PM-1116 B
 Core Memory
 Manual

Plessey
Microsystems

CAUTION

READ BEFORE INSTALLING MODULE
DAMAGE TO MODULE OR TO HOST EOUIPMENT COULD RESULT FROM IMPROPER INSTALLATION.

READ THE INSTALLATION SECTION OF THE MANUAL

- Use address strapping plugs - not jumper wires.
- Verify that address strapping is correct.
- Verify that power is off
- Insert card only into slots as designated in manual
- Verify that card is correctly aligned.
- Verify that polarizing keys line up properly.
- Verify that card is completely seated
- Check that fans and air stream are unobstructed

PM-1116 B Core Memory Manual

February 1977 - Revision -
Copyright (C) 1977 Plessey Microsystems

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.	SIZE	CODE IDENT NO. 52648	$\begin{aligned} & \text { DWG NO. } \\ & \text { MA } 700945 \end{aligned}$	
	SCALE	REV		SHEET $0-0$

Preface

This manual provides the information needed to install, operate, maintain, and troubleshoot the PM-1116B core memory manufactured by Plessey Microsystems, Irvine, California.

The reader is assumed to have a basic knowledge of digital computer theory and an understanding of the PDP-11 computer in which the PM-1116B is used.

Contents

SECTION 1 - GENERAL INFORMATION
1.1 INTRODUCTION. 1-1
1.2 GENERAL DESCRIPTION 1-1
1.2.1 CAPACITY 1-2
1.2.2 ACCESS TIME 1-2
1.2.3 CYCLE TIME 1-2
1.3 FUNCTIONAL DESCRIPTION. 1-2
1.3.1 INTERFACE SIGNALS. 1-3
1.4 PHYSICAL SPECIFICATIONS 1-3
1.4.1 POWER REQUIREMENTS 1-5
SECTION 2 - INSTALLATION
2.1 UNPACKING AND INSPECTION. 2-1
2.2 ASSEMBLY PART NUMBERS 2-1
2.3 MEMORY INSTALLATION 2-1
2.4 ADDRESS STRAPPING 2-2
2.5 INTERLEAVE OPTION 2-2
SECTION 3 - FUNCTIONAL DESCRIPTION
3.1 INTRODUCTION 3-1
3.2 DATA TRANSFER SEQUENCE. 3-1
3.3 INTERFACE SIGNALS 3-3
3.4 MODES OF OPERATION 3-3
3.4.1 READ-RESTORE (DATI) 3-5
3.4.2 READ-PAUSE (DATIP) 3-5
3.4.3 CLEAR-WRITE (DATO) 3-6
3.4.4 CLEAR-WRITE BYTE (DATOB) 3-6
3.5 TIMING AND CONTROL 3-6
3.6 STACK ASSEMBLY. 3-9
3.7 X AND Y CURRENT DRIVE CIRCUITRY 3-10
3.7.1 ADDRESS REGISTERS AND DECODERS 3-10
3.7.2 CURRENT REGULATOR. 3-10
3.7.3 CURRENT SWITCHES 3-10
3.8 DATA LOOP CIRCUITRY 3-13
3.9 INHIBIT DRIVERS 3-13

SECTION 4 - THEORY OF OPERATION

4.1 ADDRESS STRAPPING CIRCUIT (SHEET 1) 4-1
4.2 MEMORY INITIATE TIMING CIRCUIT (SHEET 1) 4-3
4.2.1 READ HALF CYCLE TIMING. 4-4
4.2.2 WRITE HALF CYCLE TIMING 4-4
4.2.3 READ-PAUSE TIMING 4-5
4.2.4 SENSE AMPLIFIER STROBE TIMING 4-6
4.3 BYTE MODE OF OPERATION (SHEETS 1 AND 2) 4-7
4.4 SLAVE SYNC CIRCUIT (SHEET 2) 4-10
4.5 POWER FAIL - DC LOW SIGNAL (DCLOL) (SHEET 2) 4-10
4.6 MEMORY INITILIZE - BUS INITL (SHEET 1) 4-12
4.7 X AND Y CURRENT LOOP (SHEET 2) 4-12
4.7.1 X AND Y CURRENT SOURCE. 4-15
4.7.2 X AND Y SINK SWITCHES (SHEET 3). 4-16
4.7.3 X AND Y DRIVE SWITCHES (SHEET 3) 4-17
4.8 DATA LOOP CIRCUIT (SHEET 4 4-20
4.8.1 INHIBIT DRIVER CIRCUIT (SHEETS 4-7) 4-21
4.8.2 SENSE AMPLIFIER (SHEETS 4-7) 4-22
SECTION 5 - MAINTENANCE AND TROUBLESHOOTING
5.1 PRINTED CIRCUIT BOARD CLEANING 5-1
5.2 STACK REPAIR 5-1
5.3 STACK REMOVAL AND INSTALLATION 5-2
5.4 REPAIRS - GENERAL 5-2
5.5 PM-1116B INTERNAL TIMING SET-UP. 5-2
$5.6 \mathrm{X}-\mathrm{Y}$ CURRENT SET-UP 5-4
5.7 TROUBLESHOOTING PROCEDURE. 5-5
5.8 TROUBLESHOOTING CHART 5-15

[^0]| SIZE | CODE IDENT NO. | DWG NO. |
| :---: | :--- | :---: |
| A | 52648 | MA 700945 |

SHEET

Tables

Table 1-1: General Specifications. 1-4
Table 1-2: Power Requirements 1-5
Table 2-1: Standard Unibus and Modified Unibus Pin Assignments 2-3
Table 2-2: Jumper Locations for Memory Strapping 2-4
Table 2-3 Power Requirements for Two Interleaved Memories 2-7
Table 3-1 Memory System Modes of Operation 3-5
Table 4-1 Byte Mode Selection 4-7
Table 4-2 Byte Mode Functions 4-9
Table 5-1 Timing and Control Signal Functions 5-8
Table 5-2 Strapping Decoder Outputs 5-9
Table 5-3 X Sink Decode Chart 5-11
Table 5-4: Y Sink Decode Chart 5-12
Table 5-5: Drive Switches Decode Charts Read Half Cycle 5-13
Table 5-6:
Figure 4-9: Byte Circuits. 4-8 4-9
Figure 4-10: Slave Sync Circuit 4-10
Figure 4-11: DCLO Circuit 4-11
Figure 4-12: Memory Initialize Circuit. 4-12
Figure 4-13: X and Y Read Current Paths 4-13
Figure 4-14: X and Y Write Current Paths. 4-14
Figure 4-15: Typical Current Source 4-16
Fiqure 4-16: X Sink Switch Circuit. 4-17
Figure 4-17: Shared Drive Circuit 4-18
Figure 4-18: Typical Drive Switches 4-19
Figure 4-19: Data Loop Circuit. 4-20
Figure 4-20: Typical Inhibit Driver Circuit 4-22
Figure 4-21: Typical Sense Amplifier Circuit 4-23
Figure 5-l: Internal Timing Diagram. 5-3
Figure 5-2: X and Y Current Pulses 5-5
Figure 5-3: Interface Lines. 5-6
Figure 5-4: PM-ll16B Timing and Control Chart. 5-7

PM-1116B CORE MEMORY

	$\begin{gathered} \mathrm{SIZE} \\ \mathbf{A} \end{gathered}$	CODE IDENT NO. 52648	$\begin{gathered} \text { DWG NO. } \\ \text { MA } 700945 \end{gathered}$		
	SCALE	REV	-	SHE	$0-$

*

Section 1

General Information

1.1 INTRODUCTION

This manual provides the information needed to install, operate, maintain and troubleshoot the PM-1116B core memory manufactured by Plessey Microsystems, Irvine, California.

The material is arranged into five sections as follows:
Section 1 - GENERAL INFORMATION. This section contains a brief functional description of the $P M-1116 B$ and a description of the physical specifications of the memory.

Section 2 - INSTALLATION. This section explains the requirements and procedures for equipment installation. Address selection and memory interleaving are described.

Section 3 - FUNCTIONAL DESCRIPTION. This section contains a detailed functional description of the $\mathrm{PM}-1116 \mathrm{~B}$ including addressing, timing and control circuits, drive and sink switches, data loop circuitry, and current source generator.

Section 4 - THEORY OF OPERATION. This section contains a circuit logic description of the PM-1116B memory.

Section 5 - MAINTENANCE AND TROUBLESHOOTING. This section describes maintenance and troubleshooting procedures.

Appendix - The appendix contains the parts list, logic diagrams, and assembly drawing required for a complete understanding of the unit.

1.2 GENERAL DESCRIPTION

The PM-lll6B memory has a maximum capacity of 16384 words of 16 bits per word. It is designed to operate in Digital Equipment Corporation (DEC) PDP-11/05, $11 / 10,11 / 35$, $11 / 40$ or $11 / 45$ computers.* It can also be mounted in the PDP-11/04 and $11 / 34$ computers with the $101 / 2^{\prime \prime}$ or 21 " chassis where -15 V at 6 A minimum is supplied. The PM-1116B cannot be installed in the $51 / 4^{\prime \prime}$ chassis PDP-11/04 or 11/34.

* DEC, PDP and Unibus are registered trademarks of Digital Equipment Corporation.

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY
MEMORIES, INC.

SIZE

SCALE

CODE IDENT NO. DWG NO.

The PM-1116B may be operated with, or in place of, the DEC model MM11-L in applications where -15 V at 6 amps is provided.

1.2.1 CAPACITY

The PM-1ll6B has a storage capacity of 16384 words of 16 bits per word. The storage capacity of the computer may be expanded by adding more memory modules.

1.2.2 ACCESS TIME

The access time of the $P M-1116 B$ is $350 n s$ maximum. Access time is defined as the time from when MSYN initiates the memory cycle to the time when all data lines are stable on the Unibus.

1.2.3 CYCLE TIME

The cycle time of the memory is 900ns maximum. Cycle time is defined as the time from when an MSYN is accepted by the memory to the time when the memory is ready to accept another MSYN.

1.3 FUNCTIONAL DESCRIPTION

The PM-1116B operates in several different modes including full word read-restore and clear-write, byte read-restore and clear-write, and read-pause. These modes are determined by the state of address Bit $A \varnothing \varnothing$ and control lines $C \varnothing$ and $C l$. The modes of operation are described in detail in Section 3; a brief description of each mode is contained in the following text.

Read-Restore (DATI): In this mode the memory reads data at a specified location, presents the data to the Unibus, and then restores the data into its original location.

Clear-Write (DATO): In this mode the memory clears a specified core location and then writes data from the data bus into that location.

Clear-Write Byte (DATOB): In this mode the memory performs a read-restore on one byte of data and a clear-write on the other byte of data.

Read-Pause (DATIP): During the DATIP mode the memory reads data from a specified address and waits for a DATO or DATOB operation. The logic in the memory is set such that the memory will skip the clear cycle of the clear-write operation and proceed to write new data into the location. does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it in whole or part shall be made without writton authorization from PLESSEY MEMORIES, INC

52648 MA 700945

MA 700945
REV - \quad SHEET 1-2

1.3.1 INTERFACE SIGNALS

Input signals to the memory are as follows:
Signal Name Function

A \varnothing-Al7	Address Lines
D $\varnothing-$ Dl5	Data Lines
C \varnothing, Cl	Control Lines
MSYNL	Master Sync
INIT	Initialize
DCLO	DC Power OK

Output signals from the memory are as follows:

```
Signal Name Function
D\emptyset\varnothing-D15 Data Lines
SSYN Slave Sync
```


1.4 PHYSICAL SPECIFICATIONS

The PM-1116B memory system assembly consists of an electronics board and a stack assembly. The stack assembly is a 16384 x 16 bit, 3-D, 3 wire (common sense/inhibit) core matrix arranged in a planar configuration of thirty-two 64×128 core arrays. The stack assembly also contains decoding diodes; it plugs directly into the back of the electronics card.

The memory assembly occupies only two backplane slots: the electronics card plugs into one slot and the adjacent slot is covered by the stack which does not require backplane connection.

Table 1-1 shows the general specifications of the PM-lll6B memory. CORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part shall be made without written authorization from PLESSEY MEMORIES, INC.

SCALE

CODE IDENT NO.
52648

DWG NO.
MA 700945

CHARACTERISTIC	SPECIFICATION
Cycle Time	900ns
Access Time	350 ns
```Interface Signal Levels: High (inactive) Low (active)```	$\begin{aligned} & +2.4 \mathrm{~V} \text { to }+5.0 \mathrm{~V} \\ & 0 \mathrm{~V} \text { to }+0.8 \mathrm{~V} \end{aligned}$
Operating Temperature Non-operating Temperature	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$
Operating Altitude Non-operating Altitude	```-1000 ft. to +10,000 ft. 40,000 ft.```
Operating Humidity	10\% to $90 \%$ without condensation
Mechanical Shock	Housed in its shipping container in accordance with MIL-STD-810B method 516, procedure V.
Non-operating Thermal Shock	$\pm 25^{\circ} \mathrm{C}$ per hour maximum
Mechanical Dimensions:   Width   Depth   Thickness	15.687 inches   8.96 inches   0.78 inches
Component Height Limit:   Conductive   Non-Conductive	$\begin{aligned} & .343 \\ & .375 \end{aligned}$

Table 1-1: General Specifications does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.

### 1.4.1 POWER REQUIREMENTS

The PM-lll6B memory module requires the same DC voltages as the DEC MMIl-L memory. Table l-2 shows the voltage and current requirements. The power requirements shown are average and worst-case values for non-interleaved operation at $25^{\circ} \mathrm{C}$.

VOLTAGE	OPERATING CURRENT			
	STANDBY	CURRENT		TYPICAL
+5 V	$2.1 A$	$2.7 A$	WORST CASE	
-15 V	.3 A	$2.8 A$	$3.3 A$	

Table 1-2: Power Requirements
Power for the module is routed via connector pins as follows:

Voltage
Pins

```
 +5V CA2, DA2, EA2, FA2
-15V CB2, DB2, EB2, FB2
 GND CC2, DC2, EC2, FC2, CT1, DTl, ET1, FTl
```

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.


## Section 2

## Installation and Operation

This section provides information for the installation and operation of the PM-1116B memory system. It also lists the various options available with the memory and explains their incorporation into the memory systems.

### 2.1 UNPACKING AND INSPECTION

The PM-lll6B memory is shipped in a special packing carton designed to keep the board from vibrating and to give it maximum protection during shipment. The packing carton should be retained in case the memory requires reshipment.

To unpack the memory, remove any packing materials and visually inspect for physical damage. Check all hardware attaching the stack to the electronic board.

### 2.2 ASSEMBLY PART NUMBERS

The following numbers are used to identify the $P M-1116 B$ memory assemblies:

Assembly Part Number
700945

700944

700298-100

Assembly

Top Assembly
Board Assembly
Stack Assembly

### 2.3 MEMORY INSTALLATION

The PM-lll6B is directly interchangeable with the DEC MMII-L memory and can be plugged directly into the same backplane with or in place of it.

The PM-lll6B is also interchangeable with the DEC MM1l-C and MM11-D where adequate -15 V power is supplied. The $\mathrm{PM}-1116 \mathrm{~B}$ can be installed in any Plessey or DEC backplane that provides 6 A or more -15 V power with standard Unibus or modified Unibus memory connections.

The PM-lll6B memory will operate in the following backplane units:

- DEC DDIl-D, DDll-C double and single systems unit modified Unibus backplanes including the DDIl-D and DDll-C series such as the DDll-PK, DDIl-CK, and DDll-DK backplanes.
- PM-Dll/SPC-1 and -2, double and single systems unit modified Unibus backplanes.
- PM-Fll/SPC and Fll/SPC-1, double and single systems unit standard Unibus backplanes.
- PM-Fll double systems unit standard Unibus backplane.

The PM-lll6B can be installed in any DEC backplane slot specified for MM11-D, MM1l-C or MMIl-L memory. For installation in Plessey backplanes refer to the appropriate backplane manual. Unibus pin assignments are listed in Table 2-1. For further installation information, refer to Memory Installation Guide, document number 700434.

### 2.4 ADDRESS STRAPPING

Each memory must be strapped to respond to specific address locations. Since all memory select lines are common on the Unibus address strapping is necessary in order to access only one memory at one time.

The address strapping plug is designated TBl. It is a 16 pin IC socket and is located next to Pl-A interface pin connector on the component side. Pin lis at the lower left hand side of the address strapping plug. Table 2-2 shows the jumper locations for memory strapping.

### 2.5 INTERLEAVE OPTION

The PM-lll6B memories can be interleaved to speed data transfer times. This section describes interleaving and explains how to interleave two memories.

The memory, which always acts as a slave, takes approximately 900ns to complete a cycle once accessed. Since the memory is self-contained with address registers data registers and timing \& control circuitry, it does not require connection to the Unibus for the entire cycle. Each memory unit attached to the Unibus releases the Unibus in less than 600ns after it has been accessed. The Unibus is then free for exchanging communications between devices, however the memory last accessed is still running and will not respond to a request on the Unibus for another 300ns until it completes its internal cycling.

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.

SIZE   A	CODE IDENT NO.	DWG NO.	
SCALE	52648		MA 700945


MEMORY CONNECTOR SECTION A						MEMORY CONNECTOR SECTION B					
$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	UNIBUS SIGNAL NAME		$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	UNIBUS SIGNAL NAME		$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	UNIBUS SIGNAL NAME		$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	UNIBUS SIGNAL NAME	
	STANDARD	MODIFIED									
Al	INITL	INITL	A2	$+5 \mathrm{~V}$	+5V				A2	GND	GND
Cl	$D \not \subset \varnothing L$	$D \varnothing \varnothing \mathrm{~L}$	C2	GND	GND				C2	GND	GND
D1	D $\varnothing 2 \mathrm{~L}$	D $\varnothing 2 \mathrm{~L}$	D2	DØ1L	Dø1L						
El	D $\varnothing 4 \mathrm{~L}$	Dด4L	E2	DØ 3L	Dø 3L						
Fl	D $\varnothing 6 \mathrm{~L}$	D $\quad 66 \mathrm{~L}$	F2	D $¢ 5 \mathrm{~L}$	D¢5L	F1	ACLøL	ACLDL	F2	DCLøL	DCLøL
H1	DØ8L	DØ8L	H2	Dø7L	DØ7L	H1	A 11	Aø1L	H2	A $\triangle \varnothing L$	$A \varnothing \varnothing L$
J1	DIDL		J2	Dด9L	Dø9L	J1	A 93 L	Aø3L	J2	A ${ }^{\text {2 }}$ L	A $\varnothing 2 \mathrm{~L}$
Kl	D12L	D12L	K2	D11L	D11L	K1	A $\varnothing 51$	Aø5L	K2	AD4L	A 04 L
Ll	D14L	D14L	L2	D13L	D13L	L1	A 71	Aø7L	L2	A $\varnothing 6 \mathrm{~L}$	A $\varnothing 6 \mathrm{~L}$
T1	GND	GND	M2	D15L	D15L	M1	A 09 L	A 9 9L	M2	Aø8L	AD8L
						N1	AllL	AllL	N2	AløL	A1听
MEMORY CONNECTOR SECTION D						Pl	Al3L	Al 3L	P2	Al2L	A12L
$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	UNIBUS SIGNAL NAME		$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	UNIBUS SIGNAL NAME		R1	Al5L	Al5L	R2	A14L	Al4L
	STANDARD	MODIFIED		STANDARD	MODIFIED	Tl	GND	GND	T2	ClL	C1L
$\begin{aligned} & \text { Al } \\ & \text { B1 } \\ & \text { Cl } \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & \text { GND } \end{aligned}$	A2			$\begin{aligned} & \text { Ul } \\ & \text { VI } \end{aligned}$	SSYNL	SSYNL	U2	CøL	$\triangle \varnothing L$
				+5V	+5V		MSYNL	MSYNL			
			B2	$\begin{array}{ll}-15 \mathrm{~V} & -15 \mathrm{~V} \\ \text { GND } & \text { GND }\end{array}$							
			C2			MEMORY CONNECTOR SECTIONS C, E, \& F					
			K2			$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	UNIBUS SIGNAL NAME		$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	UNIBUS SIGNAL NAME	
			$\begin{aligned} & \text { L2 } \\ & \text { M2 } \\ & \text { N2 } \\ & \text { P2 } \\ & \text { R2 } \\ & \text { S2 } \\ & \text { T2 } \end{aligned}$	BG7 OUT BG7 OUT    BG6 IN BG6   IN			STANDARD	MODIFIED		STANDARD	MODIFIED
				BG6 OUT	BG6 OUT						
				BG5 IN	BG5 IN				A2	+5V	$+5 \mathrm{~V}$
				BG5 OUT	BG5 OUT				B2	-15V	-15V
				BG4 IN	BG4 IN				C2	GND	GND
Tl	GND	GND		BG4 OUT	BG4 OUT	T1	GND	GND	T2	GND	GND

NOTE: Unibus signals not connected on the memory are not listed.

Table 2-1: Standard Unibus and Modified Unibus Pin Assignments

ADDRESS   BLOCK	STRAPPING   PLUG NUMBER	JUMPER PINS													
		4-16	4-15	4-14	4-13	4-12	4-11	4-10	4-9	2-3	7-8	6-7	1-2	2-7	4-5
$0-16 \mathrm{~K}$	700066-136	X	X	X	X					x	X				
4K - 20K	700066-137		X	X	X	X				X	X				
8K - 24 K	700066-138			X	X	x	X			x	X				
12K - 28 K	700066-139				X	X	X	X		X	X				
16K - 32K	700066-140					X	x	x	X	x	X				
24K - 40K	700066-162		$X$					X		x				x	
32K - 48K	700066-141	X	X	X	X					X		x			
40K - 56K	700066-163				x		X			X				X	
48K - 64K	700066-142					X	X	X	X	x		x			
56K - 72K	700066-164								X					X	X
64K - 80K	700066-143	X	x	X	x						X		X		
72K - 88K	700066-165			X		X							X	X	
80K - 96K	700066-144					X	X	X	X		X		X		
88K - 104K	700066-166		X					X					X	X	
96K - 112K	700066-145	X	X	X	X							X	x		
104 K - 120K	700066-167				X.		X						X	X	
$112 \mathrm{~K}-128 \mathrm{~K}$	700066-146					X	X	X	X			X	X		

* NOTE: For 16K-31K operation, install jumper Wl. See Figure 4-1.
** NOTE: For $56 \mathrm{~K}-72 \mathrm{~K}$ operation, remove jumper from $S$ to $R(U 14-12$ ) and install from $S$ to $T$. Also install a $1 \mathrm{~K} \pm 5 \% 1 / 4$ watt resistor between $\mathrm{Ul9-4}$ and U43-8 (+5V). See Figure 4-1.

Table 2-2: Jumper Locations for Memory Strapping

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, recsipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole OR part, shall be
MEMORIES, INC.

Assume that a Unibus master is reading from contiguous locations in memory. The device accesses memory and receives stored data in less than 400 ns . The memory releases the Unibus after 600 ns but is not ready for the device to read the next address location for another 300 ns . The device normally must wait $300 n s$ until the memory completes its cycle. However, if two modules are interleaved the next address location is located in a different memory module. The second memory module is not cycling and therefore ready to accept a request. Thus the device can access the next memory module immediately after the Unibus is released by the first memory. When two memories are interleaved, one responds to all the even locations and the other responds to all the odd locations in an address block.

This arrangement enables the Unibus master to read or write in each memory in 600ns effective cycle time. This means that a device that takes 3 minutes to access an address block without interleaving will take only 2 minutes if that address block is interleaved. Figure 2-1 illustrates the time saving feature of the interleave option.


Figure 2-1: Interleave Memory Timing

Two separate memories of equal capacity must be used for interleaving. Memory cannot be interleaved on the same board. Memories of different speeds or from different sources, such as Plessey or DEC or others, can be used together providing they are of the same capacity.

To enable the l6K interleave option, the least significant word address bit, $A \emptyset 1$, and the most significant address bit, Al5, are interchanged on the board, as illustrated in Figure 2-2.

No special address strapping plugs are used with the interleave option. If two memories are to be interleaved from $\varnothing$ to 32 K , for example, one memory is assigned the $\varnothing-16 \mathrm{~K}$ address block and the other memory is assigned the $16 \mathrm{~K}-32 \mathrm{~K}$ block. By interchanging address Al5 and Aøl, one memory is set to respond to odd addresses and the other memory to even addresses.

The information hereon is the property of PLESSEY MEMORIES IN CORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.


SCALE

CODE IDENT NO.
DWG NO.
52648 MA 700945

SCALE	REV	SHEET 2-5



JUMPER POSITIONS

Normal	$A$ to $B$	$C$ to D
$16 K$ Inter- $A$ to D	$C$ to $B$	

Figure 2-2: Interleave Instructions

The information hereon is the property of PLESSEY MEMORIES IN CORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.

When memory modules are interleaved, two modules are frequently operating simultaneously causing the power requirement to be increased as shown in Table 2-3.

VOLTAGE	STANDBY CURRENT*	OPERATING CURRENT
+5 V	4.2 A	$6 . \varnothing \mathrm{A}$
-15 V	$\varnothing .6 \mathrm{~A}$	$8 . \emptyset \mathrm{A}$

*Standby current must also be supplied for the remaining memories.

Table 2-3: Power Requirements for Two Interleaved Memories

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY or part, shall be
MEMORIES, INC.


## Section 3

## Functional Description

### 3.1 INTRODUCTION

This section describes the operation of the PM-1116B memory system. Figure 3-1 contains an overall block diagram of the system. The diagram shows the relationship between the stack, timing and control, addressing, sink and drive switches, current sources and data loop circuits.

### 3.2 DATA TRANSFER SEQUENCE

This subsection describes the data transfer sequence between the memory and the central processor and I/O devices.

The memory receives commands, address, and data information from the Unibus. The bus master places address and control information on the Unibus lines, waits 150 ns to allow for bus delay and memory internal decode delay, and then initiates master sync (MSYNL).

The memory decodes the address information from the bus and if it does not fall within the memory's address, MSYNL is blocked. The memory is not accessed and therefore remains in a stand-by state.

When a memory is selected, it sets its internal memory busy flip-flop to indicate that it is cycling and that it will not accept further commands until its present cycle is completed.

For a read cycle (DATI), when data is available, the memory places the data on the bus and asserts SSYN. After the bus master receives SSYN, it waits 75 ns to allow for the maximum bus delay and then strobes data and clears MSYNL. The memory receives the cleared MSYNL and clears SSYN.

After a 75 ns delay the bus master removes address and control lines from the bus. The bus is now free and may be taken by another device. All devices must go through the priority arbitration circuit at the processor in order to gain control of the bus.

The memory is still cycling at this point and cannot be accessed until it finishes its present cycle. MSYNL can be asserted while the memory is in cycle. When the memory completes its present cycle, the memory busy flip-flop is reset, enabling the memory to accept another command from the Unibus.


Figure 3-l: Memory Block Diagram

For a write cycle (DATO), the memory asserts SSYN after it strobes data from the bus into its data registers. The bus is released but the memory must finish its present cycle before being accessed again.

### 3.3 INTERFACE SIGNALS

The memory interface signals and their functions are described in the following paragraphs. Interface timing is shown in Figure 3-2.

MASTER SYNC (MSYNL): MSYNL is an input signal which initiates a memory cycle when the following conditions are met:

- Memory is not busy.
- The address falls within the memory block.
- SSYN from the previous cycle has been cleared.

SLAVE SYNC (SSYNL): SSYNL is output from the memory as an acknowledgment to the bus master in response to MSYNL.

DATA LINES (D $\varnothing \varnothing$ L-D15L): The 16 data lines are used to transfer information between the memory and the master device. Data input to the memory and data output from the memory are transferred on the same lines.

ADDRESS LINES (A $\varnothing \emptyset L-A 17 L$ ): The address lines are used by the master device to select a particular memory location. $A \varnothing \varnothing$, the least significant bit, is used to decode upper or lower byte during a byte mode operation. Aøl-Al4 are used to decode one location within a 16K address block. Al5-Al7 are used to decode the 16 K address block.

DC LINE (DCLO): This signal emanates from the power supply and is wired from the power connector card slot to the Unibus on all system units. It remains cleared as long as all DC voltages are within specified limits. If an out of tolerance voltage condition occurs, DCLO is asserted by the power supply. The $\mathrm{PM}-1116 \mathrm{~B}$ core memory uses the DCLO signal to inhibit further operations.

### 3.4 MODES OF OPERATION

The two control lines $C \varnothing$ and $C l$ in conjunction with address bit $A \emptyset \varnothing$ are used to select one of five modes of operation. Table 3-1 shows the five modes. The operational modes are described in the following subsections.

The information hereon is the property of PLESSEY MEMORIES INThe information. hereon is the property of PLESSEY MEMORIES N-
CORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.

$\begin{gathered} \mathrm{SIZE} \\ \text { A } \end{gathered}$	CODE IDENT NO. $52648$	$\begin{aligned} & \text { DWG NO. } \\ & \text { MA } 700945 \end{aligned}$		
SCALE	REV	-	SHEET	3-3



[^1]| Operation | Command | Control Lines |  | Address Line |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | C $\varnothing$ | C1 | A $\varnothing$ | (LSB) |
| Read-restore | DATI | High | High | x |  |
| Read-pause | DATIP | Low | High | X |  |
| Clear-write | DATO | High | Low | x |  |
| Clear-write byte $\varnothing$ Read-restore byte 1 | DATOB $\varnothing$ | Low | Low | High |  |
| Clear-write byte 1 Read-restore byte $\varnothing$ | DATOB 1 | Low | Low | Low |  |

NOTES: 1. High state is defined as inactive state ( $+2 . \mathrm{V}$ to +5 V ) . Low state is defined as active state ( $0 V$ to +0.8 V ).
2. DATIP command must be followed by DATO or DATOB.
3. $X$ indicates that the value is irrelevant.

Table 3-1: Memory System Modes of Operation

### 3.4.1 READ-RESTORE (DATI)

This is a conventional read-restore cycle. During the first half cycle, the memory reads the data from the selected core location and transfers it to the data bus; it then restores the data back into the same memory location during the write half cycle. This last step is necessary because the core memory is a destructive read-out device. During the read half cycle, the memory strobes the data from the selected location into its data registers and then puts it on the Unibus data lines. During the second part of the cycle, write half cycle, the memory restores the data back into the same memory location from the data registers.

### 3.4.2 READ-PAUSE (DATIP)

In this mode, the memory performs only the read half cycle and then pauses until accessed again. Since the data is destroyed whenever the memory reads from a particular memory location, it must be restored. However, sometimes it is not advantageous to restore the information immediately after reading because the same memory location is going to have new data written into it. By performing a read-pause cycle followed by a write cycle, the restore (write) half cycle from the first cycle and the clear (read) half cycle of the preceding cycle are bypassed. This decreases the total memory cycle by a factor of two. Because no restore cycle is used a read-pause cycle must always be followed by a write cycle (DATO or DATOB) on the same address location or the data will be destroyed.

### 3.4.3 CLEAR-WRITE (DATO)

This is a conventional clear-write cycle. The memory first performs the clear half cycle to clear the selected cores. This clear operation is identical to a read operation except that the data is not read. (Sense amp strobe is inhibited.) The memory then strobes data from the Unibus data lines into its data register, and performs the write half cycle. Whenever a clear-write (DATO) follows a read-pause (DATIP), the memory skips the clear half cycle and proceeds immediately with the write half cycle.

### 3.4.4 CLEAR-WRITE BYTE (DATOB)

The Unibus master under certain conditions may wish to write new data onto one byte only. The memory executes this request by performing a read-restore on one byte and a clear-write on the other byte.

The clear-write byte cycle is similar to a clear-write cycle except that one byte is transferred from the data bus into the memory data register instead of the full two byte word.

Address bit $A \varnothing \varnothing$ determines if the lower byte ( $D \varnothing-D 7$ ) or the upper byte (D8-15) is to be transferred. A read-restore cycle is performed on the unselected byte, but the memory does not transfer the data onto the Unibus.

### 3.5 TIMING AND CONTROL

The master sync command (MSYNL) from the Unibus initiates the read timing for the memory card. Normally read timing is followed by write timing except for the cycle following a read-pause mode where only write timing is generated.
Timing for read and write cycles is shown in Figures 3-3 and 3-4. Timing and control functions for the various modes of operation are explained in the following:

## Read-Restore Cycle (DATI)

1. Read timing followed by write timing is generated.
2. Data registers (CLR $\varnothing$ and CLRI) are cleared at the beginning of the cycle.
3. Sense amplifier strobes are generated for both bytes.
4. Slave sync pulse (BUS SSYNL) is sent to the processor at sense amplifier strobe timing.
5. Data out is strobed onto the Unibus for both bytes. from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.



## Read-Pause Cycle (DATIP)

1. Read timing is generated.
2. Data registers are cleared.
3. Sense amplifier strobes are generated for both bytes.
4. Slave sync is sent at sense amp strobe timing.
5. Pause flip-flop is set and data out is strobed onto the Unibus.

## Clear-Write Cycle (DATO)

1. Read timing followed by write timing is generated.
2. Data registers are cleared.
3. Data is loaded from the data bus into the memory data registers for both bytes.
4. Slave sync is sent after the data registers are loaded from the data bus.

## Clear-Write Byte (DATOB)

1. Read timing followed by write timing is generated.
2. Data registers are cleared.
3. Address bit $A \varnothing \varnothing$ is examined. Byte flip-flop is set depending on the state of $A \varnothing \varnothing$.
4. Data is loaded into the data registers only for the byte that performs the clear-write.
5. Slave sync is sent after the data registers have been loaded.
6. Sense amp strobe is generated but is inhibited for the byte that performs a clear-write.

## Operation Following A Read-Pause Cycle

1. Write timing is generated.
2. Slave sync is sent at the beginning of the cycle with CLK2H.
3. Pause flip-flop is reset.
4. In byte mode, the data that was read during the previous read-pause cycle is restored to only one byte while the memory performs a write on the other byte.

### 3.6 STACK ASSEMBLY

The PM-1116B stack assembly is a $16384 \times 16$ bit 3-D, 3-wire (common sense/ inhibit) core matrix arranged in a planar configuration of thirty two 64 x 128 core arrays. The stack assembly, which also contains decoding diodes, plugs directly into the back of the memory card to form the memory card assembly.

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.


SCALE

CODE IDENT NO. DWG NO.
52648 MA 700945

FORM 000021

Each dimension carries 8 drive and 16 sink switches with two diodes per line. There are two sense/inhibit lines for each bit. Each sense/inhibit line threads through 8192 cores for a total of 16384 cores.

The sense/inhibit lines are terminated with two 150 ohm resistors to ground at the sense amplifier and 75 ohms at the inhibit switch. The array is driven with positive $Y$ and negative $X$ current during a read operation and with negative $Y$, positive $X$ and negative inhibit current during the write operation. This arrangement of the core array permits the "shared drive" scheme used with the PM-lll6B memory. This minimizes the number of components used and thus improves the system reliability. See subsection 3.7.3 for more details.

### 3.7 X AND Y CURRENT DRIVE CIRCUITRY

The $X$ and $Y$ current drive scheme used in the $P M-1116 B$ memory card may be broady divided into three basic sections:

- Address registers and decoders
- Current regulators
- Current switches


### 3.7.1 ADDRESS REGISTERS AND DECODERS

The address registers store the address information from the Unibus address lines BUS A $\varnothing \varnothing$ through BUS Al7. This information is available at the beginning of each cycle. The address registers retain this information until the beginning of another cycle in the memory.

The address decoders convert the address information in the address registers to actual core locations as seen by the memory. However, address bit $A \varnothing \varnothing$ is used only for selection of byte $\emptyset$ or byte 1 during a byte mode (DATOB) and is not used for memory address locations.

Figure 3-5 shows the data format for the address word. Address bits Aøl, $A \varnothing 2$ and $A \varnothing 3$ are used to select one of eight $Y$ drive switches and address bits $A \varnothing 7$, Aø8, A 99 , and A14 are used to select one of sixteen $Y$ sink switches. Address bits $A \varnothing 4, A \varnothing 5$, and $A \varnothing 6$ are used to select one of eight $X$ drive switches and address bits Alø, All, Al2, and Al3 are used to select one of sixteen $X$ sink switches.

When the memory system is interleaved, address bit Al5 is interchanged with address bit $A \emptyset 1$ at the input of the memory board. Since address bit Aøl is the least significant bit for address locations, it serves as a mean to locate all even address locations in one memory and all odd address locations in another memory.

The information hereon is the proparty of PLESSEY MEMORIES IN CORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture does not comply, license, or imply any rights to use, sell, or manufacture
from this information and no reproduction or publication of it, in whole from this information and no reproduction or pubication of it, in whole
or part, shall be made without written authorization from PLESSE or part, shall be
MEMORIES, INC.

ADDRESS BLOCK - Selects one l6K address block.
Y SINK
$X$ SINK
$X$ DRIVE
Y DRIVE
B

Figure 3-5 : Address Data Format

### 3.7.2 CURRENT REGULATOR

The current regulator section consists of the two regulated current sources + I STAB and - I STAB. Both sources drain current from +20 V supply and sink to ground (OV). The +I STAB source is used to drive positive current into the stack required by Y-read and X-write operations. Both + I STAB and - I STAB sources are regulated against a common reference voltage that is controlled by a thermistor which changes its resistance with temperature changes and causes the drive currents to compensate for the changes in temperature. The drive current is factory set at 385 ma at $25^{\circ} \mathrm{C}$.

### 3.7.3 CURRENT SWITCHES

The current switches may be functionally separated into two categories; the drive switches and the sink switches. However, all the current switches (including the inhibit switches) used in the PM-lll6B memory system are similar in electrical design. They contain a floating transformer coupled transistor as the switch. The decoders, when activated by the timing pulses, draw current through the primary winding which induces current in the secondary winding across the base/emitter of the transistor causing it to turn on.

One unique feature of the drive organization is the "shared-drive" scheme. In this design approach, the current switch that drives $Y$ read current pulse is also used to drive $Y$ write current pulses. Thus, by using the "shared-drive" scheme, the memory uses only half the drive switches that are used by the conventional design approach. The "shared-drive" scheme is illustrated in Figure 3-6.

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.

$\begin{gathered} \text { SIZE } \\ \Delta \end{gathered}$	CODE IDENT NO. $52648$	$\begin{aligned} & \text { DWG NO. } \\ & \text { MA } 700945 \end{aligned}$		
SCALE	REV	-	SHEET	3-11



WRITE HALF CYCLE


Figure 3-6: Shared Drive Scheme
The information hereon is the property of PLESSEY MEMORIES IN-
CORPORATED. Transmittal, recsipt, or possession of the information
does not comply, license, or imply any rights to use, sell, or manufacture
from this information and no reproduction or publication of it, in whole
Or part, shall be made without written authorization from PLESSEY
MEMORIES, INC.

FORM 000021

The data loop circuitry consists of the receiver, data register, sense amplifier, inhibit driver and output driver. The description of the timing signals for the data loop is contained in Section 4.

The PM-1116B core stack contains two 8 K sense/inhibit loops for each bit. This makes it necessary to decode which sense/inhibit loop is being accessed. In order to accomplish this, each 8 K sense loop is connected to its own sense amplifier and inhibit driver. Address bit Al4 is used to decode between the upper and lower 8 K sense/inhibit loops.

During a clear-write cycle, the data registers are first reset, then data is strobed in from the Unibus. For the second half cycle, the memory performs a write with the data in the data registers controlling the inhibit drivers. If a $\varnothing$ is to be written, the inhibit driver is turned on. The inhibit current opposes the $Y$ write current thereby leaving the core in its cleared state ( $\varnothing$ state). If a 1 is to be written, the inhibit driver is turned off causing a full current pulse to be applied to the core, switching it to the one state. Data registers are reset at the beginning of each cycle except the cycle following a read-pause cycle.

The sense amplifier IC is referenced to a specific threshold voltage (VTH) and when the timing strobe is applied, it will cause its output to set to either a one or a zero. A zero output which did not exceed the threshold
voltage during the strobe timing will leave the data register in the reset state. A one signal will exceed the threshold voltage thereby setting the data register.

The threshold voltage for the sense amplifier IC is approximately 18 millivolts and is generated by the resistor voltage divider network from the +5 V supply.

### 3.9 INHIBIT DRIVERS

The basic function of the inhibit drivers is to supply half current pulse at the selected core location such as to oppose the $Y$ current pulse and thereby inhibit the core from switching.

In order for the inhibit driver to counteract the write-pulse current, inhibit current must pass through the selected core in the same direction as the read current pulse.

The inhibit drivers circuits used in the PM-lll6B memory system are floating transformer coupled transistor switches. Primary current flows in the transformer only when the data register is in its reset state ( $\varnothing$ state) when inhibit timing signal is activated.

The information hereon is the property of PLESSEY MEMORIES IN CORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from 'PLESSEY MEMORIES, INC.

## Section 4

## Theory of Operation

This section describes the logic diagrams for the $P M-1116 B$ memory. Appendix $C$ contains the logic diagrams which are referenced by sheet number at the beginning of each subsection.
4.1 ADDRESS STRAPPING CIRCUIT (SHEET 1)

Master sync (BUS MSYNL) from the processor initiates the memory cycle. The memory can respond to a BUS MSYNL only if it is strapped to the address block addressed by the processor.

Address strapping plug $T B 1$ is used to strap the memory to the address blocks. Table 2-2 shows the jumper configurations for plug TBl.

The address strapping circuit is shown in Figure 4-1.
Address lines Al3-Al5 are decoded by decoder Ul4. Address blocks up to 32 K are decoded in 4 K increments. Address blocks up to 64 K may be decoded in 8 K increments. To enable the decoding up to 64 K , cut the etch from N to M and add a jumper from $N$ to $P$.

Processors that do not have the memory management option can address 32 K words. The top 4 K word locations are reserved for peripheral and register addresses and the user has only 28 K of program instead of the full 32 K .

## 31K Option

The PM-lll6B provides the user with the option to reserve 1 K of memory for I/O instead of the normal 4 K . To enable this option, the wl jumper must be installed as shown in Figure $4-1$ and the memory strapped as $16 \mathrm{~K}-32 \mathrm{~K}$. This allows the memory to respond to addresses between 16 K and 31 K instead of between 16 K and 28 K . No I/O devices may be assigned addresses between 28 K and 31 K ; only the upper 1 K from 31 K to 32 K may be used.

SIZE	CODE IDENT NO.	DWG NO.	
A	DW		
SCALE		REV	MA 700945



### 4.2 MEMORY INITIATE TIMING CIRCUIT (SHEET 1)

All timing signals are generated by CLKlH and CLK2H. Figure 4-2 shows the timing circuit.


Figure 4-2: Memory Timing Circuit
When the bus master initiates a master sync pulse, if the memory is strapped to the memory block addressed by the processor, and if the slave sync signal is cleared (SSYNC flip-flop is reset), and if the memory is not cycling (memory busy flip-flop is reset, $\overline{2}$ output $=$ high) then U19 output goes low.

U19 output causes memory busy flip-flop U20 to go low. After a four gate delay Ul9 input is set low forcing its output back to a high forming clock pulse CLKlH. CLK2H is formed by the trailing edge of CLKlH.

The memory busy flip-flop U20, sheet $1 / 3 C$ is set at the beginning of the cycle at U20-10. Once U 20 is set, it will block the memory at U19-5 to inhibit any further access into the memory until the cycle is complete. U20-11 resets U20 flip-flop at the end of the cycle. The function of the four inverters (Ul574Hø4) from U20-8 to U19-5 is to create a time delay for the width of the clock pulse CLKlH at U22-4.

The information hereon is the property of PLESSEY MEMORIES IN CORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole from thit shall be made without written authorization from PLESSEY MEMORIES, INC


### 4.2.1 READ HALF CYCLE TIMING

The read half cycle timing source is shown in Figure 4-3. Read half cycle timing is initiated by CLKIH for each memory cycle except the cycle following a read-pause (DATIP). A DATIP cycle must always be directly followed by a write cycle or a write byte cycle on the same address.


Figure 4-3: Read Half Cycle Timing

One shot (U24) output RTH is lab set to 300 ns .

### 4.2.2 WRITE HALF CYCLE TIMING

Write half cycle timing is shown in Figure 4-4. One-shot U26 output WTH is lab set to 300 ns . Write timing is followed by either read timing (PAUSEL $=$ high) or by CLK2H (PAUSEH = high). does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be
MEMORIES, INC.



Figure 4-4: Write Half Cycle Timing

### 4.2.3 READ-PAUSE TIMING

Read-pause timing is generated as function of the read-pause flip-flop as shown in Figure 4-5.


Figure 4-5: Read-Pause Flip-Flop

The information hereon is the property of PLESSEY MEMORIES IN CORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.


U20 is a D-type positive edge flip-flop. During read-pause mode (CØFH and ClFL both high), PAUSEH output at pin 5 of U 20 is set high by the trailing edge of the CLK2L timing pulse. The trailing edge of CLK2L occurs 130ns after $T \varnothing$ (see internal timing diagram, Figure 5-1). The pause flip-flop is reset at the trailing edge of CLK2L for all modes except read-pause.

During the read-pause cycle, end of cycle one-shot $\mathrm{U} 24-2$ triggers 360 ns after time $T \varnothing$ with PAUSE high at the trailing edge of RTH. See schematic diagram 700295, sheet $1 / B 3$.

For the cycle following a read-pause, the pause flip-flop does the following:

- Inhibits read-timing (U24-9)
- Enables write timing with CLK2H (U2l-9)
- The end of cycle reset one-shot U24-2 is triggered 130 ns after time $T \varnothing$ with RTH high and PAUSEH low.
- During a byte mode operation, clear data register pulse (CLRøL or CLRIL) is inhibited or enabled depending upon the state of address bit $\varnothing$ as shown in Figure 4-6.
- PAUSEL = low (U32-5 sheet $2 / 6 B$ ) inhibits $X$ and $Y$ sink switches from turning on with CLKlH. Since read timing is also inhibited $X$ and $Y$ sink switches turn on with WTL (Ull-9).


Figure 4-6: Byte Selection Following a Read-Pause Operation

### 4.2.4 SENSE AMPLIFIER STROBE TIMING

Sense amplifier strobe is generated as shown in Figure 4-7.


Figure 4-7: Sense Amplifier Strobe Timing
SAS is inhibited in clear-write mode when $C \not \subset F H$ and ClFL are both high. It is enabled for all other modes. The pulse width of the strobe is a function of Rl4 and Cl5. Strobe timing is a function of Cl. 3 and variable resistor Rll. The sense amplifier strobe is set with reference to the $X$ read pulse measured at the stack input.
4.3 BYTE MODE OF OPERATION (SHEETS 1 AND 2)

The two byte modes of operation are generated as shown in Table 4-1.

MODE	CONTROL		LINES	ADDRESS   BIT $\varnothing \varnothing$
	L $\varnothing$	Cl	FUNCTION	
DATOB 1	L	L	H	Clear-Write Byte $\varnothing$   Read-Restore Byte 1

NOTE: All signal levels are measured at the Unibus.
Table 4-1: Byte Mode Selection
Byte $\varnothing$ is defined as data bits $D \varnothing$-D7. Byte 1 is defined as data bits D8-D15.

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.


Figure 4-8 illustrates the byte flip-flop.


The byte circuit operates as follows:
For all modes other than byte mode, clear and preset inputs of Ul6 flip-flop are set low (BYTEL = high). $O$ and 2 outputs of byte flip-flop are both high (BYTE $\varnothing_{H}=$ high and BYTE $1 \mathrm{H}=$ high). Byte circuits are shown in Figure 4-9.


Figure 4-9: Byte Circuits (Continued)

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole


Figure 4-9: Byte Circuits
During non-byte operation both sense amp strobes are enabled (BYTE $\mathrm{H}_{\mathrm{H}}$ and BYTELH = high). BYTEL = high enables the slave sync flip-flop which is set by CLK2H with BUS ClL $=C l=h i g h$. Also during byte mode, the clear and preset inputs of Ul6 flip-flop are high.

Table 4-2 illustrates the various functions of the byte mode cycle.

MODE	FUNCTIONS
$\begin{aligned} & \text { DATOB } \varnothing \\ & \text { CLEAR-WRITE BYTE } \varnothing, \\ & \text { READ-RESTORE BYTE } 1 \end{aligned}$	1. SAS for byte $\varnothing$ is inhibited.   2. SAS for byte 1 is enabled.   3. Load data byte $\varnothing$ (LD $\varnothing \mathrm{H}$ ) enabled.   4. Load data byte 1 (IDIH) inhibited.   5. For the cycle following a read-pause only: clear data register byte $\varnothing$ (CLR $\varnothing$ ) enabled and clear data register byte 1 (CLRI) inhibited.
DATOB 1   CLEAR-WRITE BYTE 1,   READ-RESTORE BYTE $\varnothing$	1. SAS for byte $\varnothing$ is enabled.   2. SAS for byte 1 is inhibited.   3. Load data byte $\varnothing$ (LD $\varnothing_{H}$ ) inhibited.   4. Load data byte 1 (LDIH) enabled.   5. For the cycle following a read-pause only: clear data register byte $\varnothing$ (CLR $\varnothing$ ) is inhibited and clear data register byte 1 (CLRI) is enabled.

Table 4-2: Byte Mode Functions
The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.

REV
SHEET 4-9

### 4.4 SLAVE SYNC CIRCUIT (SHEET 2)

Slave sync is an acknowledgement pulse from the memory to the processor in response to a master sync pulse.

Slave sync circuit is shown in Figure 4-10.


Figure 4-10: Slave Sync Circuit
Ul6 is a D-type positive edge triggered flip-flop. It is set with sense amplifier strobe during a read-restore (DATI) or a read-pause (DATIP) when BYTEL = high and SAS is enabled. During a clear-write (DATO) or a clear-write byte (DATOB) it is set at the beginning of the cycle with CLK2H. (See internal timing diagram Figure 5-1.)

The slave sync flip-flop is reset each cycle with the trailing edge of master sync pulse. U23 output driver is an open collector driver SN7438.

$\begin{gathered} \text { SIZE } \\ A \end{gathered}$	CODE IDENT NO. $52648$	DWG NO.   MA 700945		
SCALE	REV	-	SHEET	4-10

### 4.5 POWER FAIL - DC LOW SIGNAL (DCLOL) (SHEET 2)

BUS DCLOL signal is the Unibus power fail indicator. It remains high ( +5 V ) as long as all power supplies (processor and peripherals) are within their specified limits. It will go low (OV) whenever DC voltages are out of their specified limits. This line is wired on the Unibus. DCLOL is also used during power on sequence to inhibit the memory from starting the cycle before all the DC voltages are within their specification.

DCLOL circuit is shown in Figure 4-11.


Figure 4-11: DCLO Circuit
When the memory power supply is first turned on, BUS DCLOL line is held at ground level ( $\varnothing \mathrm{V}$ ). It remains at this level until both the +5 V and the -15 V supplies are within their specifications.

BUS DCLOL = low inhibits current path from the $Y$ sink switches to the -15 V supply during read half cycle (YR-RTN) and to the +5 V supply during write half cycle (YW-RTN). It also blocks the $X$ sink switches to the +5 V supply during read half cycle ( $X R-$ RTN) and to the -15 V supply during write half cycle (XR+RTN).

BUS DCLOL low forces address strapping decoder IC (Ul4-12) high. This blocks memory initiate gates U19-6 and Ul3-1l blocking the memory from responding to any further commands from the Unibus.
4.6 MEMORY INITILIZE - BUS INITL (SHEET 1)

The BUS INITL Unibus signal is a memory reset pulse from the processor. Memory path is illustrated in Figure 4-12.


INITL $=$ low for reset

Figure 4-12: Memory Initialize Circuit

### 4.7 X AND Y CURRENT LOOP (SHEET 2.)

Figure $4 \nexists 3$ contains a block diagram of the $X$ and $Y$ read current loop. Figure $4-14$ contains a block diagram of the $X$ and $Y$ write current loop. The main elements of the current loop are the current source, $X$ and $Y$ sink and drive switches and balun transformers.

## Read Current Path

During the read half cycle, the half current pulse for the selected $x$ line flows from the -15 V supply through the $\mathrm{XR}+\mathrm{YW}$ current source (Q16-Q19). The path continues through one of eight drive switches (QU12, QUl3) which is decoded using address bits $A \varnothing 1, A \varnothing 2$, and $A \varnothing 3$. The selected line CC $\varnothing-C C 7$ enters the stack at E4l-E48. The path exits the stack at one of sixteen $X$ sink switches XSø-XSl5 (El-El6) which is decoded using address bits Alø, All, Al2, and Al3.


Figure 4-13: $X$ and $Y$ Read Current Paths


Figure 4-14: $X$ and $Y$ Write Current Paths

The current path completes its circuit through read switch $\mathrm{XR}-\mathrm{RTN}(Q U 1,5,7)$ and the $X-Y$ balun transformer (TU12,13,14) to the $+5 V$ supply.

The half current pulse for the selected $Y$ line flows from the +5 V supply through the YR +XW current source (Qll-Q14). The path continues via one of eight drive switches (QUlO and QUll) which is decoded using address bits Aø4, $A \varnothing 5$, and $A \varnothing 6$. The selected line CA $\varnothing-C A 7$ enters the stack at E33-E40. The. path exits the stack at one of sixteen Y sink switches YS $\varnothing$-YSl5 (El6-E32) which is decoded using address bits $A \varnothing 7, A \varnothing 8, A \varnothing 9$, and A14. The current path completes its circuit through read switch YR-TRTN ( $Q U 1,8,10$ ) and the $X-Y$ balun transformer (TU2,10,9) to the -15 V supply.

## Write Current Path

During the write half cycle, the half current pulse for the selected X line flows from the +5 V supply through the $Y R+X W$ current source (Qll-Q14). The path continues through one of eight drive switches (QUlO and QUll) which is decoded using address bits $A \varnothing 1, A \varnothing 2$, and $A \varnothing 3$. The selected line CA $\varnothing$-CA7 enters the stack at E4l-E48. The path exits the stack at one of sixteen $X$ sink switches XS $\varnothing$-XS15 (El-El6) which is decoded using address bits Al $\varnothing$, All, Al2, and Al3. The current path completes its circuit through write switch XW+RTN, QUl-1-3 and the $X-Y$ balun transformer (TU2-10-9) to the -15 V supply.

The half current pulse for the selected $Y$ line flows from the -15 V supply through the XR-YW current source (Q16-Q19). The path continues via one of eight drive switches (QUl and QUl3) which is decoded using address bits Aø4, $A \varnothing 5$, and Aø6. The selected line CC $\varnothing$-CC7 enters the stack at E4l-E48. The path exits the stack at one of sixteen $Y$ sink switches YS $\varnothing$-YSl5 (El7-E32) which is decoded using address bits $A \varnothing 7, A \varnothing 8, A \varnothing 9$, and A14. The current path completes its circuit through write switch YW-RTN (QUl-12-14) and the $X-Y$ balun transformer ( $\mathrm{U} 2-14-13$ ) to the +5 V supply.

### 4.7.1 X AND Y CURRENT SOURCE

The current source circuits provide the read and write half currents for the selected $X$ and $Y$ lines. Optimum core switching requires current pulses of precise amplitude, shape and duration. $X$ and $Y$ current amplitude is factory set to 385 mA at $25^{\circ} \mathrm{C}$ with a time duration of 300 ns .

Figure 4-15 shows a typical current source. Current flows from -STAB through balun transformer Tl via $27-Q 12$ to the -15 V supply. When $\mathrm{XR}-\mathrm{YWH}$ goes low it causes 26 and 25 to go on and 27 off. This inhibits any current from flowing through Q8-Q12. XR+YWH signal high causes $Q 6$ and $Q 5$ to turn off and 27 to turn on. This turns on $28-Q 12$.

Current amplitude is controlled by transistors Ql-Q4. Thermistor RT controls current flow to compensate for any temperature variation at the memory card. Resistor RI controls current flow through both current sources. Resistor R2 controls current flow through transistors Q7-Q12.


Figure 4-15 Typical Current Source (X Read + Y Write)

### 4.7.2 X AND Y SINK SWITCHES (SHEET 3)

The PM-1116B contains 16 X sink switches designated XS $\varnothing$-XS15 and 16 Y sink switches designated YS $\varnothing$-YSl5.

The 16 X sink switches together with 8 drive switches select one of 128 X lines. The 16 Y sink switches together with 8 drive switches select one of 128 Y lines. The $X$ and $Y$ sink switch circuits are identical. A typical sink switch circuit is shown in Figure 4-16.


Figure 4-16: X Sink Switch Circuit
A 74145 address decoder is used to decode one of sixteen $X$ or $Y$ sink switches. When one of the $X$ sink switches is selected, the primary winding of transformer $T 1$ is grounded. This causes current to flow from the +5 V supply through a 47 ohm current limiting resistor and through the primary winding of Tl to ground. This causes Ql to be turned on.

During the read half cycle, current sinks in the negative direction from the stack through CR3, Ql and CRI to the return path. During the write half cycle, current sinks in the positive direction from the stack through CR2, Ql and CR4 to the return path.

Address bits $1 \varnothing, 11,12$, and 13 are used to select one of sixteen $X$ sink switches. Address bits $7,8,9$, and 14 are used to select one of sixteen $Y$ sink switches. $X$ and $Y$ sink decode charts are contained in Tables 5-3 and 5-4.

### 4.7.3 X AND Y DRIVE SWITCHES (SHEET 3)

The PM-lll6B contains 16 drive switches designated CA $\varnothing$ through $C A 7$ and CC $\varnothing$ through CC7. They are used in conjunction with the $X$ and $Y$ sink switches in a "shared drive" scheme which minimizes the number of components used in the system and increases reliability while decreasing power consumption.

Figure 4-17 illustrates the shared drive circuit.

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.


SCALE


Figure 4-17: Shared Drive Circuit

SCALE	REV -	SHEET 4-18

Figure 4-18 contains typical $C A$ and $C C$ drive switches.


Figure 4-18: Typical Drive Switches
During a read half cycle, one of the CA $\varnothing$-CA7 drive switches is used to drive current to the selected $Y$ line in conjunction with the selected $Y$ sink switch. During the write half cycle, one of the CC $\varnothing$-CC7 drive switches is used to drive current to the selected $X$ line in conjunction with the selected $X$ sink switch.

Address bits $A \varnothing 1, A \varnothing 2$ and $A \varnothing 3$ are used to select one of eight $C C \varnothing$-CC7 drive switches during the read half cycle and one of eight CA $\varnothing$-CA7 drive switches during the write half cycle.

Address bits $A \varnothing 4, A \varnothing 5$, and $A \varnothing 6$ are used to select one of eight CA $\varnothing$-CA 7 drive switches during the read half cycle and one of eight $C C \varnothing-C C 7$ drive switches during the write half cycle.
$X$ and $Y$ drive switch decode charts are contained in Tables 5-5 and 5-6.

The information hereon is the property of PLESSEY MEMORIES IN CORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from 'PLESSEY
MEMORIES, INC.

SIZE	CODE IDENT NO.	DWG NO.
$\boldsymbol{A}$	52648	MA. 700945

SCALE
REV
SHEET
4-19
FORM 000021

### 4.8 DATA LOOP CIRCUIT (SHEET 4-7)

Data to and from the memory card is transferred on the same Unibus lines. The 16 data-in and data-out lines are designated BUS DøøL through BUS D15L. All Unibus lines are active low ( $\varnothing \mathrm{V}$ ) and inactive high ( +3 V ). This allows all devices including the processor to connect to the Unibus lines in parallel.

Figure 4-19 shows the data loop circuit. An SN7438 open collector NAND gate functions as a Unibus transmitter. The receiver used is a Signetics 8 T 380 with an input high threshold noise of 1.8 V minimum.

Timing signals DOSøH (byte $\varnothing$ ) and DOSlH (byte 1) are used to strobe data from the memory to the Unibus. Timing signals LDøL (byte $\varnothing$ ) and LDlL (byte l) are used to strobe data from the Unibus to the memory.


## Figure 4-19 Data Loop Circuit

For a clear-write operation during the first half cycle the sense amplifier strobe is inhibited for both lower and upper 8 K sense (SASADH and SASAlH). The data register is cleared at the beginning of the cycle with CLRøL and CLRIL. The data is strobed from the Unibus lines into the memory data registers with timing signals LDøL and LDlL.

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information CORPORATED. Transmittal, receipt, or possession of the information
does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from 'PLESSEY MEMORIES, INC.


During the second half cycle, the data register controls one input for both inhibit driver gates. The other input is the timing pulse ITAØH or ITAlH which is a function of address bit Al4. Address bit Al4 low (active) indicates that the memory is addressed in the upper 8 K stack; ITAøH is enabled and ITAlH is inhibited. Address bit Al4 high (inactive) indicates that the memory is addressed in the lower 8 K stack; ITAøH is inhibited and ITAlH is enabled. When the inhibit driver is on, it opposes $X$ and $Y$ currents and causes a zero to be written into the core. When the inhibit driver is off, it enables $X$ and $Y$ currents and causes a one to be written into the core.

For a read-restore mode during the first half cycle, sense amplifier strobe is a function of address bit Al4. Address bit Al4 low inhibits SASAlH and SASBlH and enables SASAøH and SASBøH.

### 4.8.1 INHIBIT DRIVER CIRCUIT (SHEETS 4-7)

The PM-lll6B uses 32 inhibit drivers, one for each 8 K sense/inhibit loop or two per bit.

The function of the inhibit driver is to drive current with the same amplitude but in the opposite direction from the write current in all Y lines. This will cancel out the write current in the selected $Y$ line.

To enable writing a $l$ in the desired bit, the inhibit driver is turned off, allowing $X$ and $Y$ half-currents to switch the selected core to the one state.

The cores are always cleared to the zero state during the read half cycle. To enable writing a zero in the desired core, inhibit driver is turned on, causing current to flow in the opposite direction of the $Y$ current and thus inhibiting a core switch-over. This causes the selected core to remain in its zero state.

Figure 4-20 illustrates a typical inhibit driver circuit.
Inhibit current flows from the -15 V supply through Rl and Ql into the inhibit/ sense stack loop. Ql is turned on during the inhibit timing (write timing pulse $W T H$ ) only if data register $\overline{2}$ output is high. (Pin 12 or 14 on sense amp IC 7520).

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from 'PLESSEY
MEMORIES, INC.


SCALE

CODE IDENT NO.
DWG NO.

FORM 000021


Figure 4-20: Typical Inhibit Driver Circuit

### 4.8.2 SENSE AMPLIFIER (SHEETS 4-7)

The sense amp IC SN7520 consists of dual differential amplifiers and a threshold voltage input plus the data register latch. The threshold voltage determines the switching level of the sense amplifier. VTH voltage is approximately +4 V . This voltage is obtained from the +5 V supply through register voltage divider. (See schematic diagram sheet $4 \mathrm{~A} / 5$.)

The reference voltage VTH is brought into the threshold inputs (pins 4 and 5) through another resistor voltage divider. The threshold voltage between pins 4 and 5 is approximately 18 mv .

The sense amp is an open-loop high gain linear amplifier. Whenever the differential voltage between its inputs (pins 2 and 3 or pins 6 and 7) exceeds the threshold voltage (l8mv), the amplifier goes into saturation (switched to a high). If the differential voltage does not exceed the threshold voltage, the amplifier remains in its off state (switched to a zero).

Another section of the sense amp IC consists of the data register latch and the sense amplifier strobe input gate. The data register latch is cleared at the beginning of each cycle with CLR signal. The two sense amp strobed at pins 11 and 15 (SASA and SASB) are a function of address bit Al4. They select between the lower and the upper 8 K sense loops.

The information hereon is the property of PLESSEY MEMORIES INCORPORATED Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.


FORM 000021

A typical sense amplifier circuit is shown in Figure 4-21.


Figure 4-21: Typical Sense Amplifier Circuit
The diode pin in each loop provides the current path for the inhibit current pulse during the write half cycle. The resistor pin in each input terminates the sense/inhibit loop. The sense/inhibit loop measures approximately 16 ohms between pins 2 and 3 or 6 and 7. DC resistance between pins 2, 3, 6, or 7 to ground when the diodes are back biased is approximately 40 ohms and when the diodes are forward biased is approximately 14 ohms.

The DC resistance of both diodes in the forward bias direction must be the same so that the inhibit current is divided equally when flowing through the sense/ inhibit loop.

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY or part, shall be
MEMORIES, INC.

## Section 5

## Maintenance and Troubleshooting

This section contains maintenance and troubleshooting information. The logic description in Section 4 and the drawings in the appendix are provided for further reference.

### 5.1 PRINTED CIRCUIT BOARD CLEANING

The printed circuit contacts should be cleaned when dust or dirt has built up on the surfaces. Instant Contact Cleaner, alcohol, and freon have been approved for cleaning contacts. When printed circuit contacts must be cleaned, hold the card so the contacts are pointed down and thoroughly saturate the contact area. While the contacts are still wet, scrub with a soft natural bristle brush.

## CAUTION

Under no circumstances should an eraser or other abrasive be used on gold plated contacts.

To remove dust from printed circuit boards, a soft brush should be used. Clear, oil-free, pressurized air ( 5 psi max) can be sprayed over the board.

## CAUTIION

Do not spray pressurized air directly inside the core matrices.
5.2 STACK REPAIR

With the exception of stack diodes, modules and terminating Unibus, which may be replaced in the field, repair of the stack assembly is not recommended. If a stack is faulty, replace it with a new stack assembly.

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.


SCALE

CODE IDENT NO. DWG NO.

## 52648 MA 700945

(REV - $\quad$ SHEET

### 5.3 STACK REMOVAL AND INSTALLATION

Stack removal consists of removing the stack from the board assembly. The stack itself should not be disassembled. The stack is removed by first removing the nuts from the $4-40$ screws holding the stack on the board; then carefully spreading the pinned side. Be careful not to excessively bend the board or the stack subassemblies.

To install the stack onto the board assembly, first orient the connectors on each subassembly to be sure that they are aligned. Then carefully insert the stack connectors into the board connectors. Check that the pins are exactly aligned before compressing the two subassemblies in order to prevent bending the board. Insert until the stack standoff makes contact with the components board, then insert the mounting screws.
5.4 REPAIRS - GENERAL

Discrepancies in memory system operation are, in general, one of the following types:

- Operation failures, which are caused by faulty reference control, input logic, or timing.
- Partial data word failures which are caused by faulty drive and sink switches, drive control, memory register, inhibit driver, stack decoding logic or line driver circuits.

If no definite failure pattern is apparent, adjusting power supply voltages $\pm 5 \%$ about nominal might help to cause a "hard" failure.

NOTE: It is strongly recommended that all assemblies requiring repair be returned to the factory for rework. All returned units should be accompanied with a detailed description of the failure.
5.5 PM-1116B INTERNAL TIMING SET-UP

The following timing signals are initially set at the factory. Refer to internal timing diagram, Figure 5-1, and internal timing figures in Appendix A.


Figure 5-1: Internal Timing Diagram

The information hereon is the property of PLESSEY MEMORIES INThe information hereon is the property of PLESSEY MEMORIES IN-
CORPORATED. Transmittal, receipt, or possession of the information CORPORATED. Transmittal, receipt, or possession of the information
does not comply, license, or imply any rights to use, seli, or manutacture from this information and no reproduction or publication of it, in whole or part, shall be
MEMORIES, INC.


SCALE

Read Timing Pulse - RTH (Sheet 2/7B)
The RTH timing pulse is monitored at the output of the read timing one-shot U24-5. RTH pulse width is set at $320 \mathrm{~ns} \pm 10 \mathrm{~ns}$ with its leading edge at 50 ns $\pm$ lOns. Pulse width is varied by changing the overall value of U 24 timing resistor Rl6. Select values for R16 from the following: $11 \mathrm{~K}, 12 \mathrm{~K}, 15 \mathrm{~K}, 18 \mathrm{~K}$, $20 \mathrm{~K}, 22 \mathrm{~K}, 27 \mathrm{~K}$, and 33 K ohms.

Write Timing Pulse - WTH (Sheet 2/7B)
The WTH timing pulse is monitored at the output of the timing one-shot U26-13. WTH pulse width is set at $300 \mathrm{~ns} \pm 10 \mathrm{~ns}$ with its leading edge at $450 \mathrm{~ns} \pm 10 \mathrm{~ns}$. Pulse width is varied by changing the overall value of U 26 timing resistor R18. Select values for R 18 from the following: $11 \mathrm{~K}, 12 \mathrm{~K}, 15 \mathrm{~K}, 18 \mathrm{~K}, 20 \mathrm{~K}, 22 \mathrm{~K}, 27 \mathrm{~K}$, and 33 K ohms.

## Sense Amplifier Strobe - SAS (Sheet 2/7D)

The SAS pulse is monitored at the output of the SAS one-shot U25-13. The leading edge is set at 130 ns from the $O V$ level of $X$ read pulse $C A \varnothing$ measured at the stack connector pin. The pulse width of SAS should be $50 \mathrm{~ns} \pm 10 \mathrm{~ns}$. It is varied using trimmer pot Rll at U25-7.

Monitor all other timing signals listed in the internal timing diagram, Figure $5-1$. Tolerance for all timing signais is $\pm$ lons.

## $5.6 \mathrm{X}-\mathrm{Y}$ CURRENT SET-UP

After initial memory warm up install a current probe P6021 or equivalent through the two loops at the back of the stack. With the current probe switch set at $2 \mathrm{~mA} / \mathrm{mV}$ and the scope at $50 \mathrm{mV} / \mathrm{cm}$ input (scope is set at 100 ma per division). Read $385 \mathrm{ma} \pm 5 \mathrm{ma}$ at the flat top of both $X$ and $Y$ pulses. Read only the first pulses and İvert them if necessary. $X$ and $Y$ current pulses are depicted in Figure 5-2.

To adjust $Y$ read current pulse vary the value of $R 48$ in parallel with $R 49$. To adjust $X$ read current vary the value of $R 64$ in parallel with $R 39$. Select values for R48 and R64 from the following to obtain 390ma of current in the $X$ and $Y$ drive lines: $82,100,120,150,180$, and 220 ohms. To adjust amplitude of both $Y$ read and $X$ read current pulses vary the value of $R 229$ in parallel with R39.

To control the amplitude of $X$ and $Y$ currents for memory margin testing an external potentiometer is connected across plug Pl. Plug Pl is a three pin plug located on the component side of the memory board assembly. The plug is shown on schematic sheet 2/3A.


Figure 5-2: X \& Y Current Pulses

### 5.7 TROUBLESHOOTING PROCEDURE

In order to detect a malfunction in the memory card it is necessary first to isolate the general area of the memory that causes the malfunction; then in a step by step manner to isolate the exact location of the failure.

All interface lines including the power supply voltages must be present and verified. Figure 5-3 outlines all interface lines to and from the memory system.

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.


SCALE


Figure 5-3: Interface Lines
BUS MSYNL is the memory initiate command. Before the memory can respond to a MSYNL command the following conditions must be fulfilled:

- Address strapping jumpers must be set to match the address presented on the data bus (Ul9-3,4,6, and 11 must be high).
- The memory must complete its present cycle before it is ready to accept another MSYNL command.
- The slave sync (SSYNL) signal from the previous cycle must be cleared.
- BUS DCLO should be high (inactive). BUS DCLO inhibits any access to the memory. DCLOL is monitored at U15-12.
- BUS INITL should be high (inactive). It is monitored at Ul2-3.

Timing and Control Signals
Once the memory is accessed, all timing and control functions should be checked and verified. Figure 5-4 shows the timing and control signals, Table 5-1 lists the signals and their functions.

Check the presence of CLK 2 H by monitoring the $Q 2$ collector. The absence of CLK2H indicates that the above conditions were not met.

If CLK2H is present, the next step in the troubleshooting procedure is to monitor X and Y current pulses using a current probe.

## X \& Y Current Check

In order to check the $X$ and $Y$ current pulses, a current probe should be installed through the two loops provided in the back of the stack assembly. Both $X$ and $Y$ amplitude should be between 380 ma and 390 ma at $25^{\circ} \mathrm{C}$. Verify that $X$ read pulse is delayed from $Y$ read pulse by approximately 50 ns .

To adjust X and Y current amplitude, see Section 5.6.

| A | 52648 | MA 700945 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SCALE | REV |  | SHEET 5 | $5-6$ |

Figure 5-4: PM-1116B Timing and Control Chart


The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be
MEMORIES, INC.

Table 5-1: Timing and Control Signal Functions

All signal names ending with the letter $H$ indicate that they are high when active and low when inactive. All signal names ending with the letter $L$ indicate that they are low when active and high when inactive.

SIGNAL NAME	FUNCTION
ARSTH	Address register strobe pulse
RTH, RTL	Read timing
WTH, WTL	Write timing
$\mathrm{XR}+\mathrm{YWH}$	$X$ read or $Y$ write pulse to current source
YR + XWL	$Y$ read or X write pulse to current source
DCOKH	DC current OK
$(\mathrm{RT}+\mathrm{WT}) \mathrm{AD1} 3 \mathrm{~L}$	X sink timing
$(\mathrm{RT}+\mathrm{WT})$ ADI4L	$Y$ sink timing
SASAøH, SASBøH	Sense amp strobe lower 8 K sense/inhibit
SASAlH, SASB1H	Sense amp strobe upper 8 K sense/inhibit
ITA $\square^{\prime}$ H, $\quad 1 T B \emptyset \mathrm{H}$	Inhibit timing lower 8 K sense/inhibit
ITAlH, ITBlH	Inhibit timing upper 8 K sense/inhibit
CLRØL, CLRIL	Data register reset byte $\varnothing$ and byte 1
LDøL, LDIL	Data-in strobe byte $\varnothing$ and byte 1
DOSøH, DOS1H	Data-out strobe byte $\varnothing$ and byte 1
SSYNL	Slave sync pulse
MSYNL	Master sync pulse
DCLOL	DC Line
INITL	Memory initialize
MSYNA	Not used
CøL, ClL	Control lines

## Address Strapping

To verify that the memory is strapped correctly and that the address strapping circuit is functioning properly, use the following procedure:

1. Insert address strapping plug TB1 in the memory card.
2. Using the information in Table 2-2 force Unibus address lines and check gate U19 pins 3, 4, and 6. All should be high.
3. Verify that jumper Wl is out by monitoring U19-11 and Ul9-12. They should be high except for 31 K operation. For 31 K operation, install wl jumper and force address bits All, Al2, Al3, Al4, and Al5 to go low (active). Verify that Ul7-8 is low.

To verify that the address strapping decoder IC is functioning properly do the following:

1. Verify that U14-12 is low.
2. Remove address strapping plug TBl.
3. Using Table 5-2 force address bits Al3, Al4, and Al5. Check for the correct output level.

Al3	Al4	Al5	CHECK FOR OUTPUT = LOW AT
L	L	L	Ul4-1 or TBl-16
L	L	H	Ul4-2 or TBl-15
L	H	L	Ul4-3 or TBl-16
H	H	H	Ul4-4 or TBl-13
H	L	L	Ul4-5 or TBl-12
H	H	L	Ul4-7 or TBl-10
H	H	H	Ul4-9 or TBl-9

Table 5-2: Strapping Decoder Outputs


The $X$ and $Y$ drive and sink switches are the gold plated interface connector pins on the stack. An open switch is easily detected by comparison with the other switches. Compare the eight drive switches CA $\varnothing$-CA7 to each other. Their pulse strap must be identical. Repeat the same comparison test with all eight drive switches CC $\varnothing$-CC7, all sixteen $X$ sink switches XS $\varnothing-X S 15$, and with all sixteen Y sink switches YSØ-YS15.
$X$ and $Y$ sink and drive switch decode charts are contained in Tables 5-3 through $5-6$. L is used to indicate $\varnothing \mathrm{V}$ at the decoder input or +3 V at the Unibus. H is used in the tables to indicate +3 V at the decoder input or $\varnothing \mathrm{V}$ at the Unibus.

The procedure for locating a faulty switch is as follows:

1. Monitor any faulty X or Y line. A malfunction superimposes a distorted current wave form.
2. Force all associated address bits high and then low one at a time.
3. Record the address bits and the level which bypassed the error condition.
4. Invert their polarities and use the decode tables to locate the malfunctioning switch.

## Current Source

Current amplitude should be set at 390 ma at room temperature $\left(25^{\circ} \mathrm{C}\right)$ for both X read and Y write pulses. Current tracking is $1.3 \mathrm{ma} /{ }^{\circ} \mathrm{C}$ minimum to $1.6 \mathrm{ma} /{ }^{\circ} \mathrm{C}$ maximum.

## Data Loop Check

The data loop circuit contains several elements which should be checked in case of malfunction; the troubleshooting procedure for each is contained in the following text.

Using the timing charts in the appendix check the following timing signals and verify them.

- Inhibit timing signals
- Sense amplifier strobe
- Data register clear
- Data register load
- VTH ( +5 V ) and l8ms across divider network
- Inhibit driver output
- Inhibit switch output

Ground the data register timing signals CLRøL and CLRIL. This forces the data register $\bar{Q}$ output high.

The following tables decode the Unibus address to the selected X and Y sink switch.

ADDRESS BITS AT TESTER OR DECODER INPUT						
$\begin{aligned} & \text { U41/U42 } \\ & \text { PIN } 15 \\ & \text { ADI } \varnothing \\ & \hline \end{aligned}$	$\begin{aligned} & \text { U41/U42 } \\ & \text { PIN } 14 \\ & \text { ADll } \end{aligned}$	$\begin{aligned} & \text { U41/U42 } \\ & \text { PIN } 13 \\ & \text { AD12 } \end{aligned}$	U41/U42   PIN 12   AD13	X SINK   SWITCH   SELECTED	$\begin{aligned} & \text { STACK } \\ & \text { PIN } \\ & \text { LOCATION } \end{aligned}$	DECODER OUTPUT (74145)
L	L	L	L	XSø	El	U41-1
H	L	L	L	XSI	E2	U41-2
L	H	L	L	XS2	E3	U41-3
H	H	L	L	XS3	E4	U41-4
L	L	H	L	XS4	E5	U41-5
H	L	H	L	XS5	E6	U41-6
L	H	H	L	XS6	E7	U41-7
H	H	H	L	XS 7	E8	U41-9
L	L	L	H	XS8	E9	U42-1
H	L	L	H	XS9	E1ø	U42-2
L	H	L	H	XSIø	Ell	U42-3
H	H	L	H	XSll	El2	U42-4
L	L	H	H	XS12	El3	U42-5
H	L	H	H	XSl3	E14	U42-6
L	H	H	H	XSI4	E15	U42-7
H	H	H	H	XS15	E16	U42-9

NOTE: UNIBUS ADDRESS ASSERTED (LOW) EQUALS "1".

Table 5-3: X Sink Decode Chart

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from 'PLESSEY


ADDRESS BITS AT TESTER OR DECODER INPUT				Y SINK SWITCH SELECTED	$\begin{aligned} & \text { STACK } \\ & \text { PIN } \\ & \text { LOCATION } \end{aligned}$	DECODER OUTPUT   (74145)
U39/U40	U39/U40	U39/U40	U39/U40			
PIN 14	PIN 15	PIN 13	PIN 12			
ADø7	ADø8	ADø9	AD14			
L	L	L	L	YSø	E17	U39-1
L	H	L	L	YSI	El8	U39-2
H	L	L	L	YS2	E19	U39-3
H	H	L	L	YS3	E20	U39-4
L	L	H	L	YS4	E21	U39-5
L	H	H	L	YS5	E22	U39-6
H	L	H	L	YS6	E23	U39-7
H	H	H	L	YS 7	E24	U39-9
L	L	L	H	YS8	E25	U40-1
L	H	L	H	YS9	E26	U40-2
H	L	L	H	YSI¢	E27	U40-3
H	H	L	H	YSIl	E28	U40-4
L	L	H	H	YSl2	E29	U40-5
L	H	H	H	YS13	E30	U40-6
H	L	H	H	YSI4	E31	U40-7
H	H	H	H	YS15	E32	U40-9

NOTE: UNIBUS ADDRESS ASSERTED (LOW) EQUALS "l".

Table 5-4: Y Sink Decode Chart

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be
MEMORIES, INC.

ADDRESS BITS AT TESTER OR DECODER INPUT				STACKPINLOCATION	DRIVE   SWITCH   SELECTED	DECODER   OUTPUT   (74145)
$\begin{aligned} & \mathrm{U} 45-13 \\ & \mathrm{AD} \varnothing 1 \end{aligned}$	$\begin{aligned} & \mathrm{U} 45-15 \\ & \mathrm{AD} \varnothing 2 \end{aligned}$	$\begin{aligned} & \mathrm{U} 45-14 \\ & \text { ADø3 } \end{aligned}$				
L	L	L		E41	$\subset C \varnothing$	U45-1
L	H	L		E42	CCl	U45-2
L	L	H		E43	CC2	U45-3
L	H	H		E44	CC3	U45-4
H	L	L		E45	CC4	U45-5
H	H	L		E46	CC5	U45-6
H	L	H		E47	CC6	U45-7
H	H	H		E48	CC7	U45-9

NOTE: CC $\varnothing$-CC7 (U45-12 = LOW)

ADDRESS BITS AT TESTER OR DECODER INPUT				$\begin{aligned} & \text { STACK } \\ & \text { PIN } \\ & \text { LOCATION } \end{aligned}$	DRIVE   SWITCH   SELECTED	DECODER OUTPUT   (74145)
$\begin{aligned} & \mathrm{U} 44-15 \\ & \mathrm{AD} \varnothing 4 \end{aligned}$	$\begin{aligned} & \mathrm{U} 44-14 \\ & \text { ADø5 } \end{aligned}$	$\begin{aligned} & \mathrm{U} 44-13 \\ & \text { AD } \varnothing 6 \end{aligned}$				
L	L	L		E33	CA®	U44-1
H	L	L		E34	CAl	U44-2
L	H	L		E35	CA2	U44-3
H	H	L		E36	CA3	U44-4
L	L	H		E37	CA4	U44-5
H	L	H		E38	CA5	U44-6
L	H	H		E39	CA6	U44-7
H	H	H		E40	CA 7	U44-9

NOTE: CA - CA7 (U44-12 = LOW)

Table 5-5: Drive Switches Decode Charts Read Half Cycle

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.


NOTE: $\operatorname{CC} \varnothing-C C 7$ (U46-12 = LOW)


NOTE: CA $\varnothing$-CA7 (U43-12 = LOW)

Table 5-6: Drive Switches Decode Charts Write Half Cycle does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.

Monitor the sense amplifier input using a differential probe. Force address bit 14 first to a high then to a low and observe inhibit driver output 25 and inhibit switch output 26.

### 5.8 TROUBLESHOOTING CHART

The following chart is provided to aid in determining the cause of specific failures. The left-hand column lists error indications or symptoms and the right-hand column lists possible sources for each symptom.

## Troubleshooting Chart

INDICATION	ACTION
Memory is not cycling. (no clock pulse CLK2H at $\mathrm{Q}^{2}$ collector)	1. Check +5 V supply.   2. Check strapping plug U19-3, 4, 5, 11, and 12 - should read high.   3. Check master sync pulse at U19-1.   4. Check memory busy flip-flop output at U19-5 should read high.   5. Check slave sync flip-flop output at U19-2 should be high.   6. Check BUS DCLOL line.
Memory is not cycling (Clock pulse CLK2H - ok)	1. Check -15 V supply.   2. Check DCOKH should read high at U38-10, 4, 2 , and 12 .   3. Check read and write timing RTH U24-5 and WTH U26-13.
Memory fails to read/write all $\varnothing$ 's	1. Check inhibit driver circuit.   2. Check -15V supply.
Memory fails at certain address locations	1. Force address bits one at a time and record the bits that bypassed the failure.   2. Use $X$ and $Y$ sink drive decode charts Tables 5-3 to 5-6 to decode the faulty line.   3. Check $\mathrm{X}, \mathrm{Y}$ sink drive switches and core stack.
All bits fail.	1. Check $X-Y$ current.   2. Check sense amp. strobe timing.   3. Check -15 V supply.   4. Check sense amp. strobe threshold voltage. (VTH)

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole from thit shall be made without written authorization from PLESSEY MEMORIES, INC.

CODE IDENT NO. DWG NO.

INDICATION	ACTION
All bits fail.	1. Check X-Y current temperature   tracking.
Single bit failures.	1. Check sense amp. strobe timing.   2. Check X-Y current pulses.   3. Check data circuits for the bits   that fail.
Memory fails during address   as data pattern mode only.	1. Check address registers inputs.   (See schematic diagram sheet 1,   locations 6B through 6D).
Memory fails during cycle   operation or during high or   low voltage margin conditions	1. Check memory busy flip-flop timing.   2. Check and verify all timing signals.   3. Check X-Y current pulse amplitude.

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part shall be made without written authorization from PLESSEY MEMORIES, INC.

## SIZE



## Appendix A

## Internal Timing Charts

 does not comply, license, or imply eny rights to use, sell, or manufteture from this information and no reproduction or publicstion of is, in whole from this information and no reproduction or publicstion of is, in whole

| SIZE | CODE IDENT NO | DWG NO. |
| :--- | :--- | :--- | :--- |
| $A$ | 52648 | MA 700945 | or part, shal be

MEMORIES, INC.



INTERNAL TIMING CHART

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.
S


The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or posseasion of the information does not comply, license, or imply any rights to use, olll, or manufacture from this information and no reproduction or publication of it, In whole ME part, shall be made without written authorization from PLESSEY


The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, recsipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.

SIZE $\Delta$	CODE IDENT NO 52648	DWG NO.   MA 700945	
SCALE	REV	-	SHEET A-6



INTERNAL TIMING CHART

The information hereon is the property of PLESSEY MEMORIES IN CORPORATED. Transmittal, receipt, or poseession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole Or part, shall be made without written authorization from PLESSEV
MEMORIES, INC.


## Appendix B

## Parts List

The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY or part, shall be
MEMORIES, INC.


The information hereon is the property of PLESSEY MEMORIES IN CORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture rom this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSE MEMORIES, INC


SCALE

CODE IDENT NO.
52648

$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \\ i \\ 1 \end{array}$		¢ivo	PaRT ORIDEMTIFING Ko.	moneclature or oescription	specification	$\begin{aligned} & \text { CODE } \\ & \text { COET } \\ & \text { TEOTTM } \end{aligned}$	zowe		C/I USAGE		
	¢								${ }_{\text {coser }}$	bive	$\pm$
		1	700943-001	PRINTED WIRING BOARD				$1 E$			
	(12)	1	700066-136	PLUG, ADDRESS STRAPPING(0.16K)							
		1	$\begin{array}{r} 700298 \\ -100 \\ \hline \end{array}$	CORE MEMIORY-PLINAR				38			
		1	$\begin{gathered} 700407 \\ 001 \end{gathered}$	STIFFENER				4 E			
		156	86477-2	RECEPTACLE	AMP	04618		5 A			
		1	$\begin{array}{\|c} 700369 \\ -0.02 \end{array}$	WSLILATOE				6 B			
		2	M551957-4	SCREW, $2.56 \times 5 / 16$				7 A			
		6	N440-4	SCREW 4-40×1/4 NYLON B/NDCR AEAD	WECKESSER	95987		8 A			
		2	NASI291C02	NUT, HEX\#2 SELF LOCKING	.			9 A			
		10	(1-490-x	NUT-HEX	WECKESSER	95987		104			
		10	136021-381	QUAD 2-INDUT NOR				$11 B$			
		6	SN74H00N	QUAD 2-INPUT NAND	T.I.	01295		12 A			
		1	SN7402N	QUAD 2-INPUT DOSITIVE NOR GATE	T,I.	01295		13 A			
		3	SN74HO4N	HEX INVERTER	T.I.	01295		$14 \mid A$			
		5	SN74HD8N	QUAD 2-INPUT AND BUFFER	T.I.	01295		15 A			
		2	SN74HION	TRIPLE 3-INPUT POSITIVE NAND GATE	T.I.	01295		16 A			
		1	SN74H2ON	DUAL 4-INPUT POSITIVE NAND GATE	T.I.	01295		17 A			
		1	SN74H30N	$\begin{aligned} & \text { 8-INPUT POSITIVE } \\ & \text { NAND GATE } \end{aligned}$	T.I.	01295		18 A			
		18	136000-038	CUAD 2-INDUT NAND EUFFER GATE O.C.				19 E			
		1	SN74H5IN	DUAL AND/OR INVERTER	T.I.	01295		20 A			
		2	SN74H74N	$\begin{aligned} & \text { DUAL D-TYPE EDGE } \\ & \text { TRIGGERED FLIP-FLOP } \end{aligned}$	T.I.	01295		21 A			
		4	SN7475N	QUAD D-FLIP FLOP	T.I.	01295		22 A			
		3	SN74123N	DUAL 1-SHOT	T.I.	01295		23.4			
		9	SN74145N	BCD DECDDER DRIVER	T.I.	01295		24 A			
		16	SN7520N	$\begin{aligned} & \text { OUAL-CHANNEL SENSE } \\ & \text { AMPLIFIERS/COMP OUTPUTS } \end{aligned}$	T.I.	01295		25 A			
				. .				26.			



$\begin{array}{r} 1 \\ i \\ \vdots \\ i \end{array}$	n	$\operatorname{liv}_{\text {ateo }}$		monnclatuer or mescription	specificarion		20w		C／I USAGE			
									${ }^{\text {con }}$	洶風	㜢	䢦
	14	2	M18－N	RESISTOR， $7.5 \Omega, \pm 1 \%, 2.5 W, W W, N I$	$C F$ ELECTRONICS	21551		53 A				
				1				54.				
		1	M 30	$52 \Omega \pm 5 \%, 5 \mathrm{~W}, \mathrm{WW}$	CF ELECTRONICS	21551		55 A				
								56				
		16	M30－N	$12 \Omega, 5 W, \pm 1 \%, 5 W, W W, N I$	$\begin{gathered} C F \\ \text { DECTRONICS } \end{gathered}$	21551		57 A				
				1				58				
		1	3005P－1－103	$\begin{aligned} & \text { RESISTOR, VARIABLE, IOK, } 10 \% \text {, } 1 / 2 \mathrm{~W}, \text { WIREWOUND } \\ & \end{aligned}$	BOURNS	80294		59 A				
								60.				
		1	CDI5CD100J03	CAPACITDR， $10 \mathrm{Pf} \pm 5 \%$	CORNELL DUBILIER	93730		61 A				
		2	CDI5ED220，03	22Pf	$1$	93730		62 A				
		1	KDI5ED470J03	47 Pf		93730		63 A				
	．	21	COI5FDIOIJO3	100 Pf		93730		64				
		1	C15FD22IJO3	CAPACITOR 220Pf $\pm 5 \%$	$\begin{aligned} & \text { CORNELL } \\ & \text { DUBILER } \end{aligned}$	93730		2514				
		16	K065 K 272 K	CAPACITOR 2700 Pf $200 \mathrm{~V} \pm 10 \%$	KEMET	05397		66.4				
		23	$\begin{gathered} C 06.9 \mathrm{BI} 160 \mathrm{E} \\ 103 \mathrm{Z} \\ \hline \end{gathered}$	T． 014 f 16V＋80－20\％	SPRAGUE	05571		67				
		21	$\begin{gathered} 1500475 x \\ 0010 A 2 \end{gathered}$	4．7U＋ $10 \mathrm{~V} \pm 20 \%$	SPRAGUE	05571		68 A				
		18	$\begin{array}{\|c\|} \hline 1500156 X \\ 0020 B 2 \\ \hline \end{array}$	CAPACTTOR $15 \mathrm{U}+20 \mathrm{~V} \pm 20 \%$	SPRAGUE	05571		69 A				
		1	CK05BX102K	CAPACITOR $1000 \mathrm{pf} 200 \mathrm{~V} \pm 10 \%$	MLL $=$－-11015			70 A				
		38	2N3725	TRANSISTOR	$T_{1} I_{0}$	01295		71 A				
		6	2N2369A	TRANSISTOR	T．I，	01295		72 A				
		10	2 N 2905	TRANSISTOR	T．I．	01.295		734				
								74				
		13	DH3725CN	TRANSISTOR QUAD	$\begin{aligned} & \text { NATIONAL } \\ & \text { SEMI-COND. } \end{aligned}$	27014		75 A				
								76				
		22	132300－003	TRANSFORMER MODULE				TTA				
								78				



## Appendix C

## Schematic Diagrams

SIZE   $\boldsymbol{A}$	CODE IDENT NO.   52648		DWG NO.   MA 700945	
SCALE	REV			SHEET
C-1				



PM-1116B PLANAR CORE STACK


		$X$ SINK															
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
x	0	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60
D	1	1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61
$\left\|\begin{array}{l} k \\ 1 \end{array}\right\|$	2	34	38	42	46	50	54	58	62	2	6	10	14	18	22	26	30
$E$	3	35	39	43	47	51	55	59	63	3	7	11	15	19	23	27	31
	4	64	68	72	76	80	84	88	92	96	100	104	108	112	116	120	124
	5	65	69	73	77	81	85	89	93	97	101	105	109	113	117	121	125
	6	98	102	106	110	114	118	122	126	66	70	74	78	82	86	90	94
	7	99	103	107	111	115	119	123	127	67	71	75	79	83	87	91	95

CORE STACK X LINES

		4							
	0	1	2	3	4	5	6	7	
	0	0	1	4	5	8	9	12	13
0	1	16	17	20	21	24	25	28	29
$R$	2	2	3	6	7	10	11	14	15
$V$	3	18	19	22	23	26	27	30	31
	4	32	33	36	37	40	41	44	45
5	48	49	52	53	56	57	60	61	
6	34	35	38	39	42	43	46	47	
7	50	51	54	55	58	59	62	63	


		$Y$							$51 N K$
	8	9	10	11	12	13	14	15	
4	0	64	65	68	69	72	73	76	77
0	1	80	81	84	85	88	89	72	93
	2	66	67	70	71	74	75	78	79
$V$	3	82	83	86	87	90	91	94	95
	4	96	97	100	101	104	105	108	109
5	112	113	116	117	120	121	124	125	
6	88	99	102	103	106	107	110	111	
7	114	115	118	119	122	123	126	127	

CORE STACK Y LINES


PIN NO.	FUNCTION	PIN NO.	[FUNCTION	PIN NO.	FUNCTION	PIN NO.	FUNCTION
1	$\times 50$	21	454	41	CCO	61	59B+
2	$\times 51$	22	455	42	CC)	62	598-
3	X52	23	Y56	43	CC2	63	19B
4	$\times 53$	24	457	44	CC3	64	OV
5	$\times 54$	25	458	45	CC4	65	S10A+
6	$\times 55$	26	459	46	CC5	66	S10A-
7	$\times 56$	27	4510	47	CC6	67	I10A
8	X57	28	4511	43	CC7	68	510B+
9	$\times 58$	29	4512	49	BIAS	69	S108-
10	$\times 59$	30	4513	50	OV	10	I10B
11	$\times 510$	31	4514	51	OV	71	5/1A +
12	X 511	52	4515	52	584 +	72	S/IA -
13	$x \leq 12$	33	CAO	53	584.	73	I/1A
14	$\times 513$	34	CAI	54	I8A	74	$511 B+$
15	$\times 514$	35	CA2	55	588+	75	S/1B-
16	X 515	36	CA3	56	588-	76	I/IB
17	450	31	CA4	57	I8B	77	S/2At
18	Y51	38	CA5	58	59A+	78	512A-
19	452	39	CAC	59	59A-	19	I12A
20	453	40	CA7	60	19A	80	S128+
PINiv.	IJNCTION	P/NAO.	FUNCTION	PINNC.	-UNCTION	PIN NCI	FUNCTION
81	S/2B-	101	I15B	121	55B+	141	I2B
82	I/2B	102	OV	122	55B-	1.42	OV
83	513At	103	OV	123	I5B	143	S/At
84	S/3A-	104	OV	124	$544+$	144	S/A-
85	113 A	105	$57 A+$	125	S4A-	145	$I / A$
86	S13日	106	57A-	126	IAA	146	$5 / B+$
87	5138	107	I7A	127	$548+$	147	S1B-
88	I/3B	108	$578+$	128	S4B-	148	I/B
89	OV	109	57B-	129	$14 B$	149	$504+$
90	S14At	110	I7B	130	$53 \mathrm{~A}+$	150	SOA-
91	S/4A-	111	56 At	131	53A-	151	IOA
92	I/4A	112	56A-	132	13A	152	$508+$
93	5148t	113	I6A	133	$53 B+$	153	$503-$
94	5148-	114	$568+$	134	S3B-	154	IOB
95	I $14 B$	115	$560-$	135	I3E	155	OV
96	$5154+$	116	168	136	S2A +	156	OV
97	515A-	117	OV	137	S2A -		
98	115A	118	$55 A+$	138	I2A		
99	5158+	119	55A-	139	$52 B+$		
100	S158-	120	15 A	140	52B-		

PIN FUNCTION CHART

[^2]


## Assembly Drawing











## NORTH AMERICAN SALES OFFICES:

CALIFORNIA:	Los Angeles	(213) 473-4581
	Mountain View	(415) 965-1400
ILLINOIS:	Schiller Park	(312) 671-4554
MARYLAND:	Wheaton	(301) 949-1664
MINNESOTA:	Minneapolis	(612) 881-0190
MISSOURI:	Kansas City	(816) 444-0166
NEW HAMPSHIRE:	Nashua	(603) 883-7201
NEW MEXICO:	Albuquerque	(505) 294-5720
TEXAS:	Dallas	(214) 387-0229
CANADA:	Toronto	(416) 661-3711

## EUROPEAN SALES OFFICES:

(Service centers underlined)

AUSTRIA:
BELGIUM:
DENMARK:
FINLAND:
FRANCE:
W. GERMANY

ITALY

NETHERLANDS
NORWAY
SPAIN
SWEDEN
SWITZERLAND

Vienna
Brussels
Hasselt (Antwerp)
Copenhagen
Helsinki
Paris
Munich
Frankfurt
Neuss (Düsseldorf) (02101) 44.091
W. Berlin

Milan
Turin
Noordwijk (The Hague)
Zeist (Utrecht)
Oslo
Madrid
Stockholm
Geneva
Zurich
Towcester (Northants)
Bagshot (Surrey)
(222) 63.44 .35
(02) 374-5971
(011) 27.702
(01) 12.48 .03
54.20 .77
(01) 727-4349
(089) 351-6021
(06196) 71.525
(030) 24.72 .12
(02) 688-4812
(02) 349-1741
(011) 61.63 .33
(01719) 19.207
(03404) 21.344
(02) 15.00 .90
(01) 248-1218
(08) 23.55 .40
(022) 33.97.30
(01) 50.36 .55
(0327) 50.312
(0276) 73.763


[^0]:    The information hereon is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY MEMORIES, INC.

[^1]:    The information herson is the property of PLESSEY MEMORIES INCORPORATED. Transmittal, receipt, or possession of the information doos not comply, license, or imply any rights to use, sell, or manufacture
    from this intormation and no reoproduction or publication of it, in whole from this information and no reproduction or publication of it, in whole or part, shall be
    MEMORIES INC.

[^2]:    The information hereon is the property of PLESSEY MEMORIES IN CORPORATED. Transmittal, receipt, or possession of the information does not comply, license, or imply any rights to use, sell, or manufacture from this information and no reproduction or publication of it, in whole or part, shall be made without written authorization from PLESSEY

