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PREFACE

This manual is directed to the experienced assemby-
language programmer and to the hardware engineer with
some programming experience.

although the approach is tutorial, and some introductory
information is included, this manual is not intended to
teach a higher-level language programmer how to micro-
program, A familiarity with the PDP-11, and with machine
organization in general, is assumed.

This manual describes the 11/60 as seen from the nmicro-
programming level. The cache, memory management, bus
control, and floating point hardware are not described
in detail.

A subset of the ISP notation is used in this manual to
describe hardware functions. This notation is described
in Appendix B. In programming examples, this ISP
notation is used as if it were source code. Note that
none of these examples will run on MICRO-11 or any other
microassembler without the proper field and macro

definitions.

Appendix C contains a selective annotated bibliography
of recent work on microprogramming.
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" DRAFT

CHAPTER 1
INTRODUCTION

The 11/60 is a user-microprogrammable PDP-1l1 central processor.
The Writable Control Store option, along wit? its associated
software tools, providés a2 means by which you can tailor the
CPU to your specific needs. The subject.of this manual is the

hardware environment visible to the microprogrammer.

To provide a secure basis for understanding the detailed
information in later chapters, this chapter focuses on three
topics:

1. What is microprogramming?

2. What is a datapathé

3. User microprogramming on the 11/60.
A short review of terms and concepts of hardware, architecture,
and microprogramming, addressing the first two topics, -precedes
the discussion of 11/60 microprogramming. The final section of

this chapter discusses the structure and scope of this manual.

1.1 WHAT IS MICROPROGRAMMING?

Microprogramming is a method of controlling the functions of a
computer. The essential ideas of microprogramming were first
outlined by M.V. Wilkes in 19511. Wilkes proposed a structured

hardware design technique to replace prevailing ad hoc methods

1Wilkes, M.V., "The Best Way to Design an Automatic Calculating

Machine." Manchester Univ. Inaugural Conference, 1951, pplé6~-21.
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of logic design. Hé cbserved that a méchine-language instruction
could be subdivided into a seguence of elemehtary operations which
he called micro—opetations., He likened the execution of the
individual steps to the execution of the individual instructions

in a program. This concept is the basis of all microprogramming.

For many years, microprogramming remained the province of the
hardware designer. As new machines,-ihcorporating advances in
theory and technology, kere designed, software for older, slowef.
machines became cobsolete. Microprogramming proved to be an
attractive solution to this problem of incompatibility. New
maéhines could be provided with additional read-only memory, or
control store, which allowed thém to emulate earlier computers.
The -1se of emulation, or the interpretive execution of a foreign
instruction set, was later extended to¢ provide upward and down;

ward compatiblility among a number of computers in a family.

The IBM SystemIBGO series was a landmark application of micro-
pfogramming to achieve compatibility. In this series, there is

a common architecture, the 360, which is the tafget machine.

The different models are 360 emulators implemented on different
host machines. The performance range of the series is due to the

varying characteristics of the different host machines.

Microprogramming as a tool of the user has evolved slowly. Three
things haQ to happen before it became truly‘feasible. First,
technological advances in the field of fast random-access memories
was required. The use of read-only memories in a user environment
was troublesome and expensive, »ecause correction of programming

errors, or bugs, required new memories. Second, user micro-
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programming required the spread of previously specialized knowledge.
When only those engineers actually involved in the design of
microprogrammed computers knew what microprogramming involvéd,
users and educators were at a severe disadvantage: In recent
years, microprogramming has found a place in computer science
curricula, and has been widely used throughout the electronics
industry. The third, and most important prerequisite for user
microprogramming is the inclusion of generality and extendability
in the design of a computer. A machine designed solely to
implement a given instruction set, and with no address space for
user control programs, makes alteration an onerous task. A

corollary to this point is that software tools must be developed,

so that the user does not have to work solely with binary patterns.

1.1.1 THE DATAPATH OF A COMPUTER

The heart of the 11/60 is a three~board microprocessor, whose
operational unit iz the datapath., A datapath is composed of
three types of components:

1. Combinational units, such as adders, decoders, or other

logical circuits;

2. Sequential units, such as registers and counters;

3. Connections, such as wires.
The execution of a PDP-11 instruction involves a se@uence of
transfers from one register in the datapath to another; some of
these transfers tqke place directly, others involve én adder or
other logical circuié. rEach step in this sequence is controlled by
& microinstruction; a set of such microinstructions is known as a

microprogram,



Microprograms are held in a contrel stdre, a block of high-speed
memory which can be accessed once per machine cycle. (A machine

cycle is the basic unit of time within a Processor.)

The control of the hardware components of the datapath by a micro-

program is best explained by a simple example.

1.1.2 A SIMPLE DATAPATH

Figure 1-1 shows a simplifiéd datapath. Its only combinational
component is an Arithmetic/Logic Unit (ALU), which has two

inputs. The ALU result, or ocutput, is stored in D, which is a
temporary Holding register. The other components of this data-
path are B, another holding register; a scratchpad (SPAD}, which

is a collection of 16 holding registers; and their interconnections.

The c¢ircles in the diagram indicate gating logic.

1

Ly

Pigure 1-1 A Suimplitied Datapath




The arrows in the figure represent the flow of data within this

datapath. Two operands are presented to the ALU inputs; the ALU
combines these and presents the result at the input to D. After
storage in D, the result can be presented at the input of one of

the registers in the scratchpad.

To route the flow of data between the components of this data-
path, a set of_gates, with corresponding control signals, is
required. The set of control signals needed is determined by the
topology of the interconnections between the sequential and

combinational units of the datapath.

For this datapath, the following control signals are needed.

LOAD D To store the ALU result in D

ALUF

To select the ALU function
IOAD B - To store data from the scratchpad in B

R/W - To specify reading from or writing to the
scratchpad registers

ADDRS

To specify a location in the scratchpad

These signals are shown in Figure 1~2. .
1.1.3 CONTROLLING THE DATAPATH

Now we can construct a microprogram to control this datapath.
To perform a PDP-~1l instruction, we must set up an initial
constraint: the eight PDP-11 general registers will be stored
in the first eight locations of the scratchpad. To perform the
PDP-11 operation

ADD R2, Rl

the second and third locations in the scratchpad must bhe added,
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and the result stored in the second location R [i]. Symbolically,

this is represented as:

rR(1] € r{Z + r{}
(The back-arrow symbol is read as “"gets".)

]
D Reg
}
t LOAD D
ALU _ ALU Functior
T
B Reg
! 1
LOAD B
SPAD - ; Read/Write
i .
' L Addrass

Figure 1.2 Sunplified Datapath With Control Signals
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It takes three steps, or machine cycles, to perform this operation
with this simple datapath. This avoids conflicting data signals
which would produce invalid results. First, R[ﬁ] is loaded into
B; next, D is loaded with the sum of B and R(1]; and lastly, the
result is written back to R[i]. The following are the basic

machine steps:

CYCLE 1: = B & R[Z
CYCLE 2: D ¢ R[] PLUS B
CYCLE 3: R{] ¢ b

A time state table can be constructed to indicate which control
signals must be asserted in each of these steps, as shown in
Figure 1-3. The N/A entries indicate that the assertion of the

signal will not afffect the current operation.

CONTROL SIGNALS
TIME R/W LOADD LOAD B ALUF ADDRESS
CYCLE | R N/A YES N/A “R[2]
CYCLEZ R YES NO PLUS R[1]
CYCLE3 w NO ' NfA NfA R{1)
Bits: 2 1 | 1 4 4 = 12 total

Figure 1-3  Time State Table

After creating the time state table, we find that twelve bits are

needed to provide the contrcl signals for this datapath. The ALU



is allocated four bits to allow for a variety of operations; the

scratchpad is assumed to have 16 locations, and the READ/WRITE

signal is allocated two bits for a "do nothing" state.

These twelve bits can be combined to form a format for a micro- .

instruction.

Mt 98] 72776y514|3)1211}10

are the
fields

o LOAD 8 & These

This microinstruction format, or microword, is divided into fields.
Bach field comprises the bits which are used to control a

particular signal or function.

Using the time state table and the microinstruction format, we

can now write a microp:ogram to perform the PDP~1l instruction

ADD R2, Rl: ;
CYCLE 1: | 1 0 0 1 0 0 0 0 0 6 1 0
CYCLE 2: 1 0 1 0 0 0 o 1 6 0 0 1
CYCLE 3: 0 1 ]o0 0 0 0 0 O 6 0 0 1

1.1.4 MICROPROGRAMMING AND MACHINE STATE
The general registers form part of the processor state of a PDP-11.
By defining the first eiqht lcoccations of the scratchpad as the

PDP~11 general registers, we have made our simple datapath
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implement, in part, a PDP-1l.

The processor state of a computer is the set of registers and

flags that hold the information left upon the completion of one
instruction available for use during the execution of the next

instruction.

Programmers working at different levels of a machine see
different machine states: an applications programmer may never
be concerned with machine state at all. A machine-language, or
macro—-level programmer knows the PDP-11 processor state to be
defined by the contents of Rﬁ through R7 .and the Processor Status
Word. Nearly 100 registers are included in the machine state
known to 11/60 microprogrammers. At the nano- or hardware level,

even more machine state is seen.

This concept of machine, or processor, state is fundamental to
an understanding of microprogrammable processors like the 11/60.
State changes at the microprogramming level can affect the macro-

level processor state.

For those readers with some exposure to the theory of finite-

state machines, the analogy with a microprogrammed machine may

be useful. A computer is made unique, or defined, by the functions
it performs and the machiﬁe states it enters while performing those
functions. Beéause of this, two machines can be built differently
and yet perform identically. A microprogrammed machine changes
state as it reads successive locations in the control store,
emulating the state changes that would take placé in a completely

"hard-wired" machine. Additionally, the macro-level state, which



is a subset of the micro-level machine state, changes as if there
wevre no machine but the macro-level machine. A PDP-11 is thus

"covered" by an 11/60.

1.1.5 ARCHITECTURE AND ORGANIZATION
To additionally distinguish the macro-~level machine from the
micro-level machine, it is useful to differentiate between the

terms architecture and organization.

Architéctu:e, in this manual, refers to that set of a computer's
features that are.visible to the programmer. To a PDP-11 |
machine-language programmer, this includes the general registers,
the instruction set, and the Processor Status Word. It was
architectural identity that made the members of the IBM System

360 series compatible.

Organization describes a level below architecture, and is concerned

with many items that are invisible to the programmer.

The term architecture describes what facilities are provided,

while organization is concerned with how those facilities are
provided. (Occasionally, another term is included in this
hierarchy: realization. This term is used to éharacterize the
componehts used in a particular maﬁhine implementation, such as

the type of logic and chips used.)

The macro-level organization, transparent to the macro-level
programmer, defines the micro-level architecture of the machine.

The concept is illiustrated graphicélly in Figure 1-4.



MACRO-LEVEL ARCHITECTURE

PDP~11l Insturction set, General Registers, etc.
Programs reside in main memory

MACRO-LEVEL ORGANIZATION = MICRO-LEVEL ARCHITECURE

11/60 registers (wl00) and operational capabilites. |
Programs reside in control store

MICRO~LEVEL ORGANIZATION

Hard-wired logic

Figqure l=4 Hierarchical Structure of Memories,

Architécture, and Organization

1.2 THE 11/60 PROCESSOR

The 11/60 is a mid-range PDP-11 processor. It is a microprogrammed
implementation of the standard PDP-11 architecture. A floating

point unit, cache memory, stack limit, and memory management are
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integral parts of the processor. With the Writable Control Store

(WCS) option, the user can augment the architecture of the PDP—ll.

The micro~level architecture of the 11/60 is radically different
from the standard PDP-11 arqhitedture, i.e., structure, visgible
to the macro-level programmer. To succéssfully microprogram the
11/60, you must familiarize yourself.with the details of its

micro~level architecture.

The 11/60 can be divided into five logical sections, as shown in
Figure 1-5. The microprogrammer's task is to control the flow

of data within each of these five basic sections, and sometimeé
between them. 0Of primary importqnce is the Datapath section, where
most data handling functions are performed. The Datapath is

deécribed in detail in Chapter 2.

Each section will be discussed in more detail later in this manual;
for the moment, it is only necessary to be aware of their general

function,

The Bus Control section contains the Unibus control logic, the

timing generator, and the console interface.

The KT/Cache section contains the memory management logic (KT); the
stack limit register (KJ) and 1024 words of high-speed cache

merory.

The Processor Control section contains the control store for the

base machine in the form of a read%only memory, or ROM; other
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control logic, the Processor Status word (PS) and the Floating

Point Status register (FPS).

The WCS section contains additional control store for the user
micrdprogrammer in the form of a RAM (Random Access Memory).
This RAM can also be used as a high~speed local store with the

aid of routines stored in the Transfer Micro store {(TMS) ROM.

The main entry into the Writable Control Store is initiated by the
XFC.USER opcode, 0767xx. This PDP-1l1 machine instruction causes
control to be transferred to a special location, entitled

USERDISPATCH, in the WCS RAM.

1.3 THE USER CONTROL STORE OPTION

The principal use of the_ll/ﬁo microproceséor is.the implement~-
ation of the PDP-1l instruction set. However, the processor has
been designed with a dynamic control structure sc that other
functions can be implemented. The UCS option provides additional
‘and alterable control store for the 11/60, enabling you to
extend the capabilities of your PDP—ll. Possible applications
range from extending the PDP-1l instruction set to emulating a

computer with a different instruction set.

1.3.1 THE UCS PRODUCT

The Writable Control Store is a one-board hardware option for the
11/60 central processor, which includes a 1K-by-48 bit Randdm
Access Memory (RAM). This hardware by itself is not the complete

product.



To use the WCS hardware, that is, to do microprogram development

and debugging, DIGITAL provides the following software tools:

A MICRO-~ASSEMBLER
A LOADER
The software tools for the WCS option are described in the UCS

Software Tools Reference Manual.

1.3.2 APPLICATIONS OF WCS

By design, the PDP~1ll is a general-purpose computer. Thus there
are special-purpose computers which will perform better than will

a PDP-11 on those applications for which they have been designed.

WCS enables you to tailor, or bias, the PDP-1ll to your particular
special-purpose needs. Such tailoring can be classified hierarch-
ically as follows.

Class 0 -~ Instruction Set Extensions _
Some functions were considered too special-
purpose to be included in the original PDP-11
design. These functions, such as block move
and decimal arithmetic, can beconme new _
PDP-11 instructions. Their definition should
conform to ll-instruction format and style.

Class 1 - Application Kernels
Most applications and systems programs have
~sections which are executed much more
frequently than others. A useful rule of
thumb is that 10% of the code is executed
90% of the time. Kernels within these critical
sections can be microprogrammed for better
throughput. Examples include the Fast Fourier
Transform, an operating system's memory
allocation routine, and Cyclic Redundancy Check

calculation.



Class 2 - Emulation
The interpretive execution of an instruction set

oy software is generally called simulation. When
this interpretation is done by hardware it is

‘called emulation. Microprogramming provides a
means for inexpensively emulating several different
instruction sets on one piece of hardware. The
~ tasks involved in emulation include instruction_'
decode, address calculation, operand fetch, and
I/0 operation as well as instruction execution.

Class 0 applications are relatively simple and straightforward uses
of microprogramming. Class 1 applications require more intensive
- study and possibly statistical analysis if they are to improve

performance significantly.

Tﬁe final class of appliéations,.emulation, is beét served by a
machine specifically designed as a general purpose emulator. The
11/60 was:désigned to emulate a PDP-11; hence, the orgénization of
its datapath.is keyed_to the 16-bit PDP-11 word and other
characteristics of a PDP-11 computer system. These factors in
large part determine what other computers can be emﬁlated by the

11/60.

1.3.3 EXTENDED CONTROL STORE

To Be Supplied

1.4 USER INVESTMENT REQUIRED

To gain real benefit from use of the UCS'option, you should invest

time and resources in two areas of study prior to attempting any



any WCS micrbprogramming. These two areas are: 1) understanding

the 11/60 and 2) analyzing your proposed application.
1.4.1 DETAILED UNDERSTANDING OF THE 11/60

To microprogram the 11/60 effectively, you must study the internal
details of the microprocessor--particularly the datapath. Although
this is not a difficult task per_se, users with little previous
hardware exposure may have some problems in becoming accustomed to
the hardware terminclogy and the notation used for hardware
description. Morecver, the largely un?rotected nature of the
microprogramming environment may seem overly complex and unpredict-

able.

This manual discusses the 11/60 hardware at the functional level.
Occagional references are made to the Engineering Drawings for the
11/60 (order no.): these references are provided only for those

users whose curiosity would naturally lead them to the print sét.
Most users should find that this manual, used in conjunction with
the UCS Tools Reference Manual, is all that is required to micro-

program the 11/60 UCS effectively.

Appendix B of this manual contains a selective annotated biblio-

graphy of recent work on microprogramming and emulation.
1.4.2 DETAILED ANALYSIS OF PROPOSED APPLICATION

Of the three classes of microcode use described in Section 1.3.2.,
Application Kernels are the most likely "end-user" use of the

Writable Control Store. Careful analysis is warranted.
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Use of ﬁicroprogramming will not alwayé result in significant
 performance gains. Applications well-suited to microprogramming
may improve performance by a factor_of 5 to 10; poorly suited onés
not at all. You must understand your application and analyze the
execution of its individual instructions. Thié section is aimed at
helping such énalysis, but it is in no way a complgte treatment of

performance analysis. -

A machine-language instruction goes through the following processing
phases:
I-phase

Instruction fetched from memory and decoded.

‘O-phase

Operand addresses calculated; operands fetched from memory.

E-phase |

Operation executed upon opérands.
Each of these phases takes one of more microcycles. The total
execution time, assuming no ovérlap of the phase, is the sum of
these miérocycles. Each phase.can'be seen as a candidate for
elimination or for cyclé—reduction thfough micrdproqramming, with

resulting gains in performance.

Thé following generalizations can be made.

COMPOSITE OPERATIONS SAVE I1-CYCLES
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A block move on the PDP-11 can be programmed as:

MOV COUNT, Ry ; INSTRUCTION 1

MOV #A, R1 ; 2t FIRST.SOURCE ADDRS TO Rl

MOV #B, R2 5 3: FIRST DESTINATION ADDRS TO R2
LCOP: MOV (R1)+, (R2)+ ; 4 |

¢+ MOVE AND INCREMENT BOTH ADDRS

SOB Rg, LOOP H DECREMENT AND TEST COUNTER

Combining these operations into one instruction,
BLOCKMOV #A, #B, COUNT
eliminates I-cycles, with the predominant savings coming from

instructions four and five.
USING PROCESSOR STORAGE SAVES O-CYCLES

The microprogrammer can use internal CPU .storage (the hardware
registers) for intermediate results. There are a number of hard-
ware registers, in addition to the general régisters R@-PC, which

can be used by the microprogrammer to avoid memory cycles.

Because there is more parallelism at the micro-level, the inner

machine (the microprocessor) is potentially more efficient than

the outer maching {the PDP-11). Moreover, the microbranching logic

structure of the microprocessor provides a broader decision logic
capability which can be =xploited, for example, in table search

and string~-edit operations.

In general, most cycle reductions which result from microprogramming

come for the I~ and O~phases of instructions.



When analyzing instuctions, you must also consider the ratio of

the time used by the I- and drphaées to that of the E-phase:
_ o ' :

I + 0

E

In polynomial evaluation or vector scalar multiplication, for
example, the cycles saved by a composite instruction are a small

fraction of the overall execution time.

In summary, you should analyze your application to develop
candidate'sectibns for microprogramming, then apply detailed
analysis to the instruction execution sequence within these

sections before coding a microprogram.-'
1.5 FUNDAMENTAL MICROPROGRAMMING PARAMETERS

This section gives an overview of several topics which represent

fundamental parameters of the microprogramming environment,

First, the 11/60 microword is described in general terms. Next,
the baéis for later discussion of timing is laid by a description
of the microcycle. 'Finélly, the central program flow of the base
machine is described, and related to the discussion df I-, 0-} and

E-cycles in Section 1.4.2.
1.5.1 THE 11/60 MICROWORD

This section reviews the general concept of instruction formats as

a foundation for describing the format of the 11/60 microword.
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Note that an 11/60 microinstruction is exactly equivalent to one
word of control store. Thus, the terms microword and micro-

instruction are interchangeable. In this manual, however, a slight

distinction has been made in the interest of clarity. Microword
is used as a geheric term for a control store word. Micro-

instruction is used when focussing upon the control exerted by a

particular microword.

1.5.1.1 INSTRUCTION FORMATS -- An instruction, whether at the
macro-level or the micro-level, is the basic mechanism that
causes a procedure to be invoked. Instructions usually take two
source operands and preduce a single result. This kind of

instruction has five logical functions:

1 and 2} Specify the address (location in storage) of the
two source operands

3) Specify the address at which the result of the

operation is to be stored

4) Specify the operation to be performed on the
two source operands

5) Specify the address of the next instruction in
the sequence.

These specifications may be explicit or implicit. Implicit
specification saves space in the instruction at the expense of

additional instructions in the seguence.

There are four common formats for instructions: three-address,
two-address, single-address, and zero-address (stack-type). These

categories indicate how many of the address specifications are
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explicit in the instruction.

. A normai PDP-ll-inStruction of the form OPR SRC DST uses a two-
address instruction format. The address of both the source
operands are explicitly specified. The result address is iﬁpiicitly
specified by the address of the destination operand. The next
instruction to be executed is implicitly identified by the

contents of the Program Counter.

The 11/60 microword, on fhé other hand, uses a four-address
instruction format: two source operand addresses; fesult address;
and next instruction address are all explicitly identifiéd_in
each instruction. There is no microprogram counter énalogbus to

the PDP-1l1 PC.

1.5.1.2 SEQUENCING AND. BRANCHINMNG -- Because there is no
incremental prograii Couiniler &L e micivpsvyramming level in the
11/60, each microinstruction specifies the address of its successor.

Therefore, there is no requirement that microinstructions execute

sequentially according to their storage address.

Moreover, each microinstruction can also specify a branch condition
to be tested before the next microinstruction is fetched. The
result of the test can cause a different microinstruction to be

fetched.

1.5.1.3 MICROWORD FIELDS -- The 11/60 microword is divided into
fields, each of which is associated with a particular functicnal

unit or control function. Not all fields are contiguous, and they
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can overlap. That is, a single bit can be used toc generate

‘more than one control signal.

The interpretation of some overlapping fields in the 11/60 micro-
word are controlled by a technique known as bit steering. A few
bits in the microword are set aside to specify how the bits in

other fields of the microword are to be interpreted.

For example, there are two bits in the 11/60 microword that can be .
used either to control scratchpad writing or to clock registers on
the datapath. A third bit is used to specify what the first two

bits mean, as illustrated in Figure 1-6.

A B C
=g
Seratchpad
Control <!L
A A C
=1

Register '—‘—‘l

'Contfo!

Figure 1.6 Bit Sieering

Other cases where fields overlap are protected from conflicts
because the different uses of the same bits are mutually exclusive.
For example, the literal field overlaps the ALU function field. A
microingtruction which specifies a literal value will generally
specify operations to store that data correctly in the datapath.

Another microinstruction would manipulate that literal data.



1.5.1.4 WIDTH AND ENCODING OF THE MICROWORD -- 'The standard width
of a control store word on the 11/60 is 48 bits. There are
extensions in some sections of the base machine cohtrol store
whiéh make -the microword 56 bits wide. fThis manual will discuss
only the 48 bits available to the UCS user, because the 8 extension

bits are highly specific to PDP-11 emulation.

The 11/60 émploys what is known as a "horizontal"” microword. That
méans.that a majority of the bits in the microword are directly

used to generate some signal within the machine.' Some of the fields
are encoded, meaning that the value represénted by the bits in that

field must be decoded before control signals are generated.

The term horizontal also implies a significant degree of parallelism
within the 11/60 datapath. One microinstruction can, in some

‘circumstances, be ruch more powerful than one macro-level instruction.

- Pigure 1-7 is a summary diagram df the 11/60 microword. Most of
- the notation will not make sense to you now,; since each of the fields
will not be described in detail until latef chapters. It will be

| useful to refer back to this diagram from time to time_to see

how the pieces fit togéther.
1.5.2 THE MICROCYCLE

Timing is extremely important to the microprogrammer. It imposes
constraints on the operations that can be done within one micro-
instruction, as well as what can be done within a group of micro-

instructiona. An awareness of what happens when will help to avoid

trivial, but troublesome, errors.
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A new microword is given control of the 11/60 at the beginning of
each processor cycle, or microcycle. This microword controls the

activity on the datapath throughout that microcycle.

The 11/60 microcycle is 170 nanoseconds long. During this time,
there are four clock pulses: Pl, P2, P3, and pP3 (micro-P3). The
microcycle is defined as the time period between two consecutive

trailing édges of nP3.

The other pulses, Pl, P2, and P3, control the timing of events on
the datapath. You will primarily be concerned with the timing of
register loading. Inputs tco a register must be stable before the

register is loaded, or invalid data will be stored.

For example, the result_bf an ALU operation can be loaded into

- a storage register at P2.

A microword, and the microcycle during which it is in control of éhe
11/60, is but one step in the execution of a PDP-1l1l instrucﬁion.
Each of the three clock pulses Pl, P2, and P3 further divide this
step: a number of data transfers can occur during one 11/60 micro-

cycle.

Figure 1-8 shows the relationship of the clock pulses to the micro-~

- L.

#1

cycle.

Figure 1-8 The Microcycle
128



1.5.3 MICROPROGRAM FLOW

The basic interpretive loop of instruction execution in 11/60

microcode is as fol%owé:

- FETCH memory word addressed by PC
INCREMENT PC

l

DECODE

EXECUTE

T

Every microprogram invoked by a PDP-1l opcode follows this pattern.
The instruction currently pointed to by the contents of the PC is
brought into the processor from main memory and stofed in the
Instruction Regisfer, or IR. The PC is incremented by two so that

it points at the next location to be accessed. The decode step
identifies what instruction is to be executed, and dispatches control
to the proper section of microcode. After the operation is per#

formed, another instruction is fetched.

A slightly more detailed flow structure is shown in Figﬁre 1-9.
Note that at the completion of the instruction execution, a test
is made.for service conditions, If no service condition, such as
an interrupt, exists, the_hext instruction is fetched. If a

service condition does exist, control passes to another micro-
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program which handles the interrupt or other condition., The I-,

0-, and E-phases are noted at the left side of the diagram.

1.6 STRUCTURE OF MANUAL PRESENTATION

: . !
Two aspects of the 11/€0 hardware are of prime concern to the

microprogrammer: the data flow and the control flow, or control

structure.

There are three distinct kinds of data flow in the 11/60:
Data flow within the datapath
Data flow within the inner machine

Data flow to the rest of the world.

This data flow implies the model of the 11/60 in Figure 1-10. This
model provides a different logical structure from that presented
in Figure 1-5; this manual uses this new model as a conceptual

framework for the discussion of the 11/60 hardware.

The microprogrammer's world is the Inner Machine: the datapath
and processor control sections of the processor. There are three
interfaces between the Inner Machine and the rest of the computer

system: data in, data out, and address out.

This manual focusses on the Inner Machine and the microprogramming
techniques for controlling it. Becuase these two major topics
are interrelated, and because both must be understood before you

can microprogram the 11/60, this manual discusses them in parallel.



The data flow within the 11/60 datapath is described in Chapter 2,

with minimal reference to other parts of the model.

Chapter 3 introduces the control structure of the 11/60, and
discusses timing considerationa. Further details are contained

in Chapter 5.

Chapter 4 extends the discussion of data flow to the inner machine,

and then to the rest of the CPU.

The material in Chapter 2, 3, and 4 is highly interdependent. One
result is the Chapter 2 may.seem overly detailed until you have

finished reading Chapter 4.

Similarly, the UCS Usage Guidelines and the Examples have been
placed at the end of the manual so that they may be discussed in

the context of previously presented information.
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DRAFT

‘THE 11/60 DATAPATH

The datapathl section of the 11/60 routes, manipulates, and
stores data within the processor.

This chapter describes the basic functional components of the
datapath and the corresponding control fields in the micro-
word. Looking at each component individually provides a
secure basis for understanding the relationship of the data-
path hardware to the overall problem of microprogramming the
11/60.

At the end.of this chapter is a block Qiagram of the complete
datapath (Figure 2-37). As you read through the chapter,
refer to this fold-out diagram to sSee how the pieces fit
together.

2.1 THE HEART OF THE DATAPATH

The heart of the 11/60 datapath is the computational loop
shown in Figure 2-1.

There are two scratchpads (ASP and BSP), each connected to a
tri-state busg (BUS AIN and BUS BIN). These buses provide
input to the ALU. The other ALU input comes from the CIN
multiplexer, which provides the carry-in bit.

D is a 16-bit register which holds the output of the ALU.
This data can be directed back to the scrathpads after
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storage in D. D{C) holds the selected carry-out bit from
the ALU operation.

~

BUSEe A
— : = BUS

Bse | ASP

R\

Figure 2-1: The Heart of the Datapath

Centrol of the data flow among these components is provided
by the microword.

-

2.1.1 The ALU Field of the Microword

The ALU2 receives two l6-bit words from BUS BIN and BUS AIN,
performe an arithmetic or logical operation upon them, and
produces a lé-bit result.

The operation performed by the ALU is determined by the ALU
field of the microword. This field occupies bits 47 through
44, which is represented as u<47:44>., Each of the sixteen

possible values of this field selects a unique ALU functionB.

2748181 in semiconductor vendors' catalogs.

3The function codes shown in a vendor's catalog for the 745181

are not the same as the codes used in the 11/60 uword.
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Figure 2-2:

‘!?‘4(-‘45744

ALY

z

ALU Field of the pyword

Table 2-1 shows the function invoked by the various values
of the ALU field and the corresponding source for the carry-in

bit. (The carry-in is described in detail in Section 2.1.5}.

TABLE 2-1

ALU CONTROL FIELD ENCODING

OCTAL VALUE

VERBAL DEFINITION

CIN SOURCE

wI U ol W N O

—
o

11
12
13
14
15
16
17

 Complement A
A plus B plus PS(C}
(NOT A) and B
Generate 0
A plus B plus D(Q)
A plus (NOT B) plus D(C)
A Exclusive OR B
A AND {NOT B)

Subtract B from A if D(C) =1

Add if D{C)} = 0
A plué B
Select B
A AND B
A plus B plus 1
A minus B
A Inclusive OR B
Select A

1
P5(C)
PS(C)
PS(C)
B(C)
D(C)
D(C)
D(Cy

[ nal e SR SR = B = R = I = |




Notice that ALU operatiqnsesuch as A plus B plus PS(C) and
A plus B plus D(C) serve the same function as PDP-11
instxuctions like ADC, without requiring a separate

micro-instruction for handling the carry.

2.1.2 ThHe B and A Scratchpads

Primary data storage for the datapath is provided by the
A and B scratchpads, each of which contains 32 registers,

Each of these scratchpads is divided into two sections of
16 words each; a HI section and a LO section: (refer to
Appendix B for an explanation of the notation)

BSPLO := BSP[0:17]<15:00>
BSPHI := BSP[20:37]1<15:0C>
ASPLO := ASP[00:17]1<15:00>
ASPHI :=

AsP(20:371<15:00>

. BSPLO and BSPHI have separate outputs onto BUS BIN; similarly,

ASPLO and ASPHI have separate outputs onto BUS AIN, as shown
in Figure 2-3.

ALV

¥
ousp il
Tt T o

ase RoP ASP ASP
M\ Lo LO Hi

Figure 2-3: BSP and ASP
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2.1.3 The D Register

The purpose of the D register is to store the ALU output, either
for testing or for routing elsewhere in the datapath or the
processor. The ALU result can be clocked into D either at P2

or P3. {(When a register is clocked, the data at its input is
immediately transferred to its output; the output does not
change until the register is clocked again or cleared.)

™0 fields in the microword, each one bit wide, control the
D register. CLKD, u«<28>, specifies whether or not D will be
loaded in the current microcycle. The time at which D is
clocked is determined by the WHEN field, n<29>.

The D register is clocked only if the CLKD field contains a 1.
1f WHEN contains a 0, clocking occurs at P2; if WHEN contains
a }, clocking occurs at P3.

QAW 2B

g [D L

Figure 2-4: WHEN, CLKD Fields

After an ALU result has been clocked in the D register, it can
be directed to a variety of places: other datapath logic;
other sections of the processor; main memory; oOr temporary

storage in the scratchpads.



2.1.4 Multiplexers

A multiplexer is a component which has several data input ports
and only one output. Selection signals control which input
port's data is gated to the output. Data is neither modified
no stored when it passes through a multiplexer. '

Both the input ports and the selection signals for a multiplexer
are numbered. The (control) data at the selection ports forms
a binary number which designates one input port.

For example, a four-to-one multiplexer, && shown in FPigure 2-5,
has two selection signals, S0 and S1. There are four input
ports, », B, C, and D; where A is the low-order, or 0, port.

INRUTS ARUTH TABLE
l i l Al 351 SF Pt Sclec i
) ¢ 8 @ & A
Sﬂ ASelectiom ¢ 1 6
3 L NEATY 1 ¢ C
9
L4 D
O Y LT

Figure 2-5: Four-to-One Multiplexer

If 50 and Sl are both 0, then the cdata at port A is transferred
to the output of thé multiplexer. If S1 is 1, and S50 is 0, then
the C port is selected. The truth table ir Figure 2-5
illustrates this correspondénce.
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2.1.5 ALU Carry Bits, CIN and D(C)

Section 2.1.1 described ALU function control and mentioned
the carry-in bit, CIN. This section examines both the carry-
in and carry-ocut bits of the ALU and their relationship to
each other. Both CIN and the carry-out bit D(C) are selected
by multiplexers. The multiplexer which selects the CIN bit
has four inputs: O, 1, PS(C) (the C-bit of the PSW), and
D(C), the last carry~out. Selection of this multiplexer is
controlled by the ALU function code.

After an ALU operation is complete, the 16-bit result can be
clocked into the D register. If the D register is clocked,
D(C) is clocked at the same time. The bit which becomes D(C)
'may be the actual carry, or overflow bit of the ALU; hence
the term carry-out is used. However, the overflow is not the

only source for D(C).

It is best to consider D(C) as a state bit retained from an
ALU operation - sort of an internal condition ceode. It has
a number of different functions. As the carry output of the
ALU, D(C) can be fed back into another ALU operation through
CIN, thur providing a facility analogous to the PDP-11
operations ADC and SBC. D(C) is also used to load the C-bit
of the Processor Status Word, and is alsc used as a test
condition for microcode branching.

The source for D(C) is chosen by the COUT MUX. Unlike the
multiplexer for CIN, the COUT MUX is controlled directly
from the microword. Indirectly, this does affect CIN
selecticn when the ALU function of the next microword uses
p{C} as the CIM socurce. 1In these cases, the selection for
the COUT MUX in one instruction will determine the source

for the CIN bit in the next microinstruction.



Figure 2-6 shows the relationship between the ALU, the CIN .
MUX, and the COUT MUX.

Q) D
|

coutT™ MUX

§§§§§ ' ::Lu )

_CIN MUX

g L s IO

Figure 2-6: CIN, COUT of ALU

2.1.5.1 Selection of D(C} Source

COUT07 and COUTl5 are, respectively, the byte and word carries
from the ALU operation. This carry bit can then be clocked
into the Processor Status word, PS, or fed back into a sub-
sequent ALU bperation; For example, during a 32-bit add, the
carry-out bit from the addition of the low-order words becomes
the carry-in bit for the addition of the high-order words.
COUT@7 and COUT1S are undefined when a logical operation is

performed.



ALU15 is bit 15 of the ALU result, the sign bit. Testing for
a negative result and some shifting operations would select
this source for D(C).

ALUF7 is bit 7 of the ALU result, which is the sign bit of a
byte quantity.

ALU@# is the @ bit of the ALU, which indicates an odd or
even result.

CIN is the output of the CIN MUX, the same carry-in bit
presented to the ALU. This allows you to select a 1 or a 0
for D(C) directly, depending on the ALU code.

PS(C) 1is the C bit of the Processor Status word; the base machine
uses it as the D(C) source for those PDP-11 instructions in which
the C bit of the PS5W does not change.

D{C) is the D{(C) bit generated by the previous CLK D specifi-

cation. This allows you to save, or recycle, a D(C) value from
the last time an ALU result was clocked into D.

2.1.5.2 Control of COUT MUX -- The COUT MUX is Controlled
by the COUT field of the microword, u<32:30>,
3z 21 3o

' t 1 : -
g | cowT é

Figure 2-~7: COUT Field of Microword

20t

The encoding of the COUT field of the microword is shown in
Table 2-2.



Note that, regardless of COUT, D(C) is not changed unless
CLK D = 1; D(C) is clocked at the time specified by the
WHEN field. |

Table 2-2
COUT FIELD Encoding

D(C) SQURCE ' MNEMONIC COUT FIELD VALUE

Output of CIN MUX CIN - 0
C bit of the PSW - PS{C} 1
Bit 0 of ALU result ALUZY 2
Bit 7 of ALU result © ALUP7? 3
Bit 15 of ALU result ALU1S 4
Byte Carry couT7? 5
Word Carry - COUT15 6
Carry-out from : ' _

previous operation D(C) 7

2.1.6 - Setting the Condition Codes

The condition codes, N, Z, V, and C of the Processor Status
Word, are macro-level state indicators whose values are defined
_ for evéry PDP-1} instruction. Their purpose is not to record
the_status of the micro-level machine after every microcycle,
and hence these bits are clocked only when specifically
indicated by the microprogrammer.

There are two ways to set the condition codes; only one of them
will be discussed here. A second, more general method is
described in Chapter 4.



The Set Condition Codes (SCC) field, u<25>,

lcading of the PDP-11 condition codes.

controls the

when SCC contains
a one, the condition codes are altered during the next

micro-cycle. D and D(C) must be clocked at P2 for the

condition codes to be set correctly.
ship is illustrated in Figure 2-8.

This timing relation-

pword: CLKD/YES, WHEN/P2,
SCC/YES, COUT/ALULS

action: P2, D « ALU
P2, D(C) + ALULS

P2,
P2,
P2,
P2,

Ps{C)
PS (N)
PS(2)
P5({V)

Figure 2-8: Condition Code Clocking

If the IR contains an XFC or other reserved opcode, then the
The C bit of

PDP-11 condition codes are clocked as follows.

the PSW is loaded with D{(C). (From the previous discussion of
D{C), you can see that there are actually eight sources for the
PS(C).}) The N and Z bits reflect the status of the D register

at P2 of the microinstruction in which SCC was set. The V bit

is loaded with 0.

+ + 4+ ¢

D{C)
D<15>
D<15:00>
g

D and D(C) must remain stable through P2 of the microcycle

following the SCC/YES specification.

g



Whether or not you, as a WCS user, set the contition codes
during a microcycle depends on the requirements, or
expectations, of the macro-level program. For example, if
your macro-level program needs to branch upon conditions
resulting from an XPC instruction, you would clock the
condition codes.

2.2 BUS BIN AND BUS AIN

The buses that provide operand input to the ALU are tri-
state buses; that is, they connect a number of tri-state
devices. The use of tri~state logic in the 11/60 allows
a multiplexing function to be performed withoutlactually
using a multiplexer, with resulting hardware savings.
The symbol lf’denotes a tri-state device.

A number of sources on either side of the ALU can be
selectively enabled onto BUS BIN or BUS AIN. Figure 2-9
shows the relationship of the ALU input sources to the
portion of the datapath previously discussed.

On the B-side of the ALU, there are three sources: the

two gsections of the BSP, and another lé-location scratchpad,
the CSP. On the A-side, there are four locations: ASPLO,
ASPHI, the XMUX, and the Shift Tree. Each of these components
will be described in detail in succeeding sections.

The BEN field of the microword, .<43:42>, controls which
source is enabled onto BUS BIN; the AEN field, u<39:38>,
determines which source is enabled onto BUS AIN. Table
2-3 defines the encoding of these fields, Two BEN codes
are dedicated to the CSP because there are two methods of
providing addresses to this scratchpad.
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“Table 2-3
Bus Enable Field'Encoding_

BUS B BUS A

SOURCE . MNEMOﬁIC BEN SOURCE . MNEMONIC AEN
ENABLED _VALUE ENABLED VALUE
BSP[0:17] "~ BSPLO 0 XMUX XMUX 0
BSP[20:37) BSPHI 1 Shift Tree CMUX 1
Arbitary CSP
' lqcation CSP 2 ASP[0:17] ASPLO 2
Base Constants BASCON 3 ASP{20:37] . ASPHI 3

2.2.1 Organization of ASP and BSP

The organization of the B and A scratchpads is shown in

Figure 2-10, ' '

The first eight locations of ASPLO and BSPLO are reserved for

the PDP-11 general registers RO-PC. These registers are

duplicated to allow concurrent access of two registers. This

allows register-to-register operations to be performed in a

4

single microinstruction. The User Stack Pointer is duplicate
in BSP{16] and ASP[16].

Three locations are reserved for the WCS user; these are
‘indicated in the illustration as WCSB[n] and WCSA{n}. The

contents of these registers is not altered by any of the base

machine or floating point microcode.




The standard microcode floating point implementaticn uses
Asrl[l10:15 , 30:35] and BSP{10:15, 30:35] as the floating
point accumulators. If the FPll-E floating point processor
is present, these locations are also available for the WCS
user. No other standard microcode uses these registers.

The remaining registers fall into two classes: those which
the WCS user may alter, and those which yod must not alter.
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Figure 2-11: BSP and ASP Layout
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2.2.1.1 Temporary Storage Registers —-- A WCS microprogram

can use the registers which the base machine and floating point
use for temporary storage during instruction execution.

The temporary storage registers used by the base machine are:

BSPHI[4] := R(T1B)

BSPHI[S5] := R(T2B}
ASPHI[41 := R(T1a)
ASPHI[S5}] := R(T2A)

The state of these fegisters is not saved if the base machine
code is invoked. Thus, data stored in these registers may be
overwritten by the base machine microcode that handles error
conditions, or if a new macro-level instruction is fetched.

The following registers are used for temporary storage by the
floating point microcode and by the FPll-E.

BSPLO[17] := FDST2
BSPHI[17] := FDSTO
ASPLO[17} := FDST3
ASPHI[17] := FDSTL

User data stored in these registers will be lost if a floating
point instruction {(l1l7xxxx) is fetched.

2.2.1.2 Regserved System Registers -- The remaining 11

registers in the B and A scratchpads are used to store
console, status, address, and constant information. These
registers are reserved for use by the base machine and must

not be altered. They may, however, be read.



WCSADR, ASPHI[1l], has the contents of Unibus address 177542.
It is used to specifiy an address within the WCS control store
space to which data is to be written. (See Chapter 6)

R{(VECTSAV), BSPHI{2], contains the vector zddress of the last.
interrupt serviced. This address is saved to aid error

diagnosis.

'FPA, BSPHI([6], is used by the floating peint microcode and the
FP11-D to hold the address (incremented by two) of the last

floating point instruction.

CNSL.CNTL, BSPHI[7], contains console control and status
information. It also contains the two high~order bits of the
switch register, the temporary switch register, and the console-

address register.

FEA, BSPHI[l6], contains the address of the last floating point
instruction that incurred an exception.

The WHAMI (wWhat Am I) register, ASPHI[2], contains status

information for the micro-machine. Layout of the WMAHI
register is shown ‘in Figure 2-1,
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Fiqure 2-12: WHAMI Register



CNSL.TMPSW, ASPHI[3], is used to assemble numbers from the
console keypad before transfer to the switch register. It is
also used in the display subroutine in the console microcode.

CNSL.ADR, ASPHI[7], is the console address register. It is
loaded with CNSL.TMPSW data on LOAD ADRS. On moves to
777570, the data is loaded into CNSL.TMPSW before being
displayed on the console.

The high byte of FPSHI-FEC, ASPHI[16}, contains the high byte
of the Floating Point Status Register, The low byvte of FPSHI-
FEC contains the exception code of the last floating point
instruction that caused an exception.

R(ZERQ), BSPBI[3], contains the value zero. It is used when-
ever a # is needed fromw the B-side during a cycle in which the
CSP is written. This location must always contain the value 0.

2,2,1.,3 Inteqgrity of the General Registers -- For the 11/60
to operate correctly, the scratchpad locations reserved for the

PDP-11 general registers must contain those registers. The
contents of the corresponding registers in ASPLO and BSPLO
must be identical at the start of every PDP=-1ll instruction.

Floating point microcode uses all the registers in ASPLO to

store some state of the machine during the execution of certain
instructions. This is indicated by setting the General Registers
Unequal bit, WHAMI<3>, Restoration always occurs at the end of
the floating point instruction; the WHAMI bit is cleared

following restoration.



2.2.2 ° Reading From the Scratchpads

To move data from a particular scratchpad location to the ALU
input, the microword must enable the correct section onto
the bus, and it must specify the location within that section.

Three fields in the microword control address selection for the
A and B scratchpads: BSEL, ASEL, and RIF.

9% 4z 41 4o 37 BB 3F 36 35
o - I

e:ep BSeL | AeN | ASeL|

Fiqure 2~13: BSEL, A3EL, and RIF

BSEL and ASEL specify the way in which a location within the

scratchpad is addressed. Addressing can be either direct or
indirect; that is, an address in the scratchpad can actually

be specified, or a pointer to_the source of the address can |
be specified. |

When the sératchpads are addressed directly, the Register _
Immediate field (RIF), u<35:33>, is used in conjunction with
BSEL and ASEL to provide a full'five—bit address specification,

- The selection codes IMMEDO and IMMED1 specify thé low-order
bit of the scratchpad address, and the RIF field'specified
the three high-order bits. For timing reasons, RIF<2>,.p<35>
is asserted low, and so that bit is inverted when used for
scratchpad addressing.

Figure 2-13 shows how the BEN, BSEL, and RIF fields work
together to specify an address in the BSP. The ASP works the
same way. Since there is only one RIF field direct addressing
places constraints on which registers can be concurrently

accessed by this method.
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Alternatively, ASEL and BSEL can specify that fields in the

current macro-level instruct.on are to provide the scratchpad
address. The instruction's spurce register field, IR<8{6>,
or the destination register field, IR<2:0>, may be specified.

This allows more generality at the microcode level.

For example, if the PDP-11 instruction ADD R2, R3 is to be
~ executed, there are two ways of addressing the operands:

R[2] FROM BSP
R{3] FROM ASP

-~

Y BEN/BSPLO, BSEL/IMMEDO, RIF/S,
' AEN/ASPLO, ASEL/IMMED], '

-

R[2] FROM BSP
R[3] FROM ASP

-

B. BEN/BSPLO, BSEL/SF,
' AEN/ASPLO, ASEL/DF

L1

You can see that the specifications in A are useful only when
R2 and R3 are to be added, while those in B would work for any

register-to-register add.

The encoding of the scratchpad addressing fields is shown in
Table 2-4

Table 2-4: BSEL, ASEL Encoding
Enable Type of Value Field Value
field Addressing Name
AEN/ASPLO
or "RIF 0 IMMED@ Q
AEN/ASPHI |' pip IMMED] 1
R{DF) DF 2
R (SF) SF 3
BEN/BSPLO
or R {DF) DF 0
BEN/BSPHI R{SF) SF 1
RIF 0 MMEDO 2
RIF 1 IMMEDL 3




Tahle 2-5 summarizes how the inversion of RIF<2> affects
direct register selection. '

Table 2-5
RIF Summary

TOP 3 BITS
OF REGISTER RIF CONTENTS

SELECTED

000
0ol
010
011
100
101
110
111

W N - O v

2.2.3 Writing Back to ASP and BSP

After clocking an ALU result into D at P2, you can write the
data into the A and B scratchpads during the same microcycle.
The primary purpose of the write~back is to update a
particular register, so address selection for write-back is
dapendent upon the address chosen for reading;

This does not mean, however, that you have to write the same
location that was read. For example, consider the PDP-1l1
instruction ADD R2, R3 again. After execution, only the
contents of R3 should have changed. The implementation of this
instruction would contain the following specification:

ALU/ADD, BEN/BSPLO, BSEL/SF,
AEN/ASPLO, ASEL/DF, WHEN/P2, CLKD/YES
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This indicates that R2 is to be read from the BSP, and R3
from the ASP. Recalling the rule mentioned earlier that
identical copies of the general registers must be maintained,
you can see that both BSP(3] and ASP{3] must be updated on
write-back. The address seléction used to read from the ASP
should be used to write both scratchpads.

Therefore, while you can write the contents of D into BSP and
ASP simultaneously, the data goes into the same location in
both scfatchpads. This mechanism ensures that both copies of
the destination register are updated correctly.

The Scratchpad Rewrite field, u<19:14>, is divided into a
number of subfields, as shown in figure 2-~14.

<18> <17>

<19> <16> <15> <14>
SCRATCHPAD REWRITE ' |
WR |HI/ | WR _
cspl 1O {gpp | WRSP MoD {§.---

b = -

Fiqure 2-15: Scratchpad Rewrite Fields

MOD, p<1l4>, controls the interpretation of u<18:15>: it is
a steering bit as described in Section 1.5.1.3. The MOD
field must be 0 to write to ASP and BSP. '

The Write Scratchpad (WRSP) field determines which scratchpad
is to be written: ASP, BSP, or both. '

The Write Select (WR SEL) field specifies which address, as

gspecified in ASEL and BSEL, is to be used as the write-back
address.



HI/LO specifies which section of the scratchpad(s) is to be

written.

specified by the Bus Enable fields.

Write CSP (WR CSP) controls writing of the C scratchpad.

The encoding of these fields is shown in Table 2-6.

Table 2-6
Scratchpad Rewrite Fields

You can write-back to a different section than that

FIELD

FIELD ACTION MNEMONIC VALUE
MOD, u<l4> H<18:15> controls CLKSP 0

scratchpad rewrite

WRSP, fl<16:15? Write ASP only WR A 1
Write BSP only WR B 2
gg;te both ASP ?nd _ WR A AND B 3
DO 1‘;“"" " .|.! .-JPP'\IJ.’ i G \.:
WRSEL, u<l7> Use ASP address A ADDRS 0
Use BSP address on rewrite B ADDRS 1
HI/LO, u<l8> Write LC section of SPAD LO 0
Write HI section of SPAD HI 1

Now we can add some more specifications to our microinstruction
for ADD R2, R3:

ADD:

ALU/ADD, BEN/BSPLO, BSEL/SF

AEN/ASPLO, ASEL/DF, WHEN/P2, CLKD/YES, HILO/LO,

WRSEL/A ADDRS,
MOD/CLKSP

2-25

WRSP/WR A and B,




Scratchpad rewrite always occurs at P3, so the D register must
be clocked at P2 if you wish to write back to the scratchpads
during the same microcycle.

2.3 THE C SCRATCHPAD

The third source on BUS BIN is the C scratchpad (CSP), which.is
16 registers deep. It is the means by which data from the out~-

side world (i.e., main memory or other sections of the processor)
is introduced into the datapath.

The CSP is also used to store constants and error log
information. }

2.3.1 The Base Constants

Three locations in the CSP are permanently reserved for the
base constants of the machine: zero, one, and two. CSP{17]
contains the value one; CSP{l6] contains the value zero; and
CSP[14] contains the value two. These locations MUST NOT

be changed.

By convention, CSP[15] stores data from the outside world.
Since this is usually data from memory, csp{15] is called
the Memory Data register, or MD.

These four locations in the CSP, CSP [14:17], have a special

addressing mechanism, and a special BEN field value may be
used to access them.
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LOCATION NAME (S) _CONTENTS

Cs5P(0) CNST4 Q00004
LOG,JAM
CaP(1) CNSTS : 000010
LUG,.SERVICE
CsP(2) RESRIGHT 020000
LUG.PBA
CsP(3) EXPMASK 077009
LOG,.CUA
Cs5P( %) RESLEFTD(C) 050000 -
LOG.FLAG/INTR '
CSP(S) RESLEFTGD 054000
LUG.,wHAM]
CSP{ﬁ) EMITCON
LUG,CACHEDATA
CsP(7) RESRIGHTGD 024000
LOG, TAG/CPU
CsP(10) HIBYTEMASK 177400
CNSL,CNST100G000
CsP{11) SEXPMASK 177600
CNSL ,CNSTLTT770
CsP(12} SIGNBIT 100000
CNSL,CNST30000
CNST100000
CsP(13) CNST200 Q00200
HIDDENRILIT
EXPONE
SETDMASK
CsP(14) 2 Q00V02
Cbp{15) MD I EE L X X
CsP(16) g 0 N00dQ0
CsP(1 ) s 1 000001
Figure 2-1¢ CSP Layout



When the BEN field of the microword contains the value 3, the
BSEL field selects one of the four special locations in the
CSP. The encoding is as fcllows:

When BEN/3, then:
BSEL/0 selects CSP([17] (1)
BSEL/1 selects CSP[16] (0)
BSEL/2 selects CSP[15] {MD)
BSEL/3 selects CSP[14] (2)

2.3.2 Other Locations in the CSP

You may use CSP[0:13] to store data, subject to certain
restrictions. These locations usually hold constants, such

as a mask for isolating the exponent field in a floating point
number, which are needed by various segments of the base machine
code.

The 11/60's Emit facility, described in Chapter 4, enables you
to store arbitrary constants in the CSP, after setting a flag

in another section of the processor.

When the value of the BEN field is not equal to 3, the CSPADR
field provides the CSP address, in much the same way as RIF
provides an address in the ASP and BSP.

CSPADR, u<23:20>, holds the complemént of an address in the

CSP. That is, the bits in the SPADR field are complemented
before they select a location, as shown in Table 2-7.

__ ;13 22 W 19
] ) LOE ,....,,,
; | c:s PA D Q“f 28 g

Figure 2-17: CSPADR, WRCSP Fields

=28



Table 2-7
C5P ADDRESSING

CSPADR Bit Complemented CSP Location
Field Patterns Pattern Selected
0 0000 1111 17
1 000l 1110 16
2 0010 1101 15
3 0011 1100 14
| 0100 1011 13
5 0101 1010 12
6 gl10 1001 11
7 0111 1000 10
10 10040 0111 7
11 1001 0110 6
12 1010 0101 5
13 1011 01049 4
14 1100 001l 3
15 1101 0010 2
16 1110 Q001 1
17 1111 00040 ¢]

Thus to read from the CSP, use BEN codes BASCON or CSP, and
specify the address with BSEL or CSPADR, respectively.

2.3.3 Writing to the CSP

The CSP's input data comes from the DMUX, which accepts data
from the Cache and from main memory and other sections of the
processor. You do not have to control this multiplexer: it
will automatically select the correct source,

The WRCSP field, u<19>, controls writing to the CSP. If the
WRCSP field contains a 1, the output of the DMUX will be
written to a location in the CSP at P3. If WRCSP contains a

0, no data will be written.



If the microinstruction contains the specifications
BEN/BASCON, BSEL/MD, WRCSP/YES

then the data will be written into CSP[15], MD. (Remember that
you must not over-write any other base constant.) Otherwise, the
WRCSP/YES specification will cause data to be written into the
location specified by the complement of the CSPADR field,

o

|

]

CACHE |
| (SR

| > |
B -

1 |

v , JATAPATH

Figure 2-18: Writing Data to CSP

If you write data to any location in the CSP other than MD,
you must set a flag in the Processor Control Section. This
flag, CSP CONSTANTS INVALID, indicates that the constants
needed by the floating point microcode are not available.
mechanism for setting the flag is described_in Section 4.2.4.4.

The



The constants used by the floating point microcode are shown in
Figure 2-16; if the CSP CONSTANTS INVALID flag is not set, you
can use these constants in your routines.

Note that the two methods of CSP addressing are mutually

exclusive. You cannot read one CSP location and write to

another in the same microinstruction.

2.4 THE XMUX AND THE SHIFT REGISTER

The XMUX is a two-to-one multiplexer which, when selected by
AEN, puts its output onto BUS AIN. One of the XMUX sources is
the l16-bit Shift Register, described in Section 2.4.1.

When AEN = 0, the XMUX field of the microword, u<36>, controls
XMUX selection. Note that this field overlaps the ASEL field.
Be careful not to specify WR SEL/A ADRS if writing back to the
scratchpads after using the XMUX as the AIN source.

AT MY 4x83) uad
iy Y 1

Figure 2-19: XMUX, AEN, and ASEL Fields

When the value of the XMUX field is 0, the output of the
SR goes onto BUS AIN. When the XMUX field contains the value
1, a word of the form shown in Figure 2-20 is put on BUS AIN.

15 |14 {23 |12 [11 |10 ]9 )@ |7 |65 |4 [3]2]1}o

p{c)f o 0 0 0 0 0 0 0|« SR<6:0>——

Figure 2-20: S1 XMUX Input
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2.4.1 The Shift Register

The Shift Register is a 1l6-bit bidirectional shift register.
It has four distinct modes of operation:

Parallel load from ALU output (default)
Shift right one bit per microcycle
Shift left one bit per microcycle

Do nothing

Mcode control for the SR is provided by the Residual Control
register, which is described in Section 2.9,

The SR, when in parallel locad mode, is loaded with the output
of the ALU.

Regardless of the operating mode of the SR, its clocking is
controlled by the WHEN, n<29>, and CLKSR, u<275, fields of the
microword. The SR is clocked if the CLKSR field contains a 1.
Clocking occurs at P2 is WHEN equals 0, and at P3 if WHEN _
equals 1. If both D and SR are clocked in the same microcycle,
they are clocked at the same time, and receive the same data.

A l6-way branch can be performed on the basis of SR43:0>. This
facility, called the CASE branch, is described in Section 3.6.2,

{29) 28) <an
VL P Y
[

F‘ SR

o

zm

Figure 2-21 WHEN, CLKSR Fields of uword



2.5 THE SHIFT TREE

The final A-side source is the Shift Tree, or barrel shifter.
This is the major element cf the 11/60's field isclation unit.
The Shift Tree performs various operations on data from the

D register; these operations include:

Left Shift 1 bit per microcycle

Right Shift 1,2,3, ... 14 bits per microcyle
Sign Extend

Byte Swap

Unlike the Shift Register, the Shift Tree is a combinational
logic element and thus does not hold its output across micro-
cycles. It is designed so that data clocked into D in a
previous microcycle can be modified in the Shift Tree, operated
upon by the ALU, and the result stored -- all during one micro-
cycle.

The data to be manipulated must be stored in D by P2 of the
microcycle preceding the Shift Tree operation. The data can
then be clocked into D and stored in the scratchpads, as
illustrated in Figure 2-24. _

Figure 2-24: D to D to Scratchpad in one Microcycle

&—— pcycle o » | €pcycle o + 1 >
P2: D « DATA D
TREE
BUS AIN

|

ALU + BUS BIN DATA
P2: D <+« DATA

P3: SPAD <« DATA




Although you will use macros to control the Shift Tree, you
must look closely at the hardware involved.

There are three levels of multiplexers, interconnected to
effect shifting, in the Shift Tree. This layout is shown in
Figure 2-26. The contents of D are input to the AMUX, the
output of the AMUX is the input for the BMUX; the BMUX
output goes into the CMUX, and the CMUX output goes onto

BUS AIN.

To perform a particular operation, you must specify a multi—.
plexer selection for each stage of the Shift Tree. Thus, to
shift the D output right by six, specify:

AMUX/DIRECT, BMUX/RIGHT-FOUR, CMUX/RIGHT-TWO.
To specify a right shift of seven:

AMUX/RIGHT-EIGHT, BMUX/DIRECT, CMUX/LEPFT-ONE
Note that the Shift Tree is not a circular shifter. That is,
bits shifted off one end are not shifted into the other end
of the word.
The Ehree fields in the microword that control the selection

of the stages of the Shift Tree are: AMUX, u<22:20>;
BMUX, u<23>; and CMUX, u<37:36>.
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Pigure 2-27 Shift Tree Control Fields

Again, you will notice that these fields overlap fields
previously discussed. Because the AMUX and BMUX fields occupy
the same bits as CSPADRS, CSP access during Shift Tree oper-
ations is contrained to those locations which can be addressed
with BSEL: the base constants.

The encoding of the Shift Tree control fields is shown in

Table 2~-8, The detailed diagram of the Shift Tree (see Figure.

2-28) should clarify the entries in Table 2-8. The bits in
the microword fields are the source of selection signals for
the three levels of multiplexer. Thus CMUX<0> is the source
of the signal CMUX Sf@, and so forth.

Figure 2-28 also shows how the choice of signals going into
each input data port effects the shifting actions of the
Shift Tree,

/ - /
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2.5.1 AMUX and CNTR

AMUXHI provides the high byte of the AMUX output; AMUXLO
provides the low eight bits. The high and low bytes of the
D output are separate inputs into each AMUX. This allows
duplicating either byte, swapping bytes, and shifting eight
bits to the right. (The right shift consists of selecting
D<15:08> as the low byte of the AMUX output, and filling in
the high byte with D(C).)

The Counter (CNTR) register, at the top of Figure 2-28, is

an iteration counter, It is not part of the Shift Tree.
However, the AMUX can introduce the contents of CNTR inte the
datapath. It is described in Section 2.7.

2.5.2 The BMUX

The BMUX can either pass the output of the AMUX without change,
or it can shift the AMUX output right by four, £filling in
the high bits with D(C).

2.5.3 The CMUX and SENDMUX

The CMUX can perxrform a right shift by one or two; pasé the
BMUX ocutput without change; or shift left by one bit. The
Shift End Multiplexer, SENDMUX, provides the low-order bit
when the CMUX is shifting left. D(C} £fills in high-order bits
when shifting right.



Table 2-8
Shift Tree Control

AMUA{ FIELD (u<22:20>}) ENCODING

e = A SsmaTe se sz oG
Function (Output) Mnemonic Field Value
D unchanged ' DIRECT g
D<7:0>in both bytes DLO4DLO 1
D(C) fills high byte, D<7:0> SIGNEXT 2
in low byte
Contents of Counter in high COUNTER 3
byte, D<7:0> in low '
D415:08> in both bytes DHI#DHI 4
Swap bytes’ SWAB 5
D{C) fills high byte, RIGHT-8 6
D<15:08> in low byte
Counter in high byte, COUNTER#DHI 7
D<15:08>in low byte
BMUX FIELD (u<23>) ENCODING
Output of AMUX unchanged DIRECT g
Shift output of AMUX right RIGHT-4
four, D(C) fills high
bits —
CHMUX FIELD (u<37:36>) ENCODING
Cutput of BMUX left one LEFT~1 ]
with SENDMUX into low bit
Output of BMUX unchanged DIRECT 1
OCutput of BMUX right one RIGHT-1 2
with D{C) into high bit
Cutput of BMUX right two RIGHT-2 3

with D(C) into high bits




You cannot control the SENDMUX directly from the microword
because the source of the bit shifted into the zero bit of
the CMUX output usually depends on what was done in the
higher stages of the Shift Tree. To illustrate how this
wo%ks, look again at the exanmple of a righ£ shift by seven.

The final CMUX output should be a word with D(C) in the high
seven bits, and D<15:07> in CMUX<8:0>. In the example:

AMUX/RIGHT-8 (8*D(C) # DHI)
BMUX/DIRECT | . (No Change)
CMUX/LEFT-1 {Left One)

But you can see from Figure 2-28 that D<07> will not go through
the BMUX to the CMUX: in effect, it falls off the end of

the AMUX. The SENDMUX "catches" this bit. When AMUX<02>, u<22>,
is set - making D<15:08> the output of AMUXLO - and no shift is
indicated for the BMUX, the SENDMUX output is D<07>. This
becomes the low bit of the CMUX output, and the shift is
completed correctly.

Similarly, if a shift of 11 right (AMUX/RIGHT-8, BMUX/RIGHT-4,
CMUX/LEFT-1) or 3 right (AMUX/DIRECT, BMUX/RIGHT-4, CMUX/LEFT-1)
is specified, bit 3 of the AMUX output falls off the end of

the BMUX. In both cases, the SENDMUX correctly feeds this bit
into the CMUX.

These effects are possible because the S§ and Sl selection
ports of the SENDMUX are controlled by BMUXS# and AMUXLOSH,
respectively. The thrid selection port, 52, is controlled
from the RES register (see Section 2.9). Table 2-9 is the
SENDMUX truth table. '



2.6 SHIFTING WITH THE SHIFT REGISTER

The shifting capabilities of the Shift Tree and the Shift
Register are somewhat interdependent, thus, before presenting
more examples of Shift Tree operations, the following sections
describe the Shift Register's shifting modes.

2.6.1 The SR GUARD

There is a 4-bit extension to the Shift Register called the
SR Guard (GUARD}, for use by the microcode fleoating point.
The GUARD is the same type of register as the SR, and has
the same four operating modes. It is clocked at the same
time as the SR when it is enabled from the RES register.

When the RES register specifies parallel load for the SR,
the GUARD is loaded with zeroes.

Conditional braches can be made on the contents of GUARD <3:2>;
see Section 3.3.

AN
&
Fie 11 Gk SR
e
SRKi%.00) —MLRARD
AL U {350y

. ) ‘ t
A< 4o ’ cufam
L4 2 <%y ;
A L CASE BRANCHL

Sl ]
B A
S MUX

BuS AN

Figure 2-22: SR, GUARD Regilsters
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2.6.2 Right Shift

When a right shift is indicated, the previously loaded 16-bit
word in the SR is shifted right one bit position. BMUX<00>,
from the Shift Tree, fills SR<15>. If the Guard register

is enabled, SR<00> fillé GD<(03>, Bits shifted out of GD<00>
are lost. o

The wiring of the SR and Guard registers for a right shift is
shown in Figure 2-22,

R GD

cLEe

ENB GUARDINH )

Figure 2-22: Right Shift of SR



2.6,3 Left Shift
When a left shift is ind
shifted into S5R<00>. &SR

where it can be directed

The high~-order Guard bit

icated, either GD<03> or D{C} can he
<15> is shifted into SENDMUX<0>,
into CMUX<00> (see Section 2.5).

is shifted into the SR only if the

Guard register is enabled from the RES register. FPigure

2-23 illustrates the wir
for a left shift.

DrecTioN OF

ing of the SR and Guard registers

SHEr
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1:\
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Figure 2-23

: Left Shift of SR

The particular routing of the shift outputs and inputs for

the SR are designed to a
32-bit shift register.

llow the SR and D to function as a

Examples are shown in Section 2.7.



2.7 SHIPT EXAMPLES

2.7.1 Multiple~-Word Shifts

When AMUXLO selects the low byte of the D data, and the BMUX
passes its input without alteration, SR<15> can be directed
into the CMUX from the SENDMUX. This enables the Shift Tree
to act as the high-order part of a 32-bit shift register.
While the low-order word is shifted one bit to the left in
the SR, the high-order word, previously stored in D can be
shifted in the Shift Tree and returned to the D register,
This action is illustrated in Figure 2-29,

In previous cycles 1 microcycle
RES set up for : AEN/CMUX, ALU/SELECT A,
left shift AMUX/DIRECT, BMUX/DIRECT,

High~order word in
D register CMUX/LEFT-1, CLKD/YES,

Low-order word in CLKSR/YES, WHEN/P2

Shift Register

Figure 2-29: Left Shift on 32 Bits of Data

A right shift on 32 bits of data can be accomplished in a
similar fashion. Recall that when the SR is shifted right,
the low bit of the BMUX output is shifted into SR<15>. So
by setting up the data and the SR mode control for a right
shift, and then specifying:
ALU/SELECT A, AEN/CMUX, AMUX/DIRECT, BMUX/DIRECT,
CMUX/RIGHT-1, CLKD/YES, CLKSR/YES, WHEN/P2



you will shift D<00> into SR<15>. Figure 2-30 illustrates
the rasult if the Guard register was enabled.

Az dddddddddddddddd
D
[ssssssssssssssss) 0000
SR GD
B: D (C)ddddddddddddadd
D
dsS5S5585S8S8S8S8S s000
SR GD

Figure 2-30: Right Shift on 32 Bits of Data

Table 2-9
‘SENDMUX TRUTH TABLE

52 51 sg CMUX< 00> inout
0 0 0 SR<15>

o 0 1 AMUX<03> .
0 1l ] D<07>

0 1 1 AMUX<03>
1 0 0 0

1 0 1 AMUX<03>
1 1 0 undefined
1 1 1 undefined




2.6 Shift Examples

+

This section contains simple microcode egquivalents for a
number of PDP-11 shift instructions. A symbolic description
of the actions of each micreocinstruction and the field value
specifications are shown.

2.6.2 ASL RO

The execution of ASL RO would take at least two microcycles.
In the first,
P2: D + ASP [0]
and in the second, _
P2: D + D LEFT ONE
P3: ASP [0) « D
P3: BSP {0] « D
The field specifications would be as follows:

INSTR1:
ALU/SELECT A, AEN/ASPLO, ASEL/IMMEDJ
RIF/4, CLRD/YES, WHEN/P2

INSTR2: ALU/SELECT A, AEN/CMUX, BEKN/BSPLO,

BSEL/IMMEDO, RIF/4, AMUX/DIRECT,
BMUX/DIRECT, CMUX/LEFT ONE, CLKD/YES,
WHEN/P2, MOD/CLKSP, HILO/LO, WRSEL/B ADDR,
WRSP/A AND B

Notice that in the second microinstruction, a BEN and a BSEL
value were specified; even though the ALU function was only
to pass the data on BUS AIN to D. The BSP address selection
is used to set up the correct write-back address. The
SENDMUX would have to be set up from RES if you wanted a £
shifted into the low-order bit. '
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2.6.3 ASR R1

Symbolic specification:
INSTRI1: P3: D « R1
P3: D(C) < ALU<15>

INSTRZ: P2: D + D RIGHT ONE
P3: asP[1l] « D

P3: BSP[1l] « D

Field value specificacions:

INSTRL:
ALU/SELECT A, AEN/ASPLO, ASEL/IMMED1
RIF/4, COUT/ALU1l5, CLKD/YES,
WHEN/P2
INSTR2: :
ALU/SELECT A, BEN/BSPLO, BSEL/IMMEDI],
AEN/CMUX, AMUX/DIRECT, BMUX/DIRECT,
CMUX/RIGHT ONE,. MOD/CLKSP, HILO/LO,
WRSEL/B ADDRS, WRSP/A AND B, CLKD/YES,
WHEN/P2
2.6.4 ASH #~11, R@

In this example, the indirect addressing of the B and A scratch-

pads is exploited to make the example more general.

Symholic specification:

INSTR1: P2: D + R{(SF)
P2: D{C) <« ALU<INH>

INSTR2: P2: D + D RIGHT 11
P3: R[SF] « D



Field value specifications:

INSTRI: ALU/SELECT A, AEN/ASPLO, ASEL/SF,
CLKD/YES, WHEN/P2, COUT/ALU15

INSTR2: ALU/SELECT A, BEN/BSPLO, BSEL/SF,
| AEN/CMUX, CLKD/YES, WHEN/P2,
AMUX/RIGHT EIGHT, BMUX/RIGHT FOUR,
CMUX/LEFT ONE, MOD/CLKSP, HILO/LO,
WRSEL/B ADDRS, WRSP/A AND B

2.7 The Counter Register

The Counter Register (CNTR) is an eight~bit counter. It can

be used to control repeated loops through the datapath. TIts

loading is controlled by MOD, u<l4>, and CLK CNTR, p<lé>. If
both MOD and CLK CNTR contain the value 1, the CNTR is loaded
from BUS BUS<07:00>. (If MOD equals 0, u<16> is interpreted

as part of the WRSP field.) | '

The COUNTER counts up, not down, so the value loaded from
BUS BIN must be the complement of the actual count. For
timing reasons, it must be loaded with the 2's complement of

the count.

Incrementing and clearing the COUNTER are controlled by Active
Branches, which are described in Section 3.6.

2.8 THE. BA REGISTER

Because addresses are relocated through the KT unit, the physical
addressing of main memory is transparent to the 11/60 micro-
programmer. To access a Unibus location, you will specify its
virtual address. {(only the console microcode uses physical
addresses)
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The Bus Address (BA) register holds the address for data
coming from or going to é Unibus location. Thus, when data
from memory is to be moved into MD (by a DATI), you load

BA with the virtual address of the location to be read.
Similarly, when data in D is to be written to main memory (by
a DATO), specify the address of the location with BA.

The virtual address is loaded into BA from BUS AIN, as shown
in Figure 2~31. The two high-order bits can, in special cases,
be loaded from BUS BIN<01:00>; normally they are set to 0 by
Bus Control logic. You do not have to worry about the data

on BUS BIN affecting the Bus Address.

The output of the BA register goes to the Memory Management
unit (KT}, where it is mapped to a physical address. This
physical bus address is then used by both the Cache and the
Unibus.

If, on a DATI, the location specified by the BA and relocated
by the KT unit is available in the Cache, no Unibus access is
made. If a Unibus DATI cycle is performed, however, the
Cache is updated when the data is brought in from main
memory. On a DATO cycle, main memory and Cache are both
updated. et P r—

AL U

LK
2
o B F<we
KT € /q

1 I(‘.‘j
7

-

Eus BIN 4 Rus A{N

Fiqgure 2-31: The BA Register
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BA loading is controlled by the CLKBA field of the microword,
u<26>. When CLKBA contain the value 1, the BA register is
loaded at Pl. (The value.of the WHEN field has no effect
upon the clocking of BA.) The BA is clocked earlier than
other registers to allow for cache cycle time. The requested
data is available at the CSP input at P3 of the following

microcycle.

anht)auﬂl}'AﬁﬁlkaudNé '

Figure 2-32: CLKBA Field of uword

2.9 THE RESIDUAL CONTROL CONCEPT

Two of the primary design goals for a microprogrammable
machine are flexible control of the elements of the data-
path and efficient use of the control store. These goals
are occasionally at odds with one another, and various
techniques have been developed to minimize the trade-off

penalties}

One of these techniques is the use of distributed control, in
which the central control store doesgs not control all of the
functional untis of the processor. Residual contrel (which
is essentially a special case of distributed control) is used
in the 11/60 to avoid widening the mic¢roword.

2.9.1 Set~-up Registers

Much of the control information for a microprocessor is
relatively static; that is, it is not changed everv micro-

cvcle. This static information can be filtered out of the



microword and placed in special registers, called set-up
registers or stats. These set-up registers can then he used
in association with fields in the microinstruction to fully
define the control for a particular resource. This situation
is illustrated in Figure 2-~-31,

Resourcs A

-
)
\\’ Regowrc B
[
M= inatr. Sfﬂ&mhr | o

Figure 2-33: Set-up register

2.9.2 The RES Register

The Residual Control register, RES, controls the operating mode
of the SR and GD registers; selects the shift left input of

. 8R<00>; sets up SENMUX S2 for the end-shifted bit for CMUX in
the Shift Tree; and controls clocking of the Guard Register,

RES 1s loaded from BUS RIN~<14:11> at P2 when MOD, u-14-, and
CLXRES, u<l8>, are both equal to 1. Inputs and corresponding
outputs of the RES register are shown in Figure 2-34,.



Bus e,qLDO__-. 1|——3eNOMUX SZ [}) M4
BUS B U .
' g—SR sL@) H
BUs B <)
gZ——5R SE(FH) H
BUs g <iy, ;-—“ FNB @uARD () H
1 ———ENB 6UARD (B) H
BT {CLeay
93&- D,
c.l.naﬁmu‘l N |

(4 2__———1._./'

Figure 2-34: The RES register

2.9.2.1 SENDMUX S2 (1) H -~ BUS BIN<14> is inverted before
it is stored ipto.RES. The corresponding output signal is
SENDMUX S2 (1) H, which controls the S2 gelection port of

the Shift End multiplexer.

If the SENDMUX S2 (1) signal coming from the RES register is

low, and both the AMUX and BMUX pass their input data unmodified,
then SR<15> becomes CMUX<00>. SENDMUX S2 will be low only if it
is loaded with B<1l4: equal to one.

2.9.2.2 SR Mode Control -- Mode control for the Shift
Register is provided by RES outpﬁts SR S1 (@) and SR s@ (@) .
These bits are the inverse of the values loaded from BUS BIN
<13:12>». Table 2-10 shows the truth table for the SR,




rable 2~10: SR Truth Table

s1 s§ SR Function BUS BIN<13:12> Values
0 0 Do nothing 11
0 1 Right Shift 10
1 0 Left Shift 01
1 1 Load g9

The default mode, that is, the SR mode when RES is cleared,

is to parallel load.

2.9.2.3 Guard Enable

The Guard register is clocked only if ENB Guard (1) is high.
The BUS BIN<1l> input to the RES register provides two ocutput
signals: ENB GUARD (1} and ENB GUARD(0). The Guard register
is clocked only if ENB GUARD (1) is high; ~that is, if

BUS BIN<1l> is equal to one when RES is loaded.

When ENB GUARD (@) is high, the GUARD register is not clocked.

Moreover, during a left shift, D(C) is shifted into the low bit
of the SR.

2.9.2.4 Constants for Loading the RES Register -- The

simplest way to load the RES register is to store a constant
in the CSP, and direct it onto BUS BIN when you want to load
RES, Table 2-11 shows the constant with which to load the RES

register for particular functions.



Table 2-11: Constants for Loading RES

Function

Constant

BUS BIN Bits
14 13 12 11

Shift SR right; GUARD register
not enabled

shift SR left: D(C) into SR<Q0>,
SR <15> into CMUX<0> if AMUX and
BMUX go direct; Guard not enabled

Shift SR left; GUARD<3> into
AR<Q>; SR<15> into CMUX<00>
if AMUX and BMUX pass their
input data unmodified; Guard
enabled.

Shift SR right; SR<0> into
GUARD<3>; Guard Enabled.

Direct AMUX<03> into CMUX<(00>
SR and GUARD not enabled {note
that because of inversion of
BUS BIN<1l4>, this is not the
same as clearing RES).

020000

050000

054000

024000

000000

Notice that both RES and CNTR can be loaded from BUS BIN at
the same time, because

CNTR « BUS BIN<7:0>

RES +« BUS BIN<14:11>

For éxample, suppose you want to do 16 right shifts, as in a

multiply loop. The constant 020360 from the CSP would set up
the CNTR for a count of 16, and RES for a right shift in the

SR, as shown in the'Figure on the following page



BUS BIN bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

020360 =
don't care
don't care
set SR Sl to.0
sett SR 80 to 1

GD not enabled

0 0. 1 0 Q 0 o ¢ \£ 1 1 1 0o 0

0

0

by

Ar A
A A=

don't care

2's comp;ement of 1610 - 208

2.9.2.5 Clearing RES -~ RES is cleared at P3 when a

BUT (CLEAR FLAGS) is issued. {BUT codes are described in

Section 3.xxx) Note that RES can be cleared also by lcading

it.

Note that when the RES register is cleared its outputs default

to the following:

SEND MUX $2 SEL (1) H ~~f
SR 81 (0) H -- 1

SR SO (0) H -- 1
GD ENABLE (1) -- @
GD ENABLE (0) -- 1

This means that the SR will be in parallel load mode, the
GD is not enabled, and the CMUX<00> input is either SR<15>,
D<07>, AMUX<03>.



’

2.10 Summarx

This chapter has described the functional components of the
11/60 datapath. The fields shaded in Figure 2-36 control the
components of the datapath. Table 2-12 summarizes the
functions of these fields.

Table 2-12
Datapath Control Field Summary

Field Name uword bits Function
ALU 47:44 ALU function control
BEN 43:42 BUS BIN Enable
BSEL 41:490 BUS BIN address selection -
AEN 39:38 BUS AIN Enable
ASEL 37:36 BUS AIN address selection
XMUX 36 XMUX port selection
- CMUX 37:36 CMUX port selection
RIF 35:33 Immediate addressing of

ASP & BSP; used in conjunction
with ASEL, BSEL

couT 32:30 COUT MUX selection {for D{(C) )

WHEN 29 P2 or P3 clocking

CLKD 28 Clock D register

CLKSR 27 Ciock SR register

CLKBA 26 Clock BA at Pl

ccc 25 Clock Condition Codes at
P2 of NEXT ucycle

BMUX 23 " BMUX port selection

AMUX 22:20 AMUX port selection

CSPADR 23:20 Complement of arbitrary address
in CsP




Table 2-12 {cont.)

Field Name ﬁword Bits Function

WRCSP 19 Write CSP at P3

HILO 18 HI or LO sections of SPADS
{MOD=0}

CLKRES 18 Clock RES register
(MOD=1)

WRSEL 17 A or B address on writeback

WRSP 16:15 Write BSP, ASP, or both

CLKCNTR 16 Load CNTR from BUS BIN

(MOD=1) Bit Steering.
MOD 1 =0, Scratchpad Writeback

=], RES, COUNTER

Figure 2-37 is

a block diagram of the 11/60 datapath.
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DRAFT

CHRAPTER 3

MICROINSTRUCTION SEQUENCING

This chapter examines two aspects of microinstruction
sequencing: address generation and the timing of microinstruction

fetches,

3.1 CHAINED AND INSTRUCTION-COUNTER SEQUENCING

Two basic techniques for microinstruction seguencing exist,
although they are used with many variations in different machines.
le will 'call these methods chained segquencing and
instruction-counter sequencing,

In chained sequencing, the current microinstruction contains
the address of the next microinstruction. In this case, every
microinstruction that is not a conditional branch is, in
effect, an unconditional branch. This technique is derived from
that originally proposed by Wilkes!®. '

Instruction-counter sequencing is familiar to PDP-11 programmers.
This method uses an incrementing microinstruction-counter
register; microinstructions execute from sequential locations

in the control store{with the exception of branches). In this
second scheme, it is necessary to include an unconditional

branch facility not required in the chained scheme.

! Wilkes, M.V., The Best Way to Design an Automatic Calculating
Machine,lqsi



Both seguencing methods muét make special provisions for
conditional branches. When a microinstruction contains the
address of its successor, it is common te include a field
~in the microword to specify a test to be applied before the
next address is selected. Alternatively, a microword might
contain fields for two or more next addresses, selection
among them being made on the basis of conditions in the
machine. Incremental sequencing schemes may provide a field

ror specifying a conventional two-way branch-on-conditon or
skip-on~condition opcode or may provide a facility to gate
the contents of a register into the microinstruction
register, thus replacing the sequentially generated address.

Selection of a sequencing method is based primarily upon the
organization of the microword and the micro-level architecture
of a machine. When there is a high degree of parallelism in
the datapaths of a system, and very few microinstructions

may be required to execute a single macro-level instruction,
the incidence of unconditional branches is high, and the
chained sequencing scheme is more efficient.

For these reasons, the nﬁﬁauses a chained sequencing method.
The MicroPointer Field (UPF) of the microword contains the
address of the next microinstruction to be executed., A
microprogram forms a chain, similar to a linked-list

data structure, as shown in Figure 3-1. The address specified
in the UPF field cah'be modified before it is used to select
the next microinstruction, ' ;

Before proceeding to a detailed discussion of branching, you
must look again at the issue of timing.



UPF UPF UPF
. > 1> s oy — iy

TR 4 ‘u

Fiest }.l-i“f'huch“

3.2 TIMING

- : > AU e vy C O
Figure 3-1 ~hained ‘S“'({“ Y

Section 1.5.2 stated that the 11/60 uses a clock with three
outputs, or pulses: Pl, P2, and P3. An additional time point,

uP3, follows P3 by a few nanoseconds. This section examines

how those clock pulses are used, in c¢ombination with control

signals from the microword, to cause state changes in the 11/60.

In general,

the clock pulses are used to tell a memory device

to load itself with the data currently at its input. In some

cases, the
the device
the device
caondition
CLK D from

The memory

clock pulse signals the device directly, so that

is loaded every time the pulse occurs. In other cases,
is loaded at a clock pulse only if some other

alos’ exiats; for example, the D register requires

the microword as well as P2 or P3.

devices in the 11/60 have a variety of names -- registers,

scratchpads, flip-flops, latches, etc. The type of locading signals
required by these devices divides them into two major groups:

those which are loaded on the edge of a pulse; and those for which
the input signal must be a level asserted over someé period of time.



3.2.1 Control Timing

As préviously stated, a new microinstruction takes control of the
11/60 every microcycle. The timing associated with the fetching
of microinstructions determines the control timing of the 11/60.

3.2.1.1 Fetch Timing

The terms serial and parallel, or non-overlapped and overlapped,

can be used to characterize when instruction fetches take place.

In the serial, or non-overlapped fetch, the next microinstruction
is not fetched until the current microinstruction is completed

{sec Figure 3-3}. This ensures that all information required to
select the correct microinstruction is available before the fetch

ooCurs.

The parallel, or overlapped system fetched the next microinstruction
while the current microinstruction is executing. This method has
obvious speed advantages, but can have problems handling
conditional branches. If the chioce of the next address depends

upon information generated during the execution of the current
microinstruction, the overlapped fetch will obviously fail.

Because the 11/60 takes advantage of the faster overlapped fetch,
careful attention to timing constraints when using conditional
branches will avoid unexpected loss of control.

a. Serial Fetch:
- ELl_ | ElL |
E.Z R S _E?.__._._H_‘
b. Overlapped Fetch:
R
I F2 i E2 !

Figure 3-3 Fetch Timing
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3.2.1.2 A Model for 11/60 Control Timing -- A very simple,
conceptual model for the control timing for the 11/60 is shown

in Pigure 3-4. It consists of a microword register, branching
logic, and a control store.

The microword register is an edge-locaded memory device. Its
loading signal is generated unconditionally by uP3; that is,

it is loaded every time uP3 occurs. Its input data is the output
of the control store, which may be modified by machine state.

DR ' 13
e M
CL:\‘\'W‘ — Bi‘dlr‘l(. :
A . ﬁ' y Lcc(ic
! 2
Lt >

ﬁ\iﬁéﬁ;&_________fﬁw .
wFP3

Figure 3-4; Control Timing Model

The ocutput of the microword register basically controls the
actions of the 11/60 until the next uP3. Part of the microword
register is directed to the branching logic, along with some
machine state; the output ¢of the branching logic selects the
next address in the control store.

Notea

Figure 3-4 is a conceptual model only, it
does not represent the actaul control structure
on the 11/60.
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Some of the contreol signals which come from the microword must
be held constant through two microcycles. Cases where this is
necessary are discussed elsewhere.

3.2.2 Intra-cycle Timing

The primary constraints on intra-cycle timing come from the
makeup of the basic computational loop of the 11/60 datapath.

The BSP and ASP are each composed of 32 level-loaded memory
devices, each loaded by different signals generated conditionally
from P3. Since the scratchpad must be enabled for loading '
(writing), as well as for reading, the data on the corresponding
bus becomes undefined while the scratchpad write takes place.
‘{his means that, for examples, when a location in the ASP is
being written, the data on BUS AIN .is undefined for the time
period starting just after the leading edge of P3 until just
after the trailing edge of P3.

The ALU is a combinational logic element, whose output is a
binary function of its inputs. Even if the ALU function selected
is a unary operation such as "Select B", both inputs to the

ALU must be defined ta produce the expected output.

The D register is an edge-loaded memory device whose loading
signal is gnerated conditionally at P2 or P3.

This information about the datapath shows that the following
operation can be performed in one microcycle:

P2, Dg-ASP(n] PLUS BSPI(n]
P3, ASP[nl&— D
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Look at another operation, which at first glance seems feasible:
' P3, D4¥BSPin} , ASP[n]l<._D

The intent is to move data from the B scratchpad into D while
moving the previous contents of D into the A scratchpad. Since
D is not loaded (and thus its output does not change} until the
trailing edge of P3, the constraint imposed by the level-logded
gcratchpad is satisfied. However, while the ASP is enabled for
ioading, the BUS AIN input to the ALU is undefined. Hence the
ALU result is also undefined during that period, and the
correct result will not be loaded into D at P3.

The Shift Register (SR) is an edge-loaded memory device whose
loading is conditionally generated by P2 or P3. When functioning
as a shift register, the shift takes place, like the load, when
the trailing edge of the pulse occurs. Whenever both D and SR
are signalled in the same microcycle, their signals must be
generated from the same clock pulse. This prevents such operations
as :

P2, SR LEFT 1

P3, D<€ SR

However, it is easy to see that operations such as the following
are possible:

P2, D€ SR PLUS BSP{n]

P3, ASP[n]l<&- D
or:

P2, SR <« BSP[n]

Note that the ALU delay is slightly longer for arithmetic
operations than it is for logic operations.
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3.2.3 Inter-Cycle Timing

Due to both the physical and logical structure of the 11/60,

operations on sections of the processor other than the datapath
generally require more than one miéroaycle {and hence more than
one microinstruction) for completion. A number of factors affect

considerations of timing across successive microcycles.

3.2.3.1 Memory Operations Timing

Data from memory is introduced into the datapath through the C
scratchpad. This scratchpad .. an be loaded only at P3. The virtual
address for a memory operation comes from the BA, which can be

lded at Pl.

The cache and memory management logic take a finite amount of time to
process a request. Thus, even if the requested data is in the cache,
there is not enough time between the trailing edge of Pl (when the BA
is loaded ) and the leadiné edge of P3 (when CSP data must be stable)
for the data to be fetched. The loading signal fof the CSP must be
delayed until the next microinstruction. This situation is illustrated

in Figure 3-5.
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Figure 3-5: Requested Data in Cache

If the data is not in the cache, it must be fetched from main
memory. Since the main memory cycle time is much slower than that'
of the cahce, the data cannot be ready at the CSP input within

the normal time.

This asynchrony is handled by the generation of a "Pulse Supress"
gsignal. This signal is generated when the requested data is not
found in the cahce, and it prevents the gene;ation of any clock
pulses until the Unibus cycle is completed. Figure 3-6 shows how

the pulse supression affects a data fetch fom memory.

F—-/.I-AUG!'CW'C( 4* /u_-worcjm { H
#,0{ u# .
\__\ S jP21_J°3 L_+_I’PtL_J72—1__.
ORTI
CiLk Bh

Dfbeesep

Figure 3-6 Data Not In Cache
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When the memory reference is to an internal location, the

interrupted cycle should do nothing except clock the CSP, because

it will be executed twice. The base machine's JAM flow is used

to detect and service references to UNIBUS addresses located within the

processor: clocks are not supressed and datapath state is destroyed.

st X i lotar O | 3 e XA ‘—j,s
£3 F3 '
#},_jﬁl__lﬁ?l ]pa'ui . gﬁ:fx__m
- 1o I
LK BA b S w &

Figure 3-7 DATI, Internal Address

Every “DATA OUT" to a valid Unibus address involves a Unibus
cycle as well as a cache cycle. The clock pulses are supressed

after P2 of the microcycle following the DATO specification.

The cache update, with the address specified by the BA register, and
the data specified by the contents of the D register, begins at P3

of the first microcycle. The Unibus cycle does not begin until

after P2 of the second microcycle. Hence, the data to be written

must be clocked into D hy P2 of the first microcycle and kept constant
until P3 os the dycle following the DATO. The procedure for doing

'DATOs to valid Unibus addresses is shown in Figure 3-8.
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Figure 3-8 DATO Timing

A DATA OUT to an internal location locoks very much like the
corresponding DATA IN, as shown in Figure 3-9. The microinstruction
following the DATO should be a null word. During the JAM routine,

datapath cloekingggre repeated.
' r

ufs : w3 |

P

ol Rl l_FA i |eAM |_pi m__@if
T 4 f ROUTING
ATO cLrD B

CLK BA
é&— D CONSTANT —=

Figure 3-9 DATAOUT, Internal Address Timing

Since every memory reference requires two microcycles to complete,

memory references MUST NOT be specified in two successive micro-

instructions.
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3.3 MICROCODE BRANRCHING

This discussion of branching looks at two fields in the
microword. The MicroPointer field (UPF), u<08:00>, contains

the address of the next microinstruction, as explained in Section
" 3.1. You can modify this sequence by using the MicroBranch

field (UBF), 1<13:09>, The UBF field serves three purposes;

1) it provides for conditional branéhea based on the state of

the machine; 2} it provides for subroutine calls and returns;

and 3} provides extra code-points for control signals.

e 1 v 17 i I T
-l usF | ueF

| S A . | i
3 op g 8 ? b S q 3 3 o

Figure 3-10 UBF, UPF Fields of the uword

The mechanism for modifying the next microaddress is quite
simple. In the Processor Control Section, the Next MicroAddress,
which is used to address the control store, is generated by
ORing'the contents of the UPF field with the output of the BUT
MUX. The UBF field provides the selecticn signals for the
BUT Mux, as shown in PFPiqure 3-11. The data inputs to the BUT
MUX are various elements of machine state, such as the
contents of SR<03:00>.

c)j UPF bds Must w2

asle 1% Uuse
ﬂt‘hiah\ Gl NOR - A bf‘b’\L\ H'xC.W\ L«U\.*kq

Dbt © (&= e ) h.u
a0 ey

)
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Figure 3-11 NUA Generation

When an unconditional branch {normal sequencing) is specified,
the output of the BUT MUX is all 0Os. The"ORing operation
does not ﬁéﬁé@y the UPF, and thelééﬂééﬁgﬁpégﬂ%he UPF field
becomes the NUA, _

kChd$ﬁJéL)
In conditional branching, the binary value ‘the UPF field
igs important because a UPF bit with a : 0f 1 is not

affected by the ORing operation.

For example, consider a two-bit-wide branch, in which two
signals (s,, s,} are to be OR'd with the two low-order bits of
the UPF field. Potentially, this is a four-way branch, But if
either or both of the low-order UPF bits is a 1, the number

of potential target addresses is decreased. Figure 3-12
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illustrates this effect. NHote that you can use this to mask
out a signal in which you are not interested, as well as to
decrease the range of a branch.

Potential Target Addresses

A. UPF xxx 00 X xx 00
Sy s xxx 01

132 X xx10

*x xx 11

NUA X X X 5:1B2

B. UPF x x x 10
$182 Xxxx1l1

NUA X X x 1 52

C. UPF xxx 11l

xxx 11 The state of the
signals has no
effect upon the NUA,

SISz

NUA Xxxx 11

Figure 3-12 Microaddress Modification

3.3.1 BUTs

The UBF codes, which control the branching logic, are given the
generic name BUT, for Branch Micro-Test. Since not all of the
code-points available in the UBF field are needed for conditional
branches, the BUTs are divided into two groups. The *regular"

BUTs only cause the ORing of the BUT MUX output with the UPF, The
Active BUTs 3+ wiell change some micro-level state as well Nt

oY R . a
as causing the ORing operation. Sowu achve Buts 'l orm
Bujf 'bj Oﬁmﬁ 1N OV\\}/ Zeroes.,
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An example of an Active BUT is BUT (COUNT) (UBF/25). This

BUT is used both to increment and to test the contents of

the CNTR {(see Section 2.6). Every time BUT(COUNT) is

specified, the CNTR is tested for overflow; after the test,

the CNTR is incremented. If the CNTR contained all 1ls when

the test was performed, a 1 is OR'd with the low-order bit

of the microinstruction's UPF field. This provides a branch for
exiting when a loop is completed. Figure 3-13 illustrates

how the use of BUT(COUNT) affects the flow through a loop.

D et uuu'But (ouN\)
L]

LOAD i?

CNTR jmuwf‘y

START
LOCP

3t
. 4

PERFORM
{ OPERATIONS

e

? '
1

| e T

‘ 1s YES | INCREMENT | :

. CNTR =ls i-_J 6o o |
i

CNTR
.\? !

: I ]
| e

i INCREMENT

. CNTR
| —
GO TO UPF

G__—

Figure 3-13 BUT {COUN'T)
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After the test, control will go either to the microinstruction
at the address specified by the UPF field or to the micro-
instruction stored at UPF OR 1. .8 that the first
microinstructi within the Lloop (pointed to by the UPF) is
stored ;égyg%gEZtion'one less than the address of the

first microinstruction handling the exit from the loop.

This example emphasizes the impact which chained sequencing
has upon the programmer. In this case, the microinstructions
within the loop cannot be stored in sequential locations.

3.3.2 Timing Constraints on Branching

Conditions to be tested in a branch must be set up in a
microinstruction prior to the one which 5pecifies the BUT code
and the UPF base. ' MU fwrwabion beqins ot uP3
; thus, the machine state

at the inputs to the BUT MUX is that which wes clocki® by the

ene of the previous microcycle. On other words,
conditions set up in microcyle 1 can be tested in microcycle 2
to affect the address of the microinstruction which controls
microcycle 3, as shown in Figures 3.14 amd 3.15.

ucycle 1 pcycle 2 ucycle 3
Hold Gemorhoms
Set-up Test by pinstruction 3etecdion
conditions issuing BUT . dependSon result
code of ORing

Figure 3-14 Setting Up Branch Conditions
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The NUA w not clockes o a regislr b{’m K u waed Yo seceas e ceatred
Svore , SO alterakions Tn BUT COUBTHORS Wil UNTifere Wit L0 aearss. € Yo sheuds)
hoJ.d the tested condition stablﬁa%?;l‘gfwcg%ﬁgigf%cgcle

in which the BUT code is issued.AThis  is illustrated in the symbolic
code below, This example uses BUT({DZERO) (BUT15), a 2~bit

branch. The top bit, OR'd into UPF<«1> is 1 when D<14:00> is

all 0s; the bit OR'd into UPF<0> is D<15>.

600; ! Arbitrary starting address
P2: SR + R(DF) 1 Put data in D and SR at P2
P2: D « RI{DF)

J/602 ! Go to next microinstruction
602:
P47 D +NOT SR ! Complement data
BUT (DZERO) ! Test previous D data; if non-zero,
J/601 ! go to 601; if zero, go to 603
601:
! Continue-
603:

| Error return

The UPF specification (J/601) in the second microinstruction
masks out the D<15> bit, so that only a test for D<14:00> = 0
is performed. The data stored into D in the first
microinstruction is tested during the next, and the second
clocking of D has no effect upon the branch.

-

3.3.3 The BUT List

Table 3-1 lists all the UBF codes (BUTs), their composition,
and mnemon:ics. Many of the BUTs are described in detail in

later sections of this manual; the others . perform as
indicated in the Notes column of the table, The sghaded rows

3-8



indicate BUTs which are least likely to be of any use to the
WCS microprogrammer, These BUTs were designed specifically to
aid in the implementation of the PDP-11.

Notice that the NULL BRANCH, that is, the UBF code that causes
only 0s to be OR'd with the UPF and changes no state in the
machine is BUT30. The UBF is the only field in the microword
in which a value of 0 is not an acceptable default: wee Lhe
velie 3 ag yewr difewlt bramek eecly 7

All BUT conditions are active high; and all branch widths are
justified to the low order microaddress.

3.4 THE CASE BRANCH

The CASE branch, BUTCASE), causes the four low-order bits of
the SR to be OR's into the UPF field.

Using BUT (CASE), control can be directed to any one of 16
locations within the current page. Thus, if the UPF field
contains the address 340, (011100000,), the next micro-
address coculd be any one of the following:

340 344 350 354
341 345 351 355
342 346 352 356
343 347 353 357

You may not always need the full sixteen-way branch capability
of BUT(CASE). If the UPF address in the example above were
343, instead of 340y, the branch could only go to four

locations: 343, 347, 383, and 357. Only the condition of SR<3:2>



b2

at -

Table 3-1

BUT LIST
UBF CODE COMPOSITION WIDTH NAME AND ACTION AND USAGE
- {(Bits OR'd into UPF) SYNONYMS
ag SR<03:00> 4 BUT (CASE) See Section 3.4
01 - IR<15:12> 4 BUT (DOP) Decodes opcodes of
: double operand instrs.
02 INSTR 5 BR<4;0> 5 BUT (INSTRS) Decodes opcodes
03 IR11Q FLTPT BR<3:10>: 5 BUT (FLPDECODE) Floating point decode
04 IR<09:06> 4 BUT (50P) Decodes opcode of single
~ . operand instructions
05 S@a MOV A FLPT V DR7 A FLPTH IR<05:03> S Indicates whether IR
: contains a MOV instr. .
PT— T e or a floating point
opcde with destination
register 7 (PC); and what
the Destination mode is,
06 INSTR 1 BR<7:0> 8 BUT (INSTR 1) “Initial PDP-1} instr,
deccde,
07 #£a BGINTERNAL V FLPT SRVCH D{C} 5
G FLTPT ACK®@ FRETH
10 COUT@7m DOUTATE FES 05 3 BUT {FNORM) Used in normalization in
: floating point
11 DMP o1 SMPQ BYTE 3 BUT (DM@ SMJUBBYTE) Indicates whether current

instr, has destination
mode #, source mode §, and
if it is a BYTE operation.




TABLE 3-1

BUT LIST (CONT.)

ﬁ e A — P el e i — L L. W 4 iy - - P T
UBF CODE COMPOSITION WIDTH NAME AND AGTION AND USAGE
{BJ.ts OR'd into UPF) SYNONYMS
12 GUARD<3:2> 2 BUT (GUARD) Top two bits of GD
are OR's into UPF; use
for checking results of
shifts, etc
13 SR<01:00”"RCNTR&7: 0»=1"'s 3 BUT (MULSTEP) Used in Multiply loop;
tests CNTR, inorements
it, and indicates what
is in SR 01:00
: 14 BGINTERNALHA MF INSTRMMULTI BR 3 BUT(MFINCEMULTIPLE) If you mask out the top
BUT (MULTIPLE) two bits, can use _
BUT (MULTIPLE)} See Sec. X.X
| 15 (D<14:00” = @'s)O D<15> 2 BUT {DZER®) Indicates if D<14:00>is
L all #s, and what D<15>is
: s
le IR11®) PS15 2 BUT (JMP, JSR) IR<ll>distinguishes JMP
BUT{IRL1 D P515) and JSR instrs., PS5<15>
indicatesg current mode,
17 (CNTR<7:0> =1's}8 D(C) 2 BUT (ASHBR) Tests and increments CNTR,
. —. e e shows what D{(C) is.
20 NO INSTR OVERLAP B3 SERVICE 2 BUT (FOV @ SERVICE) Indicates no PBP-11 instr.
BUT {SERVICE) fetch overlap; SERVICE
checks for service conds,;
must be performed before
every PDP-1]l instr,
21 pssm INTERNALIJ '—(—‘—n & v 7 2
az a ACTIVE BUT (ROR1) Low bit of IR source field
is OR'd with 1; use to
i address multlple regs,




vy e,

~ TABLE 3-1

BUT LIST (CONT.)

UBF CODE COMPOSITION WIDTH NAME AND ACTION AND USAGE
{Bite OR'd into UPF) SYNONYMS
23 D(C)m BA<QO> 2 BUT (D(C)pODD ADDRESS) Indicates carry and
. odd address
24 OTHER JANUPP @ FLAGOS5 A EXPLAGOL 2 BUT(OTHERJAMUPPﬂ HOTWARM) Used by base machine
25 CNTR<7:0> ALL ls 1 BUT (COUNT) Use to test and increment
CNTR reg.
26 INTR REQ® NO BR INSTR 2 BUT(INTR RE(’SUCBRANCH)
27 FOVLAP SAVE@O FPS507 2 BUT (FOVPSAVpP FPS07),
BUT {FD}
30 ’) ACTIVE BUT (NULL) This is the NULL BRANCH;
UBF and machine state
N unchanged
31 # ACTIVE BUT {(TRACK) BUT (TRACK) enables CUA
: tracking, which is
_ disabled upon JAMUPP
32 B ACTIVE BUT (CLEAR FLAGS) Clears RES register and
Short Term Flags {MFPI,
TPI, T-Bit mask)?SdadsEmf,
33 2 ACTIVE BUT (DIAGNOSE) Reserved for DCS
34 ACTIVE BUT (SUBR B}, Return<ll:00> +« RETURN,
BUT (GO TO) Page<2:0> « PAGE
35 ') ACTIVE BUT (SUBR A) Loads Return and Page regs.
Return<l1l: 00> +« D<14:03>
Page<2:0> +« PAGE '
- 'wunAs'““*,‘h*ﬂ'b‘“i;ﬁaéfiﬁ’ i
37 ACTIVE BUT (RETURN) (V i) €~ %m J.(otl'b°>,

A S ASaio> ¢ b < H-03.>




would affect the outcome of the branch.

A simple example that uses the CASE branch is testing whether
an ALU result is even or odd. (Obviously, there are other ways
of doing this,} To ensure that you test only the desired
condition, UPF<3:}> are 1s. The first microinstruction specifies the
ALU operation and clocks the result into the SR; the second
specifies BUT(CASE) and the base address for the branch.

INSTR 1:

P2: SR<-A PLUS B,
BUT{NULL, J/INSTR 2
INSTR 2: |

BUT (CASE), J/NEXT ! Go to NEXT if result
! is even, NEXT+1l if odd

Using the microassembler, you would specify a constraint field
of 1110 for NEXT.

3.5 SUBROUTINES

The well-proven programming technique of subroutine
structure is available to the IMP microprogrammer, Use of
subroutines generally results in smaller microprograms,
more systematic microprogramming, and more easily shared
microroutines.
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3.5.1 BUTg for Subroutines

There are three BUTs to control entry to and exit from
microcode subroutines. They are BUT(SUBR B), BUT(SUBR A), and
BUT (RETURN). All are Active BUTs.

A jump to the beginning of a subroutine is distinguished from
an unrestricted jump by the storing of a return address
prior to the jump. On the IMP, the return address is stored
in the Return register in the Procesasor Control Section., The
jump is then made in the normal way to the location specified
in the UPPF field, At the end of the subroutine, BUT (RETURN)
causes a jump to the previously stored return address by
loading the NUA with the contents of the Return register.

The return address can be loaded from the D register or

directly from the microword. You will :qenerally load the

return address from the microword for first-level sulroutines,

and load it from D when nestlng or dispatching on predumuﬂr extracke)
bit patterns.

BUT (SUBR B) stores the contents of the RETURN PAGE and RETURN ADDRESS
fields of the microword, p<46:44> and u<4l:3 >, in the

Return register, Note In Figure 3-16 that these fields aﬁafﬁj&\
overlap the ALU function field and some of tne4533"2332§51

fields. Hence, attempt no datapath manipulations in a
microinstruction that specifieé BUT (SUBR B).

?P"Zz” il Rerurn) AODRE 59
A - hs I N
ALL& At [8SeL |AEN [ASER| R &

Figure 3-16 RETURN PAGE, RETURN Fields of uword
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The following example shows how BUT(SUBR B) and BUT (RETURN)

can be used when no nesting is involved.

MAIN FLOW SUBROUTINE
y SUB1: .
: ENDSUB:
JMP: BUT (RETURN )
RETURN <« MAIN1ljg,
PAGE « 1,
BUT(SUBR B},
J/SUB1

Gy MAINLE:

Both BUT (SUBR A) and BUT(RETURN) 1load the Return register
from N<14:03>., ™his allows you to use a previously calculated

or stored return address.

Although you can use BUT(SUBR A} and BUT(RETURN) for

general subroutine calling like BUT(SUBR B), they are
especially useful for nested subroutines. When going through
successive levels of subroutines, you must save the return

addresses in the scratchpads.

The following sample microcode illustrates the use of BUT (RETURN)
to take a return address out of the CSP? Note that the caller

stores the return address, “Wi'ta EMaT

MAIN: '
P2, (SPBLMD I« MAIN L. | @SP GETS RETURN ADDRS
PAGE <« 1, BUT(SUBR B),
J/SUB1
MAINL: ! RETURN ADDRS FOR SUBROUTINE 1
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SUE1Ll:

J/SUBLN

SUB1IN:

RETURN <« SUBILM,
BUT (SUBR B), J/S5UB2

SUB1M:

BUT (RETURN)

s50B2:

J/SUB2N

SUBZN:

P2: D CsPi{MD],
J/SUB2N+1

SUB2N+1:

BUT (RETURN)

ISUBROUTINE 1 CODE
|LOAD REUTRN ADDRS FOR SUB2

! RETURNS CONTROL TO MAIN]

1ENTRY POQINT

! THIS INSTR SETS UP
!" D SO THAT RETURN WILL BRE
1' CORRECTLY LOADED IN SUB2N+1

! THIS INSTR RETURNS
{CONTROL TO MAIN 1 AND

! LOADS THE RETURN REG FROM
1D

The function of this code may be clarified by the flow diagram

below.
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3.5.2 Using Subroutines

In structuring your microprograms, it is important to
understand how the chained sequencing scheme of the IMP
affects the use of subroutines. In higher-level languages
where the instruction flow is sequential, a subroutine

can be seen as a "black-box" nrocess occuring between two
mailn-program instructions. That is, the subroutine process
is isolated, and is generally called from and returns

to the same program flow.

On the IMP, there is no automatic distinction between
in-line and called code because every microinstruction can
call any other microinstruction in the control store.

In addition, a microccode process can be isolated merely

by ensuring that entry to and exit from its flow occurs
only at specific points.

The most general approach to understanding and using the
microcode subroutine facility of the IMP is to consider it

a method for sharing code sequences. Thus, if flows
A,B, and ¢ contain common code, only one copy of the common
code is required. The main flows A, B, and C specify
BUT (SUBR B), thus lecading the return address, in the
microinstruction that specifies the jump to the common
code sequence. The last instruction in the shared code
includes a BUT (RETURN)}, which returns control to the
proper main flow.: '

Mote that control does not have to return to the calling
flow. Within a subroutlﬂéﬁﬁfﬁﬁiﬁﬁiignal branch

which can preclude the execution of the
BUT (RETURN} .



3.%& PAGE CHANGING .

Heretofore, we have \cokwo) cmhj at the low nine bits of
the microaddress. Twelve bits are needed to specify a
unique control store location on the IMP,

The IMP control store is divided into S51l2-~word pages.
The 9+bit address selected by the UPF field represents
the displacement within a page. Three additional
address bits are used to specify the page.

Unnecessary page changing is to be avoided, since it

can add overhead.

The top three bits of the -microaddress are specified by
the contents of the Page register in the Processor
Control section of the IMP. The Page register is loaded
whenever BUT(SUBR B), BUT{SUBR A), or BUT(RETURN) is
specified. Thus, -»age changing can only occur when one
of these BUTs is specified in the UBF field of a

microinstruction.

The contents of the PAGE field of the microword,‘u<32:30>,
of€. locaded into the page register whenever BUT(SUBR B) or
BUT (SUBR A) is specified. Do not confuse this field

with the RETURNPAGE field, M<46:44>; refer to Figure 3-i%

When BUT (RETURN) is used, the top three bits of the

Return register are loaded into the Page register. (Note

that the ordiginal source of these bits was the RETURNPAGE

field when BUT (SUBR B},TBUT(SUBR A}, or BUT(RETURN)was specified,)

e ——— [ —

| H/(};\Hc_l__'p< 14 Lz__gam
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Figure 3-17 Three Ways of Loading the Page
Register

These three BUTs were discussed in the context of subroutining,



but it is important to note that cage changing is not
restricted to subroutine dispatching. Although the three BUTs
load the Return register, as well as the Page register, that
loading is significant only if a BUT(RETURN) is issued.

Thus, if the microinstruction at location 6056 {page 6,
location 56} looks like this:

6056
PAGE/7, BUT(SUBR B), J/220

the next microinstruction will be at 7220 {page 7, location
220). The dat loaded into the Return register by the

BUT (SUBR B) in 6056 doesn't matter unless 7220, or one of
its successors, specifies a BUT(RETURN).

The following is an example of changing pages while calling
a subroutine:

6056

CALL:

RETURNPAGE/6, RETURNADDRESS/057, PAGE/7,
BUT (SUBR B), J/220

7220:
BUT (RETURN}

6057:

Because the subroutine BUTs are also the page-changing BUTs,
there is a danger of jumping off the current page inadvertently.
You can avoid this problem by making sure that microinstructdons

using BUT(SUBR B) and BUT(SUBR A) have the proper value in
the PAGE field. A notmal subrcuduns must nel “L’j”(g
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e DRAFT

THE CENTRAL PROCESSOR :

While you will work almost exclusively with the “@0 Inner
Machine ( the Datapath and Processor Control sections},
potentially useful features exist in other sections of the
processor. In addition, it is important to be familiar with
the inter-relationships cf the various sections of the

processor.

The fold-out block diagram of the processor, Figure 4-
will be a useful reference while reading this chapter.

4,1" INTRA-PROCESSOR COMMUNICATION

The Datapath can send data to, and receive data from, each of
the other four sections of the processor. The following sections
discuss the mechanism for these data transfers, and the means

of controlling them.

4.1.1 BUSDIN and DOUT

BUS DIN and DOUT connect all the sections of the IMP
processor, and are the main data channels within the
machine. Both are 16 bits wide.

The only dewvice that can put data on BUS DOUT is the D
register. This data is then available to all cther sections of
the processor. No explicit enable signal is ngaéea to put

the contents of D onto DOUT, Thus, if the contents of D
are unstable, so 1is DOUT.



BUS DIN supplies data to the Datapath: every section of the
processor except the Datapath can put data on BUS DIN.

BUS DIN is connected to the DMUX (which provides the CSP input).
llence a WR CSP specification is needed to get BUS DIN data

inte the datapath. All the other sections of the prdcessor
have tri-state multiplexers connected to BUS DIN. Selection

and enabling of these multiplexers is controlled by the UCON

registerg O
¢ ALTTIO
11vqanu§nA wee of UWCOR) COM  Cause heraughtmé Eﬁ&uuuKL:

4.1,2 UCON Control Register

The UCON register is a l6-bit set-up register, located in the
Processor Control section. (The general concept of set-up
registers is explained in Section 2,.8.) UCON controls intra-
processor communication, that is, micro-level data transfers
between sections of the ||4C processor.

The contents of the UCON register determine which section of
the processor is to be accessed from the datapath, and in
what manner. It is.simplest to look at the UCON register in
two parts, according to the function of the bits. The low-
order five bits control the selection of a section of the
processor and any necessary enabling. The remaining 11 bits
provide further control of the section selected.

The UCON register is loaded at uP3 whenever BGB, u<24>,

BUSBOX, n<23>, and CONO, u<20>, are all equal to one. Figure
4-1 shows how the UCON reqgister is loaded from the micro-

word. Since the interpretation of the control bits depends upon
the section of the processor selected, their functioné are not
shown in this illustraticn.
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Figure 4-1 UCON Register

The order in which the bits are

loaded inteoc the register is

transparent to the microprogrammer. It is the mapping of

microword fields to eventual effects (signals) that impacts

the microprogrammer.



The UCON register sets up a (‘ou.‘hhs Patha o data
whenever an intra-processor bus cycle is specified by the
microprogrammer. Thus, when writing of datapath data is
specified, UCON determines which section({s) of the

processor is to take data off BUS DOUT, and to which register
in that section the data is written. When data is to be
introduced into the datapath, UCON provides the appropriate
enable and disable signals to the tri-state multiplexers
attached to BUS DIN. |

Once this path is set up, it does not change until you’
reload UCON. You can set up UCON before it is needed,
and use it repeatedly until the register is relgaded.

Specifi¢c details of the UCON interface to each section of the

processor, such as the function of the control bits, are
included in the remaining sections of this chapter.

4.1.3 (XoM Control Fields

The BUS/UMN control fields, which span u<24:20>, serve to
distinguish between and provide contzcl signals for both
Unibus cycles and Intra-~processor data transfers., Their use
for Bus {Unibus) control is described in Section.4.3.

The BGB field (think of it as BegianDN or Begin BUS), u<24>
determines if activity over BUS DIN or . DOUT is
going to occur. TIf BGB is equal to 1, bus activity is allowed.

This bit avoids inadvertent bus cycles when setting up the



shift Tree or addressing the CSP. due to the overlapping bit
fields. A BGB value of 1 indicates that either a Unibus
cycle or UCON activity is going to take place.

BUSEOX, u<23>», determines how the remaining bits are to be
interpreted. If BUSBOX is 1, then u<22:20> are used in
controllingc}ntra-processor communication,

z""'ﬁ/?’
FLTPT, u<22>, is used by the floating point hardware and
should always be 0 when performing UCON activity from the
WCS control store.

DATTR, u<2l>, is used in different ways by different sections

of the processor.

CONO, u<20», is used in conjunction with BGB and BUSBOX to
load the UCON register.

4.2 THE INNER MACHINE

The Inner Machine is composed of the datapath and the
Processor Control sections. This section describes the
features of the Processor Control section and its interactions
with the datapath.

The Processor Control section, as well as providing control
signals to the datapath, contéins a number of important data
register$, Understanding how these registers can be accessed
from the datapath will give you added flexibility, both at

the macro~ and micro-code levels.
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Figure 4-2 is a block diagram of the Processor Control
secticn of the IMP., At the top and bottom of the diagram.
are the two data busses: BUS DOUT and BUS DIN. Data from the
D register can be moved into the Processor Control section
over DOUT; data from the processor control section can be
moved into the CSP over BUS DIN.Data is placed on BUS DIN by
the BUS DIN MUX.

In the middle of the diagram is BUSU, which carries the
microword signals through the processor.

4.2.1 Next Micro Address, NUA

The Next Micro Address, NUA, selects the next microinstruction
to be executed from the control store (either base machine

or WCS). NUAL11:09% are the contents of the Page register,

as shown in Figure 4-3. The Page MUX selects between the

two sources for the page register: Neturndll:09) or
/{(32:30}. NUAL8:0)is the result of ORing the output

of the YA register with the output of the BUT MUX. Both

‘the Page Mux and the BUA Mux select the microword input except
when BUT (RETURN) is specified.

Chapter 3 describes, from a functional viewpoint, the loading

‘0f the Return register. You can see in Figure 4-3 that specifying
BUT (SUBR B), BUT(SUBR A), or BUT(RETURN) causes the Return

Mux to select one of its inputs; the Return Mux output

is input to the Return register.
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Figure 4-3: 'IlUA Formation

Locking at the Page and BUA registers again, you will notice

a JAMUPP signal going into both of them. JAMUPP stands for

JAM MicroProgram Pointer, and the effect of this signal is

to "jam"™ a unique address into the NUA. This is used to dispatch
into the JAM routine, which services synchronous error conditions,
internal addresses, . etc, The JAM routine is described
in more detail in Section 5.3.



4.2,.2 BUS DIN MUX

The BUS DIN multiplexer determines what data from the Processor
Control section is gated onte BUS DIN to be sent to the CSP.
This multipléxer has four inputs; selection among these

inputs is controlled by bits from the UCON register, as

shown in Figure 4-4.

Since the BUS DIN MUX is a tri-state device, it requires an
enable signal as well as selection signals. The enable signal
is also generated from a combination ¢f bits from the UCON

register. ﬁhfif 4o Table d-1.
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Figure 4-4 Selection and Enabling of
BUS DIN MUX



There are two ways in which the BUS DIN MUX can be enabled
and selected. The signal UCON EMIT (1) L is true whenever
the UCON register has been cleared by BUT(CLEAR FLAGS) or
INIT. OCON EMIT (1) L enables the multiplexer and forces
the selection to port D, which is the EMIT input. This
allows you to select EMIT without using a microword to set
up the UCON register.

The other method of selecting and enabling BUS DIN MUX does
reguire you to set up the UCON register from the microword.
The microword fields to use are KPROC, u<36>, and I1/u, u<46>,
{(in the UCON SELECT row of the microword summary), and KPROC
READ, u<39:38>, in the UCON READ CONTROL row of the mciroword
- summary.

4% 46 4s 44 39 3 3 33
SeLeeT &€ : gf. ¥
con - a=r AT ek “ COMW N
Y . heeree] T
CONWOL- Coe ey ol - »»%.a,,.—..., g

Figure 4-5 uword Fields for Controlling BUSDIN MUX

The logic for enabling the BUSDIN MUX works according to the
equation: _
ENB BUSDINMUX = UCON SEL 1/0 A UCONL A (UCON SEL PROC V UCON EMIT)
A INH UCON (BUS XFER)

From this, you can see that to enable the BUS DIN MUX, you must
hate KPROC, u<36> equal to 1 and I/0, u<46>, equal to 0 in
the microinstruction which loads the UCON register. The encoding



of the KPROC READ field, u<39:38>, is shown in Table 4-1,

TABLE 4~1

KPROC READ FIELD ENCODING

KPROC REAMAD MNEMONIC EFFECT
| _Field Value.
0 FPLAGS, FPPS BUS DIN<15> + FLAG<03>
BUS DIN<14:11> +PLAG<07:04>
BUSDIN<10: 08>« FLAG<02:00>
BUSDIN<07: 00>+ FPS5<07:00>
. 1 PSS BUSDIN<15:14> +« PS<15>
BUSDIN<13:12> +« PpPS<l3i>
BUSDIN<11l:08> + g
BUSDIN<Q07:00> « PS<Q07:00>
2 CUA BUSDIN<15> « @
BUSDIN<14:03> + CUA<11:00>
BUSQIN<02:01> + EXFLAG<2:1>
BUSDIN<00> +« INSTR PREFETCH
3 EMIT BUSDIN<15: 00> « EMIT<15:00>

The signal INH UCON (BUS XFER) L is generated by the Bus
Control section of the processor. It disahles all the UCON-
contrelled multiplexer on BUSDIN so that UNIBUS data can be

gated onto BUS DIN.

4.2.3 Using the IMP's Literal Facility

The EMIT field of the mizroword allows you to introduce a

lé-bit literal into the datapath from the microword.



The contents of the EMIT field of the microword, u<47:44, 41:30>,
is gated onto BUSDIN when both the 51 and S@ inputs to the
BUSDIN MUX are high. BEMIT is selected when the UCON register

is loaded with a KPROC READ value of 3, and when BUT(CLEAR

FLAGS} is issued. ' (BUT (CLEAR FLAGS) selects EMIT because it
forces UCON EMIT (1) L to go to the low, or true state.)

Because the EMIT field overlaps the BSEL field (u<41:46>),
you must use the CSPADR field to specify the address in

the CSP to which you wish to write the literal data. Remember
that the contents of CSP are complemented before the CSP is
addressed.

As long as you issue a BUT(CLEAR FLAGS} and do not load the
UCON register before the microword in which the EMIT léteral
is specified, BUSDIN MUX will always be enabled onto BUSDIN,
and the EMIT port will be selected.

The following example writes the number 3263 to CSP[MD].

INSTRL: ,
" BUT{(CLEAR FLAGS), J/INSTR2

INSTR2:
EMIT/326, BEN/CSP, CSPADR/2, WRCSP/YES

Besides using EMIT to supply literals for datapath computation,
- you will find it useful for providing constants, such as

those for loading the RES register. You can also load
subroutine return addresses by using EMIT and then issuing
BUT (SUBR A) or BUT(RETURN) in a later microinstruction.

4-12



4.2.4 Readiag the Status Registers

The remaining three inputs to the BUSDIN MUX are status
registers. To get data from these registers into the data-~
path, set up the UCON register for BUS DIN MUX enabling and
selection and write a location in the CSP. If you write the
data into EMITCON, CSP[6], the UCON set-up and CSP write can
be done during the same microcycle.

4.2.4.1 Current MicrolAddress (CUA) -— The Current Micro-

Address register, CUA, tracks normal microcode flow. It is

loaded with the NUA at P3. When the JAMUPP routine is '
| . | o £ \ew ™A
invoked, CUA tracking of the microaddress is disabled, and tﬁdb

o

the CUA contains the address of the microinstruction¥causing
the JAMUPP.
_ | P_L":V’\f
The CUA is gated onto BUSDIN<14:03> when the UCON register is
set up with KPROZ SELVequal to one and KPROC READ equal to 2.
BUSDIN<15> is loaded with zero, BUSDIN<(02:01> is loaded with
EﬂﬂﬁAGS(2;1> , which are currently unused and reserved, and
BUSDIN<00> is loaded with INSTR PREFETCH, which indicates the
overlapped fetch of a macro-level instruction. As there is
no macro-level instruction fetch overlap on XFC instructions,
this bit should always be 0.

4.2.4.2 The Processor Status Registers -- The PDP-1l
Processor Status Word (PS) is implemented on the IMP as three

separate registers so that each of its parts can be written

separately.



7

6

PS<15:12> are the mode bits. Because the IMP does not implement
Supervisor mode, PS<l4> always has the same value as PS<15>,

and PS<12> always has the same value as PS<13>,

PS<15>

indicates the current processor mode. A value of 1 indicates

the current mode is User;

a 0 indicates the current mode is

Kernel. PS8<13> indicateées the previous processor mode; 1 for

User,

PS<7:4> contains the current processor priority and the

z, Vv,

T-bit,
and C.

and 0 for Kernel.

and PS<3:0> contains the condition c¢odes N,

The PS is gated ontec BUSDIN when the UCON register is set up
with KPROC SEL = 1 and KPROC READ = 1.

4.2.4.3

Floating Point Status (Low Byte} -- When the UCON

register is set up with KPROC SEL = 1 and KPROC READ equal to
-0, the low byte of the Floating Point status word is gated
onto BUSDINS07:00). (The high byte is stored in FPSHI-FEC in

the ASP.) The format of FPSLO is shown in Figure 4-6,
7 6 5 - 4 3 2 1 0
[;fﬂ FL FT FMM FN ¥z FV FC

Floating Doubls Pracision Mods (FD)

Figating Long integer Mode (FL)

Fioating Truncate Mode (FT)

Determines the pracizion that is
usad for Flosting Point calcula-
tions. Whan set, Doubls praci-
sion is sssumed: when raset
Floating precizion is used.

Active in conversion batwean In-
teger, and Floating Point format,
When set, the Integer format as-
sumad is Double Precision two's
complement (i.e. 31 bits + sign).
When reset, the integer format
is assurned to he Singls Prasi
sigh two's compiement {i.s. 15
hits + sign).

When set, causes the resuit of
any arithmetic operstion to be
truncated. When reset, the -
suits are roundad. :

4~14

2 Floating Zero (F2)

1 Floating Overflow (FV)

0 Floating Carry (FC)

Figure 4-6 FPSLO

~ Floating Meintenance qul {FMM)
3 Fioating Negstive {FN)

The result of the last operation
was negative.

The result of the last oparation
was Zero.

The result 'of the last operation
resulted in an arithmetic over-
flow, :

The resuit of the'Ssst opevation
resuited in a carry of the most
sigoificant hit. This cen only ec-
cur in Integer-Floating CcOmvan
sions.



4.2.4.4 Flag Register -- The Flag register contains a

number of micro-level state indicators for the base machine.
The register contains two types of flags: short-term and
long-term. The short-term flags are cleared by BUT (CLEAR FLAGS).
The layout of the Flag Register is shown in Figure 4~7.

——

uBreak Service Fast csp | T=bit

{Spare} Fltpt (Cnsts FMFPI MTPI
Enable Request nabled Invaliq Mask
)T 78 K 3
Enables ubrk ?ggkngs(T)
for MED
MTPI in

To WCS on rogress
(Efne otar seriita ¢ hon ) MFPI in
Fagst FLTPT enabled progress
If set, csp
does not contain

Floating Poilfn) Constants

Figure 4-7 Flag Register

The CSP Constants invalid bit, FLAG<3>, 1is set whenever
CSr[0:13] are used to store anything other than the Floating
Point constants described in Section 2.3.

The contents of the Flag register are gated onto BUSDIN when

the UCON register is set up with XPROC SEL equal to 1 and
KPROC READ equal to &, as shown in Table 4-1.
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4.2.5 Writing the Status Registers

The registers which provide input to the Processor Control's
BUSDINMUX can be loaded from the D register. You must set

up the UCON register to indicate which registers are to be
written; set up the D register, and specify the write.

After setting up the UCON register, you specify the write by
setting the microword fields BGB, BUSBOX, and DATTBEB all
equal to 1.

4,2.5.1 PS « D

The fields which set up the UCON register for writing the PS
are KPROC SEL; PS<3:0>, u<47>; PS8<7:4>, u<34>} and PS<15:12>,
u<31>, The three sections of the PSW may be loaded at the
same time or independently. The loading of the PS from the
D register is as follows:

PS<3:0> + D<3:0>
PS<7:4> + D<7:4>
PS«<13:12> + D<13>»
PS<15:14> + D<L15>

With the UCON register set up, the indicated sections of the
PS are loaded from BUS DOUT when BGB, BUSBOX, and DATTB all .
equal 1. The condition codes, PS<3:0>, are clocked at P2; the
other sections of the PS are clocked at P3. Thus you must set
"up the D register one microcycle before you try to load the
PS r and keep D stable until P2 of the mlcrocycle
in which the write is specified or P3<3:0> GTI;V:EEJJ} shol

wolik PP Ades. ol condats o %O
S A Py = S



You may prefer to set the condition codes with this method,
rather than use the CCC microword field. The logic associated
with CCC is especially designed to handle the PDP-11
instruction set. Setting the condition codes directly allows

you to have more contrel over the state information 1 xmf of
enfd
transmitted to the magro-level progrmm.\ﬁ”'ﬂf _ou-ij thae WA LLO
V- Ark MAOcoo2 0 B v oo BV'S o~ '
l Ef J 7

For example, the following example loads the condition codes
with values previously stored in SR<3:0>.

LDUCON : |Set up UCON prior to anything
KPROCSEL/YES, lelse.
PS<3:0>/YES,
BGB/YES, BUSBOX/YES,
CONO/YES, J/NEXT

SETUP: -
P2: D + SR, {This exapands to: AEN/XMUX,
J/CLOCK | XMUX/SR, ALU/SELECT A, WHEN/P2,
{CLKD/YES
CLOCK:
BGB/YES, BUSBOX/BOX, !Condition codes loaded at P2.
DATTB/YES

Note that you do not specify any ALU activity in the micro-
instruction that sets up the UCON register. Because of the
overlapping microword fields, an ALU specification could

cause an inadvertent UCON selection.



4.2.5.2 FPSL0<7:4> + D<7:4> -- The four high bits of the
low byte of the Floating Point Status register are loaded
from D<7:4>, The UCON register mystibe set up with KPROC SEL
and FPS<7:4>, u<35>, both egual to 1. FSPLO<7:4> is clocked
at P2 of the microcycle in which BGB, BUSBOX, and DATTB all
equal 1, '

Clocking of FPSLO<3:0> is controlled by an extension of the
microword and cannot be performed from the WCS control store.

The high byte of the Floating Point Status word is stored in
ASPHI_ [16].

4,2.5.3 PLAG<7:0> + D<15:08> -~ The Flag register is
loaded from D<15:08>. The UCON register must be set up with
KPROC SEL and FLAGS, 1:<30>, both equal to 1. The Flag
register is loaded at P3 when BGB, BUSBOX, and DATTB are all
equal to 1.

Remember that if you store ANYTHING in CSP [0:13], you must
set the CSP invalid flag, Flag<3>,



4.3 MEMORY COPERATIONS

The hﬁ&)xnner Machine has three interfaces with the rest

of the system:

DATA IN " Ee 8 E AR SN CSP' IR
DATA OUT ......... D register
ADDRESS OUT ...... BA register.

The memory management unit, the cache memory, and the Unibus
are all invisible to the microprogrammer, To access a main
memory location, you.must set up the appropriate registers
in the datapath and specify a Unibus cycle,

Data from the Unibus is placed on BUSDIN, which provides one
of the DMUX inputs. The other DMUX input comes from the cache.

The DMUX output goes to the CSP and to the Instruction
Register (IR}, oD s FPu-E.

4.3.1 The Instruction Register

The Instruction Register, IR, is in the Processor Control
section of the processor. The IR holds the first word of

a PDP-1l1 instruction. Control store dipatching is based on
the decoding of the contents of the IR,

Input to the IR is the same as that of the CSP: the output of
the DMUX. Obviously, not all words fetched from memory contain
PDP~1ll instructions. Therefore, clocking of the IR 18 under

microprogram control.



There are two ways in which you can clock a word of data

into the IR. The normal method is to issue a DATA IN AND CLOCK

IR bus code, as described in gection 4.3.2. The other

method, which may be used to take advantage of the IR-based

BUTs, is to specifv_IR loading with the UCON register. If the

UCON register is set up with KPROC SEL and IR, u<32>, both

egqual to 1, the IR will be lcaded from the DMUX during the

next microcycle in which BGB, BUSBOX, and DATTE are all equal

to 1. Wheqle clocking is specified, the load occurs at P2,
wer

If you refer to the BUT list in Section 3.3.3, you will see

that there are a number of branches which test the contents

of the Iﬂ; Although these branches were designed to facilitate

decoding of PDP-11l instruction, it is possible to make more

general use of them.

For example, consider
[Anyone have a good idea for the example
needed here?]

4.3,2 Microword Bus Control Fields

The Bus Control Fields span u<24:20>, as illustrated in Figure
4-8. These are the same bits that are used to control intra-
processor (UCON) communication cycles.

a4 23 aa a0

Figure 4-8 Bus Control Fields
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BGB, u<24>, must be 1, indicating that the remaining bits are

to be used to control a bus cycle,

BUSBOX differentiates between a main memory (unibus} cycle
and an intra-processor (UCON) cycle. A value of 0 in the
BUSBOX field indicates that a main memory cycle will take

place.

The BC, or Bus Control field, p<22:.20>, indicates what type

of memory cycle is to take place. There are two basic types of
memory cycles: DATIs and DATOs. During qm?%the contents
nf the location specified by the BA register {as relocated by
the memory management unit) is gated through the DMUX, and

can be clocked into the IR or the CSP. During a DATO, the

data in the D register is written to the location specified

by the BA register (after relocation by memory management},

Table 4-2 lists the BC codes, their mnemonics, and their

functions. 3

W
e
DATI and DATIB cause word,é;d byte reads respectively. If the
location specified by theVBA register is in the cache, no

Unibus cycle is performed.

If the BA specified an Internal address (see Section 4.3.3)
when DATI NO INT 1s issued, an Illegal Internal Address Access

Trap will be issued,

DATIP has two functions. For core memories, it inhibits the

restore cycle for locations that will be immediately written

with new data. In the case of devices which can respond to

more than one Unibus, the DATIP prevents the device from

responding to any other reguests. When a DATIP is issued, the

bus will remain busy until the next bus cycle or BUT(SERVICE)}
424



Table 4-2
BUS CONTROL CODES

VALUE MNBEMONIC FUNCTION

] DATIGCLKIR Data In, IR loaded

1l DATINOINT -Data In, ilo internﬁl
address allowed

2 DATO ‘Data Qut

3 DATIB Data In, odd Ba
address allowed

4 : | DATIP "Data In, locks bus

5 DATOB | Data Out, allows

cdd BA address

6 DATI Data In
7 INVALIDATE One cache location
' invalidated
NOTES
Ohly E’{‘& opccDes (kona,w.) com st DAT\Ry o7
©8s.

An INVALIDATE BC code does not cause a Unibus cycle, The
specified location in the cache is invalidated. The next .
reference to that location causes a main memory reference.
Subsequently, the location is again cached.

DATO and DATOB cause word and byte writes respectively. A
Unibus cycle is always performed, and the cache is updated.

Note that addresses in the I/0 page are never cached,
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4,3.3 Internal Addresses

Some registers with Unibus addresses are not actually
connected to the Unibus, but are located within the processor
itself. These locations are called Internal Addresses,

These locations are not accessed by the Bus Control section of
the{*@D. When the contents of the BA register specifies an
Internal address, the JAM routine is invoked. The JAM routine
accesses the internal register and gates its contents

through the DMUX to the CSP. When the data is ready, control
returns to the microword which issued the bus code.

Invocation of the JAM routine by specifying an Internal Address
does alter the state of the datapath. More significantly, the
JAM routine uses the Return register, s¢ an Internal Address

within a subroutine will cause a return to the wrong location.
Table 4-3 lists the “ko's Internal Addresses. Notice that a

DATOB cannot be performed to some of these registers; the DATOB
converted to a DATO,.

-
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Table 4-3
)o@ INTERNAL ADDRESSES

ADDRESS REGISTER DATOB CHANGED TO DATO?
772300 Kernel PDR.O No
772302 Kernel PDR 1 No
772304 Kernel PDR 2 No
772306 Kernel PDR 3 No
772310 Kernel PDR 4 No
772312 Kernel PDR 5 No
772314 Kernel PDR 6 No
772316 Kernel PDR 7 No
772340 Kernel PAR ¢ No
772342 Kernel PAR 1 No
772344 Kernel PAR 2 No
772346 Kernel PAR 3 No
772350 Kernel PAR 4 No
772352 Kernel PAR 5 No
772354 Kernel PAR 6 No
772356 Kernel PAR 7 No
777540 WCS Status Register Yeé
777542 WCS Address Register Yes
777544 WCS Data Register “Yes
777570 Switch Register YES




TABLE 4-~3 (Cont.)

ADDRESS REGISTER - DATOB CHANGED TO DATO?
777572 MMRQ No
777574 MMR1 Yes
7771576 .. MME2 Yes
777600 User PDR 0 No
777602 User PDR 1 No
777604 User PDR 2 No
777606 User PDR 3 No
77?610 User PDR 4 No
777612 User PDR 5 No
777614 User PDR & No
777616 User PDR 7 No
777640 User PAR 0 No
777642 User PAR 1 No
777644 User PAR 2 No
777646 User PAR 3 No
777650 User PAR 4 No
777652 User PAR 5 No
777654 User PAR 6 NO
777656 User PAR 7 No
777744 Memory System Error Rag, Yes
777746 Cache Control Register Yes
777752 Hit Miss Reéister Yes




Trable 4~3 {(Cont.)

ADDRESS REGISTER * DATOB CHANGED TO DATO ?
777766 CPU Error Regisater Yes.
777770 Ubreak Register No
7717774 Stack Limit Register Yes
777776 Processor Status Word No

4.3.4 Timing Consgiderations

Data from memory is introduced into the datapath through

the CSP. The loading signal for the CSP occurs at P3 if
WRCSP is specified in the microword.

The cache and memory management logic take a finite amount

of time to process-a request. Thus, even when the requested
data is in the cache, there is not enough time between Pl
{(when the BA is loaded) and P3 (when CSP data must be valid)
for the data to be gated through the DMUX. The loading signal
for the CSP must be delayed until the next microinstruction.
This situation is illustrated in Figure 4-9,
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Fiqure 4-9 DATI Timing

Every DATO to a valid Unibus address involves a Unibus cycle
as well as a cache cycle. The cache update, with the address
specified by the memory management unit and the data specified
by the D register, begins at P3 of the first micrccycle. The
Unibus cycle does not begin until after P2 of the second
microcycle. Hence, the data to be written must be clocked into
D during the first microcycle, and kept constant until P3

of the cycle following the DATO {(i.e., until the Unibus cycle
is complete). The proce:Bure for doing DATOs to valid Unibus
addresses is shown in Figure 4-10.

: f—— coNsTaNnT —t !
uP3 Pl P2 P3 u?3 Pl 2 P3 wP3

R o O o DO D v Y o S ot !

DATO { i
i cﬂksa CLXD | [ l
| Cache | Unibus |
| Update Cycle |
| Beginsl Done |
pword 1 | yword 2 ‘

d

Figure 4-10 DATI Timing



Because both DATIs and DATOs require two microcycles to
complete, do not specify memory references in two successive
microwords. The invocation of the Unibus in two consecutive
microcycles will put the machine in an undefined state.

4.3.5 Examples

T.B.S.



4.4 THE CACHE/KT SECTION

The Cache/KT section of the processor contains the memory
management logic, the cache, the stack limit, and the DMUX.
Virtual addresses from the BA register are relocated by the
memory management logic, and the resultant Physical Bus
Address is directed to the Unibus and to the Cache. A hit

(data in cahce) on a DATI causes the Cache port of the DMUX

to be selected; on a miss, the Bus Control section places the
data on BUS DIN and it is written into the cache from the

DMUX output. The NPR address monitor invalidates cache locations
which have been altered during DMA transfers. The stack limit
unit compares the stack address with a previously loaded value,
and causes an error if the stack goes below the stack limit.

4.4.1 The Cache

The 11/60 cache memory consists of 1024 words of direct-mapping
cache. Each word consists of a tag field and a data field. The
tag field has seven address identification bits, a wvalid bit,
and byte parity. The data field consists of two eight-bit bytes,
each with a parity bit.

Each location in backing store can be directly mapped, or
allocated, to cne specific cache slot and each cache slot can
accept data from up to 128 different backing store locations.

The Cache Controi Register, CCR, is used to modify cache operation
for diagnostic purposes. CCR 6> is used to write wrong parity.
When set, it causes oppdsite {0dd) parity to be generated in the
tag and data fields. When read, those locationswill cause a parity
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error and inhibit the hit signal. CCR{7) is CPE JAMUPP, which, if
set, causes an access to be aborted if a cdb@h parity erroi occurs.
CCK3:2>are used to force mism‘:a. CCR.2M will causes misses
whenever PBAC10 Dis 0 (cache locations 0 -511). CCR{3D will

cause misses whenever PBA §0) iz 1 (locations 512- 1023).

The Hit/Miss register indicates whether the Bix most recent references
by the CPU were hits or misses. A 1 indicates a hit, and a 0 '

a miss. The most recent cycle is tracked in the low-order bit. This re
register is read-only.

4.4.2 Accessing KT/Cache Registers

These cache registers, along with the memory management registers
and the stack limit register, can be accessed from the datapath |
over the UCON interface. Some of the registers are read-only
at the microcode level, as they are at the macro~ccde level.

The KT/Cache section has three devidea which can gate data onto
BUS DIN: the internal address ROM, the Read-Write multiplexer,

and the Read-only Register multiplexer. The enable signals for
these devices are provided by UCON data bits: multiple enables can
cause hardware damage. Thus you must be very careful to properly
gset up the UCON register, and not attempt ALU operations during
the same cycle as a UCON set-up. |

The particular PAR or PDR gated onto BUS DIN is determined by the

current processcor mode ( User or Kernel) and, within those sets,
by 3AGis:13)



KT/C

CHe  UCDN INTeRFEACE

KT | .
St 3R N0 T LS

FuUNCTION

Ec-v

140002 » x x XX  Tyuiet RerochTe
4L A OD O x x x x X Enarle Disearer o Tnr Aop
101 488 x x xxx  Bus DiINe [NT ADR <13 00> !
LO0COA P » » x x RUS DIN « MMR2 <IS!00d -
LOC oL B4y x xn  BUSDINCS & CACHE VALID L REGISTELS
- BUS DINC/4:083 +- CACHE ADDRSmINDL
BUS DIN Con @@ s HITKS O i
10000 4 x Q0O RUSDIN <|5:oc3>4-51_t2<15;08>Jcc_£<?:o>'
100004 x00Q 4 LUSDIN €« MMRE,
40000ix004o0 RUSDIN<4:08 0L 03:01> 4 POR
{00004 O001 1 RUSHNE PAR
1 LOCC00x0L 00 (LRG3, DouT (74,32) :
L 4 0000CKkD1L Ol MNRE @RS <louT < &S |
1 1000COX011 0 PPRCOZI0I> & DOUT <0310t | wRriTe
{ L 0000CXO1L | | ErRCHOdEe DOUTSTIOD | ReG(sTeRs
| L 400 CCOXI OO0 SLRKISIOB S POUTLS08) !
1 41 00200x!1 od 1 NuegBnge pouT<is ond |
1 1 O0Cooox!l ol 6 PORGY@ >« bouxdigqioed
1 400000 X1 Ol | PAR i\ 0BIe~ DOl <iV.COD
{ {LocoooXil oo cc.e SLR &«— DouT
1 1 90000X 1 (O NMMRP<Isi308#p IeDouTdsing o
1 {000 X | O 'POQmoe,os oa)*-bom'mos 03.a)
1 100200 Xy 1t 1 PARKIOS « DouT <oy, .




4.5 THE BUS CONTROL SECTION

The Bus Control section of the 11/60 has four main functions:
Unibus interfacing and arbitration '
Console interfacing
Timing control
Status control

This section has three interfaces to BUS DIN, as shown in
Figure 4-xx. The DU (Data-Unibus) register buffers Unibus data
on DATIs. The BUS DIN multiplexer gates console data, service
flags, error information, and the physical bus address onto
BUS DIN. The Data Storage (DS) register allows data from DOUT
to be gated onto BUS DIN. This is used for cache updating on
DATOs, and for writing data into the CSP and IR.

Nearly all of the activities on this board are transparent to
the user microprogrammer. Furthermore, meddling with this
logic offers the greatest potential for putting the CPU intoc an
undefined state. Thus the following sections do not suggest
using the facilities of this section. It is described here for
informational purposes.

Note that the signal IHN UCON (BUS XFER}, which must bhe false

for other UCON activities to take place, is generated in this
section. When either the DU or DS registers has data to be gated
onto BUS DIN as a result of a DATI or DATO, it takes precedence
over all other BUS DIN devices, Thus, the signal IHN UCON (BUS XFER)
is gnarated by the hardware when either of these conditions is

detected.
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Microprogram

control of the Unibus is egsentially limited to

issuing bus codes and checking for Unibus requests (BRs)
via BUT(SERVICE) or BUT(BG).

4.5.1 The PDP-11/60 Console

The PDP-11/60 operator's console is shown in Figure 4~
There are five discrete visual displays which indicate

the current

operation of the processor. These lights and

their meanings are as follows.

RUN ~-
PROC —-
USFR ==
CONSOLE
" BATTERY

The numeric

when 1lit, indicates CPU is running code

when lit, indicates CPU is Unibus master

when lit, KT-11D is in User mode

-~ when 1lit, indicates proceﬁaor is in consocle mode

-~ if on steadfly, battery backup is present and
charged. Slow flashing indicates battery is
charging; rapid flashing indicates battery is
diacharging. If off, battery is not present or dead.

display register contains six octal charachters,

It can display data or addres@es. When displaying addressees,

all decimal

points are lit.

They key switch has five positions. The panel lock position

deactivates

all keypad functions, and inadvertent operation

of the slide switch has no effect..
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The three-position slide switch allows a choice of action to
be taken on power-up. 1f the gwitch is in the HALT position,
the CPU will power-up in console mode. If the switch is in the
RUN position, power-up will trap to location 24 (power—fail
vector). If the battery backup on MO® memory has failed, the
M9301 bootstrap will be invoked, which is the action taken if

the switch is in the BOOT position.

The hardware for control of the operator's console is in
the bus control section of the processor. (M7877) . Keypad
entris are encoded on the console board (KY-11lP) and
trasnmitted to the status board by means of a 40-wire cable.
This interface ia shown in Figure 4- .

Keypad entries are read twice and compared: the five-bit
key code is directed to the BUS DIN MUX. If the keycode

is valid and the comparison showed both readings equal, the
console service request flag is set.

Console microcode is entered from the service flow when a
service request is detected and no higher-priority service
condition exiéts.

49.6,& console Datapath Registers -- The followi
registers are

ng datapath
reserved for use by the console microcode:

CNSL.TMPSW := BSPHT (7 ]
CNSL. CNTL := ASPHI[33
CNSL. SW  := ASPHI[6 ]
CNSL. ADR := ASPHI{7 ]
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The Temporary Switch register, CNSL.TMPSW, is used to hold

the value displayed in the octal display on the console. When
any numeric key is pressed, its binary value is placed in

the low-order three bits of the temporary switch register, with
the previous contents shifted left three bits. Program

movements to the Switch register are disabled, < ' 3 oo L eess

PO

The Console Control register, CNSL.CNTL, contains control and
gstatus bits, as well as CNSL.SWAL7:16>, CNSL.TMPSWZ17:16>,
and CNSL.ADR<17:16>. The layout of this register is shown in

Figure 4- .

The Switch Register, CNSL.SW, has Unibus aAAress 777570, It

is loaded with the contents of CNSL.TMPSW when the Load
Address and Control keys are simultaneously pressed. It can be
accessed by a macro-level program; however, if the Display
Lock (DISLOCK) bit in CNSL.CNTL is set, the move will be
treated as a no-op.

CNSL.ADR, the console address register, is loaded from the
temporary switch register when Control and Load Address are
pressed simultaneously.
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4.5.3 Console Microcode

The BUT(SERVICE} at the end of every macro-level instruction dispatches
to the conscle microcode if the console service resguest flag

is set. The entry point is CSR0Ol. The conscle microcode loads

console constants inte the CSP and sets the CSF Invalid flag

(see Section 2. ). This is done by calling two subroutines.

FLG reads the Flag register from the Processor Control section

and places it in R{TEMPl) . FLGS ORs a constant from MD with

R(TEMPl} and re-writes the Flag register. The 'EXAM', 'DEP',

and 'DON'T CLR CSR' bits in CNL.CNTL are then cleared. The

console tests for single-~step mode and halts if SI is set.

If single-stepping is not indicated, the A-port of the BUS DIN
multiplexer ( in Bus Control) is selected, and the data is
read into MD. Microcode branches decode the keypad code

and dispatch to the appropriate conscle service routine, as
shown in the console flow diagram, Figure 4- .

4.5.4 Console Use of UCON Interface

Data to be displayed on the consocle is movedlfrom CNSL. TMPSW
onto DOUT, and then written into the Dispiay Scratchpad. The
display scratchpad is continously read {segquentially) to
drive the octal display.

Control for the dipaly Scratchpad, the console mode indicator,
the decimal displays, and for clearing the console service
request flag comes from the Display Control decoder. This
decoder uses UCOMN 13:11 as its data inputs and is enabled
when BEGIN, UCON, and XFER uf24,23,21) are all equal to 1, and
UCON <15p and UCON<(14) are both equal to 0, Table 4- shows
the console UCON codes and their functions.

4-43



. ) 4 | : t s } : ! 3 e —— £
s B, s S — ﬂ:
prmay - drtin Srem— o, fom
frovgi B =i ol
T T e T i e i o ool
-m—rwm
Eiperm T B, aferayrt BT
CINTQLT ENTRY i 4 '3 41 v @ % & 7 - 5 % 3 2 ' -
58] L rea | £
ILaso BERASISE] L] i N N il L P F
.
D CLEAR AAM CEF Iyt 4058 ) H : el ir]m I« ot e
[l
CLELN Erar DER ves 5 M reNTLY I B AR
5
JEt
Joramay rsn | [s2e—0 ] l ino
CLEAm LArwd [ ATTW
67T tooH-
—] READ gworCH COOE
| creas rae ] ( mre } Brawcy o TaiTid TADE 4
[T f FamCEPF Tod I' l —
:;::: @E"’"c‘“s uALIED ERCER) LIwa Liwa A ERE
ErtmO CAMPLETE i -
ST~ |('-mu fEUELT ' e /rs - Aw e rxx LG &;:-'50’
= 5pa? b LOMGSLE SEry GETS AL
! ST iR Awaec {:i“c-r': B e ]
c CwND FLLESA. et e | ‘
BALnCH E;}'S;i;:'r_.r-_J
aoar eI { renr ) {0 oer ) (_emoms ) ( repes )
_ I | 1 1 |
CMSRE o consree @l [covsoree—n " Fana e Dlacke— 2
TSR —p TESA g TUTINE ‘ree e— Tsnt—iconrs:.r_fs -
tsm - rsa - - . .
oor P & LR w— V4R [ i
Pce~rizacRt)] |cmes commin I
[ { pmrnr Ty ((exem 1
s [cmap comeend] ( ferpr ) | { E;js_au Tt
D RuF LATCH EXAM
I seLEer wes' SETE  A(IWY ROLTINE 1
k4
1 LesT s oD ines reneonra | | J
MED §2 [
CONSILE FLOW
A DILGrast i
CRCT N T T2
i1 W . 443 - B
L LNV 2 T H == v o
{1 - i
R T {renit o e VT T 11T 0T .
=
=% ; I : | : — | ; | ; | |







Table 4-

Console UCON codes

) _ UCON SET-UP_ | @ENABLE L FUNCTION
I/0 SEL {15:14> <13:11> BEGIN,UCON,XFER’(
1 00 001 YES !FCLR Display WR Counter
1 00 010 YES INC Display WR Counter
1 00 011 YES \CLR Console Service Rgst
1 00 100 YES WR Display Storage
1 00 101 YES CLR Console LED
1 00 110 YES SET console LED
1 00 111 I YFS ﬂ%ff_?gsimal_?isplay
4.5.5 Bus Control BUSDIN Mux

Console data is moved into the datapath through the BUS DIN

multiplexer. This multiplexer is enabled onte BUS DIN when the
UCON register is set up with UCON< 15> =0 and UCON I/O SEL = 1
and the INH{UCON(BUS XFER ) gignal is not asserted. Slection

of the multiplexer is done by UCON(10:9). The data

BUS DIN by each of the selection codes is shown in
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4.5,6 The DS Regisgter

The primary function of the DS register is to provide a latch
for DOUT data fop writing DATO data into the cache. However,

since DIN is gated into the DMUX in the Cache/yT section of

the proceséor,'ns also provides a path from D to the CSP and the
IR. A DATO Unibus cycle is not required to enable DS onto BUSDIN.

The DS register can be lcaded (at p3) from DOUT by setting up
UCON with I/0 SEL and UCON <15 both equal to 1. The DS register
is ¢l ¢Cked at P3 of the microinstruction in which UCON XFER
{BEGIN UCON XFER ) is specified.

4.5.6.1 -~ The DMUX The DIN port of the DMUX {(see Figure 4- )

Figure 4- DMUX
is the default selection. Although the DMUX is in another section
of the processor, UCON(08) is used in conjuction with UCON I/0 SEL
to select the cahce port of the multiplexer. This is used only
vhen there is a Cache hit on a DATI.
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4.5.7 Other BUS Control UCON

The remaining UCON data hits are used to clear various error and
service flags. These functions are included in Table 4- , which
summarizes the UCON interface to the Bus Control section.
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4.6 The WCS Section

The Writable Control Store section of the IMP can function
either as a 1X-by-48 control store or as a high-speed
3K~by~16 local store. Most users will configure the store
to be part control store and part local store,

The store is loaded 16 bits at a time from DOUT, under control
of the UCON interface. When the memory is read, data goes

out on BUSU<47:00> if the WCS is in control store (CS) mode,
or on BUSDIN<15:00> if in local store (LS) mode,

When in LS mode, the WCS is cycling as a data store and so is
not available as a source of control signals for BUSU, An
auxiliary sourcé for BUS U signals is proviced by the TMS
(Transfer Micro Store )} ROM. The TMS ROM is a 512-by-16

store which controls datapath activity while the WCS is
acting as a data store,

This section describes the organization of the WCS option;
the user interface is described in later chapters, The distinction
between organization and use can be shown by a discussion of

the loading mechanism.

DOUT provides the path for passing a 16-bit word and its
associated 12-bit address to the WCS section. The UCON inter-
face is wsed to select and then set-up the WCS to receive

the address and data. Once the WCS section has been set up,
its local control takes over. This local control, implemented
by CROM (Control ROM) , effects such actions as cldcking the
Address Register, selecting the Address Mux, and generating a
write pulse for the array.
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However, you will not interface to the WCS section at this
level. Using a macro-level program, you will move data into
the WCSDR and WCSAR registers in the PDP-1ll I/C page. An
instruction which addresses these register, e.qg.,

MOV 4501, WCSAR, is executed by the base machine using the
primitives described in the preceding paragraph.

A block diagram of the WCS section is shown in Figure 4-14,

4.4.1 Addressing Structure of the Array

The WCS afray s divided into three sections, as shown in
Figure 4-15. Each section is 1024 words long and 16 bits wide.
The array is addressed by the output of the ADRMUX,

2 1 Q

L x It { K rib 1J< PR

$ |
Figure 4-15

When the WCS is in local store mode, each section, or column,
is linearly addressed 0-1023, ADRR&E 11:10> provides the column
address, and ADRMUX<9:0>provides the row address. 306.

rxjamw o N N v



When the WCS is in control store mode, ADRAEa<11:10> ;$ always

equal to '4,, The entire row (48 bits} inaicated by ADRMUX<9:0>
is put on BUS U.

UL T | ' &
CS mode |44 NU A <aco>
. ' ¥ 1o & | ¢
- LS moe Col ro W
\ =, & J
Figure Q-TQ%RE“ Q‘.;“ ADR MUYy

A feasible user configuration of the WCS array is shown in

Figure 4-17. There are three section of local atore, A, B,

and C, each linearly addressed fromBil to loﬂ. Page b of

the »llﬁO control store address space is allocated for
WCS control store. :

&ci"\uw e Sechonw a 5&‘“0‘“ A pl
ADR<wop 840 | ADR Ciib w @y | ADRSNIMOI= OO
ADRHUX < q:0)
Sl
5l
NUA <3:0)> Cs
NuA<ad> =l
Pigure 4-17

Typical User Configuraticn



4.6.2 Transfer of Control

NOW ERTRY FornT ADDRLLS RGBT

The TMS Pointer register, éﬁSPTR, addresses both the T™™S ROM
and the CROM, The TMS Pointer is loaded with UCON<14:036>,
which defines the starting address of a TMS routine., In
subsequent cycles, TMSPTR 1s incremented if CROM<2> is a 1,

The TMS5S pointer is loaded when WCS SEL , u<45>, BGB, BUSBOX,
DATTE, and CONO are all egqual to 1. 'The TMSPTR value is
specified by the bits loaded into the UCON register. For
example, the following field value specifications would
locad the TMSPTR with 0§0:

TMSPTR + O40) := WCS/1, BGB/1l, BUSBOX/l, DATTB/l, CONG/1,
UCONH/0, UCONM/0, UCON10/0, UCONL/20

4.6.3 DB Register

The DB register stores the contents of DOUT so that 16 bits

can be written into the WCS Array during each microcycle. It

is clocked at P3. When the WCS is set up, the first word clocked
into DB is the starting array address. Subsequently, the

DB register gets the data to be written, while the Arxray

Address register selects the array addresses. The data in DB

is written into the array ohly if CROM<3> is asserted.

4.&.4 Array Address Register

The Array Address register (ADRREG) is initially loaded with
DB<11l;: 00> , defining the starting address in the array. In
subsequent cycles, this register acts as a counter, incrementing
if CROM<1l> is a 1.
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4. 5.5 Array Address Mux

The Array Address Multiplexer (ADRMUX) selects between the
output of the ADRREG and the NUA signals from the Processor
Control section. When the WCS is being loaded, or used as a
local store, this mhltipl_exer selects the ADRREG output to
address the WIS array. When the WCS is in control store
mode, the array is addressed by the NUA in the same way as
the base machine control astore ia.

4.p.6 The WCS Array

The WCS Array is a 1lK-by~51 RAM. Each l6-bit section has

a parity bit associated with it, Even parity is generated.
Only 16 bits of the array can be written at one time. When
functioning as a control store, 48 bits are read onto '
BUS U<47:00>.

4.0.7 BUS U MUX

The BUS U multiplexer selects between the two sources of
control located in the WCS section: the TMS ROM and the
WCS RAM, It is a tri-state mux, and is enabled by NUA<10>

e i—

and“!&UA*fll;?, which indicate fhe top 1K of address space is
being accessed. Seihation is coOwtralled b:j CROM K2

betbe 2%(.-.41 o4,



4.9.8 BUS DIN MUX

When 1lé~bit words are read from the WCS array (LS mode}, the
BUS DIN multiplexer selects which 16 bits of the 48 are

put on BUS DIN. In this situation, the multiplexer selection
is controlled by ADRREG<11l:10>. If a status cycle is underway,
this multiplexer puts status information on BUS DIN.

4.6.9 Control Ronm

BIT ~___ FUNCTION
0 Address Register load enable
1 Address Register Count Enable
2 Array Address Mux select,

Entry Point count enable

3 Write Pulse enable

4.3 USING WCS AS LOCAL STORE

While the WCS array is being used as a local store, the TMS
Rom provides the control signals for the datapath. Routines
in the TMS ROM provide control for loading WCS locations
from any of the scratchpad register or for loading a set of
scratchpad registers from locations in the WCS array.

To use this facility, you issue a Local Store Function Code (LSFN}
over the UCON interface, passing a local store address in

the D reqgister as a parameter.

Each LSFN maps directly to a starting address of a TMS routine,
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VagAel 13151138 (8eMAR=TY PicE 2

TM8 ROM MICROCODE FOR 11/62

THIS MICROCODE GOES INTO THE TMS ROM (TRANSFER MICROSTORE
ROM), THIS ROM RESIOES ON THE WCS BOARD AND ALLDWS 4 PROGRAN
RUNNING IN THE WRITEABLE CONTROL STORE OF THE 11/6@

TO USE PART OF THIS SAME CONTROL STORE AS 4 S8LOCK DATA SYORE,
(LOCAL STORE}  THIS ARILITY IS REALIZED BY ROUTINES WNICH
PERFORM BLOCK LOADS AND STORES OF VARIOUS PARTS OF THE INTERNA
STATE OF THE 11/6%, THE FOLLOWING PORTIONS OF THE MACKINE
ARE LOADED OR STORED)

1) GENERAL REGISTERS

(2) WARM FLOATING POINY REGISTERS

(3) C SCRATCHPAD EXCEPY BASE CONSTANTS
(4) USER SCRATCK REGISTERS

(53 ENTIRE 4 SCRATCHWPAD

(6) ENTIRE B BCRATCHWPAD

(7) ENTIRE € SCRATCHPAD

THIS MICROCODE ALSO WANOLES ALL WCS SUPPORY NEEDED BY THE
BASE MACHINE Y0 PERFORM 178 FUNCTIONS, THE FOLLOWING I8
A LISY OF THESE !NtRY POINTS AND THEIR FUNCTIONS!

T™MS ACDRESS FUNCTION

poet USED BY WCSINIT FLOW, USED TO SET ADDRESS
REGISTER TO ZERO aAND ALS0O WRITES 2ERO IN
THE wWORD,

IFf USED BY WCS CODE THEN LODADS ADDRESS REGISTE
WRITES ADDRESS VALUE INTO THAT ADDRESS AND INC
THE &DDRESS REGISTER Ry ONE,

Anas USED AY WLCSINIT FLOW, WRITES & COUNT INTO WC
THEN INCREMENTS THE ADDRESS REGISTER,

Aaia LOADS Ww(S ADDRESS REGISTER wITH VALUE AND THEN
DaTa INTO TH!S ADDRESS,

na2e LOADS WCS ADDRESS REGISTER WITH VALUE,
(RASE MACKINE ALSO SAVES THIS SAME VALUE IN TH
SCRATCHPAD 21), TRIS ROUTINE ALSO PUNPS ONTO
THE DATA FROM THIS LOCATION, T

raie USED AY FIRST WORD IN ROUTINE THAT READY W(CS 8
NOTE THAY THE WCS STATUS 13 NOW READ BY TWE UC
INTERFACE, TMIS WORD CAN PROGABLY BE REMGVED
BASE MACHWINE AND THIS ROUTINE FROM THE THE ROM
A4 NOT REFERENCED BY THE BASE MACHINE,

THE WCS USER CAN ALSO USE THMESE ROUTINES IN THE TM3 ROM,
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.TOC THS MICROCODE
USING ROUTINES IN THE THS ROM,

THE ROUTINES IN THE THE ROM ARE DESIGNED TO SAVE DIFFERENT
SETS OF THE 11/60 MACKHINE STATE INTO WCS ACTING AS A LOCAL STORE
AND ALSO TO RESYORE THESE SFTS FROM DATA IN THE LOCAL STORE,

THESE RQUTINES ARE DESIGNED FOR OPYIMUM DATA FLOW TO FACILITATE
IMPLEMENTATION OF FUNCTIONS SUCH A8 CONTEXT SWITCHING WHICH MUSY
HAPPEN A8 FAST A8 PDSSIBLE, BECAUSE OF THIS QOTHER USES OF THESE
ROUTINES AND BSURSETS OF THFSE ROUTINES MAY NOY BE A8 EASY TO USE 4AS
WOULD BE LIKED,

ALL ROUTINES ARE ENTEREN WITH THE WCS {OCAL STORE MINUS ONE (L3ADRe})
CLOCKED INTG N, RETURN TO THE WCS ROUTINE WILL OCCUR AFTER THE

- FUNCTION HAS BEEN COMPLETED, THESE RAUTINES ARE THMPLEMENTED

BY SETTING UP & PIPELINE IN THE DATAPATH WHERE TWN DIFFERENT
PARTS OF TME DATAPATH MOVE DURING THE SAME MICROCYCLE, THE PIPELINE
CONTINUES UNTIL ALL DATA IN THIS SET WAS BEEN MOVED,

JSING SUBSETS OF THESE ROUTINES TO MOVE ONLY & FEW OF THE DATA
ITEMS AND NOT THE wWWOLE SET IS NOT FEASY, AS AN EXAMPLE THE
FOLLOWING IS THE PROCFOURE TO SAVE REGISTERS RI=RNg

{1 USE A ROUTINE TO LNAD THE ADORESS~=2 INTO THE ADDRESS REGISTER,
t2) CLOCK R3 INTO THME O REGISTER,
gL 3] SET THE TMSPTR WITH ADDRESS THAT WRITES R4 INTO THE

ARRAY AND MOVES RT THROUGH THE DATAPATH AND CLOCKS 17
INTO B, ONLY THE CROM BITS ON THIS INSTRUCTION WILL BE
EXECUTED, THE TM§ AITS WILL NOT BE ACCESSED, THIS WILL
WRITE R3 INTD THE LDCAL STORE ADDRESSe],

t4) THE NEXT INSTRUCTION WILL WRITE R3 INTO THE ADDRESS AND
MOVE R2 INTO O, THE RESY OF THE ROUTINE WILL WRITE
R2=R@ INTO THE ARRAY AND RETURN CONTROL YO THE WCS
ROUTINE AT THE THIRD INSTRUCTION AFTER THE ONE THMAT
SET YHE TMSPTR VALUE,

THIS EXAMPLF SHOWS THAT A SUBSET OF THE DATA JTEMS
CANNNT BE STOREN IN THE SAME MANNER 4S5 THE ENTIRE SEYT SINCE



To illustrate how to invoke a TMS routine, the following
example loads the nine 16-bit words in Ls[3], ... LS[j+§1
into ASPLO[0:5, 16,6:7) and BSPLOJ0:5,16,6:7].

SETUPL: AoSES. J/serupe | UCON st ¢
TMS PTRE LOADSES; i Tor lmal‘nq el
SETUP2: o

Dé o;_mfnus XL, J/lexT

4 .3 UCON CONVETIONS

I. bon't do a UCON Select in the cycle following a BUT(CLEAR FLAGS).

II. Keep EMIT on BUSDIN most or all of the time -its a real

time-gaver,

III. Watch out for accidentally enabling multiple UCONs by
trying to perform an ALU-related function in the same word
as a UCON setup. Dedicate a microword to enabling and loading

the UCON register.
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CHAPTER 5 D RIA\ F-r

MICROPROGRAM INTERFACES

The preceding chapters have focu ssed on the aspects of the

11/60's hardware most visible to the user microprgrammer.

However, the 11/60's architecture is not completely defined

by specifying tis hardware organization because it is a

highly microprogrammed machine,

The microcode architecture is important to the WCS user for

the following reasons:

1.

It determines the envirconment that exists
upon entry to the WCS

It expects certain state conditions to exist
after the completion of WCS control

The user can cause base machine code to te invoked
without intentionally exiting from the WCS

The base machine c¢ode has capabilities not
available to WCS code

The base machine code provides a large set of
examples, both of hardware usage and of
microprogramming the 11/60.

This discussion is also motivated by the fact that no

description of a microprogrammedmachine is complete without

some discussion of the microcode.



5.1 FLOW OF THE BASE MACHINE CODE

The overall structure of the base machine code is shown in
Pigure 5-1. The instruction fetch uses two microinstructions,
FET0l and FET02. FETOl is the primary entry point to which
control must be returned. FET03 issues a BUT(INS&TRLY, a

brach which performs initial instruction decode to approximately
75 targets. Any necessary source and destination célculations_
are then made, and the instruction is executed. A test for
service is made, using BUT(SERVICE). If no service condition

exists, control is returned to the fetch seguence.

5.1.1 Qverlapped Fetch

In certain circumstances, the PDP-11/60 performs an overlapped
macro-level fetch. Register-to register operétions, for
example, only require one microcycle to complete, so the
overhaed of FETOl and FETO2 are eliminated by fetching the
next instruction while the register-to-register instruction is
being executed., Figure 5-2 indicates the logical flow of the
overlapped and non-overlapped fetch. Hard-wired logic detects
those instructions which cannot be overlapped, and inhibits

the overlapped fetch in FETO3.

52
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Figures 5-3 and 5-4 illustrate in more detail how the
overlapped fetch works. XFC instructions are never
overlapped, so the non-overlapped entry point to service

routines in the base machine should be used.

5.1.2 Instruction Decoding

Base machine decode is done in two steps: BUT(INSTRl1) and
BUT{INSTRS). A large amount of logic is dedicated to this
initial IR decoding. Since this special purpose legic is not
tailored for XFC decoding, you will generally need to

do multi-step microprogrammed decoding. This method.

is used by some sections of the base machine code such as the
status group of floating point instructions, which decode

IRL7:6).

The instruction in the IR is also clocked into MD at P3 of
FET02. It can then be mowved through the ALU, masked or
shifted in the shift tree, and then placed in the SR for a

CASE branch decocde.



5.1.3 Instruction Execution

Execution of a PDP-11 instruction in the base machine
is usually done in one step. For example, the execution step
{(FE-phase) of an ADD instruction with source mode 0 and

destination mode 2 (ADD Rn, (Rm)+) requires the following:

P2, D& R(SF} PLUS MD { the destination calculation
D(C)d=— COUTLS ! put the correct data in MD
DATO
SET CONDITION CODES ! clocking occurs in next
J/BRAOS luingtr, which will do a

! BUT({SERVICE)

Because WCS routines are likely to be doing more complicated'
activities in the datapath, multi-step execution will be
more common. The MUL instruction in EIS is an example of
multi=step execution: in addition to set-up steps, sixteen

shift-and-add steps are performed.

5.2 MICRO~LEVEL INTERRUPT ACTIVITIES

There are two nethonds by which the base machine handles

service and error conditions: Service and JAMUPP.
5.2.1 SERVICE

The service flow, which atarts at SERDIL

¥ SER0Z2, handies

o]

non-fatal errors, interrupts, asynchronous errora, and WCS

micro~level service requests,

5-8
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Each event requiring service sets a flag which is later
read by the service dispati:l"routine. If any of the flags
are set, any of the branches which test for service (e.qg.
BUT (SERVICE)) will be true. A BUT on service is done at the
end of every macro-level instruction and at the end of the

shared trap flow.

Service conditions are handled in priority order. The
priority ranking is:

Yellow Zone

Cache Parity Error

Power Fail

Console Service Request

Floating Point Exception

Interrupt

Figufe 5-5 shows the service flow.

5.2.2 JAMUPP

A JAM is a hardware-forced tranafer of control to location 777,
which is the beginning of the JAM dispétch routine. In
general, those eventa which cause a JAM cannot be recovered
from, and therefore cause thé macro instruction (including

XFC) currently heimg executed to be aborted.

5-10



Hoﬁever, a JAM is alos caused by a reference to internal
Unibus addresses, such as the KT or Cache registers. When

an internal address is specified at the micro-level with a
DATI or DATO, the following microinstruction should do nothing
except clock data into the CSP. The JAM routine will destroy
datapath state, and the timing of the hardware JAM is such
that the microword following the internal address reference
will, in effect, be executed twice. Thus no data manipulations

should bhe attempted in that mieroinstruction.

The JAMUPP routine services the following conditions:

Power-up

Internal Address

Microbreak

WCS Parity Error

0dd Address Error

Red Zone

KT A“ort

Illegal Internal Address Reference
Cache Parity error '
Unibus Timeout

Unibus Memory Parity Error

5.4 INTERFACE DEFINITIONS

5.4.1 Service
At the end of every macro-level instruction, or at least every
15 microseconds, a test for service must be performed. BUT(SERVICE),

igsued when the UPP field contains the address of FETO1,

5-11



causes the service routine to be invoked if needed. Service

starts (for non-overlapped fetch) starts at SER02 (0703).

The WCS user cannot use the same method the base machine
uses because the Page register must be clocked to jump to
page 0. Only BUT(SUBR B), BUT(SUBR A), and BUT (RETURN)

clock the page register,

To get around this, the user can finish execution with the

following branch:

LAST: BUT(SFRVIQE)
\[- service not service
PAGEG—0 PAGE &~
BUT {SUBR B) ' BUT {SUBR B)

J/'SERO2 J/FETO1

To eliminate this overhead, a location in the base machine
is provided to do the service test on a FETOl base. It is
called BRAO5, at location 0003. Finish with:

- LAST:
' PAGE 4~
BUT {SUBR B)
J/BRAOS

!



5.4.2 Generating a Trap

The 11/60 trap sequence begins at TRPOO. It expects the

trap vector to be in the MD when invoked.

For example:

TRPA:
BUT (CLEAR_FLAGS) ! Select EMIT
TRPB:
EMIT/244, !Generate trap vector
P3, MD &= EMIT
PAGE s~ !
J/TRAPOO ! TRAPOD is at 0271






CHAPTER 6

WCS USAGE GUIDELINES DRAFT

This chapter 1s intended to summarize the programming
conventions which will enable you o make effective use of the
Writable Contreol Store coption, without damaging other

sections of the PDP~11/60,

6.1 WCS UNIBUS REGISTERS

You will use two Unibus locations to load the WCS array: the
WCS Address Register, WCSAR, and the WCS Data Register, WCSDR.

WCSAR has Unibus address 777542. Its format is shown in
Figure 6-1. '

15 12 11 10 9 - g

ST e

“—Row Address
t—m——— - -Column Address

- Masked out

Figure 6-1 WESAR Format

WCSDR has Unibus address 777544. A 16~bit word moved to this
address will be loaded into the WCS array at the location
specified by WCSAR. A l6-bit word read from WCSDR will come
from the array location specified by the current contents of
the WCS Address register.

&



Pigure 6-2 shows a feasible user configuration of the WCS
address space} The three sections of page 7 are set aside
for local store use, while page 6 is used for control store.
The fbllowing program illustrates how one can use the Unibus
registers to load the microwords for that partitioning.

$00S
Contvol
SyorR
7OOO
WO C R
TR [

Figure 6-2 Possible User Configuration

This example assumes that the load image exists in main
memory as shown in Figure 6~3. The program loads the 1536
16-bit words (512 microwords) beginning at location LOADIM
in main memory into the control store, beginning at location
g (microaddress 60005).

1._‘;;%% 4%!\1 > 1

I.

7z 7z

Goo0 RTidz
6000311k

|eooo<i52000> I;:-L.OP\D ™M

Figure 6-3 Load Image
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NTLE WCSLD

“ILENAME LOAD.MAC

-SECT _ . e _ ]
.GLOBL LGADIM, WCSLD
+IRPC X¢012345
R’X=%‘X e - ]
JENDM
SP=Xé
PC=%7 .. ] - ]
WCSADR=177542
WCSDR=177544 .
ISLDS MOV $LOADIM,RO fLOADIM 1S STARTING ADDRESS OF ARRAY
MOV #512.9R1 sLOAD FAGE & ONLY
MOV $000777sR2 PMASK FOR INVERTING UPF
ELR ~  @4UCSADR T TTVSTART WITH ROW Oy COLUMN O
ooP: MOV (RO)+rR3 . #MOVE LOW-ORDER WORD SO CAN XOR
XOR R2sR3 T s INVERTS UPF FIELD BITS
MOV R3S WECSDR §SEND TO ARRAY
ADD #2000sWCSADR ___FCOLUMN 1 NOW
MOV (RO)+sWCSDR
ALD #2000 WCSADR JCOLUMN 2 NOW
MOV (ROY+sWCSDR
ADD #4001 »WCSADR $BACK TO COLUMN Oy ROW PLUS 1
SOR R1,LOOP
JEXIT ) o
~ JEND START

The WCS status register has Unibus Address 77754y, Its format
is shown in Figure 6-4. It is provided for maintenance purposes.

15 14 13 12 11 10 9 R

I

Enable — =

Parity Error
WCS ID Code
Not Used
Maint.
Not Used - -
Gen . -

Parity Disable
Par.

Write Enable ——— -~ ——remomes oo
Write Wrong Parity

e ]

Figure 6-4 WCS Status Register
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6.2 WCS Entry Points

There are many ways that control of the machine is passed into
' WCS. The following is a liast of the entry points into the WCS
address space and what the default instructions for each entry

point are:

ENTRY POINT

6000

6001

6002

6003

DESCRIPTION

WCS Micreobreak Entry

A microbreak occcurs when the value loaded

in the register is encountered and the
microbreak enable bit is set. { FLAG<08>) .
Default response is to return to the console
flow.

XFC 076@XX Dispatch

This is a reserved instruction for DEC's
future use. Default regponse is a reserved
instruction trap. (trap vector 10)

XFC 0767XX Dispatch
User XFC Dispatch

This is the entry point for the user'’s

' extendéd function codes. The user XFC

(076 78X) is now further decoded according
to bits 3-5 of the instruction to anter to
one of the eight entries of the XFC dispatch
table located at 6030.

Reserved Instruction

When the 11/60 executes one of the reserved
ingtructions such as FIS or FASTxl then
control is passed here. Default response
is a reserved instruction trap. (trap
vactor 10)

: /-“ﬁ/
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ENTRY POINT DESCRIPTION

6004 ODD PC Dispatch

Whenever the base machine encounters a

New PC value of an interrupt or trap vector
which is odd then control is passed to this
point. Default response is to return into
the trap routine as if WCS was not present.
(TRPO7)

6005 Default Service Condition Two

The Service Condition is checked once
between each macro instruction. If the
WCS Service bit of the flag register is
one (FLAG<(07>} then control is passed to
this point. Default response is to
FETO1l.

6006 Default Jam Condition

When the XCS Extra Jam Pin is asserted low
and the internal suppressed clocks are
suppressed then control immediately passes to
this point. Default response is to go to the
the console flow.

6007 _ Default Service Condition One

Service passes control to this point if the
pin Extra Service is asserted. Default response
is to return to execute another instruction.

6010 Piagnostic Entry

When diagnose on the console is pressed
control passes to here. Default response
is to pass control to the End of Service
Routine.
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ENTRY POINT DESCRIPTION

Egié - XFC 0761XX through 0765XX Dispatch

These instructions are reserved for DEC's
future use. Default response is a reserved
instrugtion trap. (trap vector 1l0)

Further explanation ¢of the entry peoints can be found in the listing
of resident section of WCS found in Appendix D.



-

6.3 TMS ROM ROUTINES FOR THE 11/60 WCS

This ROM resides on the WCS board and allows a program running
in the writeable control store of the 11/60 to use part of this
same contrcl store as a block data store (local store), This
ability is realized by routines which perform block locads and
stores of various parts of the internal state of the 11/60. The
following portions of the machine are loaded or stored:

General Registers

-Warm Floating Point Registers

C Scratchpad except Base Constants
User Scratch Registers

Entire A Scratchpad

Entire B Scratchpad

Entire ¢ Scratchpad

There are also routines to read and write one data item (with
and without loading the address register), read and write two
data itens {with and without loading the address register},
read and write one data item indirectly.

Every TMS routine is invoked by a UCON function which loads the
Entry Point Register with the starting address of the TMS routine
wanted. All of the block move routines are entered with the WCS
local store address minus one (LSADR-1) clocked into D. Two null
cycles must be placed after the instruction that loads the Entry
Point Register. Return to the WCS routine will occur after the
function has been completed. The following example set of code
saves the general registers into local store address specified

in WCSB [0]-B: '
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€xls

exai

TMSPTR _ (STOREGRS),
NeXT, I/8x3 .

ExS:

NERT,  Y/Bxé
1R LN

NEXT,  J/ens

Pa~-T, b.B WcsSBLeI-B, !'D ¢ loeal atore aldress
NEFT, Z/EXA

Iaveke GR ntore rowtira..

] it Null Wed ,

| Second Nuik Wed

The following routines exist in the TMS ROM:

~ ROUTINE NAME

READ
READANDINCR
LOADANDREAD
LOADREADINC
WRITE
WRITEANDINC
LOADANDWRITE
LOADWRITEINC
INCANDREAD
LOADADDRESS
LOADGRS
STOREGRS
LOADFP
STOREFP

LOADCSP

STORECSP
LOADWCSAB

STOREWCSAB
SETLOAD

DESCRIPTION

READ DATA
READ DATA TO MD, INCREMENT ADDR

LOAD ADDRESS AND THEN READ DATA

LOAD ADDRESS AND THEN READ DATA

WRITE DATA

WRITE DATA AND THEN INCREMENT ADDRESS

LOAD ADDRESS AND THEN WRITE DATA

LOAD ADDRESS, WRITE DATA, INCREMENT ADDRESS
INCREMENT ADDRESS AND THEN READ DATA

LOAD ADDRESS

LOAD FR'S FROM LOCAL STORE

SAVE GR'S INTO LOCAL STORE

LOAD FP REGISTERS FROM LOCAL STORE

SAVE FP REGISTERS INTO LOCAL STORE

LOAD CSP [@@-13] INTO LOCAL STORE

SAVE CSP [@@-13] INTO LOCAL STCRE
LOAD WCS WORK REGISTERS FROM LOCAL STORE

SAVE WCS WORK REGISTERS INTO LOCAL STORE
SAME AS LOADREADINC
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ROUTINE NAME DESCRIPTION

SETSTORE SAME AS LOAD ADDRESS
ASPADLOAD LOAD ASP(@@-37] FROM LOCAIL STORE
ASPADSTORE SAVE ASP{@#@-37] INTO LOCAL STORE
BSPADLOAD LOAD BSP[@@~-37] FROM LOCAL STORE
BSPADSTORE SAVE BSP[@@-37] INTO LOCAL STORE
ALLCSPLOAD LOAD CSP{@#@-17] FROM LOCAL STORE .
ALLCSPSTORE SAVE CSP[#@~17] INTO LOCAL STORE
LOADREADTWO LOAD ADDRESS AND READ TWO PIECES OF DATA
INCREADTWO INCREMENT ADDRESS AND READ TWO PIECES OF DATA
LOADWRITETWO LOAD ADDRESS AND WRITE TWO PIECES OF DATA
WRITETWO INCREMENT ADDRESS AND WRITE TWO PIECES OF DATA
READINDIRECT READ DATA POINTED TO BY DATA
WRITEINDIRECT WRITE DATA AT ADDRESS POINTED TO BY DATA

(WCsa (gl

More information on the TMS routines can be cbtained from the
listing in Appendix E.



6.4 CAUTIONS AND WARNINGS

Because of the potential for problems due to microcode errors,
certain microprogramming conventions must be followed. Many of
these conventions have been mentioned in other sections of this
manual; they are reiterated here for completeness.

6.4.1 -Timing Considerations

6.4.1.1 Interrupt Latency =~ In order to assure normal CPU

responsiveness to interrupts, WCS microcode sequences should be
implemented so that a maximum interval of fifteen (15) micro-
seconds occurs between tests for interrupt service reguests
(BUT (SERVICE) or BUT (BG)). Note that a test for service
occured just prior to the fetch of your XFC instruction.

One technique for making a long instruction interruptable is to
"back-up" the processor state to the state at the beginning of
the instruction when a service-condition is detected. The
processer state to be backed up includes; the Floating Point
Accumulators; '

RO =~ R7; the KT-1ll registers; the PSW.
Note that since the PC is pointing to the next instruction, it
must be decremented. In this way, the aborted instruction may
be attempted again after normal interrupt servicing is completed.

Some microinstructions can be restartable by keeping updatable
paramemters in the general registers.

Notice that failing to check for service is effectively
equivalent to setting the processor's priority level to 7.

6.4.2 UNIBUS Usage Conventions
Unibus control operations may not be performed withing micro-

code subroutines. BUS operations must not be performed in
consecutive microwords,



6.4.3 Internal Scratchpad Use
The CSP Constants invalid flag must be set whenever the

floating point constans are not in the CSP.

6.4.4 PDP=-11 Processor State Requirements

The 11/60 microprocessor is used primarily to implement a
PDP-11. Consequently, some constraints are not in the values
of internal state permissible at the initiation of normal
instruction fetch. The constraints include the following.

The contents of ASP and BSP 1o¢ations 0 through
7, the PDP-11 general registers, must have
duplicate contents. ASP[0] = BSP[0], . . .
ASP[1] = BSP{l1l], ASP[7] = BSP[7].

The three locations in the CSP which contain the

basic machine constants must, in fact, contain

those constants.
CSP[17]
C3P[16]
CsP[1l4}

it

It
N o

6.4.5 Complete Decoding of Opcode Groups

It is expected that within each XFC opcode group, not all of
the possible code combinations will have interpretations.
Insturction decoding must be complete in the sense that those
opcode values whichdo not have an interpretation result in an
illegal insgtruction trap. Failure to provide this complete
decoding could result in a loss of control due to a macro-

level coding error.
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EXAMPLES

This chapter will provide examples of techniques and
applications for WCS microprograms.

7.1 BLOCK MQVE

In Chapter 1, the efficiency of a microcode implementation
of a BLOCK-MOVE instruction was discussed., This sectd¢on
exam.nes tie step-by-step implemmntation of such an
instruction. Since this example is intended to illustrate
a variety of concepts and procedures, it does not represent
the optimai implementation of such an instruction.

7.1.1 Ingtruction Specification

Define the BLOCK MOVE instruction as follows:

15
WORD 1: | XFC.BLRMOV | R,
WORD 2: A
WORD 3: B
where:
XFC.BLEMOV is the opcode for BLOUK MOVE
Ry is the general register which
contains the count in-%® :07:00>
_ (4 means°2ng
A : is the starting source address
B ' is the starting destination address

The format for this instruction is BLKMOV Ri' A, B.



For simplicity, this example avoids dealing with several problems,
e.g., a check for interrupts and setting the condition codes.

7.1.2 Specify Algorithm

The algorithm used in this implementation of BLOCK MOVE is:

Set up Count

Fetch A address

Fetch B address

Do while Count # 0
Move A word to B address
Count = Count - 1
Increment A and B

End

7.1.3 Specify State

At entry to the BLKMOV microcode routine, PC-2 points to the
XFC instruction; the PC points to A, and PC + 2 points to
B. A BUT{CLR-FLAGS) was performed in FET@#2, so the RES register

has been cleared.
By convention, the PC will point to the next instruction
after the operands are fetched.

The WCS registers will be used for temporary storage as follows:

WCSA[O0] dontains A addrs
WCSA[L] contains B address
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7.1.4 First-pass Coding

The following instructions indicate what is happening in the
datapath during the ececution of the BLKMOV instruction.

! BLOCK MOVE INSTRUCTION
! PC POINTS TO A ADDRESS

BEGIN: _
P2, SR+NOT R(DF)

SETUPL:
P2, D+SR+l

SETUP2:

P3, WCSB[0]+D
NEXT, J/SETUP3

!
!
SETUP3:

CNTR«WCSB [0]<07:00>
SETUP4:

Pl, BA+PC,

DATI,

P2, D«PC PLUS 2,

P3, PC+D
SETUPS:

P3, MD+DATA
SETUPG:

P2, D+MD,

P3, WCOSA[O]+D
SETUP7:

P1l, BA+PC,

DATI,

P2, D+«PC PLUS 2,

B3, PC+*D
SETUPS:

P3, MD_DATA
SETUPY;

P2, D+«MD

r

P3, WCSB{1l]+D

A

UPON ENTRY RES IS CLEARED
ONES'S COMPLEMENT OF COUNT

TWO'S COMPLEMENT OF COUNT

PUT COUNT CON B-BUS SIDE

LOAD CNTR

INITIATE FETCH OF A ADDRESS
POINT PC TO B ADDRESS

MD+A ADDRESS

PUT A ADDRESS INTO
A SCRATCHPAD

INITATE FETCH OF B ADDRESS

POINT TO NEXT MACRO
INSTRUCTION :

MD&E ADDRESS

PUT B ADDRESS INTO
A SCRATCHPAD



MAIN PROGRAM LOOP
FETCH VALUE FROM ONE AREA AND PUT INTO OTHER AREA

— e g b

! THIS WORD MUST BE ON A XXXXXg BOUNDARY

STRTLOOP:
Pl, BA+WCSA[O0], ! INITIATE FETCH OF VALUE
DATI,
P2, D«WCSA[O] PLUS 2, ! POINT TO NEXT VALUE
P3, WCSA(0]l+D
LOGP2:
P3, MD+DATA ! VALUE ARRIVES
LOOP3:

SET BA WITH ADDRESS
POINT TO NEXT VALUE IN

P1, BA«WCSA([1l].,
P2, DeWCSA{l] PLUS 2,

e -

P3, WCSA[l]+D B AREA
LOOP4:
P2, D+MD, ! INITIATE WRITE OF VALUE
DATA
LOOPS:
NEXT, BUT(COUNT), VALUE WRITTEN INTC MEMORY
J/STRTLOOP LOOP UNTIL COUNT IS OVER

TARGETS ARE
STRTLOOP  COUNT NOT DONE
FINISH' COUNT DONE

P T

! THIS WORD MUST BE ON AN XXXXX1 BOUNDRY..
FINISH: _
NEXT, BUT(SUBRA), PAGE(0), ! RETURN TO TEST FOR SERVICE WITH
J/BRAOS ! FETO1l AS A TARGET



7.1.5 Try to Condense the Code

After sketching out the microcode, your next step will
be to try to exploit the parallelism in the IMP datapath
to reduce the number of cycles and/or words.

Note that in the code above, SETUP4 does the same thing

as SETUP7, and that SETUFg, SETUP8, and LOOP2 are all
identiaal. One method for reducing the number of
microinstructions (not cycles) is to try to make
subroutines out of repeated sections of code. It is

not a good programming practice to make a one- or two-word
subroutine, because the problems are usually greater than
the benefits. However, to illustrate the process, we will

ignere that point.

Look at what happens if MD + DATA is made into a subroutine,
call it SUBl. SUBl must contain a BUT(RETURN). The three
instructions which jump to it must use a BUT(SUBR B) to
lecad the Return register with the correct next address,
il.e.:

SETUP3 must load Return with SETUPS

SETUP6 must load Return with SETUPS

STRTLOOP must load Return with LOOP3.

Now, can this be done ? No, because both SETUP6 and

STRTLOOP use the ALU and the scratchpads. The microword fields
for RETURN, RETURNPAGE, ANd PAGE overlap the ALU and
scratcﬁpad control fields, so the BUT(SUBR B) cannot be

specified.



Pnother potential candidate for reduction is LOOP4:

can the DATO be done in LOOP3 where the BA is set up ?

Again, this reduction will not work because the D register is
needed for incrementing the B address as well as for the

Data Qut.

The preceding unsuccessful search for words to eliminate
illustrates two of the three kinds of conflic¢cts which
put constraints on your microprogramming. Microword

bit conflicts cause one level of constraint; datapath
components provide another. The third constraint,
timing, is somewhat easier to foresee.

7.1.6 'Check For Interrupt Latency

The size limit on this block move is 235 words,
determined by the width of the CNTR. Each word that is
moved requires two memory cycles, a Data In and a Data OQut.

For a worst case analysis, assume that there are no

cache hits, and that the memory cycle time is one

microsecond. Each iteration of the loop will then take approx-
imately two microseconds: 15 microseconds will have elapsed
when 7 words have been moved. Hence the 11/60's interrupt
latency rule will be violated if the block move instruction
cannot be interrupted.

One solution is to change the instruction specification so

that the state of the execution is held in the general

registers, namely: the decremented count, the incremented
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A address, and the incremented B address. This would make the

instruction restartable as well as interruptable. The BLKMOV

microcode would test for Service once in each loop. When the

service condition arises the PC must be backed up to point to

the XFC instruction. The microprogrammer has two options when

the interrupt has been serviced:

1) return to XFC code and restart instruction from the beginning

2} set a flag internally and restart execution in the middle of
the instruction.

This example also raises another point which the microprogrammer

must resolve and that is the problem of leaving an instruction in

a half executed fashion. (i.e., part of the B address field has

been changed) There are no PDP~1l instruction which leave things half
done. The microprogrammer may want to add a level of sophistication
and set a flag (Semaphore) at the macro level which signifies that
the B address field is invalid. (Does not contain old or new data.)

If the microprogrammer decides to restart execution of an instruction
in the middle he must either be sure that his task is the only one
using this instruction or else stack up the data he needs to know

insuring a valid implementation.






APPENDIX A
GLOSSARY

Adder
A device whose output is a representation of the sum of the
gquantities represented by its inputs.

Address assignment
The allocation of an absoclute address or a relative address
to a symbolic address,

ALU

Arithmetic and logic unit: a device whose output is a
representation of the result of the operation specified
by its contrel inputs performed upon the quantities
represented by its operand inputs.

Architecture
That set of a conmputer's features that are visible to the
programmer.

Barrel shifter

Bit Steering

An enceding technique in which one bit in the microword
is used to specify how bits in other fields are to be
interpreted.

Branch set
A set of microinstruction addresses which are potential
targets of a conditional branch.



Bus

A) A path over which information is transmitted from any of
several sources to any of several destinations. B) A path
over which information is transmitted from any of several
sources to a single destination. A bus is a communications
path which 1s capable ¢f multiplexed use.

Chained sequencing

A method of instruction sequencing in which each instruction
explicitly idetifies the next instruction to be executed; that
is, it contains a separate address field. Contrast with
instruction-counter sequencing.

Clock (verb)

To provide a signal to a register or other logic device
which causes the data at its inputs to appear at its outputs.
(Con trast latch.)

Combinational logic element

A device having at least one output channel and zero or more
input channels, all characterized by discrete states, such
that the state of each output channel is completely determined
by the contemporaneous states of the input channels.

Construcfed address

An instruction address that is formed by isolating the
next-address field and modifying it with machine-state
indicators by means of an arithmetic or 1o§ica1 operation. -

Control field
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Control line
An input channel that controls the operation of a device

or logic element.

Control signal
A signal on a contrel line.

Control Storage
Memory in which executable microwvode can be stored.

CPU

Central processing unit.

Cross—-assembler
An assembler which executes on one machine and produces
machine language code for another machine.

Direct control

A method of organizing the micrword in which there is a one-
to-one mapping between bits in the microword and control
signals in the computer. Also known as unpacked control.

Disable

‘Emit field
A microinstruction field which provides either a data literal
to the datapath, or an address literal to the sequencing logic.

Emulation

The use of microprogramming techniques for the interpretive
execution of one machine by another.
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Enable

Encoded control
A method of microword organization in which the values of
the control fields must be decoded to generate control signails.

Fetch
To obtain data or instructions from storage.

Firmware

A term used to describe the microrpogramming level, between
hardware and software, in the implementation of computer
systems. Also used to characterize program code which resides
in non-alterable, non-volatile memory, usually ROM.

Horizontal architecture
A loose term used to categorize machines whose microword has
some of the following attributes:

A) it is capable of specifying multiple simultaneous
operations;

B) it is not highly encoded
C) it is relatively wide; and
D} it specifies the address of its successor

Host machine
A microprogrammable computer upon which an emulator for
a target machine is implemented. '

Instruction-counter seguencing .

A method of instruction sequencing in which a special counter
is used to store the address of the next instruction to be
executed, Most macreoprograms are sequenced this way.
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Instruction decode

The first phase of instruction interpretation, in which the
fields of the instruction are decoded to determine the
operaticons specified by the instruction.

Instruction register
A special-purpose register which stores only instructions;
generally serves as the source for instruction decode.

Interpretive execution

A method of implementaticon in which the execution of a.
single instruction at one level of the machine regquires the
invocation and execution of multiple instructions for a

lower level of the machine.

Interrupt latency
The Jongest pericd of time a microprogram should execute
before allowing interrupts to be serviced.

Latch (verb)
To provide a signal to a register or other device which
causes the data at its outputs to take a constant value,

and to cease tacking changes in its input data.

Local storage
Data storage within a processor which is not accessed over

a main, general-purpose memory bus.

Macroinstruction
A machine language or macro-level instruction



Macro=-level machine
The computer defined Ly the macro-level architecture ,

Macromachine
Synonym for macro-level machine.

Masking
A programming technique; the first step in the process of
extracting a non-word group from a word.

Microcode
A} One or more microinstructions, E)} To write one or mcre
microinstructions.

Microcycle
The smallest unit of time available for the execution of
a single microinstruction.

Microinstruction
An instruction which causes the generation of control signals
to control the lagical elements of a processor.

Micro=-operation
An operation specified by a control field of a microinstruction.

Microprocessor ,

A) A processor on an LSI chip, usually implemented in MOS,
Bipolar, or I’L technology. B} That portion of a central
processing unit that interprets and executes ricrocode,

4icroprogram
A microcode routine; a program composed of microinstructions.



Microprogrammable
Pertaining to the capability to control the actions of the

micro-level machine via microprogramming.

Microword
A word of control storage.

Organization
A level below architecture, organization is concerned with
how the facilities available to the pregrammer are provided.

PROM
Programmable read-only memory.

PROM blaster
The dewice used to program a PROM,

ROM
Read~pnly memory. A storage device whose contents cannot
be altered.

Realization
In the hierarchy of architectures and organizations, realization
describes the lowest level -- the €hips and wires which

implement a machine organization.
Reentrant program
A program that can be interrupted at any point, and then

resumed from the point where it was interrupted.

Register



Scratchpad memory
Local storage within the central datapaths of a machine.

Scratchpad registers
Individual words of a scratchpad memory.

Shift register.
A register capable of shifting its contents. to the right
or left when a control signal is received.

Special~-purpose register
A register whose use is limited to a special purpose, such
as a floating-point register, an instruction register, or

a stack pointer.

Set~up register

A register used to store relatively static control information.
After loading, the data in the register can be used to
supplement the control information provided by the micro-
instruction.

Target machine
The computer whose architecture is implemented by an
emulator running on a host machine,

Tri-state logic
A type of logic in which the source that cohtrols a given line
can force the line into one of three states:

A) Logical one

B) Logical zero

C) Off, or high impedance state.
In the off, or high iﬁpedence state, the line is available for
other devices to put information on it without affecting the
original source that drives the line. Hence a selecting (or
multiplexing) function can be realized.

A-g



Vertical architecture
A general term used to describe machines which have some of
the following attributes:

A) Instruction-counter sequencing

B) Relatively narrow microwords

C) Microinstructions specify a single operation

D} The microinstruction is highly encoded.
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INSTRUCTION SET PROCESSOR (ISP} NOTATION

The Instruction Set Processor (ISP) notation provides a
coherent method of describing hardware operations. A subset o
of the ISP notation has been used in examples throughout

this manual. This appendix described the elements of this

subset, and the conventions which are followed in its use.

Tor a complete description of ISP notation, refer to paegs
15-36 and the Appendix of Computer Structures: Readings

and Examples<.

B.1 MEMORY DECLARATIONS

In this manual, memory declarations have the general form:
Mla:bldx:y >

where:
M is the name‘of the dgplared entity
a and b  are the(ﬁbpeﬁ_anqrioﬁér}bounds {addresses)
of the memory
: indicates a range of values
x and y are the upper and lower bounds of the

elements (bits) of the memory.

R.1.1. Conventions

Tha TSP notaticn provides for mixed numbering systems by
means of subscripts, e.g.: H{a:bsldx:y>10- .
On the 11/60, these explicit subscripts are omitted, and
the following set of conventions is followed.

4 Bell, C.G., and Newell, Allen: Computer Structures: Readings
and Examples . McGraw-Hill; New York, 1971.
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Locations are numbered in octal, and are li sted in ascending
order, Rits areg numberedl in decimal , listed from leftmost to
rightmost,

Thus, ASP(0:17]<15:0> declares ASPLO to be a l6~word
memory. Each word is composed of 16 bits named 0, 1, 2,...15.

n.2 ASSIGNMENT AND SUBSTITUTION

The "colon equals" symbol (:=) assigns a name to an expression.
Thus, x:=y assigns the name x to mean the same thing as

expression y.

A slash mark is used to indicate abbreviation or replacement.
Thus, if x is any name, and y is any name, the x/y

assigns y as a synonym for x.

To illustiate the use of these symbols, let's look at
one of the fields in the microword, BEN.

BEN :==/u£43:42>
BASCON =

CESP := 1
BSPLO := 2
BSPHI := 3

With these definitions and assignments, we can specify the

BEN field value for a particular microinstruction with:
BEN/BASCON

This specification indicates that the field composed of

bits 43 and 42 of the microword is to be loaded with the

value zero.



B.3 OPERATIONS

Most of the symbols for operations in ISP are used widely
enough that they are self-explanatory. There are two
symbols, however, which may be new to some programmers,

A back arrow &) indicates the .reading, transmission,
and writing of data. For example,

tltf'tz

indicates that t,
Tl receives t,'s contents. If t, is a value, then the value

receives t,- If t2 is a memory, then

is put in tj.

CSP{2] <200 : The value 200 is placed in CSP([2]
ASPLO[{0]}e=D . The contents of D is placed .
in AsSP(0]).

a front arrow, (~»), inaicates a control operation wnich
invokes an action-sequence. Thus,

b—» action-sequnce
indicates that if b is true, then the action-sequence is
applied; otherwise, it is ignored. For example:

SRL4:0> # 0 -~ Branch

B.4 ISP NOTATION SUMMARY
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APPENDIR D

BASIC SKELETON OF RESIDENT SECTINN FAR WCS OPTION OF YWE PDP 11/60

THERE ARE NINE CLASSES OF ENTRY POINTS INTO THE BASIC RESINENT
SECTION, . THESE ENTRY PAINTS AND THERE REASONS ARE LISTED

it
1
}
)
l 1]
! HERE
!
! (1} ERROR ROUTINE
!
) 6@te USER HAS LOST CONYROL OF MICROCODE DR DATAINED
1 TLLEGAL ERRDR CONDITION.
|
! (23 NON=USER XFC DISPATCN
!
t 8001 XFC DTHANN
| 4011 XFC O7BINN
| 4212 YFC QA782NN
! 6013 XFC AT&3INN
! 614 XFEC P7RUNN
I 6315 YFE ATHESNN
!
} t3y USER XFC DISPATCH
|
! bRARD XFC OT&7NN
|
l )] 00N PC DISPATCH
( _ '
| 6204 TRAP YECTOR OR INTERRUPT VECTOR CONTAINS AN DDD ADDRESS,
|
| (%) WCS MICRORARELK
|
| 4d00 MICRORREAK WaAS QEEN ENGBLED AND AQDRESS HAS REEN MATCHED
| (o) RESERVED INSTRUCTIONS
6343 - A RESERVED INSTRUCTION MAS REEN EXECUTED,
(FIS,FASTX{,ETL.)
7 GEFAULT SEPVICE CONDITIONS
6908 WC8 SERVICE (FLAG) HAS BEEN TURNED 0N BY MNICROCODE,
6R07 PIN EXTRA SERVICE WAS BEEN PULLED DOWN,
(a) PEFAULTY JaMm CONDITION
'Y-L.IY EXTERNAL JAM PIN HAS BFEN PULLED.,
(9) DIAGNOSTIC CONBITION
1-Leki DIAGNOSE CONDITION PRESSED AN THE CONSOLE,
COOF
Y I4T JTARGETS ARE ENTRIES IN DISPATCH TARLE,

REGTINSQAD [6B3A16037)

ot



143

148 )
14 | THE FOLLOWING CODE IMPLEMENTS THE RASIC RESIDENT FUNCTIONS
146 |} NEEDED TO SERVE TWE WCY USER, NOTE TWAT THRE USER IF HE CHOOSE
147 | CAN OVERLAY THE PORTIONS OF THIS CODE WHICH WE NEEDS T0O,
fas |
149 |
150
154
152 ,T0C RESIDENT ROUTINE cODF,
153
184
158 } _
186 | WCS MICRORREAX ENTRY POSITION
187 - :
188 | A MICROBREAX OCCLURS WHEN THE VALUE LOADED IN THE MICROBREAK
1%5¢ | REGIBTER 18 ENCOUNTERED AND THF MICROBREAK ENABLE BIT 18 SET,
1690 {FLAG <B8>), IF THE TRAP ON MICROBREAK MIT (WHAMI «<09») 1$ ON
161 | YHEN THE BASE MACHINE TRAPS TO TRAP VECYOR &, CONTRDL ONLY
162 ! COMES TO THIS LOCATION IF THAT BIT IS OFF,
163 1
164 1 THE FOLLOWING INPUT CONDITIONS ARE OF INTEREST:
185 |}
166 | {1) MICROBREAK ENABLE BIT (FLAGCDA>) HWAS MEEN CLEARED,
187 (2) LOG ROUTINE HAS {OGGED,
168 | (A €SP INVALID BIT SET IN FLAG REGISTER,
169 | t8) COP(A) <=+ JAM REGISTER
17¢ | CBP(1) <== STATUS XOR 348
171 ¢ ESP{2) <=« PHA
172 1 CAP(3) «<=a YA
173 1 CSP{U) <ww FLAGS » VECTOR
174 ) CAP(8) <ww WHAM]
178 | C8P{6) <=e CACHE DATA
178 ) COP(7) «ow MITTAG WITW TAG FIELD MIGK,
1;; : CBP{11) «== 08 REGISTER,
|
1;9 § IN THE DEFAULY CASE CONTROL RETURNS TO THE CONSOLE,
‘180 |
‘189
182
‘183 XPCAUBAYLY
184 NEXT, PAGE{1)},BUT(3uBRB), JRETURN TO FETCH NEXT INSTRUCTY
'18% J/CON9®
s AR D AOQAGAAN AGPRRIN Q1DMOCOA QARPACPAD AGIL1IRANG RALPOARR
! 6
1187
188 | _
189 |} XrFe @7608XX DISPATCH
190 )
M9y THIS XFC INSTRUCTION IS RESERVED BY DEC AND NOT YO
192 | BE USED BY THE wC3 PROGRAMMER, DEFAULY 18 JUMP TO THE TRAP ROUTI!
51:! : TO INITIATE A RESERVED INSTRULTION TRAP, (YRAP VECTOR 18},
194 _
2198 |
2i%e
2197
2198 XPCOTHOL!
2199 3, WR=CSP,CSPD(DIS),EMIT/0018, 110 = FOR TRAP VELTOR,
2200 NEXT, PAGE(®),BUT(SUBRBRY, IRETURN TO TRAP FLOW, PAGE R]
228¢ J/TRPGD ISHARED WITH EMIT AITS,

6001 O QARALAGE ARAQBALN PPBARAAN AAII10AP DA1L10A2 A1M1AYLY D-2.



EWHN— D 0B A AC W =S DR RE AN

7
'R
‘g
a4l
A
12
3
LX)
is
7.8
X
ia
{9
in
LR |
i2
i3
i
i85
is

47
I8
49
30
3
32
53
54
58
LY
57

T e Sem fem B gy G e P P B P o G e G

xre PTHETNX DISPATCN
USER XFC DISPATCH

THIS IS THE ENTRY POINT FOR ALL OF TWE USERS INSTRUCTIONS,
THE USER XFC (P76TNX) 18 NOW FURTHER DECODED ACCOPOING

TO BITS 3=%5 OF THFE INSTRUCTION TO ENTER ONE OF THE E1GMT
ENTRIES NF THE YFC DISPATCH TARMLE,

THE FOLLOWING INPUT CONDITIONS EXIST AT THIS TIME:

(1) MD CONTAINS XFC INSTRUCTION,
{2} SR CONTAINS XFC INSTRUCTION,
(33 TR CONTAINS XFC INSTRUCTION,

USFRDISPAL

&002

W et W Bmm e et Bt fem P S e T b fem B

BUT(IRS=3), fJuMP TO ONE OF THME FIGHT
J/USERD IENTRIFS IN THME DISPATEM TASLE,

2 PA0RCOPAN QARAAARR OANANRAAR PAAPAZAR AORARIAIA ARALiIRAF

REBERVED INSTRUCTIONS

YHE POP t1/60 CONTAINS A FEW RESERVED INSTRUCTINNS WHICH
ARE NOT IMPLEMENTED SUCH AS FIS AND FASTY, IF THE WCS

IS ENABLED THEN EXIT I8 TAKEN TO THIS SPOTY, THE BEFAULT
HESPONSE I8 70 EXECUTE A RESERVED INSTRULTION TRAP, (E9ROR
VEETOR ),

THE FOLLOWING INPUT CONDITIONS EXIST AT THTS TIME:

t1) D REGISTER CONTAINS unanr'anU!.
(2 NLL) CONTAINS ALLea?T>,

WESRIVPRAY

6003

e A e N i

CSPD(MP] ,EMIT(AAIM), | 11@ = FOR TRAP VECTOR,
PAGE(M) ,AUT(SUBRAY, IRFTURM TO TRAP FLoOW TO
J/TRPIA LINITISTE TRAP,

A AAGALIAAR ARGAAATIA AAGAARAA AAIPIAAD APIYLIAX® M1PA1ALLL

nen PC DISPATCM

WHENEVER THE BASE MACHINE FINDS AN ODD ADNPRESS IN AN INTERRUPT
OR TRAP VELTOR AND THE WCS 18 PRFSFNT IT EXITR TO

THIS LOCATION, THIS ALLOWS THE USER YN WRITE & FAST INTERRUPT
HANBLER CONSISTING OF WCS MICROCONF, THE DEFAULT CASFE WILL

BE TO RETURN TO THE TRAP FLOW JUST 85 IF WES WAS NOT ORESENT,
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THE POLLOWING INPUT CONOTITIONS EXIST UPON ENTRY TO THIS
LOCATION}

(1) R{VECT) CONTAINS NEW PC VALUE IN TRaAP VECTOR (0ODD VALUE)Y,
(2) D CONTAINS NEW P8 VALUE,
(3) SR CONTAINS OLD P8 VALUE,

THERE 18 NO WAY TO FIND OUT WHICH TR4P VECTOR wWaS ENCOUNTERED,
USER MICROCODE WILL WAVE YD ANALYZE THE NEW PC QR PS VaALUE
TO DEYERMINE THE DEVICE WMICH INTERRUPTED,

P G em B T e e e e e B S

npoPCOIsAL: :
NEXT, PAGE(4)},BUT(SUBRRA), IRFTURN RIGHT 84Cx TO THE
J/ZTRPRY {ARASE HACHMINE TRAP FLOW,
6004 O AMOAAAR PAAEAIA] AAAAPRAM AQAARAAR ANLYIIARL 1APi1GNY

DEFAULT SERVICE CONDITION TWO

THE SERVICE CONDITION I8 CHECKED ONCE BETWEEN EACKH MACRD
INSTRUCTION, ONE CONDITION THAT CALSES SERVICE TO SAE
NEEDED I8 IF THME w(CS SERVICE AIT OF THE FLAG REGISTER 18
TURNED ON, (FLAG <07»), THE WCS SERVICE BRIT IS TURNED
ON BY THE WCS MICROPROGRAMMER WHENFVER HE WISHWES TO MONTITOR
(TRACE) THE NEXT INSTARUCTTIONS, WHEN THIS AIT 18 ON CONTROL
18 PASSED TO THIS INSTRUCTINN ONCE AFTWEEN EVERY MACRD
INSTRUCTION, IF THTIS BIT I8 ON THEN THE WCS CAN MONITOR
FVERY INATRUCYION EXECUTED, THE DEFAULT IS TO NOT

MONTITYOR ANYTMING ALY INSYEAD REYURN TO EYECUTE ANOTMER
INBTRUCTION, (FET21) NOYE THAY RFETLIRN MUIST NOT RE

TO BRAAS A3 AN INFINITE LOOP WILL RESULT,

Ol = o= e g e m g e e e s G dem P s e e

VCDEFLTB2?
NEYY, PAGE(®),BUT(SUBRA}, RETURN TO EYECUTE
J/FrETR ITHE NEXT INSTRUCTION,

$N0S 2 2PAADBNA0 AAADAIAD PAAAALIP ARNANAAY ANI1INY] 11ADRALO

DEFAULT JAM CONDITION

}
)
}
! WHEN THE XCS EXTRA JAM PIN IS YANKED THIS CAUSES

l AN TMMEDTIATE JAm CONDITION TO OCCUR, IF THE WCS 18 ENABLED

1 THEN CONTROL 1S PASSED TO THIS LOCATION, IN THE DEFAULY Casf
: CONTROL IS RETURNED TO THE CONSOLE FLOW,

1

J

AMDEFLTA!}

NEXT, PAGECL),BUT{SUBRB), IRETURN T0 CONSOLE CONTROL,
J/conee

626 7 AGANAARA APAIRANM AINAPESA QAMAAPANN PALI10AA AGLGAANA

L
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DEFAULT SERVICE CONDITION ONE

WHEN THE PIN EXTRA SERVICE I8 PULLED THEN THIS

CAUSFS A SERVICE CONDITION TO ARISE, EXIY I8 70 THIS
ROUTINE TO HANDLE THAT CONDITION WHEN WCS IS ENABLED,
YHE DEFAULYT CASE I8 TO RETUPN TO EXECUTE ANDTHER
INSTRUCTION,

VEDEFLTOL ¢

PAGF(2),RUT(SLIBRAY, IRETURN TO EXECLTE
J/FETA) ITHE NEXT INSTRUCTION,
6097 0 04RRAAAS AARANRAD ANDAANLN QRAAAARE PAIIIANE J1APARLH
1
! DIAGNOSTIL ENTRY
l .
| WHEN OTAGNOSE NN THE CONSOLE IS PRESKED AND WCS IS
! ENABLED THEN CONTROL IS8 PASSED TO THIS POINT, DEFAULT
! RESPONSE I8 YO PASS CONTROL YO THF END OF SEPVICE ROUTINE,
H
]
WCSDTAGAL?
BAGE(1), BUT(SUGRB)s IPETURN T0O END
J/ZEQSTA {0F SERVICE RQUTINE,
4010 Q2 Q207AQ0020 AHMARPAAA PIPNAABA NROPPRAAD AAI11AJ] AR112000
!
1 YFE . ATs1XX DISPATCH
|
] THIS XFC INSTRUCTION IS RESERVED BY DEC AKND NOY TD AF USED:
| RY THE WCS PROGRAMMER, DEFAULT 18 YO JUMP YD THE TRAP
} ROUTINE YO INITIATE A RESERVED INSTRUCTION TRAP, (TRAP VECTDR 18),
l .
i
XFCOTHIPY
WReLSP,CEPDIDIS),EMIT/0010, [1@ = FOR TRAP VELTOR,
PAGECQ),BUT{SURARR), IRETURN TO TRAP FLOW, PAGE BITS
JZTRPBD ISHARED WITH FMIT RITS,
4011 @ P22aM1 980 AQAPAQA1LD aﬂanwnnm 2AiAIA00 AP111000 A{A1P111
l
l XFC @762XX OISPATCH
!
| THIS XFC INSTRUCTION 18 REBEFRVED RY DFC AND NNT TO RE USED
1 B8Y THE WCS PRNGRAMMER, DEFAULYT I8 TO JUMP TO THF TRAP
1 ROUTINE TO INITIATE & REQSERVED INSTRUCTION TRAP, (TRAP VECTOR 12),
1 )
l
XFCOTHZR?Y
WR«C8P,CSPD(D1IS), EMIT/OP1D, |10 =~ FOR TRAP VECTOR,
PAGE!{ Q) ,BUT{5URRBEY, IPETYURN TO TRAP FLOW, PAGE BITS
J/ZTRPOQ ISHARED WITHM EMIT BITS.
012 O 2P IARD ARARARIC AGARAAPP AQIAIPAR NAI11AR0 PIALIAYY) (l>-$a)



XFC BT63XX DISPATCH -

THIS XFC INSTRUCTION 1S RESERVED AY DEC AND NOT TO BF USED
BY THE WCS MICROPROGRAMMER, DEFAULT IS TO JUMP TO THE TRAP
ROUTINE TQ INITIATE A RESERVED INSTRUCTINN TRAP, (TRAP VECTOR 12),

= Bw = P8 = B e

XFCOTHIB:
P3, WRe(CSP,C8PD(O1S),ENIT/001Q, 1A = FOR TRAP VECTRR,
NEXT, PAGE(OQ),BUT(SUBRS)Y, IRETURN TN TRAP FLOW, PAGE RITS
J/TRPOS ISHARED WITH FMIT BIT7S,

6713 0 20001720 MORQOARIQ AA2AAMRE Q0121000 A2111°QA A1RA1D14Y

xre @764XX  DISPATLW

THIS XFC INSTRUCTION 18 RESERVED RY DFC AND NOT TO BE USED
BY THE WCS MICROPROGRAMMER, DEFAULT IS5 TO JUMP 10 THE TRAP
ROUTINE TO INITTATE 4 RESERVED INSTRUCTINN TRAP, (TRAP VECTOR 10},

e e e G e e A

XFCATHUGS
P3, wWRe(CSP,C8PD(DIS) . EMIT/BD1H, §10 « FOR TRAP VELTOR,
NEXY, PAGE{D),RUT(SUBRE), IRETURN TN TRAP FLOW, PAGF RITS
J/IRPAS JSHARED WITH EMIT AITS,

6R14 2 DAAALAQQ QRAMARIA NAANAARD AA1AIAME A1) 1000 21214111

XFC A765%XX DISPATCH

THIS XFC INSTRUCLTION IS RESERVED AY NEC AND NOY T0 RE USED
BY THE WCS MICROPROGRAMMER, BEFAULTY 15 TO JUMP TO THWE TRAP
ROUTINE TO INITIATE A RESERVED INSTRUCTION TRAP, (TRAP VECTOR 1@},

— e P M P =

XFCNTHSAy
P3, WReCSP,CEPD{D1IS),EMIT/AOLD, {1 « FOR TRAP VECTOR,
NEXY, PAGE(Q®),RUT{SUBRA}, IRETURN TO TRAP FLOW, PaAGE BITS
JZTRP2A ISHARPED WITH EMIT n1TS,

aN1S 3 RPARIARY H0000R1Q AMMANAAR ARIAIAAA 3111028 A101A111



WCS ERROR ROUYINE

WHEN THE WCS RESIDENT 13 LOADED ALL OTHER LOCATIONS QF
WCS WILL CONTAIN & JUMP TO THIS LOCATION, THE USERS

OR DECTIDES 4 FATAL ERROR MAS QCCURRED CONTROL WILL ENTER
HMERE , BEFAULY HANDLING FOR TYWIS CASE IS TO EXIT 10 THWE

IN & LOT OF CASEY THE USER WTLL WANT TD BUILD HIS
OwN FRRQOR ROUTINE,

WCSERRY
NEXT, PAGE(1),BUT(SUBRS),’ IRETURN TO BASE MACHINE,
J/CON9S INHALT FLOW,
R1A B POAAANAN FADARANR X1ONAAEP QAAGDARANR PR1IIARE AAIBZRCQ
!

USER XFC O19PATCHM TARLE (27ATNX)

ACCORDING TO R1TS a5 OF THE USFR XFC INSTRULTION NME

OF TWESE EIGHT ENTRIES OF THF NRISPATCH TARLE 18 ENTERED,
THTIS DISPATCH TABLE I8 MODIFTED RY THE MICHOCOBF LOADNER
WHEN TT LOADS THE USERS MICROCODE ACFORDING TO THE ENTRY
STATEMENTS APELIFIED IN THE ASSEMALY, THF DEFAULT FOS&
TS ONLY ACCEPTED A4S LEGAL IF WCS COADF TN EXECUTE THAT
CAN FURTHER DECODF RITS Me? OF THE XFC TNSTRUCTION TO

FURTHER DECQNDE OF IT CAN NLCHR BY TFSTTMR SR{Z2=0),

B e I S —

CONSOLE CODE JUST AS IF A HMalLT INSTRUCTION Wi§ ENCOUNTERED,

EACH OF THFSE ENTRIES IS TN RETURN TN THE BASE MACHINE AS
IF A PESERVED INSTRUCTION Wil ENCOUNTERED, AN INSTRUCTION

MICROCODE WILL BE OVERLAID ON TOP OF TMESE JUMPS,  WHMENEVER
THE USERS MICROCODE LOSES CONTROL (ENTFRS UNPLANNED ADDRESS)

INSTRUCTION WAS RFEN LNADRED, NOTE THAT THE USER chnoﬂﬂosnnpnzﬂ

FACILITATE MORE ¥YFC INSTRUCTIONS, SINGE THE XFC I8 IN THE SR

.CASF 1 OF DISPCH LYFC ATaTOX
{ISFRA}
P, WR=CSP,CSPN(D1S),EMIT/R0L0Q, 119 = RESERVED TRAP,
NEXT, PAGE(R),BUT(SUARE)Y, IRFTURN TN TRAP FLOW, PAGE BITS
J/TRPQR ' ISHARED WITH FMIT AITS,
VAR 0 ARGAIARA ARARARID NRAAAAAR APIAIARP CRI110GR G{O1@111
LCASF 2 0OF QISPCHM I¥FE ®*7671X
USERLL
3, WR-CSP,CSPD(D1S), EMIT/OR1D, 17 = RESERVED TRAP,
NEXY, PAGE(®Y,BUT(SUBRRY, fRETURN TO TRAP FLOW, PAGE RAITS
J/TRPOG I SHARED WITH EMIY RITS,
1011 0 BQO01000 M2P2PR1Q QAPOAPORA ARINIRRA GRIIIAAM O1{R10111]
LCASF 3 OF DISPCH LYFC BYe2X
USER21 '
*pl, WRe{SP,COPD(D1S),EMIT/EMQ, 11® - RESERVED TRAP VECTOR,
NEXTY, PAGE({D3),BUT(SUBRA)Y, IRETURN TO TRAP FLOW, PAGE BITS
J/TRPOD ' ISHARED WITHW EMIT BITS,

4032 A Q2301092 ARANAALA AAZAAICA AAIAIOPO ONM111200 B1R1011
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LCASE 4 OF DISPCH IXFE AT7673YX

USERZ}
Py, WReCSP,COPO(DIS),EMITZORLD, . 11@ = FOR YRAP VECTOR,
NEXTY, PAGE(R),BUT{SURRD), IRETURN TO TRAP FLOW, PAGE BITS
: : J/ZTRPOR
43313 P 20095000 PORO0Q1Q 27QAAPARAN MAIAI20Q ARI1IACMD DiO1ML LY
JCASE 8 OF DISPCH IXFC A7675X
USERUY
P3, WReCSR,CSPD(DIS)  EMIT/001 0, 110 = FOR TRAP VECTOR,
NEXY, PAGE(@),BUT{SUBRR), JRETURN TO TRAP FLOW, PAGE BIYS
J/TRPOB ISHARED WITH EMIT BITS,
6A%L 3 22221407 ABACNALN RAJAARND AAIRIARA PAAI1IA0P AIAIA1Y
+LARE & OF DISPCLH IXFL P7475X
USERY
ey, WR=CSP,CSPD(D1IS),EMIT/20tM, 113 =« FOR TRAP VECTOR,
NEXT, PAGE(R),BUT(SUARA), IRETURBN T0O TRAP FLOW, PAGE BITS
JZTRPGO ISHARED wWITH EMIT BITS.,

6035 7 2AAAIA3N APANRRIC Q000QNCP A21X1IANA ARI1IPMAP B101011)

LCASE 7 OF DISPCH

USER&1
Ry, WReCYP,C8PD(D1S),EMITY/001R, IXFL AT6T6X
NEXT, PAGE(O),AUT(SUARA), IRETURN TO TRAP FLOW, PAGE R]ITS
J/TRPOG ISHARED WITH EMIT AITS,
6038 @ 20001002 07002210 ANAPAGAAG OPI1X10PE AR1{11900 aIaLo11t
.CASE B 0OrF DISPCH 1¥FC 07e77X
USERT}
P3, WReCSP,CSPD(DLS),EMIT/A01 M, 11@ = FOR TRAP VECTOR,
NEXT, PAGE(R),BUT(SURRE), IQETURN TO TRAP FLOW, PAGE AITS
J/TRPAD ISHARPED WITH EMIT AITS, '

6737 @ AR2Q1A20 PAAIAPIA PAPAARAR AR1QIAAR AATLIARA A1A1AYYY
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TM8 ROM MICROCODE FOR 11/62

THIS MICROCODE GOFY INTO THE TMS ROM (TRANSFER MICRNSTORF

ROM) , THIS ROM PESIDES ON THE WCS ROARD AND ALLOWS A PROGRAM
RUNNING IN THE WRITEABLE CONTROL STORF OF THE 11/67

70 USE PARTY OF THIS S4ME CONTRQL STORE 4S8 A BLOCK DATa STOPE,
(LOCAL STORE) THIS ABTLITY 18 REALIZED PY ROUTIMES WHMICKH
PERFORM BLOCK LOADS AND STORES OF VARIOUS PARTS OF THE INTERNMAL
STATE OF THE (1/6,  THE FOLLOWING PORTIONS OF THE MACHINE

ARE LOADED OR AYORED:

(1) GENERAL REGIATERS

(2) WAAM FLOATING POINT RFGISTERS

(3) € SCRATCHPAD EXCEPTY BASE CONSTAMTS
f4) USER SCRATCH REGISTERS

(5) ENTIRE A SCRATCHPAND

(&Y ENTIRE B SCRATCHPAD

(7Y ENTIRE C SCRATCHPAD

THTS MICROCODE ALSC HANDLES ALl WCS SUPPORT NFEDED RY THE
BASE MACHINE 70 PERFORM ITS FUNCTYIONS, THE FNLLAWING IS
A LIAT OF THESE ENTAY POINTS AND THETIR FUNCTIONS:

TMS ADDRESS FUNCTION

2001 USED BY WCSINIT FLNW, USED TA SFY ADNRESS
REGISTER TO ZERQ AMD ALSD wRITES ZFRO 1IN
THE WORD,

IF USED AY WCS CNDE THEM LOADS ANDRESS REGISTER
WRITES ADNRESZS VALUE INTD THAT ADDRESS AND INCREMENTS
THE ADDRESS REGISTER By ONE,

gedu USED BY WECSINIT FLOw, WRITES & COUNT INTO WES ENR
THEN INCREMFNTS THF ADDRESS REGISTER,

no1@ LOADS WCS ADDRESS REGISTER WITH VALIE AND THEN WJRITES
DATA INTD THIS ADDRESS,

fp2R LOADY WCS ADNDRESS REGTISTER WITH VaALUE,
{RASE MACHINE ALSO SAVES THIS SAME VALUE IN THE &
SCRATCHPAD 21), THIS ROUTIME ALSO PUMPS DMYD BUSDIN
THE DAYA FRNAM THIS LOCATIONM,

Asxe USED AY FIRST WORD TN ROUTINE THAT REANS wCS STaTUus,
NOTE THAT THE wC8 STATUS IS NOW READ ARY THE UfON
INTERFALE, THIS WORD CAN PRORARLY RF REMOVED FROM
BASE MACHINE AND THIS ROUTINE FROM THE THS ROM,

enqge NOT REFERENCED BY THE RASE MACHINE,
THE WCS USER CAN LS50 USE THESE POUTINES IN TWE TMS R0M, THE

FOLLOWING IS A LISY OF FUNCTIONS WANTED RY WCS USERS AND wAYS
TO REALIZE THESE FUNCTIONS,

E-|
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THS ADORESY FUNCTION

{READ) _

1832 READ NDATA ONTO BUSOIN POINTED TO BY THWE ADDRESS
REGISTER,
(READANDING)

924 READ DATA PQINTED TO INTO HMD AND THEN INCREMENT
THE ADDRESS REGISYER,
(LOADANDREAD?

A029 LOAD THE ADDRESS REGISTER WITH VALUE AND READ DATA
OUT ONTO BUSDIN,
{LOADREADING)

#Aa3%4 LOAD TWE ADDRESS REGISTER AND READ THE DaTa

POINTED YO INTO MD, FOLLOWS TWIS BY INCREMENTING
TME ADORESS REGISTER, '

(WRITE)

edy4 WPITE DATA INTO THE ADDRESS POINTED TO,
(MRITEANDING)

aosy WRITE DATA INTO THE LOCATION POINTED TO AND THEN
INCREMENT THE ADDRESS REGISTER,
(LOADANDRRITE)

2010 LOAD ADDRESS REGISTER AN WRITE NDATA INTO THIS

LOCATION, METHOD OF USING THIS ROUTINE 181

18T INBT, CLOCK D AT P2 WITH ADDRESS

IND INST, SET TMSPTR YO 10

3RD INSY, CLOCK D AT P2 WITHW DATA TO RE WRITTEN
YW INST, (OATA IS WRITTEN INTO LOCAL STNRE)

(LOADWRITEINC)

ragy LOAD THE ADDRESS REGISTER AND WRITE DATA INTO THIS
LOCATINON, FOLLDWS THIS BY INCREMENTING THE ADORESS
REGISTER, (NOTE THAT TWIS ROUTINE I8 INVOKED
IN THE SAME MANNER A8 ARQVE METHWOO,)

( INCANDREAD)

2295 INCREMENT THE ADDRESS REGISTER AND READ THE DATA OUT ON
YHE BUSDIN, DATA IS AVATLABLE AT P3 OF THE SECOND
NULL WORD,
(LOADADDRESS)

asao LOAD THE ADDRESS REGISTER WITH AN ADORESS,  NOTE TwIs

FUNCTION I8 EGUIVALENY TO (OADANDREAD,

LYITLE THSROM
,IDENT sveal/

LRADIX @8 1OCTAL NUMERTCS,

LHIDTH  32R IDEFINE 32 AIT WORD,

LOBJECT «1910> LACTUAL ROM IS 16 BITS FOR TMS

_ JAND 4 BITS FOR CROM,

LBOUNDS (23777) INEFINE 512 WORDS,

LADDRESS DUMtre<3i(23> ITHIS FIELD EXISTS ONLY TO SATISFY THE

IOF THE MICRO ASSEMBLER,
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. T0C TMS MICROWORD FIELD DEFINITIONS,

JFIELD ALY gim «@> IATT IN TMS ROM TD WANDLE ALU FIELD,
Al ) ISND 4 STRAIGHT THROUGM ALLU,
8 1902 ISEND R STRAIGWT THROUGH aLli,
LPIELD BEN gi® ¢1>°<2> IAUS RIN SQURCE,
BSPLO t1s @ ILOW WALF NF B SCRATCHPAD,
BSPH] ti= | IMIGH HALF OF B SCRATCHPAD,
CAP = 2 IC SCRATCHPAD LOCATION,
BASCONEES 3 IBASE CONSTANTS IM THE CSP,
JFIELD BSEL ti® <3» I® BUS SELECTION,
D t1m @ IWHEN ADNDRESSING THE BASE CONSTANTS,
JFIELD AEN 118 <i» 1BUS AIN SOURCE,
AJPLC J11m @ 1L0W HALF OF & SCRATCHPAD,
ASPHT 1318 ) IWIGH WALF OF A SCRATCHPAD,
FIELD BADDR 112 <7>’<8>’¢3> ILOwW OROER THWREE RITS OF 8 ADDRESS,

JFIELD AADDR 13m <737 ¢8>’ ¢5>» ILnwW DANER TWAEE AITS OF 4 aDDIESS

1A ADDRESS INYTN 4 SCRATCHOAD,

FIELD ALLAADDR 113 <4>?<63°<7>%<8>%«S5»

RO 1w 12
R3L piu 11
RA2 31w 12
"33 3w 13
RAG 3r1m 14
RES g8 1S
RE6 ji18 14
RBY jtm 37
Ri? 19 @
R11 1%
R12 ttm 2
RiY g1n %
R14 11® 4
R1S pi= §
Rie 313
RIT w7
R22 f1e 3
R21 1= 31
R22 pim 32
R23 pis 33
R24 18 W
R2S g8 18
R26 }18 36
R2Y Jt1m 37
R3ID ji1m 29
R31 131 29
R32 11 22
33 13 23
R34 p1m 2u
R3S 11m 25
R3& 1% 26
R1IT 11w 27



+FIELD

+FIELD

ALLBADDR 118 «€2>°<6>°«T>"¢B8>%<3>

"3
Re
RO3
LI L
rRas
R
R2?7
i
L3D!
R12
R13
R14
RiS
Ris
LA
R20
R2i
R22
R23
R24
R2%
R26
R27
R32
R
R32
R3Y
R34
R3S
R1b
R3?

| S
110
pim
tie
pie
$1s
fis
11
jis
$1e
pis
pie
L8
i
ji=
ji=
L]
p1e
}ss
p1e
pie
118
j1e
tie
pie
118
jes
$19
pim
1ts
=

1@
11
12
13
14
15
16
17

O Y S

3o

34
32
33
M
15
16
37
F3]
21
2e
23
24
2%
26
27

A
LLAADDRW t1% <12>7¢6>%<7> ¢8>’ «5>

Rra
RO
Re2
Ra3
R&4
ReS
R&&

Ray

Rig
Ry
Riz
ri3
Rig
R1S
Ris
R17
R20
wzi
R22
R23Y
R24
rR2%
R26

e
jie
tta
119
t1s
y1e
(es
Tl
110
p18
pis
1y
tee
jis
y10
jis
11e
jis
11m
pie
11n
L
11

1@
11
12
13
14
18
16
17

i}



+FIELD

JFIELD
oFIELD

+FIELD

«FIELD

JF1ZLD

+FIELD

+FIELD

FIELD

JFIELD

R2Y7
R3®
R3t
n32
"33
R34
R3S
R3é
37

jra
11
1L
j1e
11
jie
pos
L
i

37
29
21
22
23
ed
25
r{
27

FLTPT 118 <b>

YES jivw @

NG Sim |
COPADR $18 <63°<Tr*<B>’<1d>

CLED t1s <9>

YES B19 1

WRCSP 118 <{i>

YES 11 §

HILO 118 <1 2>

WI 113
LO 1w @

WRSP pim<cli>’<c(5>

LN
B tte 2
80TH stu3

UADRLD 11m

YES tim@

UADRIC 11%

YES 119 1

INCTMS 11w

YES 118

NO 118 2

UWRITE 1:1m

YE8 118 ¢

.10

T™MS MACRO DEFINITIONS

ey, ]
<17>

<18>»,1

19>

JA/R SCRATCHPAD ADDRESS 8IT 3,

ITHTS ATT IS ASSERTED (OW AND
INDT HIGH AS NORMAL,

LADDRESS WMEN ACCESSING C SCRATCHPAD,
JCLOCK D REGISTER,

IWRITE C SCRATCHPAD,
I

IWMEN WRITING TO A NR R SCRATCHPADS
JTHTS FIELD SPECIFIES HIGM DR LNW MALF,

IHIGK WALF,
1L0W mALF,

IWRITE ASP, 48P, OR BOTH,

IWRITE A SCRATCHPAD,

IWRTTE R SCRATCNBAD,

IWRITE ROTH A AND 8 SCRATCHPADS

ICROM @ LNAD 4DDRESS REGISTFR,

ILOAD ADDRESS REGISTER,

ICROM 1 INCREMENT ADDRESS REGTSTER,

I INCREMENT ADDRESS REGISTER,

IDEFAULT 18 TO INCREMENT TMS POINTER,

LINCREMENT TMS POINTER,
LEND OF TMS ROUTINE,

IREAD/WRITE LOCAL STORE,
IWRITE INTO LOCAL STORE,
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SMACRD
S MACRD
+MACRD

«MACRD
JHACRD
JMACRO
MACRD
MACRO
JMACRO
JMACRO
LMACRO
TMACRO

JMACRO
+MACRO
JHACRD
JMACRO
JMACRD

JHACRD
JUACRO
JMACRD
JMACRO
yHALRD
+MACROD
JMACRO
JMACROD

JHMACRD
LJMALRO
JHACRO
JMACREO

,MACRO
JMACRO

«MACRO
LMACRO
JMACRD
L#ACRO
+MACRO
JHACRO

MOVE DATA INTO,ARDUND AND OUT OF THF DATAPATH,

MD.DATA P18
DLMDIDATA M3x
O.MD 1w

CROM MACRDS

LOADANDWRITE 1=
POSTINCADDR tg3
GOODBYE giw
WRITEDATA 1318
FILLER 1=
LCADAODRESY i1»
INCANDURITE 13m
INCADOREZAS 31
ATEPTHROUGH 118

GENERAL REGISTER MACROS

LOADGRY 318
LOABGR(NY tt=
STOREGR(NY tim
LOADUSERRS its
ATOREUSERRSL 118

BEN/BASCON, BSEL/MD, WRCSP/YES
MO DATA,CLXD/YES
BEN/BASCON,BSEL/MD, ALU/B, CLKD/YES

VADRLOD/YES,UWRITE/YES
UADRIC/YES

INCTME/Q

UWRITE/YES

INCTYS /0

UADRLD/YES
UADRIC/YES,UWRTITE/YES
UADRIC/YFY

INCTMS /Y

O MDD DATA,WRSP/RATH,FLTPT/ND

LOADGRT, AADDR/ON
ALUZA,FLTPT/NO,LADDR/ON,CLXD/YES

D MO, DATA,WRIP/BOTH,FLTPT/YES,AADDR/S
ALU/A,FLTPT/YES,AA0NR/,CLKD/YES

FLOATING POINT REGISTERS IN A AND B SCRATCHPANS MACRNS,

LOFPI{N) 1)1
LOFP2{N) t1I®
LOFPI(N} 11E
LOFPE(N) 118
STPPS(N) 3i1%
STFP2{N) 1=
STPFPI(N) s1tm
STFPA(NY 1=

O MO _OATA,WRAP/A, AADDR/aN,FLTPT/YES
D MD.DATA,WRSP /R, AADDR/ON,FLYPT/YES
LOFPI(aN),HILO/MI

LOFP2(eN) , HILO/N]

ALUZA, bADDR/BN, FLYPT/YES,CLKD/YES
ALU/B,BADDR/ON FLIPT/YES,CLED/YES
STYFRI(ONY , AEN/Z4SPH]

STFP2(eN) ,REN/BSPN]

WCS BCRATCHPAD REGISTER

LOWESAL(N)
LOWCEB(IN)
STHESA(NY
STWCAB(N)

tie
t1s
pea
i1

MACANS

D MD DATA, HILD/HT, WREP /A, FLIPYT/NO, AADOR /SN
D MD_ DAYTA, HTLO/HT, WRSP/R, FLYPT/NO, AANNG /8N
ALUZALAEN/A8PHT, CLED/YES,FLTIPT /NGO, AADDR/ON
ALU/B,BEN/RSPHT,CLKD/YES,FLYPT/NO,RADDR /SN

C SCRATCHPAD REGISTER MACROS

LDCSP(N)
STCEP(N)

ALL SCRAYCHPAD MACRODS

LOADASPANCIN)
LOADBSPAD(N)
STOREASPAD(N)
STOREBSPAO(N)
LOADALLLYP[N)

STOREALLCSP(N)

REN/CSP, WRACSP/YES,CBPADR/ON
ALU/B,BEN/CRP,CLKD/YES,CEPADR/oN

D MO DATA,WRSP /A, ALLAANDRW/ oN
B.MD DATA, WRSP/B AL LAADDRW /BN
ALUZA,CLXD/YES, AL 4ADDR/ON
ALU/B,CLKD/YES, ALLAADDR/ON
REN/CUP,wR{SP/YED,CSPADR /0N
ALU/B, REN/LSP,C KD/YES,CIPADR O
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. 10L TMS MICROCODE
USING ROUTINES IN THE TMS ROM,

THE ROUTINES IN THE TMS ROM ARE DESIGNED TO SAVE DIFFERENT
SETS OF THE {1/60 MACWINE JTATE INTO WCS ACTING AS 4 LOCAL STORE
AND ALSO TO RESTCAE TYHESE SETS FROM DATA TN THE LOCAL STORE,

THESE ROUTINES ARE DESIGNED FOR NPTIMUM DATA FLOW TD FACILITATE
IMPLEMENYATION OF FUNCTTONS SUCH 48 CONTEXT SWITCHING WHMICH MUST
HAPPEN A8 FAST A4S POSSIBLE, BECAUSE OF THMIS OTHER USES NF THESE
ROUTINES AND SURSETS OF THESE QQUTINES MAY NOT AF 48 EASY TD USE 38
WOULD 38E LIKED, '

ALL ROUTINES ARE EINTERED WITH THE wCS LOCAL STORE MINUS NME (LSANRe1)
CLOCKED INTO D, RETURN TO THE WLS ROUTTNE WILL OCCUR AFTER THE
FUNCTION HA8 REEN COMPLETED, THESE ROUTINES ARE IMPLEMENTED

BY SETTING UP A PIPELINE IN THE OATAPATH WHERE TWO ODIFFERENT

PARTYS OF TME DATAPATH MOVE DURING THE SAME MICROCYCLE, THE PIPELINE
CONYINUES UNTIL ALL DATA TN THIS SET MaS RFEN MOVED,

USING SUBSETS OF THESE RNUTINES TO MNVE ONLY A FEW OF THE DATa
ITEMS AND NOT THE wHOLE SET I8 NOT EASY, A% AN EXAMPLE THE
FOLLOWING I8 THE PROCEDURE TO SAVE REGISTERS R3IeRQ}

(1) USE 4 RGUTINE TO LOAD THE ADDRESSe2 INTQ YHE ADDRESS REGISTER,
(2) CLOCX RY INTD THE D REGISTER,
{3 SET THE TMSPTR WITHM ADNRESS THAT WRITES R4 INYOD TME

AARAY AND MOVES R3Y THROUGH THE NATARPALTH 4ND £LNCKS IT
INTO D, ONLY THE CROM BITS ON THIS INSTRUCTION WILL BE
EXECUTED, YHE TM8 RITS wlLl NOY BE ACCESRED, THIS “ILL
WRITE RI INTO THE LOCAL SYORE ADNRESSe1,

(4 THE NEXYT INSTRUCTION wILlL WRITE R3 INTO THE ADPRESS 4ND
MOVE R2 INTO D, THE REST OF THE RDUYIME wWILL wRITE
R2«R® INTO THWE ARRAY AND RETURN CONTROL TO THWE WCS
ROUTINE AT THE THIRD INSTRUCTION AFTER THF ONF THAT
SET THE TMSPTR VALUE,

THIS EXAMPLE SHOWS THAT A SUBSET OF THE OATA ITEMS
CANNOT BE STORED IN THFE SAME MANNER LS THE ENTIRE SET SINCE
THE FIRST DATA ITEM WILL BE SAVED YWICE IN TWO DIFFERENT ADNPRESSES,

CROM LOCATIONS USED RY wCS TO SUPPART THE AASE MACHINE,

JLOCATION ZERO OF THF TV IS ACCESSED
IWHENEVER AN INTY SIGNAL I8 RATISED
18Y THF BaSE MACHMINE, ARPRESS REGTSTER

FILLER JWTLL CYCLE HWERE UNTIL TWE THEPTR 18 CHANGED,
A GARPAQ000 100PG031 AO0ARMA Q2403240
THSRQt1: '
LOADANDWRITE PLOAD ADDRFESS, WRITE DATA anD

1 29222201 A2201102A Q20000@N0 AGANAANA

POSTINCADDR ITHEN INCREMENT TQ POINT TO THE

2 03220001 (AAA2111 AAAAQARA ARAROAAD

GNODABYE {NEXT ADDRESS,

3 00003310 ACRQA0R! 00AAAAGA AOPARPAD

E-7



TMERR41

WRITEDATA
4 POJAAB1Q 1°AQ1IA] QEopRARRE
POATINCADDR
5 pOJPER11 00229111 anpagaln
GOODAYE
& 00226011 120P0ACG] 200°A0MRQ
FILLER
T S2200100 20020RA1 AMANARAA
THSO12)
LOADANDWRITE
1@ Ye3adla® 13521107 22000400
GOODAYE
1! @9ep2le! Q0422201 sadndnoRa
FILLER
12 020000171 17MMARAL AARARARD
FILLER
13 00202115 202338021 éMMOAAAC
WRITEDATA
14 Q0290110 12021101 GARQFABDN
GOODBYE
1§ oQeeertil ARAAAAQI] oZoREEAN
FILLER
164 Q20aM11t 10200803 203G0aRA
FILLER
17 029001200 9000343 AAGAANAD
TM8220)
LOADADDRESS
29 00201097 10020127 adpana,a
GODOBYE
21 2L201PA1 MARARART 2AMARAAN
FILLER
22 2@pg1eat 1200Q@A] AeQBRpmAN
FILLER
23 "000I7ta Q209MA0R1 0ARARANA
READANOINCE
ATEPTHROLIGH
24 0301010 12000101 430AQA0RN
MD _DATA,STEPTHROUGH
25 Q290131 NARANI0! QRAAlEAGE
INCADORESY '
26 2epelptl 1000211 aepagaen
GOODBYE
27 49001108 MBAQAPN] APRARAARA
THSAEAr STEPTMROUGH
I 24731102 1A22AtA1 AARIANEN
STERATHROUGH
311 2029011901 BANAALIRY BAMARAAQ
STEPTHROUGH
12 2a9nlie) 10acAiRr] AAAAAANR
FILLER
I3 32321110 00022201 AGRAARAA
LOADREADANDINGS
LOADADDRESS
34 Q0001116 1008AR10 AAQZARAR
WO DATA, STEPTHROUGH
« I8 PEARII1] PAAARIGY AAPAI AP
INCADDREASS
34 PE221111 107203111 A3AAPARAN
GOODBYE
17 AeBimae( Apanant)

ArmARACA

|WRITE DATA FROM DOUT INTQO wen
2andeQNY

LAND INCREMENT TO POINT TD THF
RANAAARHR

INEXT ADDRESS,

anpacaan

1

ARPAIARN

ILOAD ADNRESS AND WRITE DATA,
PRPOARBN

i

pPedargae

ARAAAAQR

rRAAANQAR

IRTITE DATA FROM DAUT [MTO LOCAL STNRE
rOGAIPAR

I

A2ARAARA

22000000
APOAPARAR

PINITIALIZE ADDRESS REGISTER TN VALUE,
AARPAPRER

PEARAARA
AACAMPAR
PARADAPG

IDO NOTHING RiIT READ DATA
200R0PRD

IREAD DATA &ND PUT INTO ™MD
~AARai1e

VINCREMENT ADNRESS REGISTER,
aaQenana

1EX1T BaCx TN CALLER,

CLLd Tl

ppAnaePa
' i
pARROARPD

ARPPARAPAD
epaodope

SL040 ADNPPESS REGIATER,
arapQeAR

IWRTTE DATA INTO MO,
panpei1 2

IPOTNT 1O NFXT ADDRESS,
RAPOARAR

LEXIT BACK TN CALLFR,
YL EY-T

E-&



TMROAM)
o LOADADODRESS
AQ S8P10Q9D 1AXSZLIAS AQQACAPA APAAAAND
GOOOAYE
Gt 009124091 9AQPAAR] DARCGEAN APAPACRD

.10C LOAD GENERAL REGISTERS FROM W(S$

i

} THE GENERAL REGISTERS PA=RT AND USER Ré ARE LOADED WITHW DATa

] SAVED IN THEZ WCS LOCAL STORE IN 9 CONTIGUOUS LOCATIONS, THF wC8 CODF
} SHOULD LOAD TWE STARTING ADDRESS MINUS OME (LSADRef) INTO O AND TRANSF:
} CONTROL TO THIS ROUTINE, THE DATA I8 PIPELINFD FROM LOCAL STORE TO

! THE GENERAL REGTATERN, (IN EACH CYCLE ONE te BIT VALUE I8 REING

i READ OUT OF LOCAL STORE AND WRITTEN INTO THWE

} MDD REGISTER WWILE A& SECOND 16 BIT VALUF I8 MOVENR FRAAM MO THRNUGH THE

| ALU INTC D AND THEN WRITTEN INTO BOTH THE A AND B SCRATCHMAADS,)

1 CONTROL 18 RETURNED YO THE WCS MICROCODE AT THE END 0OF THTS

| ROUTINE WWMEN CROM«2» GOES LOW,

i

L

0ADGASY
LOADADDRESS

42 OQPal1v0dy 10393102 PAR2PRAQAAM RAPCARAA
MD,DATA, INCADDRESS

43 Q20210210 AAPAZ15]l PMQdtimeP ¢OBARLIYD
LOADGR(?), INCADDRESS

4a 200190910 10000111 11001011 1110
LOADGRCS)Y, INCADORESS

GS 9021301{ 20208111 $112A41A11 112AA110
LOADUSERRS, INCADDRESS

as 90010011 12932111 {1rO1A1L 13¢EM]YD
LOADGRCS), INCADDRESS

a7 0081312M AAA2ALI! 112A1A1A 111¢A110
LOADGRCGY, INCADDRESS

S@ 020010100 12020111 11001210 11008110
LOAOGR(3), INCADDORESS

St 0A10103 G2AAA111 11AG1A11 A1120110
LOADGR(2), INCADDRESS

S2 90010101 10202111 1128010211 A1200110
LOADGR( 1), INCADDRFSS

$S3 02210112 0002111 11AA1M1E 21108110

. LOADGR(®)

S4 Q8G191ia 1A0@A101 11031212 A1AB1109
G00DAYE

SR Q3013111 2000Q3ZN1 22002 PAXANNAD
PILLER

Ss 9031A1i1 100A0PQ1 AROARLAR ANGVIAND
FILLER

ST Q2011002 00APRER1 POMABRPA APPAZPOR



T0¢ STORE GENERAL REGISYERS INTO wWCS,

THE GENERAL REGISTERS RMeRT AND USER Ré ARE SAVED INTN THE WCS LOCAL
ST0RE IN & CONTIGUOUS LOCATIONS,
TMSPTR WITH THE STARTING ADDRESS OF THIS ROUTINE AND CLOCKXING
INTO D THE LOCAL ADDRESS MINUS ONE (LSADRe1), THE DATA IS

PIPELINED FROM THE 4 SCRATCHPAD
16 BIT VALUE 18 RFAD DUT OF THE
CLACKED INTO D WHILE ANOTHER 16
08 PREVIDUSLY IS WRITTEN INTO &
RETURNS TO THE wWCS MICROCODE AT

GOES LOw,

TOREGRS

LDADADDRESS
60 0Q02il2AR {PQ231PR AAABACAN
STARFGR(T)
41 0202110031 AGRAQALIAL AMAARAAL]
STOREGR{b), INCANDWRITE
42 @e2R1lad! 1POP1111 Q2aPARlt
STOREUSERRA, INCANDWRITF
63 PORB11010 PAEALILILL BRAAAALL
STOREGR{S), INCANOWRITF
17@81111 ogamamie
STNREGR(4), INCANDWRITE
45 Q0Q1iM11 Q0201111 ARNAAQALQ
STOREGR{Y), INCANDWRITE
4t 092110218 (P00111) APRAPOALY
STOREGR(2), INCANDWRITYTE
47 08811100 PFAA11ltL PAAAMAALY
STOREGR( 1), INCANDWRTTE
79 QAPA11103 1PAR1111 2A@RAP1A
STOREGR(@), INCANDWRITE
7Y Q20011131 22antill AAA2EABLID
INCANDNRITE
19221111 AARAQAQAGH

44 Aed11O1?

72 eeat1191
GOODBYE

73 Q001iil0 ARAABAAL AAPAARQRA
FILLER

T4 20011110 1QPAA201 20PQRARA
FILLER

eaRpaone
ijieamny
119a00a}
12AGA0PRRY
1119004}
117200001
A1inanp]
ajopPpp]
ajireony
Alepaanay
AAAAARAR
b Lo ded L I

A3AANAR

78 20211111 N3QAARA1 A0RAAARA ACANRRAAR

- TOC

THIS CODE 18 INITIATED BY LOADING

YO WCS LOCAL SYQRE, (1M EACH CYCLE ONF
A SCRATCHPAD THROUNGH THE ALL) AND

RIT VALUE WHICH WAD REEN CLNCKED INTO
LOCAL STORF ADDRESS,)Y CONTROL

THE END OF THE ROUTIME WHEM CROAMN (2>

LOAD WaRM FLOATING PODINT RFGISTFRS FROM uWlQ,



OANFP}

THE 81X WiRM™ FLOATING REGISTERS ARE LNADED WITH DATA PREVIOUSLY

SAVED IN THE WCS LOCAL STORE IN 24/1@ CONTIGUOUS LOCATIONS, THE

WCS INITIATES THMIS COOE BY LOADING TMSPTR WITH THE STARTING ABNRESS

OF THIS ROUTINE AND CLOCKING INTO D THE LOCAL STORE ADDRESS MINUS NNF
(L3ADR=1Y, THE DATA I8 PIPELINED FROM LOCAL STORE TO EITHER THE & OR

B SCRATCHPADS, (IN EACH MICROCYCLE ONE t6& BIT VALUE IS REING READ

DUT OF LQCAL STORE AND WAITTEN INTO THE MO PEGTISTFR WHILE A4 SECOND 146 8)
MOVED OUT OF THE MD THROUGH THE AlU, THROUGH D 4AND WRITTEN INTO EITHER 1
A OR B SCRATCHPAD DEPENDING UPON YHE SIGNIFICANCE 0OF THE REGIATER,)
CONTROL RETURNS TO THE W(C3S ROUTINE WHEN CROM«<2> GOES LOw,

LOADADDRESS

76 99811111 12228100 QAAPAAARA AAPRANAY

MD . DATA, INCADDRESS

77 Q01AP0G5s 2ANGA111 AAODIAGA NARAALLW

LOFPG(S), INCADDRESS

80 920127029 12efa1l] Dl1aliala (100110

LOFP1(%S), INCADDRESS

2] 0QQloQ0a] PAmARA11l 17QliOte 141RP11Q

LOFP2(5),INCADDRESS

@2 22133221 104287111 A10AALA 121APLLD

LOFPYI{5), INCADDRESS

23 2010012 AR@AN]1Y1 180A1Q1Q@ (AlBO11R

LOFPA{&4]}, INCADDRESS

g4 00120214 12022111 Q1211212 (AA2A11Q

LOFPI(4), INCADDRESS

8% 2212d21]1 2002311t 10721IR1Q jvARdA11Q

LOFP2(4), INCADDRESS

36 00120011 tAPAAlll @1pa{nig {4QBA1I1LA

LOPRI(4), INCADDRENS

AT @oide1en 2anPBi1ll 10001010 100RAY1D

LOFPA(3), INCADDRESS

18 249100100 12304111 212311011 AAiPAL1Q

LOFP1(3), INCADDRESS

t! @9lmaiad) 22aAM111 10Q11211 AdiealtA

LOFP2(Y), INCADDRESS

2 eg1psiey 1Apdalll M1aR1P1t ARiaG] 1R

LOFPI(3),INCADDRESS

{3 ee1pmile AAad2A111 19ARiAall AQLIRBL1LA

LOFPA(2), INCADDRESY

16 Q20100119 12200111 PIA11AL] APPAAQALID

LODFPI(2), NCADNRESY

19 B2012011) Q0aMAll)l 1091101 QAdaaR1]R

LOFR2(2), INCADDRESS

16 ed12p111 100ma11] 212M At aegpnlic

LOFP3I(2), INCADDRESS

17 ediclede 2oARrAll) l0emidil AnaARite

LDFPA(1), INCADDRESS

2% Q0101029 123423111 M1A1101Q pRIARILD

LOFP1 (1), INCADDRESS

21 Q2iai1p01 AIMAANILY 1RAB1I1A10 PRlonlyp

LOFP2(1},INCADDRESS

22 99131001 12MR2111 A10A1{0310 MRlAN{1@

LOFP3I(1},INCADDRESS

23 00101010 BcapA)l1 123A1210 PALIAAL1O

LOFPAC@), INCADORESS

24 201 At 1009211 @1011DIR AGADALLQ

LDFP1(@), INCADDRESSY

2% 08101811 ACARGII1 1AAL1R10 PEAAALLR e



»

126
127
139
131
£32

l

LDFP2(B), INCADDRESS

0121911 12m02114 212P1n10 AAE3A110
LDFP3(D)

02191100 F0@2A10: 1200010 A3PAALIA
GooopavyE

00121120 12203221 AV2AAAAN ANEAANAN
FILLER :

02101131 23002201 PP2RAZRAN NO2AEAAR
FILLER

2121121 12227021 22230009 4020200209

THE SIX WARM FLOATING POINT REGISTERS ARE SAVED INTQ THE WCS LOCAL
STORE INTOD 24710 CONTIGUOUS LOCATIONS, WITHIN EACHM OF THE FLOATING
POINY REGISTERS WORDS ARE SAVED IN SIGNIFICANCE ORDER, THE WC8 ROUT:
INTTIATES THIS CORE Ry LOADING TMSPTR WITH THE STARTING ADDRESS OF TH,
ROUTINE AND CLOCKING INTO O THE LOCAL STORE ADDRESS MINUS ONE (LSADRe
THE DATA 18 PIPELINED FROM THE A NR B SCRATCHPADS INTD THE WCS LOCAL
STORE, (IN EACH MICAQCYCLE OME 16 BIT VALUE 18 READ OUT OF THF

A OR B SCRATCHPAD THROUGH THE ALU AND CLOCKED INTO D WHILE ANOTHER 16
VALUF WHICH HAD BEEN CLOCKED INTO DA PREVIOQUSLY IS WRITTEN INTD A
LOCAL 3TORE ADDRESS), CONTROL REYURANS TN THE WCS MICROCODE AT THE
END OF THE ROUTINE WHEN CROM<2> GOES LOW,

SYOREFP}

133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153

LOADADDRESS :

01211172 PRAQRQICE GOOPAAOA PAMOOBRQ
ATFPA(S)

@0101119 10302121 20200710 1@291iQ0

" STFPLI8),, INCANDWRITE

210111l PeeRllll A0ePBR1d 1R11P0A)
STFP2(5), INCANDNRITE

pRALIDIILY 19P0P1111 Q20000017 {020iQQAR
STFPI(S)INCANDWRITE

00110200 Q22021111 APARPALIQ 101DPAOAY
STFPA(4), INCANDWRITE

AR110000 106A1L11 PAAGAGIA 1PANAIAN
STFPLI(4), INCANDWRITE

eP11002t APAA1111 20020012 1AR1AANY
STFP2(4Y, INCANDWRITE

eal1102al 1A2B1111 AGPAAAIA 1000DRPA
ATFPI{4Y, INCANDWRITE

e2llae12 ecarl11] 0AAQAAALN 1°0022M)
STEPALY), INCANDWRITE

gailopio 1e20@itll AoeRoAll PAROOL1AA
STFPI(3), INCANDWRITE

0011031 22271111 200ABAL1 AAL1AAAY
STFP2(3), INCANDWRITE

2211911 12001111 POQACAAL1 APARIPPA
BYFPY{3), INCANDWRITE

90110120 MPRG1111 BaARPaAl1 Ap10AAD]
STFPAC2), INCANDWRITE

211100 18331111 PORAAALL ARAGAIGA
STFR1{2), INCANDWRITE

22110107 Q2eA1i1l 29MmAAA]] APRIA@AO]
STER2C2), INCANDUWRYITE

2112191 1PAF111]1 APAARAPLY NPP@BPARR
STFP3(2), INCANDWRITE _

P2112142 ArADI11t SOPABALILl AAAABRAY

g2



154
159
156
137
160
164
162
163
164
169
168
167

STFPA(1), INCANDWRITE
28119110 102001111 P2Q0aR1
STEPL (1), INCANDWRITE
PB11311) 90921111 2AponplA
STPP2(1), INCANDWREITE
6811011 12401111 GRpaceia
STFEPI(1), INCANDWRITE
09111320 20021111 PAREAA1D
STFPO(D), INCANDWRITE
e9111000 1820111t agmaaeld
BTEPI(R), INCANDNRITE
00111061 20a8111{! 24A03A1A
STPFP2(B), INCANDWRITE
PO111001 12081111 A3pa0010
ATFPI(A), INCANDWRITE
GA111Q1Q ME2A1111 AAPOANLA
INCANDWRITE

P8111Q014 1221111 20aA00PQN
GOODAYE

gE111@11 A2IONAl ZOARANAD
FILLER

PALLIALY 10220821 RAJBAAGA
FILLER

20111100 G2adaran) FopmRaAnd

.T0C

agami a0
TIRELL N
LLETRETL)
CERETLET
APMAR1A0
29014801
AnpoARal
LY ETLLL T
CELLLEET
EELLLET
ELLETETY

aeaednne

LOAD C SCRATCHPAD EXCEPT RASE CONSTANTS FROM wes,

L0ADCSP Y

THIS ROUTINE LOADS ALL QOF THE ENTRIES IN THWE C SCRATCHPAD EXLZEPT

FOR THE BASE CONSTANTS FROM DATA PREVIOUSLY SAVED TN TWE WCS LOCAL
STORE IN 12712 CONTIGUUUS LOCATIONS, THIS CODE 1S INITIATED RY
LOADING TMSPTR WITH THE STARTING AQDRESS OF THIS RDUTINE AND CLOMKING
INTO D THE LOCAL STORE ANDRESS MINUS ONE (LSADR-1), THE DATA I8

READ OUY OF wCS LOCAL STORE AND WRITTEN INTYO THME C SCRATCHPAD IN ONE
MICROCYCLE, EACH CYCLE MANDLES ONE & BIY ITEM, CONTROL RETUANS TO
THE WCS R[OUTINE WHEN CROM«2» GOES LOW,

T
T4
T2
T3
T4
14
Té
77
ee

at

LOADADDRESS
goiti109 12300192 2AROPAQQA
LOCS®(17), INCADDRESS
80111101 3AAAA111 BASN] LAY
LOCSPL18), INCADDRESS
BP111181 10aRR111 ARAAlRAL
LDCSP{15), INCADDRESS
Pe111117 22A2At11 M0RA1]00
LOCSP{14), INCADDRESS
eA1titia 10208111 ARAA1EAD

 LDCBP(13), INCADDRESS
PA111111 9ANAALIL BAGAYLIAY
LOCSP(12), INCADDRESS
29111111 1832111 APAAIQARY
LDCSP(11), INCADDRESS
210000020 2M00E111 AAAAYLD
LDCSP( 1@}, INCADDRESS
PLAAGAGA 140PA11 CcR0QiQMe
LOCSPCT), INCADDRESS
21000001 A2P2A111 20AR11A1

LT g
f1o9r0919d
1100ma1 @
flopdm10
1{apadta
piApdALe
ptoorote
ri1araA1Q
Alaenria

12020010

E-1%



282
203
224
2as
204
207
»70C
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LDCAP(6), INCADDRESS

@igoMaz] 12002111 2QemlQRl RANdR1R

LDCSP{S), INCADDRESS

1000210 2000A1l1 Q0@D114P 10PAAR1Q

LOCSP(4), INCADDRESY

2000012 t23AR1l] 02Q210A0 13300010

GOQDRYE

digapnil ceeed0d] 3AAP2ANN ARNAVAAD

FILLER

21a/2011 12000021 0PP0PAP2 A222200Q

FILLER

Q1204100 20020021 222002A0 AdAARNAR

STOAE © SCRATCHPAD EXCEPT BASE CONSTANTS INTO WCS,

THE C SCRATCHPAD ENTRIES EXCEPT FOR THE BASE CONSTANTS ARE SAVER INTO
THE WCS LOCAL STYORE INTO $2/1@ CONTIGUOUS LOCATIONS,  THIS CONE IS
INITIATED 8Y LOADING TMSPTR WITH YHE STARTING ADDRFSS OF THIS ROUTINE A
CLOCKING INTO O THE LOQCAL STORE ANDRESS MINUS ONE (LSADR=1), THE DATA
18 PIPELINED FROM THE C SCRATCHPAD INTD THE WCS [OCAL STORE, (IN EACH
CYCLE ONE 16 RIT VALUE 18 READ QUY OF THE £ SCRATCHPAD YHROUGH THE ALU
AND CLOCKED INTO D WHILE ANOTHER 16 AIT VALUE wWHICH HAD BEEN

PREVIOUSLY CLOCKED INTO DR I8 WRITTEN INTO A LOCAL STORE ADDRESRAY,
CONTROL RETURNS Y0 THE WCS MICROCODE AT THE END OF THE ROUTINE

WHEN CROMa2>» GOES LOw,

STOREC3P1

210
211
212
213
214
215
216
217
220
ezt
222
223
eed
22%

»226
227

LOADACDRESS

#102a122 12000100 BAARACAR A0APAQAD

STCSP(LY)

2134210t 20M2013) Q2RARRIY11 11dPAALA

SYCOP(16), INCANDWRITE

21202101 12031111 eepP0Qal1 1ipanmid

STCSP(15), INCANDWRITE

21900112 22221111 AapeA11? tiGE3RAIN

8TCIP(14), INCANDWRITE

14241102 17321111 MAPOBAL{A {108A010

STCSP{13), INCANDWRITE

214272111 A0aR1111 OARGALL] BidADA1A

STCSP(12), INCANDWRITE

RIQAd11! 10081111 2M3ARALY AIAMAAYID

STCAP(11), INCANDWRITE

21201200 22221111 22204110 A1090010

STCSP{10), INCANDWRITE

21241223 10021111 20N22Q1R ALOQA0RIA

STCAP(T7), INCANDWRITE

flealen! Go001111 2Aa30111 10dndR1D

STCEP(6), INCANDWRITE

1801201 18221111 ARADARALS 100PORASO

3TCAP(S), INCANDWRITE

gleeiaia Pooill] PARGAI12 12090R1D

STCSP(&), INCANDWRITE

21001010 10301111 20030012 1MAQAA1A

TNCANDWARITE

21201211 A0AR11t] AGAREANA ARRPARAD

GOOODAYE

21321011 (2020301 AAAPAPAR ARPAPPMAR

FILLER

Q120131002 2220221 APIAARAD AAAIAANE Zl
e -



FILLER
136 @i0011022 12240021 a20adRrn

J100

LOADNCEARY
LOADADDRESS

01081101 200P2120 ANNCAAAR
MO DATA, INCADDRESS

23t

212 o1aR110% 10000111 @AGALIACA
LOWCSAC(DY, INCADDRESS

233 e3i11P A0pARIYT 10011010
LDOWCSB(3), INCADDRESS

234 210991110 10020111 @iaALinIA
LOWCSB()1)

23% 21004111 09924121 AloiimlQ@
Goo0BYE

2356 21001111 10200001 PAAAAION
FILLER

217 210190908 P2AAMGR] ARARAAID
FILLER

244 219174220 12032P0! F2202Q0RAMO

. T0C STORE w8 USER

STOREWCSAN
LOADADDRESS

24¢ @10190081 (2P2A127 A2AAANAQ
STwCaAl)

242 01210021 12000101 PAPAQRLIA
' STWCSB{0), INCANDRRITE
243 pio1d2i?d PAGO11lt APaBAR{Q

 STWCAR(L) , INCANDWRITE
244 D191¢eim 1@eP11Y1 2QR2eB10
TNCANDWRITE
24S pigt1agly 3eany11) PAAQ29R0Q
GOODAYE
208 J1R10011 12/0PAA1 ANAPAOSA
FILLER
247 Q1210120 AMAAARA] BAABASAD
: FILLER '
2590 21210100 102700021 2ANQAAND
., T0C T™S UTILITY SOUTINES TO
SETLOAD:
LOADADDRESS
251 21812161 PAANI QA 29PRROAN

MD,DATA, INCADDRESS
252 21010101 1004011t Ad2alQ0p
GOODAYE :
2%3 01010113 0247AP0] AGARAAGD

SET3TOREY
LOADADDRESS

254 21010118 127FPPIAA AAAR2QRQ
GOODBYE

255 21210111 @Panranal acmega0Qe

AaasAANG

adendoen
soopale
aigeatin
Atapgniie
fligeilo
0anAARAG
A00NARPN

APANAARG

SCRATLCH REGISTERS

nasaoAAR

P101Maa1

pinagien
pioalien
aganenaon
paapdoae
AANANAND

aaAneeRa

SET LOCAL STNRE ADDRESS

gopperag
PAARNLLD

adapepae

eagpeoenn

ageogaces

LOAD WCS USER SCRATCH REGISTERS FROM WCS,

FROM wWCS,

-1
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LOAD ALL A SCRATCHPAD VA|LUES,

ALL OF THE REGISTERS IN THE 4 SCRATCHMPAD ARE LNADED WITH DATA WHICH

COMES FROM THE wW(S3 LOCAL STORE IN 32 CONTIGUOUS LOCATINNS, THE
WES CODE SHOULD LOAD TWE STARTING ARDRESS MINUS ONF (LSADR=1}
INTO D AND TRANSFER CONTROL TO THIS ROUTINE, THIS ROUTINE WILL
PIPELINE THE DATA FROM LNCAL STORF TO TWE GENERAL PEGISTERS,

{IN FACH MICROCYCLE ONE 146 BIT VALUE 18 READ QUT OF LOCAL STNRE
AND WRITTEN INTO THE MD REGISTER WHILE 4 SECOND {6 RIY

VALUE 18 MOVED FROM MDD THROUGH THE ALU INTO D AND THEN KRITTEN
INTO THE & SCRATCHPADS,) CONTROL T8 RETURNED T8 THE

WCA MICROCODE AT THE END OF THMIS ROUTINE WHEN CROM«<Z> GDES LOW,

ASPADLOADY

256
257
260
bl
2h2
263
264
265
266
267
Fad
271
272
273
274
27Y
2Té
77
100
3oy
b 1-F

* 303

LOADADORESS
21910111 100071 a ACRAPARE AMRPRPAR
MO DATA, INCADDRESS
21811200 2300111 OARAINNG AOBNQAY1A
LOADASPADCRAA), INCADORESS
21011800 12Q00111 10001710 PIEPR11Q
LOADASPADCRALY, INCADNRESS
210119271 20P0G)111 120AIMIE AllQP1IA
LOADASPANIRR2), INCADDRESS
A{ALIPAY 10RAA11L 10PMIPI] RIQANIIA
LOADASPADCRRAY), INCLDBRESS
Q1011210 20AAR111 10PA1211 PLIPOI1R
LOADASPAD(RO4), INCADORESS
21211019 102@0Q@1!, 142231017 (1PAQ110D
LOADASPAD{RDS), INCADNDRESS
21011011 2AAA211t 10001910 1111 1A
LOADASPADCRAG), INCADDRESS
MELIP1L 10MR22111 18PR1AL1L 11AAAI1D
LOADASPAD(ROT), INCADDRESYS
Q1011108 20/0A111 1PANMIALL 1110011Q
LOADASPADCRIM), INCADDRESS
21011100 12282{11 10201010 A0GPQ11A
LOADASPAD{RY]1), INCADDRESSY
21211101 A3RAPI1] {RAQIALR MARIMAL1Q
LOADASPANCR]I2), INCADDRESS
212111@1 14P2A11! 1PAB1RI1 AARQAAI1A
LOADASPADCR1IY), INCADDRESS
AIR11113 AADAQRTI1 13ARIALL APIODLIR
LOADASPADC(RI4), INCADDRESS
21011110 12AARLL] 1P0M1Q1A 1PDADLIN
LOADASPANCRIS), INCAODRESS
21211111 QAPAAR11] 1QAR1A1IR 1QA1PMY11Q
LOADASPADCRIAY, INCADDRESS
@1a11111 12020111 (RAMDL] 1ARAREILA
LOADASPADI{R1I7), INCADDRESS
e1100PR2 AAREN11Y 1(90P1Q1YL 1010ALEA
LOADAPAD(R2P), INCADORESS
21120007 1230A111 {PAL101P AlREAl1Q
LOADASPADIRZ1), INCADDRESS
A11APPA1 MPAQATLL1 1PG110IPA AitaRLID
LOADASPADCR22), INCADDRESS
pi1ioeQe: te@AAR1l] 12011A11 ALAERL1R
LOADASPADCR23), INCANDRESS
21100019 2900111 194R11A11 21107180

-6
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3pe
3e7
L3Y .
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312

313
314
318
316
317
320
321
122
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LOADASPAD(R24), INCADDRESS
d11e0019 10p2aPtiy 12MA11010 110400110
LOADASPAD(R2S), INCADDRESS
21100911 AeaAnil] 19011010 11100117
LOADASPAD(R28), INCADDREYSY
#1100911 102P0111 10011011 11AGA110
LOADAAPAD(R27), INCADDRESS
911P013@ AeARA1ll 12311011 111RA11D
LOADASPAD(R3IE), INCADORESS
01173ip2 12220111 10811010 ARAARLI10
LOADASPAD(RIL), INCADDRESS
2119a18! adadei1li 1da114ia ARIANILA
LOADASPADI(RI2Y, INCADNRESS
G119MIR] 102M111 14311411 AQAdALItP
. LOADASPAD(RI3), INCADDRESS
01103119 ARARA111 AP 1Q1] ARA1AALIN
LOADASPAD(R3A), INCADDRESS
21idai19 1000aiil 13a1101iA (ern0tin
LOADASPAD(R3IS), INCADORESS
211202411 22023111 1211012 1R10ALLA
LOADASPADIR3S), INCADDRESS
21100111 jadeatril 17AG11011 1280PR113
LOADASPAD(RIT)
01101200 n23Aaial 10011011 12100110
GOODAYE
21121222 1RAAMANA]L FQARVOAA APAQGAPD
FILLER
01191291 QoP27A0] AIRA02AA AANCOREM
FILLER
211910201 12002221 24020322 PAARAAND

STORE ALL A SCRATCHPAD VALUES INTO wCS LOCAL STORE,

ALL OF THE & SCRATCHPAD REGISTERS APE SAVED INTD THME W(S

LOCAL STORE IN 32 CONTIGUOUS LOCATTIONS,

THE WCS INITIATES

THIS CODE Ry LOADING TMEPTA WITM THE STARTING ADDRESS NF
THMIS ROUTINE AND CLOCKING INTO O THE LOCAL STORE ADDRESS
MINUS ONE (L3ADR-1), THIS ROQUTINF PIPELINES TWE NATA

FROM THE & JCRATCHPAD TO LOCAL STORE,

{ IN EACM MTICANCYCLE

ONE {6 8IT VALUE IS READ DUT OF THE 4 SCRATCHPAD THROURH THE ALU
AND CLOCKED INTO D WHILE ANOTHMER 16 ARIYT VALUE WHICM MAD REEN _
CLOCKED INTD DB PREVICUSLY I8 WRITTEN INTOD 4 LOCAL STORE ADPRESS,)
CONTROL RETURNS YO THWE WCS ROUTINF WHEN CROM«2» GOES LOW,

ASPADATORE:

323
324
129
J2e
327
33e

LOADADDRESY
STOREASPADCR2MY
@1{eiPlE 22PO01R1 2020010 A1p0R301
STOREASPAD(RAL), INCANDWRITE
2112101 10AG111] 2APAAGPRIRQ QA1IPOOAY
STOREABRPAD(AB2)Y, INCANDWRITE
31121011 20321111 Q2PPAG1Y O1002RR21
STOREASPAD(RAY), INCANDWRITE
@1:i2t1A11 10091111 Q0A2PAA11 Qiteane)
STORTASPAD(RAL) , INCANDWRTITE
01121100 00031111 J0AAAAIG 110020p¢
STOREABPADIANASY, INCANDWRITE
911@1100 120@11]1] Qaadan]la 11100001

e-I7



331
332
333
334
338
336
337
40
331
342
143
Y44
14%
las
3uy
3sa
3514
352
353
354
35%
3%
35?7
160
3ot
382
363
Ib4
365

b6

ATOREABPAD(RAA) , INCANDWRITE
91191101 22a8i1t1 ooaAMaly 110RBANL
BTOREASPAD(ROT), INCANDWRITE
1141181 18008111 Qnoo2A1l til1oedat
ATOREASPADCRIA) , INCANDWRITE
P1104{1192 Me@ai11!l! 00QD2R1A AOBPNON]
STOREASPADCRYI 1), INCANOWRITE
011021110 1eaA1111 GAAPPAR. @ GAAI2MOM
STOREAGPADCRT2), INCANDRRITE
dl11e1i1! 29221111 20272711 AAAMAAR]
STOREABPADCRIZ), INCANDWRITE _
21191111 10001111 dlpaAnil 20100301
STOREASPADCRIU), INCANDWRITE
21110033 20261111 AA00Q1R 1°BQAAAA]
STOREASPAD(RIS) , INCANDWRITE
21112220 1PER111Y 2PEQACQAL0 101aRARY
STOREASPAD(RLIAL), INCANDWRITE
21110081 20NAILL] 200PARAI1 1PAARANY
STOREASPADIRLIT), INCANUNRITE
241110091 12001111 20009a1] 1210BAA1
STOREASPADC(RZD) , INCANDWRITE
B1i1om10 Aead111l 20000P01P P110AR]
STOREASPAD(RZ1), INCANDWRTITE
2911123218 12001111 PMQEARALIA 7111040}
STOREASPAD(RE2), INCANDWRITE
21110@11 QAAAGI11{! PAMAGAGIY A1A{IANY
STOREASPAD(RZI) , INCANDWRITE
g1110m11 1a9n11)1 AAQAGPIY Q1110401
STOREASPAD(R24), INCANDWRITE
21110120 AP0C1111 2QPP2010 11010RAt
STOREASPAD(R2%S), INCANDWRITE
B1110190 1PQAQ1111 AGAMAPAIA (11107@¢%
STOREASPADIRZ8), INCANOWRITE
21110101 6EAR1111 ARoanmY] 1101804
STOREASPAD(R27), INCANDWRITE
Q1110191 te2pMIlll 20AAPAL] 1131031
STOREASPAD(RIA) , INCANDWRITE
Pt110110 20091111 #2220010 PEA1APD1
STOREASPADIRYL), INCANDWRITE
2111011p t@Aetil]l aVanlAia PPi1aAdY
STOREASPADI(RI2), INCANDWRITE
81110111 PeQeii1il AOXR301! ARAL10DBOY
STOREASPAD(RIY), INCANDWRITE
91110111 10201111 APAANMLS OA1L1ANGE
STOREAIPAOCRIUY, INCANDWRITE
dt11ie0@ PPRB1111 0BAGRALY 12M1QAAAY
STOREASPADC(RASY, INCANDWRITE
t1{1020 14pa1{11 APAGANI3 10t10AAL
ATOREASPADCIRIA)Y , INCANDWRITE
21111041 20001111 PAOGREAL] 1AA1PMAY
STOREASPADCRITY, INCANDWRITE
1111001 1202111t 200PO1t 10110841
INCANDWRITE
21111012 PPEALIL]l CORAAQANA APAARRPD

&0008YL

21111Q10 1Aecdan0] ARP220AR ARAMRARGA
FILLER :

21111011 @PodaAR] 2PA0PR0A ARGPAQAR
FILLER

211110811 12000001 A2ARZPA00 AR2ABNOQ

=18
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LOAD ALL B SCRATCHPAD VALUES

ALL OF THE REGISTERS IN THE B SCRsTLMPAD ARE LOADED WITH DATA WHICH
COMES FROM THE WCS LNCAL STORE IN 32 CONTIGUOUS LOCATIONS, THE

WCS INITIATES THIS CODE BY LOADING TMSPTR WITH THE STARTING ADDRESS
OF THIS ROUTINE AND CLOCKING INTO D THE LOCAL STORE ADNRESS MINUS ONE
(LBADR=]) THI8 ROUTINE WILL PIPELINE THE DATA FROM [ DCAL

BTORE YO THE GENERAL REGISTERS, {IN EACH MICROCYCLE ONE

16 BTY VALUE I8 READ QUT OF LOCAL STORF AND WRITTEN INTO TWE MD
REGIATER W#HMILE ANOTHER 16 BIT VALUE IS5 MOVED FROM MO THAROUGH

THE ALU INTO DO AND THEN WRITTEN INTD THE B SCRATCHPADRS)Y,

CONTROL IS RETURNED TO THE wCS MICROLODE AT TWHE END OF THIS

ROUTINE WHEN CROM«2> GOES LOW,

BSPADLOADY

167
370
371
312
373
374
37s
17s
n
490
a1
uge
403
40s
485
4Re
aa?
419
@11
42
413

434

LOADADDRESS
1111102 20023102 APA2AAQQ ARAAROAR
MD _OATA, INCADDRESS
211111086 128003111 00A21080F AARAAL LA
~ LDADBSPAD(RP@), INCADDRESS
B1111131 2CORA111 21001017 Pianetsa
LOADRSPAD(R21), INCADDRESS
21111191 100911t P1R0IR1IQ P1108110
LOADBSPAN({RB2), INCADDRESS
ML111119 AGRBC111 21901211 A120AL1Q
LOADBAPAD(RAY), INCADDRESS
01511110 14048111 1281213 A11p011Q
_ LOADBAPAD(RA4), INCADDRESS
1111111 APOBOI1! AIOALIOIE 110QALL0
LOADBSPAD(ROAS), INCADORESS
21111111 19222111 1AA1010 1110110
LOADBSPAD(RAS), INCADDRESS :
10420030 A0QMA111 A{AMIQ11 1i1G0B1LR
LOAOBSPADCR®7), INCADDRESS
10000000 120RM11Y 312317811 11108110
LOADBSPAD(RI®), INCADDRESS
120008201 A0AQ111 A1dAtRIO ARGARL1Q
LOADBAPAD(R11), INCADODRESS
120020801 13304111 A1ARIPA1A ARICALILA
LOACBAPAD({R12), INCADDREYS
130M0019 20PPOII1 F1@A1011 DPREABLILIE
LOADBSPADC(RIZ), INCADDRESS
10000013 10000111 21001311 2P10Q11Q
LOADRSPAD(RIU), INCADDRESS
13PMB1Y ARACPILY PIPQAIRLD (RQeALIQ
LOADRSPAD(RIS), INCADDRESS
{eaQenl 10PAMTYY 21GRIAIA 1R1OB11Q
LOADBSPAD(RIS), INCADDRESS
{200Q122 APOGAITY A1AM1A1L 10Q@0Q11A
LOADBSPAD(R17Y, INCADORESS
13028100 10PAQ11] B10A1AL] 1010011Q
LOADBSPAD(R2A), INCADDRESS
10PO010t AOPAAGL1Y P1PLINIQ BLARGIE
LOADBSPAD(R21), INCADDRESS
10080101 10020111 21211210 21100410
LOADBSPAD(R22), INCADDRESS
12002110 22003111 P1R11AL) ALAMBIIA
LOADBSPADI(R2Y), INCADDRESS
100001172 12002111 21011011 PL10B11D



41
a1
417
420
az1
g2
23
424
us
526
427
439
431
432
433
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LOADBSPAD(R24), INCADDRESS
10022111 ARA0AL1L A1211M10 11AAB11D
LOADBSPAD(R2S), INCADDRESS
19200111 1000111 @1A11010 111AB31P
LOADBSPADCR26), INCADDRESS
19001000 G2A0A111 01A11A11 11300110
LOADBSPADIR27), INCADDRESS
10001000 19880111 B1A11A11 111AN110
LOADSSPADCR3IA), INCADDRESS
19001001 AGAAAIL] A1A1191A AOBAAL1G
LOADBEPAD(RIL), INCADDRESS
10001301 1AAPRAI11 21211010 APIAA110
LOADBSPAD(R3I2), INCADDRESS
10431010 20202111 ntaliptl PR2AAI1D
LOADBSPAD(RIY), INCADDRESS
13081810 18P0A1LL AjA11A1] AB1ABYILP
LOADBIPANCRI4), INCADDRESS
18021811 ARAAAI1] A{ALIAIG 1ABARY 10
LOADRSPADIRIS), INCADDRESS
10031811 10P0Q1L1 PAl1A11A13 10108110
LOADBSPAD(RY®S), INCADDRESS
19781100 20200111 P1811811 19AAA11R
LOADBSPAD(RIT)
1AP21100 1PR0B1A1 P1A11AL] 101831(P
GOODBYE
19001191 2ANAA2AT APOPEAIQ AANOALARA
FILLER
1000118] 10000081 20PANAAA AAANAADD
FILLER
1021110 AM2A2R31 Q20000002 20B3PAPAQ

STORE ALL B JCRATCHPAD INTNH wls LOCAL STORE

ALL OF THE R SCRATCHPAD REGISTERS ARE BAVED INTYO THE WeS

LOCAL STORE IN 32 CONTIGUOUS LOCATIONS, THE WCS INTTIATFS

THIS CODE AY LOADING TMSPRTR (BY USE OF ULON) KITH TWF

STARTING ADDRESS OF THIS ROUTINE AND CLOCKING INTD D THME LOCAL
ATORE ADDRES®S MINUS ONE (LSANR=1Y, THIS ROUTINE PIPFLINES THWF
ONE 18 BIY VALUE I3 READ OUT OF THE 8 SCRATCHPAD THAROUGM THE ALU
AND CLOCKXED INTO O WHILE ANCTHER (6 B8IT VALUFE WHICH HaAPR AEEN
CLOCKED INTO DA PREVIOUSLY IS wWRITTEN INTO 4 LOCAL STNRE ANDRESS.)
CONTROL RETURNS TO THE WCS ROUTINE WHEN CONM«2» GOES LOw,

BIPADATOREY l

434
43s
436

“37

LOADADDRESS

10001112 10002100 AARA70ED NAQRARNDM
STOREBSPAD(ROD)

18001111 22aQ2iR3] 2002AMIP 2i1caBPRD
STOREBIPAD(RO1), INCANDWRITE

‘10001111 12241111 AAA2PAA1A A1Q01A0R

STORERSPAD(QD2), INCANOWRITE
ieaieoen oRAR1111 PAAANOA1! PloeRdan
STOREBSPAD(RAZ), INCANOWRITE
1801004 10921111 AAAQAR!L Aldainpa
SYOREBAPAD(RE4E) , INCANOWRITE
19019001 22031111 AARAARIA 110akapD
8TOREASPAD(RAS) , INCANOWRITE

190109021 1A@A111]1 OMPGAR21Q 11Ac120P



as3
444
aus
aas

447

68%0

%
%2
453
4%4
4ss
4%
L. %4
4ed
46!
462
483
usu
4ss
ase
Uas?
are
a7y
472
4713

avry

47s

416
4r?

%00

BTOREBIPAD(ROA&), INCANDWRITE
19312010 20821111 ARAAAVALY 110QA0P0
STORERSPAD(RAY), INCANDWRITE
18010819 12021111 QMPOMAD1! 112P1ABN
BYOREBSPAD(RID), INCANDWRITE
1961031 20aP111]1 AROCAP1IO 20C3NARAD
STORERSPADC(RLIL), INCANDWRITE
10010011 1202it11 OMQARR1? AANALARD
STOREBAPAD(R12), INCANDWRIYE
18010100 0PARIL111 2280320011 GOAAAQQ0
STOREBAPADCRYIZ), INCANDWRITE
1P91C120 10001111 ARRRARL] @AGAG1D0Q
ATOREBEPADC(RLIAY, INCANDWRITE
129010191 20001111 29AMAQAIP 17304037
SYOREBAPACCIRLS), INCANDWRITE
19912101 10001111 Q2920001 12021009
STOREBSPADIRLIS) , INCANDWRITE
1AQ10110 20PA2111) Q2302R)11 1000AAMA
STOREBAPALDIRIT), INCANDWRITE
1990121142 (9001111 PceAaplt 10001090
STOREBAPAD(R2@), INCANDWRITYE
1201211)] QOa2111] Q@addANIQ Pi3AIMA
STORERAPAD(R2L), INCANDWRITE
129013111 1821111 OPAAPNMIQ 14AL100
ATOREBAPAD(R22), INCANDWHARITE
18211000 20PA1111 20PAAZ1L HlaDALAR
STOREBAPAD(R2Y) , INCANDWRITE
10211000 12001111 0AR2OMALI1 AiPal10Q
STOREBSPAD(R24Y, INCANDWRITE
10211901 20PAP1111 22000R10 LinaA1AR
STOREBSPAD(RZS), INCANDWRITE
17011@02Y 1emBl11! A2ADRAId {10A11MA
STOREBSPAD(R2H) , INCANDWRITE
{fef 019 22291111 Q2P0PQY11 11004100
STOREBSPAD(R2T7Y, INCANDWRITE
l!ﬂ!lpis {02111 Ac0APR1Y 11091100
STORERSPAD(AIA), INCANDWRITE
10011011 P2aR111! QAQARANIP GOAARLIOR
STORFRAPAD(RIL ), INCANDWRITE
19011811 10RA111] QAAAA0RIM andlien
STOREBMSPAD(RI2), INCANDWRITE
i201110m 2QOR111t QO0ARZ1t MOGDPOLI®D
STOREBIPADCAII) , INCANDWRITE
10011190 18080111 AGRARP1] ARQAALILPE
STOREAAPADIRIUY, INCANDWRYITE
1901147 QPraP111! QPP03013 {APAB1AN
STOREBAPAD(RIS), INCANDWRITE
1001112 1001111 QAAXOPALIO 100211Q2
STOREBSPADI(RIG), INCANDWRITE
109811110 220211t 0QA2RG3)1 1AGRO1AP
ATOREBAPAD(A3T), INCANDNRITE
10211112 10231111 200902211 19321107
INCANDWRITE
18311111 angAllll 2RQAARRAL AAARAAAN
GOQDAYE
1801141 12000001 PAPAAANA AARARAAA
FILLER
18103900¢ P3G20Q1 QAARARAD ARGOARAR
FILLER
12100000 10273301 FPABAAAY AZAMARPA

g-2!



+TOC LOAD ENTIRE C SCRATCHPAD FROM WCS
H
} THIS ROUTINE LOANS ALL NF THE ENTRTES IN THE C SCRATCHPAD FROM DATA
| PREVIOUSLY SAVED IN THE WCS LOCAL STORE, THIS COOE I8 INITIATED
} BY LOADING TMSPTR WITH THE STARTING ADDRESS OF THIS ROUTINE AND
| CLOCKING INTO D THE LOCAL STORE ADORESS MINUS ONE (L3ADPe1},
1 THE DATA I8 READ OUT OF WCS LOCAL STORE AND WRITTEN INTO THE
1 C SCRATCHPAD IN ONME MICROCYCLE, EACH CYCLE HANOLES ONE 18 RIT
| "DATA ITEM, CONTROL SETURNS 10 THE w8 MICRNCODE WHEN CROM«<2» GOES LD
) )
ALLCSPLOAD!
LOAOADORESS
Sp1 12120021 AANRQ1AP AAPAQAEZD PVBRAQAQ
LOADALLCSP(A), INCADDRESS
a2 1010000% 100QQ111 AACPALAAG AQPAQPTR
LOADALLCSPC1),INCADDRESS
5aY 121(0801@ D00ARQ111 QA0RALIAR A0ARANLIA
LOADALLCSP(2), INCADDRESY
T4 1010001@ 10@2Mii1 A0PALAN] PAAAAALA
LOADALLCAP(3), INCADORESS _
€a% 19108011 (90290111 200A11Q) AQAADALR
LOADALLCBRP{4), INCADDRESS
SPbh 10108311 10080113 20001290 |0A2OD1P
LOADALLCSP(S), INCADDRESS
SGY 101900123 20PRQ111 AAPALIAR 1QAMMAIA
LOADALLCOPCS) , INCADDRESS
510 12i09i0@ 1QMG0111 POGALAP] (2RAANLA
LOADALLCSP(7), INCADDRESS
511 12102191 20002111 PARALIP] 102ABALN
LOADALLCOP(1Q), INCADDRESS
€12 (010010t 12G0Q11] 20001000 ALPAORA
LOADALLCSP(11), INCADDRESS
513 10102110 22200111 A0PR1100 A1QPAALA
LOADALLCAP(12), INCADNREDS
Si14 10182112 10AP011] 20RNAIQAA] ALPAMMLP
! LOADALLCSP{13), INCADDRESS
1S 192102111 e9Ma@tt] AGAGIIQl ALOPAAQAIRA
LOADALLCOP{ 14, INCADDRESS
16 1010Q511 10042111 220Q1¢Al licpaQ1R
LOADALLCOP(15), INCADDRESS
17 12101200 GQEPAR11] 2AnRi120 11020010
LOADALLCSPUIB)Y, INCADDRESS
529 10ig10a0 10020111 22001001 (1MEAR]P
LOADALLCAP(17),INCADDRESS
%21 1217108t AAP2aiil 2000101 1i0paoP
GOODBYE
£22 {MMMA1AP] 100QARP] AORAAAAP APAMAMAA
FILLER
523 (0121310 POACRAMAL PAAQARGH ADABNONA
FILLER
524 IP191@i0 1020002t QQNAAAPA AGARRROD
« TGC STORE ENTIRT € SCRATCHPAD INTO w5 LOCAL S5TORE



ALL THE € SCRATCHPAD ENTRIES ARE SAVED INTO WCS, THIS ROUTINE T8
CALLED BY LOADING TMSPTR WITH THE STARTING ADODRESS OF THIS POUTINE AND
CLOCKING INTO P THE € SCRATCHPAD INTO WCS LOCAL STORE, tIN EACH
MICRODCYCLE ONE 16 BIY VALUE 18 READ OUY OF THE € SCRAYCHPAD, THROUGH
THME ALU AND CLOCKED INTO D WHILE ANOTHER 16 BIT VALUE WHICH HAD

BEEN PREVIQUSLY CLOCKED INTQO DA 18 wRITTEN INTO A LOCA| STDRE ADORESS.)
CONTROL RETURNS TO THE wCS “ICROCODE wHEN CROM«2> GOES LOW AT TRE

END OF TMIS ROUTINE,

LCSPSTOREY
LOADADORESS
S 1101911 2830100 A200APAY APAAIAAM

STOREALLCSP(D)

'S 18191011 12032105 20A2AR1IA ATOACR1Q
STOREALLCSP(L), INCANDWRITE

7 12101180 AP2GL1111 AARGALIA AQAQAPIQ
STOREALLESP{2), INCANDWRITE

@ 10121176 10001113 2AARAR1Y AAAR2ALQ
STOREALLCSP(3), INCANDWRITE

3} 13181101 9921114 29PURA111 A0dEQ0A1Q
STAREALLLSPLU), INCANDWRTITE

2 1eif1191 10001111 29R00Q1Qa 1A0Q0010Q
SYORZALLCSP(S), INCANDWRITE

'y 1M1 AAAS111Y A22@Pi1A 1A7AABR1Q

. STOREALLEAP(H) , INCANDWRITE

4 1812111p t@pR21tl) RA2paaals 190aAP1M
STOREFALLCSP(T7),INCANDWRITE

IS 12121111 Q2oi11] APAem1ly 1P0Q021P
SYOREALLCOPCIQ), INCANDWRITE

6 181A1111 10031111 PORRAOA1M A10A0A1ID
STOREALLCSP{11), INCANDRRITE

(T 12110004 2001111 3AAQ0I1IR MiaAPALIP
STOREALLCSP(12), INCANDWRITE .

12 1931109000 1g2ad2iti! 2402001 oi2PAAIR
STOREALLCSP(13), INCANDWRITE

(31 128110821 22061111 2000111 A10EPDLR
STOREALLCSPIIUY, INCANDWRITE

2 19110291 12001111 2MQ2Q0QtQ 110@a010
STORFEALLCAPL1S), INCANDWRTITE

13 198110210 GAaA1111 ORI 2 11020010
STOREALLCSP(LIA), INCANDWREITS

id 19119010 1000111 2ARR0QAM1Y 110p0310
STYORZALLCSPCLIT7), INCANOWRITE

i% 10113911 0DPG1111 Q0000111 11900310
INCANDWRITE _

6 18110911 1090Q@111% A000P00Q2 ARQE2ARD
- GOODBYE

17T 10119100 22Q0NPd! QAR20000 2rpsdoen
FILLER

§¢ 101121909 10020001 Q0AGA09Y RAMAB0NQ

g FILLER

1

10112101 23M09NAt 20023232 paQDPRRAR



' TOC READ TWO PIECES OF DATA FROM LOCAL STOPE
i THIS ROUTINE REQUIARES A TOTAL OF STy MICROCYCLES YO LOAD
| THE ADDAESS REGISTER AND REALD TWO PIFCES OF DATA FROM |DCAL
| STORE PLACING THE FIRSY IN 0 AND THME SECOMND VALUE IN MO, ~ THE
} FOLLOWING DIAGRAM SHOWS HOW TO CALL THYS ROUTINE AND WHAT MALPPENS
i AT WHAT TIME:
l I X Y PR R R R R 222132 2R 22222232322 X R XX R R 2R R ARSI SREES RN
[} L] WCS MICROCODE * TMS AND CROM *
l | 2 IR R X R R 2L R R A X X T2 3232 231222 2R XY XY R R R R YRS A RYR ARSI AR )
} ] ) -
i * P2eT, De==ADDRRESS * NO CONTROL *
i » L *
I iitittttt!.l*ttittittittitt.ttittt!ttttiittﬁtttittittttiiltititti
F . . » L]
) » THMSPTR, (LOADREADTHO) * NO CONTROL »
i - * -
l I 2L X2 2SS R R 23R R X2 AR 2R A2 AR AR RREAS R R R R YRR SRR R AR B
1 - L] "
] » NULL WORD - NO CONTROL .
} ] " 'Y
[ I XY YT EEZE AR EERENIITERRSR N RARRNNERARRREAR NSRS RRAR RS R R 2 NS Q)
1 . . LOAD AODRESS *
1 * * (DATA CLOCKED ONTO BUSDIN) .
i . P}, Mig==DATA » "
I 1 3 F 2 XX R E X R R AR R R YRR X R R R XA RSN SRF R R RN AN NNRZRINZ AR IXERENE R NN N
1 » ) L] INCADDRESS ' .
| * NO CONTROL * PReT, D<ewwMD,(DATA CLOCKEDR RUS»
3 * *+ P3, MO<==DATA .
I 1 I AL AR R AR R AR IR R SRR R SRR A 2SRRI SR 023 R SRR YR N X
I L " -
i . NO CONTROL » GOODBYE *
i ) - *
l B A XXX NITREEA AR R AR AT SARER 2SR AR AR R AR SRR A RRE2 2R 2] )
l e BACK IN CONTROL,
LOADREADTWOS

LOADADDRESS
5§82 10112101 1¢2BN1IAQ AANAIAAR AAANINAD

D MO, MDD _DATA, INCANDRESS
553 12110112 DA00Aill AAPALP10 ARADPAYIIQ

GoODBYE
54 1911011Q 13@AGAR1 APRAARAAD APGDBPAQR

FILLER
588 18110{11] AAPAAAAL PAGPACRAAR GARAAADAD

S e e e g

THIY ROUTINE REGQUIRES 4 TOTAL OF FIVE MICRNACYCLEY TO PEAD TwO
PIECES OF DATA ASSUMING THE ADDRESS REGISTER HAS ALREADY

AEEN LOADED, THE FOLLOWING DIAGRAM SHNAWS HOW TO CALL THIS
ROUTINE AND wWHAT WAPPENS WHENY :

g-—.2¢



e e s e e e e e e e Gen e em G e e e G e S e en s e

.f.ﬁiii.t'ﬁt‘tilitttilittitl*t.i*tiiitt.iii'tiititttﬁ.itiiit*iiitt

* wCS MICROCODE » TME AND CROM . "
.....‘.’.‘*..i'i‘..*ii*'!i*...‘*.ii'i‘iiﬁii.'..i..*t.'it.ii..ﬁ.'*
- L 4
] TMSPTR, (INCREADTWO} L NO CONTROL *
* * *
(R R X ERER XX 2223222222221 2220 AR 2 iR 2 iR R 2 2 X R R E R SRR 2RI E)
» - -
] NULL WORD * NO CONTROL -
L * 1]
I 1 X2 AT R X2 REARRES R AR RAR AR A SRR AR AR XS A S22 2R RS RR AR R
. * INCADDRESS . »
" ' « (DATA CLOCXEN ONTO BUSDIN) *
* P3, MOcws NATA » »
I Y122 XY R EXRERE LN IR IR AR RS RRESIRSRRASERREE NI SRR 2SR 2]
" * INCADDRESS *
& NO CONTROL * P2=Y, DdewaMd (BUSDIN CLOCKED) =
. * P3, MD¢=o[ATA .
I XY TR 2 XRA 222 2R AR LR AR R 2R 2R R AR AR RRdR R RRZEA RS R RN K
» * . ) 13
L NO CONTROL * GOODAYE »
* * *

(22333 XRRARAENERANEEARERAS R RN AR FAA RS ASNRASARREZSNEE SRR X}

wBACK IN CONTROL,

INCREADTWO?
INCADORESS
5%6 101312111 1002011 GARARANA ACRAARPQAP
D MD,MD_DATA, INCADDRESS
557 10111000 22002111 29221910 Pedo2110
GOONBYE
540 10111900 123000l APRAAGOR CABAR2ANMA
T0¢ WRITE TwO PIECES OF DATA INTO LOCAL STORE

[
l
l
|
l

THMIS ROUTINE REQUIRES A TOTAL DF SIX CYCLES TO LOAD TwE
ADDRESS REGISTER AND WRITE TWD PIECES nF DATA INTO LNDCAL
8TORE. THE FOLLOWING DTAGRAM SHOWS HWOW TO CALL THTS
ROUTINE AND WHAT HAPESENY WHENE

(23R R RS2 RS ES RN RIRE SRR AR RERALRRNSRRARSEDRNLANSREDRS,;

. WCS MICROCODE » TMS AND CROM *
I T2 23R 2R AR R R AR ERARRRIZARSZ AR SN RARR R AR AR R A RARE LR
| * -
* P2euT, D€==ADDRESS . NO CONTROL - "
» * *
Y Y Y L2 222X 22 FZT R XA RIS RR2 A A2 22 AR RS ZXRRSESSS R 2R R B
. | * (DRC==ADNRESS) .
* TMRPTR= (LOADWRITETWO) L NO CONTROL *
» - W
IR EZEREZ IR 2R AR ARR AR R R 2R R Rl 2R ARl s sl syl
] ] -
n P2al, DeweDiYi] * NO CONTROL *
- - *

E - 25



Y T2 1233232322222 233 223222222 22222t 22122 Rl lsslyl ]

H
l * * LOADADDRESS (DR«==DATAL) *
] * Pe¥, Dee=DAiTA2 * (DATAY WRITTEN INTN LOCAL ST) =
§ * . *
} P I o I I T T T I MmN T T
] x * INCADDRESS (DR<eaDATL?2) *
¥ » NO CONTROL * (DATAQ WRITTEN) *
! L ’ * "
i e Ll I I I TImMmmIIIImnmMInII T I T IIIomTm
§ L * '
| * NO CONTROL * GOODBYF *
H » ] «
] T2 23R XA AR A CE NI 2SR AR AR 20222 AR X XYRAS AR 2 22 22 2 001 3]
| #BALK IN CONTYROL.
LOADWRITETWO?

LOADANDWRITE
561 14111021 POR11R2 A20QPQA000 AQARAAAD

INCADDRESS,WRITEDATA
562 10111001 1pae11il 200RADAAG A220P0ONMQ

GOODBYE
563 (90111012 2230730 POMACRAR APAPACAP

FILLER

Se4 10111010 13000321 20200000 ARPARAAN

THIS ROUTINE REQUIRES & TOTAL OF S CYCLES TO WRITE twn PIECES OF DiTa
INTO LOCAL STORE ASSUMING THE ADORESS REGISTER HAS AEFN LOADED
PREVIOUILY, THE FOLLOWING DIAGRAM SHAWS HOW TD CALL THIS

ROUTINE AND WHAT HAPPENS WHEN!

[N S )

(2L 2222220 Rl a2l 2Rl i R R Rl a RadRal ] ]

[ ZARR AR R AR R AR R R SRR AR ERERERAERS RN LA

«BACK IN CONTROL,

1

H * wCS MICROCODE » TMS AND CROM *
I 222 AR RS RARAYE AR 2R AR RIS RRRARR22RR2RIER ]
1 » * ™
} . TMSPTR, (WRITETWO) * NO CONTROL .
i * - "
3 | REA X RRAR R AR SRR N RIS ARAIRRARIEARRR222RRRRRR)2A S
1 . » -
l *» PReT, Da=eDATAY » NGO CONTROL .
1 * » »
l [ R 222 R4 R 2222 R 222 X2 AR 2R RRRSRERRALAR AR SRR AR 2R R R 2R 1)
l » ) : * INCADDRESS (DB«=wuDATAl) *
[ * PReaT, DeDATA2 * (DATA] WRITTEN) »
1 " - '
l I A A AT RS R X2 RAR R RN RSN EEEERER SRR NNRERRSEASRERREE 2SRRI RS SRR ] ]
§ " * INCADDRESS (DBe=eDATE2) *
l . NO CONTROL » (DATA2 WRITTEN) *
I * » 13
[ 1 ¥ 22228222 R 2AR2R 2R RIR 2R AR RT RS TR R X AR AR NS SN RS RS E AN AR R X
i » * *
| * NO CONTROL * GOODBYE -
H * - *
H

}

E-26



WRITETWO?

So5
564
367
ST

« T0C

Wt e e A e en ek e e S e G S B few im i G an e B e e e e e S G e B G G e e e e

|

INCADDRESS, WRITEDATA

101i1e11 eoeR11!l 20290030 2noedlnd

INCADOREAS,WRITEDATA

12111611 1700111 MOAARDRA AAGAR2DD

GOODAYE

18111100 227300025 2AQRARNP dBAP32P0

FILLER

19111100 17Q0AP01 QdQoagone J3300ARD

READ DATA VALUE POINYED TO BY LOCAL STORE VALUE POINTER,

THIS HOUTINE TAKES TWE ADDRESS LOADED, READS THE VALUE IN THaAT
ADDREHS, AND THEN USES THAT VALUE AS AN ADNDRESS TO READ THE DBAYA
VALUE INTO M0, THIS ROUTINE REQUIRES SUPPORT FROM THE MICROCODE
AS DESCRIBED IN THE CALLING SEQUENCE DIAGRAM AELOWT

(22 R3S RN Rl R Rl 222 R 2RISR SRR 2

* WCS MICROCODE * THS AND CROM .
(A A AR LR LA RARRARRR AR L2222l A R AR X2 RYS R 220 8
L ] L L]
* P2eT, DC«=viDORESS * NO CONTROL *
] & . ]
[ 1232222222222 TR SRR 2R RRAXRIERTAE SRR Y]
» * {DR<-=ADDRESS) )
L TMSPTR _(READINDIRECT) L NO CONTROL *
. * .
[ 22222222 AR RS ER SRR ERRE ST E SRR RERERREZ SRR FX TR R2AA SRR 1]
L] * L ]
" NULL wORD - * NDO CONTROL *
* * *
I Z 22 AR RARL AR RZAR R0 RS2SR X
* * "LOADADDRESS L]
* * (CLOCK BUSDIN) »
s P3, MD<w= ADDRESS * »
(22222222222 RRRR2 2R3 202 iaR R 2R 22 AR RS RR R R
L ] L L
* NO CONTROL * PPaT, DeweMp *
| ] - L 4
| 23X RRRER 2R R R REREIRARARAREREE AR ZARE R RZ SRS SRR SRR R R X
» . " ({DB<=eADDRESS) .
* NO CONTROL : * *
» _ . *
[ I X LRSI EREZSARERAR AR R AR RSS2 SER R R 2R R R ERREE XN ]
L - LOADADDRESS *
* NO CONTROL . {RUSDINw=fIATAY *
* r PY, MDcoaDATA "
LA ERZZRREERE SRR SRR AR ARl R SRR RARRREY SRR N
» L 4 L]
] NG CONTROL 4 GCODBYE bod
» » ]

(AZ 2R EANERZSARRR AR R R R R RZRRLLESRR N2 ERRdSR R 2R RESERENT 2]

#8ACK IN CONTROL,
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READINDIRECT:

LOADACDRESS

ST1 19115121 20223100 Q0027020 AANRAOAN
D.MD,STEPTHROUGH

72 19111191 1002171 20909010 23000112
STEPTHROUGH '

573 12111110 02200{31 00032007 MARQPARAD
LOADADDRESS, MO _ DATA

74 19111119 10000102 QCAD102x APBRALL1P
GOODAYE

578 12111111 OMePRGA: 20023297 DdAGAAAAP
FILLER

576 18111111 12000001 20200020 A3QA2P0Q
 70C WRITE DATA INTD LOCAL SYORE ADDRESS POINTED TO BY LOCAL STORE POINTER,

THIS ROUTINE USES ADDRESS POTINTED TO BY CALLING ROUTINE iS
A POINTER TO ANOTYHER LOCAL STORE valuk, THE VALUE IN WCSA(D)
I8 WRITTEN TO THAT LOCAL STORE POSITION, THE FOLLOWIMG .
TIMING DIAGRAM SHOWS MOW THIS ROUTINE IS CALLED ANP EXFCUTEDt

—— g =

LA SRR RERRELS R RARR TR 2R 2R R0 RN 222 N2 R X2}

* WCS MICROCOODE * TMS AND CROM .
L AR A X222 L2222 1R Rl 22 2022022222222l 2R 2R 2R R ]
* - )
® P2aT, D«<e=ADDRESY » NO CONTROL *
" » [ ]
CR RN RN AR R AT RSO R A AR RN R AR R N T PR AR A I RN DR AR R DR AT A TP ok DA
. » (DB<==ADORESS) »*
- THSPTR _(WRITEINDIRECT) = NO CONTROL -
» B *
Y I R R R R R R Y I I s I I I I IIITITYT
" * *
» NUL| WORD L] NO CONTROL *
| ] % -
T I I I I IO
L * LOAD ADDDRESY o
* « (BUSHDIN CLOCKED WITH DATA) ]
* P3, MO<ewDATA » »
BB RE AN RN R C DA TN R A R RS A NS AN R NP DR SRR AR R AR RO RR I AR RO AR AN
w L -
* NO CONTROL * P2aY, DeewMD *
w * | ]
T I I L R I I I I e L T ILITIIITIINIINIINY
. * (DAC==ADDKESS) *
. NO CONTROL s PRaT, DawmWlSA(R) *
- * L]
T I I I N N I P R R R AR A R R T P T P T T Y Y
* * L_OANADDRESY (DRACeeaDATA) L
. NO CONTROL * (DATA WRITTEN) "
* * -
I T R R R 2 R R R I Y I I T I L
- * *
" NO CONTROL * GONDBYE "
] * «

LALE AR EdR SRR NSRRIl SRR 2RO R R RRRR LR 2R}

#BACK IN CONTROL,
E;-flzéa



WRITEINOIRECTS

77
(11
(1}
402
603
.31

LOADADDRESS

11080203 23222100 22000007 AARAIRAR
D.MD, STEPTHROUGH

11900008 1023@101 AA0ANA10 20QA2110
STwlaA(®)

11300001 220022101 MA2Q00210 PiAL1RAGY
LOADADDRESS, kRITEDATA,STEPTHROUGH

1103000 t090ijco A2P920C00 ACARAMDD
Gooopeave

11300410 G2000021 FAMQPEAZM QPRQROAR
FILLER

11000010 10000001 22202007 OROAR2PQ






APPENDIX F
{TEMPORARY)

The following pages contains drawings and other information
from the Microprogramming Summary which have not yet been
integrated into the specification.



FOVa

> + > P

Jeeg In)

DOP#3M@2DMAnaSRTw=DRT
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