHS modules; clocking signals related to bus
data transfers; and carry input data.

The logic requirements upon the signals for the DATA PATHS are related to its three segments: the rotate/shift
gating; the adder; and the A and B input gating. The control to the rotate/shift gating requires only
combinational logic. The carry input data to the adder must exist across machine statc boundaries and requires
laich storage. The control for the A and B input gating requires both storage and transient-free gating. Storage is
necessary on laich signals to hold data across state boundaries; transieni-free gating is needed on the other inputs
to protect the data. .

The DATA PATH CNTL module must effect processor data iransfers to the DATA PATHS from both the
Unibus and the REGISTER. The REGISTER transfers occur with normal processor timing and require no speciat
logic. Bus transfers, however, are asynchronous and bus signals control. Logic to translate the bus signals to
processor signals is needed, with these signals being used for data control, bus response and basic timing.

Ké-1

Keé-2

{CLOCK INPUT TO LATCH A} !

4-18

K62 P DATA START H provides a pulse signal for the restarting of processor operation after a data in or
data out transfer. Bus control signals for data transfers (K 13-3 B SSYN H) and for interrupt vector transfers
{K13-2 B INTR H) are used directly after deskewing (8 = 100NS) to produce the signal. (The pulse nature
of the output resuits from bus constraints on the outiput signals.) If no response is made by the addressed
peripheral after a suitable time, a restart signal occurs (K13-2 P TIME OUT L). The Ko-2 P DATA
RESTART H signal is used: to restart the processor clock if no NPR is to be serviced (K1-2 P CLK
RESTART L); and to generate an intermediate cleasing signal (Ki-2 DATA CLR) for MSYN (K13-3
MSYN (1) H) and for BBSYF (K12-3 BBSY F (1} H) if an NPR is to be serviced.

K6-2 CLK IR H provides the clock signzl to the Instruction Regsiter (IR) during FETCH major state. The
signal is derived from the usual latching signal to DATA PATHS. Bus daéa is loaded to the IR and the
DATA PATHS; in the latter if is utilized in offset instructions.

K6-2 LATCH A15/0 H provides the storage signal for all A inputs of the DATA PATHS; this signal holds
the data in the A inputs. The signal is usually active, except for a clear before load. A flip-flop (LATCH A)
is used to insure transient-free storage across machine state boundaries.

Latch operation is required in two lypes of data transfers to the DATA PATHS: one transfer is from
REGISTER and the other is from the Unibus. Different timing signals are involved and are noted below
with appropriate timing diagrams.

1

oo 1 0 1
R/W STATES I }
|
!
I

o
[
=]
-

e

A

m
(2]

ISR OR BSR STATES

X _¥ __
E

. ___]___

=

K1-2 REG BATE H

] T R 3

K1-2 REG LATCH H

"]

DATA WAIT {(1JH

SET INPUT TO LATCH A

INVERSE DATA INPUT ®

TOLATCH A
LATCH A {1} H

i}

|

[

K&-2 LATCH A1S/0 H

i

M-0134

Figure 4-4 Regisier Data Transfer Timing Diagram

4.10.1 Register Data Transfer

The REGISTER data transfer (Figure 4-4) utilizes normal processor timing; the control signals to the LATCH A
flip-flop are derived from the basic clock (K1-2 § CLK H) and are dircctly related to machine time states (ISR or
BSR). During operation the LATCH A flip-flop is clocked to zero (K1-2 REG GATE H) if the inverse data input
indicates a data change {load) to the DATA PATHS during this ISR or BSR state. A non-active or non-asserted
K6-2 LATCH A 15/0 H allows the DATA PATHS latches to be cleared. Independent of whether the LATCH A
flip-flop is cleared or not, the flip-flop is set by the inverse of K1-2 REG LATCH H and the absence of DATA
WAIT (1) H. This assertion or continuation of assertion of K&-2 LATCH A15/0 H hoids data in the DATA
PATHS latches regardless of machine state or transients at machine state change (noted by shaded areas on
“Inverse Data Input to LATCH A™").

Either the LATCH A or LATCH B flip-flop may be independently “loaded to zero” and set in this way. The
enabling signals for the “load to zero™ on the LATCH flip-flops are alsc the load enable signals to the DATA
PATHS inputs.

INTR |

K6-2 P DATA START H = DATA WAIT (1) { B S5YN * PROC CNTL * B INTR } + P TIME OUT
K62 CLK IR H =B FETCH (1) [{ DEP * CSR2 + LOAD ADRS * CSR| } * P2 CS5R + P TIME OUT + DATA WAIT -l B S5YN * PROC CNTL + B

K6-2 CLR LATCH A L = ISRQ § SERV 0 * - (WAIT * - TRAPS) +JSR * B EXEC (1) + CSR2} + CLR ON BSR
K6-2 CLR LATCH B L = ISRO {SERV0 * - (WAIT * - TRAPS} + ISR * B EXEC (1) + CSR2 } + B EXEC (1) { ISR7 * EXTRA +CLR * iSR1}
K6-2 DATA WAIT < | L = BSR7 * - DATO ENTRY * - (ADRS DONE) * - (JMP + JSR)

4.10.2 Unibus Data Transfer

The Unibus data transfer (Figure 4-5) utilizes some processor timing, the asynchronous bus signals, and an addi-
tional machine state called DATA WAIT. During the BSR state in which the processor is to halt for an asynchro-
nous data input, the DATA WAIT flip-flop is “loaded to one™ by the inverse data input (K6-2 DATA WAIT 11)
and clock (K1-2 R/W2). Note that this occurs on the entry to RfW?2, the clock phase in which the machine
halts. The clocking of DATA WAIT to one, produces a pulse (K6-2 P CLR LATCHES L} that clears both LATCH
flip-flops (and both sets of input latches on DATA PATHS). The machine remains in this state (clock halted)
until a bus control signal (here typified by K6-2 P DATA START H and enabled by K6-2 DATA WAIT (1) H)
sets the LATCH flip-flops. This stores the bus data in the appropriately gated latches on DATA PATHS and feeds
around through Ké-2 LATCH B (1) L and K&-2 P CLR DATA WAIT L to clear DATA WAIT.

KI-BSCLKH—J l oy [l.__

R/W STATES

o
i
M

]

ISR OR BSR STATES

1
| y__——
%% 1
K&-2 DATA WAIT=—1 L t f
|

1

DATA WAIT {1} H . !

|
KG-2 P CLR LATCHES L ‘.I_F{: ;
l
L

H
f

K&-Z P DATA START H

LATCH A (1)H | I

K6-2 LATCH A1B10 H

KE-2 LATUH BIO)L
¥6-2 F CLR DATA WAIT H J

1-9133

Figure 4-5 Unibus Data Transfer Timing Diagram

Both LATCH A and LATCH B are simultaneously loaded to onc and set. No data is held in the DATA PATHS
latches during a bus data in transfer; the data transfer, however, can be to either the A Input or B Input.

The above sequences are also initiated for certain console operations. Console Shift Register (CSR) timing is used
instead of the basic processor clock (K1-2 8 CLK L). The DATA WAIT flip-flop, in this instance, is set (K6-2 P
SET DATA WAIT L) instead of “loaded to one”. The asynchronous bus control signal is present on Unibus
transfers; on internal transfers (REGISTER) the signal K 13-4 P2 CSR H into pin 5 of E36 provides the set signal
to the LATCH flip-flops. Noie that this signal does not become part of the processor clock restart signal (K6-2 P
DATA START H); the processor clock is not used for console fiming. Details of console operation are noted in
the KY11-A manual and the BUS & CONS CNTL discussicn of the KA1l manual.

K62
K6-2 LATCH B (0) H provides a test point for the LATCH B flip-flop.

K6-2 LATCH B15/0 H provides the storage signal for all B Inputs of the DATA PATHS; this signal holds
the data in the B inputs. This signal is usnally active, except for a clear before load. A flip-flop {LATCH B)
is used to insurc fransient-free storage across machine state boundaries.

Details of latch operaiisn are noted under the signal K6-2 LATCH A15/0 H. The B LATCI is activated at
different times during internal data transfers; this difference is apparent from the inverse data inputs to
LATCH A and LATCH B flip-flops.

K6-2 P CLR DATA WAIT H provides a test point for the clear signal to the DATA WAIT flip-flop. ts pulse
activation from the resetiing of LATCH B flip-flop has been noted under the signal K6-2 LATCH A 15/0 H.
It is incidentally activated by K15-2 WAIT CLR H whose main purpose is to clear the latches on DATA
PATHS (K6-2 P CLR LATCHES L) for a possible INTR cycle; the DATA WAIT flip-flop is already cleared
at that time.

K6-2 DATA WAIT < 1 L provides an inverted data input to “load to one™ the DATA WAIT flip-flop. {ts
use has been noted under the signal K6-2 LATCH A 15/C H; it is also used to turn the processor clock off
(K1-2 CLK RIUN < 0 L). The DATA WALT {lip-flop is active only on a data in transfer from the Unibus. On
a daia out transfer, the laiches of DATA PATHS are not altered and the restart signal (K6-2 P DATA
START H) is inhibited from the LATCH flip-flops.

4-19

Ke6-3

4-20

K6-3 GATE A + R15/1 H enables REGISTER data for bits {15:1) to the A Input of the DATA PATHS.
Transients from machine state changes, which might destroy data, are eliminated by the gating timing
signal, K1-2 REG GATE H. This signal is not active until two R/W states after machine state changes (K1-2
S CLK H).

K6-3 GATE A «< -R15/1 H enables the inverse of REGISTER DATA FOR BITS {15:1} to the A Input of
the DATA PATHS. Transient-free activation is as noted in signal K6-3 GATE A < R15/1 H.

K6-3 GATE A + RO H cnables the REGISTER data for bit 00 to the A Input of the DATA PATHS.
Segmentation exists on the A Input bits to allow the generation of constants. Transient-free activation is as
noted in signal K6-3 GATE A < R15/1 H,

K6-3 GATE A « -RO H enables the inverse of REGISTER data for bit 00 to the A Input of the DATA
PATHS. Segmentation exists on the A Input bits to allow the generation of constants. Transient free
activation is as noted in signal K6-3 GATE A < R15/1 H.

Ké-3 GATE LEFT 15/0 H enables the rotatefshift gating of the DATA PATIIS; bit n of the adder output is
enabled to bit {n + 1) of the DATA PATHS output; specific data is supplied bit 00 (K10-4 LEFT DATA
00 L).

K&-3 GATE RIGHT 15/0 H enables the rotate/shift gating of the DATA PATHS: bits (n + 1) of the adder
output is enabled fo bit n of the DATA PATHS output; specific data is supplied bit 15 (K10-4 RIGHT
DATA 15 L).

K6-3 GATE ADD 15/8 H enables the adder output, bits {15:08} directly to the DATA PATHS outputs
whenever no other function of the rotate/shift gating is cnabled.

K&-3 GATE ADD 7/0 H enables the adder ocutputs, bits {07:00}, directly to the DATA PATHS outputs
whenever no other function of the rotatefshift gating is enabled.

K6-3 EXTRA H provides for extra machine cycles necessary on certain instructions (BIC, BIT and
ROT/SHF to an odd byte). The signal is used: to alter machine flow (K2-2 SHIFT ISR H and K2-2 ISR < ¢
L}); to alter the Condition Codes clocking on ROT/SHF to an odd byte (K10-4 CLK N, Z, ¥, H and K10-4
CLK C H); to recycle data through the TEMP location of REGISTER (K4-3 W/ENABLE 15/8 L, K4-3
W/ENABLE 7/0 L and K4-2 RA/TEMP L) to load the DATA PATHS (K6-2 CLR LATCH B L).

K6-3 GATE BYTE 7/0 H cnables the upper byte data from the adder bits {15:08} to the DATA PATHS
outputs bits (07:00.

K6-3 GATE BYTE 15/8 H enables the lowcer byte data from the adder bits {7:00} to the DATA PATHS
ouipuis bits {15:08>.

K6-3 GATE A « R 15/1 H = REG GATE { (ENABLE A « R) + ADD (-1) + ADD (-2)}

K6-3 GATE A < R15/1 H = REG GATE { (ENABLE A < -R} + ADD (-2} + ADD (-1)}

K6-3 GATE A < ROH = REG GATE } (ENABLE A < R)+ ADD (-1) + ADD (+2) }

K6-3 GATE A « -R0 H = REG GATE § (ENABLE A <-R)+ ADD (-) + ADD (+2) }

K6-3 GATE LEFT 15/0 H = B EXEC (1) [{ ISR3 + ISRi5 * BAROO (0)} ROT/SHF L + ISR1 * BRANCH]
K6-3 GATE RIGHT 15/0 H = B EXEC (1) [{ ISR3 +ISR15 * BAR0O (0) } ROT /SHF R]

K6-3 GATE ADD 15/8 H = - |GATE LEFT 15/0 + GATE RIGHT 15/0 + GATE BYTE 15/8]

K6-3 GATE ADD 7/0 H = - [GATE LEFT 15/0 + GATE RIGHT 15/0 + GATE BYTE 7/0)

K6-3 EXTRA H = BIT + BIC + ROT/SHF * BAROO (1)

K6-3 GATE BYTE 7/0 H = B EXEC (1) * ISR15 * SWAB + BSR15

K6-3 GATE BYTE 15/8 H = B EXEC (1) [ISR15 { SWAB + (U + B + R/S) * BAROO (1) * - (DEST MODE 0) } |
K6-3 ADD (-1) L = B EXEC (1) * ISR1 * § SBC + DEC + C (1) } +(SO + DE) * ISR1 * BSR1 * ADRS BYTE OP * ADRS MODE 4

K6-3 ENABLE A < R L = BDEST (1} * BSR14 * (A <« DEST/iNSTR) + B EXEC (1) [ISR7 * (BRANCH + ROT/SHF) + ISR1 * (ADD + BIC)] + (50 +
DE} * BSR1 * ISR3 * ADR MODE (6+7)

K6-3 ADD (-2) L= B EXEC (1) * ISR0 * BSR1 * ISR + (SO + DE) * ISR} * BSR1 * ADRS MODE (4+3) + SERVICE * [SR (347) * BSR]
K6-3ENABLE A < -R L =B EXEC (1) [{SRO * (A « DEST/INSTR) + [SR] * (SUB + BIT) + ISR7 * (- ROT/SHF * EXTRA})}

K6-4 GATE B < B P15/0 H enables buffered bus data for bits {15:00} to the B Inpuf of the DATA PATHS.
Transient-free activation is effected by the gating of K6-2 DATA WAIT (1) H.

K6-4 GATE A < -B D15/0 H enables the inverse of buffered bus data for bits {15:00} to the A Input of the
DATA PATHS. Transient-free activation is effected by the gating of K6-2 DATA WAIT (1) H.

K6-4 GATE B < R7/0 H enables the REGISTER data for bits {07:00) to the B Input of the DATA PATHS.
Transients from machine state changes, which might destroy data, are climinated by the gating timing
signal, K1-2 REG GATE H.

K64 GATE B < STPM H enables the Special TraP Markers (STPM) to the B Input of the DATA PATHS.

K64 GATE B < R15/8 H enables the REGISTER data for bits {15:08) to the B Input of the DATA
PATHS. Transient-free activation s as noted in K6-4 GATE B + R7/0 H.

K6-4 GATE SEX H enables Sign EXtension (SEX) into the upper byte B Inputs of DATA PATHS.
Transient-free activation is as noted in K64 GATE B < R7/0 H.

K6-4 GATEB+~BDI15/0H = { - B DEST (1} +- ADRS DONE} (A« DEST/INSTR) * DATA WAIT (1)
K64 GATE A< -BD 15/0 H=B DEST (1) * DATA WAIT (i) * (A <« DEST/INSTR) (ADRS DONE)

K6-4 ENABLE B <« RL =B EXEC (1) * [ISR] * GATE B/ISR1 + ISR15 * RTS + ISR7 * JSR + ISR3 * BRANCH] + SERVICE * ISR0O * HALT E (1} +
BSR 14 (- ENABLE A < R) + BSRI * (- DEP) * - [ISR7 * (580 + DE) + ADRS MODE (3+5+6+7)]

K6-4 GATE B < R7/0 H = REG GATE * (ENABLE B « R)

K6-4 GATE B < STPM H = SERVICE * TRAPS * SERV 0 * - (HALT F (1))

K64 CATER ~ R15'8H = REC CATE * (ENABLF B+ R} *. SEX

K6-4 SEXH =B EXEC (1} * [ISR3 * BRANCH + ISRt * IR15 * MOV * DEST MODE 0]
K6-4 GATE SEX H = REG GATE * - SEX * { MOV * R07 (1) + BRANCH * R0OS (1) }

Ké6-4

4-21

Kg-5

K6-5 CARRY 00 {1} L provides the carry input data to bit 00 of the DATA PATHS adder. Storage of this
input information across machine state boundaries is effected by the discrete gate Set-Reset flip-flop. This
flip-flop is set by the signhal K6-5 CARRY 00 < 1 L and cleared by the signal K6-2 CARRY 00 < 0 L, K6-2

PCLR LATCHES L and K6-2 CSR 2 L.

K6-5 ADD (+2) L = BSR3 [B FETCH (1) * ISRO + SERVICE * ISR (12+15) + B EXEC (1) * " ISR (12+15) * RT1 +ISR12 * RTS} +(DO+ DE} *
ISR1 * ADRS BIT 1 * { - ADRS BYTE OP +- ADRS MODE 2}] + CSR1 (DEP + EXAM) * INCF * - (REF ADRS)

K6-5 CARRY 00+« QL =BEXEC (i) * BSR1 * JSR + SERV0O+ FETCH (1} * BSRI1 + BSRO * DATO ENTRY
K6-5 CARRY 00« 1 L=BEXEC (1) * ISR]1 * CARRY INSTR + (50 + DE) * BSR3 * ADRS BIT | + ADD (+2) + CSR1 * INCF * (DEP + EXAM)
K6-5 CARRY 00 (1) L= (CARRY 00 «- 1} * CARRY 00 + CARRY 00 (1) *- (P CLR LATCHES) * - (CSR2) * [- CARRY (00 +- CARRY 00 « 0}

4-22

4.11 DATA PATHS, M224

4.11.1 General

The DATA PATHS are central to the flow of data through the KAll Processor. Its input receives all data from
the bus; its output provides both address and data information to the bus; its inputs and outputs to the
REGISTER complete an internal data flow loop. All transfer and alteration oi data within the processor is done
through the DATA PATHS. Two DATA PATHS modules are used within the KA1l fo provide the 16 parallel

DATA PATHS. The following discussion relates to both M224 modules, DATA PATHS 1 and DATA PATHS 2.

The DATA PATHS consist of three main segments: the input gating and latches; the adder; and the output
rotate/shift gating.

4.11.2 Input Gating and Latches

The inpul gating provides each of the two adder inputs (A input and B input} with input selection, necessary
input inversion, and storage. A latch storage techmigue, integral to the selection gate, provides rapid data
transmission to the adder with subsequent data retention. The A input gating selects: the complement of bus
data; register data; and the complement of register data. The B input gating selects: bus data; register data; and
special trap markers or sign extend.

The A input gating is further used to generate constants within the DATA PATHS. The simultaneous enabling of
data and its complement into an oring gate (the 74H53 pate) produces a logical “1”" input. This logic certainly (X
+ X = 1) is used within the A inputs on register data, with the A inputs bit seemented to provide different
constants. This segmentation is used in conjunction with non-gating (no inputs enabled} which produces a logical
“0” input. For example, the constant -2, (177776)5, 1s produced by ¢nabling data and its complement on bit 15
through 01, and non-gating bit 00. The constant -1, (177777), is produced by enabling data and its complement
on all 16 bits. The constant +1, (000001)g, and +2 (000002}, use the carry input fo the adder fo provide a
constant +1. For the constant +2, the A input gating is also used to produce an additional +1 with non-gating on
bits 15 through bit 01, and data and its complement on bit 00,

The laiches provide data storage for the A and B inputs to the adder. The 74H53 gate with its multiple inputs
and the feedaround 74HO0Q gate provides a Set-Reset type of [lip-flop. A simpiified redrawing (Figure 4-6) of the
input gating emphasizes this:

ADDER
INFUT

LATCH
BODITIONAL
GATE GATE AND
DATA INPUT
DATA
1013l

Figure 4-6 Latch Input Cating

K7-1

Disabling the LATCH input with the GATE (GATE here representing any of the gating inpuls) signal low results
in the flip-flop being reset or cleared. The “0” side of the flip-flop, the ADDER INPUT, is high. Disabling the
LATCH input with the GATE signal high loads the {lip-flop with the DATA signal. If the LATCH signal is
enabled before the GATE signal is removed, the DATA signal is stored within the latch.

Storage of information within the DATA PATHS provides information across machine state boundaries. The
first of two operands from REGISTER is stored while the second is being obfained. A write back into
REGISTLR with the data, a function of REGISTER output, is possible. Bus data is latched into the DATA
PATHS, allowing the bus or peripheral read/write memory to finish their cycles.

4.11.3 Adder

A conventional MSI adder is used, two bits within each package. Each bit has a summation output (£), an A and
a B inpul. Every two bits have a carry-out and a carry-in signal. All signals into and out of the adder are asserted
at the low level. Note that if only one operand (A or B} exists in the adder (the other input zero) the adder is
merely a through gate.

4.11.4 Rotate/Shift Gating

The rotate/shift gating on the adder output allows selection of certain data as the Dala Path output. Selections
include: the direct output of the adders; the adder cutpur shifted (or rotated) one bit position right or left; and
lower or upper segments (bytes) of the complete (16 bits) adder, The direct output is used in most instances (the
adder is altering data or merely transmitting it). The shifted (or rotated) output is utilized with ROT/SHF
instructions and when a signal bit left justificaiion is required ol an offset. The gating of segments (bytes) is used
for: right justifying upper byte data for instruction manipulation (all byte data is right justified within the
processor); the gating of output byte data to the upper bus data lines (they also appear on the lower data path
ontputs for Conditions Codes scensing), and for swapping upper and lower byte segments in the SWAB
instruction.

The output signal of the data path provides asserted data levels high. If the direct oufput is to be used, the
output of the adder provides asserted data at the low level.

K7-2

4.12

DATA PATHS 1

Since the Data Paths are redundant and heavily concerned with selection, both input and output (K7-2 prefixes)
signals are discussed. This module provides the data paths for bits <07:00%, most having common operation. The
discussion will be ordered toward this lower portion of word data, with the exceplions for byte operation and
bit 00 noted. Some of the gating signals reference wider bit segments than DATA PATHS 1 encompasses, extract
appropriate bit segments for DATA PATHS 1. Multiple inputs of the same signal are occasionally used as the
M224 module accommodates different bit functions on DATA PATHS 1 and DATA PATHS 2.

4-24

K7-2 D {07:00¢ H provides main data path oulput [or bits 07 through 00 which is used for bus data, bus
address (BAR input) STATUS data, or processor operands (REGISTER input). This output represents the
complete interaction of present and past Data Paths gating and input data.

K.7-2 ADD {07:00} L provides ithe direct adder output of the data paths prior to the rotate/shiit gating. For
singte shifts (or rotates) most of these outputs are used internal to the module, only the end bits are utilized
elsewhere. For byte manipulation, the adder outputs are the input to the DATA PATHS 1 rotate/shift
gating. For situations where the adder ountput is directly gated, it is the complement data of the main data
path output.

K6-3 GATE RIGHT 15/0 H enables the rotatefshift gating to transfer the (nth + 1) bit adder output to the
nth bit data path output.

K6-3 GATE ADD 7/0 H enables the rotate/shift gating to transfer directly the nth bit dula path cutput.

K63 GATE BYTE 7/0 H enables the rotatefshift gating to transfer the upper byte data (adder output bits
15 to 08) to the lower data paths outputs, bits 07 to 00 respectively.

K6-3 GATE LEFT 15/0 H enables the rotate/shift gating to transfer the nth-1 bit adder output to the ath
bit data path outpui.

K10-4 RIGHT DATA 07 L provides proper rotate or shift data to the bit 07 data path output upon a sight
rotate or a right shift. See discussion on K10-4 outpuls.

K7-2 ADD (15:08} L provides the inputs to the rotate/shift gates for the transfer of upper byte information
to the lower byte by K6-3 GATE BYTE 7/0 H.

K104 LEFT DATA 00 L provides the (nth -1) bit data for bit 00 for shift left or rotate left; gated by K6-3
GATE LEFT 15/0 H.

K7-2 CARRY 07 L is the output carry from bit 07 of the adder. This is input data for adder bit 08 and the
C bhit of Condition Codes for byte operation.

K6-5 CARRY 00 {1) L is the input carry to bit 00 of the adder, providing for the incrementation of data
for instruction execution (INC, ADC) and constant generation (+1, +2).

K7-2 DATA 07 L provides the A inpul to bit 07 of the adder, after input selection. Bit 07 is the sign bit of
an arithemetic byte; this output is used in calculating overflow for the V bit of the Condition Codes.

K6-2 LATCH A 15/0 H enables the A input latch to store the selected A input data. The toad operation
requires that this signal be disabled during the loading (to clear the latch) and enabled prior to data

removal. Data remains stored until the disabling of the LATCH A [5/0 signal. If a subsequent load sequence
omits the disabling of the signal {clearing) an “oring” of latch content and input data occurs.
Simultaneously enabling of more than one input also effects this (the use of X and X to produce constants).

K6-3 GATE A < R 15/1 H enables the REGISTER output to the A input of the adder for bits 07 to 01.

K6-6 A <« R 15/1 H enables the complement of the REGISTER output to the A input of the adder for bits
07 to 0l. The compiement is provided by NAND gate inversion upon the modules. The simultaneous
enabling of the true and complement of the REGISTER into the same adder input bit allows the generation
of a “1” in that bit. The restriction of the gating signal to bits {15:1> allows flcxibility in generaling the
constant in the low order bit.

K6-3 GATE A « -B D15/0 H enables the complement of buffered bus data to the A input of the adder. The
complement is provided by NAND pate inversion upon the module.

K6-3 GATE A < RG H enables the REGISTER output to the A input of the adder for bit 00. This input is
segmented from the R input gate to allow the generating of constants (4R, -1 and -2). This signal is cnabled
with K6-3 GATE A < R15/1 for the loading of REGISTER data.

K6-3 GATE A < -R0 H enables the complement of the REGISTER output to the A input of the adder for
bit 00. The complement is provided by NAND gate inversion on the module. This input is segmented from
the other -R inpuis to allow the generation of constants (+2, -1, and -2). This signal is enabled with K6-3
GATE A < R15/1 for the loading of REGISTER data.

K7-2 B DATA 07 L provides the B input to bit 07 of the adder after input selection. Bit 07 is the sign bit of
an arithmetic byte: this ouiput of the adder input is used in calculating overflow for the V bit of Condition
Codes.

K6-4 GATE B < D15/0 H enables the buffered bus data to the B input of the adder.

K6-2 LATCH B i5/0 H enables the A Input Latch Lo store the selected B input data. See discussion under
K6-2 LATCH A 15/0 H for loading and storing. No “oring” takes place within the B Latch.

GND 09 disables some unnecessary A inputs.
K64 GATE B < R7/0 H enables the REGISTER output to the B input of the adder.

Ké&-4 GATE B < STPM H enables the address data of the Special TraP Markers used during trap sequences.
Only bits 05, 04, (3, and (2 are enahled with the data of bit 05 disabled by the GND 09 signat.

K3-3 B D ¢{15:08) provides the buffered bus data for the A and B adder input selection gates. Inversion of
this data to produce the complement occurs on the module.

K5-2 R {15:08 {1) H provides the REGISTER data for the A and B adder input selection gates. NAND gate
inversion of this data to produce the complement occurs on the module.

K12-3 STPM (04:02 provides the address data for the Special TraP Markers. This address reflects the
specific trap being sequenced by the processor and is enabled to the data path {or temporary storage in
REGISTER.

4.13 DATA PATHS, M224

4.13.1 General

The DATA PATHS are central to the flow of data through the KAl] Processor, Its input receives all data from
the bus; its output provides both address and data information to the bus; its inputs and outputs to the
REGISTER complete an internal data flow loop. All transfer and alteration of data within the processor is done
through the DATA PATHS. Two DATA PATHS meodules are used within the KA1l to provide the 16 parallel
data paths. The following discussion relates to both M224 modules, DATA PATHS 1| and DATA PATHS 2.

The DATA PATHS consist of three main segments: the input gating and latches; the adder; and the output
rotate/shift gating.

4.13.2 Input Gating and Latches

The input gating provides each of ihe two adder inputs (A input and B input} with input selection, necessary
inpui inversion, and storage. A latch storage technique, integral to the selection gate, provides rapid data
transmission te the adder with subsequent data retention. The A input gating selects: the complement of bus
data; register data; and the complement of register data. The B input gating selects: bus data; register data; and
special trap markers or sign exiend.

The A input gating is further used to generate constants within the DATA PATHS. The simultaneous cnabling of
datz and its complement into an oring gate (the 74H33 gate) produces a logical **1* input. This logic certainty (X
+ X = 1) is used within the A inputs on register data, with the A inputs bit segmented to provide different
constants. This segmentation is used in conjunction with non-gating (no inputs enabled) which produces a logical
“0” input. For example, the constant -2, (177776), is produced by enabling data and its complement on bit 15
through 01, and non-gating bit 00, The constant -1, (177777);, is produced by enabling data and its complement
on ull 16 bits. The constant +1, (000001),, and +2 (000002)5, use the carry input to the adder to provide a
constant +1. For the constant 42, the A input gating is also used to produce an additional +1 with non-gating on
bits 15 through hit 01, and data and its complement on bit 00.

The latches provide data storage for the A and B inputs to the adder. The 74H53 gate with its multiple inputs
and the feedaround 74HOO gate provides a Set-Reset type of flip-flop. A simplified redrawing of the inpul gating
emphasizes this:

ADDER
INPUT

LATECH
ADDITIONAL
GATE GATE AND
DATA INPUTS

DATA

1+-0131

Figure 4-7 Latch Input Gating

K8-1

Disabling the LATCH input with the GATE {GATE here representing any of the gating inputs) signal low results
in the flip-flop being reset or cleared. The “07 side of the flip-flop, the ADDER INPUT, is high. Disabling the
LATCH input with the GATE signal high loads the flip-flop with the DATA signal. If the LATCH signal is
enabled before the GATE signal is removed, the DATA signal is stored within the latch.

Storage of information within the DATA PATHS provides information across machine state boundaries. The
first of two operands from REGISTER is stored while the second is being obiained. A write back into
REGISTER with the data, a function of REGISTER output, is possible. Bus data is latched into the DATA
PATHS, allowing the bus or peripheral read/write memory to finish their cycles.

4.13.3 Adder

A conventional MSI adder is used, two bits within each package. Fach bit has a summation output(Z), an A and
a B input. Every two bits have a carry-out and a carry-in signal. All signals into and out of the adder are asserted
at the low level. Note that if only one operand (A or B) exists in the adder (the other input zero) the adder is
mercly a through gate.

4.13.4 Rotate/Shift Gating

The rotate/shift gating on the adder cutpul allows selection of certain data as the Daia Path ouiput. Selections
include: the direct output of the adders; the adder cutput shifted (or rotated) onc bit position right or left; and
lower or upper segments (bytes) of the complete (16 bits) adder. The direct output is used in most instances (the
adder is altering data or merely transmitting it). The shifted (or rotated) output is utilized with ROT/SHF
instructions and when a signal bit left justification is required of an offset. The gating of segments (bytes) is used
for: right justifying upper byte data for instruction manipulation (all byte data is right justified within the
processor), the gating of output byfe data to the upper bus data lines (they also appear on the lower data path
outputs for Conditions Codes sensing); and for swapping upper and lower byte segments in the SWAB
instruction.

The output signal of the data path provides asserted data levels high. If the direct output is to be used, the
output of the adder provides asserted data at the low level.

4.14 DATAPATHS 2

Since the Data Paths are redundant and heavily concerned with selection, both input and output (K8-2 pretixes)
signals are discussed. This module provides the data paths for bits {15:08), most having common operatior. The
discussion wil} be ordered toward this upper portion of word data, with the exception for byte operation noted.
Some of the gating signals reference wider bit segments than DATA PATHS 2 encompasses; extract appropriale
bit segments for DATA PATHS 2. Multiple inputs of the same signal are occasionally used, as the M224 module
accommodates different bit functions on DATA PATHS 1 and DATA PATHS 2.

K82 D (15:08 H — provides the main data path output for bit 15 through bit 08 which is used {or bus
data, bus address (BAR input} or processor operands (REGISTER input). This output represents the
complete interaction of present and past data paths gating and input data.

K82 ADD (15:08) L provides the direct adder outpuf of the data paths prior to the rotaie/shilt gating. For
single shifts (or rotates) most of these outputs are used internal to the module, only the end bifs are ntilized
elsewhere. For byte manipulation, the adder outputs are the input to the DATA PATHS 1 rotate/shift
gating. In situations where the adder output is directly gated; it is the complement data of the main data
path ouiput.

K6-3 GATE RIGHT 15/0 H enables the rotate/shift gating to transfer the {n th + 1) bit adder output to the
nih bit data path output.

E6-3 GATE ADD 15/8 H enables the rotate/shift gating to transfer directly the nth bit adder output to the
nth bit data path output.

Ké-3 GATE BYTE 15/8 H enables the rotate/shift gating to transfer the lower byie data (adder output bits
07 to 00) to the upper data paths outputs, bits 15 to 08, respectively.

K6-3 GATE LEFT 15/0 H enables the rotatefshift gating to transfer the nth -1 bit adder output to the nth
bit data path output.

K10-4 RIGHT DATA 15 L provides proper rotate or shift data to the bit 15 daia path output upon a right
rotate or a right shift. See discussion on K10-4 outputs.

K7-2 ADD {07:00) L provides the inputs to the rotate/shift gates for the transfer of lower byte information
to the upper byte by K6-3 GATE 15/8 H.

K7-2 ADD 07 L provides the (nth -1} bit data for bit 08 on shift left or rotate left; gated by K6-3 GATE
LEFT 15f0 H.

K82 CARRY 15 L is the output carry from bit 15 of the adder. This is input data for the C bit of the
STATUS word.

K7-2 CARRY 07 L is the input carry to bit 08 of the adder, during addition in the data paths.

K82 A DATA 15 L provides the A input to bit 13 of the adder after input selection. Bit 15 is the sign bit
of an arithmetic word and this output is used in caleulating overflow for the V bit of Condition Codes.

K6-2 LATCH A 15/0 H enables the A input latch Lo store the selected A input data for the load operation
requires that this signal be disabled during the loading {to clear the latch) and enabled prior to data
removal. Data remains stored until the disabling of the LATCH A 15/0 signal. If a subsequent load sequence
omits the disabling of the signal (clearing) an “oring” of latch content and input data occurs.
Simultaneously enabling of more than one input also effects this (the use of X and X to produce constants).

K6-3 GATE A < R15/1 H enables the REGISTER output 1o the A input of the adder for bits 15 to 03, The
signal inputs twice to all for the gating of the lower bit required of the M224 in DATA PATH 1 use.

K63 A < R15/1 H enables the complement of the REGISTER output to the A input of the adder for bits
15 to 08, The complement is provided by NAND gate inversion upon the module. The signal inputs twice
to aflow for the gating of the tower bit required of the M224 in DATA PATH | use. The simultaneous
enabling of the true and complement of the REGISTER into the same adder input bit allows the generation
of a “1” in that bit. The restriction of the gating signal to bits {15:1} allows flexibility in generating the
constant in the low order bit (see DATA PATHS 1).

K6-3 GATE A < -B D15/0 H enables the complement of buffered bus data to the A input of the adder. The
complement is provided by NAND gate inversion upon the module.

K82 B DATA 15 L provides the B input to bit 15 of the adder after input selection. Bit 15 is the sign bit
for an arithmetic word and this output of the adder input is used in calculating overflow for the V bit of
Condition Codes.

K64 GATE B < B D15/0 H enables the buffered bus data to the B input of the adder.

K62 LATCH B 15/0 H enables the A Tnput Latch to store the selected B input data. See discussion under
K6-2 LATCH A 15/0 H for loading and storing. No “oring™ takes place within the B fatch.

K6-4 GATE SEX H enables all Is into the B input latch bits {15:8 and effects the Sign EXtension of
negative byte data {sign bit is 1} through all bits of the upper byte when desired. The extension of a positive
byte sign bit {sign bit is 0} utilizes the cleared state of the latches and requires no active signal. Multiple
inputs both as gate and data signals accommodate diverse function of the M224 modules in DATA PATHS
1 and DATA PATHS 2.

K64 GATE B < R15/8 H enables the REGISTER output to the B input of the adder.

K3-3 B D (15:08) provides the buffered bus data for the A and B adder input selection gates. Inversion of
this data to produce the complement occurs on the modules.

K5-2 R {15:08} {1) H provides the REGISTER data for the A and B adder input selection gates. NAND gate
inversion of this data to preduce the complement occurs on the module.

4.15 BUS INTERFACE & IR

Besides the Instruction Register, the module contains: combination logic for output gating, address sensing,
and data detection; the Bus Address Register (BARY); the processor Status word (STATUS); and the bus interface
for BAR, STATUS and lower byte data (D07:003).

The instruction Register (IR {15:00}) accepts instruction data directly from the bus after input buffering; its
outputs and decoded outputs are used throughout the processor for machine flow decisions and register address
data. The Bus Address Register (BAR) is used by the processor and console for all bus addresses. Data input is
directly from the DATA PATH outputs with the Unibus gated from the register, the register contents appear in
the consoles ADDRESS REGISTER display.

K9-1

Processor STATUS word occupies the lower byte of bus address {777776); and consists of three bifs for Priority
(ST{D7:05%) and five bits for Condition Codes (T, N, Z, V, C). The upper portion is directly loaded from the
DATA PATIHS while the Condition Codes require the additional gating of CODES DATA and specific gating
dependent on the last instruction. Also associated with the N, Z, V, and C bits are set and clear gating to
implement the microprogrammed instruction to set or clear specific Condition Codes. The direct STATUS
register outputs are used within the processor on PRIORITY, CODES DATA, IR DECODE and DATA PATH
CNTL for data and for decision.

The output of STATUS to the Unibus data lines is “wired or’ed” within the module to the Unibus output of
lower byte data from the DATA PATHS. A minimum of module pins are expended in this arrangement.

K9-2

The module is essentially a register module (IR, BAR, STATUS) with its combinational logic directly related to
the input, outpul or outpui (bus) controf signals. Two signals {K9-2 GATE BUS < D Hand K9-2 GATE BUS «
BAR H)} are derived to gate data from the module to the Unibus. The remaining signals conserve back panel
wiring by directly decoding the register output or the data inpufts on the module.

A discussion of these signals follows:

K9-2 GATE BUS « D H enables the DATA PATH outpul to the Unibus. The data bus interface from
DATA PATHS uses this for lower byte data on this module {prints K9-4 and K9-5) and on PRIORITY for
upper byte data. The signal is usually enabled during the latter portion of DATO or DATOB processor
operations with specific inhibit by the signals that enable the STATUS word or SR (console) to the bus.

K9-2 GATE BUS < ST H enables the STATUS word to the Unibus, The signal is used only within this
module (prints K9-4 and K9-5); and is active when STATUS is explicitly (instruction or console address) or
implicitly (DATO in 4 trap sequence) addressed.

K9-2 GATE BUS « BAR H enables the BAR output to the address lines of the Unibus. This signal is used
only within the module and is active whenever the console or the processor is in control of the bus (K13-4
PROC CNTL H).

K9-2 REG ADRS H detects in the BAR the bus addresscs assigned 1o the processor registers, (777700); to
(777717}, . These addresses are not detected in the processor and arc used only by the console. During
console operation the signals are used: to inhibit the start of the processor clock for EXAM and DEP (K1-3
P CLK RESTART) to select the BAR address input to REGISTER (K4-3 GATE RA < BAR) and to write if
a DEP (K4-3 W/ENABLE 15/8 L and K4-3 W/ENABLE 7/0 L}; to gate the REGISTER ocutput to the B
input (K6-4 ENABLE B « RL); and to limit the console incrementing (for EXAM and DEP) to one for
REGISTER addresses (K6-5 ADD (+2) L. After inversion (K4-3 REG ADRS L) the signal inhibits an entry
into BSR i for EXAM or DEP.

K9-2 ST ADRS H detecis in the BAR the bus address assigned to the processor's STATUS word,
(777776),. This address is used only when the STATUS word is directly addressed by an instruction or the
console. On a read from STATUS, the word is gated onto the bus and the processor supplies the SSYN

signal in response to ifs own MSYN signal. In this bus operation, the ST ADRS signal is used: to cnable the
STATUS word to the bus (K9-2 GATE BUS +« ST H) and to load the processor’s SSYN flip-flop (K13-3
SSYN (1) H). The load to STATUS is done off the DATA PATHS outputs, through CODES DATA,
without a bus cycle. The ST ADRS signal is used here: to inhibit the usual bus cycle entry (K2-3 DATO
ENTRY H): to inhibit the writec 1o REGISTER (K4-3 W/ENABLE 7/0 L and K4-3 W/ENABLE 15/8 L);
and to enable the DATA PATHS to STATUS (K10-4 GATE ST + D H) with appropriate clocking (K10-4
CLK N, Z, vV, H, K104 CLK C H and K10-4 CLK T H).

K9-2 SR ADRS H detects in the BAR the bus address assigned to the console’s SWITCH REGISTER,
(777570). This address is used only when the SWITCH REGISTER (SR) is directly addressed by an
instruction. A pseudo bus operation. similar to the reading of STATUS, is done. The SR is gated Lo the bus
(K13-2 GATE BUS + SR H) and SSYN (K13-2 SSYN (1} H) is used.

K9-2 D 15/8 ZERO L detects afl zeros on the upper byte data from the DATA PATHS. The signal is used
to detect a stack address less than (400), and set the stack OVer FLow Flag (K12-2 OVFLF (1) H).

K9-2 D 15/0 ZERO L detects all zeros on the complete word from DATA PATHS. The signal is gated
within CODES DATA as the Z bit word data (K11-2 Z DATA H).

K9-2 D 7/0 ZERO L detects all zeros on the iower byte data from the DATA PATHS. The signal is gated
withia CODES DATA as the Z bit byte data (K11-2 Z DATA H).

K9-2 BAR {17:16} (1) H pravides the upper two bits of the Bus Address Register and are used in the
console’s ADDRESS REGISTER display. These bits are in excess of the 16 bit data and address paths of
the KA1l and accommodate fulure expansion. The bits are set if an address has D bits {15:13} set; they are
cleared otherwise. These outputs are:

BUS A {17:16) L provides the proper Unibus “wire or'ed” signal for bits (17:1& of the Bus Address
Register.

{continued on page 4-58)

K9-2 GATE BUS < BAR H = PROC CNTL

K9-2 GATE BUS < ST H = SERVICE * [SR3 * BSR (15+14+12+8) * BBSYF (1)+ ST ADRS * PROC CNTL * 88YN (1)
K9-2 GATE BUS < D H = BSR (15+14+12+8) * BBSYF (1) * [- GATE BUS < SR + - (GATE BUS < 5T)]

K92 REG ADRS H =BARI7 (1} * BAR16 {1) * BARIS (1) * BAR14 (1} * BAR13 (1) * BAR12 (1) * BAR!1 (1) * BARI10 (1) * BARO9 (1) * BAROS
(1) * BARO7 (1) * BARO& (1) * BAROS (0) * BARMM (0)

K9-2D 15/0 ZEROL=-DI5 *-D14*.DI3*-DIZ2*-DIL *-DINO*-DO9*-DOE *-D0O7 *-D06 *-DO5 *-D04 *-D03 * - D02 *- D01 *-DO0
Ko-2D 7/0 ZERO L =-D07 * - D06 * - D05 * - D04 * - D03 * - D02 * - DO] * - DOD

K92 ST ADRS H = BARI7 {I) * BAR1& (1) * BARIS5 (1) * BAR14 (1) * BAR13 (1) * BAR12 (1) * BARI11 (1) * BAR10 (1) * BARO9 (1) * BAROS
{1)* BARD7 (1) * BARD6 {11 * BAROS5 (1) * BAR(C4 (1) * BARO3 (1) * BAROZ (1) * BAROI (1) * BARCO (1)

K9-2 SR ADRS H = BAR17 (1) * BAR16 (1) * BARIS (1) * BARL4 (1) * BAR12 (1) * BARIZ (1) * BAR!1 (i) * BARID (1) * BARO9 (1) * BAROS
(1) * BARO7 (1} * BARDG6 (1) * BAROS (1) * BARD4 {1} * BARD3 (1) * BARCG2 (0) * BAROI (0} * PROC CNTL

K-2D15/8 ZERQOL=-DI5*-DI4*-D13*-D12*-DI1 *-DIC *-D09% * - D08

K9-3 IR <15:12) (1) H provides the Instruction Register output for bits {15:12) that are used for instruction
decoding on IR DECODE. Bit 15 is also directly used to generate a byte sign extension (K6-4 SEX H and
K6-4 GATE SEX H) on a MOV io REGISTER.

K9-3 IR ¢11:09} (0} H provides the Instruction Register cutput for bits {11:09} that are used for instruction
decoding on IR DECODE.

K9-3 IR 09 {1} H provides the Instruction Register output for bit 08 that is used for instruction decoding
on IR DECODE. Bit 08 is also used as address data to the REGISTER for the instruction SOURCE base
register.

K9-3

K9-3 BAR {15:08) (1) H provides the Bus Address Register outputs for bits {15:08} and are used in the

console’s ADDRESS REGISTER display.
BUS A {15:08) H provides the proper Unibus signals for bits {15:08} of the Bus Address Register.

4-29

K94

4-30

K9-4 BAR {07:04) (1) H provides the Bus Address Register output for bits {07:04} and are used in the
consoie’s ADDRESS REGISTER display.

BUS A (07:04) L provides the proper Unibus sigpals from bits {07:04) of the Bus Address Repister.

K9-4 B D {07:04 H is the Unibus buffered inputs for bits {07:04} of lower byte data. The signal is used
directly on the module by the Instruction Register (IR {07:04}} and as inputs to DATA PATHS.

K9-4 IR {07:06; (1) H provides the Instruction Register output for bits {07:06 that is used for instruction
decoding on IR DECODE. Thesc bits arc also used as address data 1o the REGESTER for the instruction
SOURCE base register.

K9-4 IR ¢05:04) (0) H provides the Instruction Register output for bits (05:04} that are used for instruction
decoding on IR DECODE. The output of IR04 is also used on BUS INTERFACE & IR to set or clear the
Condition Codes N, Z, V, or C in the OPR instruction.

BUS D {07:04 L provides thc Unibus interface for lower byte data from the STATUS word and DATA
PATHS for bits {07:04). The gated outputs of each of these data sources are “wire or’ed” within the
module. The enabling gaies are activaited separately (K9-2 GATE BUS < D Il or K9-2 GATE BUS « 5T H).

K94 ST {07:05} (1) H is the processor priority of the STATUS word and is used on PRIORITY in deciding
bus control. This section of status is loaded directly from the DATA PATHS outputs by a loading signal,
K104 CLK TH.

K9-4 T (1) H is the Trace (T} bit of the Condition Codes and is used to set the TRACF flip-flop on FLAG
CNTL. The T bit is bit 04 of the STATUS word and is loaded (K7-2 D04 H) and gated to the bus {(BUS D04
L} accordingly.

K9-5 BAR {03:00) (1) H provides the Bus Address Register output for bits {03:00} and is used in the
console’s ADDRESS REGISTER display. The bits {03:00) are also used as address data to the REGISTER
for EXAM and DEP console operations. Bit 00 indicates whether a processor bus address is odd or even and
is used: to initiate an odd address error (K13-3 ODD ADRS ERR L}); and 1o provide for extra machine
cycles if an upper byte operand must use the rotatefshift gating first for instruction coperation (K6-3
EXTRA H and K2-2 SHIFT ISR H) and then for shifting the data (K6-3 GATE RIGHT 15/8 II).

K9-5 BAR 00 (0) H provides an addition output for bit 00 of the Bus Address Register; this output is used
to aflow the normal shift or rotate operation (K6-3 GATE LEFT 15/0 H or K6-3 GATE RIGHT 15/(H)
during ISR 15 or to inhibit it because it has previously occurred.

BUS A {03:008 L provides the proper Unibus signals from bits {03:00} of the Bus Address Register.

K9-5 BD ¢03:00} L provides the proper Unibus signals from bits {03:00; of lower byte data. The signal is
used directly on the module by the Insiruction Register (IR {03:00) and as inputs to DATA PATHS.

K9-5 IR (3 (0) H provides the Instruction Register output for bit (3 that is used for instruction decoding
on IR DECODE. The complementary cutput of IR03 is also used to set or clear the N bit of Candition
Codes in the OPR instruction.

K9-5 IR {02:000 {1) H provides the Instruction Register [or bits {02:00} that is used for instruction
decoding on IR DECODE. These bits are also used as address data to the REGISTER [lor the DEST base
register and 1o sct or clear bits Z, V or C of the Condition Codes in an OPR instruction.

BUS P (03:000 L provides the Unibus interface for lower byte data from the STATUS word and DATA
PATHS for bits {03:00). The gated output of each of these data sources are “wire or’ed within the module.
The enabling gates are activated separately (K9-2 GATE BUS < D H or K9-2 GATE BUS < ST H).

K2-5 N (1) H is the Negative (N bit of the Condition Codes and is used on IR DECODE as a BRANCH
instruction enabling condition. The N bit is bit 03 of the STATUS word, reflecting last operands data, and
is loaded {K11-2 N DATA L) and gated to the bus (BUS D03 L) accordingly.

K95 Z (1) H js the Zero {Z)} bit of the Condition Codes and is used on IR DECODE as a BRANCH
instruction enabling condition. The Z bit is bit 01 of the STATUS word, reflecting last operand’s data, and
isloaded (K11-2 ¥ DATA L) and gated to the bus (BUS D01 L) accordingly.

K95 C (1) H is the Carry {C) bit of the Condition Codes and is used: on IR DECODE as a BRANCH
instruction enabling condition; for data in ROTATE instructions (KI1(-4 T RIGHT DATA 07 L); for
enabling an increment if carry (K10-4 CARRY INSTR H); and for enabling a decrement if carry (K6-3
ADD (-1} L). The C bit is bit 00 of the Condition Codes, reflecting last operands data, and is loaded (K10-4
C DATA H) and gated to the bus (BUS DOO L) accordingly.

K9%-5

[

K10-1

4.16 TR DECODE

The module decodes instructions and address modes. Decoders use the instruction register (1R) contents as input
dala; decode the instructions; and provide appropriate instruction signals, used throughout the machine for bus
flow and time state alterations. IR 14/12 DCDR (E1} decodes bits 14, 13, and 12 of the instruction word to
detect the double cperand (Binary) instructions. IR 11/9 DCDR (E7) decodes the Branch instructions. IR 8/6
PCDR (E27) decodes the single operand (Unary) instructions excluding the Rotate/Shift instructions. IR 7/5
DCDR (E45) decodes the SWAB, Condition Codes OPR and JMP instructions. IR 2/0 DCDR (E54) decodes the
OPERATE GROUP of instructions (HALT, WAIT, RTI, TRT, IO, RESET). ADRS MODE DCDR (E/8) inputs
arc swilched between SOURCE and DEST major states. In SOURCE, IR bits 03, 04, 05, the address mode ficld,
are gated by K1-4 B SOURCE (1) H. In DEST, IR bits 09, 10, 11, the address mode field, are gated by K1-4 B
DEST (1) H. Decoded address modes are gated with ISR time states to detect completion of address calculation
{K10-3 ADRS DONE L).

4-32

Decoded Branch instructions are gated with STATUS word Condition Codes to tesi that conditions for the
branch are met, Verification of conditions provides K10-2 BRANCH H to alter machine time states.

Special TraP Marker vector addresses (K12-3 STPM ¢02:012) are formed to service the OPERATE GROUP trap
instructions. K104 INSTR STPM (02:04) reflect the specific instruction and gate with K12-3 TRAPF (1) 11 to
provide the appropriate addsess.

Combinational logic provides the input gating and clocking for the STATUS word. Clock signals are separated
{(CLK N, Z, V; CLK C; CLK T) to alter portions of the STATUS word at times dependent upon decoded
instruclions. Input data for the C bit of STATUS is provided (K10-4 C DATA H); appropriate data is gated by
the specific instruction.

For Rotate/Shift instruciions, the input data for DATA PATH bits D14, DO7, D00 is provided by K10-4 RIGHT
DATA 07 1., K104 RIGHT DATA 15 L, K104 LEFT DATA 00 L.

K102

K10-2 RSVD INSTR L detects an instruction code other than thosc specified in the KA1l repertoire. K10-2 BRANCH H detects that a Branch instruction was verified for execution,
K10-2 ADD L detects an ADD instruction. K10-2 TRUE BR L detects a verified Branch instruction that is dependenl on appropriate Condition Codes
being set.

K1(-2 SUB L detects a SUBtract instruction.

K10-2 BINARY L detects a double operand (Binary) instruction. K10-2 FALSE BR L detects a verified Branch instruction that is dependent on the appropriate Condition

Codes being clear.

K10-2 BINARY BYTE OP L detects a double operand (Binary) byte instruction. .
K10-2 BR L detects an unconditional branch.

-

KIO2ISRL . .
K10-2 BIS L K10-2 BR INSTR H detects any Branch instruction.
K10-2 BIC L K102 TSTL |
K10-2BITL L detect their respective instructions K10-2 SBCL
KI10-2CMPL K10-2Z ADCL
Ki10-ZMOV L Ki0-2NEGL ¢ detect their respective instructions.
K10-2 TRAPL J K102 DECL
K10-2 ROT L detects any Rotate instruction. KI10-2INCL
K102 COM L
K102 ROT RIGHT H detect specific Rolate instructions K10-2CLR L
K10-2 ROT LEFT H E 7

K10-2 UNARY L dstects a single operand (Unary) instruction.
K10-2 ROT/SHF L defecis any Rotate/Shift instruction.

K10-2 Rot/SHF R H detcct specific Rotate/Shift instructions,
K10-2 ROT/SHF L H

K10-3

4-34

K10-3SWABL)
K103CCOPH
K10-3 IMP L
KIO-3RTSH

K103 RESETL L detect their respective instructions
KIig310TL
KI10-3RTIL
KIO-3WAITL
K103 HALTL
K10-3 TRTL

K10-3 CHANGE CODES L gates direct set and direct clear signals to the Condition Code flip-fiop as
directed by a CC OP. Change occurs in 1SR1 of FETCH major state.

K10-3 ILL INSTR L detects an ILLegal instruction {JMP or JSR with register mode destinations).

K10-3 RSVD OPS H detects instruction codes ReSerVeD for future instructions and is used as a component
of K10-2 RSVD INST L.

K10-3 (U+R/S) H detects a Unary or Rotate/Shift instruction.
K10-3 BYTE OP H dstects a byte instruction from IR bit 15 in the (1} state.

K10-3 ODDy ADRS ERR L detects a reference to a word at an odd address.

K10-3 (U+B+R/S) L detecis a Unary or Binary, or Rotate/Shift instruction.

K10-3 SOURCE MODE O L
KiG3DESTMODE O L
KIiO-3REG&6L

K10-3 ADRS MODE (4+5) L
K10-3 ADRS MODE (6+7)H
K10-3 ADRS MODE (3+5+6+7)H (" detects these respective addressing modes
K10-3 ADRS MODE 5 L
K10-3 ADRS MODE 4 L
K10-3 ADRS MODE 2L

Ki10-3 ADRS DONE L detects the last bus cycle for address calculation in SOURCE and DEST major
states. Address modes 1, 2, 4 requiring one bus cycle, compleie in ISR1. Modes 3, 5, 6 requiring two bus
cycles, complete in ISR3. Address mode 7 requiring three bus cycles, completes in ISR7. The signal is used
to alter machine flow (K2-2 ISR0O L) and suppress the data acquisition cycle for JMP or ISR instructions
(K62 DATA WAITI Land K13-3 MSYNE H).

K10-3 ADRS BIT 1 H detects IR bit 10 in SOURCE magjor state and IR bit 04 in DEST magjor state.

K104 RTI H defects a return from interrupt instruction.

K104 CLK N, Z, V H provides the clock signal for the N, Z, V bits of the STATUS word. Generated by
specific instruction and time state combinations gated with K1-2 § CLK L.

K10-4 CLK C H provides the ciock signal for the C bit of the STATUS word.

K104 GATE ST < D H provides enabling signal io gate data from DATA PATHS 1 te the processor
STATUS word when the STATUS word is the destination.

K104 CLK T H provides the clock signal to the T bit and priority bits of the STATUS word.

K10-4 GATE C H enables the carry data frem the adder in the DATA PATHS to the data input of the C bit
of the STATUS word.

K10-4 GATE V H enables data from the data paths to the data input of the V bit of the STATUS word for
arithmetic overflow indication.

K10-4 GATE ROT/SHF H enables the exclusive oring of the N and C bits on Rotate operations and cnables
data fo the C bit for Rotate/Shift instructions,

K10-4 CARRY INSTR H enables setting of the carry flip-flop for instructions requiring a +1 constant in the
EXECUTE major state.

K10-4 A < DEST/INSTR H used to enable K64 GATE A « -B DI15/0 H for instructions that require
complemented bus data to be put into the A latch.

K194 GATE B/ISR1 H enables K6-4 ENABLE B <« RH in ISR1 of EXECUTE for BIS, JSR, CMP, and
MOV instructions.

Ki0-4

K10-4 GATE B/ISRO H disables X6-4 ENABLE B < RH in ISRO of EXECUTE for MOV, JSR. and CLR
instructions.

K10-4 TRAP INSTR H detects a Trap instruction.

K10-4 SVC < F INSTR H enables ISR < {0, 2/SERVICE for Trap instructions to take the processor from
ISR1 of FETCH to SERVICE and ISRO.

K10-4 INSTR STPM ¢04:02 H provide the gating signals for appropriate vector addresses for servicing trap
instructions (K12-3 STPM 04, STPM 03, STPM 02).

K104 ROT/SHF C DATA H provides the input data to the STATUS word C bit for Rotate/Shift
instructions.

K10-4 C DATA H provides the data input to the STATUS word C bit.

K104 RIGHT DATA 15 L provides the inpuf data to bit 15 of the DATA PATH for Rotate/Shift Right
Instructions. For Rotate Right it is the C bit of STATUS; for Arithmetic Shift Right it is bit 15 of the
adders.

K10-4 LEFT DATA 00 L provides input data to bit 00 of the DATA PATH for Rotate/Shift Left
Enstructions. [ior Rotate Left it is the C bit; for Arithmetic Shift Left it is a zero.

K104 RIGHT DATA 07 L provides the input data for bit 07 of the DATA PATH for Rotate/Shift
instructions. For Rotate Right and Arithmetic Shift Right it is DATA PATH bit 08; for Rotate Right Byte
it is the C bit and for Airthmetic Shift Right Byte it is DATA PATH bit 07.

TSRO % DEP]

ISRI15 * - BIC # - BIT * EXTRAI

KIO4 CEK TH={GATE §T+< D) * SCLK

K10-4 GATE CH=- GATE - C * - GATE ROT/SHF
K104 GATE ¥ H = - (GATL 5T < D) * - GATE ROT/SHF
K10-4 GATE ROT/SHF H = - (GATE 5T — I} * ROT/SHF

K104 & « DEST/INSTR H = BIT 1 BIC + CMP + COM + NEG
K10-4 TESTH = BIT + TST + CMP

K104 GATE B/ISR1 H=BIS + 18R + CMP + MOV

K104 GATE B/ISRO H = MOV + JSR * CLR

K104 GATE ST + D H = 1SR8 * (SERVICE - RTI) + ST ADRS [ISR 13 # (U + B+ RfS) * (I5R < 0. ’;’.I‘SI-'.RVI(.'I-.')I * - TEST * (- DEST MODE 0) +
K104 CLK N, 2, VY = SCLK * |- BEXEC (1) * - EXTRA ¥ - ISR 3% BIC * BIT + - {GATE §T+ I3} + - (ISR + 0, /8ERVICE) * - (U + B+ R/S) * -

K104 CLK CH = [CLK N, Z, ¥] - [BIS + BIT + BIC + MOV + DEC + INC]

K104 GATE - CH=-{GATE 8T - I * - ROT/SHF -]COM + NMEG + SUB + CMP + SBC ¥ (1)}

K104 CARRY INSTR II =T C (1} * ADC + SUB + KEG + [WC + CMF

K104 TRAP INSTR B = HALT + RSVD INSTR = ILL INSTR + TRT + 10T + RESET + TRAP + EMT

K104 SVC — F iNSTR H = TRAPINSTR + WA|T + CC QP + BR INSTR + - BRANCH
KI10-4 INSTR 5TPM 04 H = [OT + TRAP + EMT

K10-4 INSTR STPM 03 H = EMT + TRAP + TRT + RSVD INSTR

K104 INSTR STPM 02 H = TRAP + TRT + ILL INSTR

K104 ROT/SHF C DATA H = HIGH ¢ DATA * ROT/SHF L + (- AN KD * ROTSHE B

K104 CDATAH=(ADD 0 +- GATE ST~ D1 * {('.-'\RRY DATY +-(GATE - (.'Il' * t S(CARRY DATEY - 1GRTE - (_'ll’ ’i - MGATE ROT SHET—
CROTISHE PR Ta

K104 RIGHT DATA 15 L =- [[ICGH C DATA * SHE RIGHT - C1) * ROT RICHT
Kif-4 LEFT DATA OO L = {1} * ROT LLFT
K104 RIGHT DATA 07 L =- ACROSS DATA * tROT WD + SHI) + € (1) * ROT BYTF

Kii-1
4.17 CODES DATA,K M823

4.17.1 General

The CODES DATA modules provide data inputs to the condition codes portion of STATUS and certain data for
the DATA PATHS during Rotate/Shift operations. Since this data reflects the results of a number of arithmetic
or logic operations (word or byte), diverse input data is required. CODES DATA provides this by the selection of
various output data.

Selection is effected by common enabling inputs on ihe various AND/NOR gates (GATE CC WORD, GATE CC
BYTE, GATE V, GATE ROT/SHF, etc). This selection may exist for a complete instruction, with the cutput
reflecting the various data passing through the DATA PATHS. [t is necessary for the data to be proper only
when it is used. For the Condition Codes, it is when they are clocked; for the DATA PATHS outputs, if is when
they are stored. Loading of STATUS (addressed directly by bus address or indirectly within machine flow)}is a
special situation, in which the action of the Condition Codes portion of STATUS is suspended and the data
directly loaded without change.

4-36

4.17.2 Output Signals

Ki1-2 GATE CC ~ WORD H provides the gating signal for word operation within and external to CODES
DATA. The signal is mutually exclusive to loading STATUS and byte operations.

K11-2 GATE CC + BYTE H provides the gating signal for byte operation within and external to CODLES
DATA. The signal is mutually exclusive Lo loading STATUS and word operations.

K11-2 N DATA L provides information vpen the sign bit of last operand to the data input of the N bit of
the Cendition Codes. A word operation gates the data line K8-2 K15 H to N; a byte operation gates the
data line K7-2 D07 H to N; the loading of STATUS gates the data line K7-2 D03 H to N. If a byte or word
sign bit is negative (set), then the N data input is asserted. The loading of STATUS requires the use of the
03 data line as this correlates to the bit position of N within the STATUS word.

K11-2 Z DATA H provides information upon a zero byvte or word in the last operation, to the data input of
the Z bit of the Condition Codes. A word operation gates K9-2 D15/0 ZERQ L to Z; the loading of
STATUS gates the data line K7-2 ADD(O2 L to Z_ If a word or byte had all zero bits in its resultant data,
then the Z data input would be asserted. The signal K7-2 ADD (02 L is used in the load situation to provide
the proper data polarity.

K11-2 DATA L provides overflow information to the V bit of the Condition Codes. Both the calculation of
the overflow situation and further gating as a function of instruction requires discussion.

Overflow occurs in an arithmetic operation when the signs of the input duta are similar and the sign of the
result data is dissimilar (i.e., if the A and B input signs were positive, and the result sign is nagative,
overflow has occurred). This comparison [{A DATA) * (B DATA) * (N DATA) + (A DATA) * -(B DATA}

* (N DATA)] is made in gates E4 and E9, respectively. A word operation gates K82 A DATA 15 Land
K8-2 B DATA 15 L, respectively (gates E& and E3); a bytc operation gates K7-2 A DATA 07 Land K7-2 B
DATA 07 L, respectively (gates E8 and E3). Note that the comparison is further gated (in E5, E3, and E4)
by the enabling signal K10-4 GATE V H. (The K10-4 GATE V 11 signal is active except when K10-4 GATE
ST < Id H or K10-4 GATE ROT/SIHF H are active), When K10-4 GATE ROT/SHF is active the data to the
V bit of the Condition Codes is the “exclusive-or” of the sign and the carry of the result. This
“exclusive-or” {C DATA * -N DATA + ROT/SHF C DATA * N DATA) is generated in gate E5 and enabled
by K10-4 GATE ROT/SHF H.

The loading of STATUS gates the data line K7-2 DO1 H with K10-4 GATE ST « I H through E3.

K11-2 CARRY DATA L provides the carry data from K8-2 CARRY 15 L if a word operation occurred and
from K7-2 CARRY 07 1. if a byfe operation occurrad.

K11-2 HIGH C DATA L provides a portion of the data to the € bit of the Condilion Codes. The selection
of this output for input to the C bit is made on IR DECODE for a ROT/SHF L situation. Only the selection
of byte (K7-2 ADDO7 L) or word (K82 ADDI15 L) information is done on the CODES DATA module.
These signals are purposely selected from the DATA PATHS prior to the rotate/shift gating. This upper bit
of data becomes the carry data on a rotate or shift to the left.

K11-2 ACROSS DATA L provides the data for bit 07 of the result during a rotate or shift operation o the
righi. A word operation gates K&§-2 ADDOS L; a byte operation gates K7-2 ADDO7 L. For the word the
next highest bit is moved right; for the byte the information in its highest bit is regencrated; the data source
for both is purposely selected prior to the rotatc/shift gating in the DATA PATHS.

K11-2 GATE CC < WORD H = (GATE ST < D) -(BYTE OP + SWAB)

K11-2 GATE CC <~ BYTE H = {GATE ST « D) (BYTE OP + SWAB)

K11-2 N DATA L = (GATE CC = WORD) D15 + (GATE CC < BYTE) DO7 + (GATE 8T < D) D03

K11-2Z DATA H = (GATE CC « WORD) (D1 5/0 ZERQ) + (GATE CC < BYTE) (D7/0 ZERO) + (GATE ST « D) ADDO2

K11-2 V DATA L = (GATE V) [(GATE CC « WORD]{(A DATA 15) (B DATA 15) <N DATA) +-(A DATA 15) (B DATA 15) (N DATA)}
+ (GATE CC < BYTE){(A DATA 07) (B DATA 07) -(N DATA) + {A DATA 07)-(B DATA 07) (N DATA)}
+ (GATE ROT/SHF} |(C DATA «(N DATA) + (ROT/SHE C DATA) (N DATA)} + (GATE ST « D) D01

K11-2 CARRY DATA L = {GATE CC += WORD) (CARRY 15} + (GATE CC < BYTE) {CARRY 07)
K11-2 HIGH C DATA L = (GATE CC < WORD) -ADD15 + (GATE CC < BY TE) -ADDU7Y

K11-2 ACROSS DATA = (GATE €C = WORD) -ADDO8 + (GATE CC + BYTL) -ADDOY

K11-2

4.18 FLAG CNTL, M822

The FLAG CNTL module contains seven flag flip-flops that alter processor flow for: stack overflow (OVFLFR
bus error (BERRF); halting (HALTF); trace operations (TRACKE); trap instructions (TRAPF); and the bus INTR
cycle (INTRF). Two additional flip-flops are concerned with transferring bus control to the console (CONS
GRANT) and supplying the processor’s BUS BBSY signal for bus mastership (BBSYF). Combinational logic is
used in conjunction with the flip-flops to load, set, and clear; it is also used for the Special Trap Marker signals
providing the trap vectors associated with certain flags.

The function of the flag flip-flops is to alter processor operation; they are set at specific times (either loaded or
set) and cleared after use. Five of the flags (OVFLF, BERRF, TRACF, TRAPF AND INTRF) alter machine flow
to process a trap sequence; one flag (HALTF) transfers bus control to the console. In the KA1l, muitiple flags
may be set, and these are serviced in the descending order noted below:

Flag STPM Use
HALTF Display RO Halts the machine on HALT and RESET instructions and on doubie bus
errors.
BERRF* (000004), Data time out {no response) and odd bus address error.
TRAPF* Various instruciion traps
(000004), {llegal instruction
(000010), Reserved instruction
(000014)g TRT instruction
(000020), IOT instruction
(G00030); EMT instruction
(000034), TRAP instruction
TRACF* (00Q014), T bit of STATUS set for trace operation,
OVFLF (00a004), Stack overflow
FWRF (G0G024)5 Power-fail.

*A common clearing signal after service precludes multiple trap sequences.

4-38

Other information in the table relates the trap vector (STPM} and its use to the flag flip-Bop. The power fail trap
is noted because ifs trap vector is generated and gated on FLAG CNTL; the power up (PUPF) and power down
{PDNF) flip-flops, which combine for the single PWRF flag, are located on PRIORITY.

The bus interrupt flag (INTRF) is not noted in the order of service; processor operation makes this unnecessary.
Flags are serviced in the processor’s major state SERVICE. In SERVICE, the flow diverges into two major paths;
cne path returns to FETCH unless 2 Bus Request (BR) or Non-Processor Request (NPR) is outstanding, no trap
flags must be raised; the other path services trap flags in order and returns to FETCH, no Bus Requests (BR's)
are honored (NPR’s are honored at the end of each bus cycle within the trap sequence). Since INTRF is set as
the result of a Bus Request and subsequent bus INTR cycle, INTRF is not set while traps are serviced. It is
possible for a bus error to set BERRF during the INTR trap sequence; this error trap is serviced immediately.
Another bus error would enable HALTF, which would halt the machine. The halting on double bus error is also
frue for regular frap servicing.

K12-2 OVFLF (1) H provides the flag output for stack overflow. It is set when the address contents of the
processor stack (R6) is below (000400); and information is “pushed” onto the stack. The processor stack
{R6&) can be implicitly addressed in machine flow (JSR or trap service) or cxplicitly addressed in an auto
decrement mode. The OVFLF flag is of low priority and is serviced after the completion of the instruction
and after other traps (TRACF, TRAPF and BERRF). The OVILF flip-flop is cleared after service (K12-2
SVC CLR OVFLF H).

The OVFLF signal is used on PRIORITY io inhibit the resct of the PDNF flip-flop; the signal is used on
FLAG CNTL to gate the appropriate STPM address (000004), and aiter machine flow through K12-3
TRAPS H.

K12-2 SVC CLR OVFLF H provides an inhibit input to the clear signal for the PDNF flip-flop on
PRIORITY. This is used with the OVFLF signal to insure the order of service of flags; 2 flag will not be
cleared while higher order flags are being serviced. The flag is cleared when it is the highest order flag.

K12-2 BERRF (0) H provides the flag output for two bus errors: the vse of an illegal odd bus address (ODD
ADRS ERR); and the non-response of a bus address (TIME QUT). All odd bus addresses (bit 00 of BAR is
set) are illegal unless upper byte data is transferred as an instruction operand. Non-response of a peripheral

SSYN signal to a MSYN signal indicates a non-existent or defective peripheral. Both of the above errors
result in a trap sequence to location (000004)g, unless the bus cycle occurred during EXAM or DEP. The
irap sequence is second in order of service, with a bus error during the trap sequence resuiting in a machine
halt (IIALTI").

The input signal to BERFRF initially alters the processor flow directly to SERVICE. After the trap (K12-3
TRAPS H) sequence the BERRF is of high priority and the entry to SERVICE is immediate. The BERRF
signal, itself, is used: tio inhibit the clearing of lower order flags (K12-2 SVC CLR OVFLF H); to provide
the proper STPM address; and to control machine flow {K12-3 TRAPS H).

K12-2 HALTF (1) H provides the flag output for halting the KA1l processor upon: a HALT or RESET
instruction; or a double bus error. The HALTF flip-flop is set during FETCH if either a HALT or RESET
instruction is decoded. A new bus error during the trap service for a bus error (BERRFE) results in a double
bus error and the HALTF flip-flop is loaded to “one”. The HALTF signal is used: to transfer bus control to
the console (K12-3 CONS GRANT (1) H and K2-2 PROC RELEASE H); to inhibit the continuation of the
usual trap sequence (K2-3 ISR1 L}); to inhibit the gating of any STPM address (K64 GATE B«STPM H};
and to enable the display of RO on the console (K6-4 ENABLE B «< R L and the address selection of RO by
asserting no address).

DIRECT SET ON OVFLF = B EXEC (1) * ISR0O * J8R + (S0 £ DE) * [SR1 * AM (4+5) * REG 6 + SERVICE * ISR (3+7)* D 15/8 ZERQ * CLK BAR
DIRECT CLR ON OVFLF = SERVICE * ISR12 *- INTRF * SVC CLR OVLF + INIT
K12-2 SVC CLR OVLF H = R/W3 * TRACF (0) * TRAPF (0) * BERRF (0}

4-39

K122

K12-3

K12-3 STPM {04:02) H provide the three active bits of address for Special TraP Markers used in processor
initiated traps. The address is dependent upon the highest order trap flag — this flag enables its address and
disables the others. Since the highest order trap flag is cleared after service and the next highest flag is then
service, the addresses are properly sequenced. The STPM signals are enabled as data inputs to DATA
PATHS | during SERVICE * ISR0. The INTR bus cycle effects the same input for address vectors that will
be utilized in an INTRF trap sequence.

K12-3 TRACF (1) H provides the flag output for a trace operation. It is set during FETCH if the T bif of
Condition Codes (STATUS) is set. Since the T bit can be altered in any trap sequence (STATUS is
changed), the TRACF is scrviced only if it is the first {or highest order) trap being serviced. A common
clearing signat (K12-3 CLR FLAGS L) for TRACF, TRAPF and BERRF f{lip-flops clears all if any one is
serviced. {The service of HALTF does not require a trap sequence, merely the transfer of control to the
console; if conscle control is relinquished by CONT, the outstanding trap flags will be sequenced.)

The TRACF signal is used: to control machine flow (K12-3 TRAPS HY; and to psovide the proper STPM
address.

K12-3 TRAPS L provides a single signal indicating any set trap flag; it is used to alter processor flow. This
signal, K12-3 TRAPS L, is used: to pate the trap address to DATA PATHS 1 (K6-4 GATE B — STPM H);
and to inhibit the release of bus control (K2-2 PROC RELEASE H) during SERVICE * ISRG.

K12-3 TRAPS H provides a single signal indicating any set trap flag; it is used to alter processor flow. This
signal. K1-23 'TRAPS H, is used: to inhibit the entry into FETCH state from SERVICE * ISRO (K15-2
FETCH <« SVC H); and to prohibit the falling through SERVICE on the entry signal, ISR < 0, 2/SERVICE
H (K1-4 FETCH < 1 H).

K12-3 SERV 0 L provides a signal to identify that portion of SERVICE * ISR0 in which the processor is in
control, The signal is uscd to enablc the gating of STPM addresscs K6-4 GATE B < STPM H).

K12-3 NPR ENTRY H enables the service of Non—Processor Requests (NPR’s); such service occurs at the
end of bus cycles (DATIP excluded) or during SERVICE * ISRO (K2-2 PROC RELEASE H).

K12-3 INTRF (1) H provides a flag cutput for an interrupt operation. Bus control is acquired by a
periphieral using a Bus Reguest (BR); after control the peripheral can return control and a irap address by a
bus INTR cycle. The INTRF {flip-flop is set by this sequence and cleared after trap service. The INTRF
signals are used: to inhibit the return to FETCH (K15-2 FETCH < SV H); to alter machine flow {K2-3
ISR < | L); and to inhibit the granting of bus control (K2-3 GRANT L and the inhibit of PFR clocking).
The INTRF signal alsa ends the cycling of the WAIT instruction.

K12-3 BBSYF (1) H provides for processor bus controt; when this signal is asserted the processor has bus
mastership. The flip-flop is loaded to one upon peripheral bus release and then maintains itself until cleared.
Direct clear comes with release of processor control to either the bus or the console after 2 completed bus
cycle. The BBSYF are used: to assert processor bus mastership on the Unibus (BUS BBSY L); to identify
control within the processor (K13-4 PROC CNTL H); to enable bus gating (K9-2 GATE BUS < D H and
K9-2 GATE BUS « ST H); and to disable proccessor response to BUS INTR L when BBSYF is asserted
{print K13-3).

K12-3 CONS GRANT (1) H is utilized as a pulser in transferring bus control from the processor to the
console. The flip-flop is loaded to one, sets the CONSF flip-[lop (K 13-4 CONSF (0) H) which then clears
CONS GRANT. The CONS GRANT signal is also used to clear the HALTF which may have initiated the
transfer; it also initializes the EXAMF and DEPF of BUS & CONSOLE CONTL.

* TRAPF (1}

K12-3 SERV 0 L = SERVICE * [SRO * - CONSF (1)

Ki12-3 STPM 04 H = TRAPF (1} *- OVFLF (1) ¥ TRACF (1) * INSTR STFM 04 + BERRF (0) PWRF * - TRAPF (1) * - TRACF (1) + INSTR STPM 04

K12-3 STPM 03 H = TRAPF (1} * TRACF (1) * - OVFLF {1} * INSTR STPM 03 + BERRF (0) TRAPF * INSTR STPM 03 + TRACF (1) * - TRAPF {1)
Ki2-3 STPM 02 H = TRAPF (1) * INSTR STPM 02 + TRACF (1) + (OVFLF (1) + PWRF)} * - TRACF (1) * - TRAPF (1) + - BERRF (0)
K12-3 TRAPS H = TIME OUT (1) + ODD ADRS ERR + PWRF + TRAPF {1} + TRACF (1}+- OVFLF (1) + - HALTF (0) + - BERRF (()

K12-3 NPR ENTRY H = NPR ENABLE * - (BSR15} * - DATIP * - (TIME OUT)
DIRECT CLEAR on BBSYF = (PROC RELEASE) * (CLK RUN (0)) (BSR14 + SVC * ISRO} + (DATA CLR) + CONSF (1) + INIT
DATA INPUT on CONS GRANT = (SERVICE * ISR0) * HALTF (1) + CBRF * - TRAPS + {NPR ENTRY) * CNPRF (1)

4.19 BUS & CONSOLE CNTL

The module provides the logic control necessary to bus and conscle operation. Bus contrel involves: initializing
timing for power up and power down situaiions; time-out for data and bus control transters; and processor bus
control (BUS C {1:0%) and bus timing (BUS MSYN and BUS SSYN). Console control involves: the enabling of
console switches; separate console timing and console flag flip-flops fci bus control and automatic
incrementation on EXAM and DEP. The console operations are further described within the KY11-A manual;
both flow charts and waveforms are presented and are directly related to the KA1l and the BUS & CONSOLE
CNTL module.

Ki3-1

441

Ki3-2

442

K13-2 INIT L initializes flip-flops (singularly or in registers) throughout the processor. The signal is active
in power-up and power-down situations upon a BUS DC LO L positive or negative transition. (BUS DC LO
L is a signal aciivated by the power supply when d.c. voliages are low), Edge sensitivity to the signal is
effected by the PWR DOWN and PWR UP one-shots (E35 and E34), each producing a 5 millisecond output
signal for K13-2 INIT L. The console START switch produces this signal as long as it is depressed. Both
signal sources utifize the discrete transistor switch of this module to obtain sufficient drive.

K13-2 INIT H provides the inverted signal for K13-2 INI'T H with standard load capabilities.

K132 PWR UP H is activated only on the power-up transition of BUS DC LO L. The PWR UP one-shot
(E34) produces a 5 millisecond pulse (also used in K13-2 INIT L) to set the PUPF flip-flop (K3-3 PUPF (Q)
H) for the Restart portion of Power/Fail Restart.

BUS INIT L provides an initializing signal from the processor to the Unibus. It combines the sources noted
in K13-2 INIT L and the output of the RESET one-shot (E47). The RESET instruction activates the
RESET one-shot (E47) which provides a 20 millisccond bus initializing signal. The RESET output also
activates the RESTART one-shot (E43).

K132 P RESTART L provides a restart puise upon power-up or RESET instruction. The 100 nanosecond
pulse occurs 70 milliseconds after the last activating input to the RESET one-shot, (E43). The power-up
activation occurs through the 100 nanoseconds pulser {E38, E52) on the positive transition of BUS AC LO
E. This is gated by the console HALT mode (KY-3 HALT L) or a power-down situation within the last 5
milliseconds (PWR DOWN one-shot). Multiple power-up activations within 70 milliseconds delays the
K13-2 P RESTART L until 70 milliseconds after the Jast one. The RESET one-shot (E47) upon activation,
activates RESTART to restart the processor after 70 milliseconds. This restart is necessary as the RESET
instruction scts the HALTF (K12-2 HALTF (1) H) which halts the processor and transfers control to the
console; restart occurs through the signal K15-2 GATED P RESTART L.

K13-2 TPI 1 provides Test Point for the RESTART one-shot (E43),

K13-2 NO SACK. {0) H provides a time-out flag for the non-acknowlcdgement of a bus control grant. An
input flip-flop (TIME SACK, E48) is clocked to one by the K2-3 GRANT H signal; this ftip-flop initiates a
10 microsecond timing one-shot (E51) and provides a delayed {5 = 150 nanoseconds) data input to the flag
flip-flop {NO SACK). If a Select ACKnowledge occurs, the K2-3 SACK H signal clears the input flip-flop
and removes the data input to the flag before clocking the one-shot; the flag flip-flop 1s also held off by the
clearing signal. If no K2-3 B SACK H signal occurs, the flag flip-flop is clocked to one. The signal, K13-2
NO SACK (0) H is used for continuation of processor operation without trapping, by clearing the PTR
flags (K 2-3).

K132 TIME OUT (1) H provides a time-out flag for the non-acknowledgement of a bus data transfer.
Operation is similar 1o the time out logic of signal K13-2 NO SACK (0) H: The input flip-flop (TIME
DATA, E48) is clocked by K13-3 MSYN CLK H; the flag flip-flop (TIME OUT, E46) is clocked after a
selection of delays; and the clearing signal is a composite of bus {K13-3B SSYN H), console and machine
functions. The selection of delays for time-out is effected by removing one or two of the capacitors C11,
CA7 and C68 giving a range of 25 microseconds to 5 microseconds increments. The signal is used: to inhibit
machine state alteration (K2-2 SHIFT [SR H); and to provide for the trap (K12-2 BERRF (0) H and ISR
0,2/SERVICE H). The complement flag flip-flop output is also used.

K132 TIME OUT (0) H provides the complement output for the signal K13-2 TIME OUT (1) H and is
used: te provide for the trap sequence (K12-3 TRAPS H) and to alter machine flow (K2-2 BUS OUT DONE
Hand K2-3 BSR 15 H).

K13-2 P TIME QUT L provides a 100 nanosecond pulse upon the setting of the data transfer time-out flag
{(TIME OQUT). The signal is used: to restart the processor clock (K1-2 CLK P RESTART L); and to imitate a
data completion (K62 P DATA RESTART L).

K13-2 GATE BUS < SR H enables the Switch Register to the Unibus on the console and inhibits the gating
of Data Paths Outputs to the Bus (K9-2 GATE BUS < D H).

K13-2 BC {1:07 {1) H provides test point for the bus control flip-flops that determine processor bus cycles.
These flip-flops are clocked to the appropriate bus control states by the data inputs: K13-2 DATO < 1 1;
K13-2 DATO B« 1 L; K13-2 DATIP < 1 L; and K13-2 DATI < 1 L. The flip-flops are cleared by K13-2
BUS INDICATOR which is asserted on peripheral control, other than console.

BUS C {1:0 L provides the Unibus signals reflecting the processor's bus control flip-flops (BC{1:0).

K132 DATIP L provides a signal indicating 2 DATa In Pause bus cycle. This bus cycle renders a peripheral
liable to data damage; Non-Processor Request {NPR’s) are not allowed after this cvcle (K12-3 NPR
ENTRY H).

K13-2 DATO ENTRY H provides the entry signal for the bus data transfer of DATO. The signal is used: io
alter machine flow (K2-3 BSR + 12 L); and to effect console operation (K6-5 CLR ON BSR H and K6-4
ENARLE B+ R L)

K13-2 DATO ENTRY L provides the complement output of signal K13-2 DATO ENTRY H. It is used: to
disable aload to DATA WAIT on BSR7; and to disable a K15-2 NPR ENABLE L during BSR(7+14).

GATEBUS +~ SR H
Ki3-2DATO < 1L
Ki3-2DATOB+«1L
Ki13-2DATIP+<1L
KI13-2DATI <1 L
K13-2 DATO ENTRY L

K13-2 DATOB + 1L =BYTE OP * DATO # ENTRY

K13-2 GATE BUS < SR H = SR ADRS * PROC CNTL * S8YN (1) H + LOAD ADRS + DEF * [CSR2 + BSR {15+14+12+8)]
K13-2 DATO < 1 L = DATO# ENTRY * - (DATOB < 1)+ DATO ENTRY * BSRI

K13-2DATIP < | L =B DEST (1} * BSR1 * ADRS DONE * - TEST
KI13-2DATI + 1 L=BSR1 *- (DATIP « 1} * - DATO ENTRY
K13-2 DATO ENTRY L = BSRI * CLK OFF (0} + EXEC * ISRO * JSR + SERVICE * (ISR 3+7)

BUS MSYN L provides the Unibus signal from the processor MSYN flip-flop (K13-3 MSYN (1) H).

K13-2 MSYN (1) H provides a test point for the processor MSYN flip-flop; the signal is also used to drive
the bus interface gate to produce BUS SSYN L. Activation of this flip-flop initiates a processor data
transfer on the Unibus. It is enabled to one by the gated clock (K1-2 § CLK L) during the appropriate Bus
Shift Register (BSR) machine state. For a data out transfer, this is BSP 12; for a data in transfer, this is
BSR3. Data in transfers are aborted for last JMP or JSR address operation (K13-3 MSYN < 1 H) with the
MSYN flip-flop not being set. The signal K6-2 DATA CLR H clears the flip-flop when set.

K13-3 CLK BAR H provides the clocking signal to the Bus Address Register (BAR) for processor bus cycles
and console operation. It is also used as the timing portion of the OVFLF set signal (K12-2 OVFLF (1) H).

BUS SSYN L provides the Unibus signal from the processor SSYN flip-flop (K13-3 SSYN (1) H).

K13-3 8SYN (1) H provides the processor bus response for an INTR cycle or processor data transfer from
Switch Register (SR) or STATUS (8T). These situations enable the data input to the SSYN flip-flop. The
100 nanosecond pulser on the clock input provides deskewing for the bus timing (MSYN or INTR) by
clocking with the laggir.. >ulse edge (K13-3 P (MSYN |+ INTR |) L with the arrow indicating the actual
bus transition for assertion). The SSYN flip-flop is cleared after bus master’s removal of timing signals
(K13-3P (MSYN 1 +INTR 1) L. The signal K13-3 SSYN (1) H is used to: drive the bus interface gate
(BUS SSYN L) and enable processor operands to the bus (K132 GATE BUS « S8R H and K9-2 GATE BUS
< ST H).

K13-3 BINTR H=BUS INTR * BBSYR (0)

K13-3 MSYN < 1 H=RBSR12 + BSR3 * BC 1(0) # -{ODD ADRS ERR + [(SO+DE) * (JMP+JSR) * ADRS DONE]}
Kid3 CLK BAR H=C5Rs + BSR3 * K/W 1 “ - \EXAM + DEP)
K13-3 GATED B INTR L = SERVICE * ISRO * BUS INTR * BBSYF (0)

4-43

K13-3

K134

K13-4 STARTF (1} H provides a test point for the START F flip-flop. The START sequence is a unique
console function; it must perform a console sequence and begin processor program operation. The STARTF
flip-flop provides a temporary flag enabling the console sequence (CSR timing); it is immediately reset upon
completion to allow normal processor clocking (SCLK Timing).

K13-4 CONS BR H provides a CONSole Bus Request to PRIORITY when the appropriate switches enable
the HALT and S/INSTR modes.

K13-4 CONS NPR H provides a CONSole Non-Processor Request to PRIORITY when the appropriate
switches enable the HALT and $/CYCLE modes.

K13-4 CSR {3:0) H provides Console Shift Register {CSR) timing states thronghout the processor. A fixed
sequence of timing states are provided by decoding the shift register CSR {1:03; these states and additional
console timing are shown in Figure 4-8.

1 400 ns 21'?50i
K13-4 TP2 _,—_\—I L_] l—l
L

|

KI13-4 CSR O(1) H

¥13-4 CSR 1 {1} H
CSR STATES

K13-4 C5R O H

I
Ii

REST
STATE h

K13-4 CSR 1 H _J_I

K13-4 CSR 3 H

i

|

1

1

1
X13-4 CSR 2 H :
KI1Z-4 P1 CSR L oy 1 | 1 1

3 1 — — | S—

1
K13-4 P2 CSR L ~[I | I [| u—
K13-4 P3 CSR i 2'?’03-_

—wi - 1000s LI U

K13-4 P1 C3R O H I I

=032

Figure 4-8 Console CSR Timing Diagram

The basic timing loop consists of the 400 nanosecond one-shot (E25) with output K13-4 TP2 and 200
nanosccond pulser (E20, pin 3) with output K13-4 P2 CSR L. The oneshot is activated by a gated console
switch and clocks the CSR from its rest states of G0 to 01; after time-out {400 nanoseconds} the pulser is
activated with its lagging edge (200 nanoseconds) refiring the one-shot. This recycle continues through the CSR
flip-flop states of 11 and 10; until the pulser (E20, pin 2) is inhibited by the CSR rest state {K13-4 CSR OL}.

The CSR flip-flops are clocked by the one-shot from state 00 through 01, 11, 10, to 00. The non-transient
decoding of these states resulis in K13-4 (CSR (3:0; H. In addition to the CSR stales and associated with each
are the pulses K13-4 P (1:3) CSR L. The pulse K13-4 PI CSR L is delaysd 150 nanoseconds (E20, pin &) from
one-shot activation and terminates with its time-out; a 250 nanosecond pulse is produced. Note that the three
pulses occur within the first three CSR states (CSR1, CSR3, CSR2) with only the K13-4 PI CSR L occurring in
the end rest state {CSR0O).

The CSR states and pulses are used within the processor to effect console operation. The details of this gating are
noted in the flow diagrams of the KAt

K134 CSR0O (1) H provides the console cnabling equivalent to the CSR3 or CSR2 states, {(K-4-3 GATE RA «
BAR H).

K13-4 P1 CSRO H provides the single pulse (P1) in the end state (CSR0) of the console sequence.
K13-4 CSR {0,2:3} L provides the inverse signal of those noted under K13-4 CSR ¢3:0) H.

K13-4 P (3:1) CSR H provides the pulse outputs noted under K13-4 CSR {3:0; H.

K13-4 P {3:1; CSR L provides the inverse pulse signal of those noted under X 13-4 P (3:1) CSR H.

K13-4 TP2 provides a test point for the one-shot (1:23) basic to console timing and noted under K13-4 CSR
{3:00 H.

K134 EXAMH

K13-4 DEP H

K13-4 LOAD ADRS H
K13-4 STARTH
K134 LOAD ADRS L

provides a gated output signal for the appropriate switch activated. Gating is
provided by {SERVICE * ISR0) and CONSF (1) to insure activation only when
consele functions are allowed.

K 13-4 INCF L provides a flag signal for a second EXAM or DEP which requires word incrementation of the
bus address before use. The EXAMF and DEPF flip-flops are loaded according to the last console operation
and cleared if the operation is contrary. Coincidence between the last operation and the present activate the
signal.

K134 P CONSF (D) L provides a 1{0 nanosecond mulser (E23, pin 3) output when the CONSF is cleared.

j o= Py

The signal is used to clear the CNPRF flip-flop on PRIORITY.
BUS BBSY L provides the console assertion of Unibus mastership from CONSF flip-flop.

K13-4 CONSF (1) H provides the major console flag that indicates console control. Control is passed to the
console by the set input involving K12-3 CONS GRANT (1) H. Release of bus control is effected on the
switch functions of START or CONT to the clock input of K15-2 GATED P RESTART to the clear input
on power-up or RESET instruction.

K13-4 BUS INBICATOR H provides a peripheral bus mastership signal ihat requires. the asserfion of bus
mastership {(K2-3 B BBSY H) but not by the console (K13-4 CONSF () H) or processor (K12-3 B BSYF
(0) L). The signal is used for the BUS console indicator.

K13-4 ADDRESS 0 H provides the console display signal for bit 0 of ADDRESS in major machine states of
SOURCE or DEST.

K13-4 ADDRESS 1 H provides the console display signal for bit 1 of ADDRESS ¢ycle in major machine
state of SOURCE or DEST.

K13-4 ADDRESS G H = (SO+DE} * (ISRI+ISR7)
K134 ADDRESS 1 H = {SO+DE} * (ISR7+ISR3)

4-44

4.20 PWR FAIL & CNTL, M825

Timing logic for the power fail sequence and some general control gating are located on the M825 modnle.
(Refer also to consote flow diagrams in the KY/1-A Programmer’s Console Manual, DEC-1 1-HR4B-D.)

4.20.1 Power Fail

Logic synchronizes the AC LO request for power fail and manipulates both the AC LO and DC LO signals during
the power fail sequence. The output signals K15-2 CLK FDN F H, BUS AC LO L, and BUS DC LO L and

associated logic are discussed relative to this sequence.

In a normal power failure, the power supply activates the AC LO and DC LO signals (active low) as shown in
Figure 4-9.

INPUT FOWER _I l——
I_-—

ACLO ——]
o] 7 -

DOLO _—j——,_-

11=01 20

Figure 4-9 Power Fail Timing Diagram

The power down requirements for the power supply are: the AC LO signal must occur 7 milliseconds before the
DC LO signal; a DC LO signal cannot occur without a preceding AC LO. The power-up requirements are merely
that the DC LO signal ceases before the AC LO signal. A momentary power interruption can cause the power
supply to temporarily activate the AC LO signal without activating the DC LO signal; processor logic corrects
this and sequences both AC LO and DC LO. Once a power fail sequence is begun, it is completed.

The loss of input power activates the input signal K13-2 BACLO L which fires the DELAY DC LO and AC LO
one-shots (E4 and E3) and attempts to set the ACLOF flip-fiop (EE3). The AC LO one-shot pulls the BUS AC
LO L signal low for 15 millisecands, effectively extending a short AC LO signal to a workable duration.

The DELAY DC LO one-shot after its 7 milliseconds delay provides DC LO signal through the 1 microsecond
pulser circuit. A BUS DC LO L signal, therefore, is generated even if the power supply does not provide one.
(BUS INIT L is activated on the BUS & CONSOLE CNTL modute on each edge of the DC LO signal.)

The AC LO Flag (ACLOF flip-flop) is set by the original AC LO transition if the DE LAY PWR DOWN one-shot
(ES) is inactive; it is inactive if the machine has not restarted (K15-2 GATED P RESTART L) within the last 3

K15-2

milliseconds. This delay provides a fixed operating time after 2 power up sequence. If a AC LO occurs during it,
the end of the delay sets the AC LO flip-flop. The pulser circuit responds only to signal transitions with the set
pulse width {r = 300 nanoseconds) sufficient to override any clock signal loading the flag to O. (The resistors
R10 and R14 provide a clamp foad for the open collector drive of E1.)

The function of the ACLOF flip-flop is to asynchronously accept the AC LO transition and provide for a
synchronous transfer to the Power DowN Flag (PDNF flip-flop) on PRIORITY. This latter transfer requires K1-2
8 CLKL for synchronizing and results in the signal K15-2 CLK PDNF H; the transfer also clears {loads to 0) the
ACLOF flip-flop through a discrete circuit inverter. The ACLOF flip-flop is cleared on power supply K13-2 INIT
L and on restart by the DELAY PWR DOWN one-shot. In addition to clearing the ACLOF flip-flop, DELAY
PWR DOWN gates its output.

4.20.2 General Control Gating

The combinational logic on the PWR FAIL & CNTL module provides some general conirol signals used
throughout the pracessor. They are discussed below:

K15-2 WAIT CLR H clears the DATA WAIT and LATCH flip-tlops on DATA PATHS CNTL upon powes
up and entry into a WAIT loop. The latches must be cleared during the WAIT loop for possible interrupt
vectors.

K15-2 FETCH <« SVC H provides state control with an entry signal {o the FETCH major state (K1-4
FETCH + 1 H) from SERVICE after servicing a Bus Request (withont an INTR) or a Non-Processor
Request. Other signals are also used te enter FETCH.

K15-2 NPR ENABLE L enables the release of processor control (K2-2 PROC RELEASE H) for a
Non-Processor Request at specific places in machine flow. This enable signal is further qualified to produce
K12-3 NPR ENTY H, but essentially enables processor release after a bus operation and during the WATT
loop.

K 15-2 SERV 0 H provides for a determination of machine state within SERVICE * ISR0. If K15-2 SERV 0
H is asserted, the processer and not the console is in control.

K15-2 GATED P RESTART L clcars the CONSole Flag (K13-4 CONSF (1) H and BBSY L) which returns
bus contrel to the processor (K2-3 D PERIF RELEASE L) and restarts the processor clock {K1-2 PCLK
RESTART L). This 100 ns pulse occurs 70 milliseconds after the RESTART instruction or power up
(positive transition) of BUS AC LO L). The delay, an integrating one-shot, is on BUS & CONSOLE CNTL
and is reflected in the signal K13-2 P RESTART L which is further gated by KY-3 HALT H and K13-2 B
AC LO L. KY-3 HALT H prohibits restart if the ENABLE/HALT switch is in the HALT mode, control
remains with the Console, K13-2 B AC LO L prohibits restart, as does the integrating one-shot, until the
input power has stabilized for more than 70 milliseconds.

K15-2 SERV 0 H= SERVICE * ISRO * - CONSF (1)

K15-2 WAIT CLR H = FETCH * ISR1 * WAIT * R/W2 + INIT
K15-2 FETCH < SVC H = ISR0 * PERIF RELEASE # INTR F (0) * - WAIT * - TRAPS
K15-2 NPR ENABLE L = SERVICE * ISRO * - TRAPS * INTR F (Q) * - CONSF (1) + BSR8 + BSR(7+14) * - (DATO ENTRY)

K15-2 GATED P RESTART L = PRESTART * - (BACLQ) * - HALT

CHAPTER 5
MAINTENANCE

5.1 SCOPE

The maintenance philosophy of the KA1l processor consists of presenting information that enables the user to
understand how the system should function during normal operation. The user can then use this information
when analyzing trouble sympioms to determine necessary corrective action. It is beyond the scope of this
manual to provide detailed trouble-shooting information. However, this section does provide general
maintenance information, such as required equipment, module layout, intérconnection for multiple bex systems,
and power control. In addition, this section conatins a procedure for adjusting the processor clock, special
installation and removal instructions, and maintenance tips. The appropriate engineering drawings are listed in
Table 5-1.

Table 5-1
Engineering Drawings
Drawing No. Title Sheets
A-ML-KA1LQ Central Processor master list 2
C-DI-KA110-1 Drawing index 1
D-AD-7006537-00 Wired assembly 2
D-BD-KA11-0-BD KA11 block diagram 1
D-TD-KA11-0-WF Waveforms 1
D-MU-KA11-0-MU Module Utilization 1
D-WL-KA11-0-WL Wire list 1

5.2 TEST EQUIPMENT AND TOOLS

Table 5-2 lists various equipment, devices, and tools which may be required o perform tests and maintenance on
the KA1l Processor.

5.3 INSTALLATION OF ECOs

The procedures for installing engineering change orders (ECOs) on modules used in the PDP-11 system are
contained in the Module Rework Standard, DEC SP 7605845-0-0, dated 7 August, 1970.

5.4 MODULE IDENTIFICATION AND LAYOUT

The moduies associated with the PDP-11 svstem unit are designated bv an alpha-numeric scheme as indicated on
the various schematic prints. This scheme consists of a 4-character designation but, at times, may consist of only
a 3-character designation. The 3-character scheme provides the same information as the 4-character method by
inferring the value of the fourth character. This latfer situation occurs on a system unit that can be housed at
any system unit position within the overall PDP-1] system.

Table 5-2
Test Equipment and Tools
Item Type
Test Equipment Oscilloscope Tektronix Model 453 (or equivalent)
Volt-Ohmmeter Triplett Model 630 (or equivalent)
Devices Extender Board One W984 A double extender board
Two single extender boards (a WI84A bourd cut
in half}
Mainienance One W-130
Module Set One W-131
IC Test Clip
Pin probe tip Tektronix #30
Pointed tip Rated at less than 40 watis
solder iron
Package of This is used for removal of solder on printed
Solderwick circuit boards
Tools Screw drivers
Allen wrench set
Needle nose pliers
Wire strippers

A typical system layout of a PDP-11/20 with six system units installed is shown in Figure 5-1. This figure shows
the units as viewed from the back panel pin side. The module and pin identification is as follows:

@ Assume a designation of F4A1, The first character (F) designates column F (the lower column running
from front to back).

b The second character (4) designates row 4. (Sometimes the character is written as 04.) The rows run
from side to side. Row 4 is the fourth from the front. Therefore, F4 designates that group of pins
associated with column F and row 4 (this group is identified as [in the figure). Row numbers 5, 10,
15 70 and 2?5 are taken into account for the numbering sequence but do not contain modules or pins.
They are the spacing between blocks.

¢. The final two characters identify a specific pin within the F4 block. This identification method
conforms to the standard DEC pin identification method used for double-sided modules. This method is
shown on Figure 5-1.

ROW
12 3 45 6 7 8 @ 101 12 13 14 95 16 17 18 19 20 21 22 23 24 25 26 27 28 29
T~
A ™S
N
8 \\\\ N
AN
\ A . \\
C NN \ \\
I N
E \ > ™ \\
u N N ~ |
Y] AN h
N 0 NN
s <
N N
E NN \\ .
1 N YERNEAN
v N ANEES
+—— FRONT \ N AN SIDE\\ REAR ———=
\\ N\ N
N
\ \ Z:Eo:o
\ \ EOD...
Fe @
N AN He % .
\ ke e FIN LAYOUT
we® o * | PER BLOCK
AN Ne e
\ P.ﬁo.-
\ S.T...
\U.V...

1M=-Ci2g

Figure 5-1 Typical System Layout

All KA1l Processor prints use this 4-character identification method, The MM11-E core memory, the HSR/HSP
PC-11 reader, and the KL.11 Teletype control all use the 3-character method. The prime reason for doing this is
to make all prints equally applicable regardless of which slot is used for system unit installation. In this method,
the column is given the pin identification. No maiter which row the modules are inserted into {provided the
wiring is for that device), the modules have the same column and pin identification.

5.5 MODULE COMPONENT IDENTIFICATION

The individual components located on any medule of the PDP-i1 system are identified, along with physical
location, on the first sheet of the specific module print set.

5.6 UNIBUS CONNECTIONS

Instructions for connecting to the Unibus or adding additional devices to an installation are covered in the
Unibus Inrerface Manual, DEC-11-HfAA-D.

5.7 MULTIPLE BOX SYSTEMS

Whenever BA1l extension mounting boxes are added to an existing basic mounting box configuration, it is
necessary to interconnect (by means of the Unibus) the AC LO and DC LO functions of each additional power
supply. This is required to ensure that power failure in any box causes proper processor response. This
requirement is also necessary for any user manufactured andfor interfaced device which needs processor response
to power failure and does not receive its power from a BA1T box,

5-2

5.8 POWER CONTROL

Primary power for a basic PDP-11/20 System is 120 VAC, 50/60 Hz (H720-A power supply). Variations in these
values are possible by adhering to the wiring requirements shown on the H720 power supply schematics and
assemblv drawings which are part of the system print set.

The power receptacle at the rear of the H720 power supply always furnishes the same power as that supplied on
the input line. The power at this receptacle is directly controlled by the POWER/OFF/PANEL LOCK switch on
the programmer’s console. The infernal fans for individual BA11 mounting boxes are always acrossa 120 VAC
source as long as wiring requirements for the 11720 power supply are followed.

Those systems using 2 free-standing base cabinet (H960) have additional fans mounted in them. The number of
fans and their power requirements are dependent on the system procurement specifications. In 120 VAC
systems, cabinet fans are plugged into the H720 receptacle. Some 240 VAC systems may have two 120 VAC fans
wired in series. Another possible 240 VAC configuration may use an H722 step-down transformer. In this case,
the fan(s) are wired to the 120 VAC side of the transformer along with other 120 VAC options.

NOTE
If any change in input line power from its original
configuration is anticipated, the procurement specifications
must be considered.

The control of the entire system (including options) can be attained by using the POWER/OFF/PANEL LOCK
switch aon the programmer’s console. This is accomplished by parallef connecting all additional mounting boxes,
options, and peripherals from the receptacle to the main mounting box. Most DEC manufactured equipment has
receptacles for interconnecting other units in this fashion.

5.9 PROCESSOR CLOCK ADJUSTMENT
This adjustment establishes the basic operating frequency of the processor.

a Load address Q.
b Deposit WAIT instruction (000001} into location 0.

4]

Load addrags qgain

el alalaltn (gt 14 LN

Place ENABLE/HALT switch in ENABLE position.

Depress START. At this point, the processor executes the WAIT instruction continuously, causing the
processor clock to run synchronously.

f Apply an oscilloscope probe to pin E03F1. This is the SCLK L output from the M728 Timing and
States module. A complete cycle output should be 280 nanoseconds. The waveform should resemble
that described on the K1-2 Timing and States print.

L A

g If necessary, adjust trimpot R8 on the M728 module. The trimpot is at location CDEFQ3.

A At this point, the KA1l system unit can be removed by releasing the six screws mounted on the outside
of the pins along the side of the system unit.

Installation of the KA 11 system unit is the reverse of the above procedure.

$.10 REMOVAL/INSTALLATION

The foillowing procedure is o be used whenever removing a KA1l system unit from the mounting box. Refer to
Figure 5-2 for location of items mentioned in this procedure.

g. Make certain that all power is turned off.

b Remove the top and bottom covers of the mounting box.

¢. Release the front bezel by removing the Phillip’s head screw at each of the four corners.

4 Remove the bezel.

CAUTION
Handie the bezei with care as this unit can be eastly broken.

¢. Remove the two screws that securc the KY11-A programmer’s console. These screws are located
approximately two inches from the bottem on both side panels.

QOpen the fan door by releasing the two fasteners which are mounted on the door.
g Once the fan deor is open, the following units are to be removed:

Power bus (3 modules)

M780 Teletype Control interconnecting cables
M78F HSR/HSP Control interconnecting cables
M920 Unibus connector

KY11-A Console panel

WA e bl =

CAUTION
Due to the physical size of the KY11-A console and the
extremely tight fit, extreme care must be used when
removing this component to prevent damage.

1
—
[Z] =] a
LEGEND
I BEZEL SCREWS (BEHIND PANEL)
2 FAN DOOR SCREWS
3. CONSOLE PANEL MOUNTING SCREW
{SECOND SCREW OPPOSITE ON THE
RIGHT SIDE}
H720 MMiE KAH 4. SYSTEM UNIT SCREWS
5 6 o
TOP VIEW ‘e —
4 1 '
T =4
|
i
i
|
[
|
i
I 2
[
l [P p

LEFT SIDE VIEW / o
2 z FRONT WIEW /

3 1

=029
Figure 5-2 Mounting Hardware

5.11 MAINTENANCE TIPS

5.11.1 Diagnostic Programs

The MainDEC-11 diagnostic programs are designed (o test particular devices nperations. or functions. Their
purpose and operating instructions are included in the documentation supplied with each test tape. Processor
Test 17 is an overall system exerciser and, as such, is a prime vehicle for isolating malfunctions to a device. Once
a fault has been isolated to a specific device by Test 17, then the special tests for the device, operation, or
function can be used to further determine the cause of the malfunction. This method, in maost cases, determines

the hardware problem areas. However, a problem may exist, all diagnostic programs perform satisfactonly, yet
user equipment andjor programs faill. In this instance, a more likely place to look for the cause of the problem is
the user program and/for equipment.

5.11.2 KM11 Maintenance Set

The KM11 Maintenance Set consists of the W130 and W131 modules and is one of the most valuable tools that
can be used to troubleshoot the KA1l Processor. The Maintenance Sct provides a capability for single clock
stepping through programs, disabling time out, and providing BUS SSYN, all under operator control. It also
furnishes indicators of ISR and BSR time states, MSYN, BSYN, Traps, R/W2, and condition codes. Three test
indicators are available for connection of signals which may be desired in the course of troubleshooting. The
connections can be made to the appropriate pins on the back panel wiring. Complete instructions for using the
Maintenance Set are given in the KM 11 Maintenance Set mamuial.

5.11.3 Observation of Service Major State Operation

The ability to observe operation through the various ISR states requires that the machine be single clocked by
the KM11 Maintenance Set with ENABLE/HALT switch in the ENABLE position. If this switch is set to HALT,
the console always gains control in SERVICE * ISRO and the processor never proceeds through the rest of the
major staics,

L
[
L]

APPENDIX A

PROCESSOR SIGNALS

Signal Name Polarity Drawing

A

A DATA 07 K07-2
ADATA IS L K08-2
A FM DEST/INSTR H K104
ACROSS DATA L Kt1-2
ADD L Ki0-2
ADDOO L K07-2
ADDOI L K07-2
ADDO2 L K072
ADDAQ3 L K07-2
ADDO4 L K07-2
ADDOS L K07-2
ADDO6 L K07-2
ADDO7 L K07-2
ADDOS L K08-2
ADD(O9 L K38-2
ADDI10O L K08-2
ADDI1 L Ko08-2
ADDI2 L K0g-2
ADDI13 L K08-2
ADD14 L K08-2
ADD15 L K08-2
ADDRESS © H K134
ADDRESS 1 H K134
ADRS BIT | H K10-3
ADRS BYTE OP H K10-3
ADRS DONE L KI1G-3
ADES DONE H Ki3-3
ADRS MODE 2 L K10-3
ADRS MODE 2 H K133

Signal Name Polarity Drawing

ADRS MODE 4 L K10-3
ADRS MODE 4 H K13-3
ADRS MODE 5 L K10-3
ADRS MODE (3+5+6+7) H K10-3
ADRS MODE (4+5) H K10-3
ADRS MODE (4+3)*REG6 H K10-3
ADRS MODE (6+7) H K10-3
ADRS MODE {6+7) L K04-3
B

B ACLO L K13-2
B ACLO H K132
B BBSY H K02-3
B DATA G7 L KO7-2
B DATA 15 L Ko8-2
B DOO H K09-5
B DOI H K09-5
B D02 H K09-5
B D03 H K09-5
B D04 H K09-4
B DO5 H K094
B D06 H K09-4
B DO7 H K094
B D08 H K03-3
B D{9 H K03-3
B DO H K03-3
BDI11 H K03-3
BD12 H K03-3
BDI3 H K03-3
BD14 H K03-3
BDi5 H K03-3

A-l

Signal Name Polarity Drawing
B DEST (0} H KO01-4
B DEST (1) H K01-4
BEXEC (0) H K0O1-4
B EXLEC (1) H Ko01-4
B FETCH (0) H KO1-4
B FETCI1L (1} H K014
B INTR H KE3-3
B MSYN H Ki3-3
B SACK H Ko02-3
B SERVICE H K01-4
B SOURCE (%) H Koi4
B S5YN L K13-3
B SSYN H K13-3
BARDO (1) H K09-5
BAROI (1) H K09-5
BARO2 (1) H K09-5
BARO3 (1) H K09-5
BARO4 (1) H K09-4
BAROS (1) H K094
BAROG (1) H K094
BARO7 (1) H K094
BAROZ (1) H K09-3
BARO9 (1) H K09-3
BARI1G (1) H K09-3
BAR11 (1) H K09-3
BARI2 (D) H K09-3
BARI13 (1) H K09-3
BARI4 H K09-3
BARI14 (D) H K09-3
BARI1S5 (1) H KQ%-3
BARI6 (1) H K09-2
BAR17 (1) H K09-2
BBSYF (®) H K12-3
BBSYF (1) H K12-3
BCO (1) H K13-2
BC1 (1) H Ki3-2
BERRF (0) H K12-2
BIC L K10-2
BINARY L K10-2
BINARY H K13-3

Signal Name Polarity Drawing

RIS L K10-2
BIT L K10-2
BR L K102
BRANCH L K06-3
BRANCH H K10-2
BRGQ L K03-2
BSR FM 12 L K02-3
BSR FM 15 L K02-3
BSR FM 17 L K02-3
BSR 00 H K01-3
BSR 01 L Ko1-3
BSR 01 H KO0I1-3
BSR 03 H K01-3
BSR 07 H KQO1-3
BSR 08 L K01-3
BSR 08 H K01-3
BSR 12 L K01-3
BSR 12 H KOt-3
BSR 14 L K01-3
BSR 14 H K01-3
BSR 15 L K01-3
BSR 15 H K01-3
BSR (1+3+7) H KO01-3
BSR (3+7) H Ko1-3
BSR (7+8) H K01-3
BSR (7+14) H K01-3
BSR (15+14+12+48) H K01-3
BSR14 + SVC * 1S8R0 L K15-2
BUS IN DONE L K02-2
BUS IN DONE H KQ2-2
BUS INDICATOR H K13-4
BYTE OP H K10-3
C

c(h H K09-5
CDATA H K10-4
CARRY 00 L K01-2
CARRY 00 (0) H KO6-5
CARRY 07 L K07-2
CARRY 15 L K08-2
CARRY DATA L K11-2

Signal Name Polarity Drawing

CARRY INSTR H K104
CBRF H K03-2
CBRF (0) H K03-2
cCop H K10-3
CHANGE CODES L K10-3
CLK L K03-2
CLK H KOi-2
CLK BR L K02-3
CLK BAR H K13-3
CLK C H K104
CLK IR H K062
CLKN'Z'V H K104
CLK OFF (0} H KO01-2
CLK OFF (1) H K01-2
CLK PDNF H K15-2
CLK RESTART L K01-2
CLK RUN (1) H Ko1-2
CLKT H K104
CLR L Kl10-2
CMP L K102
CNPRF (1) H K03-2
CONS BR H K134
CONS GRANT (0} H K12-3
CONS GRANT (1) H K123
CONS NPR H K134
CONSF (0} H K134
CONSF (1) H K134
CONT L KY-3
CONT H KY-3
CSR 00 H K134
CSR Q0 (1) H K134
CSR 01 H K13-4
CSR 02 L K134
CSR 02 H Ki3-4
CSR 03 H Ki3-4
D

D PERIF RELEASE L K02-3
DATA LLR L Kul-Z
DATACLR H Ko1-2
DATA WAIT FM 1 L K0Dé6-2

Signal Name Polarity Drawing

DATIP L K13-2
DATO ENTRY L K13-2
DATO ENTRY H K132
DATO = ENTRY H K02-3
DEC L K162
DEP L KY-3
DEP H K134
DEST MODE 0 L K103
DEST MODE 0 H K133
D430 H K07-2
DOl H K07-2
D02 H KQ7-2
D03 H Kag7-2
D04 H K07-2
D05 H Ko07-2
DQ6 H K07-2
DO7 H K07-2
DO8 H K08-2
Do9 H K08-2
D10 H K08-2
Dt H K08-2
D12 H K08-2
D13 H KQg&-2
Dl4 H K0s-2
Dis H K08-2
D07/0 ZERO L K09-2
D15/0 ZERO L K09-2
D15/8 ZERO L K09-2
E

EXAM L KY-3
EXAM H KY-3
EXAM H K134
{(EXAM+DEP) L K0&-5
(EXAM*DEP) H K02-3
EXECFM 1 H Ka1-4
(EXEC*ISRO) H K06-3
(EXEC*ISR1) H Koz-2
(EXEC*ISR) H K04-3
EXTRA H K06-3

A-3

Signal Name Polarity Drawing

F

FETCH FM SVC H Kis-2
(FETCH*ISRO) H K02-2
(FETCH*ISR1) H KO01-4
G

GATEC H K10-4
GATE CC I'M BYTE H K11-2
GATE CC FM WORD H K11-2
GATE LEFT 15/0 H K06-3
GATE RAFM DEST H K04-3
GATE RAFM SOURCE H K04-3
GATE RAFMBAR H K04-3
GATE FARMSAD H K042
GATE RIGHT 15/0 H K06-3
GATE ROT/SHE H K104
GATE SEX H K0o-4
GATE STFMD H K104
GATED B INTR L K13-3
GATED P RESTART L K15-2
GRANT BR H K02-3
GRANT H K02-3
CATE A FM-BD1I5/0 H Koa4
GATE AFM RO H K06-3
GATE A FM-R0O H Ko06-3
GATE A FM R15/} H K06-3
GATE A FM-R15/1 H K063
GATE ADD 7/0 H Ko06-3
GATE ADD 15/8 H K06-3
GATE B FM BD15/0 H KOo-4
GATE B FM R15/8 H K(6-4
GATE B FM STPM H K064
GATE BfISRO H K104
GATE B/ISR1 H K104
GATE BUSFM D H K09-2
GATE BUS FM SR H K132
GATE BYTE 7/0 H K06-3
GATE BYTE 15/8 H K06-3
H

HALT L KY-3
HALT H KY-3

A4

Signal Name Polarity Drawing

HALT H K103
HALT F (1} L Kil1-2
HIGH C DATA L K11-2
i

INCF L K134
INIT L KY-3
INIT L K132
INIT H K13-2
INSTR STPM 02 H K10-4
INSTR STPM 03 H K104
INSTR STPM (4 H Klo4
INTERNAL ADRS H K02-2
INTERNAL ADRS L Ko0z2-2
INTRF (0} H K12-3
INTRF (1} H Ki2-3
IROD (1) H K09-5
IROI1 (1) H KQ9-5
IRO2 (1) H K09-5
TRO3 () H KO09-5
IR04 (O) H K094
IROS (0) H K094
IRO6 (1) H K09-4
[RO7 (1) H K09-4
IROS (1) H K09-3
1IR0O9 () H K09-3
IR10 (0 H K09-3
IR11 {0) H K09-3
IR1Z {1} H K09-3
IR13 (1} H K09-3
IR14 (1) H K0%-3
iR15 (1} H K09-3
ISR F MO2/SERVICE L K02-2
ISR F MO2/SERVICE H K022
ISR FM 00 L Ko02-2
ISRFM 1 L K02-3
ISR FM 15 L K02-3
ISR 00 H K0i-3
ISR 00 L K01-3
ISR 01 H K01-3
ISR 01 L K01-3

Signal Name Polarity Drawing
ISR 02 H K01-3
ISR 03 H Ko1-3
ISR 03 L Ko0i-3
ISR 07 H KO0i-3
ISR 07 L K01-3
ISR 08 H K01-3
ISR 08 L K01-3
ISR 12 H K01-3
ISR 21 L KG1-3
ISR 14 H K01-3
ISR 15 H K01-3
ISR (1+3) H K01-3
ISR (3+7} H K01-3
ISR (12+15) H K01-3
(ISR12* - INTRF) L Ki3-2
J
IMP L K103
IJMP H Ko4-2
(IMP*J3R) L K10-3
JSR L K10-2
JSR H K102
L
LATCH A 15/0 H Ko6-2
LATCH B (9) H K06-2
LATCH B 15/0 H K06-2
LEFT DATA 00 L K104
LOAD ADRS L X134
LOAD ADRS L KY-3
LOAD ADRS H K13-4
LOAD ADRS H KY-3
LTC L K14-2
M
M CLK L KM-2
M CLK ENABLE L KM-2
MOV L K10-2
MSYN (1} H K133
N
I NI} K09-5
i N DATA i KI1-2

Signal Name Polarity Drawing

NO SACK (O) H K132
NPR ENABLE L K152
NPR ENTRY H Ki2-3
NPRF H K03-2
O

ODD ADRS ERR L K103
ODD ADRS ERR H K13-2
OVFLF (1) H K12-2
p

P CLR DATA WAIT H KG6-2
P CONSF (1) H K134
P DATA START H KG6-2
P RESTART L K13-2
P TIME OUT L K13-2
PARTIAL BSTFM 1 L K02-3
PERIF RELEASE L K02-3
PERIF RELEASE H K02-3
PROC BG 04 H K03-2
PROC BG 05 H K03-2
PROC BG 06 H K03-2
PROC BG 07 H K03-2
PROC CNTL L K15-2
PROC CNTL H K134
PROC RELEASE L Ko0z2-2
PROC RELEASE H K02-2
PUTF (0) H K03-3
PWRF L K03-3
PWRF H K03-3
PWR UP H K13-2
P1 CSR QD H K134
P] CSR H K13-4
P1 CSR L K13-4
P2 CSR H Ki3-4
P2 CSR L K134
P3 CSR H K134
P3 CSR L K13-4
R

REG ADRS L K04-3
REG ADRS H K09-2

A5

Signal Name Polarity Drawing
REG GATE H Ko01-2
REG LATCH H K01-2
REG 6 L K103
RESET L Ki0-3
(RESET+ HALT) H K10-3
REQUEST H K02-3
RIGHT DATA 07 L K104
RIGHT DATA 15 L Kig-4
ROT/SHF L Ki0-3
ROT/SHF C DATA L K104
ROT/SHF L H K10-3
ROT/SHF R H K103
RT1 L K103
RTI H K104
RTS8 H K103
R/W1 H Ko0l1-2
R/W2 H Kot-2
R/W3 L Ko01-2
R/W3 H K01-2
ROO (1) H K0s-2
ROL (1) H KQs5-2
RO2 (1) H K05-2
RO3 (I} H K05-2
RO4 (1) H K05-2
RO5 (1) H K05-2
RO6 (1) H K05-2
RO7 (1) H K05-2
RO% (1) H K05-2
R09 (1) H K05-2
R10(1) H K05-2
R11(H) H K05-2
R12 (1) H K05-2
R13 (1) H K0s5-2
R14 (1} H K05-2
R15 (1) H K05-2
S
SCLK L K{1-2
SCLK H K01-2
SAD 00 H K04-2
SAD Q1 H KQ4-2

A-6

Signal Name Polarity Drawing

SAD Q2 H K04-2
SAD O3 H K04-2
SBC L K10-2
S/CYCLE L KY-3

SERV ¢ L K15-2
SERV 0 H K15-2
SERVICE L Ko1-4
SERVICE H K01-4
{SERVICE*ISRO) L K12-3
(SERVICE*ISRQ) H K12-3
{SERVICE*ISRO0) L KO01-3
{(SERVICE*ISR&) L K01-3
SHIFT 1 SR H K02-2
S/INST L KY-3

(SO+DE) H K014
{SO+DE) L K014
SOURCE MODE 0 L K13-3
SOURCE MODE 0 H K10-3
SR ADRS H K09-2
SR16 {switch reg.) H KY-3

SR16 (switch reg.) L KY-3

SR17 H KY-3

SR17 L KY-3

SSYN (1) H K13-3
ST ADRS H K09-2
(STH+EX+DEP) H Kao6-4
ST PTR CLK L K01-3
STADRS L K02-3
START L KY-3

START H KY-3

START H K13-4
STARTF (1) H K134
STPM 02 H K12-3
STPM 03 H K12-3
STPM 04 H K123
SUB L K10-2
8VC CLR OVFLF H K122
SVC FM INSTR H K104
SWAB H K10-3
ST05 (1) H K094

Signal Name Polarity Drawing
$TO6 (1) H K09-4
STO7 (1) H K09-4
T
T H K09-4
TEST L K04-3
TEST H K10-4
TIME OUT (0) H K13-2
TIME OUT (1) L K13-2
TP1 L K13-2
TP2 H K134
TP2 H K02-3
TRAPS L K12-3
TRAPS H K12-3
TRACF (1) H Ki2-3
TST 01 H KM-2
TST 02 H KM-2
U
(U+B+R/S) L K10-3
(U*B*R/S) H K13-3
(U * R/S) L Ko1-4
(U+R/S) H K10-3
v
VD) 3 K09-5
V DATA L Kit-2
W
WAIT L K103
WAIT H K02-3
WAIT CLR H K152
(WAIT * -TRAPS) L K135-2
W/ENABLE 7/0 L K04-3
W/ENABLE 15/8 L K04-3
(WORD+MOVE) L K06-4
WRITE 7/0 H K012
WRITE 15/8 H K01-2
X
X00 H K05-2
X0l H K05-2
X10 H K05-2
X11 H K05-2

Signal Name Polarity Drawing

Y

YO0 H K05-2
Y0l H K05-2
Y10 H K05-2
Y1l H K05-2
Z

Z (1) H K(9-5
ZDATA H Kl11-2

PDP-11 KA11 PROCESSOR
READER’S COMMENTS DEC-11-HRZB-D

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of
our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate. well organized, well
written, etc.? Is it easy to use?

What features are most useful?

What fauits do vou find with the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

Would you pleasc indicate any factual errors you have found.

Please describe vour position.

Name Organization

Streel Department

City State Zip or Country

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

dlilglitiall

Digital Equipment Corporation
Technical Documentation Department
146 Main Street

Maynard, Massachusetts 01754

i

Postage will be paid by:

	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	05-01
	05-02
	05-03
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	replyA
	replyB

