DEC-08-UMPHA-A-D

MPS

MICROPROCESSOR SERIES
USER’S HANDBOOK

13t Edition, July 1974
2nd Printing (Rev), November 1974

Copyright © 1974 by Digital Equipment Corporation

The material in this manuval is for informational
purposes and is subject to change without notice.

Digital Equipment Corporation assumes no respon-
sibility for any errors which may appear in this
manual.

Printed in U_S.A.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CHAPTER 1

1.1
1.2
1.3
1.3.1
1.3.2
1.4
1.4.1
1.4.2
1.4.3
1.4.4

CHAPTER 2

2.1

2.2

221
2272
223
2.2.4
2.2.5
226
2.2.7
23

23.1
23.2
233
2.4

24.1
24.2
2.5

2.5.1
2.5.2
253
254
2.6

2.6.1
2.6.2
263

CHAPTER 3

3.1
32
33
3.3.1
3.3.2
333
334

CONTENTS

Page
OPERATING CHARACTERISTICS
INTRODUCTION o e e e e e e e e e e e s e 1-1
GENERAL DESCRIPTION e s e e e e e e i e e 1-1
FUNCTIONAL DESCRIPTION e e e e e e e e 1-1
Microprocessor SeriesModules L e 1-1
MPSST Software ToolsPackage 1-4
SPECIFICATIONS e e e e et e e e e s e e e 1-5
Performance Specifications L. L e 1-5
Electrical Specifications e e 1-8
Mechanical Specifications L. e e e 1-8
Environmental Specifications (all modules) 19
FUNCTIONAL DESCRIPTION
INTRODUCTION o o e e e e e e e e e e e e e e e e 2-1
PROCESSORMODULE o . . e e e e e e e e e e e e 2-1
Processor Module Timing e 2-1
Processor Module InstructionCyele oL oo 0. 2-4
Input DataPaths o o s e e e e e e e e 2-4
Output Data Paths e e 2-5
Contral Logic . . . o o 0 o e e e e e e e e e e 2-5
Asynchronous Communications Receiver/Transmitter Logic 2-5
Interrupt Control e e e e e 2-6
READ/WRITE MEMORY MODULE ittt et e ia s 27
Memory Read Timing e 27
Memory Write TIming 0 0 0 o e e e e e e e e e e e e e e e e 2-8
Address Decoding e e e e 2-8
PROGRAMMABLE READ-ONLY MEMORY MODULE 29
Memory Organization L e 29
Address and Control Pecoding e 29
EXTERNAL EVENT DETECTIONMODULE, 2-11
Priority Arbitration Logic 2-11
Start Circuil . . . o o e s e e e e e e e e e e e e e e e e 2-13
Powcer Failure Detection Cireuwit . . . o 0 0 o 0 0o b 0o o e i s e e 2-13
Stop Function L L e e e e 2-14
MONITOR/CONTROL PANEL e e s 2-14
Monitor/Control Pancl Cable Conneetions o v v v v v v v v v v 214
Monitor/Control Panel Functions« v v v i v i e e e e e e 2-14
Resident Memory L e e e 2-20
MICROPROCESSOR SERIES INSTRUCTION SET
INTRODUCTION o e et e e e e e e e e e e e e e i e 3-1
INSTRUCTION FUNCTIONS AND FORMATS, 3-1
INDEX REGISTER INSTRUCTIONS e 3-3
Loading Data into Index RegistersorMemory 33
Loading Data Immediate 0t e e e e e e 34
Incrementing an Index Register oL Lo 34
Deerementing an Index Register oo 0000 oo oo 34

jii

3.4

34.1
34.2
343
344
3.5

3.5.1
35.2
3.53
3.6

3.6.1
3.6.2
363
3.7

301
3.7.2
373

CHAPTER 4

4.1

4.2

4.2.1
42,2
4.2.3
424
425
4.3

43.1
4.3.2
4.3.3
434
4.3.5
4.3.6
437
4.3.8

CHAPTER 35

5.1
5.2
5.2.1
522
5.2.3
53
3.4
54.1
34.2
54.3

CONTENTS (Cont)

Page
ACCUMULATOR INSTRUCTIONS o o e e 34
Index Register Instructionso 3.5
Cperations WithMemory e 3-7
Immediate Instructions L o e 3-8
Rotate Instructions v 0 i i e e e 3-10
PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS 3-11
Jump Instmuctions L L L e e e e e e e 3-12
Call Instructions o o e e e 313
Return Instructions 0 . 0 o i e e e e e e 3-14
INPUT/OUTPUT INSTRUCTIONS e, 3-16
Input Instruction L e e 3-16
Ouiput Instruction L e e e s e e e e e 3-16
Reserved INP and OUT Instructions« . v vt v it vt i v i v v w s 3-16
MACHINE INSTRUCTIONS e e e e e s 317
Halt Instruction 0 . 0 i e e e e e e 3-17
Restart Instruction o 0 i i s e e e e e e e s 317
Interrupt Enable and Disable Instructions v v v o v o i o ... 3.17
THE PDP-8 HOST ENVIRONMENT
INFRODUCTION TOTHEPDP-8 e e e e 4.1
PDP-8 HARDWARE ENVIRONMENT e oo o 4-1
Central Processing Unit (CPU) i i e e 4-1
Programmer’sConsole o i it i e e e e e 4.1
Keyboard/Printer Terminal L., 4.5
Low-Speed Paper-Tape Reader/Punch 4-6
High-Speed Paper-Tape Reader/Punch 4-8
PDP-8 SOFTWARE ENVIRONMENT o i s e 4-9
TheRIMLoader i, 4.10
The Microprocessor Host Loader 4-11
The Microprocessor Language Editor oL 4-11
The Microprocessor Language Assemblero o oo 4-11
Master Tape Duplicator/Verifier ittt i i, 4-13
Microprocessor ROM Programmier 0 o 0 v v v v v b b e e e 4-14
Microprocessor Debugging Program L . L oo o 4-14
Microprocessor Program Loader Lo oo oo 4.14
MICROPROCESSOR LANGUAGE EDITOR
INTRODUCTION TOTHEEDITOR o e e 5-1
OVERVIEW OF EDITORCOMMANDS v 51
General Editor Syntax L L e e e e e e e 5-1
Errors in SpecifyingCommands 5-1
Line Numbering 0 e e e e 5.2
EDITOR MODES OF OPERATION i i 5-3
SPECIAL CHARACTERS AND FUNCTIONS 5-3
RETURN: TerminatingaLine . _ . . _, 53
CTRL/U: BrasingaLine i i i i it ittt b e e e e e e e e 53
RUBOUT: Erasing ACharacter« i v i i i ittt et i e e e a 5-4

iv

544
5.4.5
54.6
5.4.7
54.8
54.9
54.10
54.11
54.1z2
5.4.13
54.14
5.5
5.6
5.6.1
5.6.2
5.6.3
5.7
5.7.1
5.7.2
5.7.3
574
5.7.5
5.8
5.8.1
5.8.2
5.83
5.8.4
5.8.5
58.6
5.9
5.9.1
5.9.2
593
5.94
595
5.9.6
5.10

CHAPTER 6

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
634
6.4

CONTENTS (Cont)

CTRL/L: Entering AFormFeed (.0 iieo...
Dot (.): Identifyingthe Cureent Line ¢ v v v i i n i e e
Slash (/): IdentifyingtheLastLine
LINE FEED: IdentifyingtheNextLine,
ALT MODE: [ncrementing the Current Line
Right Angle Bracket (*>): Identifying the NextLine _
Left Angle Bracket (<): Identifying the PreviousLine
Equal Sign (=): RequestingaValue it
Colon(®): RequestingaValue i i i it i it
Blank Tape and Leader/Trailer Tape: Processing Paper Tape
CTRL/I: Tabbing Editor Qutput,
SWITCH REGISTER OPTIONS i e e e et e e e e e
INPUT COMMANDS e e e e e e e e e
R: ReadingPaper Tape o o v v i it i e e et e e e e e e e e e e e
A Appending Terminal TeXt 0 L o i i e e e e e e e e e e
I: Tnserting Textinthe Buffer
OUTPUT COMMANDS i e e e et e e e e e e e e e e e e ey
L: Listing on the Terminal Printer
P: Punching Gut Paper Tape o i i it et e e s e e
F: PunchingaFormFeed
T: Punching a Paper Tape Trailer,
N: Combining P, F,K,and RCommands
EDITING COMMANDS e e et e e e e e e e e i
C; Changing Linesinthe Text Buffer,
D Deleting Linesof Text o v v v o i i e e e e e e
G: GettingaTagged Line 0 i i i i i i e e e e
K: Killingthe TextBuffer .,
M: Moving Textinthe Buffer
S: Searchingthe TextBuffer
EDITOR OPERATING PROCEDURES o et ittt e i
Loading the EditorintoCore i i i i it e e
Generating a Symbolic Program Off-Line
Loading a2 Symbolic Tape Using th¢ Editor
Restartingthe Editor v oo e
Editing the Source Program L. Lo
Punching the Corrected SymbolicTape
EDITING EXAMPLE . . . (. . . e e e e e e e e e s

MICROPROCESSOR LANGUAGE ASSEMBLER

INTRODUCTION TO THE ASSEMBLER
OVERVIEW OF THISCHAPTER. i e e et e e i e e v
BASIC CIIARACTER SET L . i e s e e e e e e e e e e e e e
Legal Source Text Characters o o v v v it ittt e e
Format Control e e e e e e e e e e
Construction of Numbers o0 i e e e e e e

Constructionof Symbols L L e e e e e
STATEMENT SYNTAX i e e e e e e e e e et

6.4.1
6.4.2
6.4.3
644
0.5
6.6
6.6.1
6.6.2
6.5.3
6.6.4
6.6.5
6.7
6.8
6.9
6.10
6.10.1
6.10.2
6.10.3
6.104
6.10.5
6.10.6
6.10.7
6.10.8
6.10.9
6.10.10
6.11
¢.11.1
6.11.2
6.11.3
6.11.4
6.11.5
6.11.6
6.11.7
6.12
6.12.1
6.12.2

CHAPTER 7

7.1
1.2
7.3
74

CHAPTER 3§

8.1
8.2
83
84

CONTENTS (Cont)

Page
ConstructionofaLabel _ e 64
Coonstruction of an Instruction & & . @ o o i e e e s e e e e 64
ConstructionofanOperand L 0L 6-5
Construction of aCoOmMmMENt . .+ . . 4 « v v« v i s e e e e e e e e e 6-5
THE LOCATION COUNTER e e e e e e e e e e e e e 6-3
EXPRESSIONS AND OPERATORS e i, 6-5
Expression Evaluation o0 oo 6-6
Replacement and Arithmetic Operators v v v v v v o 6-6
Logical Operators 0 e e e e e e s e e e 6-6
High Byte-Sclection Operator o v v i i i e e it e e e e 6-6
Block-Offset Operator e e e e e e e 6-6
THEMEMORY MAP o e e e e e e e e 6-7
ASSEMBLER SYMBOL TABLES e 6-8
MLAINSTRUCTION SET o i e e i e e e e e e e e e e e e e e e e 6-8
PSEUDC-INSTRUCTIONS e e e e e e e e e e et e e s as 6-8
$: Indicating End of Program e 6-8
PAUSE: Pausing During Assembly 6-8
¥ SpecifyinganQuigin - oo L 6-9
OCT, HEX, and DEC: Specifying RadixControl 6-9
EXPUNGE: Deleting the Instruction Symbol Table 6-9
OPDEF: Specifying User-Defined Instructions 6-9
DATA: AssigningaValuetoStorage o v v v i i i v v i e e 6-10
BLOCK: AssigningaBlockofData 6-10
TEXT: Specifyinga CharacterString 610
ADDR: Generatingan Address oL e e e e e e o-11
ASSEMBLER OPERATINGPROCEDURES, 6-11
Loading the AssemblerintoCore« o v it i i i o 6-11
Preparationof Input e e e e 6-11
Starting the Assembler, . L. . e 6-11
Assembler Qutput L. e e e 6-12
Symbol Table Format i i e s r e e e e e e e e e e e e 6-12
Binary Output Formmat _ e 6-14
Output Listing Format e et e e e e ns 6-14
ASSEMBLER PIAGNOSTICMESSAGES 6-15
Error Types o i e e e e e e e e e e e e e e e 6-13
Summary of Diagnostics i e e e e e e e e e e e e 6-15
MICROPROCESSOR PROGRAM LOADER
OPERATING ENVIRONMENT . .,, . e e e e e 7-1
LOADING ABINARY TAPE e e e e e e e 7-1
RESTARTING THELOADER i it e e 7-1
MCPMEMORY e e e e e e 72
MICROPROCESSOR DEBUGGING PROGRAM
INTRODUCTION TOMDP e e e e e e i e e e e e 8-1
OPERATING ENVIRONMENT e e e e e 81
BASIC CHARACTER SET o e e e e e e e e e e 8-1
ADDRESS SPECIFICATION e e s e e e e e e e e e e 8.2

vi

8.5
8.6
8.7
8.7.1
8.7.2
8.8
88.1
8.8.2
8.8.3
8.8.4
8.9
8.9.1
8.9.2
8.9.3
8.94
8.9.5
8.10
8.10.1
8.10.2
8.10.3
&.11
8.11.1
8.11.2
8.11.3

CHAPTER 9

9.1
92
9.2.1
9.2.2
33
9.4
95
9.6
9.7
9.8
2.9
9.9.1
9.9.2
9.10
9.10.1
9.10.2
9.10.3
9.104
9.10.3
9.11
9.11.1
9.11.2
2113

CONTENTS (Cont)

Page

OVERVIEW OF MDP COMMANDS i eee 82

ERRORS IN SPECIFYING COMMANDS 8-3

SPECIAL FUNCTION KEYS e e e e it e as 83

RUBOUT: Deleting aDigit i it et i e e e e e e e 83

Control C: AbortingMDP Operation oo v v i i v i i 84

INPUT/OUTPUT COMMANDS e e e et e 84

R: Reading Paper Tape i e e e 84

P: Punching Paper Tape o v 0 v vt e e e e e e e 8-5

T: Punching Leader and Trailer Tape, 8-5

E: Punchingan End Blockon Tape v, 8-6

LOCATION-EXAMINATION COMMANDS 8-6

/: Opening aMemory Location 8-6

Carriage Return: Closingan Open Location v n oL 87

Line Feed: Opening the Next Location 8.7

¢ Reopening the Current Location. o o oo v i vt v o o v h 8-7

t: Opening the Previous Location o o i 8.7

DISPLAY COMMANDS e e 8-7

D: Dumping Address Contents e 8-8

S: Displaying Status Flip-Flops = o e e §-8

X: Displaying an Index Register e e e e e e e e 8-9

CONTROL COMMANDS . . . e e e e e e e e e e e e e 89

G: ExecutingtheProgram e 810

B: SBetting a Breakpoint e e e e e e e e e e e e e e 8-10

L: Loading Memory withaConstant o oo oo 8-11
MICROPROCESSOR ROM PROGRAMMER

INTRODUCTIONTOMPR e i 9-1

HARDWARE ENVIRONMENT e e e e e 9-1

MRB73 Hardware Assembly o e e e e 9-1

PROM Assembly and Manipulation 9.2

OPERATING ENVIRONMENT e e e 9-3

SWITCH REGISTER OPTIONS ., ., o e et e e e e 9-3

BASIC CHARACTER SET e e 94

ADDRESS SPECIFICATION st e e 9-5

OVERVIEW OF MRP COMMANDS e e e e e 9-5

MRPERRORS e e e e e e 9-5

SPECIAL FUNCTION KEYS e e e e e e s 9-6

RUBOUT: DeletingaDigit i i e i et it e e 9-6

Controt C: Aborting MRP Operation 9-6

PAPER TAPE [JOCOMMANDS e e s e e et 9-6

R: Reading Paper Tape o o 0 i o e e e e e 9-7

() Reading Additional Paper Tape i i 9-8

P: Punching Paper Tape s i . i i e e e e e 9-9

T: Punching Leader and Traifles Tape« oo v v 9-10

E: Punchingan End Block on Tape v v o v i v v o ot e e e e 9-11

PROM IJOCOMMANDS e e e e s 9-11

F: ReadingaPROM e e e 9-11

C: CheckingaPROM 9-12

W: WritingaPROM . . L . . . L e e 9-13

vii

9.11.4
9.12

9.12.1
9.12.2
9.12.3
9.12.4
9.12.5
9.13

9.13.1
.14

9.14.1

CHAPTER 10

10.1
10.2
10.3

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F

APPENDIX G

Figure No.

1-1
1-2
1-3
1-4
1-§
21
22
23
2-4
25
26

CONTENTS (Cont)

V: Verifying a PROM
LOC ATION-EXAMINATION COMMANDS
/: Opening a Memory Location
Carriage Return; Closing an Open Location
Line Fegd: Opening the Next Location
.. Reopening the Current Location
t: Opening the Previous Location
DISPLAY COMMAND
D: Dumping Address Contents
CONTROL COMMAND
L: Loading Memory with a Constant

.................................
............................
......................
...........................
....................................
............................

SAMPLE PROGRAMS

LOADING REGISTER IN RAM
READING A BLOCK OF DATA
CONVERSION/PRINT SUBRQUTINES

...............................
..............................

SUMMARY OF EDITOR (MLE) COMMANDS

SUMMARY OF ASSEMBLER (MLA) INSTRUCTIONS

SUMMARY OF ASSEMBLER PSEUDO-INSTRUCTIONS

SUMMARY OF MICROPROCESSOR DEBUGGING PROGRAM (MDP) COMMANDS
SUMMARY OF MICROPROCESSOR ROM PROGRAMMER (MRP) COMMANDS
BLOCK-OFFSET TO OCTAL CONVERSION

7-BIT ASCI1 CODE

ILLUSTRATIONS
Title

Processor Module
Read{/Write Module
Programmable Read-Only Module
External Event Detection Module
Monitor/Control Panel
PM Biock Diagram
Instruction Execution States
Time State Flow Diagram
/O Timing Diagram
M7344 Block Diagram
Memory Timing Diagram

......................................
..............................
..............................

..................................
.....................................

....................................

viii

Figure No.

27
2-8
29
210
211
2-12
213
2-14
4-1
4-2
4-3

4-5
4-6
4.7
4-8
49
4-10
411
51
52
53
5.4
9.1
92
9.3

Table No,

3-1
4.1
4.2
4.3
4.4
5.1
5.2
5-3
5-4
5-5
5-6
5.7
5-8
5-9
5-10
6-1
6-2

ILLUSTRATIONS {Cont)

Title Page
M7345Block Diagram L e e e e e e e e e e e e e e 2-10
Physical Location and Octal Address of M7345PROMs 210
Memory Timing Diagram 0 0 e e e e e e e e e 2-11
M7346 Logic Diagram e e e e e e e e e e 2-12
MCP Cable Connections v 4 0 i i i et it e e e e e e e e e 2-15
MCPFrontPanel i i i it e e e et e e e 2-16
MCPBlock Diagram i i i e e e e e e e e e e e e s 2-17
MCP Resident Memory Block Diagram 0 o0 e e 2.21
PDP-8E Programmer’s Console . . . v v v v v v v v e e e e e e e e e e 4-2
LT33 Teletype Console 0 i i it i e e e e et e e e e e e e e e 4-5
Teletype Keyboard e e 4.6
ASCITFammat _ L . . . o e iy ot e e e e e e e e e e e e e e e e e e 4-7
RIM Format . . ., . . . e e e e e e e 4.8
BIN Format o e e e e e e e e e e e e e 4-8
High-Speed Paper-Tape Reader/Punch 4-8
Loadingthe RIMLoader 4-10
Checking the RIM Loader . ., i i i it e e cn 4-11
Loading the Microprocessor Host Loader oo v i i v v oo u 4-12
Leading a Binary Tape Using MHL o o 4-12
Loading the EditorintoCore o v i i i e 5-16
Generating a Symbolic Program Off-Line, 5-17
Loading a Symbolic Tape Using the Editor 5-17
Generating a Symbolic Tape Using the Editor« .. o0 v oo v a. 5-18
PDP-BI/OBUS i it e e e e e e 9-2
MRB73IROMProgrammer i ittt it oo et e e s s e e 93
Y168 Socket Module (with PROM inserted) oo, 9.3

TABLES

Title Page
Instruction Set Notation 0 0 . v i i i e e e e e e e e 3-2
Programmer’s Console Control and Indicator Functions 4-2
Special Keyboard Functions v v o vt e e e s 4.6
PDP-8 System Programs e 4-9
RIM Loader Programs i v i i o o s e e e e e e e e 4-10
Editor Command Options v i it i e e e e e 5-2
Switch Register Options o 0 v i vt i e e e e e 36
Iput Commands e e e e e e e e 5-7
LISTCommands 0 o v vt v o v e o e e e e s e iy e e e e e e e 59
PUNCH Commands« o it et e i e et s et et e et et e e e a e 59
NEXT Command Functions 4 . o0 i v i e e e e e e 5-11
CHANGE Commands i i i it et i e et e et et e e e bt et e e e e s 5-11
DELETE Commands 0 it it i it et e et e e s e e 5-12
SEARCH Commands v v v v v i e ot et e e et e et e e e 5-14
SEARCH OPHONS o i i i e e e e e et e e e e e e et e e e e 5-15
Switch Register Settings o o o 0 0 v i i e e e e e e e e e e e 6-12
Switch Register Options v v o 0 e e e e e e e 6-13

Table No.

6-3
81
8-2
8-3
8.4
9-1
9-2
9.3
94
9-5

TABLES (Cont)

Title Page
Assembler Diagnostics, . L L e e e e 6-16
Input/Output Commands 0 v e e e e e e e e e e e e 84
Location-Examination Commands i i i i it e e 8-6
Display Commands e e e e, 8-8
Control Commands 0 i i i e e e e e e e e e e e e e e e e 8-10
Socket Positions for PROM Commands v i, 9.3
Switch Register Options L . . . i i i it e e e e 9-4
Paper Tape [JOCommands i i ittt it e et e et e e e e ns 9.7
PROMI/OCommands v v o i vt i r e s et i a et e m s e m e e et e n e o 9-11
Location-Examination Commands« o 0 i e e -15

PREFACE

The user’s handbook provides a detailed range of hardware and software information pertinent to the operation of
Microprocessor Series (MPS) modules. This information is presented in ten chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

provides an overview of the functions
performed by the MPS modules and the
programmiing routines

presents a functional description of each
MPS module based on detail block
diagrams

consists of a detailed presentation of the
Processor Module instruction repertoire

describes, in detail, the PDP-8 host
environment as it applies to the use of the
applicable program in the softwarc
package supplied by Digital to support
user-development of MPS system
programs

pravides the application programmer with
the detaijled information nccessary to the
use of the Microprocessor Language
Lditor (MLE)

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

describes, in detail, the usc of the
Microprogessor Language Assembler
(MLA)

summarizes the operation of the
Microprocessor Program Loader (MPL)

prescnts instructions for utilizing the
Microprocessor Debugging Program
(MDP) which facilitates analysis and
alteration of binary programs

provides operating instructions for
reading and writing data and instruction
bits into programmable read-only
memory (PROM) circuits using the
Microprocessor Read-Only Memory
Progrummer (MRP)

contains sample programs which might be
useful to the user as a reference aid

s's’'n o n'eo e s eees

microprocessor series |
l. Py .!. - .l |. .|. - .'. * J rnonibor/control panet

A]
[..... .. __.'. m

-

y

1.1 INTRODUCTION

Digital Equipment Corporation's Microprocessor Series
(MPS) consists of a group of four M Series modules and an
optional operator’s control panel, designed to efficiently
perform a range of process control and decision-making
functions that were previously uneconomic subjects for
automation. When uscd together, these modules can form
low-cost digital control systems that exhibit the
characteristics normally attributed to more costly
minicomputer-based systems. With this capability, systems
structured from MPS modules can perform the functions of
dedicated controllers, operate as a Central Processor Unit
(CPU} in intelligent terminals, perform data aquisition and
analysis tasks in the laboratory, and automate a host of
industrial processes.

1.2 GENERAL DESCRIPTION
The Microprocessor Serics is listed below by model number
and name: ’

. M7341 Processor Module

L] M7344-YA 1X Read/Write Memory Module
M7344-YB 2K Recad/Write Memory Module
M7344-YC 4K Read/Write Memory Module

. M7345 Programmable
Module

Read-Only Memory

] M7346 External Event Detection Module
L] KC341 Monitor/Control Panel

In a sysiems context, the M7341 Processor Module (PM)
acts as the central processor unit with the remaining

CHAPTER 1
OPERATING
CHARACTERISTICS

modules performing supporting functions. Activity in a
given system, then, is directed by a unique stored program
contained in a read/write and/or a programmable read-only
memory and executed by the PM. A major factor in the
structuring of an MPS system for a specific application is
the development of this unique system program by the
user. To support user development of application software,
Digital provides the Microprocessor Series Software Tools
(MPSST) package that includes the following routines:

* Microprocessor Language Editor {(MLE)
. Microprocessor Language Assembler (MLA)

. Microprocessor
Programmer (MRP)

Read-Only Memory

. Micreprocessor Host Loader (MHL)
. Microprocessor Debugging Program (MDF)

* Master Tape Duplicator (MTD)

In addition, the Microprogessor Program Loader (MPL) is
available to users of the optional KC341 Monitor Control
Panel.

1.3 FUNCTIONAL DESCRIPTION

1.3.1 Microprocessor Series Modules

‘The discussions that follow present brief descriptions of the

functions performed by each module within the context of
a generalized MPS system structure.

Figure 1-1 Processor Module

Processor Module (Figure 1-1)

The M7341 Processor Module performs the functlions of a
CPU in a system structured from MPS modules. The
module consists of solid-state integrated circuits with input
and cutput lines that arc TTL-compatible; its major CPU
funetions are executed by a single-chip, large-scale,
integrated (LSI) microprocessor. Supportive functions such
48 timing, data and address busing, input multiplexing,
pating, buffering, storage and external communication are
performed by the remaining logic population on the board.

The processor chip is a parallel, 8-bit control progessor unit
configured as a single metal oxide silicon circuit packaged
i an 18-pin dual indine package. Through the supportive
logic in the M7341 module, the processor can communicate
the consequences of program execution with all other MPS
modules.

LSI processor internal logic includes an accumulator, itwo
memory address registers, six general-purpose registers, four
condition fip-flops, complete instruction conirol and
decoding logic, and a stack. All communication between
internal registers and logic and other MPS modules and
peripheral devices is conducted through an 8-bit
hidirectional data port inlegral to the processor chip. The
internal stack contains the 14-bit program counter and
seven other 14-bit registers for nesting up to seven levels of
subroutines. This 14-bit addressing capability permits
accessing up to 16K memory locations that can be any
mixture of RAM or ROM.

1-2

The instruction control and decoding logic implement a set
of 48 register transfer, arithmelic, control, and logical
instructions which are specifically optimized for the pracess
control environment. The processor chip is also equipped
with an interrupt line under control of supporting PM logic
which allows the enabling or disabling of interrupts. Input
to this interrupt recognition logic is generated by the
external event detection module which implements the
detection of, and response to, application-defined events or
power [ailure conditions. Enabling and disabling interrupts
is performed under program control,

Serial communication between the processor and external
equipment is furnished by a universal asynchronous
receiver/transmitter which is also part of the PM supportive
logic. Through this interface, programs can be loaded from
an external peripheral device such as a paper-tape loader
and MPS systems communicating directly with external
data bases.

Read/Write and Programmabhle
(Figures 1-2and 1-3}

These two MPS memory modulcs provide the user with a
wide range of options with respect to the mixing of RAM
and ROM memory within a system. The read/write memory
module is available in three versions: a 1K module, a 2K
module, and a 4K module. All memory circuits in a
programmable read-only memory module are
socket-mounted so that the storage capacity of a given
module can be cxpanded to 4K by adding memory circuits.

Read-Only Memories

Figure 1-3 Programmable Read-Only Module

This feature permits varying PROM capacity in responsc to
changing system requirements. Each PROM circuit is
equipped with a sealed transparent quartz lid which permits
erasure prior to reprogramming using an ultraviolet light
source.

With both memory modules, the address range for
each within a group of modules forming a system
memory —can be determined either by inserting the
appropriate jumpers or through backplane selection.

Figure 1-4 External Event Detection Module

FExternal Event Detection Module (Figure 1-4)

The M7346 Externmal Event Detection Maodule (EEDM)
implements ninc levels of priority arbitration including
application-defined six level priorily interrupt schemes, an
ac and dc power failure detection capability, and the
processor control functions of halt and restart. The EEDM
is completely contained on a single-height, extended-length
PC board.

Monitor{Control Panel (Tigure 1-5)

The KC341 Monitor/Control Panel {(MCP)} serves as an
opcrator’s panel for the processor module. In addition to
the conventional punel controls and indicators, the MCP is
equipped with controls and visual displays for examining
and changing the content of manually accessed read/write
memory locations and for petforming single-step
instruction execution. These functions are supported by a
resident memory consisting of a 256 X 8-bit PROM and a
32 X 8-bit RAM completely contained on the MCP. The
PROM contains the Microprocessor Program Loader (MPL).
The RAM and the PROM arc directly addressable as system
memeoery, and the RAM can be used as a scratch pad by
user-diagnostics and by operating programs.

The MCP inicrfaces with the processor module through a
dedicated cable of up to 8 feet. Although normally
configured for table mounting, the MCP can be pancl-
mounted in a standard EIA rack panel fitted with a suitable
bezel.

1.3.2 MPSST Software Tools Package

This software package (supplied by Digital) aids the user in
developing application programs. The support functions
performed by each of these routines are presented in the
following paragraphs.

Microprocessor Language Assembler (ML A}

MLA is a threc-pass symbolic assembler that operates on a
PDP-& to produce either a listing or a binary punched paper
tape of an MPS object program from punched paper tape
source code. This program has been designed to conform
penerally to the operational characteristics of other PDP-8
assemblers. Assembled code is generated in punched paper
tape form or as a printed listing at the option of the user.
Diagnostic messages are alse printed out to designate syntax
errors and to indicate warnings or actions taken by the
assermbler.

Microprocessor Language Fditor (MLE)

MLE is an on-line symbolic editor that operates on the
PDP-8 to create and modify MPS source program punched
paper tapes. This cditor implements both program entry
and on-ine program editing. Source text can be entered
from a keyboard or from a punched paper-tape reader.
After editing, the user may produce a source paper tape
ceady for input to MLA andfor a source text listing.
Listings and tapes of source text can be made in whole or in
part as required by the user.

Microprocessor Host Loader (MIIL)

MHL is & utility program loaded into core to read
binary-coded data from paper tape and to store it in core
memary, and vsed primarily to load system binary obiect
prograrms.

Microprocessor Read-Only Memory Programmer {MRP)
MRP operates on an MR873 PROM writer in conjunction
with a PDP-8/E, /F, or /M to set data and instruction bits
into ultra-violet light erasable PROM circuits using object
tapes produced by MLA,

Microprocessor Debugging Program (MDP)

MDP cperates on the processor module in conjunction with
the Monitor/Control Panel from either PROM or RAM
memory. This octal debugger permits the following
diagnostic actions under control of the MCP panel as
directed by an operator:

] Reads and punches paper tape

o Opens specified memory locations for
modifications and allows the previaus, current,
and next locations to be opened, displayed, and
closed

. Dumps the contents of program addresses,
status flip-flops, and index registers on the
Teletype printer

- Allows a program scgment to execute for test
purposes under MDP control

. Specifies a breakpoint location for program
execution

» Loads specified locations in memory with a

constant value

Microprocessor Program Loader (MPL)

MPL is a binary paper-tape loader that operates on the
processor medule and resides in the Monitor/Control Panel
PROM memory. This program provides for the loading of a
binary punched tape from an external paper-tape reader
through the wuniversal asynchronous receiver/transmitter
integral to the PM. Operation of MPL is performed from
the MCP contral panel,

Figure 1-5 Monitor/Control Pancl

1.4 SPECIFICATIONS
1.4.1 Performance Specifications
M7341 Processor Module

Operating Speed @ 500 kHz

Two-phase clock period 2 s
Time state 4 us
Instruction time 12 to 44 us

Word Size
Data 8-bit word
Instruction 1,2, 0r3 8bit words
Address 14 bits

1-5

Input Data Ports

Memory data
Peripheral data
Power fail/stop
/O Interrupt/start

Input/Output Lines

Memory data
Memory address
Peripheral data
Peripheral address
Communication Lines
Baud rate
With internal clock
With external clock

Instruction Repertoire

Forty-eight basic instructions
Instruction Categories
Register Operation
Accumulator Operation
PC and Stack Conirol
(/O
Machine

KC341 Moniter/Control Panel

Controls

Switch register
ADDR LOAD
STRT

CONT

EXM

DEP

SING CYCLE
DISP DATA

DISP ADDR

1-6

8 bits
8 bits Multiplexed
8 bits
8 bits

8 bits bidirectional

14 bits, output only

8 bits input and output

5 bits, output only (may be expanded)
2,20 mA current loop, active or passive

110 baud {1.76 kHz)
9600 baud (153.6 kHz) maximum (TTL)

14-switch manual input register

Load address from switch register with PM halted
Start Processor Module

Execute one machine cycle il in single cycle mode,
or conlinue program execution at machine speed if
not in single cycle mode

Display content of memory location addressed by
cither switch register content or incremented switch

register content

Deposit content of switch register into a memory
lacation accessed by a previously loaded address

Enter single cycle mode
Display data contained in location being examined

Display address loaded from switch register or
address of location being examined

Indicators
RUN

HALT

WAIT

PCI, PCW, PCR, PCC

¢ 2,41, SYNC

RDY

INTR

MCP-PM Interface

Cable lenpgth {max) @ PM clock rate
of 500 kilz/phase

Connector/plug types

Cable type

M7344-YA, -YB, -YC Read/Write Memory Modules

Memory type
Data word size
Address word size

Number of words
Memory read or write cycle time

M7345 Programmable Read-Only Memory Module

Memory type
Data word size
Address word size
Number of words
Cycle time
Erasure method

Program write time

Lights when processor module is operating

Lights when processor module is in the stopped
state

Lights when processor module is in wait state

Each indicator lights when the processor module is
executing the corresponding machine cycle

These indicators light 1o designate the operation of
the corresponding processor module timing signal

Lights when the processor module Ready linc is
asserted truc

Lights when the processor module Interrupt line is
asserted true

& ft. (2.4m)

50-pin PC board connector/header
50-conductor, flat, shiclded

Static MOS

8 bits

14 bits, expandable to 16 bits plus address
expansion line

1024, 2048, or 4096

1.15 ps

Stutic MOS PROM

8 bits

14 kits, expandable to 16 bits plus selection line
Up to 4K (multiples of 256)

1.Ous

Ultraviolet light; 256 words erased per circuit
exposed

2 minutes, typical per 256 words

M7346 External Event Detection Module

Number of event detection input lines
Priority encoded

External event response time
Power failure response time
[nput polarity

Qutput polarily

Power fail sense input

142 Electrical Specifications

Power supply (all modules)

Input Logic Levels (all modules}
TTL Logical Low
TTL Logical High

Qutput Logic Levels (all modules)
TTL Logical Low
TTL Logical High

Power Consumption
Processor Modale
Monitor/Control Panel
Read/Write Memory, M7344-YA

M7344.YB

M7344-YC
Programmable Read-Only Memory, 1K
2K
4K

External Event Detection Module
1.4.3 Mechanical Specifications
M7341 Processor Module

Board type
Dimensions

KC341-B Monitor and Control Panel

Overall panel dimensions
Width

leight
Depth

1-8

G

1, lowest

9, highest

12 to 44 ps

21 ms (from ac loss to power-fail request)
Zero volts true

Zero volts true

6.3 Vac

+5 Vde, - 15 Vde, £5%

0.0 to 0.8 Vdc
2.01t03.6 Vde

0.0 1004 Vdc
2.4 10 3.6 Vdc

1.62A@+5V,150mA @-15V,10.25 W
243 A@+5V,60mA@-15V. 12 W
12A@+5V.6.0W

I5AG+5V,75W

22A@+5V, 110W

490 mA @45V, 300 mA @-15 V.60 W
630 MA @+5V, S30mA@-15V: 11.0W
YOMA@+5V, 1L0A@-15V;19.5W
250 mA @ +5 V, S0 mA @6.3 Vac, 1.5 W

Quad-height, extended-length, single width

10.436 X 8.30 X 0.501in. (26.5 X 21.6 X 1.27 cm)

18 in. (45.7 cm)

8.75in.{22.2cm)

1.75 in. (4.4 cm) excluding switches
2.50 in. (6.35 cm) including switches

M 7344 Read/Write Memory Module
Board type
Dimensions

M7345 Programmable Read-Only Memory Module
Board typc
Dimensions

M7346 External Event Detection Module
Board type
Dimensions

1.4.4 Environmental Specifications (all modules}

Ambicent Temperaturc
Operating
Nonoperating
Humidity

1-9

Quad-height, extended length, single width
10.436 X 8.50 X 0.501in. (26.5 X 21.6 X 1.27 ¢m)

Quad-height, extended length, single width
10436 X 8.50 X 0.50in.(26.5 X 21.6 X 1.27 cm)

Single height, extended length, single width
24375 X 850 X 0.504n. (6.2 X 21.6 X [.27 cm)

5°t0 50°C(41° to 122° F)
-40°to 66° C (-40° to 150° F)
10 to 95% noncondensing

CHAPTER 2

FUNCTIONAL DESCRIPTION

2.1 INTRODUCTION

This chapter presents a detailed functional description of
each Microprocessor Series module and the operator's
monitorfcontrol panel. The discussion conveying these
descriptions is based on comprehensive block diagrams
which relate input and output signals and internal signal
flow to the event sequence within each module.

Each of the detailed block diagrams supporting these
discussions graphically represents module throughput as
logic circuit blocks that are functionally cohesive. For
example, registers, multiplexers, gating networks, clocks,
and various ¢ontrol logic are depicted as functional blocks.
Data and address buses, control and enabling lines, and
internally generated signals are shown as they affect the
pertinent functional blocks. The discussions supported by
these block diagrams deal with the cffect of inputs on the
function of throughput, how functional blocks interrelate
to implement throughput, and what actions result from
outputs. A more comprehensive technical description
including pinouts, input and output loading, signal
descriptions, and jumper selections is contained in the
respective data sheet supplied with each module.

2.2 PROCESSOR MODULE

The M7341 Processor Module (PM) contains a single chip
MOS/LSI microprocessor along with the integrated logic
and control circuitry necessary to operate as a parallel 8-bit
central processing unit. This microprocessor suppaort logic
consists of an adjustable 500 kHz variable clock; a four
channel input multiplexer; data, memory, and address bus
gating; I/O control logic; interrupt recognition logic; and a
unjversal asynchronous receiver/transmitter driven by an
integrai 844.8 kHz clock. The relationships of the
supporting logic to the processor chip are shown in Figure
2-1.

The single chip microprocessor contains a bidirectional data
port, complete instruction decoding logic, an arithmetic
unit, a state counter, an accumulator, an address stack, six
general registers, and memory and /O timing and control
logic.

2.2.1 Processor Module Timing

The basic timing signals shown in Figure 2-1, for the PM are
produced by the two-phase clock. These signals, labeled ¢1
and ¢2, are symmetrical, nonoverlapping positive-going
clock pulses which drive the processor chip state counter.
This state counter controls all activity internal to the
processor chip and produces the output signals S0, 81, S2,
and SYNC. The timing signals available for external use are
¢1CLK H, ¢2CLK H, and SYNC H. The SYNC H signal,
along with 80, 81, and 52 defines processor module

" instruction cXecution states.

A typical PM machine cycle involves five sequential time
states: TS1, TS2, TS3, TS4, and TS5 (Figure 2-2), During
time states TS1 and TS2, system memory is addressed by a
lower and an upper address byte respectively to form a
14-bit address; during TSI the program counter (PC) is
incremented. In time state TS3 the instruction addressed
during TS1 and TS2 is fetched, and during TS4, or TS4 and
TS5, the fetched instruction is executed. The flow chari of
time state transitions is shown in Figure 2.3 which
simplifies the progression through time states during a
machine cycle.

If an interrupt is initiated by an external event, conlrol
does not return to TS1 after completing instruction
execution ‘but instead reverts to time state TSIl which
replaces TS1. During TS11, the external event is recognized,

* an interrupt is generated, and incrementing of the PC is

2-1

suppressed to permit execution of a one-byte instruction
generated by the external event,

rA S

D@ M- 0T 1N

BICIRECT-ONAL

WEMCRY DATL BUS

DO OUT- 0T OUT ‘>

1
INPUT ouTeUT ouTpuT | —
CM@ L -DMT INPUT DaTa BUS DATA BORECTIONAL BUs Y “p 1o DATA
+| Gates BFreR GATES
DIOST L -0IOSTT [) 8 ars
INPUT Y
e T MULTIPL EXER —_— 7
EL LLE . INTERRUPT —') .Y >
BICLKH
-nt TWED - ™ = /\;
DIOP L -NIRT L v 3 L5z 5 ol
£ MASTER |Leg2CLKH PROCESSOR o 51 -
l T cLOCK e e n e Iz 52 -
I | EGRD a1 -]
o118 | EXTERNAL ROY H —e| READY MIE; — ADROT3 o5 ol
HULT FLEXER evewt [T S8 51 57 sYAC e ey - 15 =)
T CONTROL i ' | 14—
LOBic o e I 51 sz ouTPuT 16 ADDRESS Ti78
¥ ' T se REGISTER | 7] | GUFFER swnc L —+]
PCI PCR f T | i 16 873 Mg g3 > INTERRUPT
140 IN | CRYSTAL- —— T34 s o —w
) . C1 —y
START L— | CONT F——®Uucik H T T5r1 :ID]
| CLOCK - - T52 hil e 1/0 T
PFSEE L i 844.8kHz TIME = 53 2 :u;u :Di:i
] HE]
STATE ™ T3¢ INIT L 1
DECODER [——* TS5 . il n TS3—w] COMTHOL : ;ﬁ,o‘x :
- ?;:‘-3 H | , ovar L+ LOGIC e peT
STOP a¥TE STOR 1 = PCC
d2— SELECT WalT - [~ PCR
Loal0 INIT -] b PCW
(PARALLEL DaTa: XMIT pres i
. o Lo CLK BALD SYNG L ez
Tt REC CLOCK
WPOE oLk 1 TE kHz i
UTELK H
UNIVERTAL
ASYNCHRONOUS URCLK H
RECEIVER ¢
TEBMT Hay TRANSMITTER
o
A H 9
XMIT DATA DEVIGE 10
ADDRES &1 9-13
ROV 24TA DECOCER 12
13
T
U T/o0IN — t oo
| PARALLEL
oAty 2-7
AL I
SERIAL SERIAL
DATA DATA
AMIT RE_C
LSO H - 5L H
TTY QUT TTY IN

Figure 2-1 PM Block Diagram

INTERFALE

[*— READY

[+— DATA CUT
GATE

*— SIM INTERRUFT
M— SIM JAM ENABLE

fa— 80

i — LAZ

S MEM REALD OR
5 D IN] GATE

Pe— Sind MEM WRITE

EF-0¥47

5YNC
GNTERRUPT, WAIT | | | I | | ’ I | | | | | I |
AND STOPPED STATES

ghowN) | TSIT | Tsz [wart | Ts3 IsToPrED| Ts4 | Ts5 |

v IR T [Y I I O
{NORMAL CYCLE) sz|si[so| sTATE
| 1s1 | tsz | ts3 | Tsa | 785 | TSt | 1 | 1| o |81 (INTERRUPT)
oo Tst |
1]o]o TSz
olo|o WAIT
a|o]1 T52
01| 1| SsTORPED
KK Te4
1] o] TS5
CR-0085
Figure 2-2 Instruction Execution States
IAMMED N Ny YES
ON INTERRUP T
CYCLEP
¢
INSTR YES
EXEGUTION

. INTERRUP T ED
COMPLETE ?

INTERRUPT

STOPPED
on

LP-0584

Figure 2-3 Time State Flow Diagram

2-3

At the completion of time state TS2, the processor checks
the state of the READY line. If this line is true {(High), time
state TS3 is entered; if not true (Low), the Wait state is
entered. Time state TS3 is entered from the Wait state
when the READY line is asserted again. The state of the
READY line is available for external use through the signal
RDY H.

If the instruction fetched during time state TS3 is a Halt,
the processor stops operation at the end of that time state.
The processor remains halted until the START line is
asserted foreing entry into time state TS1I and execution of
a jammed one-byte instruction which can be supplied by
the External! Event Detection Module. When the PM is
operating (STOP H nol asserted) the RUN indicator is lit;
whan the Stop state is entercd (STOP H asserted), this
indicator will be extinguished.

2.2.2 Processor Module Instruction Cycle

Figure 2-3 shows that a machinc cycle cun be completed at
the end of time states TS3, TS4 or TS5. The instruction
cycle for instructions in the PM repertoire is variable
depending on the class and function of the specific
instruction executed and can consist of oae, two, or three
machine cycles. The completion point within a machine
cycle is also instruction-dependent so that the number of
time states encompassed by PM instructions can range from
a minimum of three to a maximum of cleven.

The processor module executes four types of machine
cycles which are listed and defined below:

PCl Cycle — This is always the first cycle of every PM
instruction and initiates an instruction fetch. The two bytes
which address memory during this cycle are always taken
from the PC.

PCR Cycle — This cycle initiates the addressing of memory
by the incremented PC to retrieve a subseauent byte of a
two- or threc-byte instruction, or to retrieve a data byte
addressed by the contents of registers H and L.

PCC Cycle — This cycle initiates the set-up and execution
of I{Q instructions by placing the address of the peripheral
device to be accessed and the content of the accumulator
onto the memory address bus and retrieving and/or storing
the data at the pertinent peripheral,

PCW Cycle — This cycle initiates the addressing of memory
by the content of the H and L registers and implementing
the writing of data into that localion.

2-4

As shown in Figure 2-1, a corresponding signal for each of
thesc machine cycles is available as output from the
processor. At time state TS2, the specific signal
corresponding to the machine cycle being executed is
asserted and latched for external uwse. These signals are
derived from the states of the two high-order bits of the
high address byte and are decoded and gated out for
external use during time state TS3,

2.2.3 Input Data Paths

The processor chip is equipped with a single time-shared
8-bit bidirectional data port to permit memory addressing, .
instruction fetching, and data input and output. This port
connects to the bidirectional data bus on the processor
module. As shown in Figure 2-1, input data in the form of
an 8-bit byte is gated onto this internal bidirectional bus
trom the unidirectional input data bus. Data is multiplexed
and pated onto the input data bus from four input ports
which are selected as a function of the machine cycle
currently being executed.

When a PCI or PCR machine cycle is in process, time state
TS3 selects the bidirectional memory port DMO L to DM7
L to fetch the instruction or data word addressed during
TS1 and T82 of that cycle from memory. During a PCC
cycle the signal 1/O IN, asserted by the control logic, sejects
the peripheral data-in port DIO L to DI7 L to retrieve data
from the addressed peripheral device as specified by the
read 1/O instruction being executed.

At start-up or restart time, or in response to an external
cvent, one of the signals START L or IOEE L is asserted to
select the I/O start port DIOSTO L to DIOST? L flor
external instruction input,

Figure 2-3 illustrates that when an inferrupt occurs in
response to an external event, time state TS11 is entered so
that normal inecrementing of the PC is inhibited.

As z consequence of selecting the I/O start port, an
externally supplied one-bytc instruction is automatically
fetched. This instruction is executed during time states TS4
and TS5. Note that when [OEE L is asserted, the external
event recognition logic must be enabled under program
contirol in order for the I/O start port to be selected as a
response to an external event, The signal START L, when
asserted, bypasses the event recognition to select the 1/O
start port regardless of program-enabling action.

The signal PFSEE L can be asserted by a system start-stop
switch, by a power-fail sensing circuit, or by some other

external logic. A power-fail circuit or external logic
connected to the power-fail/stop port DPFSQ L to DPES7
L can jam a one-byte RST instruction {(see section 3.7.2)
into this port upon detection of a power failure or in
reaction to some external event. This instruction would
then be executed to initiate a service routine or sequence,

Activating an external system stop switch would also select
the power-fail/stop port; however, in this case, all the data
lines into this port would normally be High which is
equivalent to a Halt instruction. When the signal PFSEL L
is asserted, the power-fail stop port is selected at time state
TS3 following entry into time state TSI which, as shown
in Figure 2-3, occurs in the same manner as with a normal
interrupt. During time state TS3, the instruction at this
port is feiched by the processor for execution.

2.2.4 Output Data Paths

Processor Module output can be in the form of memory
addresses, memory and I/O contrel information, IO device
addresses, data output to memory, and data output to
peripherals. With the exception of data output to memory,
all of these addresses and data are stored for output in the
16-bit muitipurpose output register, Data words are latched
into the register by the data selection logic during time
states TS1 and TS2 (Figure 2-1).

Memory addresses are issued as two separzte words to form
a 14-bit address word duting machine cycles PC1, PCR, and
PCW — the lower word at time statc TS1 and the upper
byte at TS2 of these cycles. During each one of these time
states the corrcsponding memory address word is loaded
into the 16-bit oulpul register by the address selection
logic, At the end of time state TS2, the current memory
address is present at the output side of the output register.
These output lines are buffered ta drive the address/data
lines ADRDOO L to ADRD13 L which can be bused out to
the Microprocessor Serics ROMs, RAMs, and 1/0Q devices.

During a PCC cycle, the contents of the accumulator and
the instruction register are stored in output register bits O
through 13 for use as peripheral device output data and
address. At time state TS1 of a PCC cy¢le the content of
the accunmulator (Register A), which is the data to be
output 10 the addressed peripheral device, is placed in the
output register bit pasitions 0 ta 7,

At time statc TS52, the content of the instruction register is
transferced to output register bit positions 8 through 15,
with bits 9 through 13 containing the address of the
peripheral device being accessed during the PCC cycle. Once

stored in the output register, these address and data fields
are available to external peripheral devices over the lines
ADRDOO L to ADRDI13 L. This device address field
permits the addressing of up to eight input devices and 24
cutput devices.

Data to be written in read/write memory is gated onto the
bidirectional memory bus DMO L to DM7 L during time
states TS1 and TS2 of a PCW cycle. Data must be accepted
by the memory during time state TS3 of that cycle.

2.2.5 Control Logic

The control logic (Figure 2-1) provides the various contro}
signals necessary 1o memory accessing and to the
performance of input/output operations with associated
peripherals. Input to the contirol logic is the state of bits 14
and 15 of the output register.

During time state TS3 of every machine cycle, the control
signals pertinent to the machine cycle currently being
executed are asserted. For example, during PCI and PCR
cycles where memory is addressed to fetch an instruction or
data, the signal MEM RD H is asserted at the end of time
state TS2 and throughout TS3. As shown in Figure 2-4, this
signal controls the reading of data from that memory
lecation addressed during the pertinent machine cycle.

For a PCC cycle, the signals [/O IN 1 or IfO OUT H are
asserted during time state T83 to control the storage and
reirieval of data at external peripheral devices, When data is
to be written into an addressed memory location during a
PCW cycle, the signal MEM WR H is asserted by the control
logic during time state TS3 of that machine cycle.

In addition to these signals, the control logic also asserts
one of the signals PCL L, PCC L, PCR L, or PCW L during
time state TS3 of the corresponding machine cycle.

2.2.6 Asynchronous Communications Receiver/
Transmitter Logic

The PM is equipped with a full duplex communication
receiver/transmitter implemented by a Universal
Asynchronous Receiver/Transmitter (UART). A 1.76 kHz
clock, driven by an 844 .8 kHz crystal-controlled clock
integral to the PM, is input to this device to produce a 110
baud data transfer rate. The UART is addressed during time
state TS3 by bits 2 to 13 of the output register. Data is
transmitted and received at the module over 20 mA current
loop or TTL-compatible lines (USI H and USO H) te
interface with Teletype-like lines or to telephone lines

“through a modem.

2-5

TS2 TS3 e T54 —
TIME STATES _I
|
ke 4;.1;'

MEMORY /DEVICE
ADDRESS

X

MEMORY READ

- l-— 125 ns

ORL/Q IN b _DATA
READ
OR I/0 OUT

* At a500KHz clock rate.

\DATA READY ;

FOR QUTPUT

CR.09a8

Figure 24 [/O Timing Diagram

Higher baud rates can be obtained by using an external
clock input (URCLK or UTCLK) that ¢an be derived from
external logic which divides the basic crystal clock
frequency. The maximum data transfer rate is 9600 baud
for TTL lines and 4800 baud for current loop lines (at
limited lengths). Internal switches on the PM permit
sclection of operation under cxternal clock control; the
number of stop bits used {one or two) can be sclected
through switch action. Active or passive operation of
current loop lines is jumper-selectable.

(dd parity, even parity, or ne parity is selected by the PM
input line UPOE, Also, the number of data bits in a word
can be sclected to vary from [live to eight bits. Both TBMT
{Transmitter Buffer Empty) and DA (Data Available} are
available for external interrupt drive capability.

When an input instruction is being executed, the signal 1/0
IN H is asserted by the control logic, This signal and the
receiver/transmitter device receive address are decoded to
gate data from the device onto peripheral bus lines DIJ L. to
D17 L and into the peripheral data-in port.

Data for transmission is written from the output register
into the UART transmission buffer during time state TS3
of a PCC cycle when the signal I/O OUT H is asscrted
(Figurc 2-4). This signal and the transmit data address are
decoded to strobe data from the PM output register into
the transmission buffer.

2-6

Status information, which includes receiver/transmitter
error conditions and transmit and receive buffer status, is
retrievable through execution of an input instruction with
the assigned status device address. As with reading data
from the receiver/transmitter, the signal I/O IN H is
asserted as a result of a PCC eyele execution. This signal is
gated with the device address to, in turn, gate device status
into the peripheral data-in port D10 L through DI7 L.

2.2.7 laterrupt Control

The interrupt control logic drives the input data
multiplexer to select one of two input ports. If the
interrupt resuwlts from a power failure or a stop command,
the power-fail{stop port DPFS0 L to DPFS7 L is selected,
Similany, if the IOEE L line or the system START L line is
asserted, the I/O start port DIOSTO L to DIOST7 L is
selected. The instruction jammed into these ports as a
consequence of a power failure or an I1/O or restart
interrupt is furnished by the External Event Detection
Module or external logic as determined by the specific
application.

IO interrupts can be enabled or disabled under program
control by the PM external event enable/disable logic.
Interrupts are disabled by executing the instruction 10F
and enabled by executing ION {Paragraph 3.7.3).

Since interrupts will be enabled or disabled one instruction
time after execution of an TON or 10F, one instruction can

be executed after [ON or IOF before interrupts are actually
enabled or disabled. The external event recogrition logic is
automatically disabled after every interrupt.

2.3 READ/WRITE MEMORY MODULE

The M7344 Read/Write Memory Module provides a 1K, 2K,
or 4K X 8-bit random access memary capacity along with
all necessary timing, control, and decoding logic (Figure
2-5). This module is completely contained on a single quad
extended-length board. The module memory matrix is
formed by up to 32 1024 X 1-bit static MOS MSI memory
circuits. The nature of these MOS circuits precludes the
need for external refresh logic.

The M7344 Read/Write Memory Module is available in
three versions to satisfy varying memory capacity
requiremncnts, Model numbers identifying these memory
versions are listed below:

. M7344-YA 1K X 8-bit capacity
- M7344-YB 2K X 8-bit capacity
. M7344.YC 4K X §-bit capacity

— CE1

—\] ADORESS [+ cE2

DECOOE
1 “Cosic [cE3
> CE4

ADR/DATA STROBE H

|

MEMORY |ADRD1@-ADRDMS
* ADDRESS
MEMORY ADDRESS N NREGISTER

DATA
1 - —

PR
REGISTER

8-BITS

WRITE PULSE L T
CE2

ADR/DATA
" STROBE H

ADRDOR-~

ADRDYS {ADRDOG@-ADRDQS

’
ADR/DATA STROBE H

F

MEM RO H = =ADR/DATA STROBE H

TIMING
AND
CONTROL
LOGIC

= DATA ENABLE L

MEM WR H=—¥ - WRITE PULSE L

All versions of the M7344 can be accessed by up to 16-bits
of address data and are equipped with an address expansion
line to implement multi-module memory systems having
potential capacities of up to 128K 8.bit words, M7344
Read/Write Mcmory Modules also contain a jumper
network which can be configured to permit assignment of u
module within an application-defined address space.

Operation of cach memory circuit in either the read mode
or write mode is determined by a read/write (R/W) line.
Each of the 32 MSI circuits in the memory matrix connect
to a data input linc'and a data output line with the
significance of the line corresponding to the position of a
circuit with a 1K X 8-bit group. Data input lines are
wire-ORed to each memory circuit from the data input
register, Similarly, data output lines are wire-ORed to the
data output gates from each memory circuit.

2.3.1 Memory Read Timing

The timing and control logic (Figure 2-5) furnishes the
signals nececssary to time memory read and write
operations. The processor module asserts the level MEM RD
H after providing the address of the memory location to be

[BIOIRECTIONAL MEMORY DATA BUS >

{\

CE1;

1K x 8-81T <,
\:> MATRIX |]

WRITE PULSE L
CE3

1K = 8-81T <
\:> MATRIX { i

WRITE PULSE L

1K x 8-8IT
MATRIX

Cl§4
DATA
QUTPUT
GATES

WRITE PULSE L DATA ENABLE L

"0 Es

Figure 2-5 M7344 Block Diagram

2-7

read. At the read/write memory module, the signal MEM
RD H generates the internal signals ADR/DATA STROBE
Hand DATA ENABIEL,

The signal ADR/DATA STROBE clocks the memory
address register to store the address currently on the
memory address bus ADRDOO L to ADRD15 L. This action
initiates address decoding which enables assertion of DATA
ENABLE L along with addressing of the memary location
being read. DATA ENABLE L, when asserted, enables the
output gating network to place the data from the addressed
location onto the bidirectional memory data bus DMO L to
DM7 L. Figure 2-6 shows that data becomes valid on this
bus 1.15 us after the assertion of MEM RD H.

2.3.2 Memory Write Timing

For a write operation, the address of the memory location
to be written into is placed on the address bus and must be
stable for at least 150 ns prior to the assertion of MEM WR
H. Data to be written into the addressed location is placed
on the bidirectional memory data bus coincident with the
signal MEM WR H,

As shown in Figure 2-6, the signal MEM WR H has a
minimum period of 250 ns and is asserted by the processor
module. Pulse-stretching circuitry in the M7344 control
logic uses the leading edge of MEM WR H to set alateh to
store the signal. Approximately 200 ns after the receipt of
MEM WR H, this signal is ANDed with the decoded address
to generate the internal 1 us signal WRITE PULSE L. This
pulse then enables the data stored in the data input register
by the assertion of ADR/DATA STROBE to be written
into the addressed memory location.

2.3.3 Address Decoding

Input to the memory address decoding logic is an address
loaded into the memory address register from the address
bus by the assertion of ADR/DATA STROBE. Both the
address bus and the memory address register can
accommodate a 16-bit address to permit memoty system
capacities up to 64K,

As shown in Figure 2-5, the 10 low-order bits (ADRDOO to
ADRDO(9} of the memory address access the same location
in each of the four 1K memory segments. The next
high-order two bits (ADRD10 and ADRD11) define the

P 753 s TS4 —
M73H J |
TIME STATES
READ CYCLE
READ ADDRESS >< ><
! 1
I ! !
- 2150 ns
MEM RD M .______'l....“J’
b 115us ol
I . i ,
READ DATA INVALID >< DATA VALID FOR READING
DATA .

WRITE CYCLE

WRITE
ADDRESS -
-.-l m— 2> 150ns
E q > 250ns
MEM WEH —_“_I
|
rl—

115 s

X

WRITE DATA

I

- DATA
WRITTEN
CR=-398)

Figure 2-6 Memory Timing Diagram

2-8

final magnitude of the addressed location and are decoded
by the segment address decoding logic to assert one of the
four signals CE1, CE2, CE3, or CE4. These signals enable
the 1K segment, which contains the location pointed to by
the low-order 12 bits of a 14-bit address. Note that cach of
the signals CEL, CE2, CE3, and CE4 is jumpered to permit
a module to contain multiples of 1K memory locations
within the total memory system address space.

A 16-bit address field, all of decoded states of bits
ADRDI3 L to ADRDI15 L, can be jumper-configured. As a
consequence, each 4K module in a multiple module
memory system ¢an be uniquely jumpered to be assigned as
a given set of 4K memory locations within a consecutive set
of up to 16K locations.

This jumper network is configured to permit allocation of
address space in 1K intervals within an address range of 4K
to 8K formed by either one or two M7344 modules. In
addition, each module can be assigned an address space of
up to 4K within a total 64K address set. Each side of this
jumper network is also brought out to the module edge
fingers to permit address space allocation to be
supplemented by wire wrap on the connector block.

Since the M7344 Read/Write Memory is electrically and
logically compatible with the
Read-Only Memory, these modules can be used together to
form a contiguous RAM-PROM memory space.

24 PROGRAMMABLE READ-ONLY MEMORY
MODULE

The M7345 Programmable Read-Only Memory (PROM)
Module provides a variable read-only data storage capacity
for systems structured from modules in this family. The
functional logic blocks comprising this module (Figure 2-7)
consist of plug-in socket space for up to four 1K memory
matrices, an address buffer, address and control decoding
logic, and an output gating network. Each of these
functional blocks is discussed in terms of functions
performed and how these functions interrelate. Figure 2-7
also provides a graphic reference for data and signal flow
within the module,

24.1 Memory Organization

The M7345 PROM module is an 8-bit electrically
programmable and erasable read-only memory contained on
a single quad board. Maximmum PROM capacity is formed

by 16 MSI memory circuits mounted in plug-in sockets and .
organized as 16 separate matrices each containing 256 8-bit

words (Figure 2-8). As a consequence, memory capacity
can range from 256 to 4K words in 256 word increments.

M7345 Programmable

2-9

PROM circuits can be removed at will to satisfy changing
system requirements and for erasure and reprogramming
(Chapter 9).

A transparent quartz lid on each PROM circuit permits
exposure to an ultraviolet light source for erasing an
existing bit pattern. Then a new bit paitern can be
electrically written.

2.4.2 Address and Control Decoding

Address input to the PROM module consists of the full 16
bits of the address bus (ADRDQO L to ADRD15 L) with 14
of these bits (ADRDOO L to ADRD13 L) relevant to the
PM. The remaining two bits provide for memory address
expansion. As shown in Figure 2-7, the low-order eight bits
directly address each PROM circuit in the memory matrix
through the address buffer. The remaining bits on the
address bus, ADRDO8 to ADRDI1S5, are input to the address
and control decoding logic which is enabled by the signal
MEM RD L. This signal is asserted by the processor module
during time state T83 of a PCI or PCR machine cyc¢le.

Address bits ADRD10 and ADRDI1 are decoded to
determine the 1K group associated with an addressed
location within a 4K group, and bits ADRDOS and
ADRDQ9 are decoded to point to the 256 X 8-bit PROM
circuit within that 1K group containing the Jocation being
accessed. The zesult of this decoding is the assertion of vne
of 16 chip enable signals which causes the addressed PROM
circuit to output data from the addressed location within
1.15 us after the assertion of MEM RD H (Figure 2-9}. This
data is present at the data output gates. All chip enable
signals are wire-ORed to assert the internal signal DATA
ENABLE which gates the data at the output data gates
onto the bidirectional memory data bus DMO L to DM7 L,
This same logic also asserts the external synchronizing
signals MEM SYNC L and DATA READY L.

Bus address bits ADRD12 and ADRDI13 are decoded to
implement the addressing of multiple module PROM
systems having up to 16K locations. Address bits ADRD 14
and ADRD135 are decoded to permit expansion of multiple
module PROM systems beyond 16K locations up to 64K
locations.

Each of the 16 chip enablc signals derived as a consequence
of decoding address bits ADRDOS through ADRDI11 are
jumper-conaected for assertion to permit depopulation of a
given PROM module down to 256 locations by multiples of
256. In addition, the results of decoding address bits
ADRDI12 and ADRDI13 can be jumper-configured to permit
the selection of 1K contiguous addresses of PROM memory

(BIDIRECTIONAL MEMORY DATA BUS]
N N
1CE2 1CE3
1CET 1CE4
- 1CE1 1 1’
—a 1CE2 4
— 1CE3 ——:> 256
x
—=1CE4 B-BIT
I PROMS
—» 2cE2
[—» ZCE2
ADDRESS i
.—::> BECOMNG zeee 20E2 BCE?
LOGIC L 3cET 2CEI 'rzcsa
L-— 30E2
- 4
—= 3CE3 256
—] : :> ¥ |
‘e 8-BIT
L acEd PROMS
— aceg
| = ACE3 BATA
——* 4ct4 ouTPUT
scel 2E2 3CED GATES
MEM _ | | J - OATA ‘ 4 {
ap L ENABLE 4
:> 256 | | DATA
x ENABLE
ADDRESS 8-6IT —
BUFFER PROMS
ADROCA TO
ADRD 15
ﬂ ADDRESS
MEMORY ADDRESS N > Agg’;g%“ 10). acei, A0E2 4CER
ADRD 07 ! '
q
— © =
X
a-BIT
PROMS
CR-3592
Figure 2-7 M7345 Block Diagram
PROM PROM PROM FROM PROM PROM PROM PROM
E27 E24 E21 El8 El5 E12 E9 E6
3400 3000 2400 2000 1400 1000 400 a
TO T TO TO TC 0 TO T0
arry 3377 2777 2377 1777 1377 7T 377
PROM PROM PROM PROM PROM PROM PROM PROM
E26 E23 E20 E17 El4 Ell EB ES
4000 4400 5000 5400 6000 €400 7000 T400
TO T0 TO 10 TO TO 10 TO
4377 4777 5377 5777 6377 6777 7377 7777
EDGE
CONNECTOR
CP-02B3

Figure 2-8 Physical Location and Octal
Address of M7345 PROMs

2-10

(™

TS3

TS4 —

M7341 _J I |
TIME STATES
READ CYCLE
READ ADDRESS X >< .
|]
1 ! .
MEM RD H ____.T_...H_JF 2150 ns
- 14555 o
| ! .
R0 DATA INVALID >< DATA VALID FOR READING

Figure 2-9 Memory Timing Diagram

within 8K location. This feature allows implementing
memory systems that require the intermixing of 1K ROM
and RAM memory sections within an overall set of
contiguous locatiens.

2.5 EXTERNAL EVENT DETECTION MODULE

The M7346 External Event Detection Module (EFEDM)isa
multi-purpose Microprocessor Series module designed to
implement priority interrupt schemes, provide power
failure detection, and processor start/restart/stop control.
This module is contained on a single-height,
extended-length PC board. Both the priority arbitration
Jogic and the power failure detection circuit are present on
this module and can be selected as required, for use in a
system,

Separate input lines to the EEDM provide for encoding up
to six levels of external application-defined event priority.
Each of these lines, when asseried, initiates an attempt to
jam a l-byte unconditional call (RST) instruction into the
M7341 Processor Module external event port.

The EEDM priority logic arbitrates all assertions and selects
the highest level asserted, then jams the corresponding
instruction into the processor module. The jammed RST
instruction associated with each priority level (zero through
five) constitutes an unconditional call on one of six 8-byte
subroutines located in the first 48 words of an MPS system
memory.

The eight output lines which propagate the instructions
that are jammed, are connected in common to the
processor module external event port and the power-fail

port.

2-11

To jam an RST instruction, the EEDM asserts a signal to
enable multiplexing the external event port and to initiate
an external event interrupt. If interrupts are enabled at the
processor module, the RST instruction is feiched and
executed. If not, the RST instruction is ignored.

The seventh priority level is asserted by either a manually
initiated start signal or automatically as a consequence of
power-up, In either case, an RST instruction is generated
which makes an unconditional call on cight reserved
memory words headed by location 48 (603).

Priority level eight is asserted by the power failure
detection circuit which monitors ac power inputs to an
MPS system. When a power failure condition is detected, an
RST instruction is automatically generated making an
unconditional call on lacation 705 (56,). Since leve] eight
is the highest arbitrated priority, a power failure takes
precedence over any of the six ievels of appiication-defined
event priority as well as the seventh or start level.

Level nine implements the halt function for MPS systems
which can be initiated manually or automatically, and
overrides all other priorities. When initiated, a halt
instruction is piaced on the lines to the processor module,
.and the power fail/stop port is enabled for multiplexing.
When fetched, this instruction forces the processor module
into the stopped state.

2.5.1 Priority Arbitration Logic

EEDM priarity aribtration logic (Figure 2-10} accepts nine
levels of ascending priority. Eight of these levels result in a
memory reference and the ninth, and highest, is executed
by the processor module without referencing memory.

cl-¢

AC PLUS N
e o AT SvHE

+8Y +EY
ma ' % e

8.3 vaC

AC MINUS N c1z Lt Xoz

A LoW L
+ s¥ —— 9
%ms
45 TRz 10
R4 TR +3v
+5Y
[} 3
+ 3y RiE
: £ --@c‘ AUTO START QUT H
L F L
cia
P& L I
R1 = E1 EX
= 4 [}] I[:]
B MoRS L - dos REM) B 4a E——1.%
’_gﬁa
iy Nk L
MR1s L - R == — D4 LL I T . = e BOG
_éna [
Wazs L i Uedes RaPE iz, et . aps
?nz
M35 L Sdor 2l 2ls P LA S
}R‘ﬂ
MBS L - Sy runf 0 Fr s BB3
'}RJ
MBS L ; oy : —= 02
21 CLKE H :
E2 |
SYNC M 5 H s BRI
D pamfts
b_%mz !]
. —_— Yy &5p— L —+—= ppo
EXT &C LOW L Raip—
oz
s o
335 Rz
EXT DC LOW t M
R2{b} —
R
R4
o1 a) L]
STOP L = RI(@)
START UP L .
2
RG@——
IOEE L
ca
cLr cLk PFSEE L
PINIT L =— [El
AUTO START IN H =
— : START L
CP-078)

Figure 2-10 M7346 Logic Diagram

Levels 0 through 5, designated by the input signal lines
MO005 L, MO15 L, M025 L,M035 L, M045 L, and MO5S5 L,
constitute the six lowest priority levels. These lines are
reserved for implementing six levels of application-defined
interrupt priorily arbitration.

The seventh level is reserved for the automatic and manual
restart function, and the eighth and highest arbitrated level,
for power failure detection. The ninth, and highest absolute
level is reserved for the stop function which automatically
jams an HLT instruction into the processor module to stop
operation.

EEDM priority arbitration logic is formed by the nine-stage
external event storage latch El1 and E2 and the octal
encoder E3. Assertions of any of the nine levels are stored
during the combined periods of the processor module
synchronous timing signals SYNC H and $1CLCK H. These
signals are ANDed to strobe the external event storage latch
El and E2 once during each processor time state {every 4
is) to store asserted events. The output of the first eight
stages of the external event storage latch are input to the
octal priority encoder E3. These eight input lines are ORed
by E3 to enable the encoder. The cutputs of the encoder,
EQ and GS, are wired to assert the code for an RST
instruction on module output lines BOO to BO2 and B06
and BO7, The octal number corresponding to the external
event input line asserted is simultaneously placed in the
address field (BO3 to BOS) of the RST instruction generated
by encoder E3.

In parallel with the generation of the RST instruction, the
outputs of the first eight stages of latch E1, E2 are ORed
by E3 to assert the signal IOEE L at the processor module.
This signal, when asserted, generates an interrupt if
interrupts are enabled, and initiates multiplexing of the
RST instruction on EEDM output lines BOO to BO7 at the
processor module external event port DIOSTQ L to
DIQST? L for fetching,

The octal number placed in the address field of the RST
instruction generated is in the range O to 7. By decoding
this instruction, this value is mapped to address one of the
eight locations 10, 20, 30, 40, 50, 60, and 70 (decimal 0, 8,
16, 24, 32, 40, 48, and 56 respectively) in an MPS system
memory. The result is a correspondence between a given
external event input line and an unconditional call on a
dedicated memory location. Through this mechanism,
application-defined routines can be developed to implement
priority interrupt schemes, start-up routines, and power-
failvre handling routines.

2-13

2,5.2 Start Circuit

The start function can be initiated in two
ways: automatically by an integral EEDM circuit, or
manually by an external switch. The automatic start output
signal AUTO START OUT H is generated by the RC circuit
R16, C14, and E5 when +5 V power is turned on and is
maintained high as long as +5 V is maintained, The output
of this circuit also clears the two monostable multivibrators
E6 in the power fajlure detection vcircuit. This
automatically-generated start signal, when fed back to the
EEDM, becomes the input signal AUTO START IN H.
When asserted, this signal triggers the monostable
muitivibrator E7 to produce a 50 ps signal at pin 4, This
signal is stored in the seventh stage of the cxternal event
latch E1, E2 on the next assertion of ¢1CLK H and SYNC
H from the processor meodulé. As a consequence, an RST
instruction making an unconditional cali on memory
location 60 (48;,) is generated and placed on output lines
BOO to BO7. Simultaneously, the signal START L is
asserted at the processor module to initiate a demand
interrupt and to muitiplex the RST instruction into the
external event port DIOSTO L to DIOST7? L for fetching.
Manual restarts are implemented through the EEDM input
signal START L which can be derived from an external
switch, This signal is debounced by the monostable
multivibrator E7 which produces a 50 ms negative-going
debouncing level at pin 5 for input to E7 at pin 1. From
this point, the circuit path is exactly the same as with an
automatic restart. Both automatic and manual start signals
take priority over all other external evenis except power
failure detection and stop functions.

2.5.3 Power Failure Detection Circuit

The EEDM contains a complete ac power failure detection
circuit (Figure 2-10) which samples a 6.3 V, 50 or 60 Hz, ac
input derived from the local line voltage by an external
transformer. This sampled ac voltage, which is received
through two FASTON tabs on the handle end of the
module, is rectified by a full-wave diode bridge to produce
a signal having a frequency twice that of the ac inpat
frequency. This signal is input to the frequency integrators
E5, E9, and E6 which detect the absence of line voltage for
two complete cycles. The signal period triggered by a power
failure is approximately 35 ms and is determined by the
value of capacitor C12 which, together with R18, forms the
RC for the monostable multivibrator E6 at pins 6 and 7.
Note that C12 is connected to the circuit with split lugs.
This manner of connection permits the value of C12 to be
changed to accommodate different application
requirements.

When an absence of two or more ac cycles is detected, the
multivibrator E6 is triggered at pin 1 to assert a 5 ms signal
to be gated out by E9 at pin 6, This period is determined
by the RC circuit R17, C11 where capacitor C11 is
connected to the circuit with split tugs to allow the valuc of
CEl to be changed to accommodate different application
requircmenis, The 5 ms output signal from the frequency
integrator is ORed with the externally generated signals AC
_ LOW L and DC LOW L for input to level seven of the
2xternal event storage latich EL, E2. This input is stored in
the latch on the assertion of the processor module signals
SYNC H and #1CLK H. Since both of these signals are
continuous regardless of processor state, storage of a power
failure detection signat for fetching by the processor is
assured even when the processor is in the Wait state,

The external inputs AC LOW L and DC LOW L allow usc of
application-defined power failure detection circuitry whose
outputs are TTL levels.

NOTE
Many commercially available power supplies
provide such output signals.

Power failure detection by the integral EEDM circuit or
assertion of one of these external signals takes priority over
all external events except assertion of the cxternal signal
STOP L.

A detection of power failure results in the automatic
generation of an RST instruction which makes an
unconditional call on memory location 48 (60g).
Simultaneously, the signal PFSEE L is asserted by E8&, pin
13 of the priority arbitration logic to generate a mandatory
interrupt at the processor module and to enable
multiplexing of the RST instruction into the power-fail
porst DPES0 L to DPFS7 L for fetching,.

2.54 Stop Function

A halt instruction is generated by the EEDM when the
input signal STOP L is asserted. When this occurs, the signal
is stored in the ninth stage of the external event latch E1,
E2 in the same manner as other external events, This stage
disables encoder E3 to generate and place a halt instruction
(HLT) on the lines BOO to BO7.

As with detection of a power failure, the signal PFSEE L js
asserted at the processor module power fail/stop port by
the EEDM to initiate multiplexing and fetching of the halt
instruction,

2-14

2.6 MONITOR/CONTROL PANEL

The KC341 Monitor/Control Panel (MCP) interfaces
ditectly with the processor module (PM) over a 50-wire
dedicated interface cable to provide an on-ine control and
program diagnoestic capability for systems configured from
Microprocessor Series modules. Specifically, the KC341
MCP serves as an address and data input station for the FM
to provide a visual display of data as well as display of
machine states and PM operating status. The MCP also
contains a resident memory formed by a random access
scratch pad memory and a programmable read-only
memory. Together, these memories provide for -program
loading as well as other application-defined requirements,

2.6.1 Moanitor/Control Panel Cable Connections

Datg{Control Interface Cable (BCO5-W)

Connect the flat Data/Control Cable between the 50-pin
connector on the MCP and the 50-pin connector on side 1
(component side) of the M7341 Processor Module as shown
in Figure 2-11. Be sure that the flat cable is not twisted
between the two units,

Power Cable (BC05-Y)
The power cable connections to the MCP must be made to
the appropriatc FASTON tabs as listed below:

Black Ground
Blue =I5V
Red 45V

2.6.2 Monitor/Control Panel Functions

The discussion that follows relates the functions performed
by the MCP to data, address, and signal flow, both within
the module and between the MCP and the PM. This
discussion is centered on two categories: panel functions
and diagnostic memory. Discussions of MC panel functions
and the diagnostic memory are based on the detailed blogk
diagrams which graphically depict data address and signal
flow as related to the functional logic blocks comprising the
monitor/control panel.

In Figure 2-12 the MCP consists of a 14-bit switch register
for entry of addresses and data with corresponding display
lights, nine function switches, and 12 signal, status and
condition display lights. The switch register, together with
corresponding bit display lights, is marked off for quick
visual observation of octal as well as address blocking
notation. The line of function switches located below the
switch register is divided into two groups with one group
containing seven switches and the other containing two
switches. The seven-switch group provides the mechanism

Figure 2-11 MCP Cable Connections

for controlling the input of addresses and data and for
monitoring and control of PM operation. The two-switch
group controls the display of addresses and data. Each of
the seven function switches connects to an implementing
logic circuit (Figure 2-13) which performs the action
specified by the switch, The ADDR LOAD and DEP
switches control address and data entry, with the EXM
switch initiating the visual display of the data contained in
the memory location accessed by the address entered
through the switch register. Data, addresses, and signals

2-15

pertinent to, or resulting from, these panel actions are
received from or sent to the processor module over the
50-wire interface cable.

Use of the ADDR LOAD, DEP, and EXM switches requires
that the PM be in the halt state (HLT switch must be on).
The remaining four switches permit the on-line control of,
and intervention in the operation of the PM. Intervention in
this case refers to the single-cycle execution, on a sequential
basis, of processor module program instructions performed

LOAD ST#Y CONT EXAM BALT pid R
RN, T

- Microprocessor series |

monitor /contral panel §

EF e]
S il

Figure 2-12 MCP Front Panel

by the SING CYCLE and CONT swiiches. Each of these
seven switch functions is discussed in detail with all
discussior based on Figure 2-13.

Load Address Function

The load address function permits the manual insertion of a
14-bit memory address through the switch register to
deposit data in the location accessed to or examine its
content. Once an address has been loaded, it is displayed
automatically. Prior to implemeting the load address
function, the HLT switch must be on.

Pressing the ADDR LOAD swiich causes this switch action
to be stored in the load address flip-flop. Flip-flop output is
then gated with the signals SSYNC H and ¢1B H derived
from the PM synchronous signals SYNC L and ¢1, to assert
the signal LOAD. Assertion of LOAD causes the manually

2-16

inserted content of the switch register to be loaded into the
address counter. Address counter output is direct input to
the address multiplexer, Note that the two most significant
bits of the high address byte (ADRD14 H and ADRD15 H)
are hardwired te logic ONE (+3 V), This assures that the
PM will address memory under the control of a PCl
machine cycle so that the memory daia-in port at the PM
input data multiplexer is selected for subsequent fetching,
The signal LOAD is also ORed with the signal: COUNT
DOWN to clock a second flip-flop whose output is gated
with SSYNC H and ¢2B H to assert LAL. (#2B H is derived
from the PM synchronous signal ¢2.) Note that the signals
SOB and $1B control selection of the low and high address
bytes for multiplexing onto the 8-bit output data bus.
During the period of LA1, SOB is high and $1B, which is
the reset side of the flip-flop whose set side is gated with
SSYNC H and ¢2B H to assert LAL, is already low. As a
consequence, low address byte is multiplexed onto the data
bus.

L1-C

5IM
SiM MEM

SIM MEM READ AND
SIM DI N GATE

SIM DATA
JAM ouT

INTERRUPT WRITE ENAELE GATE
$zZBH
B18H I I :ssmc H Y LA LAZ
LAD 206 1 T
LOAD 400RESS g1 SSYNG SYNC :
ADDRESS LOGIC LOAD H " wne L B-BIT MCP/ PM MODULE SiGNAL S-8IT 14-BIt
SWITCH Blona] o0 [eedt DATA INTERFACE DaTA ADDRESS
RESET B20H =] e eq2 | BYTEOUT BYTE IN
[——. LOAD = LAY
P QUTRUT SRR EEREN
REGISTER Loz SYNC.L S0 S 5242 g1 CO ¢ T1 INTER-
——= LOGIC = I8 RUPT
| LINE ADDRESS BUS
I OATA TO RESIDENT. EXTENSLON
EXAMINE EXAMINE SIM MEM READ [MEMORY FOR RESIDENT
SWITCH LOGIC $IM DI (NI GATE LOW -HIGH BYTE | pata FRoM ; MEMORY
SO AR ADDR Ess RESIDENT
COUNT s1B HEMORY DISPLAY
DATA
| Losic ﬂ ﬁ SWITCH ADDRESS / DATA DISPLAY
b+ ADDRESS
DISPLAY MUX
DE iT EIM MEM WRITE —|.—1 EWITCH
DEPOSIT Poi LOAD ADDRESS CATA CUT 50 44—
SWITCH 04T OATA QUT GATE | COUNT DOWN COUNTER GATES
LOGIC s 15 [14] §-BITS U U
SSYNC H : G\mﬁ.:QP_BH +3v 521 " AODRESS /7 DETA DISPLAY
[l [n]
SINGLE SINGLE i | pﬁ% 4
CYGLE CYCLE [—+= ROY + RDY [C 2 5 789
SHITeH LoGIC smc RDY INTR PCI PCC PCR PCW @1 2
T SWITCH REGISTER <z
Pewemam CONTINUE | <R3 1 , \ ’ ‘ ’ | ‘ ’
FLIP-FLOP RaLT/
SWITCH NT.
RESET WP INST T sTART SYNCL ROY :_mg MACHINE CYCLE
I, TIL INSTRUCTION DISPLAY DECODER
T3L I HALT INST " MUX
START A B ENA I t
SWITCH START/ |- SIM INTERRUPT START / HALT ¥ ¢ 1
HALT MUX RUN HALT WAIT
WALT LOGIC = SIM JAM ENABLE SELECT COUNTER
SWITCH
mIe
TIME STATE
DISPLAY DECODER T3
50 st 2
tP-0geg

Figure 2-13 MCP Block Diagram

At the PM, LA1 Joads this tow address byte into the ontput
register (Figure 2-1) as though processor time state TS1 had
commenced.

The traiting edge of LA1, as determined by ¢2B H, clocks a
third flip-flop causing SOB to go low along with S1B so that
the high address byte is multiplexed onto the output data
bus. The set side of this flip-flop is gated with ¢2BH to
assert LAZ. At the PM, LA2 causes the high address byte to
be loaded into the output register as though the processor
time state TS2 had commenced. The assertion of LA2 also
initiates a reset cycle to prepare this condition-sensitive
logic for the next load address cycle.

At this point, the output register at the PM containg a
14-bit address and this address is present on the address bus
to system memory.

Deposit Function

The deposit funciion permits an 8-bit data byte to be
written into the memory location currently accessed by a
14-bit address inserted into the switch register and placed
on the PM memory bus by pressing the ADDR LOAD
switch, Each data byte inserted into the switch register for
deposit can be displayed after being deposited by pressing
the DISP DATA button.

Since the content of the address counter is incremented
after each deposit, and this new address is placed on the PM
memory bus, sets of data bytes can be deposited into
consecutive memory locations of ascending magnitude
merely by inserting and depositing cach byte. The data byte
to be deposited is inserted into the eight least significant
switches (labeled D 1o 7).

Pressing the DEP switch causes the switch action io be
stored by the two deposit flip-flops which are configured to
form a two-phase selector. During the fisst phase, which is
selccted by the initial pressing of the DET switch, the
resulting signal is stored in an associated flip-flop, then
gated with the AND of signals SSYNC H and ¢1B H. The
result of this gating is then stored in a second associated
flip-flop to assert the simultancous signals S2! and DATA
OUT GATE, Data inserted into the eight least significant
positions of the switch register, in addition to being the low
address input to the address muitiplexer, is also input to the
data out gates.

The assertion ol 8§21, then, gates the 8-bit data byte to be
deposited out of the switch registcr onto the output data
bus and (o the PM. At the same time, DATA OQUT GATE
cnables the output data gates at the PM to gate this data
onto the bidirectional memory data bus.

2-18

The assertion of §21 and DATA OUT GATE is gated with
the next ¢2B H pulse to assert SIM MEM WRITE at the PM.
As shown in Figure 2-1, this signal activates the PM centrol
logic to assert MEM WR H cauwsing the data on the
bidirectional memory bus to be writien into memory. If a
new address were loaded at this point, the two-phase
selector would be reset and the next pressing of the DEP
switch would cause the deposit cycle, just discussed, to be
repeated.

When the DEP switch is pressed a second time with no
intervening address {oading or examining, the second phase
of the two-phase selector is entered causing assertion of the
signal COUNT DOWN, This signal vpdates the address
counter by one and is ORed with the signal LOAD to
initiate the load address sequence as described in the
discussion under Load Address Function. After a 200 ns
delay, to permit gating of the incremented address onto the
PM memory bus, a deposit cycle is initiated to write the
new data inserted in the swiich register into the memory
location accessed by the incremented address.

Examine Function

The examine function, as the name implies, permits the
examination of the content of that location accessed by ths
current content of the PM address bus. The content of this
location is automatically displayed in the Address/Data
display as a result of pressing the EXM switch. The address
currently being examined can be displayed by pressing the
DISP ADDR button, As with the Load Address and Deposit
functions, the processor module must be in the Halt state
prior to examining a memory location,

If a sequentiat set of addresses of ascending magnitude is to
be examined, only the starting address need be entered into
the MCP switch register. With each subsequent pressing of
the EXM switch following the first pressing, the initial
address is incremented by one to access the next sequential
location for examination.

After an address has been loaded, pressing the EXM switch
causes the switch action to be stored by the two examine
fip-flops which are configured to form a two-phase
selector, Puring the first phase, which is selected by the
initial pressing of the EXM switch, the resulting signal is
stored in a third flip-flop o assert the simultaneous signals
SIM MEM READ and SIM D (N) GATE at the PM. SIM
MEM READ is input to the PM control logic causing that
logic to assert the PM signal MEM RD H. As a consequence,
the data contained in the location accessed by the MCP (see
discussion of Load Address Function) is ptaced on the
memory bus as input to the PM input multiplexer mermory

data port DMOL to DM7L. Since this port is always
selected when the PM is halted, the content of the
addressed location is present at the PM input data gates,

These gates are enabled by the signal SIM D (N) GATE
placing the data on the input data bus and hence onto the
dedicated bidirectional data lines to the MCP. At the MCP,
this 8-bit data byie to be examined is input to the eight
low-order positions of the Address/Data display. The
disptay is enabled along with the assertion of $IM MEM
READ and SIM D (N) GATE, thercby autematically
disptaying the retrieved data for examination,

When the EXAMINE switch is pressed a second time, the
second phase of the two-phase examine selector is entered.
During this phase, which is maintained until a new address
is manually entered into the switch register, each pressing
of the EXM switch asserts the COUNT DOWN signal. The
assertion of COUNT DOWN updates the MCP address
counter by one, placing the next sequential address to be
examined as input to the address multiplexer. COUNT
DOWN is also ORed with LOAD to initiate the load address
sequence. The load address sequence generates a 200 ns
delay to inhibit the examine sequence until the
incremented address has been gated onto the data ocutput
bus and placed on the PM memory address bus. At the end
of this 200 ns delay, the examine sequence is initiated to
read and display the data contained in the memory location
accessed by the incremented address.

When a new address is entered into the switch register
following an examine sequence, the resulting load address
sequence will reset all condition-sensitive examine logic
including the two-phase selector in the same manner as with
the Deposit function.

Single Cycle and Continue Function

The switches implementing these functions, the SING
CYCLE and CONT switches, permit the examination on a
cycle-by-cycle basis of the PM memory address bus and the
bidirectional data port content. Pressing the SING CYCLE
switch serves to pull the RDY (Ready) line to the PM to
ground causing the processor 1o enter the Wait state.
Entrance into the Wait state by the PM is designated when
the WAIT indicator lights, With the processor in the Wait
state, each pressing of the CONT switch clocks the continue
flip-flop to assert the RDY line at +3 volts causing the PM
to escape the Wait state and begin execution starting at
time state TS3.

2-19

As soon as time state TS3 begins, the states of S0, 81, and
S2 at the MCP assert the internal signal T3L, This signal
then resets the Continue flip-flop pulling the RDY line back
to ground within a time frame which assures that the PM
will enter the Wait state following execution of the next
time state TS2.

As a consequence each time the CONT switch is pressed,
the machine cycle, which is the current constituent of the
instruction under exccution, is performed starting at PM
time state TS3, continues into the next constituent
machine cycle, and stops in the Wait state. At that point,
the identity of the next machine cycle to be executed will
be displayed by the pertinent indicator (PCI, PCC, PCR, or
PCW). In addition, the address of the locations containing
the bytes constituting the instruction being executed is
automatically displayed as each byte is accessed. The actual
content of each address can be displayed by pressing the
DISP DATA button,

Start Function

The Start function permits an operator to begin executing a
program at any location within that program merely by
inserting the address of the desired memory tocation into
the MCP switch register and pressing the STRT switch. This
address could be, for example, the starting location of the
bootstrap routine contained in the MCP PROM resident
memory,

Pressing the STRT switch wil] light the RUN indicator. Use
of the Start function is always based on the processor
module initially in the halted state. The MCP HALT switch
must be in the off position (down) to initiate the Start
Function.

Pressing the STRT switch stores the switch action in the
start flip-flop causing the output of that flip-flop to assert
SIM INTERRUPT at the PM which interrupts the
processor. As a result, the processor enteres time state TS1I
after completing the current machine cycle. At the start of
the next time state TS3 following TS1I, the PM asserts the
sipnal T1IB to the MCP which is gated with the start
flip-flop to enable the 2-bit Start/Halt multiplexer select
counter and to assert the signal SIM JAM ENABLE to the
PM. The signal T1IB represents the first occurrence of time
state TS3 at the PM following entry into time state TS1IL.
The signal SIM JAM ENABLE inhibits the PM input data
gates to prevent any extraneous data out of the input data
multiplexer from engering the PM bidirectional data port.
(Figure 2-1). On the first assertion of TS3 during a start
sequence, the initial byte of a IMP (jump uncenditionally)

instruction, which is hardwired at the MCP, is selected. This
first byte is multiplexed onto the MCP output bus to the
PM and directly into the PM data port simultancously with
the assertion of SIM JAM ENABLE. On the second
assertion of TS83, the low byte of the jump address
{ <B2>) previously inserted into the switch register is
multiplexed and gated onto the output data bus and into
the PM. On the third assertion of TS3, the high byte of the
jump address (<B3>>} is multiplexed and gated in the same
manner. The next instruction executed, which would be the
first instruction of a start-up routine, would he fetched
from this address. During the jamming of this 3-byte JMP
instruction, all system memories inciuding the MCP resident
memory are disabled until the jamimed instruction has been
fetchied by the PM,

Halt Function

The Hatt function permits a user to arbitrarily halt
operation of the processor module through a single switch
action. When using one of the panel functions such as load
address, examine, or deposit, this switch must be actuated
to perform any of these opcrations.

When the HLT switch is actuated, this action is stored in
the Halt flip-flop. The output of this flip-flop then asserts
the signal SIM INTERRUPT to the PM thereby interrupting
the PM and causing the INTR indicator st the MCP to light.
As a consequence of the interrupt, a PCI machine cycle is
initiated and T1IB is issued by the PM to set the Start/Halt
multiplexer select counter to a zero count thereby selecting
the hardwired halt instruction for gating onto the output
data bus. Simultaneously, T1IB is gated with start flip-flop
output to enable the Start/Halt multiplexer, placing the
HLT instruction at the PM data port to be ferched and
executed. At that point, the RUN indicator will be
extinguished and the HLT indicator will tight. All
condition-sensitive citcuits in the Start/Halt logic arc also
reset.

2.6.3 Resident Memory

The MCP Resident memory is a semiconductor memory
matrix formed by a fully deceded bipolar 32-word X 8-bit
random access scratch pad memory (RAM) and an MOS
256-word X 8-bit programmable read-only memory
(PROM). In all systems configured from Microprocessor
Scrics moduics, this memory occupies the last 288 memory
locations within a 16K address set regardless of actual
systern memory size, The octal address set 37340 to 37777

2-20

is hardwired-dedicated to the MCP resident memory. The
resident memory may be removed from a system and this
address space used by a system mermory by cutting jumper
W1 and installing a soldered wire connection between the
adjoining split lugs. Resident memory is discussed under the
two memaory categories — the RAM and the PROM. Each
discussion is based on the block diagram shown in Figure
2-14.

Resident RAM

The Resident RAM is configured for addressing as 16 upper
words and 16 lower words. Te access this memeory, the
address decoding logic decodes the state of bus address lines
ADRDO4 H through ADRDI3 H to determine that the
current address is in the range 373403 to 37357, (lower
words} or 373604 to 373775 (upper words).

When one of the lower bytes is addressed, the signal
SELECT LOWER RAM is asserted to select the lower word
locations for accessing. Similarly, when one of the upper
words is addressed, the signal SELECT UPPER RAM is
asscrted to select upper word locations for accessing. The
lines ADRDOO H through ADRDO3 H are the four
low-order address bits in the 14-bit address and are
wire-ORed to all 32 memory locations to address one of 16
locations in both the upper and lower memory word
locations. Resident memory timing is performed by the
signals MEMORY READ and MEMORY WRITE in
conjunction with the signals SYNC L and ¢2 from the PM
and T3L as derived at the MCP, Both signals, MEMORY
READ and MEMORY WRITE, are derived by the MCP
from the signals CO and C1 from the PM. These signals are
asserted simultaneously with the corresponding PM signals
MEM RD H and MEM WR H and are, therefore, equivalent.

Two memory-enabling signais are associated with each
setect signal to implement reading and writing operations,
These are: ME UPPER, ME LOWER, WE UPPER and WE
LOWER. The signals ME UPPER and ME LOWER are
asserted in parallel with the corresponding select sigrral o
initiate a memory-read operation. However, for a wrile
operation, the pertinent select signal is gated with
MEMORY WRITE to enable the addresscd location for
writing of data present on thc MCP input data bus. During a
read operation, data from the addressed location is gated
onto the bidirectional data bus by the signal MEMORY
READ.

DATA QUT
"y
IAI
SELECT UPPER RAM
ME UPPER
WE UPPER N 1
ADRDBDH i'a UPPER
—
A
OORESS 4bRD @1 H gi RAM
ADRD 62 H |'— .
DECODE M 16 - WORDS RAM
ADRD @3H | — ouT
LOGIC ' i‘z LOWER GATES
ADRDAGH Tomnma) ii RAM I
:) 16 - WORDS
MEMQRY
SELECT LOWER RAM $ T READ
ME LOWER
WE LOWER
MEMORY WRITE . PROM
ADRD@2H TO ADRDEJ?}:> 256 - WORDS
ENABLE
MEMORY READ t
MEMORY READ
L—— o
MEMORY TIMING |+~——= ¢4
LOGIC [2
P smecL
[T3L
SIM MEM WRITE i t 5IM MEM READ £P- 0980

Figure 2-14 MCP Resident Memory Block Diagram

Resident PROM

The Resident PROM (Figure 2-14) is a 256 word X 8-bit
electrically programmable and . ulira violet erasable
read-only memory accessed by octal addresses in the range
37400 te 37777. The signal MEMORY READ is gated with
address bits ADRD0O9 H through ADRDI13 H when the
magnitude of these bits is decoded to be equal to or greater
than 37400; to enable the PROM for reading. The content
of the location accessed by the eight low-order bits of an

asserted address {ADRDOO H to ADRDQ7 H) is placed on
the MCP output data bus as a direct consequence of
addressing.

Note that the resident PROM is formed by a single socket
mounted dual in-line integrated circuit which contains the
Microprocessor Program Loader (MPL). MPL is a bootstrap
loader which permits the user to read in object paper tapes
from a Teletype.

CHAPTER 3

MICROPROCESSOR SERIES

3.1 INTRODUCTION

This chapter dcfines the instruction set for the Micro-
processor Series (MPS) M7341 Processor Module, the
central control element of the system described in this
manual. This instruction set is highly optimized for process
control applications. Chapter 3 and Chapier 6 are intended
to be used together by system users who develop applica-
tion programs. Chapter 3 presents the instruction set itself
in terms of its graphic and mnemonic representation, the
number of bytes in the instruction, the number of time
states, the types of machine cycles executed, and examples
of program usage. Chapter 6 describes the Microprocessor
Language Assembler (MLA) (which assembles the instruc-
tions defined in Chapter 3), presents the MLA character sct
and syntax, describes pseudo-instructions defined for MPS,
and summarizes operating procedures and possible error
messages.

3.2 INSTRUCTION FUNCTIONS AND FORMATS
Instructions are presented in this chapter in five functional
categorics:

. Index register instructions

® Accumulator (arithmetic/logical) instructions

. Program counter and stack control instructions

® Input/output instructions

L] Machine instructions

3.1

INSTRUCTION SET

Table 3-1 summarjzes the conventions wsed in describing
the instruction set, and translates terms used frequently as
shorthand descriptions of individual instructions.

The following list of registers and codes applies both to
source and destintion registers:

Register Code
A 000
B 001
C 010
D 011
E 100
H 101
L 110
M (memory addressed by Hand L) 111

Data is stored and handled in the form of 8-bit words; all
data transfers between registers and memory occur in this
format. The instruction syntax shown in the paragraphs
which follow includes the number of machine states
executed by the instruction. To obtain the amount of time
in seconds, use the following computation:

i

——————. ¥ 2 * giate times executed
clock frequency

seconds =

where clock frequency is expressed as Hz, If the frequency
is given in megacycles, the result will be expresscd in
microseconds.

Table 3-1
Instruction Set Notation

Symbol Meaning

<B2> Second byte of an instruction

<B3> Thizd byte of an instruction

r

(1} One of the 8-bit registers A, B, C,D, E,H, L
1(2)

A Register used as the accumulator

B,C.,EHL Scratchpad registers

H,L Registers used as memory-address registers

¢ One of the status flip-flops (C, Z, S, or P}

C{4)C(3) Condition flipflop codes:
Meaning Code Truth Status
Carry (C) 00 Qverflow, underflow
Zero (Z) a Result is zero
Sign (S) 10 Most significant bit

of result is set

Parity (P) 11 Number of bits set in
result is even

M Memory location referenced by the contents of registers
H and L {code for memory is 111)

) Contents of register, memory location, or status flip-flop

Logical AND

<« >

Exclusive OR

v Inclusive QR

A(m) Bit m of the accumulator (register A)

stack Pushdown registers storing nested subroutine return addresses
P Program counter register containing the address of the next

instruction to be executed

- Is replaced by

XX Can be any value

588 Source register code
pDD Destination register code

3-2

3.3 INDEX REGISTER INSTRUCTIONS
Index register instructions have been implemented to
perform the following functions:

. Load data into index registers or memary

. Load constant immediately after the instruc-
tion into index registers or memory

. Increment an index register

. Decrement an index register

The registers maniplulated by these instructions include the
following:

g Accumuliator or A register
. Scratchpad registers B, C,D,and E
. Memory address registers Hand L

] Any addressable read/write or read-only

memory location

3.3.1 Loading Data into Index Registers or Memory

Data can be loaded into any of the index or memory
registers or can be moved among these registers. Loads of
this kind are one-byte instructions, and their execution
does not affect the condition flip-flops in any way. Data
can be loaded in any of the following ways:

L Load a register with the contents of another
register

L4 Load a register with the contents of a memory
location

. Load a memory location with the contents of a
register

in ali of these instruetions, data is loaded from a source
(S88) to a destination (DDD) register; the source register
remains intact.

3.3

The format for loading a register with the contents of
another register is:

Form Li{1)r{2)
11 DDD S88
r(1)<1(2)
Examples LAB
LDE
Time States/
Machine Cycles 5,PCI

The contents of r(2), the soucce register, are transferred to
r(1}, the destination register. The contents of (2} remain
unchanged. If the source and destination registers are the
same, this is considered a NOP (no operation) instruction.

To load a register with the contents of a memory location,
the following is issued:

Form LM
11 DDD 111
(x)(M)
Examples LAM
LDM
Time States/
Machine Cycles 8,PCLPCR

The contents of a memory location (M), addressed by
registers H and L, are transferred to r, the destination
register. If the code of the destination register is 111, an
HLT instruction is executed.

To load a memory location with the contents of a register,
use the following instruction:

Form LMr
11111 888
(M)y<(r)

Examples LMA
LMC

Time States/

Machine Cycles 7,PCLPCW

The contents of 1, the source register, are transferred to a
memory location (M), addressed by registers H and L. The
contents of r remain unchanged. If the code of the source
register is 111, an HLT instruction is executed.

3.3.2 Loading Data Immediate

These instructions are executed to load the byte of data
immediately following the instruction into a register or
memory location. Condition flip-flops are not affected.
Loads of this kind are two-byte instructions. Data can be
loaded as follows:

Load data into a register

. Load data into a memory location

To load byte two of an instruction into a register, use the
following format:

Form Lrl
Q0 DDD 110
<B2>
(r)y~<B2>
Examples LAI A+B
LLI 340
Time States/
Machine Cycles 8 PCLPCR

The data contained in byte two of this instruction will be
loaded immediately into r, the destination register.

To load byte two of an instruction into a memory location
addressed by the contents of registers H and L, use the
following:

Form LMI
00111110
<B2>
(M)«<B2>

Example LMI 104

Time States/

Machine Cycles 9,PCI,PCR,PCW

The data contained in byte two of this instruction will be
loaded immediately into M, the memory location addressed
by registers Hand L.

3.4

3.3.3 Incrementing an Index Register

The one-byte instruction is used to increment an index
register by one. All condition flip-flops are affected except
the carry. Registers B, C, D, E, H, and L can be
incremented, but the accumulator (register A) and memory
cannot. The instruction format is:

Form INr
00 DDD 000
(D)1
Examples INB
INL
Time States/
Machine Cycles 5,PCI

The contents of r, the destination register, are incremented
by one, and the result is stored in r, If the code of the
destination register is 000, an HLT instruction is executed.

3.3.4 Decrementing an Index Register

An index register can be decremented by one by means of
the one-byte instruction. All condition flip-flops are
affected except the carry. Registers B, C, D, E, H,and L
can be decremented, but the accumulator and memory
cannot. The instruction format is:

Form DCr
00 DDD 001
(ry{n)-1
Examples DCB
DCC
Time States/
Machine Cycles 5,PCI

The contents of r, the destination register, are decremented
by one, and the result is stored in r. If the code of the
destination register is 000, an HLT instruction is executed,

34 ACCUMULATOR INSTRUCTIONS

The instructions summarized in this paragraph are used to
perform arithmetic, logical, and rotation operations usually
between the accumulator and a register or memory loca-
tion. Accumulator instructions can be divided into the
following areas:

. Arithmetic/logical index register instructions

® Arithmetic/logical operations with memory

. Arithmetic/logical immediate instructions

L Rotate instructions

These instructions use the contents of the accumulator as
one argument, and an index register, a memory location, or
the second byte of the instruction as the other argument,
Instructions in this category aficct the condition flip-flops
in a variety of ways:

1. If a carry or borrow is generated by the
instruction, the carry flip-flop (C) is set to one:
if no carry or borrow is generated, the carry
flip-flop is set to zero.

2. If the result of a ¢comparison with the accumu-
lator is zero, the zero flip-flop (Z) is sct to one;
if the result of the comparison is nonzero, the
zero flip-flop is set to zero.

3. If bit 7 of a result is one, the sign flip-flop (8) is
set to one; if bit 7 is not one, the sign flip-flop
is set to zero.

If a result contains an even number of ones, the
patity flip-flop (P) is set to one; if the result
contains an odd number of onecs, the parity
flip-flop is set to zero.

Depending on the specific instruction being ecxecuted, one
or more of the condition flip-flops can be set as a
consequence of instruction execution.

Multiple-precision binary arithmetic is performed using the
carry flip-flop; logical operations always resct the carry
flip-flop to zero. Rotate instructions affect only the carry
tlip-flop leaving other conditien flip-flops unchanged. Sub-
sequent paragraphs define flip-flop consequences of
executing other instructions.

3.4.1 Index Register Instructions

The eight instructions described in this paragraph are used
to perform arithmetic and logical operations between the
accumulator (register A) and the contents of one of the
index registers. The results of the operations affect the
accumulator but do not change the contents of any other
index register (885 in boxes below). All of the operations
described are one-byte instructions.

3-3

To add the contenis of a register to the contents of the
accumulator, use the following:

Form ADr
10 000 8SS
{(Ay—~AM(D)
Examples ADC
ADD
Time States/
Machine Cycles 5,PCI

The contents of r, the source rcgister, are added to the
contents of the accumulator and the sum is stored in the
accumulator. The result of executing this instruction can
affect any of the condition flip-flops.

To add the contents of a register and the carry flip-flop to
the accumulator, issuc the following:

Form ACr
10 001 §S8
(A)y(A)yHr)Hcarry)
Examples ACB
ACD
Time States/
Machine Cycles 5,PCI

The contents of the source repister (r) and the carry
flip-flop arc added to the contents of the accumulator and
the sum is stored in the accumulator. When used in
conjunction with the ADr instruction, this instruction
facilitates multiple-precision addition of register and
accumulator data. Any of the condition flip-flops can be
affected by oxecuting this instruction.

To subtract the contents of a register from the contents of
the accumulator, use the following:

Form SUr
10010 888
(Ay—(A)(r}
Examples SUB
SUE
Time States/
Machine Cycles 5,PCI

The contents of r, the source register, are subtracted from
the contents of the accumulator and the difference is stored
in the accumulator. Subtraction is performed using two’s
complement arithmetic. Any of the condition flip-flops can
be affected by executing this instruction.

To subtract and borrow use the following:

Form SBr
10011 S88
{(AyAAHr)A{carry)
Exatnples SBEB
SBD
Time States/
Machine Cycles 5,PCI

The contents of the source register {r) and the carry
flip-flop are subtracted from the contents of the accumu-
lator and the difference is stored in the accumulator.
Subtraction is performed using two’s complement arith-
metic. When used in conjunction with the SUr instruction,
this instruction facilitates multiple-precision subtraction.
Any of the condition flip-flops can be affected by
executing this instruction.

To perform a logical AND operation on the contents of the
accumulator and a register, use the following:

Form NDr
10 100 SS8
(AyA) A (D)
Examples NDB
NDD
Time States/
Machine Cycles 35,PCI

Each bit of r, the source register, is ANDed with each bit of
the accumulator. The logical product is stored in the
accumulator.

3-6

To perform an exclusive OR operation on the contents of
the accumulator and a register, use the following:

Form XRr
10101 88§
(A)HA) % (1)
Examples XRA
XRD
Time States/
Machine Cycies 5,PCI

The contents of r, the source register, are exclusively ORed
with the contents of the accumulator. The result is stored
in the accumulator.

Tu perform an inclusive OR operation on the contents of
the accumulator and a register, use the following;

Form ORr
10110 888
(AAyV @
Examples ORA
ORB
Time States/
Machine Cvcles 5,PCI

Each bit of r, the source register, is ORed with each bit of
the accumulator. The result is stored in the accumulator.

To compare the contents of a register with the contents of
the accumulator, use the following:

Form CPr
0111 888
(A)(r)
Examples CPB
CPD
Time States/
Machine Cycles 5,PCI

The contents of r, the source register, are compared with
the contents of the accumulator. The accumulator remains
unchanged. After the instruction has been executed, if the
contents of r are greater than the contents of the
accumuiator, the carcy flip-flop is set to cone; if not, it is
reset to zero. If the two values are the same, the zero
flip-flop is set to one; if not, it is reset to zero. The sign and
parity flip-flops are set as if the subtraction had actually
ocourred.

3.4.2 Operations With Memory

The eight instructions described in this paragraph are used
to perform arithmetic and logical opcrations between the
accumulator (register A) and the memory byte of data
addressed by the contents of registers H and L. The results
of the operations affect the accumulator but do not change
the contents of the memory Jocation (M in all models
below). All of the operations described are one-byte
instructions.

To add the contents of a memery location to the contents
of the accumulator, use the following:

Form ADM
10000111
(AYyAA)y(M)

Example ADM

Time States/

Machine Cycles 8,PCLPCR

The contents of M are added to the contents of the
accumulator and the sum is stored in the accumulator. Any
of the condition [ip-flops can be affected by executing this
instruction.

To add the contents of a memory location and the carry
flip-flop to the contents of the accumulator, use ihe
following:

Form ACM
16001 111
(AyAAyHM)+(carry)
Example ACM
Time States/
Machine Cycles 8 ICILPCR

3-7

The contents of the specified memory location and the
carry flip-flop are added to the contents of the accumu-
lator; the sum is stored in the accumulator (A). When used
in conjunction with the ADM instruction, this instruction
facilitates multiple-precision addition of memory and
accumuiator data. Any of the condition flipflops can be
affected by executing this instruction.

To subtract the memory location from the contents of the
accumulator, use the following:

Form SUM
10010111
(Ay(A)HM)

Example SUM

Time States/

Mzachine Cycles 8,PCLPCR

The contents of the specified memory location are sub-
tracted from the accumulator and the difference is stored in
the accumulator. Subtraction is performed using two’s
complement arithmetic. Any of the condition flip-flops can
be affected by executing this instruction.

To subtract the contents of a memory location and the
carry Oip-flop from the contents of the accumulator, use
the following:

Form SBM
10011111
(A)y~(A)HA M carry)
Example SBM
Time States/
Machine Cycles 8,PCIPCR

The contents of the specified memory location and the
carry flip-flop are subtracted {rom the contents of the
accumulator. Subtraction is performed using two’s comple-
ment arithmetic, When nsed in conjunction with the SUM
instruction, this instruction facilitates multiple-precision
subtraction. Any of the condition flip-flops can be affected
by executing this instruction.

To perform a logical AND operation on the contents of the
accumulator and the memory location use the following:

Form NDM
10100111
A A M)

Example NDM

Time States/

Machine Cycles &,PCIPCR

Each bit of the memory location is ANDed with each bit of
the accumulator. The logical product is stored in the
accumulator,

To perform an exclusive OR operation on the contents of
the accumulator and the memory location, use the
following:

Form XRM
10101111
(AyHA) 3y (M)
Exampie XRM
Time States/
Machine Cycles 8,PCLPCR

The contents of M are exclusively ORed with the contents
of the accumulator and the result is stored in the
accumulator.

For an inclusive OR operation on the conients of the
accumulator and the memory location, issue the following:

Form ORM
10110111
(A)y(A) v (M)
Example ORM
Time States/
Machine Cycles 8PCIPCR

The contents of M are inclusively ORed with the contents
of the accumulator and the result is stored in the
accumulatot.

3-8

To compare the contents of the memory byte with the
contents of the accumulator, use the following:

Form CPM
011111
(AM)

Example CPM

Time States/

Machine Cycles 8,PCLPCR

The contents of M are compared with the contents of the
accumulator; the accurnulator remains unchanged. After
the instruction has been executed, if the contents of M are
greater than the contents of the accumulator, the carry
flip-flop is set to one; if not, it is reset to zero. If the two
values are equal, the zero flip-flop is set to one; if not, it is
reset to zero. The sign and parity flip-flops are set as if the
subtraction had actually occurred.,

3.4.3 Immediate Instructions

The eight instructions described in the paragraph are used
to perform arithmetic and logical operations between the
accumulator and the byte of data immediately following
the instruction. The results of the operations described
below affect the accumulator but do not change the
contents of the immediate byte. All of the operations
described are two-byte instructions.

To add the contents of byte two to the contents of the
accumulator, use the following:

Form ADI
00 000 100
<B2>
(AY(AN<BZ>

Example ADI 2

Time States/

Machine Cycles 8,PCIPCR

The second byte of this instruction, <B2>, is added to the
contents of the accumulator and the sum is stored in the
accumulator, Any of the condition flip-flops can be
affected by executing this instruction.

To add byte two and the carry flip-flop to the contents of
the accumulator, issue the following:

Form ACI
00 001 100
<B2>
(AYA(A <B2>Hcarry)
Example ACl 104
Time States/
Machine Cycles 8PCLPCR

The second byte of this instruction {(<XB2>>} and the carry
flip-flop arc added to the contents of the accumulator and
the sum is stored in the accumulator. In conjunction with
the ADI instruction this instruction facilitates multiple-
precision addition of instruction and accumulator data.
Any of the condition flip-flops can be affected by
executing this instruction,

To subtraci byte two from the contents of the accumu-
lator, use the following:

Form SUL
00010 100
<B2>
(A)HA)y<B2>

Example SuUl'1

Time States/

Machine Cycles 8,PCI,PCR

The second byte of this instruction, <B2>>, is subtracted
from the contents of the accumulator and the difference is
stored in the accumulator. Subtraction is performed using
two’s complement arithmetic. Any of the condition flip-
flops can be affected by executing this instruction.

To subtract byte two and the carry flip-flop from the
accumulator, use the following:

Form SBI
00011 100
<B2>
{A)y~(A)-<<B2>{carry)
Example SBI 6
Time States/
Machine Cycles 8,PCI,PCR

3-9

The second byte of this instruction, (<<B2>>), and the carry
flip-flop are subtracted from the contents of the accumu-
lator and the differcnce is stored in the uccumulator.
Subtraction is performed using two’s complement arith-
metic. In conjunction with the SUI instruction, this
instruction facilitates muitiple-precision subtraction.

To perform a logical AND operation on the contents of the
accumulator and byte two, use the following:

Form NDI
00 100 100
<B2>
(Ay<(A) A\ <B2>
Example NDI 100
Time States/
Machine Cycles 8,PCLPCR

The second byte of this instruction, <B2>, is ANDed with
the contents of the accumulator. The logical product is
stored in the accumulator.

To perform an exclusive OR operation on the contents of
the accumulator and byte two, use the following:

Form XRI
00101 100
<B2>
(A)y(A) % <BZ>
Exampic XRI 340
Time States/
Machine Cycles 8,PCILPCR

The second byte of the instruction, <B2>>, is cxclusively
ORed with the contents of the accumulator and the result
is stored in the accumulator.

For an inclusive OR operation on the contents of the
accumulator and byte two, issue the following:

Form ORIl
0011¢ 100
<BZ>
(AyHA) v <B2>
Example ORI 102
Time States/
Machine Cycles 8,PCI,PCR

The second byte of the instruction, <B2>, is inclusively
ORed with the contents of the accumulator and the result
is stored in the accumulator.

To compare the contents of byte two with the contents of
the accumulator, use the following:

Form CP1
00111100
<B2>
(A)<B2>

Example CPI1 4

Time States/

Machine Cycles 8 PCI,PCR

The second byte of the instruction, <B2>>, is compared
with the contents of the accumulator; the accumulator
remains unchanged. After the instruction has been
exccuted, if the contents of <B2> are greater than the
contents of the accumulator, the carry flip-flop is set to
one; if not, it is reset to zero. If the two values are the
same, the zero flip-flop is sct to onc; il not, il is reset to
zero. The sign and parity flip-flops are set as if the
subtraction had actually occurred,

3.44 Raotate Instructions
The four instructions described in this paragraph are used
to rotate the contents of the accunmulator, one bit per
instruction execution, in onc of the following ways:

] Left and into the carry flip-flop

L] Right and into the carry flip-flop

* Left and through the carry flip-flop

* Right and through the carry flip-flop
These instructions affect only the carry flip-flop; all other

condition flip-flops remain unchanged. Al rotates described
are onc-byic instructions.

To rotate the contents of the accumulator one bit to the
left and into the carry flip-flop, use the following:

Form RLC
00000010
A(mt1)<A(m)
A(0Y<A(T)
{carry)y=A(T)

Example RLC

Time States/
Machine Cycles 5,PCI

The contents of the accumulator are rotated to the left by
ane bil. Bit 7 is moved to the bit position of bit 0, and bits
0 through 6 arc moved to bit positions | through 7. Bit 7 is
also stored in the carry flip-flop. The following diagrams
show the bit positions before and after the rotate. The
original contents of the accurmlator arc as follows:

0 0410 010 0 1 0

7 6 5 4 3 2 1 0

After the rotate, the following is the case:

|E| 0 0 0 0 0 I 0 0

carry 7 6 5 4 3 2 1 0

To rotate the contents of the accumulator one bit to the
right and into the carry flip-flop, use the following:

Form RRC
00 001 010
A(m)<A(m+1)
A(N<A(D)
{carry}~A{Q)

Example RRC

Time States/
Machine Cycles 5,PCI

The contents of the accumulator are rotated to the right by
one bit. Bit 0 is moved to the bit position of bit 7, and bits
7 through 1 are moved to bit positions 6 through 0. Bit 0 is
also stored in the carry flip-flop. The original position is:

ol 0|0 0 1 0 1 0

7 6 5 4 3 2 1 0

The next diagram represents the contents of the accomu-
lator after an RRC:

o]

cary

0] o0

To rotate the contents of the accumulator one bit to the
left and through the carry flip-flop, use the following:

Form RAL
Q0010010
A(m+1)}<A(m)
A(Oy{carry)
(carryy=A(7)

Example RAL

Time States/

Machine Cycles 5,PCI

The contents of the accumulator are rotated to the left by
one bit, Bit 7 is stored in the carry flip-flop; the contents of
the carry flip-flop are stored in A(0}. Bits 0 through 6 are
moved to bit positions 1 through 7, The original contents
of the accuntulator and the carry flip-flop arc:

1 00 0 1 0 0 1 0
carry 7 6 5 4 3 2 1 0
After the rotate, the contents are:

¢] 0 1 0 0 1 .0 1
carry 7 6 5 4 3 2 1 i

To rotate the contents of the accumulator one bit te the
right and through the carry flip-flop, use the following:

Form RAR
00011010
A(my-A(m+1)
A{7)(carry)
(carry)<A(0)

Example RAR

Time States/

Machine Cycles 5,PCI

The contents of the accurnulator are rotated to the right by
one bit. Bit 0 is stored in the carry flip-flop; the contents of
the carry flip-flop are stored in bit 7. Bits 7 through 1 are
moved to bit positions 6 through 0. The original contents
of the accumulator and the carry flip-flop are:

EI ol 00 1 1 0 1 0
carry 7 6 3 4 3 2 1 0
After the rotate, the following is the case:

El 0 0 0 0 1 1 0 1
carry 7 6 5 4 3 2 1 0

3.5 PROGRAM COUNTER AND STACK CONTROL
INSTRUCTIONS

The instructions summarized in this paragraph are used to
transfer control from one address to another. These
instructions are divided into three categories:

. Jump instructions
] Call instructions
L Return instructions

All of these instructions make use of the processor stack
andfor program counter. The stack is a set of eight 14-bit

~ registers. Seven of these registers are organized as a last-in

3-11

first-out (LIFO) pushdown stack which is used to store
nested subroutine addresses. The eighth register serves as
the current program counter (P} and always contains the
address of the next instruction to be fetched.

Fach of the three instruction types described uses the stack
or program counter in a different way. The second and
third bytes, <B2>> and <B3>, of each jump instruction
(JMP, JFc, JTc) contain an address. This address paints to
the memory location from which the next instruction is to
be fetched if the jump i3 an unconditional one or if the
conditions of the jump are satisfied. The address contained
in the jump instruction is stored in the program counter (P)
for use during execution. <B2> and <B3>> are 8-bit bytes
which form the 14-bit address to be stored. <B2Z> contains
the eight low-order bits of the address, and <B3> contains
the six high-order bits. Bits 6 and 7 of <B3>> are not used.

Subroutine call instructions (CAL, CFc, CTc) store the
current program couater (P} in the pushdown stack and
then store the starting address of the subrouwtine to be
called in the program counter. This address is contained in
the second and third bytes of the call instruction. Catls can
be performed unconditionally in a CAL instruction, or
conditionalty in the case of CFc and CTe.

Subroutine return instructions (RET, RFc, RTc) cause the
current program counter to be replaced by the last inserted
address in the stack, and for ali remaining addresses in the
stack to be *“popped up” one level. These actions can be
performed unconditionally in the case of a RET instrue-
tion, or condijtionally in the case of RFc and RTc. Because
the stack is an eight-register LIFO pushdown stack, is
popped up one level at a time, and has a program counter as
its eighth register, subroutines can be nested to scven levels,

With conditional jumps, calls, and returns, any of the four
condition flip-flops (carry, zero, sign, and parity) can be
tested to determine the condition on which the instruction
will be executed.

Bach of the instruction groups introduced is explained in
detail. The following example shows a call to a subroutine,
a conditional jump, and an uncenditional return.

NXTBLK, CAL GETBYT

3.5.1 Jump Instructions

Jump instructions are three-byte instructions which are
used to alter the normal flow of a program by branching
conditionally or unconditionally to another location. The
address to which control is passed is specified by bytes two
and three of the jump instruction. Byte two (<BZ>)
contains the eight low-order bits of the address and byte
three (<B3>>) contains the six high-order bits. Because the
pracessor uses a 14-bit address, bits six and seven of <B3>>
are ignored. There are three jump instructions:

] Jump unconditionally
. Jump if condiuon is false

. Jump if condition is true

To perform an unconditional jump, issue the following:

Form JMP
01 XXX 100
<B2>
<B3>

(Pr—<B3><B2>

IMP CKDONE
JMP AL

Examples

Time States/
Machine Cycles 11,PCIPCR,PCR

<B2> and <B3> make up a 14-bit address which is stored
in the program counter to initiate an unconditional transfer
of program control to that address, <B2> and <B3>
therefore represent the next instruction to be executed
after the JMP,

{SUBROUTINE TO GET ONE BYTE OF DATA FROM PAPER TAPE

/AND UPDATE CHECKSUM
GETBYT, INP1

NDI 40

ITZ GETBYT

INPO

LEA

ADD

LDA

LAE

RET

{INPUT STATUS

/MASK “DA” (IGNORE ERRORS)
/WAIT FOR “DA”

/GET CHAR

/SAVE CHAR

/ADD CHECKSUM TO INPUT BYTE
/SAVE NEW CHECKSUM
/RESTORE CHAR

/RETURN UNCONDITIONALLY

To jump on a false condition use the following:

Form JFc

01 0OC(4)C(3) 000
<B2>
<B3>

If (¢)=0
(M)«<B3><B2>
Otherwise

(P)=(P)+3

JFZ NXTBLK
JEP B2

Examples

Time States/
Machine Cycles

If {c)=0
11, PCLPCRPCR
Otherwise
9,PCL,PCR,.,PCR

If the condition flip-flop represented by c is false (resct to
zero), the address specified by <B3> <B2> is stored in the
program counter and the next instruction to be executed is
fetched from this address. If the relevant status flip-flop is
true (set to one), the program counter is incremented by
three and the branch is not taken. In this case, time states
T4 and T5 of the second PCR cycle are skipped. For
example, if’ instruction JFC is ¢xecuted, a branch will ocour
if the carry condition flip-flop is zero.

To jump on a true condition, use the instruction following:

Farm ITc

01 1C(4)C(3) 000
<B2>
<B3>

If {c)=1
(Py—=B3> <B2>
Otherwise
(P)=(P)+3

JTS ER
JTC DONE

Examples

If (c)=1
11,PCLPCR,PCR

Othcrwise
9,PCI.PCR,PCR

Time States/
Machine Cycles

If the condition flip-flop represented by ¢ is true (set to
one), the address specified by <B3> <B2>>is stored in the
program counter and the next instruction to be executed is
fetched from this address. If the relevant condition flip-flop
is false (reset to zero), the program counter is incremented
by three and the branch is not taken. In this case, time
states T4 and TS of the second PCR cycle are skipped. For
example, if instruction JTP is executed, a branch will occur
if the parity condition flip-flop is set.

3.5.2 Call Instructions

Call instructions are three-byte instructions which are used
to alter the normal flow of a program by branching
conditionally or unconditionally to a subroutine, Sub-
routine calls may be nested to seven levels. Byte two
(<B2>) contains the low-order eight bits of the address,
and byte three {(<B3>>) contains the high-order six bits. Bits
six and seven of byte three are ignored. A call causes <B3>
<B2> to be stored in the current program counter (P) and
for the previous contents of P to be inscrted at the top of
the pushdown stack. There are three call instructions:

. Call unconditionally
] Call if condition is false
. Call if condition is true

To perform an unconditional call to a subroutine, issue the
following:

CAL

01 XXX 110
<B2>
<B3>

Form

(stack)y—~P)
(Py<B3> <B2>

CAL GETBYT
CAL DOAL

Examples

Time States/
Machine Cycles 11,PCLPCR,PCR

The contents of P are shifted into the stack and the starting
address of the subroutine, <B3> <B2>, is stored in the
program counter. This causes the next instruction executed
to be the starting address of the subroutine whose name is
included in the CAL.

To perform a call on a false condition, use the instruction
following:

Form CEc

1 0C(4)C(3) 010
<B2>
<B3>

If {¢)=0
(stack)«{P)
(Py« <B3> <B2>
Otherwise
(Py=(P)+3

CFZ ALL
CFP ADDUP

Examples

Time States/
Machine Cycles

If (c)=0
11,PCI,PCR.PCR

Otherwise
9,PCLLPCR,PCR

If the condition flip-flop represented by ¢ is false (reset to
zero), the address specified by <B3> <B2>> is stored in the
program counter and the next instruction to be executed is
fetched from this address. If the relevant condition flip-flop
is true (set to one), the program counter is incremented by
thrce and the subroutine is not called. In this case, time
states T4 and TS5 of the second PCR eycle are skipped. For
example, if instruction CFS is executed, a subroutine call
will be issued if the sign condition flip-flop is not set.

To call a subroutine on a frue condition, issue the
following:

Form CTe

01 1C(4)C(3) 010
<B2>
<B3>

If (c)=1

{stack)~(P)

(Py< <B3><B2>
Otherwise

(P)=(P)+3

CTS CKDONE
CTCCX

Examples

Time States/
Machine Cycles

If {e)=1
11, PCILPCR.PCR
Otherwise
9,PCLPCR,PCR

If the condition flip-flop represented by ¢ is true (set to
one), the address specified by <B3>> <B2>> is stored in the
program counter and the next instruction to be executed is
fetched from this address. If the relevant condition flip-flop
is false (reset to zero), the program counter is incremented
by three and the subroutine is not called. In this case, time
states T4 and T35 of the second PCR cycle are skipped. For
example, if instruction CTZ is executed, a subroutine call
will be issued if the zero condition flip-flop is set.

3.5.3 Retum Instructions

The instructions described in this section are one-byte
instructions which are used to exit unconditionally or
conditionally from a subroutine entered via a call instruc-
tion and to return to the next sequential instruction after
the call. Returns cause the pushdown stack to be popped
up one level at a time. The popped entry in the pushdown
stack is stored in the program counter (P). The following
example illustrates both an unconditional and a conditional
subrouting return:

CAL INCHL

INL

INCHL, J/INCREMENT LOW BYTE OF MEMORY ADDRESS
RFZ {RETURN IF NO OVERFLOW
INH {OVERFLOW-INCREMENT HIGH BYTE
RET /RETURN

To petforma an unconditional return from a called sub-
routing, issuc the following;

Form RET
00 XXX 111
{Py(stack)
Example RET
Time States/
Machine Cycles 5,PCI

The stack is popped up one level and the popped entry in
the pushdown stack is stored in the program counter. P
now points to the next instruction after the call.

To perform a return on a false condition, use the following:

Form RF¢

000C(4)C(3) 011

If (¢)=0
(Py{(stack)

Otherwise
(P)=(P)+1
Example RFZ

Time States/
Machine Cycles

If (c)=0; 5,PCI
Otherwise; 3,PCI

If the condition flip-flop represented by c is false (resct to
zera), the stack is popped up one level and the popped
entry in the pushdown stack is stored in the program
counter. P now points to the next instruction after the call,
If the relevant condition flip-flop is true {set to one), the
program counter is incremented by one and the return is
not performed. In this case, time states T4 and TS5 are
skipped. For example, if instruction RFP is executed, a
return will be issued if the parity condition flip-flop is not
sct.

To return on a true condition, issue the fellowing:

Form RTe

00 1C(4)C(3) 011

If (c)=1
(P)y~(stack)

Otherwise
(Py={Py+1
Example RTS

Time States/
Machine Cycles

If{c)=1;5,PCI
Otherwise; 3,PCI

If the condition flip-flop represented by ¢ is true (set to
one), the stack is popped up one level and the popped entry
in the pushdown stack is stored in the program counter. P
now peoints to the next instruction after the call. If the
relevant condition flip-flop is false (reset to zero), the
program counter is incremented by one and the return is
not performed. In this case, time states T4 and TS are
skipped. For example, if instruction RTZ is executed, a
return will be issued if the zere condition flip-flop is set.

3.6 INPUT/OUTPUT INSTRUCTIONS

The one-byte instructions described in this section are used
to perform input or output operations. With these instruc-
tions, data can bc transferred between the accumulator
(register A) of the Processor Module and any peripheral
device associated with the system. The data transfer is
performed in 8-bit bytes at the rate of one byte per I/O
instruction executed. It is possible to access eight different
input devices by specifying the appropriate address field in
the INP instruction. By supplying the proper address inan
OUT instruction, 24 different output devices can be
accessed.

The states of the condition flip-flops are not affected by
executing the 1fO instructions described. Because INP
moves data into the accumulator from an input device and
OUT moves data from the accumulator to an output device,
it is the programmer’s responsibility to load data into
register A before issuing an OUT instruction, and to extract
data from A after executing an INP.

3.6.1 Input Instruction
To read one byte of data into the accumulator (register A)
from an input device, use the following:

Form INP
01 OOM MMt
(A)<(input data lines)
Example INP + 10%
Time States/
Machine Cycles 8,PCI,PCC

The contents of the accumulator are placed on the
peripheral device input bus during time state T1 of the PCC
cycle. The device address field, represented by MMM, is
placed on the device address bus to select the appropriate
device during time state T2 of that cycle. During time state
T3 of the PCC cycle, data contents from the selected device
are removed from the input bus and Ioaded into the
accurntlator.

*Where 10, represents input device 4 multiplied by 2.
**Where 60, represents output device 30 multiplied by 2.

Eight input devices may be referenced by the INP instruc-
tion. The contents of the accumulator is latched during
time state T1 of the PCC cycle to facilitate expansion of
the number of input-only devices that can be connected to
an MPS system.

3.6.2 Output Instruction
To write data to an output device from the accumulator,
use the following:

Form ouT
01 RRM MM1 (RR=0)
{output data line)«{A)
Example QUT + 60+
Time States/
Machine Cycles 6,PCLPCR

The contents of the accumulator are placed on the
peripheral device output bus at time state T1 of the PCC
cycle. The device address field, represented by RRMMM, is
placed on the device bus at time state T2 of the same cycle.
RRMMM must be a nonzero number in the range 10 (octal)
through 37 (octal),

OUT can reference 24 output devices.

3.6.3 Reserved INP and OUT Instructions

Three input/output instructions are reserved for UART
{Universal Asynchronous Receiver/Transmitter) ¢control on
the Processor Module. The UART is an [JO interface on the
Processor Module which handles data from a serial port.
Control of the UART is accomplished as follows:

Instruction Function
INPD 01 000 001
QUTO 01 010 001
INP1 01 000011

Read data from UART
Qutput data to UART
Read status from UART

The status register looks like the following:

Data Data Tr'an §

Error over- Avail- it
run able buffer
empty

3.7 MACHINE INSTRUCTIONS

The four instructions in this category perform the basic
machinc control functions halt, restart, interrupt cnable,
and interrupt disable. All four of these instructions have a
one-byte format.

3.7.1 Halt Instrmction
The halt instruction is issued by the following;:

Form HLT
00 000 00X
or
11111111
Example HLT
Time States/
Machine Cycles 4,PCI

When the HLT is executed, the processor enters the
stopped state after completion of time state T3, The
program counter is incremented by one, and the contents
of all condition flip-flops, registers, and memory are
unchanged.

3.7.2 Restart Instruction

The restart instruction can be used as a one-byte uncondi-
tional call to any of eight specified locations in the first 64
words of memory. The called addresses are the following
octal Iecations:

0
10
20
30
40
50
60
70

Each of these eight locations can be used as the starting
address of an eight-word subroutine,

The restart is a one-byte instruction which is issued by the
following:

Form RST
00 AAA 101
(stack)<(P)
(PXH000000 00AAAQ00)
Example RST +a0*
Time States/
Machine Cycles 5,PCI

The contents of the program counter, P, are shifted into the
top entry of the pushdown stack. Bits 3—5 of the
instruction, AAA in the model, are moved inte positions
3—5 of P. All other bit positions of the program counter are
zeroed.

The restart is sometimes used in place of a call instruction
because it is at least twice as fast and uses only one-third as
much memory. For example, instead of issuing a CAL
INCHL directly in the assembly language code, the pro-
grammer might place the INCHL subroutine in low memory
to be called with an RST.

NOTE
Users may employ OPDEF (Paragraph 6.10.6)
to define their specific instructions involving
RST, INP, and OUT,

3.7.3 Interrupt Enable and Disable Instructions

The interrupt enable (ION) and interrupt disable (IOF}
instructions arc specialized input/output instructions which
are defined as machine instructjons because of the interrupt
control functions performed.

*Where a represents an octal digit from 0 to 7

To enable esxternal events to interrupt normal program
sequence, issue the following:

Form ION

1 010011

Enable cxternal cvent interrupt
Example ION

Time States/
Machine Cycles 8,PCILPCC

To disable external evenis from interrupting, issue the
following:

Form IOF

Q1 o190 101

Disable external event interrupt
Example IOF

Time States/
Machine Cycles 6,PCLPCC

External event control is similar to interrupt control, but
the condition flip-flops cannot be saved and restored, and
the registers cannot be saved and restored with sufficient
generality. The STRT switch on the programmable module
performs a simulated interrupt and jumps to the address set
in the Monitor/Control Panel (MCI") Switch Register. As in
an actual interrupt, the interrupt recognition logic is
automatically disabled after every interrupt. Therefore, if a
program is 1o recognize interrupts, an ION instruction must
be issued in the initialization routine. After the ION is
executed, one more instruction can be executed before
interrupts are enabled. The ION instruction should be the
last executable instruction before the RET command in an
interrupt service routine.

The IOF instruction is used to disable interrupts from
external events excluding power fail. This instruction
should therefore be used with extreme caution. Typically it
is used when a particular operation is being performed and
it is not appropriate to allow interrupts for the duration of
the operation,

A typical program sequence is shown on the opposite page.

DOFF,

PER,

*50
JMP DOFF

*70
JMP PFR

*100
XRA

ION

JMP .

ION
RET

JASSUME DOFF IS CONNECTED TO PIN J1
/ASSUME POWER FAIL CONNECTED TO Ul

/CLEAR STATUS FLIP-FLOPS AND AC
{OTHER INITIALIZATION CODE

/ENABLE INTERRUPTS

/LOOP HERE UNTIL INTERRUPT OCCURS
/OR COULD BE VERY LOW PRIORITY
/ROUTINES

{DOFF INTERRUPT SERVICE ROUTINE
{CLEAR DOFF INTERRUPT FLAG

[ENABLE INTERRUPT
/RETURN TO PROGRAM SEQUENCE BEFORE
/INTERRUPT OCCURRED

{ROUTINE TO SHUT DOWN OR STABILIZE
/SYSTEM BEFORE ALL POWER 1S LOST.
{AFTER POWER IS RESTORED, SYSTEM
/SHOULD BE RESTARTED AT THE BEGINNING

CHAPTER 4

THE PDP-8 HOST ENVIRONMENT

The Digital Equipment Corporation PDP-8 computer
sysiem has been selected as the host machine for preparing
and processing programs designed for Microprocessor Series
{MPS) use. This chapter describes the hardware and
software environment in which programs will be developed
and assembled, defines both minimum operationat require-
ments and expanded capabilities and options, and outlines
the characteristics and wse of major PDP-8 hardware and
software modules, some of which are described in far
greater functional detail in subsequent chapters of this
handbook.

4.1 INTRODUCTION TO THE PDP-8

The PDP-8 is a small, economical, and efficient computer
designed for effective program development, assembly, and
execution, It is a single-address parallel machine which
operates on 12-bit binary numbers using two’s complement
arithmetic, An effective PDP-8 can function with only 4K
of core memory and no peripheral devices whatsoever, Yet
this minimum configuration can expand to support as much
as 32K of core and a variety of devices. PDP-8 users of
Microprocessor Series Modules are assumed to possess only
the minimum hardware configuration described in the pext
paragraph. They will receive a set of system programs in
paper tape form, sufficient to load and copy paper tapes
and to edit and assemble programs developed for the
Processor Module. This software system will be deseribed in
detail in subsequent paragraphs of this chapter.

4.2 PDP-8 HARDWARE ENVIRONMENT

The minimum configuration of PDP-8 equipment for
support of the software defined for this product consists of
the following:

. PDP-8 central processing unit, programmes’s
console, and 4K (4096 decima! words) of core
memory

] Keyboard/printer terminal, often a Tclctypc®

®Teletype is a registered trademark of the Teletype Corporation,

® Low-peced (associated with the Teletype)
paper-tape reader/punch
& If Teletype is not the terminal device,

high-speed paper-tape reader/punch

. Other peripheral devices may be supported by an installa-
. tion’s PDP-8 configuration; these will normally be ignored
. while processing MPS programs. The only exception occurs
: when both high-specd and low-speed paper-iape readerf
- punches are availabe. With most programs, the user must

specify which paper tape vnit is available by setting a
switch on the PDP-8 console, One variety of paper tape unit
is a necessary component of the PDP-8 minimum configura-
tion, but both arc supported by the system and described in

- this chapter. The following paragraphs describe the usc of

each hardware module just defined,

4.2.1 Central Processing Unit (CPU)

The PDP-8 computer system is available in many models
and configurations. The CPU most frequently utilized by
MPS users is the PDP-8/E. In many of the paragraphs which
follow, specific references to switches or keys may be most

" relevant to the PDP-8/E. However, users of other PDP-8

4:1

computer models (e.g., PDP-8/F, PDP-8/[, PDP-8/L,
PDP-8/M) normally can use the software supplied with this
system with equal facility.

4.2.2 Programmer’s Console

The PDP-8 programmer’s console provides switches and
indicator Jamps, faciliating rnanual control of the computer
by allowing a programmer to ¢xamine or alter the conlents
of memory locations and to determine the status of a
program in execution. In Figurc 4-1 you can sce a
photograph of a PDP-8/E console. Table 4-1 summarizes
the functions of all switches and indicators on this console.
Note that some of these functions are specific to the
PDP-8/E and may not be relevant to all user machines,

Figure 4-1 PDP-8E Programmer’s Console

Table 4-1

Pragrammer’s Console Control and Indicator Functions

Control or Indicator

Function

OFF/POWER/PANEL LOCK

Sw

SWITCH REGISTER

ADDR
LOAD

EXTD
ADDR
LOAD

In the counter<lockwise, or OFF position, this key-operated switch
disconnects all primary power to the computer. In the POWER, or vertical
position, it applies power to the computer and all manual controls. In the
PANEL LOCK, or clockwise position, it applies power to the computer, the
Switch Register and the RUN light only. In this position, 2 running program
is protected from inadvertent switch operation.

When this switch is up, the OMNIBUS SW line is high (logical 1). When it is
down, the SW line is low. This switch is used by special peripheral routines.

The Switch Register (SR) may be loaded with a 12-bit binary number by
setting each of the twelve switches either up for a 1, or down for a 0,

Pressing the ADDRess LOAD switch loads the contents of the SR into the
central processor MA register and forces the processor to enter a fetch state.
This causcs the contents of the core memory location designated by the SR
to be loaded into the MB register.

Pressing the EXTendeD ADDRess LOAD switch loads the contents of SR bits

68 into the instruction field register and the contents of SR bits 9—11 into
the data field register,

4.2

Table 4-1; (Cont)

Programmer's Console Control and Indicator Functions

Control or Indicator

Function

CLEAR

CONT

EXAM

HALT

SING
STEP

DEP

EMA

MEMORY ADDRESS

RUN

Indicator Selector Switch

Setting this knab to:

BUS

Pressing the CLEAR switch loads a binary 0 into bits 0—11 of the
aceumulator, the link, all IfO device flag registers, and the interrupt request
flag register. This is equivalent to executing a CAF (Clear Ali Flags)
instruction. '

Pressing the CONTinue switch sets the run flip-flop and issues a memory start
to begin program exe@;ution at the address specified by the current contents
of the central processor MA register.

Pressing the EXAMine switch loads the contents of corc memory at the
address specified by the MA register into the MB register and then increments
the MA register and the PC. Repeated operation of this switch permits the
contents of sequential core memory locations to be examined.

Pressing HALT clears.the run flip-flop and causes the computer to stop at the
beginning of the next fetch state, Operating the computer with HALT
depressed causes on¢ complete instruction to be executed whenever the
CONTinue switch is pressed.

Pressing SINGle STEP clears the run flip-flop and causes the computer to halt
at the next machine ¢ycle. Operating the computer with the SINGle STEP
switch depressed cauges only onc machine cycle to be executed whenever the
CONTinue switch is pressed.

Lifting the DEPosit switch loads the contents of the SR into the MB register
and into core memeory at the address specified by the current contents of the
central processor MA: register, then increments the PC and the MA registers,
This facilitatcs manual storage of information in sequential core memory
locations.

The 3-bit Extended. Memory Address register displays the memory field
designation of the memory field currently being accessed.

The MEMORY ADDRESS register displays the contents of the central
processor MA register. It combines with the EMA register to provide the

15-bit address of the next core location to be accessed.

The RUN indicator is lit whenever all machine timing circuits are activated
and capable of executing instructions.

This six-position rotary knob designates which of six passible registers (or
combinations of registers) is to be loaded into the adjacent 12-bit display.

Displays the logical state of the data gating lines which connect the major
registers,

4-3

TFable 4-1 (Cont)

Programmer’s Console Control and Indicator Functions

Control or Indicator

Function

MQ

MD

AC
STATUS

Indicator Light/Bit Position

(R i e

F=Rr LV, Y
L&

STATE

Indicator Light/Bit Position

— =D W = D

Displays the contents of the multiplier quotient register.

Displays the contents of the MB register. This indicates the last information
read from or written into core memory,

Displays the contents of the accumulator,
Each display light is turned on to indicate the designated condition:
Turned On to Indicate

The link contains a binary 1.

The Greater Than Flag (GTF) is raised.

The interrupt request line is asserted.

A processor condition, which prevents program interrupts, has been initiated
by software.

The interrupt enable flip-flop is on.

The user mode line is asserted.

Displays the contents of the instruction field register,
Displays the contents of the data field register.

With the Indicator Selector knob in the STATE position, each display light is
turned on to indicate the following condition:

Turned On to Indicate

Currently in fetch state.

Currently in defer state.

Currently in execute state.

Displays the contents of the instruction register.
The MD DIR line is asserted.

The BREAK DATA CONT line is asserted.

The SW line is asserted.

The PAUSE 1/0 line is asserted.

The BREAK IN PROG line is asserted.

The BREAK CYCLE line is asserted.

NOTE

The function of the various transmission lines cited and
their associated control logic is documented in Digital’s
Small Computer Handbook.

4-4

42,3 Keyboard/Printer Terminal Certain specialized Teletype knobs and keys require some
The PDP-8 user interacts with many of the system programs clarification. The control knob of the LT33 Teletype has

described in this chapter in a command-oriented way using the following three positions:
a terminal as the input/foutput device. The following .
terminals may be used with the PDP-8 system described. Pogition Meaning
LINE The Teletype console is energized and con-
. LT33 Teletype nected to the computer as an input/output
L] VTOS Display Tetminal device under computer control,
. LA30 DECwriter Data Terminal :
OFF The Teletype console is de-energized.
The VTO5 and LA30 are much faster than the Teletype, LOCAL The Teletype console is cnergized for off-
which prints at a maximum rate of ten characters per line operation under control of the Teletype
second; but the Teletype offers the advantage of a built-in keyboard and switches exclusively.
low-speed paper-tape reader/punch unit. The VTO5 has a
video display screen; the other two terminals supply hard These three positions will be referenced in this and
copy. Figure 4-2 is an illustration of the LT33 Teletype, the subsequent chapters when discussing the handling of paper
basic I/O device assumed for users of the sysicm. tape functions,

OFF

REL.
B. SP,

ON

START

STOP

FREE

LINE() LOCAL

24281

Figure 4.2 LT33 Teletype Console

4-5

The Teletype keyboard shown in Figure 4-3 combines
standard typewriter characters with special functions which
are summarized in Table 4.2.

4,24 Low-Speed Paper-Tape Reader/Punch

The Teletype paper-tape reader (also called the low-speed
veader) is used to read data punched on paper tape into
core memory. The data is read from an eight-channel,
perforated paper tape at a maximum rate of ten characters
per second. Operation is controlled by a three-position
switch, shown in Figure 4-2.

Setting Meaning

START Activates the reader; reader sprocket wheel
is engaged and opcrative.

STOP De-activates the reader; reader sprocket
whee] is engaged but not operative,

FREE De-uactivates the reader; reader sprocket

wheel is disengaged.

The paper-tape punch is used to perforate eight-channel,
rolled, oiled paper tape at a maximum rate of ten characters

OOOOOOOOOLLOO®
HOOOOOLLOOOB®®
DOOOOLEOLOOOEOE
FHOOOOOOOOOO®
{]

Figure 4-3 Teletype Keyboard

per second. The punch controls are shown in Figure 4-2 and

described below:

Setting Meaning

REL. Disengages the tapc to allow tape removal or
loading.

B.SP. Backspaces the tape cne space for each firm
depression of the B.SP. button.

ON Activates the paper-tape punch,

OFF De-activates the paper-tape punch,

Table 4-2
Special Keyboard Functions
Key Function Use

SPACE Space Used to combine and delimit symbols or
numbers in a symbolic program.

RETURN Carriage Return Used to terminate a line of input.

HERE IS Blank Tape Used to generate leaderftrailer tape.
Effective in LOCAL control moede only.

RUBOUT Rubout Used for deleting erroneous characters.
Punches all eight channels.

CTRL/SHIFT/ Code 200 Used for leader/trailer on BIN format tapes.

REPT/P Keys must be released in reverse order: P,
REPT, SHIFT, CTRL.

LINE FEED Line Feed Follows carriage return to advance terminal
printer one line.

SHIFT Used to type thc characters and symbols
which appear on the upper perticn of
certain keys.

4-6

The use of the low-speed paper-tape reader/punch for
performing specific editing and assembling functions is
deseribed in chapters on those modules. The following list
of instructions is supplied only as an example of off-line,
low-speed, paper tapc usage. It allows a PDP-8 user to
generate off-line a symbolic tape to be used as input to the
Assembler when, for some reason, tapes cannot be created
by the Editor.

1. Set the Teletype control knob to LOCAL and
turn the paper-tape punch ON.

2. Press the HERE IS key on the Teletype
kevboard to produce several inches of leader
tape.

3. Type the program on the Teletype keyboard.
Ta correct an error, press B.SP. until the error
is under the print/punch station; then press
RUBQUT uatil the ertor and all subsequent
characters have been deleted. The erroneous
character and ali subsequent characters may
now be retyped.

Press the HERE IS key to produce several
inches of trailer foliowing the symbolic pro-
gram; remove the tape by tearing it against the
plastic cover of the punch.

The following procedure is employed to obtain an off-line
listing of an ASCIl-coded (USA Standard Code for Informa-
tion Interchange) symbolic tape:

1. Set the paper tape reader switch to STOP or
FREE.

2. Release the plastic cover of the reader unit and
place the tape over the read station with the
small sprocket holes over the sprocket wheel.
Close the cover.

3. Set the Teletypc control knob to LOCAL.

Push the paper-tape reader switch to START
and release. A printed copy of the tape will be
produced on the Teletype. If the paper-tape
punch is ON, a duplicate of the tape will also be
generated,

4.7

There are three basic paper tape formats used by PDP-8
system programs provided with this system:

1. ASCH format, used for source text output from
the Editor or input to the Assembler.

2. BIN (binary) format, used for almost all of the
system programs which cxecute on the PDP-8.

3. RIM (readin mode) format, used for the
Microprocessor Host Leader.

In addition to these basic formats, the MLA Asscmbler
(Chapter 6) punches paper tape in a binary format suitable
for cxecution or the Processor Module. While the BIN tape
just mentioned has a PDP-8 format, the binary tape
produced by the Assembler has a format which is used by
MPS. This format is described in detail in Chapter 6.

Paper tapes punched in ASCIH format use all eight channels
of the tape to represent a single character (letter, number,
symbol). An example of scurce text output by the Editor is
shown in Figure 4-4.

Paper tapes input to the MLA contain mnemonic instruc-
tiens and symbolic addresses punched in ASCII format.
These are translated into binary instructions and absolute
addresses during assembly and are punched out into binary
format for execution on the Processor Module.

Wam T
L Y L 30 H
L] L] e |31 1
*e @ . &0 |323 S5
. » . 240

L L I * |3 |
.. o e e |322 5
.] . 240

L Y L} & |31 A
s =@ L] ® e |323 5
[] « &» |303 C
L LI « | 3N I
L) . & |3 I
. = . 240

L] L I e F
L N] o s 0 0 |7 4]
" B . 322 R
. s [B) * |25 M
L]) * | 3N A
NIRRT

Figure 4-4 ASCII Format

System tapes containing assembled programs in binary
format are usually loaded into core under program control,
using the Microprocessor Host Loader (MHL), & system
program provided to users of this system. This binary
loader must be placed in core before any binary format
tape is loaded. The Microprocessor Host Loader itself is the
only system tape punched in RIM (read-in mode) format.
To read a tape in RIM format, the RIM Loader, a
17-instruction program which must be keyed-in manually,
must be in core (see the paragraph on the RIM Loader}).
RIM format uses pairs of adjacent columns to represent
12-bit binary words directly.

Channels 1 through 6 are used to represent either addresses
ot information to be stored. A channel-7 punch indicates
that the current column and the following column are to be
interpreted as an address specifying the location at which
the information contained in the following two columns is
to be stored. The tape leader and trailer for RIM format
tape must be punched in channel-8 only (octal 200). Figure
4-5 is an example of tape punched in this way.

BIN (binary) formal tape is similar to RIM format tape,
except only the first address in a series of consscutive
addresses is specified. A channel-7 punch indicates that the
current column and the following column are to be
interpreted as an address. Successive pairs of columns are
stored in sequential locations following this address until
another channcl-7 punch is encountered. A channel-7 and a
channel-8 punch designate the current column as a memory
field specification, Leaderftrailer tape must be punched in
channel-8 only. Figure 4-6 is an example of binary format.

4.2.5 High-Speed Paper-Tape Reader/Punch

Loading long scries of paper tape programs into core
memory with the low-speed reader of the LT33 Teletype
unit can be time-consuming. Punching a long assembled
program on paper tape can also be slow. If handling lengthy
paper tapes is required frequently, much computer time is
wasted while low-speed input/output devices read or punch
data. The high-speed paper-tape reader/punch unit performs
paper tape input and outpui at a considerably faster rate
than the low-speed reader and punch. It is of great value in
any systemn that requires a great deal of tape handling.

The high-speed paper-tape reader/punch unit is available in
two versions: The rack-mounted PC8-EA illustrated in
Figurc 4-7 and the table-top PC8-EB. Both units consist of
a PRB-E high-speed paper-tape reader and a PC8-E high-
speed paper-tape punch mounted on a single chassis. The
reader and punch are also available separately. Figure 4-7
illustrates the rcader/punch unit.

4-8

r CHANNEL 7

}

- -
L 2 L) -
L 3 L
® e -
[N N A N
[] L] L
. » L |
LI] -
ae e e s bae
L L IR] L
L I LI]
LI]
[3 N I N
.
Y EEE KR
« b0
. [N X N

%

LOCATION
CONTENTS
LOCATION
CONTENTS
LOCATION
CONTENTS
LOCATION
CONTENTS

LOCATION

Figure 4.5 RIM Format

* a8 & 4 & 2 8 B F BB B SR B BB RS

L N
o
o

Figure 4-6 BIN Format

L]
LN
L]
- —
Ry -

L]
-
~J
o

.
-
L]
-
i

FIELD SETTING
ORIGIN

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

Figure 4-7 High-Speed Paper-Tape Reader/Punch

The high-speed reader accepts input data from -eight-
channel, fan-folded, non-oiled paper tape at a maximum
rate of 300 characters per second, or thirty times the LT33
maximum input rate. The high-speed punch records output
data at a maximuom rate of 50 chazacters per second.

The reader and punch are cach supplied with an ON/OFF
rocker switch which applies power to the respective units in
the ON position and disconnects power in the OFF
position. Each device is also provided with a FEED switch
which advances the tape without reading, in the case of the
reader, or advances tape with only the feed holes punched,
in the case of the punch unit. The reader is supplied with a
control knob which may be turned clockwise to raise the
tape retaining lever and free the tape, or counter-clockwise
to lower this lever and engage the sprocket wheel.

The following procedure is employed to position tapes in
the high-speed reader:

1. Turn the control knob to raise the tape
retaining lever.

3. Place several folds of leader in the left-hand bin
and position the tape so that the sprocket
wheel engages the feed holes.

4, Turn the control knob to lower the tape
retaining lever,

5, Press the FEED switch briefly to ensure that
the tape is properly positioned.

6. Tape is advanced and read during program
execution,

43 PDP-8 SOFTWARE ENVIRONMENT

The minimum software environment required for con-
venient and efficient program development, assembly, and
duplication is quite limited. The few necessary system
programs are designed to be used with ease, and are
documented in full detail in this and subsequent chapters.
These programs are grouped together in kit form, desig-
nated Microprocessor Series Software Tools (MPSST), DEC
No. QF500-AB. All software components of MPSST wil] be
provided in the form of binary paper tapes ready to be
loaded on the user’s PDP-8. Table 4-3 summarizes the
binary tapes which compose the minimum necessary PDP-8

Place a fan-folded tape in the right-hand bin.

software system.

Table 4-3
PDP-8 System Programs
Program Function DEC Number

Microprocessor Host Loads binary-coded tapes | DEC-08-UMPLA-APM
Leader (MHL)
Microprocessor Language Modifies or generates DEC-08-UMPEA-A-PB
Editor (MLE) source ftext from

Teletype commands by

reading and writing

paper tapes
Microprocessor Langnage Asscmbles source text DEC-08-UMPAA-A-PB
Assembler (MLA) into binary format by

reading and writing

paper tapes and listing

at user’s option
Master Tape Duplicator/ Copies paper tapes and DEC-038-UMPDA-A-PB
Verifier (MTD) verifies their contents
Microprocessor ROM Copies and modifies paper | DLC-08-UMPPA-A-PB
Programmer (MRP) tapes and PROMs

4-9

These system programs ran on the PDP-8 and are described
in greater detail below. Two other programs, the
Microprocessor Debugging Program (MDP) (DEC-08-
UMPMA-A-PB), and the Microprocessor Program Loader
(MPL) are supplied for use on the Processor Module itself
and will be described here. MDP is provided in paper tape
form; MPL is supplied as part of the MPS hardware. An
additional component, the RIM Loader, is also described;
this Loader is not a binary tape but a series of instructions
te be entered manually into the PDP-8 before any of the
system papcr tapes can be used.

4.3.1 The RIM Loader

The RIM (Read-In-Mcde) Loader is used to load into core
programs punched in RIM format. For purposes of this
system, the only program entercd in this format is the
Microprocessor Host Loader, described herc. Unless the
PDP-8 being used has a PDP-8/E Hardware Bootstrap
Option, the RIM Jloader must be loaded manually
(“'toggled”), using the switches located on the pro-
grammer's coasole.

There are two versions of the RIM Loader: one program is
designed to be used when tapes are to be loaded from the
low-speed (Teletype) paper-tape reader, and the other is
intended for input from the high-specd reader, Table 4.4
lists the octal instructions for these programs. The loading
and verifying procedures are detailed in the flowcharts in
the two figures which follow. After loading RIM, it is good
programming practice to verify that all instructions have
been entered properly.

Table 44
RIM Loader Programs
Instruction
Low-Speed High-Speed
Location Reader Reader
7756 6032 6014
7757 6031 6011
7760 5357 5357
7761 6036 6016
7762 7106 7106
7763 7006 7006
7764 7510 7510
7765 5357 5374
7766 7006 7006
7767 6031 6011
7770 5367 5367
7771 6034 6016
7772 7420 7420
7773 3776 3776
7774 3376 3376
7775 5356 5357
7776 0000 0000

When loaded, the RIM loader occupies abselute locations
7756 through 7776, The following procedures are used to
load. (Figure 4-8)

(INITIALIZE }

i

SET ROTARY
SELECTOR SWITCH
TQ MD

SET SWITCHES 6-B
TQ DESIRED
IINSTHUCTION FIELD*

SET SWITCHES 9-11
TO DESIRED
#DECTAPE USERS SHOULD DATA FIELD *

LOAD RIM INTC FIELD @

PRESS
EXTD ADDR LOAD

5ET SR
TO 7756

v

PRESS
AQDR LOAD

SET SR=
FIRST INSTRUCTION

LIFT BEP

F
SET SR=
NEXT INSTRUCTION

[
LIFT DEP

ALL
INSTRH&T 100G

RIM IS LOADED

Figure 4-8 Loading the RIM Loader

To ensure ihat the load has been successful, follow the
steps shown in Figure 4-9.

SET ROTARY
INDICATOR
SWITCH TQ MD

SET SWITCHES
6-8 TO FIELD [N
WHICH RIM HAS
BEEN LOADED

PRESS
EXTD ADDR LOAD

SET 5R=7756

PRESS
ADDR LOAD

PRESS EXAM

MD=
CORRECT
INSTH%C TION

SET SR=MA-1 I
PRESS
ADDR LOAD

SET SR= CORRECT
INSTRUCTION

e

Figure 4-9 Checking the RIM Loader

ALL

INSTRUCTIONS
CH EFP}KED

RIM IS LOADED

4.3.2 The Microprocessor Host Loader

The Microprocessor Host Loader (MHL) is a utility program
which is ioaded into core ta read binary-coded data on
paper tape and store it in core memory. MHL is used
primarily to load system binary programs.

MHL is stored on punched paper tape in RIM-coded
format; therefore, RIM must be in core before MHL can be
loaded. When loading MHL, the input device (Jow-speed or
high-speed reader) must be the same as that selected when
loading RIM, and RIM and MHL must be loaded into the
same field.

Once stored in corc, MHL resides on the last page of core,
accupying absolute locations 7625 through 7752 and 7777
of the field in which it was loaded. The programmer must
be aware that if he writes a program that uses the last page
of core, MHL will be destroyed when the program is run,

4-11

and both RIM and MHL will require reloading before
another program can be loaded. Figure 4-10 details the
method of loading MHL.

The programmer is now able to load binary tapes using the
method described in Figure 4-11.

4.3.3 The Microprocessor Language Editor

The Microprocessor Language Editor (MLE) provided with
this system is a paper tape-oriented source text editor with
which the user modifics source program tapes by submit-
ting commands from the Teletype keyboard. Using MLE
alleviates the tedious task of preparing source program
tapes oftf-line. This program is described in detail in Chapter
5.

The Microprocessor Language Editor is provided to users of
this system in the form of a binary tape which is loaded
into core by means of the Microprocessor Host Loader,
using cither the low-specd or high-speed paper-tape reader,
The unit is selected at the time MLE is loaded, as shown in
Figure 4-11. MLE itself uses either the low-speed or
high-speed paper tape readerfpunch for 1/O. Text to be
modified may be entered into core using either the
Teletype or the paper-tape reader. The modified source text
may be punched-out using the paper-tape punch. Switch
Regisler bits are set to indicate high-speed input and output
(low-speed tape is the default).

4.3.4 The Microprocessor Langnage Assembler

The Microprocessor Languape Assembler (MLA) offers a
complete instruction set and group of pseudo-instructions
for straightforward development and processing of assem-
bly language programs for the Processor Module. For
consistency of use and ¢ase of training, the Assembler’s
character set, available operators, and construction of
statements, symbols, and expressions conform in many
ways to other standard PDP-8 Assemblers. This program is
described in detail in Chapter 6.

The Assembler is provided to users of this system in the
form of binary tape which is loaded into core by means of
the Microprocessor Ilost Loader, using either the low-speed
or high-speed paper-tape reader. The unit is selected at the
time MLA is loaded, as shown in Figurc 4-11.

The Assembler itself is coriented to the use of paper tape,
and uses either the low-spced or high-speed paper-tape
reader/punch for 1/0. The source program to be assembled
is usually prepared using the Microprocessor Language
Editor (but can be generated off-line) and is read by the
available paper-tape reader. The assembly itself is per-
formed in three passes, each of which produces certain

LOAD RIM

---~l SEE FIGURE 4-81

SET ACTARY
SELECTOR SWITCH
10 MD

'

SET SWITCHES
6-8 TQ FIELD
WHICH CONTAINS
RIM

I

SET SWITCHES
9-11 TQ FIELD IN
WHICH MHL 1S
TO BE LOADED

PRESS
EXTD ADDR LOAD

SET SRaTTSE

PRESS ADDR LOAD

WHICH

READER LOW-5PEED
?

READER

TURN TTY¥ TO LINE
PUT MHL
1N LSR™

FUT LSR TQ START

HiGH-SPEED
READER

TURN HSR ON

PUT MHL
IMNHIR

#*=WITH LEADER/TRAILER

TAPE
READS N
¥ OVER THE READ HEAD

YES
PRESS HALTj——q
SET SWITCHES
6-8 TQ FIELD
MHL WAS LOADED
INTD

PRESS
EXTD AQDR LOAD

SET SRe7TTY

Figure 4-10 Loading the Microprocessor Host Loader

4-12

SET SWITCHES
B-8 TO FIELD 1N
WHICH MHL 15
LOABED

[SET SWITCHES 2-11
T FIELD 1N WHICH
FROGAAM IS TO BE
LOADED

Haw|TH LELDER/TRAILER
(WER THE READ HEAD

PRESE CANT

TES
OBJECY TAPE
15 L0ApED

Figure 4-11 Loading a Binary Tape
Using MHL

listings of errors and program text. Listings can be
produced on either the Teletype, the line printer, or the
paper-tape punch; selection of the appropriate unit is made
at the start of pass 3 by setting the appropriate Switch
Register bits. A symbol table created in pass 1 is used 7o
punch a bipary-coded ouiput tape during pass 2. This
binary tape can subsequently be loaded into the Processor
Module for testing and execution,

Either the low-speed or high-speed paper-tape reader can be
used for Assembler input. [f both units are available, the
high-speed reader is selected for use in reading the source
tapc and producing Asscmbler output. If only one unit is

available, the Assembler will dynarmically determine which
type of paper-tape reader is to be vsed. Switch Register bits
are set to determine which unit is to be used for punching
PpuIposes.

4.3.5 Master Tape Duplicator/Verifier

The Master Tape Duplicator/Verifier (MTD) is a system
program used to copy and check eight-channel paper tapes
using the high-speed paper-tape reader and punch. Installa-
tions with a low-speed (Teletype) punch can perform the
same function by simply copying and listing off-line, as
outlined in the paragraph on the low-speed paper-tape
reader/punch.

MTD is provided to users of this system in the form of a
binary tape which is loaded into core by means of the
Microprocessor Host. Loader. Since only installations with a
high-speed paper-tape reader punch will be using MTD, the
high-speed device will normally be selected at the time the
system program is loaded. Once in core, MTD uses all but
the last page of memory as a buffer,

Paper tapes are duplicated and verified in three passes as
described below:

Pass Function
1 Production of the master tape
2 Duplicatien of the master tape
3 Verification of the duplicated tape

After MTD has been loaded into core, the user performs the
following initial procedures:

1. Set the Switch Register to 0200.

2. Press the ADDR LOAD and START keys; the
computer will halt.

3. Set the Switch Register to 4000,

4. Place the paper tape to be duplicated in the
high-speed paper-tape reader.

5. Turn the paper-tape punch on and feed paper
through the punch unit for approximately one
length of a fold.

6. Press the CONTinue key.

After these procedures have been completed, pass 1 begins.
The input tape is read and an output master tape is
punched. Because the paper-tape reader is faster than the
punch, the reader stops occasionally to allow the punch to
catch up. After punching is complete, the following
message will be displayed on the terminal;

MASTER CREATED
During pass 1, two types of checksums are accumulated:

1, The number of nonzero characters on the tape.

2. The sum of characters on the tape.
Both sums are computed module 4096 and are punched-out
at the end of the master tape.

To begin pass 2, remove the punched master tape from the
punch unit and place it in the reader. Prepare the punch
unit for ancther copy by feeding blank tape. Set the Switch
Register to 2000 and press the CONTinue key. During this
pass, the master tape will be duplicated and a new set of
checksums will be accumulated. After the master tape has
been duplicated, the following message will be displayed on
the terminal:

SET SWITCHES TO NUMBER OF COPIES TO BE
MADE — PRESS CONTINUE

If the user wants to generate one master and four copies of
his input tape, now he will set the Switch Register to 0003,
turn the punch on, ready tape, and press the CONTinue
key. After the next copy has been duplicated, MTD will
feed several folds of blank tape and then output the
following message on the terminal:

PRESS CONTINUE

The user presses CONTinue. MTD produces another copy,
feeds several folds of blank tape, and displays the following
message:

PRESS CONTINUE

The user presses the CONTinue key. MTD produces another
copy and displays the following message:

DUPLICATION OK

After all copies have been produced, pass 3 can begin.
During this pass, the tape copies are verified by comparing
checksumns. The user places the “master” tape in the reader,
sets the Switch Register to 1000, and presses CONTinue,
The master tape will be read and the following message
displayed:

0001 VERIFY OK

Next, the user loads the first duplicate tape in the reader
and presses CONTinue. After reading the tape, MTD will
display the following:

0002 VERIFY QK

The next three duplicate tapes are loaded and verified in
turn. The following messages are displayed - one for each
tape:

0003 VERIFY OK
0004 VERIFY OK
0005 VERIFY OK

MTD uses the PDP-8 program interrupt facility to keep
both the papertape reader and punch operating at
maximum speed. A buffer is filled by the reader and
emptied by the punch. NMever remove a paper tape from the
reader until all puaching has stopped or valuable data may
be lost from the tape.

The Dwuplicator does not currently check for extra blank
frames in the duplicate tape. If this presents a problem for
users of the program, another program can be used for
secondary verification. User tapes that are too long for the
space left in core should be broken into two or more
shorter tapes for this operation. The alternate binary tape
and documentation may be ordered from the DECUS
Program Library, numbered DIGITAL-5-10-S-BIN.

4.3.6 Microprocessor ROM Programmer

The Microprocessor ROM Programmer (MRP) is used to
read, wrile, and verify programmablc read-only memory
(PROM) chips for usc on the MPS modules. PROMSs can be

copied to or from paper tape, and memory locations can be
examined, modified, zeroed, or listed. This program is
described in detail in Chapter 9.

MRP is provided to wvsers of this system in the form of
binary tape which is loaded into core by means of the
Microprocessor Host Loader, using either the low-speed or
high-speed paper-tape reader. The unit is selected at the
time MRP is loaded, as shown in Figure 4-11. Swiich
Register bits can be set to send selective output to the line
printer or to choose the high-speed or low-speed paper-tape
punch as the punch unit.

4.3.7 Microprocessor Debugging Program

The Microprocessor Debugging Program (MDP) is-a debug-
ging aid which runs on the Processor Module, not on the
PDP-8. It enables the user to read, modify, and rewrite
binary programs in paper tape form. MDP c¢apabilitics
include the ability to examine memory locations, condition
flip-flops, and index registers, to set a breakpoint, and to
allow a program segment to execute to that breakpoint.
Binary code can be examined, tested, and modified without
requiring reassembly on the PDP-8, This program is
described in detail in Chapter 8. '

MDP is provided to users of MPS in the form of an MPS
binary tape. It is loaded into module memory by means of
the Microprocessor Program Loader (MPL). Input to MDP
is normally an MPS binary tape produced by the Micropro-
cessor Language Assembler. MDP preduces paper tape and
Teletype printer listings as output.

4.3.8 Microprocessor Program Loader

The Microprocessor Pragram Loader (MPL) is a loader
which is supplied as part of the Microprocessor Series
hardware and is available to users of the KC341 MPS
Monitor/Control Panel (MCP), It allows programs to be
loaded into MPS memory from paper tape for execution on
the module. A paper-tape reader must be available for use
with MPL, as well as the MPS Unijversal Asynchronous
Receiver/Transmitter (UART) interface, and read-only and
random-access MPS memory. Operation of the loader is
described in detail in Chapter 7.

5.1 INTRODUCTION TO THE EDITOR

The Microprocessor Language Editor (MLE) provided to
users of this system is a PDP-8 based Editor oriented to
paper tape usage. It is interactive and offers an extensive set
of commands which can be entered from the Teletype ot
other terminal keyboard. Primarily it is used as an on-line
tool for creating and modifying source program tapes.

The Editor facilitates both program entry and program
cotrection. Source text is either entered directly from the
keyboard or read into core using the low-speed (Teletype)
or high-speed paper-tape reader. Once in core, the program
text can be changed freely, expanded, deleted, or
reformatted. At any peint, all or some of the source text
can be listed on the terminal printer or punched out using
one of the paper-tapc punches.

MLE is supplied in the form of a paper tape which is loaded
into corc using the Microprocessor Host Loader (MHL).
Precise instructions for loading the Editor are supplied in
Paragraph 5.9 of this chapter. The Editor occupies about
1000 locations of core and rescrves all but the last page of
core for source program use. In a 4K machine, this provides
room for approximately 4200 decimal characters; that is
about 60 lines of heavily commented text or about 340
lings of text without comments. When the core arca (text
buffer area) used by the source program is full, the Editor
causes the Teletype bell to ring or an audible signal to be
produced on another terminal. The buffer may then be
enlarged, as described in the Operating Procedures, or the
buffer may be dumped by punching it out onto paper tape.
After punching, the Editor can be restarted and can
continue with a clear text buffer area. If this occurs, it is
recommended that the remainder of the source program be
placed in core and punched out, so that the entire source
program is on a single paper tape.

5.2 OVERVIEW OF EDITOR COMMANDS

This paragraph sumimarizes general syntax and error-
detection characteristics of the Microprocessor Language
Editor.

5-1

CHAPTER 5
MICROPROCESSOR
LANGUAGE EDITOR

5.2.1 General Editor Syntax

MLE commands are entered from the keyboard in the
following way:

Form [[m,)n[$] | command<lcr>

The command is a one-character function that directs the
Editor to perform a particular operation: commands are
preceded by zero, one, two, or three arguments. These
arguments, represented by m, n, and j in the syntax, are
digits or expressions that specify line numbers in the source
text which are affected by the particular MLE function.
The , (comma) and $ (dollar sign) symbols in this form
represent argument delimiters, and <cr>> is the command
terminator — usually a carriage return. The uscr typically
types the carriage retum, and MLE inserts an automatic linc
feed character. Arguments enclosed in brackets are nor-
mally optional, but specific usage depends on the syntax of
particular commands.

Table 5-1 provides examples of different forms of Editor
commands.

5.2.2 Errors in Specifying Commands
A question mark (?) followed by a carriage return/line feed
will be displayed on the terminal printer if the user does
any of the following:

' 1. Specifies a nonexistent command; for example,
the following is an error:

H
?

hecause H is net an MLE command.

2. Requests nonexistent information; for example,
if the user requests a listing by typing L, and
the text buffer is empty, the following will
occur:

L
?

Similarly, if certain lines not in the buffer are
requested or if negative line numbers are
supplied, a question mark will be displayed.

3. Includes too few arguments; for example, if the
user wants to move the first 17 lines of text in
the buffer to precede line 100, and types the
following:

L75100M
?

the question mark will be printed, because a
MOVE command requires two arguments
before §, and only one is supplied. The correct
format is:

1,178100M

4, Specifies line numbers in incorrect order; in
form:

m,ncommand

m must be less than n; therefore the following
specification results in an error condition:

7.5L
?
Whenever a question mark is displayed in this way, the

command specification in which the error occurred is
ignored, and the user is free to re-enter the command.

There is one kind of command *“error” which does not
cause the question mark to be displayed and the command
to be ignored. This is the case in which one or more
argements may be supplied for a command which requires
no arguments; the following illustrates this incorrect usage:

LISA

Because the APPEND command takes no arguments, the
1,15 specification will simply be ignored, and the text will
be appended as usual.

5.2.3 Line Numbering

All lines in the text buffer area are assigned implicit decimal
line numbers starting with 1. This implicit numbering
scheme causes line numbers to be continually updated by
the Editor to account for line insertions, moves, and
deletions, This implies that the line numbers on the
following original lines of text may be changed during the
editing process. '

Implicit Line Number Text
1 AAA
2 BBB
3 DDD
4 EEE

For example, if the following two commands are performed
to delete line 4 and insert a new line between 2 and 3

4D
31
CCC

Table 5-1
Editor Command Options
Type of Command Format Example Meaning
No Argument A A Append incoming text to buffer,
One Argument ni 841 Insert incoming text before line
number 84.
Two Arguments m,nL 1,100L List text buffer lines I through 100,
Three Arguments m,n$jM 12,20$96M Move lines 12 through 20 to before.
line number 96.

the following will result:

Implicit Line Number Text
1 AAA
2 BBB
3 CCC
4 DDD

If deletions are being performed, it is wise to delete from
the bottom of the text to the top, since deletions cause all
text after lines being deleted to be adjusted. 1f the
command shown had been performed in a different order,
that is:

31
CcCC
4D

the foliowing would have occurred:

Implicit Line Number Text
l AAA
2 BBB
3 CcCC
4 EEE

The line containing CCC was inserted as linc 3; the prcvious
line 3, containing DD, was therefore renumbered line 4
and the line containing EEE was renumbered tine 5. After
deletion of the new line 4, line 5 was renumbered line 4.

5.3 EDITOR MODES OF OPERATION

To distinguish between editing commands and actual text
to be entered into the buffer, the Editor operates in either
COMMAND mode or TEXT mode. In COMMAND mode,
all input typed on the keyboard is interpreted as commands
to the Editor to perform some operation on one or mote
lines of text stered in the buffer. In TEXT mode, all typed
input is interpreted as fext to replace, be inserted into, or
be appended to the contents of the text buffer,

Immediately after being loaded into core memory and
started, the Lditor is in COMMAND mode waiting for a
command. The user can freely enter any of the Editor
commands described in this chapter, The Editor moves
automatically into TEXT mode when an APPEND (A),

:5.4.1
‘In both COMMAND und TEXT modes, typing the
‘RETURN key signals the Editor to process the information
just typed. In COMMAND mode, it allows the Editor to
‘execute the command just entered. A command will not be
‘executed uptil it is terminated by the RETURN key (with

INSERT (I}, or CHANGE (C) command is supplied. In this
mode, new text lines or text corrections and insertions are
fyped and appended or inserted as specified. To retum
from TEXT to COMMAND mode, the user types either of
the following characters on the terminal keyboard:

1. CTRL/L: Type L while holding down the
CTRL key

2. CTRL/G: Type G while holding down the-
CTRL key

The Editor indicates the successful transition from TEXT
back to COMMAND mode by ringing the bell on the

Teletype or producing an audible signal on another ter-
minai.

5.4 SPECIAL CHARACTERS AND FUNCTIONS

Editor commands entered from the terminal often involve
using certain special keys for such purposes as error
icorrection, mode transition, paper tape control, and text
‘buffer analysis. This paragraph surnmarizes the functions of

these keys with particular reference to the Teletype
keyboard. Specific keys may differ slightly on the key-

boards of other terminals, and differences in function wil)
be noted where these occur.

RETURN: Terminating a Line

the exception of = and :, explained later). In TEXT mode,
RETURN causes the line of text which it follows to be
entered into the text buffer. A typed line is not actualty
part of the buffer until tcrminated by the RETURN key.

5.4.2 CTRL/U: Erasing a Line

The erase character (CTRL/U combination) is used for
error recovery in both COMMAND and TEXT modes. It is
generated by holding down the CTRL key while typing a U
and is not cchoed on the Teletype. When used in TEXT

 mode, CTRL/U cancels everything to the left of itself back

to the beginning of the line; the Editor performs a carriage
returnfline feed (<er> <df>>). The user then continues
typing on the next line., When used in COMMAND maode,

CTRL/U cancels the entire command; MLE prints a ? and
performs a <cr>> <Uf>. The erase character cannot cancel
past a <cr>> <If> in either COMMAND or TEXT mode. For
example, in COMMAND mode, the CTRL/U character after
the A cancels the append command.

Al

In TEXT mode, the CTRL/U is pressed after “THIS™ and
results in a carriage return. The line containing *“THIS" will
not be entered in the text buffer,

THIS
HERE IS A TEXT MODE EXAMPLE

5.4.3 RUBOUT: Erasing A Character

RUBOUT is vsed for emor recovery in both COMMAND
and TEXT modes with one exception. When executing a
READ command (explained later) from the paper-tape
reader, RUBOUTs are ignored completely and arc not
entered in the buffer. It is necessary for the READ
command to disable the RUBOUT function because all tab
characters on paper tape are, for timing purposes, followed
by RUBOUTSs; recognition of these characters would cause
the tabs to be ignored. RUBOUTSs are not stored in the text
buffer but are inserted by the Editor following all tab
characters on the ontput tape.

At any other time, typing the RUBOUT key in TEXT mode
echoes a backslash (\) and deletes the iast typed character.
Repeated RUBOUT: delete from right to left up to but not
including the <cr><f>>, which separates the current line
from the previous one. For example:

THE QUUICKAWMCK BROWN FOX
will be entered in the buffer as:
THE QUICK BROWN FOX

When used in COMMAND mode, RUBOUT is equivalent to
CTRL/U and cancels the entire command; the Editor then
prints a ?, performs a <cr> <1f>>, and waits for the user to
type another command.

54.4 CTRL/L: Eatering A Form Feed

The form feed character signals the Editor to retum to
COMMAND mode, A character of this kind is generated by
typing L while holding down the CTRL key. This combina-
tion is typed while in TEXT mode to indicate that the

5-4

desired text has been entered and that the Editor should
now refurn to COMMAND mode. The Editor rings the
Teletype bell or produces an audible signal on another
terminal in response to a CTRL/L to indicate that it is back
in COMMAND mode. If the Editor is already in COM-
MAND mode when CTRL/L is typed, no bell or signal will
sound. CTRL/G is equivalent to CTRL/L (except in the
case of a SEARCH command, as explained later).

5.4.5 Dot {.): ldentifying the Current Line

The Editor keeps track of the implicit decimal number of
the line on which it is currently operating. At any given
time, the dot, which is produced by typing the period key,
represents this number and may be used as an argument in a
command. For example:

.L
means list the current line, and
~1,+1L

means list the line preceding the current line, the current
line, and the line following it; then update the current line
counter to the decimal number of the last line printed. The
current line counter, represented by the dot, is generally
updated as follows:

1. After a READ or APPEND command, dot is
equal to the number of the last line in the
buffer.

2. After an INSERT or CHANGE command, dot
is equal to the number of the last line entered.

3. After a LIST or SEARCH command, dot is
equal to the number of the last ling listed.

4. After a DELETE command, dot is equal 1o the
number of the line immediately after the
deletion,

5. After a KILL command, dot is equal to zero.

6. Afier a GET command, dot is equal to the
number of the line printed by the GET.

7. After a MOVE command, dot is not updaied
and remains whatever it was before the com-
mand.

5.4.6 Slash (/): Identifying the Last Line

The slash (/) symbol has a value equal to the decimal
number of the last line in the text buffer. It may also be
used as an argument in a command. For example:

10,/L

means list from line 10 to the end of the buffer.

54.7 LINE FEED: Identifying the Next Line

Commands and lines of text are terminated by the
RETURN key which generates a carriage return/line feed
combination. LINE FEED characters are completely
ignored when input is on paper tape. During output, the
Editor autormatically punches a LINE FEED following each
carriage return.

Typing the LINE FEED while in COMMAND mode is
equivalent to typing: '

F1L

and will cause the Editor to print the line following the
current one and to increment the value of the current line
counter {.) by one.

548 ALTMODE: Incrementing the Current Line

Typing the ALT MODE key while in COMMAND mode will
cause the line following the current line to be printed and
the current line counter (.} to be incremented by one. If the
current line is also the last line in the buffer, typing either
ALT MODE or LINE FEED will cause a ? to be typed by
the Lditor to indicate that there is no next line. (Some
Teletypes and most other terminals have an escape key
(ESC) in place of the ALT MODE; the function is identicat
for both ESCape and ALT MODE.)

5.4.9 Right Angle Bracket (>>): ldentifying the Next Line
Typing the right angle bracket () while in COMMAND
mode is equivalent to typing:

A1L

and will cause the Editor to echo > and then print the line
following the current line. The value of the current line
counter is incremented by one so that it refers to the last
line printed.

. 54.10 left Angle Bracket (<): Identifying the Previous
Line
: Typing the left angle bracket (<) while in COMMAND

mode is equivalent to typing:

~1L

- and wil! cause the Editor to echo <and then print the line

C 5411

preceding the current line. The value of the current line
counter is decremented by one so that it refers to the last
linc printed.

Equal Sign (=): Requesting a Value

The equal sign is used in conjunction with the line
- indicators dot (.) or slash (/). When typed in COMMAND

mode it causes the Editor to print the decimal value of the
argument preceding it. In this way the number of the

" current line may be found ((=xxx), or the total number of

lines in the buffer {/=xxx) or the number of some particular

~line (/-8=xxx) may be determined without counting from

the beginning,

5.4.12 Colon (:): Requesting a Value

Colon is a lower-case character with exactly the same
function as the equal sign (=).

54.13 Blank Tape and leader/Trailer Tape: Processing

. Paper Tape

" Both blank tape and leader/trailer (octal code 200) tape are
- completely ignored on an input tape, as arc line feed
- characters and RUBQUTs. Line feeds and RUBOUTS are
" automatically replaced wherever necessary on output, but
- blank tape and leader/trailer are not. The production and
" processing of paper tape at the terminal is, of course,

specific to the Teletype.

5.4.14 CTRL/I: Tabbing Editor Qutput

The Editor simulates tab stops at eight-space intervals
across the Teletype paper. The user can tabulate by typing I
whilc holding down the CTRL key. A tabulation consists of

i from one to eight spaces, depending on the number needed

to bring the carriage to the next tab stop, This feature

. facilitates the production of neat columns on cutput copy.

The tab function is used in conjunction with two Switch
Register bits set to allow the user to produce and control
fabulations in the text buffer during input and output

~operations (sec Paragraph 5.5). On input (under a READ

5-5

command), the Editor can replace a group of two or more
spaces with a tabulation if the user chooses to set bit 0 on.

On output, it will produce either g tab character followed
by a RUBOUT (for timing purposes} or enough spaces to
reach a tab stop, depending on the setting of bit 1. The
Editor cannot output tab characters unless tabulations have
been entered in the buffer either from the keyboard or by
setting bit O on input,

NOTE
Location 0002 contains the negative {two’s
complement) of the number of spaces used to
simulate tab stops. To change the tabulation,
simply change the constant in location 0002
after loading the Editor.

5.5 SWITCH REGISTER OPTIONS

The Editor vses five Switch Register bits in conjunction
with input and output commands to control the reading
and punching of paper tape. Switch Register bits may be set
for a variety of reasons including the following:

1. To select the low-speed (Teletype) or high-
speed paper-tape reader or papet-tape punch

2. To suppress output operations
3. To seclect certain interpretations for tabulation

The selection of the paper tape unit is probably the most
critical of these functions. Naturally, if a PDP-8 configura-
tion has a terminal device other than the Teletype, it is
necessary 10 select the high-speed paper-tape reader and
punch, [f both high- and low-speed devices are supported,
the decision might be more complex. Setting Switch
Register options allows the user to select one unit for
reading and Lhe other for punching.

It is often desirable to be able to interrupt a command
before it finishes. For example, if the user mistakenly
supplied a LIST command instead of a PUNCH, he may not
want to wait for the terminal to list a large amount of texL.
Setting bit 2 on the conscle Switch Register allows the user
to interrupt any output command and to retum immedi-
ately to COMMAND mode. Table 5-2 lists options for all
relevant Switch Register bits.

5.6 INPUT COMMANDS

Input commands allow source text to be entered into the
text buffer area, either from one of the paper-tape readers
or from the terminal keyboard, Available input commands
are listed in Table 5-3,

Table 5-2

Swiitch Register Options

5-6

Bit

Setting

Meaning

10

0

1

Read the input tapc exactly as is.

Read the input tape and keep track
of spaces. Each time two or more
successive spaces are found, sub-
stitute in the buffer a tabulation for
that whole group of spaces; this
option affects only the READ com-
mand,

On punching (or listing) text from
the buffer, interpret tabulations as
an appropriate number of spaces.

Interpret tabulations as & tab char-
acter followed by a rubout (Tele-
type codes 211 and 377).

Normal operation; all cutput com-
mands compieted as specified.

Suppress list, punch, or search
operation. If at any time during
execution of an ocutput command
this bit is set to 1, output will cease
and the Editor will return immedi-
ately to COMMAND mode; if this
occurs while a line is being
searched, any modifications to the
line made during that search will be
disregarded; the current line
counter () will be equal to the
number of the line being printed or
punched at that time. Until the bit
is set to O, any further output
command will be ignored.

Low-speed output; all punching will
be performed on the Teletype
punch.

High-speed output; all punching
will be performed on the high-speed
punch.

Table 5-2 (Cont)
Switch Register Options

Bit Setting Meaning

11 0 Low-speed input; the READ com-
mand expects the source tape to be
in the Teletype reader. Do not use
the APPEND command to read

tapes.

1 High-speed input; the source tape
will be read from the high-speed
reader. '

Table 5-3
Input Commands

Command Meaning

R Read a page of text and append it to
the text buffer using the paper tape

unit defined by Switch Register bit 11.

Append text entered from the ter-
minal to the text buffer.

I Insert text entered from the terminal
before line 1 of the text buffer,

Insert text entcred from the terminal
before line n of the text buffer.

nl

For all input commands, the Editor is assumed ta be in
TEXT mode until a form feed character (CTRL/L) is
encountered, If CTRL/L is typed or if a full buffer
condition occurs, the Editor returns to COMMAND mode,

NOTE
In these commands, the Editor ignores ASCIE
codes 340 through 376. These codes include
the codes for the lower-case alphabet (ASCII
341-372).

5.6.1 R: Reading Paper Tape
The READ command is issued as follows:

Form R

5.7

it is used.to read a page of text from the paper-tape reader.
Depending on the position of Switch Register bit 11,
reading will be performed on the high-speed {one) or
low-speed (zero) reader. MLE will read the input tape uniil
a2 form feed character (CTRL/L key combination) is
detected or until the Editor senses a text buffer full
:conditjon. All incoming text cxcept the form feed is
appended to the end of the text buffer. Information
already in the buffer remains there.

In the case of input from the high-speed reader, the end of

ithe tape wil) be interpreted as a form feed if an actual form
feed character does not appear on the tape; the Editor will

return to COMMAND mode. In the case of input from the

low-speed reader, a form feed must be entered from the
keyboard to return the Editor to COMMAND mode if an

actual form feed character does not appear on the tape. If

‘this is not done, the READ command remains in effect, and

alt subsequent commands will be interpreted erroneously as
text and appended to the text just read from tape.

Any RUBOUT encountered during a READ command will
be ignored, as described in the discussion of the special
Teletype keys.

- The appropriate paper-tape reader unit must be turned on
.and positioned to read at the time the READ command is

issued, For the low-speed reader, do the following:

1. Set the paper-tape reader switch to STOP or
FREE,

Release the plastic cover of the reader unit and
place the tape over the read station with the
small sprocket holes over the sprocket wheel,
Close the cover.

Push the paper-tape veader switch to START
and release.

For the high-speed reader, do the following:
1. Turn the reader unit on.

2, Turn the control knob to raise the tape

retaining lever.
3. Place a fan-folded tape in the right-hand bin.
Place several folds of leader in the left-hand bin

and position the tape so that the sprocket
wheel engages the feed holes.

5. Turn the control knob to lower the tape
retaining lever.

6. Press the FEED switch briefly to ensure that
the tape is properly positioned,

56.2 A: Appending Terminal Text
The APPEND command is issued as follows:
Form A

It signals the Editor that the text which is entered next
from the terminal keyboard is to be appended to the text
already in the buffer. If the buffer is empty at the time the
command is issued, a new fite is created, This effectively
generates a symbolic program on-line by accepting program
text from the keyboard. On receiving the APPEND com-
mand, MLE enters TEXT mode to accept as much text as
the user enters {until the buffer area is full). To return to
COMMAND mode, a form feed (CTRL/L key combination)
is typed.

A RUBOUT character encountered during execution of an
APPEND command (i.e., while program text is being
entered) will delete the last typed character. Repeated
RUBOUTs will delete from right to left up to but not
beyond the beginning of the current line.

5.6.3 I: Inserting Text in the Buffer

The INSERT command causes text to be read from the
terminal keyboard and inserted into the buffer in the
specified position. It is issued as follows:

Form [n}I

If a command of the form nl is entered, text from the
keyboard will be inserted in the bufler just before the line
implicitly numbered n. If 3 simple [command is typed, text
will be inserted at the very beginning of the text buffer, just
before line 1.

The Editor enters TEXT mode to accept input, and the first
line typed becomes the new line n. Both the line count and
the numbers of all lines following the insertion are
increased by the number of lines inserted; the value of the
current line counter (.} is equal to the number of the last
line inserted using the I command. To re-enter COMMAND
mode, the form feed (CTRL/L combination) must be typed

5-8

terminating TEXT mode. If CTRL/L is not typed, all
subsequent commands will be interpreted erroneously as
text and entered in the program immediately after the
intended insertion. The following example illustrates the
use of the INSERT command. The text buffer is assumed
to contain the following:

Implicit Line Number Text
1 AAA
2 BBB
3 ccC

The following command is given

31

ABA
BAA
BAB

To insert text before line 3 and cause the following;

Implicit Line Number Text
1 AAA
2 BEB
3 ABA
4 BAA
5 BAB
6 CCC

Next, the following command causes two lines of text to be
inserted before the old line 1:

|
AAD
ADA
huplicit Line Number Text

AAD
ADA

BBB
ABA
BAA
BAB
CcCC

00 =1 O b B) b —

5.7 OUTPUT COMMANDS

Output commands are available for both listing and
punching purposes, Both kinds of commands provide for
the output of part or all of the contents of the text buffer.
LIST commands facilitate examining the text by producing
output on the terminal keyboard. PUNCH commands
output leader and trailer tape, form feeds, corrected text,
or duplication of pages of an input tape on the paper-tape
punch. Neither LIST nor PUNCH commands affect the
contents of the buffer in any way. All listing operations can
be interrupted by setting Switch Register bit 2 on.

5.7.1 L: Listing on the Terminal Printer

The LIST command causes part or all of the contents of the
text buffer to be listed on the terminal, A LIST command
is constructed as follows:

Form [[m,]n}L
where m and n are optional arguments as defined in Table

5-4, which summarizes different forms of the LIST com-
mand:

Table 5-4
LIST Commands

Command Meaning

L List the entire page; this causes the
Editor to list the entire contents of the
text buffer on the terminal,

oL List line n; this line will be printed
followed by a carriage return and a
line feed.

m,nL List lines m through n inclusive (m
must be less than n); lines m through n
will be printed on the terminal.

The following #llustrates interspersed command input and
text output as in actual terminal interactions:

2L
BBB
1,3L
AAA
BBB
cce
L
AAA
EBB
ccC
DDD

5.7.2 P: Punching Qut Paper Tape
The PUNCH command causes part or all of the contents of
the text buffer to be punched-out using either the

" low-speed or high-speed paper-tape punch., The device

selection depends on the setting of Switch Register bit 10

~ at the time the PUNCH is issued. If bit 10 is set on, the

high-speed device is used; otherwise the Teletype punch is
selected,

The PUNCH command is constructed as follows:

Form [[m,)n]P

where m and n are optional arguments as defined in Table
5-5, which summarizes different forms of the PUNCH
command, This table also illustrates utility commands used
for punching purposes.

The Editor remains in COMMAND mode after a LIST
command and the value of the current line counter is
updated to be equal to the number of the last linc printed.
Some examples of the LIST command might be helpful.
The contents of the text buffer at the time the commands
are issued as follows:

Implicit Line Number Text
1 AAA
2 BBB
3 cCC
4 DDD

Table 5-5
PUNCH Commands
Command Meaning

P Punch the entire contents of the text
buffer using the punch unit defined by
Switch Register bit 10.

nfP Punch line n only,

m,nP Punch lines m through n inclusive
(where m must be less than n),

F Punch four blanks, a form feed charac-
ter, and approximately two inches of
leader/trailer tape.

T Punch four inches of leader/trailer
tape.

Table 5-5 (Cont)
PUNCH Commands

Command Meaning

N Punch the entire contents of the text
buffer, issue a FORM FEED com-
mand, erase the contents of the text
buffer, and read a new page of text
into the text buffer using the appropri-
ate paper-tape reader unit {perform P,
F,K,and R}.

nN Perform P, F, K, and R n times in
sequence.

Because the appropriate paper-tape punch unit must be
readied before tape is punched, the Editor will cause the
computer to be temporarily halted when a PUNCH is
supplied. After the unit has been readied, the user should
press the CONTinue key on the console to cause punching
to begin.

To position tape in the low-speed punch, do the following:

1. Turn the Teletype control knob to LOCAL.

2. Turn the punch unit on.

3. Press the HERE IS key on the Teletype to
produce several inches of reader tape.

4. Turn the punch off,

5. Turn the Teletype control knob to LINE,

6. Turn the punch unit on.

For the high-speed punch, do the following;

1. Turn the punch unit on.

2. DPress the FEED switch briefly to ensure that
the tape is properly positioned; this switch will
advance the tape with only its feed holes
punched.

The Editor remains in COMMAND mode after a punching
operation, and the value of the current line counter is
updated to be equal to the number of the last line punched.
PUNCH commands do not cause a form feed character to
be output following the text. An explicit form feed must be
supplied using the F command,

MLE is designed to minimize the possibility of illegal or
meaningless characters being punched into a source tape;
therefore the itlegal codes 340—376 and 140—177 and most
illegal control characters will not be punched. This provides
a means of correcting a tape containing illegal characters by
simply reading this tapc using the Editor and by sub-
sequently punching it out,

5.7.3 F: Punching a Form Feed
The FORM FEED command is issued as follows:
Form F

and is used to punch the following on a paper tape, using
either the high-speed or low-speed unit,

1. Four blanks.

2, A form feed character.

3. ApproxXimately two inches of blank tape.

The Editor does not cause the computer to halt when a
FORM FEED command is encountered. To avoid the
insertion of extraneous characters on the paper tape when
the lowspeed paper-tape punch has been selected, the user
should follow this sequence when issuing a FORM FEED
command:

1. Turn the punch off.

2, Type F followed by RETURN,

3. Turn the punch on.

5.7.4 T: Punching a Paper Tape Trailer

The TRAILER command is issued as follows:
Form T

and is used to punch a papertape trailer consisting of

approximately four inches of blank tape on either the
high-speed or low-speed unit.

The Editor does not cause the computer to halt when a
TRAILER command is encountered. To avoid inserting
extraneous characters on the paper tape when the low-
speed paper-tape punch has been selected, the user should
follow this sequence when issuing a TRAILER command:

1. Turn the punch off.
2. Type T followed by RETURN,
3. Turn the punch on.

5.7.5 N: Combining P, F, K, and R Commands

The NEXT command is a utility command which is used to
read in the next page of text from paper tape one or more
times by combining the functions of four distinct MLE
commands, It is issued as follows:

Form nN
and performs the functions of the four commands in Table
5-6 in sequence.

Table 5-6
NEXT Command Functions

the user should press the CONTinue key on the console. If

an nN command is given, the halt will occur only before the
first cycle. If n is greater than the number of pages of input

tape, the commands will proceed in the specified sequence
until the end of the input tape is read. The Editor will then
return to COMMAND mode if the unit being used is the
high-speed punch. If the Teletype unit has heen selected,
the user must type CTRL/L to return to COMMAND mode
when the tape runs out,

.58 EDITING COMMANDS
-Editing commands allow source text to be deleted,

changed, moved, and expanded in the text buffer. In

-addition to standard replacement and deletion features, the
Editor described in this chapter facilitates such advanced

editing features as moving a block of text from one part of
the buffer to another or searching the text buffer for
specific characters or for lines containing tags.

.5.8.1 C: Changing Lines in the Text Buffer

Command Function

PUNCH Punch the entire contents of the text
buffer using the punch unit defined by
Switch Register bit 10.

FORM FEED Punch four blanks, a form feed charac-
ter, and approximately two inches of
blank tape.

KILL Erase the contents of the text buffer.

READ Read a page of text into the text
buffer using the reader unit defined by
Switch Register bit 11,

If a simple N command is given, this sequence will be
performed only once. If nN is supplied, the sequence will
be performed n times.

Because the appropriate paper-tape punch unit must be
readied before tape is punched, MLE will cause the
computer to be temporarily halted when a NEXT is
supplied. After the unit has been readied, as just described,

The CHANGE command allows the user to replace one or
more lines in the buffer with text entered on the terminat
keyboard. Tt is issued as follows:

Form fm,]1nC
where m is optional and n is a required argument, supplicd
as shown in Table 5-7.

Table 5-7
CHANGE Commands

Command Meaning

nC Delete line n and replace it with the

line(s) that follow.
m,nC Delete lines m through n and replace
them with the lines that follow (m
must be less than n).

When the Editor receives a CHANGE command, it deletes

~ the specificd lines and then enters TEXT mede to accept

5-11

text typed by the user to replace the deleted line(s).

Once in TEXT mode, RUBOUTs can be used to erase
characters in the inserted text. It is not necessary to replace
the changed text with the same number of lines that were
deleted. Since lines are automatically renumbered, the user
may enter any number of new lines to replace the old. The

line count will automatically be updated. In addition, after
a CHANGE has becen performed, the value of the current
line counter (.) is equal to the number of the last line of the
inserted text,

An example of changing text in the buffer might be heipful.
If the contents of the buffer are as follows:

Implicit Line Number Text
1 AAA
2 BBB
3 CCC
4 DDD
typing the command:
2C
Bll
B22
B33
witl result in the following:
Implicit Line Number Text
1 AAA
2 B1l
3 B22
4 B33
5 CcCC
6 DDD
The next command:
4,6C
BBB
causes the following:
Implicit Line Number Text
1 AAA
2 B1l
3 B22
4 BBB

To return to COMMAND mode after replacing text with
the CHANGE command, the user types a form feed
(CTRL/L) to terminate input from the keyboard.

5.8.2 D: Deleting Lines of Text
The DELETE command causes the deletion of one or morz
lines of text in the buffer. It is issued as follows:

Form [m,]nD

where m is optional, and n is a required argument, supplied
as shown in Table 5-8.

Table 5-8
DELETE Commands
Command Meaning
nD Delete line n.
m,nD Delete lines m through n {m must be
less than n).

When the Editor has performed the specified deletion, it
automatically renumbers all succeeding lines reducing their
implicit numbers by the number of lines deleted. When a
command of the form

m,nl

is performed, the line following n becomes the new line m,
and the rest of the lines are renumbered accordingly.

Following is an example of deletion of text in the buffer:

Imptlicit Line Number Text
1 AAA
2 BBB
3 ccc
4 DDD
The command:
2,3D
changes the text buffer to the following:
Implicit Line Number Text
1 AAA
2 DDD

5.8.3 G: Getting a Tagged Line

The GET command is used to locate the next line in the
text buffer with a tag associated with it. It is issued as
follows:

Form [n]G

If a simple G comumand is supplied, the Editor begins the
search for the next tagged line with the line following the
current line (the value of the current line counter). If the
optional argument precedes the G, the search begins at line
n, testing it and each succeeding line. The line which first

passes the test will be printed on the terminal by the
Editor,

A tapged line is defined as one which does not begin with a
tab, slash, or space character. Usually such lines begin with
tags or labels, but lines not indented will also pass the test.
For example:

LAB

INP2
fTHIS IS A COMMENT
HERE, LMA

RAR

JFZ HERE
*20#377

If the GET command succeeds in finding a tagged line, the
current line counter is updated. However, if the GET
reaches the end of the buffer without finding a tagged line,
the current line counter (i.c., the value of the line counter
before the GET was issued) is prescrved. A question mark
(7) is typed on the terminal to indicate that tests were not
successful. The Editor remains in COMMAND maode after
al! GET operations, '

The following is the current text buffer:

Implicit Line Number Text
LAB
INP2
JOLD VERSION
VER1, IMA
RAR
IFZ
HLT

VER2, VERI

=1 S b D

. Sample GET commands, with the initial line counter at iine

5, are given below:

1G
VERIL,
G
VER2,
G

?

LMA

JFZ VERI

584 K: Killing the Text Buffer
The KILL command causes the entire page in the text
buffer to be erased. It is issued as follows:
Form K
The values of special characters / (last line in buffer) and .

(current line counter) are set to zero. The Editor remains in
COMMAND mode after the buffer has been erased.

This is the current line.
This line will be printed by GET.

This line will be printed next if another GET is entered,

5.8.5 M: Moving Text in the Buffer
The MOVE command is used to move a line or lines from
one location in the text buffer to another. It is issued as
follows:
Form m,n§jM
where m, n, and j are all required arguments. The MOVE
command causes text buffer lines m through n inclusive to
be moved to the position just befere line j. The user must
ensure that m is less than n. After the MOVE is complete,
lines are renumbered bui the value of the current line
counter (.) is not changed.

The following example:
1,10520M

causecs lines 1 through 10 to be moved to just before line
20. If the user wishes to move a single line to a new

location, three arguments must nevertheless be supplied;
this is accomplished by specifying the same value for both
m and n, as in the following:

15,15825M

This moves linc 15 to before line 25. To insert text at the
beginning of the buffer, simply specify 1 as the j argument:

20,3051IM

To move text to the end of the current text in the buffer,
the user supplics a special j specification of /+1 (i.e.,
end-of-buffer + 1), as in the following:

1,108/+1M

This moves lines 1 through 10 to the end of the current
contents of the text buffer,

MLE renmtains in COMMAND mode after performing a
MOVE command. Moving lines does not affect the size of
the buffer in any way since lines are merely rearranged, not
added.

The following example illustrates the use of several versions
of the MOVE command. The initial contents of the buffer
follows:

Implicit Line Number Text

AAA
BBB
«CcC
DD
EEE
6 FFF

LR R

First, move line § to the beginning of the buffer:
5,551M
The buffer now looks like this:
[mplici¢ Line Number Text

EEE
AAA
BBB
CCC
DDD
6 FFF

L O

Next, move lines 1, 2, and 3 to the end of the buffer:

1,38/+1M

Implicit Line Number Text
1 Cccc
2 DDD
3 FFF
4 EEE
5 AAA
& BBB

Finalty move lines 3 and 4 to before line 2:

3,452M

Implicit Line Number Text

cce
FFF
EEE
DD

o R R T

BEB

5.8.6 S: Searching the Text Buffer

The SEARCH command is used to examine all or part of
the text buffer for a specified character. It is issued as
follows:

Form {fm,]n] 8

where m and n are optional arguments, supplied as shown
in Table 5-9.

Table 5-9
SEARCH Commands
Command Meaning

S "~ Search the entire buffer for all occur-
rences of a particular character.

nS Scarch line n for an occumrence of a
particular character.

m,nS Search lines m through n for an
occurrence of a particular character.

The SEARCH command is very different from the MLE
commands already discussed in this manual. It is far more
interactive and therefore facilitates far more complex
editing operations, '

The SEARCH command string itself does not specify the
character for which the Editor is to search. That character
must be entered after the command, terminated by a
RETURN key, has been typed. No search operations will
begin until a character is typed; MLE will simply halt
waiting for input. The user is expected to type a single
character as the object of the search, but the typed
character will not be echoed. Instcad, the Editor will
respond either by typing a question mark- (?) to indicate
that the desired character cannot be found in the specified
line or lines, or by supplving part of the first linc
encountered which contains the specified character, from
the first character in the line to the position where the
specified character occurred.

An example may be helpful. Assume that line 10 contains
AB¥*NEE&:

108
AB¥*

in this example, thc user requested a search of line 10 for
the asterisk character (*) entered in the pluce where A
appears. The * is not cchoed, but the Editor locates that
¢haracter in finc 10 and types out line 10 from the
beginning to the position in which * occurs. At this point,
the user may cheose one of many options which affect the
selected line or the text in the rest of the buffer. These
options are listed in Table 5-10.

The options shown in Table 5-10 apply particularly to the
nS form of the SCARCH command. In almost ail cases,
however, they are applicable to the other command formats
as well. If the lollowing form:

mnS

is used, indicating a search in lines m through n inclusive,

one major difference occurs. If RETURN is typed in .

response to the Editor’s display of the search character line,
the entire unprinted portion of the line is deleted and the
line is terminated. However, the search will continue on the
next line.

By typing CTRL/G to change search characters, al} editing

of a single line may be performed in one pass. Typing
CTRL/G twice will cause the search to terminate since the
search character will now be BELL, which is not stored in
the buffer.

Table 5-10
SEARCH Options

Option Action

CTRL/U Delete the entire printed portion of

the line with the CTRL/U (erase)
character. This preserves the unprinted
portion of the line. A carriage return/
line feed character is automatically
generated.

RETURN Delete the entire unprinted portion of
the line, and terminate the search.
MLE resumes in COMMAND mode.
RUBOUT () Delete one character from right to left
for each RUBQUT typed; only printed
characters are affected.

character(s) Insert typed character(s) after the last
printed character.

LINE FEED Insert a carriage returnfline feed char-
acter beiween the printed and un-
prinied portions of the line.

CTRL/L Continue the search to the next occur-
rence of the specified character; when
the next line portion has been printed,
all options arc avajlable again,

CTRL/G
character

Change the search character to char-
acter and continue the search to the
first occurrence of this character.

Specifying a simple S command causes the entire buffer to
be searched for occurrences of a single search character. 1t
should be remembered, however, that as with CHANGL,
every SEARCH command uses additional buffer space for
storage of the new line. This is necessary, since the program
can have no prior knowledge of whether the size of the line
will be less than, greater than, or equal to that of the old
ling, and it must therefore assume that it will be greater.
The entire text buffer is searched and a new image of this
text is created in core; it is guaranteed to occupy the same
space as before, or somewhat tess, since all deleted spaces
have been remaved. The only prerequisite to condensing
the text jmage is that there be enough core space left to
contain another image of the edited text. The options
available in a simple S specification are exactly the same as
those for the m,nS version of the command.

5.9 EDITOR OPERATING PROCEDURES
This paragraph summarizes operating procedures for load-
ing, using, and restarting the Editor. These include:

Loading the Editor into core,
Generating a source program off-line.
Loading a tape using the Editor.
Restarting the Editor.

Editing a tape.

T

Punching a tape.

59.1 Loading the Editor into Core

MLE is loaded into core using the Microprocessor Host
Loader (MHL). This loading procedure is illustrated in
Figure 5-1. This flowchart also illustrates the selection of
Switch Register bits to specify the appropriate paper-tape
reader/punch and demonstrates actions required 1o generate
a program on-line. Aflter the Editor is loaded, it resides in
core in locations 0200—1624.

5.9.2 Generating a Symbolic Program Off-Line

Figure 5-2 illustrates the generation of a symbolic program
off-linc using the Teletype low-speed punch. This procedure
is generally much slower than using MLE, but in the case of
creating extremely short programs it may prove advanta-
geous. Leader/trailer tape made up of octal 200 code
{rather than the blank tape produced by the [IERE IS key)
may be generated off-line by pressing the SHIFT, CTRL,
REPT and P keys in order and holding all down simul-
taneously.

5.9.3 Loading a Symbolic Tape Using the Editor

Figure 5-3 illustrates how to load a symbelic tape using
either the low-speed or high-speed paper-tape reader. MLE
will continue to read a tape until a form feed code is
encountered (sce the scction on FORM FEED). As soon as
it recognizes the form feed character, MLE enters COM-
MAND mode aznd rings the Teletype bell or produces an
audible signal on another terminal to indicate that it is
ready to accept a command.

NOTE
When using the Teletype reader, if the form
feed code is encountered before the symbolic
tape has been completely read in {as indicated
by the bell or signal), turn off the paper-tape
reader. Otherwise, characters on tape will be
interpreted as commands to the Editor, The
section of tape read in up to the form feed code
should then be edited before proceeding with
the remainder of the tape.

| LOAD MHL }-—————[szs FIGURE 4-3 _]
--- -~ -[5EE FIGURE 4-10 |

SET SWITCHES
6-8 TO FIELD
MLE IS N

PRESS £xTD
appR LOAD

LOAD MLE

SET SR= 0200

PRESS ADDR LOAD

PRESS CLEAR
AND CONT

TTY
RESPONDS
WITH CRALF

SET SwITCH OPTIONS
{SEE TABLE 5-4)

TYFE 4 AND
RETURN KEYS

MLE IS IN
COMMAND MODE

TYPE SYMBOLIC
PROGRAM

[WHEN DONE TYPE
CTRL/FORM
&R CTRL/G

FROGRAM HASBEEN
CREATED\MLE |S
1N COMMAND MQDE

Figure 5-1 Loading the Editor into Core

5.9.4 Restarting the Editor
If the user halts the computer for any reason during the
cditing process, MLE may be restarted. The user has the
option of either clearing the text buffer or restarting sc that
the text in the buffer is maintained.

1. To clear the buffer, set 0176 in the Swiitch
Register; press ADDR LOAD, CLEAR, and
CONT.

To restart without clearing the buffer, set 0177
in the Switch Register; press ADDR LOAD,
CLEAR, and CONT.

INITIALIZE { 1 —={ 08D EDITOR I»—------|SEE FIGURE ::1-1
TURN TTY
TO LQCAL

SELECT CRTION
IN TABLE 3-2

PLT TAPE N
_LsR

TYPE K
T CLEAR BUFFER
SHD R COMMANDS

TURN LSP ON
TYPE HERE IS KEY

TTFE K
(10 CLEAR BUFFER)
AND R COMMANG S

TYPE RUBOUT KEY

[#7i%A 1o smaaT

TYPE RETURN

BELL
YES -~ RIMGS §T FORR. MO

AND LINE FEEE OF END- .- TYFE TTRL /L

FEED KEYS P \\g_m [YRE CTRLAL
e SIGNAL 1.
1 A FORY FEED YES PNy
? o TURN LSR TO OFF piese” BELL SIGN‘PLO-(D
TYPE_SYMBOLIC Tes s
FROGRAM SMBOLI TARE
b5 LOADED |

Figure 5-3 Loading a Symbolic Tape Using the Editor

TYPE RETURN
AND LINE
FEED KEYS

TYPE HERE IS KEY
TURN LSP OFF

2. After a command to insert, change, or append
text to a symbolic program has been executed,
MLE remains in TEXT mode until the operator
types CTRL/L on the terminal. This gencrates
the form feed code, which tells the Editor to
return to COMMAND mode.

3. The Editor senses a buffer full condition

Figure 5-2 Generating a Symbolic Program Off-Line (buffer capacity is approximately 60 lines of
commented text or 340 lines of uncommented

text) when, after completing input of a text

3. Set 0200 in the Switch Register. line, it finds that characters have been packed
in the last 128 locations in the text buffer.
4. Press ADDR LOAD, CLEAR, and CONT. When this condition occurs, MLE rings the
Teletype bell or produces an audible signal on
This has the effect of restarting the Editor in COMMAND another terminal five times and exits to COM-
mode, MAND mode. The user then has a choice of
deleting text and continuing editing as usual, or
5.9.5 Editing the Source Program attempting to input more than 200 additional
Actual editing procedures depend, of course, on the characters. After each line, the buffer full alarm
particular programs being created or modified. A general will precede a return to COMMAND mode.
approach is illustrated in the example presented in Para- When no more characters can be packed, the
graph 5.10. For input, editing, and output commands o Editor will again output the alarm five times
the Editor, refer to the specific paragraphs just discussed. and will exit from the input routine. Any
Also observe the following operating notes and precautions: further attempts to input text will be answered
in the same manner until deletions have made
1. Terminate each command to the Editor by room for text input. Although characters are
typing the RETURN key. This directs MLE to received through the input device, they

execute the command. probably will not be appended as text,

If the Editor runs out of buffer space while
searching a line, the unsearched portion of the
line may be lost or the text line counter may be
incorrectly set during the buffer full exit so
that the Editor recognizes one more line of text
in the buffer than actually exists. Occurrence of
the latter will cause an error return atter ot
during any output operation involving the last
line {for example, an N operation will be
terminated as soon as the text buffer is
punched). After the emor return, the line
counter will contain the correct value.

Users should note that all such problems may
be avoided by logically segmenting a program
on paper tape into ‘‘pages” of 50 to 60 lines.
This is accomplished by punching groups of 50
tines followed by a form feed character.

The Editor may be stopped at any time by
pressing the HALT key on the console; to
continue, press the CONTinue key.

5.9.6 Punching the Corrected Symbolic Tape

The procedure for punching out the corrected symbolic
tape depends to some extent on the user’s requirements.
The general sequence is given below and in Figure 5-4.

1. Enter output commands to punch blank tape
for leader/trailer purposes (T), form feeds (F),
the appropriate lines of text (m,nP), or the
entire text buffer (P).

Following the PUNCH command, the computer
will halt giving tle user the opportunily to
check Switch Register bils and to turn on the
appropriate punch if he has not done so
already. Punching is initiated by pressing the
CONTinue key on the console.

NOTE
If the tow-speed punch is used, it should
be turned off during the typing of com-
mands: otherwise these codes will be
punched on the symbolic tape.

R
L

*100#0

XR%

TS NEG
ROTAT, RAR

RECISTER CIFYIEN
|5EE TEBLE 59}

T SHITEH
RELISTF R 1P TION
by

SE- WEe N T\‘PENT Qpnmw:n
I Tise o
e pu,&:ﬂ) | T F ccunmND
Al i |_5P -
17HE PURCH
COAMAKD SET LSP |
(PLAP, TR MAR
ot TE T mnm\NU
SET LSR oM
r— - e orn
|YF‘E F CLMQND_] PRESS CONT
TAFE T LOMMAND [rext 15 buncren |
AFTER TARILER, T LSh afF]
@"ﬁ@‘ -"‘f---“l—s
(nemove TeeE oG
ﬁ(WORE tzx?——
e

-

Figure 5-4 Generating a Symbolic Tape Using the Editor

Punching the symbolic program does not delete
it from memory. The page remains in the text
buffer in core until the KILL command 13 given
to erase it. If the user wants to read another
tape into the buffer he must first delete the
entire page of text (K). Remember that the
recommended page length, as delimited by the
form feed, is approximately 60 tines of heavily
commented text. However, MLE can accept
more text if necessary.

5.10 EDITING EXAMPLE

This paragraph illustrates the reading, editing, and punching
of a short assembly language program. MLE is loaded and
started as described in the previous section. The paper tape
containing the program to be edited is then read in and
listed.

/CLEAR ACC

{LOAD DATA FROM MEMORY
{JUMP TO NEG IF DATA NEGATIVE
{ROTATE DATA RIGHT

The user wishes to append text to this incomplete program and does so by typing:

A
IMA /STORE RESULT
NEGT, RAR/ROTATE DATA RIGHT
OR% 200 {SET THE LEFTMOST BIT TO 1
LAM /STORE RESULT
HLT
3

To obtain a fresh listing of the text, the user types L again:

L
*100#0
XR% /CLEAR ACC
ADM {LOAD DATA FROM MEMORY
TS NEG JJUMP TO NEG [F DATA NEGATIVE
ROTAT, RAR {ROTATE DATA RIGHT
LMA /STORE RESULT
NEGT, RAR/ROTATE DATA RIGHT
OR% 200 {SET THE LEFTMOST BIT TO 1
LAM {STORE RESULT
HLT :
$

A few errors are noticed immediately and are corrected.

2L
XR% /CLEAR ACC
2C
XRA JCLEAR ACC
6L
IMA /STORE RESULT
71
HLT /DONE
7,11L
HLT {DONE
NEGT, RAR/ROTATE DATA RIGHT
OR% 200 /SET THE LEFTMOST BIT TO |
LAM /STORE RESULT
HLT
11D
11
HLT . /DONE
10L
LAM /STORE RESULT
10C
ILMA 0 /STORE RESULT

The user decides that the program is ready for assembly and
formats the output tape in the following way:

P
F
T

This produces the text of the program followed by a form
feed, followed by a trailer. The computer halts after the
PUNCH command is issued and waits for the paper-tape
unit to be readied. When this has been performed, the
CONTinue key on the console must bz pressed.

Message Statement
AD AT 00 000 *100#0
IC 245 AT 00 010 OR%
OA AT 00 011 LMA O

US NEG AT 00 002

The first assembly of this program produces the following
error messages on pass 1. Sce Chapter 6 for detailed

descriptions of all statement syntax and errors.

AD AT 0O 000
IC 245 AT 00 010
A AT 01 011
US NEG AT 00 002

Addresses in AT specifications are given in octal offsets
within blocks. These messages can be matched to source

statements as follows:

Meaning

Address specified in origin is out of range. Maximum
block-offset is 77#377; origin is set to zero so the addresses
in the rest of the program are nol affected.

Illegal character (%) is not recognized by the Assembler.
ASCIT representation of % (245) is supplied; ORI was
stmply misspelled.

Operand error; LMA load instruction does not take an
operand and 0 is supplied.

Undefined address. No NEG label can be found in the
program; statement with label NEGT is prebably in error.

The program can now be corrected as follows:

L
*O0HD
1C
*35#40
G
ROTAT, RAR /ROTATE DATA RIGHT
6G
NEGT, RAR/ROTATE DATA RIGHT
8
8C
NEG, RAR {ROTATE DATA RIGHT
1,128
OR% 200 /SET THE LEFTMOST BIT TO |
9
a9C
ORI 200 /SET THE LEFTMOST BIT TO 1

5-20

A few commands require explanation. The interaction: 1,128, but this character is not echoed. To return to
COMMAND mode after the line is found and the string

1,128 OR% printed, the user types CTRL/L. The & command
OR% requests, in two cases, that the decimal number of the
current line be printed so that it can be changed. Then, the
does not show the typing of the search character, the %. user verifies that all corrections have been made by listing
The user types % right after the carriage return following the entire program.
L
*35#40
XRA {CLEAR ACC
ADM {LOAD DATA FROM MEMORY
JTS NEG fJUMP TO NEG TF DATA NEGATIVE
ROTAT, RAR {ROTATE DATA RIGHT
LMA {STORE RESULT
HLT {DONE
NEG, RAR /ROTATE DATA RIGUT
ORI 200 {SET THE LEFTMOST BIT TO 1
LMA [STORE RESULT
HLT /DONE
$

The program is then punched-out for assembly and the text
buffer cleared for subsequent use,

-

5-21

6.1 INTRODUCTION TO THE ASSEMBLER

The Microprocessor Language Assembler (MLA) is a
powerful paper tape-oriented system program which is used
to assemble source code on the PDP-8 into binary output
which is loaded and executed on the Processor Module.
Input to the Assembler is usually prepared with the aid of
the PDP-8 Microprocessor Language Editor (MLE)
described in Chapter 5; it can also be generated off-line.
The Assembler expects all input to be in paper tape form,
and reads input tapes, dynamically*selecting the high-speed
paper-tape reader. If a high-speed device is not part of the
system configuration, the Assembler reads from the
low-speed reader associated with the Teletype. At the user’s
option, assembled code can be output in punched paper
tape form or can be listed on the terminal printer,
Diagnostic messages are displayed to indicate errors in
syntax, warnings, or actions taken by the Assembler.

The Assembler operates in three passes te produce binary
code suitable for testing and exccuting on the
Microprocessor Series, and outputs a variety of program,
diagnostic, and symbol table listings. The PDP-8 therefore
serves as the host computer for the preparation and
development of executable code. In an effort to aid those
who have used other PDP-8 Assemblers, such as PAL III,
MLA has been designed to conform to such existing
Assemblers in terms of its character set, error messages,
available operators, and consiruction of statements,
symbols, and expressions whenever possible.

6.2 OVERVIEW OF THIS CHAPTER

Information necessary for developing and assembling
programs for the Microprocessor Series is presented in this
chapter and structured as a series of seven major topics:

1. Character set, including use of numbers and
symbols.

6-1

CHAPTER 6

MICROPROCESSOR
LANGUAGE ASSEMBLER

Language syntax, focusing on construction of
statements and use of instructions, operators,
and expressions.

3. Internal Assembler characteristics, including
mapping of memory and use of tables.

Instruction sct comprising index register,
accumulator, program-counter, Stack-control,
inputfoutput, and machine instructions.

5. Pseudo-instructions wsed to assign values to
storage, to indicate end of program or tape, to
define operation ¢odes, and to perform other
Asgsembler functions.

6. Operating instructions necessary to load the
Assembler and the source program, to run and
restart the Assembler, and to define desired
output.

7. Error messages produced during assembly, with

suggested possible reasons for occurrence.

This information, when supplemented by specific details of
Editor {Chapter 5) and Loader {Chapter 7) usage, should
provide the nccessary background for developing source
programs and preparing them for execution on the target
module,

6.3 BASIC CHARACTER SET

This paragraph defines the set of characters allowed in
Assembler input, defines special characters used for paper
tape or listing control, and describes construction of
numbers and symbols.

6.3.1 Legal Source Text Characters

The following list summarizes all characters that may be
included in a soutce program and are accepfed by the
Assembler:

. Alphabetic characters A through Z
* Numeric characters 0 through 9
L] Selected special (printing) characters, such as:

Character Meaning
Space Space
+ Plus
- Minus
Labe} terminator
Is replaced by
Logical AND
Logical OR
High byte-selection operator
Data separator
End of source program
Current value of location counter
Comment initiator
Used to enclose numeric representation
{of ASCII character
Used to reset location counter
Block-offset pperator

T -

I ox N AT

. Sclected special (nonprinting) characters, such
as:

TAB
Carriage return
Form feed

. Ignored characters, often produced by the
cditor, such as:

Blank tape

RUBOUT

Leader/trailer (octal code 200)
Line feed

Characters other than those listed above may be included in
an assembly language source program only when included
after a comment character (/) or within a TEXT literal. The
presence of an illegal character in Assembler code causes

6-2

the following message to be displayed during Assembler
pass 1:

IC xxx AT yy zz2

where [C identifies this as an illegal character message, xxx
is the ASCII value of the illegal character, and yy 72z is the
address at which the error was encountered, in block-offset
notation. This message causes the illegal character and the
rest of the current line to be ignored while assemtly
proceeds. If an illegal character is detected in a symbol,
however, the symbol is assumed to terminate at the
position where the illegal character occurred.

6.3.2 Format Control

Certain keys on the terminal may be used to affect the
format of an Assembler listing by skipping to the next line
or by inserling blank lines or spaces. These special
characters include the following:

Character Meaning

Form feed Assembler outputs 12 blank lines in
the output listing when form faed
(CTRL/L on the terminal) is entered.
It is used to begin a new page of text
and has no effect on the binary
output.

TAB Assembler outputs between one and
eight spaces in the cutput listing line if
bit 10 is set in the Switch Register;
total number of characters in inserted
spaces and prior symbols equals eight.
It is also used to line up columns of
code (symbols, comments, etc.) in the
listing.

Terminates a line in the source
program and output listing; used to
separate one statement from the next.

Carriage return

6.3.3 Construction of Numbers

The Assembler recognizes numbers in octal, hexadecimal,
and decimal form. In all cases, a number mus. be
represented by a string which begins with a digit (0-—9).
Therefare, hexadecimal A2 is constructed as QA2

6.3.4 Construction of Symbols

The wuser can construct symbols to represent labels in the
assembly language program by combining legal letters and
digits in a string. Rules for user-defined symbols follow:

1. A symbol must begin with an alphabetic
character (A—Z).

2. A symbol may contain any number of letters
(A-Z) and digits (0—9), but only the first six
characters are recognized.

3. A symbol must be terminated by a comma.

4, The space character is used to delimit a field

and may not be embedded in a symbol.

Any of the following are legal symbolic labels:

TOTAL,
NEG,
PROD1,
HALT10,

AIB2C3D4ES, (only A1B2C3 is recognized).

NEG, RAR
ORI
IMA

HLT

The following are examples of iilegal labels which do not fit
the definition of a symbol;

Label Reason
1ADDUP First character (1) not alphabetic
SET%X {llegal character
ADD UP Embedded space
SET*X Legal but nonalphanumeric character
NEG Not terminated directly by comma

(spaces not allowed)

6.4 STATEMENT SYNTAX
An assembly language statement consists of a maximum of
four fields and is constructed as follows:

Form [label,] [instruction] [operand] [fcomment]

200

6-3

All four fields are optional under different circumstances.
The instruction is normally a required item in every
statemcnt. In many cases an operand ficld must be included
as well. A label is only necessary to identify the object of a
branch, but if it is included, the label must be separated
from the rest of the statement by a comma {,). The
comment field is optional in all cascs; if included, the
comment must be preceded by a slash (/). Comments may
be entered on a line without any other text, as in the
following;:

J/FOLLOWING IS A
JCOMMENT

In this case, the instruction ficld need not be included.

The order of the [ields shown in this furm must be
preserved, but the particular placement of individual fields
is not significant. Spacing is specified to give the impression
of tabbing throughout this chapter, but tabbing is, of
course, optional, and both of the following examples are
interpreted identically by the Assembler. First, with
tabbing to columns 1, 9, 17, and 25 for labels, instructiens,
operands, and comments respectively:

J/ROTATE DATA RIGHT

/SET THE LEFTMOST BIT TO |
/STORE RESULT

/DONE

Next, with free-form specification of fields:

NEG,RAR/ROTATE DATA RIGHT

ORI 200 /SET THE LEFTMOST BIT TO I
ILMA/STORE RESULT

HLT/DONE

The use of standard tabbing does improve the readability of
a source listing and is recommended for that reason. But a
certain delimiting of fields is necessary whether or not
tabbing is performed. Fields must be separated by:

1. A label from an instruction by a comma
(followed by as many spaces as desired),

2. An instruction from an operand by at least one
space or tab, or
3. An instruction or an opcrand from a comment

by a slash (preceded and followed by as many
spaces as desired).

To facilitate a clear and easy-to-read program listing, the
following coding practices arc recommended. Use of these
practices is also recommended to improve the ease of
sharing programs among different programmers.

t. If a title or infroductory program comment is
included, begin the line with a slash and regard
the cntire line as a comment.

2. Begin all statement labels at the left margin and
tab once 1o the slatement’s instruction field.

3, Tab once from the margin before typing an
unlabeled instruction or pseude-instruction to
align this field with labeled instructions.

4. If an operand Is included in the statement, tab

twice from the margin before typing it.

5. If a comment is included, tab once from the
operand field, twice from the instruction field
(if an operand is not required), or threc times
from the margin (if the comment is effectively
continued from the previous line) to line up all
comment fields, It is legal te include a full-line
comment and to specify a slash as the first
character of the line; this is useful in delineating
parts of the program.

The four components of a statement are described in
greater detail in the paragraphs which lollow.

6.4.1 Construction of a Label

A statement label is used to tag an assembly language
statement and thereby identify ils location so other
statements can branch to it or reference it during
execution. A label must be a legal symbol, as just defined,
and must be immediately followed bv a comma, as in the
following examples:

END1, HLT
NEG, LMA
STORE, ORI 200

If a label is included, it must bhe the first field in a statement
preceding the instruction, operand, and comment fields.

6-4

All statement labels referenced in an assembly language
program must appear in that program. For example, in the
following routine:

1#200
XRA
ADM
ITS
RAR
LMA
HLT
RAR
ORI
LMA
HLT
b

NEG

NEGT,
200

The JTS jump instruction references label NEG which does
not appear in the program (in actua! practice, this may
indicate a simple misspetling, as suggested). At the end of
Assembler pass I, the symbol NEG will be undefined and
the following message will be printed

US NEG AT 01 202

where US identifies this as an undefined symbol message,
NEG is the symbol used but not defined, and 01 202 is the
current location at the time the undefined symbol was first
specified (the JTS instruction).

A different error message will be output if the same symbol
is used as a Jabel more than once in a single program. In this
case, the following message will be printed

DT xxxx AT yy zzz

where DT identifics this as a duplicate tag message, xxxx is
the duplicate symbol, and yy zzz js the location of the
second occurrence of the label in block-offset notation. The
symbol will not be redefined.

6.4.2 Construction of an Instruction
The instruction field in a statement must be occupied by
one of the following:

L Mnemonic MLA instruction
. MLA pseudo-instruction
. User-defined instruction

Assembler instructions and pseudo-instructions are
implemented as reserved words and are described in detail
in subsequent paragraphs. These words may not be selected
as user-defined symbols or used in any other part of a
statement except in the comment field, as follows;

ENDL, HLT {HLT INDICATES END PROGRAM

User-defined instructions can be used only after they have
been explicitly defined in the wuser program. Some
instructions and pseudo-instructions require the inclusion
of operands. If an operand is specified as the object of an
instruction, at least one space must separate the two fields.
If an operand is not included, the comment field (if
specified) must be preceded by a slash. If an instruction is
labeled, 2 comma must separate the label and the
instruction.

6.4.3 Construction of an Operand

The inclusion of an operand is required after many
Assembler instructions and pseudo-instructions, After an
instruction, the operand is usually an octal, hexadecimal, or
decimal address, a symbol representing the data to be
manipulated, or the address to be referenced when the
instruction is executed. An operand is usually included
after a pseudo-instruction as the argument of that
pseudo-instruction. At least one space must separate the
instruction field from the operand field of a statement. A
slash mwst separate the operand from a comment (if
included).

6.4.4 Construction of a Comment

Comments can be included in an assembly language
program to annotate the functions of particular statements
or to document complicated logic for future ease of
debugging or recoding. In processing input statements, the
Assembler ignores everything from the slash, used to denote
the beginning of a comntent, to the next carriage return.

This means that the comment field must be the last or the

only field in a statement. Some examples follow:

JTHIS IS A SAMPLE PROGRAM
/
*1#200
XRA
ADM
JTS NEG
RAR
LMA
NEG, HLT

MLA allows lines to be inserted in the text of a program as
shown in the third line of the previous example,

6.5 THE LOCATION COUNTER

The location counter is a special Assembler pointer which is
constantly updated during program execution to keep track
of the current address. The user ordinarily sets the location
counter at the beginning of the program with the origin {*)
pseudo-instruction to indicate the address at which
execution is to begin. Subsequently, the location counter
can be referenced as an operand to set a value or to specity
a jump to a location relative te the counter. In the
following code

*1#200

INP1 {GET STATUS

NDI 200 {MASK BIT 7

JFZ -3 JLOOP UNTIL BIT IS SET

*1#200 sets the counter initially at block 1 offset 200, and
JFZ .-3 indicates a conditional jump to the current
location minus 3.

Because MLA s a symbolic Assembler capable of setting
the location counter and performing all other operations
based on symbolic assignments like

*AHB

the extensive use of the . to set the location counter is not
recommended. Symbolic addresses and values should be
used to avoid rewriting the entire program if the program is
moved in core and specific locations have been represented
throughout the source text. Relative addressing with .
should be used only if available symbol table space is very
tight.

6.6 EXPRESSIONS AND OPERATORS

This paragraph describes legal operators in the MLA
asscmbly language and discusses the construction and
evaluation of expressions.

JCLEAR ACCUMULATOR

JLOAD DATA FROM MEMORY
JFUMP TO NEG IF DATA NEGATIVE
/ROTATE DATA RIGHT

/STORE RESULT

/DONE

6-5

Theze are five different kinds of operators available to MLA
users:

Replacement operator =

. Arithmetic operators + and -
. Lagicat operators & and !

. High byte-selection operator 1
. Block-offset operator #

6.6.1 Expression Evaluation

Expressions are evaluated by the MLA from left to right
without precedence in signed 23-bit arithmetic. Parentheses
are not legal characters and cannot be used to impose
precedence on an expression; the compaonents must simply
be ordered appropriately.

6.6.2 Replacement and Arithmetic Operators
Replacemenr and arithmetic operators are used in
arithmetic expressions to indicate two’s complement
addition (+), subtraction (=), and replacement (=).
Following are two examples of arithmetic expressions:

D=A-RB+3
C=+2

Arithmetic is carried out on signed 23-bit numbers. Only
the Jower 14 bits are used as an address in a jump or call
instruction. If the high-order bits are set, an error message
of the following kind will result

AD AT yy zzz

where AD identifies this as an address out-of-range message
and yy zzz is the value of the location counter when the
address was specilied in block-offset notation.

6.6.3 Logical Opcratots

Twao logical operators have been implemented for use with
the Assembler. These are &, indicating a logical AND
operation, and !, indicating a logical OR operation. Logical
operators are used in logical expressions of the following
forms:

A&B

XIY'Z
A&B!X&Z
X+Y&Z-AlB

Logical and arithmetic operations can be mixed as just
shown in the fourth example.

6-6

6.6.4 High Byte-Selection Operator
The high byteselection operator + (up amow) is a
post-operator used to indicate selection of the high byie of

the entire expression (from the beginning) which the *
foliows. For example,

LHI A+B?t

indicates a load immediate of the high byte of expression
A+B to register H. The example below, on the other hand,
indicates a load immediate of the low byte of value A o
register L.

LLI A

By selecting the high byte, this operator performs an
effective signed divide by 256. For example, if the
following assignments have been made

A=0400
B=0377

the expression
A+B+101+t

results in 0003,

6.6.5 Block-Offset Operator

The block-offset operator # is used to indicate an address in
terms of its block number and an offset within that block.
For example, an crigin {*) pseudo-instruction of the form

*2#200

scts the location counter to location 200 within block 2
{octal 1200). The example
JMP 35#377

sets the location counter to block 35 offset 377 (octal
16777).

The conversion from block-offset to octal notation
proceeds as in the following. The bit pattern of 35#377 can
be represented by:

oty 1ot 11 111 11
3 5 3 7 7

The effect of the # operator is to shift block number 35 to

the right causing the following displacements and
conversion:
01 110 111 111 111

1 6 7 7 7

Appendix F serves as a conversion table for block-offset to
octal notation,

6.7 THE MEMORY MAP

Bytes go from low (0) to high (n} in increments of 1.
Within each byte, bits are numbered from right (0) to left
(7). Bit 7 is the most significant bit,

Addresses in memory are 14 bits long and consist of one
8-bit byte plus the low six bits of the next byte, as shown:

The memory map of the M7341 module is relevant to the n_rll
user’s understanding of the instruction set described in
Chapter 3. The map consists of a string of 8-bit bytes as Bytes
shown:
2
n-1 1 1 H H H H H
0 L L L L L L I L
Bytes 7 6 5 4 3 2 1 0
Bits
2
|
0
7]
Bit 5 of byte 1 above is therefore the most significant bit of
Bits the 14-bit address stored in bytes O and 1, as shown below:
Byte 1 Byte O
H H H H H H L L L L L L L L

6.8 ASSEMBLER SYMBOL TABLES
Symbols that appear in assembly language statements are
stored in one of the following three symbo! tables:

1. Pseudo-instruction symbol tables

2. Instruction symbol table

3. User symbol table
When searching {or a symbol defined in the instruction field
(or OP code field) of a statement, the search precedence is:

L Pseudo-instruction symbol table

L Instruction symbol table
When searching for a symbol defined in the operand field,
the precedence is:

* User symbol table

. Instruction symbol table

H an operand of a three-byte {*“type 2") instruction (e.g.,
CAL or JMP) is found in the instruction symbol table, this
operand is assumed to be a two-byte address. The following
warning message will be given

AW xxxx AT vy zzz

where AW identifies this as an address warning message,
XXXX is the address (label) found in the instruction symbal
table, and yy zzz is the current location counter at the
time the label was processed, in block-offset notation. This
message applies only io three-byte instruction entries and it
is only a warning ~ the code is penerated from the
instruction symbol table.

‘Ihe instruction symbol table is often catled the OP Code
Table, and the pseudo-instruction symbol table the
Pseudo-OP Code Table.

6.9 MLA INSTRUCTION SET

The MPS instruction set is described fully in Chapter 3 in
terms of components, number of bytes and time states,
types of machine cycles executed, and examples of program
usage. The foliowing list summarizes classes of instructions:

L Index register instructions

- Accumulator (arithmetic/logical) instructions

6-8

. Program counter and stack control instructions
. Input/output instructions
. Machine instructions

Legal instructions in each of these categories are desciibed
in detail in Chapter 3 and are summarized in Appendix B.

6.10 PSEUDO-INSTRUCTIONS

The MLA pseudo-instructions documented in this section
have been implemented to supplement the capabilities
offered by the instruction set itself. Pseudo-instructions are
referenced in the pseudo-instruction symbol table {also
called the pseudo-OP table).

6.10.1 $: Indicating End of Program
The § (dollar sign) pseudo-instruction is used to indicate
the end of an assembly language program as follows:

Form h

The § is a required part of every program and causcs the
current pass to be terminated. A carriage return rnust
terminate the $ or the program will not execute.

The following is a legitimate end to an assembly language
program:

IMA /STORE RESULT
HLT /DONE
3

6.10.2 PAUSE: Pausing During Assembly
The PAUSE pseude-instruction causes a pause in the
Assembler pracessing and is issued as follows:

Form PAUSE
A carriage return must be typed after the PAUSE. The
Assembler stops processing the paper tape being read at the
time the PAUSE is encountered, but the current pass on the

tape is not terminated. Processing continues when the user
presses the CONTinue switch on the PDP-§ console.

PAUSE is normally used only at the end of a physical tape
when the program being processed is stored on more than
one tape. When the Assembler PAUSEs, it resets the input
buffer pointer and waits for the operator to resume. He is
expected to position the next tape segment of the program
in the reader and, when the tape has been readied, to press
the CONTinue switch.

6.10.3 *: Specifying an Origin
The * (asterisk) pseudo-instruction is used to specify the
origin of the program and to set the initial program location
counter as follows:

Form *expression
where expression is any legal Assembler expression as
defined in previous paragraphs. The origin is assumed to be
the value of expression and the location counter is set to
this initial value. The value of the expression must be in the
range block 0 offset 0 through block 77 offset 377 (octal 0
through 37777) respectively. If a value larger than the
maximum value or smaller than zero is specified, the error
message given in the following example is printed:

*177#000
AD AT 77 000

AD identifies this as an out-of-range address message, and
77 000 is the value of the current location counter. To
avoid generating needless errors in the assembly, the
out-of-range expression included in the origin statement
will be truncated to 14 bits before the location counter is
set. A symbolic origin can be specified, but any symbel
must be defined before the origin pseudo-instruction is
given. The following shows an example of such a
specification:

START=04#200
*START

6.10.4 OCT, HEX, and DEC: Specifying Radix Control
Three pseudo-instructions have been implemented to allow
the user to set the radix for numbers interpreted in the
assembly language program. The ocial base is assumed by
default and must be explicitly overridden by one of the
following pseudo-instructions:

HEX
DEC

Forms

6-9

All numbers appearing after the new declaration are
interpreted in the new base. To resume octal interpretation,
the following specification must be given:

Form OCT

These pseudo-instructions set the radix as follows:

Pseudo-Instruction Meaning
HEX Set radix to base 16
DEC Set radix to base 10
OCT Set radix to base 8

6.10.5 EXPUNGE: Deleting the Instruction Symbol Table

The EXPUNGE pseudo-instruction is used to delete the

entire instruction symbol table and is issued as follows:
Form EXPUNGE

EXPUNGE is used to give the assembly language

programimer more core storage for his own user-defined

symbols. It is recognized by the Assembler during pass 1
and is ignored during pass 2 and pass 3.

EXPUNGE deletes only the instruction symbol table and
has no effect on the pseudo-instruction table. To define a
new instruction symbol table, OPDEF must be invoked
before any definitions are supplied. EXPUNGE must also
be used before the space allocated for the user symbol table
is used.

6.10.6 OPDEF: Specifying User-Defined Instructions
The OPDEF pseudo-instruction allows the assembly

‘language programmer to define his own instructions with

the following format:

Form OPDEF mnemonic;valuetype

The mnemonic represents the user-defined operation and
value is the value generated by that operation. The type
represents the type of instruction generated and must be
one of the following:

Type Meaning
0 One-byte instruction
1 Two-byte instruction
2 Three-byte instruction

Type 0 instructions require no operands but both type 1
and type 2 instructions do require operands.

OPDEF must be issued before the space allocated {or the
user symbol table is used.

6.10.7 DATA: Assigning a Value to Storage

The DATA pseude-instruction is used to assign one or more
values to specific memory locations. It is included in a
statement in the following way

Form label, DATA nO;nln2;. . .nm

where each n is a value, variable, or expression constructed
as described in the paragraphs above. Entries are separated
by semicotons (;). The numerical values of the expressions
are assigned in sequence to memory .ocations beginning at
the value of the current location counter.

For example, in the following exampl:

*T0#370
DATA 5657

the current location counter is set at block 70, offset 370
{octal 34370) by the origin (*) pseudo-instruction. Valucs
5, 6, and 7 are assigned in sequenge to memory locations
0 370, 70 371, and 70 372. The current location
counter is then reset at 70 372. Inclision of a labe] in the
DATA statement is optional.

6.10.8 BLOCK: Assigning a Block of Data
The BLOCK pseudo-instruction is used to assign a biock of
core by placing in it a fixed vatue or by filling it with values
with fixed increments or decrements. A BLOCK statement
is constructed as follows

Form label, BLOCK size [; initial [; increment]]
where a block of the size specified is assigned values. If the
following example is evaluated

*1#0
BLOCK 10:1:1

a block of size 10 (octal) is filled as follows with an initial
value of ! and a fixed increment of 1.

Address Value
400 1
401 2
402 3
407 10

{octal)

If a simple BLOCK 10 specification is supplied, the entire
block will be filled with zeros. If BLOCK 104 is given, the
entire block will be filled with 4’s, A label can be included
optionally in the BLOCK statement.

6.10.9 TEXT: Specifying a Character String
The TEXT pseudo-instruction is used 1o specify the
inclusion of an ASCII character string in an assembly
language program. 1t is issued as follows
Form label, TEXT Vliteral 7. . .
where <7 represents a delimiter and . . . indicates that the
literal specification can be repeated. An cxample of a TEXT
statement follows
TXOUT, TEXT /HI THERE/ <215> <>
where HI THERE will be output followed by a carriage
return (ASCII code 215) and a null (ASCII code 0),

Rules for the construction of literals in TEXT statements
are summarized below:

The literal is delimited by a pair of any printing
ASCII characters with the exception of a left
angle bracket (<7).

Right and left angle brackets (< and>) are
used to enclose a numeric representation of an
ASCII character. For example, <<215> is used
to represent a carrtage return and might often
be included after a text string to force a retumn
before processing the next statement. ASCII
codes are evaluated according to the cument
radix, set by OCT, DEC, or HEX.,

There is no limit on the number of literals or
ASCII representations that may appear in a
TEXT statement, but the entire text string may
not exceed the length of a line.

The TEXT statement may be labeled and commented, as
shown in the following:

QUERY, TEXT

In this example, a pair of slashes is used to delimit the text
string itself and a space followed by a slash indicates the
beginning of the comment ficld in the conventional way.

6.10.10 ADDR: Generating an Address
The ADDR pseudo-instruction is used to generate address
constants in the following way

Form label, ADDR aQ:ala2;... am
where each a is an argument that generates a two-byte (low-
and high-byte) address, and a’s are separated by semicolons
(;). The addresses are stored low-byte, high-byte, in
sequence, in locations beginning at the cument location
counter. If a label is givén, it refers to the low-byte of the
first address.

The high two bits of an address are regarded as **don’t care™
bits by the Assembler and can be used as “llags.”

6,11 ASSEMBLER OPERATING PROCEDURES

This paragraph summarizes Assembler inputs and outputs
and describes procedures for loading and operating the
Microprocessor Language Assembler.

6.11.1 Loading the Assembler into Core

MLA is supplied in the form of a paper tape, punched in
binary-coded format. This tape is loacled into core by
means of the Microprocessor Host Loader (MHL), using
either the low-speed or high-speed paper-tape reader.
Selection of the reading unit and other load procedures are
shown in Figure 4-11.

6.11.2 Preparation of Input

Input to the Assembler consists of a source program
punched in ASCII code on eight-channel paper tape. The
tape can be prepared in one of two ways:

1. It can be punched by the user with an off-line
Teletype (Model LT33), or

It can be punched by the Microprocessor
Language Editor (MLE) (see Chapter 5).

/PRESS RETURN TO CONTINUE/<211> <207>

6-11

{TAB AND RING BELL

In either case, the paper tape should begin with leader code
which may be any of the following:

. Blank paper tape
L] Code 200
L RUBOUT characters

The source program tape is read by the high-speed
paper-tape reader or, if the high-speced device is not
available, the low-speed reader associated with the
Teletype. The input tape should be positioned in the
appropriate reader after the Assembler itself is in corc.

6.11.3 Starting the Assembler
The procedures outlined below should be followed in
operating the Assembler.

1. Load the Assembler into core.

2. 8et 0200 in the Switch Register and press
ADDR LOAD.

3. Position the input tape in the paper-tape reader
and tumn on the appropriate reader and punch.

4. Set bits ¢ and 1 of the Switch Register to
indicate the pass and bits 2, 9, 10 and 11 as
appropriate, to select output options (Tables
6-1 and 6-2).

5. Press CLEAR and CONTinue to begin pass 1.

6. The Assembler halts at the end of pass L; set

bits 0 and 1, position the source tape again, and
press CONTinue to begin pass 2. Do the same
for pass 3.

The Assembler will dynamically select the high-speed reader
for input; if the high-speed unit is not available, MLA will
select the low-speed reader.

Bits 0 and 1 of the Switch Register are set to indicate the
current pass. The proper settings arc listed in Table 6-1.

Table 6-1
Switch Register Setfings
Pass Bit © Bit 1
1 0 1
2 | 0
3 ! 1

6.11.4 Assembler Output

QOutiput from an assombly consists of a binary tape
containing the object text punched by the Assembler and a
listing of the source program and symbol table. These are
produced as follows:

1. The symbol table is printed or punched by
Assembler pass 1.

2. The object tape is punched by Assembler pass
2.

3. The listing and symbol table are printed or

puniched by Assembler pass 3.

The user has extensive control over the production of these
outputs. By means of the Switch Register settings just
mentioned, pass 2 (punching the binary tape} or pass 3
(listing the source text) can be entirely omitted. Switch
Register bits 2, 9, 10 and 11 can also be set as shown in
Table 6-2, to select or suppress certain Assembler outputs.
The following can be controlled:

1. The listing of the symbol table can be produced
ot suppressed.
2. If produced, the symbol table can be punched

on the high-speed device, printed on the line
printer, or punched and listed on the Teletype.

The program listing can be produced or

suppressed.

4. If produced, the program listing can be
punched on the high-speed device, printed on
the line printer, or listed on the Teletype.

5. The binary tape can be produced or suppressed.

6. H produced, the binary tape can be punched on

the high-speed device or on the low-speed
punch associated with the Teletype.

Combinations of bits can be set in such a way that any or
all of these outputs can be produced on the desired media.
Bit 2 can be set on to indicate suppression of the symbol
table listing during passes 1 and 3. Bit 9 can be set during
passes 1 and 3 to sclect the linc printer for symbol table,
program listing, or error message output. When bit ? is set,
bit 1@ is automatically set on as well. Bit 10 is set during
pass 3 to choose a particular tabbing convention for listing
output. Bit 11 is used to select the appropriate device for
symbol table, binary tape, and listing output. Table 6-2
summarizes all bit options.

If both bit 9 and bit 11 are set on during pass 3, bit 11 will
take precedence and the program will be punched using the
high-speed unit.

6.11.5 Symbol Table Format

During pass 1 the Assembler defines all user symbals and
creates the symbol table. If the user chooses, this table is
printed or punched at the end of pass 1 and repeated during
pass 3. It is produced in alphabetical order showing both
symbols and addresses at which they are referenced. It any
symbols remain undefined, the US undefined symbol
diagnostic is printed during the pass. Following is an
exampie of the beginning of a symbol table listing:

Al 45 100
Q 45 177
WHAT 45 105

Table 6-2

Switch Register Options
Pass Bit Setting Meaning
1 2 0 Output the symbol table.
1 Suppress output of the symbal table.
9 0 Do not send output to the line printer.
1 Print the symbol table on the line printer.
11 0 Print and punch the symbol tabte on the Teletype printer and
the low-speed punch.
1 Punch the symbol table on the high-speed punch (if available).
2 11 0 Punch the binary tape on the tow-speed punch.
1 Punch the binﬁry tape an the high-speed punch (if available).
3 2 a Qutput the symbol table.
1 Suppress output of the symbol table.
9 0 Do not send output to the line printer,
1 Print the assembly listing on the line printer.
10 0 Output TAB as TAB RUBOQUT (codes 211 and 377).
1 OQutput TAB (code 211) as eight-space TAB stops.
1 0 Print the assembly listing on the terminal.

Punch the assembly listing tape in ASCIT on the high-speed punch.

6.11.6 Binary Qutput Format

A block of data punched on paper tape in absclute binary

format has the following format:
FRAME 001

000

n ZZ7

The binary output lapc may contain one or more bltocks of
data. Each block has a positive integer byte count (frames 3
and 4) greater than six. The byte count is derived by
counting the total number of bytes in the block excluding
the checksum. The end-of-data block is signaled by a block
with a byle count of exactly six. The loader will halt after
loading tape in this format.

The maximum size of a block generated by the Assembler is
64 decimal (100 octal). Blocks are not padded out 1o an
even length.

[f a program contains an origin resetting as in the following

*1#200
INP2

LMA
*2#4300

blocks will not be output for locations skipped between
origin settings, and a new block will be started for each new
origin setting.

6.11.7 Outpnt Listing Format
All output listings are produced in the format shown
below:

Address

block number offset

Start frame

Null Frame

Byte count (low eight bits)
Byte count (high eight bits)
Load address (fow eight bits)
Load address (high eight bits)

Data placed here

Last frame contains a block checksum

generated code
[generated code]

A statement may generatc none or several bytes of code,
depending on its function and number of required
operands. Blocks and offsets are in the range block @ offset
0 through block 77 offset 377. Following is an example of
part of an output listing:

*ASHEI00
45 100 004 Al, ADI Q [WHAT?
100
45 102 370 LMA
45 103 006 LAI Al%IQ
b [245 AT 45 103
103
45 105 104 WHAT, IMP Al
100
M5
45 110 301 LAB Al
ERREC A AT 45 110
45 111 104 TMP A1+WHAT
205
*EREAY AT 45 111
112 $
Code Source
statement

{zenerated code]

6.12 ASSEMBLER DIAGNOSTIC MESSAGES

Ercors or warnings encountered during assembly are output
on the terminal or line printer; selection of the device
depends on the setting of Switch Register bit 9.

Pass Errors
1 Messages output on terminal or
line printer, noting illegal values
and addresses where errors
occurred.
3 Listing of program output on

terminal or line printer, with
error messages following
statements to which they apply.

The total number of errors encountered is always output on
the terminal at the end of each pass regardless of the setting
of bit 9. Following is an example of pass 1 output:

IC 245 AT 45 103
OA AT 45 110
AD AT 45 111
Al 45 100
Us All10 AT 45 103
uUs Q AT 45 100
WHAT 45 105
005 ERRORS

An example of pass 3 output is included in the previous
section.

6.12.1 Error Types

Three types of error messages have been implemented for
Assembler use and are described below. The syntax of an
crror message follows;

symbol

ASCII representation address

error code

When an illegal symbol or unidentified address of some
kind is found in an Assembler statement, a type 1 error
message of the following kind is produced

us Q

AT 45 100

where US indicates an undefined symbol message, Q is the
address symbol which caused the error, and 45 100 is the
location at which the ecrror occurred, in block-offset
notation. The listing of the statement which caused this
error follows:
45 100 004 Al, ADIQ
In type 2 crror messages, the illegal symbol cannot be
printed because the character that caused the error is not
recognized by the Assembler, Thus the following might be
produced
IC 245 AT 45 103
where IC indicates an illcgal character message, 245 is the
ASCII representation for % — the illegal character
encountered but not recognized by the Assembler - and
45 102 is the address at which the character was found.
Following is the statement which produced this error:
45 /ADD Al AND 10

102 006

103

LAT A1%10

Type 3 error messages report en errors in which a symbol
has not caused the error. These are errors in which an
address is out of range or an operand is missing, For
example, the statement:

45 110 301 LAB Al
causes an error because the LAB instruction does not take
an operand. The following error message is produced

CA AT 45 110
110

where OA indicates an operand error message and 45
is the address at which the error occurred.

6.12.2 Summary of Diagnostics

Table 6-3 summarizes all error messages that may be
produced by the Assembler. These messages may be printed
out during pass 1 and again during pass 3 to comespond to
the statement listing produced during that pass. The type
column identifies the message as a type 1, type 2, or type 3
diagnostic in accordance with the syntax specifications just
given. In all of the messages, the address specification

AT yv zzz

indicates that the described error was encountered at block
yy offset zzz.

Table 6-3
Assembler Diagnostics

Type

Message

Meaning

AW xoxx AT yy 222

DT xxxx AT yy zzz

ID xxxx AT yy zzz

RD sxxx AT yy zzz

US oo AT yy zz2z

UO xxxx AT yy zzz

IC xxx AT yy zzz

AD AT yy zzz

IN AT yy zzz

QA AT yy z2z

OV AT yy 222

ST AT yy zzz

PE AT yv z7z

PO sxx AT yy 222

PU xxx AT yy zzz

Address warning message; instruction xxxx found in the opecrand
field as in JMP JMP,

Duplicate tag message; label xxxx (symbol ending with a comma) is
repeated. Previous value of the symbol is retained, and the label is
not redefined.

Iliega! definition message; insiruction or pseudo-instruction Xxxx
used illegally (EXPUNGE not given) as in A=LAB.

Redefinition by parameter assignment warning message: symbol
xxxx is redefined (see DT for illegal definition of label fietds).

Undefined symbol message; sxxx is a symbol used in the program
but not defined, as in US Q AT 45 100.

Undefined operation code message; xxxx is 2 symbol vsed in the
instruction field of a statement but is not a legal instruction, as in
Al A2

llegal character message; xxx is the ASCII representation of the
illegal character encountered, as in IC 245 AT 45 102, The portion
of the line following the illegal character is ignored.

Address out of range message. The illegal address was specified in an
otigin (*), a IMP, or in some other instruction, as in AD AT 45 111
for statement JMP A1+WHAT; when the errot occurs in an origin,
the current location counter is not set to the out-of-range value but
0 that value truncated io 14 bits.

Ilegal numeric constant message; a specified number was
unacceptable 10 the Assembier {e.g., 123K).

Operand error message; operand missing from a statement that
tequires one {e.g., IMP), or operand included in 2 statement that
does not require one {e.g., LAB Al).

Input buffer overflow message; will happen only in the uniikely
event that a simple input statement excesds 126 characters in tength.

Symbol table overflow message; will happen only if a large number
of symbols defined (number of symbols allowed is approximately
200). Assembler halts and must be restaried.

Pseudo-instruction parameter error message; illegal parameter
specified, as in OPDEF JUMP;104 3, where 3 is an illegal assighment
for the instruction type.

Pushdown list overflow message; xxx is the list location, This is a
fatal error.

Pushdown list underflow message; xxx is the list location. This is a
fatal error.

This chapter summarizes the operation of the
Microprocessor Program Loader (MPL) provided to MPS
Monitor/Control Panel (MCP) uscrs. Binary program tapcs,
notmally produced by the Assembler described in Chapter
6, can be loaded into MPS memory by means of the
Microprocessor Program Loader. The Loader is intended to
be wused extensively on the MCP for debugging and
generation purposcs.

7.1 OPERATING ENVIRONMENT
The Loader requires the following hardware to be available:
Series

1. The Microprocessor Manitor fControl

Panel (MCP)

2. A pupertape rcader (the low-speed device
associated with the Teletype).

The paper-tape reader must be interfaced to the Processor
Module.

7.2 LOADING A BINARY TAPE

Input to the Loader consists of a paper tape in MPS binary
format usually produced as output from an MLA assembly
on the PDP-8, To lead the binary program into the module,
follow the pracedure outlined below:

1. Set the starting address on the MCP Switch
Register to block 77 offset 0 (octal 37400}).

2. Position the binary tape in the paper-tape
reader and ready the device.

7-1

CHAPTER 7
MICROPROCESSOR
PROGRAM LOADER

3. Press the ADDR LOAD and STRT keys on the
MCP.

4. Turn the paper-tape reader on. Low-specd tape
will be rcad until the process is stopped
manually by pressing the STOP switch on the
reader. High-speed tape will stop automatically.

A binary program can have blocks of almost any length {the
maximum is a black of 2'* bytes. If binary output is
generated in the normal way by the Assembler, 64-byte
{decimal) blocks arc output.

If the MPL load is successful, the Loader will halt at block
77 offset 141. If a checksum error occurs during the
loading procedure, the load will not succeed and MPL will
halt at block 77 ollset 124 (octal 37524).

7.3 RESTARTING THE LOADER

It is possible to restart the loader after saving the contents
of all but two of the module’s registers. If the user presses
ADDR LOAD and STRT at block 77 offset 200, the
following registers will be saved:

Register Block and Octal
Displacement Equivalent
A 76 340 37340
B 76 341 37341
C 76 342 37342
H 76 343 37343
L 76 344 37344

If the user presses ADDR LOAD and STRT at block 77
offset 202, the following registers will be saved:

Register Block and Octal
Displacement Equivalent

A 76 340 37340
B 76 341 37341
C 76 342 37342
D 76 343 37343
L 76 344 37344

MPL will halt at block 77 offsei 217,

7-2

7.4 MCP MEMORY

The Loader reserves two areas of Monitor/Control Panel
(MCP) memoxy for its own use:

1. Random-Access Memory (RAM) (32 decimal
words)

2. Read-Oniy Memory (ROM) (256 decimal
words)

The RAM begins at biock 76 and offsets 340 through 377
{octal 37340 through 37377). The ROM begins at block 77
and offsets 0 through 377 (octal 37400 through 37777).
These addresses are used by the MCP and should not be
accessed by the user,

8.1 INTRODUCTION TO MDP

The Microprocessor Debugging Program (MDP) is a
software too! which runs on the Processor Module and
facilitates analysis and alteration of binary programs. These
programs are normally produced by the Assembler (see
Chapter 6).

MDP provides the following capabilities:
1. Reads and punches paper tape,

2. Opens specifiecd memory locations for
modification and allows the previous, current,
and next locations to be opened, displayed, and
closed,

3. Dumps the contents of program addresses,
status flip-flops, and index registers on the
Teletype printer,

4. Allows a program segment to execute for test
purposes under MDP control,

5. Specifics a breakpoint location for program
exccution, and

6. Loads specified locations in memory with a
constant value,

The major advantage of using a debugging package such as
MDP is that the binary code itscll can be examined and
maodified, allowing the program to be tested and corrected
without requiring reassembly. This is an especially useful
capability in the environment in which Microprocessor
Series programs are typically developed.

8.1

CHAPTER 8
MICROPROCESSOR
DEBUGGING PROGRAM

8.2 OPERATING ENVIRONMENT

MDP is supplied in the form of a binary paper tape. To use
the program, read the tape into memory using the standard
Microprocessor Program Loader (MPL). After loading the
tape sct the starting address for MDP on the
Monitor/Control Panel, raise the LT switch, and press
STRT. If the Teletype control knob is turned to LINE,
MDP will respond by typing the MDP prompting character
(*) on the Teletype printer. The starting address for MDP is
block O offset 100 (octal 0100). All bits are zero except
low bit 6.

The minimum memory requirement for running MDP is 1K
of Random Access Memory (RAM) on a Microprocessor
Serics module. A Teletype must be interfaced with the
M7341 module for MDP command input from the key-
board and the display of memory locations on the printer.

The low-speed paper-tape punch associated with the
Teletype is used in conjunction with the R, P, T, and E
commands to read the binary program tape into memory
and to punch out a corrected version,

Input to MDP is usually a binary paper tape produced by
the Assembler described in Chapter 6. The listing produced
during pass 3 of the assembly is necessary for determining
addresses Lo be examined and modified.

8.3 BASIC CHARACTER SET

The following list summarizes all ASCII characters that may
be in¢cluded in MDP command input and are recognized by
the debugging program:

] Alphabelic chayacters B, D, E, G, L, P, R, 5, T,
X

. Numeric characters O through 7

. Selected special (printing) characters.

Character Meaning

space Space

Block-offset operator used to
specify an address

; Address separator

) Used to open and display a location
Used 1o close and then reopen and
display the current location

t Used to close current location and
then open and display the previous
location

RUBQUT Used to delete digits back fo a
separator; echos backslash ()
followed by deleted digit

1T CTRL/C: usec to abort current

command
L] Seiected special {(nonprinting) characters.
Character

Meaning

Used to close current location or
terminate a command

carriage return

Used to close current lecation and
then open and display the next
location

line jeed

If any character other than thosc just described is
encountered by MDP, a question mark (7} is typed, the
contents of the line containing the illegal characier is
ignored, and the command is aborted. The user can retype
the command without typing a carriage return first,

8.4 ADDRESS SPECIFICATION

The format in which addresses are specified in MDP
commands is the same format as that used in the binary
program tape input to MDP. An address is a 14-bit ficld,
described as follows:

hh 11l
hh#All

8-2

The two forms are interchangeable ahd represent the high
six bits (hh) followed by the low eight bits (U1} of the
address. For example, in address

35#200

35 represents the high bits or block, and 200 represents the
low bits or offset within block 35. A detailed discussion of
address specification is provided in Chapter 6 in
descriptions of the Assembler block-offset operator # and
the format for binary output.

Addresses are specified by the user in a great many MDP
commands and the format may be either of those just
shown. When output by MDP, as in the D command. an
address specification is always of the form:

hh il

If the user types too many digits when specifving an
address, the results of such an error are unpredictable. It is
recommended that the command be aborted by typing
CTRL/C — the location can then be examined and modified
if necessary.

Although leading =zeros are never required in user
specifications or addresses, MDP does supply the full
complement of digits in its display, as follows:

*D 140143
01 000/ DCO
01 Q017 001
0f 002/ 007
01 003/ 000

8.5 OVERVIEW OF MDP COMMANDS

After MDP has becn started, an asterisk (*) cutput by the
debugging program indicates that it is at monitor level and
ready to accept a command. The user responds to this
prompting character by entering a one-character command
from the keyboard. If the specified command does not
require parameters of any kind, MDP performs the
operation at once without waiting for the user to end the
command with a termination character (e.g., catriage
return). Commands performed in this way include T, E, §,
and X. MDP itself outputs necessary carriage retumn/line
feed characters and types a new prompting character (*)
alter performing the specified operation. This capability
implies that the user must be extremely carcful to type the

correct characters. A paper tape read is performed as soon
as the R command is typed, but MDP halts after reading
tapc and then waits to be restarted.

Aill other MDP commands require that parameters be
included in the command line, After the user types one of
the commands P, D, G, B, or L, MDP inserts a space after
the one<character command and waits for necessary
parameters to be typed by the user. The user must indicate
that the command linc is complete by typing a carriage
return to terminate the command. MDP automatically
inserts a line feed, performs the desired operation, and
indicates a return of control to MDP monitor level by
displaying an asterisk (*) on the Teletype printer. In the
syntactic models shown in subsequent paragraphs, a
carriage returnfline feed combination, in which the user
must supply the carriage return, is represented by <<er>. An
explicit line feed character is represented by <Uf>,
Terminators output solely by MDP (as in 8§ or T, for
example) are not shown.

8.6 ERRORS IN SPECIFYING COMMANDS
A question mark (?) will be displayed on the Teletype
printer if the user does any of the following:

1. Uses a character not in the basic MDP character
set; for example, the following is an error:

*D 140,
because comma (,) is not a legal MDP character.
2. Specifies a nonexistent command, for example:
*A

A is not a valid MDP command.

3. Specifies an address with alphabetic or special
characters or with illegal numeric characters;
either of the following causes an error:

*464#20A
*1 379

After displaying the ? character, MDP ignores the current
line and aborts the command. If the user omits parameters
from a command line and types a carriage return to
terminate this line, MDP will wait and will not return to
monitor level until the parameters are typed or CTRL/C is
issucd.

8-3

8.7 SPECIAL FUNCTION KEYS

The following two paragraphs detail the operation of two
special functions used to correct errors and to abort MDP
activity.

8.7.1 RUBOUT: Deleting a Digit
The RUBOQUT key on the Teletype keyhoard is used for
error correction when entering MDF parameters. Each
RUBOUT causes the deletion of one digit, from right to
left, beginning with the digit just to the left of the first
RUBOUT and ending with the digit just to the right of the
first separator encountered in the scan. Scparators include
the following:
Character Meaning
Space output by MDP following a
command or used as a block-ofTset
operator

space

Block-offset operator used to
separate the high and low bits of an
address

: Scmicolon used to separate starting
and ending address specifications

Terminator typed after a command
or used to close the current
location in an examination
commangd

carriage return

line feed Inserted by MDP after carriage
return following a command or
used to open the next location in

an examination command
{ Open location or may be used as ;

RUBOUT echoes a backslash followed by the digit it
deletes back to the most recent separator. Thus in the
following command

*TTHITINININL 277
the address originally specified

*77#177
is corrected and respecified as 77#277. The sequence
NIV simply represents the digits 177 rubbed out, and 277

represents the new offset. RUBOUT of a digit causes a
backslash, followed by the deleted digit, to be echoed on

the Teletype printer. If digits typed beyond the most recent
separator must be deleted, the user must abort (Paragraph
8.7.2) and retype the entire command. An attempt to sub
out digits beyond the separator causes zeros to be typed for
these digits as in the following:

721 233\ NN

In this command line, the user successfully rubbed out the
digits 123; an attempt to detete the separator and block 72,
however, failed, resulting in the printing of \O\O\0.

8.7.2 Control C: Aborting MDP Operation

A control € character can be issued at any time to return
control to MDP monitor level. This function is useful to
correct the entry of an invalid command or to terminate
long input or output operations. It is recommended that
this character be typed to abort a command when the user
has made more than one or two crrors when entering this
command. Retyping the command is often a more
straightforward and reliable method of correction than
rubbing out and retyping multiple digits in an invalid line.
To enter control C, type C while holding down the CTRL
key. When CTRL/C is typed, the command being typed or
executed is aborted, and the character is echoed as:

1C

Control then returns to MDP, a new prompting character is
output, and a new command is expected. The following is
an example of the use of CTRL/C when terminating and
address dump:

*D 45#10047#377
45 100/ 000

45 101/ 000

45 102{ 377

45 1C

*

8.8 INPUT/QUTPUT COMMANDS
The user can read and punch binary paper tapes by means
ot the MDP commands listed in Table 8-1.

8-4

Table 8.1
Input/Output Commands
Command Meaning

R Read paper tape from low-speed
paper-tape reader.

P Punch paper tape for address range
specified on low-speed punch.

T Punch leader or trailer tape.

E Punch end block and trailer.

These are described in more detail in Paragraph 8.8.1.

8.8.1 R: Reading Paper Tape

The R command is used to read the contents of a binary
puaper tape inte memory. [t is issued in the following way:

Form R

This command does not require the user to type a carriage
return. As soon as the character R is typed, the paper tape
loaded in the low-specd tape reader associated with the
Teletype is read into the memory addresses specified on the
binary tape. This implies that the paper tape to be read
must be properly positioned in the reader at the time the
command

*R
is given.

The following sequence of steps should be used when
loading paper tapce into the reader:

1. Set the paper-tape reader switch to STOF or
FREE.

2. Release the plastic cover of the reader unit and
place the program tape over the read stalion
with the small sprocket hoies over the sprocket
wheel. Close the cover.

3. TypeR

Push the paper-tape reader switch to START
and release.

After the entire program tape has been read into memory
and an end block has been encountered, MDP halts. It can
be restarted by setting the starting address (Q 100) again,
raising the HLT switch, and pressing STRT. To determine
whether or not the rcad has been successful, the user should
examine the accumulater (register A) after MDI®* has been
restarted. If the contents of A are zero, reading has been
successfully performed.

8.8.2 P: Punching Paper Tape
The P command facilitates the following operations:

. Punching selected program or other memory
locations on paper tape,

. Punching an entire program ta..pe by dumping
the contents of part or all of memory.

All punching is performed on the low-specd paper-tape
punch associated with the Teletype. The command is
supplied as follows:

Form P addrladdr2<cr>

Where addr] is the starting memory location in
block-offset notation
addr2 is the ending memory location in
block-offset notation

Example *P 45#10047#377

In this example, memory locations from block 45, offset
100 through black 47, and offset 377 are punched out on
paper lape using the low-speed paper-tape punch. This
command docs not automatically punch leader tape and an
end block so it should be used in conjunction with the T
and E commands.

The addr2 parameter is not optional. If only one address is
to be punched, the user must nevertheless supply starting
and ending range specifications. In this case, both are
identical, as in the following:

*P 11#300;1 14300

The paper-tape punch must be readied at the time the
command is issued. To position tape in the low-speed
punch, do the following:

I, Turn the Teletype punch unit off.

2. Type the P command on the Teletype keyboard
but do not type a carriage return.

8-5

3. Turn the punch unit on.
4. Type a carriage return to initiate punching.

It is important to follow this sequence to avoid punching
command input on the program tape output by the punch.

It is a relatively casy matter 1o usc MDP as a tool in
generating paper tapes for use on the Microprocessor Series.
Read a binary tape into memory and punch it out again
using the following commands. This example assumes that
program lecations include blocks 15 through 17 and that all
appropriate actions are taken to avoid punching unwanted
characters on the output tape.

*R Read paper tape into memory
*T Punch header tape

*P 1540174377 Punch blocks 15 through 17

*E Punch end block and trailer tape
* Return to MDP

8.8.3 T: Punching Leader and Trailer Tape
The T command uses the lowspeed Teletype punch to
produce either leader or trailer tape. Both leader and trailer
tape have exactly the same format and consist of
approximately four inches of tape punched with octal code
200. The command is issued as follows:

Form T
This command does not requirc that the user type a
carriage return. As soon as the character T is Lyped, header
or trailer tape is produced. MDP then inserts an automatic
carriage return/line feed to return control to MDP monitor
level.

If the punch is turned on at the time T is typed, the
command character, as well as the carriage return/line feed
inserted by MDP, will be output on the tape but ignored
when the program is loaded. If the user wishes to exclude
these extraneous characters from the program tape, he/she
should follow certain procedurcs when producing header or
trailer tape:

1. Turn the punch off.

2. Type the T command after the prompting
character:

*T

3. Turn the punch on immediately after typing
the T command.

4. Tun the punch off after header or trailer tape
has been produced.

Control returns avtomatically to MDP. Because the punch
is not turned on until after T begins operation, a small
amount of trailer tape might be lost.

884 E: Punching an End Block on Tape
The E command punches the end block, followed by
approximately four inches of octal code 200 trailer tape,
using the low-speed paper-tapc punch. Tt is issued as
follows:
Form E
This command does not require that the user type a
carriage return. As soon as the character E is typed, end
block and trailer tape are produced. MDP then inserts an
automatic carriage returnfline feed to return control to
MDP monitor level.

An end biock punched by MDP has the same format as that
produced by the MLA Assembler. In this formatl, each
block of daia has a byle count of greater than six. The end
block contains no data and therefore has a byte count of
cxactly six. The sequence of steps shown for the T
command could be followed to prevent the E character
from being punched cut on paper tape. However, it is a
more serious matter to Jose part of the end block than to
lose part of the leader/trailer 1ape. Therefore, it is usualty
preferable to leave the punch on while typing E and ta rely
on these command characters being ignored when the
program tape is lpaded.

Note that E implies automatic execution of the T comntand
so trailer tape necd not be explicitly requested.

8.9 LOCATYION-EXAMINATION COMMANDS

MDP commands have been implemented to facilitate the
examination and modification of memory locations. All
commands in this category primarily consist of special
Teletype kevboard characters as shown in Table 8-2.

8.9.1 /: Opening a Memory Location
The / command allows the user to specify that a particular
memory location is to be opened and the contents of this

8-6

Table 8-2
Location-Examination Commands

Command Meaning

/ Opcns specified location for

modification

carriage returp | Closes current location

line feed Closes current location and opens
next location
Closes current location and reopens
it

t Closes current location and opens

previous location

location displayed. These contents can subsequently be
changed. The command is issued in the following way:

Form add:/f

Where addr is the location to be examined in
block-offset notation

Example *45#100/ 001

In response to the prompting character, the user types the
address to be examined and follows it with a slash (/)
character. MDP automatically inserts a space after the slash
and prints out the contents of the examined location in
three-digit octal form. The user can then modify the
contents of the location by typing the new value to replace
the valuc displayed as foliows:

*45%100/ 001 111

The space between the old and new values is atso output by
MDP,

To terminate the command line, to return control to MDP,
or to examine another location, the user types carriage
return, line feed, period, or up-arrow. The different
characteristics of these Teletype keys are presented in the
following paragraphs.

8.9.2 Carriage Return: Closing an Open Location

In addition to its typical function as a statement terminator
(for example, in B and P commands}), the RETURN key can
be used to close an open location which is being examined.
A carriage return is iyped at the end of the following
command

*12#141/ 000 111<cr>

to indicate that the specified change in contents is to be
made, and the location at block 12, offset 141 is to be
closed. After the RETURN key has been pressed, control
teturns to MDP and the prompting asterisk is displayed. No
further locations are opened until explicitly directed by
another command.

8.9.3 Line Feed: Opening the Next Location
The line feed character can be typed instead of the carriage
return to perform three distinct actions:

1. Close the location being examined.
2.

Open the next location and display its contents.

3. Allow modification of the displayed location.

Use of the line feed in terminating the command

*DTHO/ 377>
causes the location at block 27 offset 0 to be closed and the
location at block 27 offset 1 to be opened automatically.

The full interaction looks like

MATHO/ 377U
27601/ 001

where the user types only the initial 27#0{ specification.

The long form of this function requires that the user issue
two separate examination commands:

®¥27H#0f 377<er>
*27#17 001

8.9.4 .: Reopening the Current Location
The period (.) is used to perform the following functions:

I. Close the location being examined.

8-7

2. Reopen the same location and display its
contents.
3. Allow modification of the displayed location.

Use of the period is valuable when correcting an incorrectly
altered location or when verifying that a change has been
made. For example, in the foellowing

*45#10/ 000 77000\T\326N\61ML 71,
45 010/ 271

the use of RUBOUT characters, cchoing deleted characters,
has made the modification of location 45#10 difficult to
read. The period is used to verify that the desired
correction has been made. Note thai rubbing out 770 has
indicated that 770 was truncated to 370, since MPS
addresses can include offsets of only eight bits,

8.9.5 T Opening the Previous Location

Use of the up-arrow (1) character complements the use of
the line feed. While line feed allows the user to view the
next location, up-arrow causes the previous location to be
opened. The following functions are performed:

1. Close the location being examined.
2.

Open the previous location and display its
contents.

3. Allow medification of the displayed location.
Use of 1 in the following commands

*22#0/ 0011
21 377/ 377 0001
21 376/ 001

allows the user to view the contents of the location beforc
2240, 214377 (377) and to modify that location. 1 is used
again to view the contents of location 21#376 (001).

8.10 DISPLAY COMMANDS

A variety of commands have been implemented to allow a
range of addresses or certain key locaiions to be displayed
on the Teletype printer. Some commands allow
modification of the contents of these locations; others do
not. Table 8-3 lists the cormmands in this category.

Table 8-3
Display Commands

Command Meaning
D Dump the contents of a range of
specified addresses on the Teletype
printer.
8 Display the contents of the

condition flip-flops and allow
modification.

X Display the contents of the
accumulator and allow
modification.

These are more fully déscribed in subsequent paragraphs.

8.10.1 D: Dumping Address Contents

The D (dump)} command allows the user to obtain a listing
on the Teletype printer of all or some of the binary
program in memory. It is issued as follows:

Form D addrladdr2<cr>

Where addr] is the starting memory location in
block-offset notation
addr2 is the ending memory location in
block-offset notation

Examnple *D 1#0;1#377

The user terminates the command by typing a carriage
return; MDP inserts a line feed and proceeds to type out the
desired listing in the foliowing format:

*D addr] addr2<<er>
addrl/ contents
addra/ contents
addrb/ contents
addrc/ contents
addrd/ contents

addr2/ contents
*

An example is included below:

*D 1#0;1#377
01 000/ 000
(1 001/ 000
01 002/ 001
01 003/ 002
01 004/ 077

01 377/000
*

If the user decides that he need not view the entire dump,
the listing can be terminated by typing CTRL/C on the
Teletype keyboard.

The addr2 parameter is not optional. If only one address is
to be dumped, the user must nevertheless supply starting
and ending range specifications. In this case both are
identical, as in the following:

*D 36403640

8.10.2 S: Displaying Status Flip-Flops

The S (stztus) command allows the user to examine and
modify the contents of the status register which contains
the following condition flip-flops:

Bit Meaning

7 Sign
2 Parity
1 Zero
(] Carry

The status register has an organization as shown below:

STATUS REGISTER
sign unused parity zZero carry
e —
A N I N A
7 6 5 4 3 2 1 0

§-8

The unused bits are always considered to be zeroed. Sign,
parity, zero, and carry are normally set to one or reset to
zero depending on the results of instruction execution,
MDP allows the user to set these bits explicitly by means of
the S command,

If the sign bit is set to one and all other bits are zera, the
status register has contents of 200, as shown below:

10 000 000
2 0 0

If the parity, zero, and carry bits are set to one and the sign
bit is zero, the status register will have contents of 007, as
follows;

00000 111
00 7

If only the zero bit is set, the following will be the case:

00 000 010
0 0 2

The § command is entered in the following way:
Form)

This command does not require that the user typc a
carriage return. As soon as the character § is typed, MDP
itself inscrts a carriage returnfline feed and produces status
bits in the following form on the Teletype printer:

addr/ contents

An example follows:

*3
20 105/ 200

The address returned by MDP is the address in which the
status register is found, In the example just shown, the sign
bit is set and all other bits are zero. To modify status bits,
simply type new contents as in the following:

*5
20 105/ 200 005

Here the space between the old and new contents is output
by MDP. The user changes the contents so that the parity
and carry bits are set.

8-9

8.10.3 X: Displaying an Index Register

The X (index} command is used to examine and modify the
index registers. The accumulator (register A) is accessed in
the following way:

Form X

This command does not require that the user type a
carriage return. As soon as the character X is typed. MDP
itself inserts a carriage returnfline feed and displays the

contents of the accumulator in the following form on the
Tcletype printer:

addr/ contents
An example follows:

2011t/ 000

The address returned by MDP is the address of the
accumulator storage location on the user’s machine and is
not nccessarily the one just shown. The contents of this
address can be modified by typing in a new wvalue, as
tollows:

*X
20111/ 000 377

To examirie and modify subsequent registers (B, C, H, L),
the user terminates this and succeeding lines with an
explicit line feed. For example:

*X

20 111/ 000377 <1 >
20112/ 001 <If >
20113/ 000 <If >

20 114/ 007 <If >
20115/ 377000 <cr >

<1f>> indicates a line feed entered by the user, <cr> a
carriage return. This sequence allows the user to examine all
index register storage locations.

8.11 CONTROL COMMANDS

Commands uscd to set breakpoints, begin test execution,
and clear memory locations can be categorized as control
commands. Table 84 summarizes the functions of these
commands.

Table 84
Control Commands
Command Meaning

G Start execution of binary program
at specificd address.

B Set breakpoint at specified address
in binary program.

L Set range of addresses to specified
constant.

These commands are described in greater detail in the
paragraphs that follow.,

8.11.1 G: Executing the Program

The G (go) command is used to execute a binary program
or part of the program. Often it is used in conjunction with
the B (breakpoint) command to test part or all of the
binary program read into memory. G is issued in the
following way:

Ferm G addr<cr>

Where . addr is the first address to be executed in
block-offset notation

Example *G 10#121

The user types a carriage rteturn to terminate the G
command, and MDP inserts an automatic line feed. The
status bits and registers saved when MDP was loaded are
restored, and the program segment beginning at addr is
exccuted. For test purposes, the user can set initial
conditions before beginning program execution by
modifying the status bits and index repister storage
locations as previously indicated.

8.11.2 B: Setting a Breakpoint

The B command provides one of the most useful features
available through MDP. 1t is used to specify a location to be
used as a breakpoint in the binary program currently in

memory. When the program encounters this location during
execution, it returns conirol to MDP. The B command is
issued as follows:

Form B addr<cr>>

Where addr is the address to he used as a
breakpoint in block-offset notation

Example *B 37#0

The wuser types a carriage return to terminate the B
command, and MDP inserts an anfomatic line feed.

The B command modifies the location specified and the
two following locations; therefore, care must be used when
placing breakpoints due to the variable length instructions,
It specifies the address to be trcated as a breakpoint
location when the program is executed. Thus B is used in
conjunction with G to test segments of a program. When
the specified address is executed, the following actions
occur:

The binary program stops.

2. Registers A, B, C, H, L, and the status bits are
saved.
3. Control returns to MDP and the following is

printed on the Teletype

B

*

to indicate that the breakpoint has been
reached.,

The saved registers and status bits can now be cxamined
and modified if necessary.

The breakpoint does not normally remain in the binary
program; it is removed under any of the following
circumstances:

The specificd address is executed.

2. MDP is restarted.

A special version of the B command is entered:

The explicit B reset command has the following form:

Form BR

This command does not require that the user conclude with
& carriage return. As soen as the B R combination is typed,
MDP ijtself’ inserts a carriage returnfline feed. The space
between B and R is also outpui by MDP. After B R is
typed, MDP returns {o monitor level, removes the
breakpoint from the binary program, and outpuis a new
prompting character.

8.11.3 L: Loading Memory with a Constant
The L command is used to load a segment of memory with
a specified constant. It is issued in the following way:

Form L addrl;adde2;[constant] <ct>

Where addrl is the starting memory
location in block-offset notation
addr2 is the ending memory
location in block-offset notation
constant is optional and rcpresents
the wvaluc to be inserted in the
memory locations

8-11

*L 76#340:76 #3777 7T<cr>
*L 76434376 #362:<cr>

Examples

The user terminates the command with a carriage return
and MDP inserts an automatic line feed. The addr2
parameter is noi optional. If only one address is to be
cleared, the user must neverthcless supply starting and
ending range specifications. In this case, both are identical,
as in the following:

*L 1401 #0;

L is often used to clear memory locations; if constant is
omitted from the command, zero is the default, and the
memory range specified is zeroed. The semicolon following
addr2 must be supplicd, cven if constant is omitted from
the command. After the operation defined in L is
performed, MDP returns to monitor level and outputs a
new prompting character.

9.1 INTRODUCTION TO MPR

The Microprocessor Read-Only Memory (ROM)
Programmer (MRP) is a PDP-8 system program used to read
and write programmable read-only memory (PROM)
circuits for use on the M7345 PROM Module. The write
function performed by MRP can also be called
programming a PROM. A spccial hardware assembly is
required to implement the functions supported by MRP,
since PROMs, the I/O medium used by this program, are
not a standard device supported by a PDP-8 intcrface. The
particular hardware cnvironment in which MRP functions,
is described in detail in the next paragraph,

MRP provides the following capabilities:

1. Reads and punches paper tapc using the
high-speed or low-speed unit

2. Reads, writes, and verifies PROMs

3. Opens specified memory locations for
modification and allows the previous, current,
and next locations to be opened, displayed, and
closed

4. Dumps the contents of memory locations on
the Teletype or line printer

5. Loads specified locations in memory with a
constant value

MRP permits examination and modification of PROM
tocations read into memory, and provides a flacility for
obtaining both Teletype and line printer listings of
programs stored in paper tape or PROM form.

9.2 HARDWARE ENVIRONMENT
This paragraph describes the characteristics and use of the
special hardware used by MRP.

9-1

CHAPTER 9
MICROPROCESSOR
ROM PROGRAMMER

9.2.1 MRS873 Hardware Assembly

Using the MRP on the PDP-8 requires a special hardware
assembly to be placed on the machine’s 1/O bus. Only those
PDP-8 models with OMNIBUS construction can support
this assembly; thus MRP can run on PDP-8/E, PDP-8/F, and
PDP-8/M models, but not normally on the PDP-8/I,
PDP-8/L, or PDP-8/8.* The special hardware used by MRP
consists of one basic unit, the MR873, which holds FROM
citcuits and is attached to the 1O bus as shown in Figure
91,

Any other devices supported by a particular PDP-8
configuration can also be conveniently added to the bus.
Oftcn a high-speed paper-tape reader/punch and a linc
printer are supported.

The MR873 consists of the following:

t. Main rack-mountable or bench top MRB73
hardware assembly

2. One M1703 input interface module which plugs
directly into the PDP-8 OMNIBUS

3. One MI705 output interface module which
plugs dircetly into the PDP-8 OMNIBUS

4, Two Y168 zero-insertion force socket modules

When these components are unpacked at the user’s
installation they should be inspected for any obvious signs
of damage that may have occurred during shipping.

*It is possible to use a special hardware interface to facilitate MRP
use on the PDP-8/1, PDP-8/S, and PDP-8/L. Users of these CPU’s
should contact Logic Products Applications Engineering at Digital
for information.

FOP-AE

! ! /¢ aus

Figure 9-1 PDP-8 1/O Bus

MRATY TELETYPE

Protruding from the rear of the MR873 unit are three flat
gray cables and one standard power cord. When the
BCO8R-6 cables, used to connect the MR873 o the
OMNIBUS, are unrolled the user will find a sticker attached
to each cable at the plug end. This sticker identilies each
cable and identifies its terminus as follows:

I. FromJl —MR873t0J1 M1703
2. From I2 — MR873 to J1 M1705
3. From J3 — MRB873 to J2 M1705

The user should connect these cables in the way deseribed,
cnsuring that the letters on the plug housing match the
letters on the top of the board-mourted jack. Then the
M1703 and M1705 modules can b: installed in any
convenient position on the OMNIBUS of the PDP-8/E,
PDP-§/F, or PDP-8/M.

Next, the user should install the two Y168 modules that are
designed to hold the PROMs, Plug one module into the slot
labeled CHIECK, VERIFY, FETCH, and the other into the
slot labeled WRITE. After the line cord has been connected
to any nearby 115 Vac 60-cycle outlet, the MR873 is ready
for operation under MRP.

9.2.2 PROM Assembly and Manipulation

The Y168 modules are designed to hold PROM packages
and to facilitate easy movement of thesc packages from one
madule socket to another, There are three sockets mounted
on the front panel of the MR873 assembly labeled from left
to right:

I. SIMULATE (RTM ONLY)
2. CHECK, FETCH, VERIFY
3. WRITE

These sockets have the following functions:

1. The socket labeled SIMULATE is not relevant
to MRP and should be disregarded by the user.

9.2

2. The socket labeled CHECK, FETCH, VERIFY
can be used only to read PROM data during
check, fetch, or verify MRP operations.

3. The socket labeled WRITE can be used only to
Ioad PROM data during writc MRP operations.

Only 1702A ultraviolet-erasable PROMs can be used with
the MR873 and MRP. PROMs:s of this kind can be written
in approximately two minutes.

WARNING

When PROMs are being written by the MR873,
high voltage pulses (60 Vdc) are generated; the
user should therefore be carefuf not to handle
the PROM or MR873 assembly during this
process. The voltage level generated can be
dangerous and is present on both the PROM
and the etch of the Y168 module into which
the PROM is plugged while being written,

If it is ever necessary to remove or touch a
PROM before writing has been completed, the
user should stop the process either by pressing
the HALT switch on the PDP-8 console or by
typing CTRL/C on the Teletype keyboard,

Before a PROM is written, it should be
completely erased by exposing it to ultraviolet
light for five to ten minutes. The user should be
sure to protect his eyes from the ultraviolet

light.

PROMSs must be inserted in the socket in the proper way, as
shown in Figure 9-2.

If the user inserts the PROM into the module incorrecily,
the chip may be destroyed. With the locking lever in the
raised position, insert the PROM in the socket with the dot
on the PROM in the position shown in Figure 9-3. Then
lock it in by pushing the lever all the way down.

The following example illustrates a sequence in whict. a
segment of the PDP-8 memory data buffer is loaded into a
PROM and then verified. It is assumed that PDP-8 memcry
contains the desired data.

1. Install a clear PROM in the socket labeled
CHECK, FETCH, VERIFY, and check that the
PROM is clear by issuing a € (check) command
from MRP.

2. Move the PROM to the socket labeled WRITE
and load it with data by issuing a W (write)
MRP command,

3, Move the PROM back to the socket labeled
CHECK, FETCH, VERIFY and verify that the
PROM was loaded correctly by issuing a V
(verify) command from MRP,

Figure 92 MR873 ROM Programmer

Figure 9-3 Y168 Socket Module {with PROM inserted)

Table 9-1 summarizes the correct location of the PROM
during various MRP PROM I/ commands.

Table 9-1
Socket Positions for PROM Commands
Socket Labeled

CHECK

Socket Labeled FETCH

Command WRITE VERIFY

WRITE X

CHECK X
FETCH X
VERIFY X

To fetch data from a PROM, the user positions the PROM
in the socket labeled CHECK, FETCH, VERIFY, and issues
an F (fetch) command from MRP. Before performing this
or any PROM operation, ensure that the PROM is securelv
locked in place with the socket lever.

93 OPERATING ENVIRONMENT

MRP is provided to users of this system in the form of a
binary paper tape which is loaded into core by means of the
Microprocessor Host Loader (MHL) using either the
low-speed or high-speed paper-tape reader. Selection of the
reading unit and other load procedures performed at this
time are illustrated in Figure 4-11. To start the program, set
the starting address 02003 in the Switch Register and press
the ADDR LOAD and START keys on the PDP-8 console.
If the Teletype control knob is turned o LINE, MRP will
respond by typing the prompting character (*) on the
Teletype printer.

The minimum memeory and peripheral device requirements
are the same as those described in Chapter 4. Input o MRI
usually consists of a binary paper tape produced by the
MLA Assembler and/or a previously programmed PROM.
Output can be a punched binary tape, a programmed
PROM, and/or a listing on the Teletype or line printer.

9.4 SWITCH REGISTER OPTIONS

Alternate output devices may be selected for use by MRP
by setting thc appropriate PDP-8 Switch Register bits
before output is directed to these devices. Table 9-2
summarizes selection of the printing and punching units.

Bit 9 is set to indicate that the line printer is the primnary
output device. Error messages are always displayed on the
terminal; if bit 9 is set they will also appear on the line
printer, but they will never only appear on the line printer.

Table 9-2
Switch Register Options
Bit | Setting Meaning
9 0 Print output on the Teletype printer.
| Print output on the line printer.
2 0 Punch tape on the low-speed paper-tape
punch associated with the Teletype.
1 Punch tape on the high-speed punch (if
available).

Although output will be printed on the specified device if
the setting of bit 9 is established before the command that
produces output is typed, it is possible for output to be
sont to both devices. If bit 9 is set 0 when the initial
character of the MRP command is typed, the user can set
the hit on after MRP outputs the space following that
character, Then, when output is produced, it will appear on
both the Teletype printer and the line printer. If the
following command is typed

*D 2140;21 #27<ci>

and bit 9 is set after the MRP space and before <er>>,
locations 2:#0 through 21#27 will be dumped on both
output devices.

It bit 9 is set but a line printer is not part of the PDP-8
configuration, the system will wait 150 milliseconds for the
line printer to be attached and will then assume that the
Teletype is the primary output device.

9.5 BASIC CHARACTER SET

The following tist summarizes all ASCIL characters that may
be included in MRP command input and are recognized by
the blasting program:

. Alphabetic characters C, D, E,F,L,P,Q,R, T,
v, W

. Numeric characters 0 through 7

9-4

® Selected special (printing) characters, as
foltows:
Character Meaning

space Space

Block-offset operator used to
specify an address

; Address Separator

/ Used ta open and display a location
Used to close and then reopen and
display the current location

t Used to close current location and
then open and display the previous
location

RUBOUT Used to delete digits back to a
separator; echoes backslash ()
followed by deleted character

tC CTRL/C; used to abort current

conmumand

L Selected special (nonpriniing) characters, as
follows:
Character Meaning

Used to close current location or
terminate a command

carriage return

Used to close current location and
then open and display the next
location

line feed

If any character other than those just described is
encountered by MRP, a question mark (?) is typed, the
contents of the line containing the illegal character is
ignored, and the command is aborted. The user can retype
the command without typing a carriage return first.

9.6 ADDRESS SPECIFICATION

The format in which addresses are specified in MRP
commands is the same format as that used in the
Microprocessor Debugging Program (MDP) (Chapter 8) or
in the hinary program tape input to MRP. An address is a
14-bit field, described as follows:

hh 1l
hh#Alt

The iwo forms are interchangeable and represent the high
six bits (hh) followed by the low eight bits (1) of the
address. For example, in address

2340

23 represents the high bits or block, and () represents the
low bits or offset within block 23. A detailed discussion of
address specification is provided in Chapter 6 in
descriptions of the Assembler block-offset operator # and
the format for binary cutpui.

Addresses are specified by the user in a great many MRP
commands and the format may be either of those just
shown. When output by MRP, as in the D command, an
address specification is always of the {orm:

hh 111

If the user types toc many digits when specifying an
address, the resalts of such an error are unpredictable. [t is
recommended that the command be aborted by typing
CTRL/C. The location can then be examined and modified
if necessary.

Although leading zeros arc mnever required in user
specifications or addresses, MRP does supply the full
complement of digits in its display as follows:

*D 1#0;14#3
01 000/ 000
01 0014 001
0F 002/ 007
01 003/ 000

9.7 OVERVIEW OF MRP COMMANDS

After MRP has been started, an asterisk (*) output by the
program indicates that it is at monitor level and ready 1o
accept a command. The user responds to this prompting
character by entering a one-character command from the
keyboard., If the specified command does not require
parameters of any kind, MRP performs the operation at

9-5

once without waiting for the user to end the command with
a termination character (e.g., carriage return). Commands
performed in this way include R, Q, T, E, and C. MRP itself
outputs necessary carriage return/line feed characters and
types a new prompting character {*) after performing the
specified operation. This capability implies that the user
must be extremely careful to type the correct characters. If
an incorrect character is typed, the user can type CTRL/C
to cancel the ingorrect chacacter. RUBQUT does not crase
command characters -- only digits in addresses.

All other MRP commands require that parameters be
included in the command line. After the user types one of
the commands P, F, W, V, D, or L, MRP inserts a space
after the one-character command and waits for necessary
parameters to be typed by the user, The user must indicate
that the command line is complete by typing a carriage
return to terminate the command. MRP automatically
inserts a line feed, performs the desired operation, and
indicates a return of control to MRP monitor level by
displaying an astcrisk on the Teletype printer. In the
syntactic models shown in subsequent paragraphs, a
carriage returnfline feed combination, in which the user
must supply the carriage return, is represented by <cr>>. An
explicit line feed character is represented by <If>,
Terminators ouiput solety by MRP ({as in R or T, for
example) are not shown,

9.8 MRP ERRORS

There are two kinds of errors that are recognized by MRP.
Command errors cause a question mark (?) followed by a
carringe return/line feed to be displayed on the Teletype
printer (and also on the line printer, if bit 9 is set),
Execution errors cause a qucstion mark followed by a
message and a carriage return/line feed to be displayed.

Command errors occur when the user
nonexistent command, as in the following:

specifies a

*Z

A question mark and error message will be displayed when
invalid characters are included in the command:

*F A
T ILLEGAL CIIARACTER

Execution crrors occur when an invalid or out-of-range
address specification is included in 2 command, when a
checksum crror occurs during a2 read, or when an illegal
address separator is specified. Error and warning messages
arc discussed in detail in the paragraphs on specific MRP
commands whicl: produce these messages.

9.9 SPECIAL FUNCTION KEYS

The following two paragraphs detail the operation of two
special functions used to correct errors and to abort MRP
activity.

9.9.1 RUBOUT: Deleting a Digit

The RUBODUT key on the Teletype keyboard is us:d for
error correction in entering MRI® parameters, Each
RUBOQUT causes the deletion of one digit, from right to
left, beginning with the digit just to the left of the first
RUBOQOUT and ending with the digit just to the right of the
first separator encountered in the scan. Separatoss include
the following:

Charactet Meaning
space Space output by MRP following a
command, or nsed as a block-offset
operator
Block-ofTsct operator used Lo

separate high and low hits of an
address

; Semicolon used to separate starting
and ending address specifications

carriage return - Terminator typed after a command,

or used to close the current
location in an examination
command

line feed Inserted by MRP after carriage
return following a command or
used to open the nexl location in

an examination command

RUBOUT echoes a backslash followed by the digit it
deletes back to the most recent separator. Thus in the
following command

*TTHITIININ 27T
the address originally specified

*77#177
is corrected and respecified as 77#277. The sequence
AL represents the digits 177 rubbed out and 277

represents the new offset., RUBOUT of a digit causes a
backslash, followed by the deleted digit, to be echoed on

9-6

the Teletype printer. If digits typed beyond the most recent
separator must be deleted, the user must abort {Parag:aph
9.9.2) and retype the entire command. An attempt to rub
out digits beyond the separator causes zeros to be typed for
these digits, as in the following.

FT2H#1 233\ NNOND

In this command line, the user successfully rubbed cut the
digits 123; an attempt to delete the scparator and block 72,
however, failed, resulting in the printing of \O\O\D.

9.9.2 Control C: Aborting MRP Operation

A contral C character can be issued at any time to return
control to MRP monitor level. This function is useful to
correct the entry of an imvalid command, or to terrainate
long input or output operations. It is recommended that
this character be typed to abort a command when the user
has made more than one or two errors when cntering this
command. Retyping the command is often a more
straightforward and reliable method of correction than
rubbing out and retyping multiple characters in a command
line. To enter control C, type C while holding down the
CTRL key. When CTRL/C is typed, the command being
typed or executed is aborted, and the character is echoed
as:

tC

Control returns to MRP, a new prompting character is
output, and a new command js expected. Following is an
example of the use of CTRL/C in terminating an address
dump:

*D 45#100,47#377
45 100/ 000

45 101/ 000
45102/ 377

45 1C

#

There is one case in which CTRL/C cannot be used to
terminate an [/O operation. If the low-specd paper-tape
reader is in the process of reading a program tape, CTRL/C
will net terminate the input operation. The computer must
be halted and the program restarted to return control to
MRP monitor level. Set 0200 in the Switch Register and
press the ADDR LOAD and START keys ta restart.

9,10 PAPER TAPE I/O0 COMMANDS
The wser can read and punch binary paper tapes by means
of the MRP commands listed in Table 9.3.

Table 9-3
Paper Tape I/O Commands

Comumand Meaning

R Read paper tape {up to capacity of
data buffer) from high-speed or
low-speed paper tape reader.

Q Clear data buffer and continue to
read paper tape from reader.

P Punch paper tape from address
range specified on high-speed or
low-speed punch,

T Punch teader or trailer tape.

E Punch end block and trailer.

These are described
paragraphs.

in more detail in the following

9.10.1 R: Reading Paper Tape

The R command is used to read a segment of binary paper
tape into the data buffer, The capacity of this buffer at any
time is only eight blocks or PROMs, Thus 2048 decimal or
4000 octal words can be loaded with a single read or queue
{Paragraph 9.10.2) command. Any address in this data
buffer can then be examined or modified with other MRP
commands. When the next paper tape input command is
processed, the data buffer is cleared before new data is
loaded. A constant value or the contents of a PROM can be
read into part of the buffer, however, overlaying or
supplementing the current contents at any time.

The data buffer can be considered to be an eight-block
window on the 64-block address space of the processor.
The following illustrates this concept:

NATA
BUFFER

LBLOCKS @ Thno 1710 pakls] 7L 47150 7le0 [XAF) T

9-7

At this point, the data buffer consists of blocks 30 through
37. Only addresses in this eight-block space can be accessed
with normal examination, modification,, or display
commands. As new data is queued from paper tape,
however, the placement of the data buffer window will
change, as foltows:

DATA
BUFFER

BLOCKE g 7 ha 17ha EFLETTMEF] FTTRY] FRT) PR £ Iz

Now only addresses in the range 40 through 47 can be
examined and modified.

Paper tape can be read from either the high-speed or
low-speed paper-tupe reader. If the high-speed device is
available, it will he selected automatically for use. The
low-speed reader associated with the Teletype will be used
if the high-speed device is not available,

The basic read command is issued as follows:

Form R

This command does not require the user to type a carriage
return. As soon as the character R is typed, the paper tape
loaded in the appropriate paper-tape reader is read into the
data buffer. Note that MRP does not halt after the read is
issued; thus the paper tape must be properly positioned in
the reader at the time the command

*R
is given.

If the data buffer must be cleared of data previously read
into it, the following interaclion will take place:

*R

CLEARING THE DATA BUFFLR

THE NEW DATA BUFFER RANGE IS FROM
BLOCK 20 TO BLOCK 27

As the tape is read into blocks 20 through 27, the following
messages will be output:

STARTING AT 20 000
LOADING BLOCK 20
LOADING BLOCK 21
LOADING BLOCK 22
LOADING BLOCK 23
LOADING BLOCK 24
LOADING BLOCK 25
LOADING BLOCK 26
LOADING BLOCK 27
STOPPED AT 27 377

If the tape end block is encountered before the end of the
current data buffer, the following messages might be
displayed:

*R

STARTING AT 20 000

LOADING BLOCK 20

LOADING BLOCK 21

STOPPED at 21 305
END-OF-DATA BLOCK WAS SEEN

If there is nothing in the segment of tape being read, the
following will be displayed:

*R

STARTING AT 20 000

STOPPED AT 20000
END-OF-DATA BLOCK WAS SEEN

If this oceurs, nothing will be loaded into the data buifer.

If an error occurs while performing the read, the following
message might be output:

*R

STARTING AT 20 000
LOADING BLOCK 20
? CHECKSUM ERROR

If the high-speed paper-tape reader is used, the following
sequence of steps should be followed to position tape in the
readet:

1. Twn the control knob to raisc the lape
retaining lever.

9-8

2. Place a fan-folded tape in the right-hand bin.

3. Place several folds of leader in the left-hand bin
and position the tape so that the sprocket
wheel engages the feed holes.

4. Turn the control knob ito lower the tape
retaining lever.

5. Press the FEED switch briefly to ensure that
the tape is properly positioned.

6. Issue R command.

The sequence of steps below should be followed if the
low-speed reader is selected:

1. Set the paper-tape reader switch to STOF or
FREE.

2. Release the plastic cover of the reader unit and
place the program tape over the read station
with the small sprocket holes over the sprocket
wheel, Close the cover.

3. [ssue B command.

4. Push the paper-tape reader switch to START
and release.

9.10.2 Q: Reading Additional Paper Tape
The Q (queue) command is uscd to clear the data buffer if
it currently contains data and to read the next segment of
paper tape. It is issued as follows:

Form Q
This command does not require that the user type a
carriage return. As soon as the character Q is typed, the
next segment of the paper tape loaded in the paper-lape
reader used by the previous read command is read.

Q is used in conjunction with a paper tapc whose addresses
span morc than eight consecutive blocks. Tt can also be used
to reset the data buffer at any time. The R command is
issued to read the first eight blocks of the new tape
positioned in the high-speed or low-speed paper-tape reader.
Q is used to clear the buffer of the data just read and to
load the next address section(s).

If the data buffer must be cleared of data previously read
into it, the following interaction might take place:

*Q

CLEARING THE DATA BUFFER

THE NEW DATA BUFFER IS FROM
BLOCK 30 TO BLOCK 37

As the tape is read into blocks 30 through 37, the following
messages will be output:

STARTING AT 30000
LOADING BLOCK 30
LOADING BLOCK 31
LOADING BLOCK 32
LOADING BLOCK 33
LOADING BLOCK 34
LOADING BLOCK 35
LOADING BLOCK 36
LOADING BLOCK 37
STOPPED AT 37 377

If the tape end block is encountered before the end of the
current data buffer, the following messages might be
displayed;

*Q

CLEARING THE DATA BUFFER

THE NEW DATA BUFFER 1S FROM
BLOCK 30 to BLOCK 37

STARTING AT 30000

LOADING BLOCK 30

LOADING BLOCK 31

LOADING BLOCK 32

STOPPED AT 32377

END-OF-DATA BLOCK WAS SEEN

If an error occurs while performing the queue, the
following message might be output:

*Q

CLEARING THE DATA BUFFER

THE NEW DATA BUFFER IS FROM
BLOCK 30 TO BLOCK 37

STARTING AT 30 000

LOADING BLOCK 30

? CHECKSUM ERROR

9-9

If an R command has not preceded the Q or if the read
encountered a checksum error or an end-of-data block, the
following warning message will be displayed:

*Q
% ILLEGAL USE OF Q

% READ COMMAND ASSUMED
*R

After Q has been typed, enabling of the low-speed
paper-tape reader can be performed at any time:; MRP will
wait until the reader is ready. The high-specd reader must
be readied at the time the command is issued.

9.10.3 P: Punching Paper Tape
The P command facilitates the following aperations:

1. Punching sclected locations from paper tape,
PROM, or the data buffer on paper tape.

2. Duplicating a paper tape by punching segments
of the binary program stored in the data buffer.

3. Duplicating a PROM by writing out the
contents of the data buffer,

Backing up a PROM on paper tape, or paper
tape on one or more PROMs.

Punching is performed on ecither the high-specd or
low-speed papei-tape punch, depending on the setting of
Switch Register bit 11. If the bit is on, the high-speed
punch is selected; otherwise, the low-specd device
associated with the Teletype is used.

The P command is issued as follows:

Form P addrl addr2<cr>

Where addr]l is the starting tnemory
location in block-offset notation
addr2 is the ending memory
location in block-offsct notation

Example *P 45#100;47H#377

In this example, memory locations from block 45, offset
100 through block 47, offset 377 are punched out on paper
tape using the appropriate paper-tape punch. This
command docs not automatically punch leader tape and an
end block so it should be wsed in conjunction with the T
and E commands.

The addr2 parameter is not opticnal. If only one address is
to be punched, the user must nevertheless supply starting
and ending ranpe specifications. In this case, both are
identical, as in the following:

*P 11#300;11#300

There are several error messages which may be produced
because of errors in address specifications. If an alphabetic
or special character is supplied in an address of if an invalid
address separator is typed, the following message witl be
displayed:

*P 30H037H37A
?ILLEGAL CHARACTER

If the starting block is greater than the ending block in the
address specification, the following message will be
displaved:

*P IHO0HITT
7 ADDRESS SPECIFICATION ERROR:
BLOCK 1 >>BLOCK 2

If the starting offset is greater than thz ending offset in the
address specification, the following message will be
displayed:

*P 20#377;20#0

TLOW BYTES OF THE ADDRESS
SPECIFICATION ARE
REVERSED

This message only occurs when the starting and cnding
block specifications are the same.

The paper-tape punch must be readicd at the time the
command is issued. No special action need be taken to
position paper tape for punching on the high-speed device.
To ready tape for the low-speed punch, do the following:

1. Turn the Teletype punch unit off.

9-10

2. Type the P command on the Teletype keyboard
but do not type a carriage return.

3. Turn the punch unit on.

4. Type carriage return to initiate punching.

It is important to follow this sequence in order to avoid
punching command input on the program tape output by
the punch.

It is a relatively easy matter to use MRP as a tool to
facilitate high-speed or low-speed on-line tape duplication.
Rcad a binary tapc into memory and punch it out again
using the following commands, This example assumes that
program locations include blocks 15 through 17 and that all
appropriate actions are taken to avoid punching unwanted
characters on the output tape. Remember that the tapes
will not be exact copics since MRP inscrts a few special
coentrol characters.

*R Read paper tape into memary
*T Punch header tape

*“P 15#0:17#377 Punch blocks 15 through 17

*E Punch end block and trailer tape
*

Return to MRP

9.104 T: Punching Leader and Trailer Tape

The T command uses the high-speed or low-speed Teletype
punch to produce either leader or trailer tape. Both leader
and trailer tape have exactly the same format and consist of
approximately four inches of tape punched with octal code
200. Selection of the punching unit depends on the setting
of Switch Register bit 11. The command js issued as
follows:

Form T

This command does not require the user to type a carriage
return. As soon as the character T is typed, header or trailer
tape is produced. MRP then inserts an automatic carriage
return/line feed 1o return centrol to MRP monitor leval.

If the punch is turned on at the time T is typed, the
command character, as well as the carriage return/line feed
inserted by MRP, will be output on the tape but ignored
when the program is loaded. If the user wishes to exclude
these extraneous characters from the program tape, he
should follow certain procedures when producing header or
trailer tape.

1. Turn the punch off.

2. Type the T command after the prompting
character:
*T
3. Turn the punch on immediately after typing
the T command.
4. Turn the punch off after header or trailer tape

has been produced.

Control returns automatically to MRP. Because the punch
is not turned on until after T begins operation, a small
amount of trailer tape might be lost.

9.10.5 E: Punching an End Block on Tape

The E command punches the end block, followed by
approximately four inches of octal code 200 trailer tape,
using the high-speed or low-speed paper-tape punch.
Selection of the punching unit depends on the setting of
Switch Register bit 11. It is issued as follows:

Form E

This cominand does not require the user to type a carriage
return. As soon as the character E is typed, end block and
trailer tape are produced. MRP then inserts an automatic

carriage returnfline feed to return control to MRP monitor
level.

An end block punched by MRP has the same format as that
produced by the MLA Assernbler. In this format, each
block of data has a byte count of greater than six. The end
block contains no data and thereforc has a byte count of
exactly six. The sequence of steps shown for the T
command could be followed to prevent the E character
from being punched out on paper tape. However, it is a far
more serious matter to lose part of the end block than to
lose part ot the leader/trailer tape. It is therefore preferable
to leave the punch on while typing E and to rely on thesc
command characters being ignored when the program tape
is loaded.

Note that E implies automatic execution of the T
command, so trailer tape need not be explicitly requested.

9.11 PROM I/O COMMANDS

A variety of inputfoutput commands have been
implemented to allow the MRF user to read, check, write,
and verify PROMs. These commands are listed in Table 9-4,

Table 94
PROM 1/0 Commands

Command Meaning

Read or fetch contents of PROM in
read socket, copving it into data
buffer.

Check contents of PROM in read
socket to ensure that all locations
are clear.

Write specified address range onto
PROM in write socket.

Verify that contents of PROM in
write socket correspond to
specified addresses in data buffer.

These are described in greater detail in the following
puaragraphs.

9.11.1 F: Reading a PROM

The F (fetch} command is used to read the contents of a
PROM into the data buffer. The PROM must be in the read
socket on the MR873 assembly. This command is issued as
follows:

Form F addrl addr2<lcr>

Where addrl is the starting memory
location in block-offset notation
addr2 is the ending memory
location in block-offset notation

Example *F 30#0;30#377

In this command, addrl and addr2 reference memory
locations in the data buffer in which the contents of the
PROM will be loaded.

There are several error messages which may be produced
because of errors in address specifications. If an atphabetic
or special character is supplied in an address or if an invalid
address scparator is typed, the foltowing message will be
displayed:

*F 30#0.30#37%
? ILLEGAL CHARACTER

If the starting offset is greater than the ending offset in the
address specification, the following message will be
displayed:

*F 2043772040

7LOW BYTES OF THE ADDRESS
SPECIFICATION ARE
REVERSED

Because the capacity of a PROM is only 256 decimal or 400
octal words, the address range cannot exceed one block and
cannot cross a block boundary. All of the following are
therefore invalid:

*F 1#0.7#377
*F 30#37731#123
*F 474#200,50#1 77

If the block numbers of the starting and ending range
specifications are not the same, the following wilt oceur:

*F LHOT#377

?HIGH BYTES OF THE ADDRESS
SPECIFICATION MUST BE
THE SAME

Careful placement of PROM data is essential when copying
from PROM to paper tape. The following illustrates
concatenation of three PROMS onto paper tape. This
example assumes that a new PROM is inserted in the read
socket for each fetch.

*T Punch header tape

Fetch data from PROM and
copy to data buffer

*F 10#0:10#377

Fetch data from PROM and
copy to data buffer

*F 11#0,11#377

Fetch data from PROM and
copy to data buffer

*F 12401 2#377

*[,1340;17#377 Clear remaining locations in data

buffer
*P 10#0;124377 Punch blocks 10 theough 12
*E Punch end block and trajler tape
* Retumn to MRP
The user types a carriage return to conclude the F

command. MRP inserts an automatic line feed, performs
the fetch, and returns to monitor level.

The fetch command is a very powerful one, since it can be
used to redefine the current window on the data buffer. If
the data buffer is defined as extending from 10#0 through
17#377 and the following command is issued

*F 37#16:37#377
MRP will display the following message:

CLEARING THE DATA BUFFER
THE NEW DATA BUFFER RANGE IS FROM
BLOCK 30 TO BLOCK 37

The user has the option of electing not to redefine the data
buffer at this time. If an error has been made or if valuable
information is still in the current data buffer, the user can
simply type CTRL/C at any time while the message is being
displayed. After the message has been typed completely,
the data buffer will be redefined as extending from 30#0
through 37#377.

911.2 C: Checking a PROM

The C (check) command examines every location of a
PROM to ensure that the entire PROM is clear before the
user attempts to write on it. The PROM must be in the read
socket in the MR873 assembly at the time the command is
given. The user types the following:

Form C

It is not necessary to terminate this command with a
carriage return. As soon as the character C is typed, MRP
begins io examine PROM locations.

Each location is checked to ensure that it is clear. Uf the
entite PROM is clear, the following message will be
displayed:

*C PROM IS CLEAR

If any locations in the PROM have invalid contents, MRP
will display both address and contents in a formatted list.
Following is an example:

*C

ADRS PROM

003 001

127010

322072

376 077

377177

#

Because a PROM consists of one compleie block (400 octal
words) of data, it is not necessary for MRP to supply the

block numbers of addresses with invalid contents. The three
octal digits displayed beneath the ADRS label represcnt
offsets within the block.

MRP automatically outputs a carriage returnfline feed
combination at the end of each line printed; it returns
gutomatically to the monitor when all relevant addresses
and contents have been printed.

9.11.3 W: Writing a PROM

The W (write) command is used to load (or program) a
PROM with the contents of specified addresses in the data
buffer. The PROM to be used for output must have been
checked for clear contents and must be in the write socket
on the MR873. The W command is issued as follows:

Form W addrl addr2<<ce>

Where addel s the starting memory
location in block-offset notation
addr2 is the ending memory
location in block-offset notation

Example *W1H01#377

The user types a carriage return to conclude this commmand.
MRP inserts an automatic line feed and displays the
following message:

WAIT FOR BELL

The PROM will now be programmed. By watching the
lights on the PDP-8 conscle panel, the user can determine
when the PROM has been loaded. During the loading
process, the MQ register displays the binary representation
of all characters loaded. When the panel lights stabilize, the
PROM has been loaded. At this time, MRP causes the
Teletype bell to ring or the audible signal on another
terminal to be produced. A carriage return/line feed is
output and MRP returns to monitor level.

There are several error messages that may be produced
beecause of orrors in address specifications. If an alphabetic
or special character is supplied in an address or if an invalid
address separator is typed, the following message will be
displayed:

*W
? ILLEGAL CHARACTLER

9.13

If the starting offset is greater than the ending offset in the
address specification, the following message will be
displayed:

*W 2043772040

TLOW BYTES OF THE ADDRESS
SPECIFICATION ARE
REVERSED

Because the capacity of a PROM is only one block, the
address range cannot excecd one block and cannot cross a
block boundary. The following are therefore invalid:

*W 20#0;27#377
*W 50437751410

It the block numbers of the starting and ending range
specifications are not the same, the lollowing will oceur:

*W 2090274377

?HIGH BYTES OF THE ADDRESS
SPECIFICATION MUST BE
THE SAME

MRP can be used to duplicate PROMs in a straightforward
online way. Read a PROM into the data buffer and write it
out again using the following commands. This example
assumes that program locations comprise block 36.

*C PROM IS CLEAR Check that PROM is clear

*F 36#0,36#377 Fetch data from PROM
and copy it into data
buffer

*W 36H036#377 Write PROM from data
buffer

WAIT FOR BELL

*V 3640364377 Verify contents of PROM

PROM VERIFIED OK

*

Return to MRP

MRP can also be used to copy PROM-to-tape or
tape-to-PROM. Remember, however, that the capacity of
paper tape is much larger than that of a PROM, so care
must be used when specifying addresses to be copied.

9.11.4 V: Verifying a PROM

The V (verify) command compares specified addresses in
the data buffer with addresses of the PROM in the read
socket on the MR873 assembly. It is issued in the following
way:

Form Vaddrl addr2<ier>

Whera addrl is the starting memory
location in block-offset notaticn
addr2 is the ending memory
location in block-offset notation

Example *V F4#100;,744277

The user types a carriage return to conclude this command.
MRP inserts an automatic line feed, performs the
verification operation, and returns to monitor level,

Therc are scveral error messages thal may be produced
because of errors in address specifications. If an alphabetic
or special character is supplied in an address of if an invalid
address separator is typed, the following message will be
displayed:

*V 3040.30#37A
? ILLEGAL CHARACTER

If the starting offset is greater than the ending offset in the
address specification, the following message will be
displayed:

*V 20#377,2040
LOW BYTES OF THE ADDRESS SPECIFICATION
ARE REVERSED

This message only occurs when the starting and ending
block specifications arc the same.

Because the capacity of a PROM is only one block, the
address range cannot exceed one block and cannot ¢ross a
block boundary. The following are thercfore invalid:

MVOTOHOTSHITT
*V a0#377.61#2

If the block numbers of the starting and ending range
specifications are not the same, the following will occur:

*V 20#0;27#377
THIGH BYTES OF THE ADDRESS SPECIFICATION
MUST BE THE SAME

If the specifications are outside the range of the current
data buffer, the message shown below will be displayed.
The current data buffer is assumed to include blocks 20
through 27.

*V 7040704377

?HIGH BYTE OF THE ADDRESS SPECIFICATION
QUTSIBE TIHE RANGE OF THE CURRENT
DATA BUFFER

The contents of each PROM location is compared to the -
contents of the corresponding data buffer address. If the
address contents are all the same, the following message will
be displayed;

PROM VERIFIED OK

If any locations do not correspond, MRP will display both
addresses and contents jn a formatted list. Following is an
example:

*V 36#036#377
ADRS BUF PROM
305 001 210
375007010

W

Because a PROM consists of one complete block of data, it
is not necessary for MRP to supply the block numbers of
addresses that cannot be verilied. The three octal digits
displayed beneath the ADRS label represent offsets within
the block. The digits that appear beneath the BUF label are
the contents of the specified offset in the data buffer; the
digits bencath PROM arc the contents of the PROM at that
of fset.

MRP automatically outputs a carriage returnfline feed
combination at the end of each line printed. [t returns
automatically to the montior level when all relevant
addresses and contents have been printed.

9.12 LOCATION-EXAMINATION COMMANDS

MRP commands have been implemented to facilitate the
examination and modification of memory locations. All
commands in this category consist primarily of special
Teletype keyboard characters as shown in Table 9-5.

Table 9-5
Location-Examination Commands
Command Meaning
f Opens specified location for
modification

carriage return | Closes current location

line feed Cioses current location and opens
next location
Closes current location and reopens
it

t Closes current location and opens

previcus location

9.12.1 /: Opening a Memory Location

The / command allows the user to specify that a particular
data buffer location is to be opened and the contents of
this location displaycd. These contents can subsequently be
changed. The command is issued in the following way:

Form addr/

Where addr is the location to be cxamined
in block-offset notation

Example *45#100/ 001

In response to the prompting character, the user types the
address to be cxamined and f{ollows it with a slash (/)
character. MRP automatically inserts a space after the slash
and prints out the contents of the examined location in
three-digit octal form. The user can then modify the
contents of the location by typing the new value to replace
the value displayed, as follows:

*4541100/ 001 111

9.15

The space between the old and new values is also output by
MRP.

To terminate the command line, returning control to MRP
or cxamiring another location, carriage return, line feed,
period, or up-arrow can be typed. The different
characteristics of these Teletype keys are presented in the
following paragraphs.

9.12.2 Carriage Return: Closing an Open Location

In addition to its typical function as a statement terminator
(for example, in F and P commands), the RETURN key can
be used to close an open location that is being examined. A
carriage return is typed at the end of the following
command

*12#141/ 000 11 1<cr>

to indicate that the specified change in contents is to be
made, and the location at block 12, offset 141 is to be
closed. After the RETURN key is pressed, control returns
to MRP and the prompting asterisk is displayed. No further
locations are opencd until explicitly directed by another
command.

9.12.3 Line Feed: Opening the Next Location
The line feed character instead of the carriage return can be
typed to perform three distinct actions:

1. Close the location being examined.

2. Open the next location and display its contents.

3. Allow modification of the displayed location.

Use of the line feed in terminating the following command
*2THOf 377>

causes the location at block 27 offset 0 to be closed and the

location at block 27 offset 1 to be opened avtomatically.

The fuil interaction looks like

*27#0f 377>
27 001/ 001

where the user types only the initial 27#0/ specification.

The long form of this function requiras that the user issue
two separate examination commands, as {ollows:

*27#0f 37 7<Cer>
*27#1/ Q01

9.12.4 .: Reopening the Current Location
The period (.) is used to perform the following functions:

1. Close the location being examined.
2. Reopen the same Ilocation and display its
contents.

3. Allow madification of the displayed location.
Use of the period is valuable when correcting an incorrectly

altered location or when verifying that a change has been
made. For example, in the following:

*45#10/ 000 770N\NT\326\671.
45010/ 271

the use of RUBQUT characters, echoing deleted characters,
has made the modification of location 45#10 difficult to
read. The period is used to verify that the desired
correction has been made. Nate that rubbing out 770 has
indicated that 770 was truncated to 370, since MPS
addresses can include offscts of only eight bits.

9.12.5 t: Opening the Previous Localion

Use of the up-arrow (1) character complements the use of
line feed. While line fecd allows the user to view the next
location, up-arrow causes the previous location to be
opened. The following functions are performed:

1. Close the location being examined.

2. Open the previous location and display its
cantents.

3. Allow modification of the displayed location.

Use of the T in the following commands
*22#0/ 0011

21 377/ 177 000t
21 376/ 001

9-16

allows the user to view the contents of the location before
2240, 214377 (177) and to modify that location; T s used
again to view the contents of location 21#376 (001).

9.13 DISPLAY COMMAND

The I command has been implemented to allow the MRP
user to obtain listings of part or all of the data buffer on
the Teletype or the line printer.

9.13.1 D: Dumping Address Contents

The D {dump} command allows the user to obtain a listing
on the Teletype or line printer of a range of memory
addresses in the data buffer. Tt is issued as follows:

Form [addr] addr2<cr>

Where addr]l is the starting memory
location in block-offset notation
addr2 is the ending memory
location in block-offset notation

Example *D 1H#0;7#377

There are several error messages that may be produced
hecause of errors in address specifications. If an alphabetic
or special character is supplied in an address or if an invalid
address separator is typed, the following message will be
displayed:

*D 30#037#37N
7 ILLEGAL CHARACTER

If the starting block is greater than the ending block in the
address specification, the following message will be
displayed:

*D 7#0:0#377
? ADDRESS SPECIFICATION ERROR:
BLOCK 1 > BLOCK 2

If the starting offsct is greater than the ending offsel in the
uddress specification, the following message will be
disptayed:

*D 2043772040
7LOW BYTES OF THE ADDRESS SPECIFICATION
ARE REVERSED

This message occars only when the starting and ending
block specifications are the same,

A dump command can access only the cwrent data buffer,
If the buffer is assumed to include blocks Q through 7, the
following are illegal specitications:

*D 1#H0:;36#377
*D 27#377.30#0
*D 70#0.70#377

The following interaction will take place:

*D 1#0:36#377

HIGH BYTE OF ADDRESS SPECIFFICATION
IS QUTSIDE THE RANGE OF THE
CURRENT DATA BUFFER

The user terminates the D command by typing a carriage
return; MRP inserts a line feed and proceeds to type out the
desired listing in the following format:

*D addr?; addr2<cr>
addrl/ contents
addra/ contents
addrb/ contents
addrc¢/ contents
addrd/ contents

addr2/ contents
5

An cxample is included below:

*D FHO;7H#377
01 000/ 000
01 001/ 001
01 002/ 007
01 003/ 000
01 004/ 070

07 377/ 000
#

If the user decides that he need not view the entire dump,
or if the Teletype or line printer requires maintenance of
any kind, the listing can be terminated by typing CTRL/C
on the Teletype keyboard.

917

The addr2 parameter is not optional. If only one address is
to be dumped the user must nevertheless supply starting
and ending range specifications. In this case, both are
identical, as in the foltowing:

*D 36#0.36#0

2.14 CONTROL COMMAND
One MRP command has been implemented to allow the user

to clear memory locations or to fill specified addresses with
a constant,

9.14.1 L: Loading Memory with a Constant
The L command is used to load a segment of memory with
a specificd counstant. it is issued in the following way:

Form L addrl ;addr2;[constant] <cr>

Where addrl is the starting memory
location in block-offset notation
addr2 iz the ending memory
location in block-offset notation
constant is optional and represents
the value to be inserted in the
memory location

Lxamples *L 76#340;76 #3527
*L 20#343.27#377,

The user terminates the command with a carriage return,
and MRP inserts an automatic line feed. The addr2
parameter is not optional. If only one address is ta be
cleared the wser must ncvertheless supply starting and
ending range specifications. In this case, both are identical,
as in the following:

*L 70#0,7040,

L is often wsed to clear memory locations; if constant is
omitted from the command, zero is the default, and the
memory range specified is zeroed. The semicolon following
addr2 must be supplied, cven if constant is omitted froem
the command.

There are several error messages that may be produced
because of errors in address specifications. If an alphabetic
or special character is supplied in an address or if an invalid
address separator is typed, the following message will be
displayed:

*L 30#037#37Q
? [ILLEGAL CIHARACTER

If the starting block is greater than the ending block in the
address specification, the following message will be
displayed:

*L 7#0:0#377;
7 ADDRESS SPECIFICATION ERROR:
BLOCK 1 > BLOCK 2

If the starting offset is greater than the ending offset in the
address specification, the following message will be
displayed:

*E 20#37720%0;
7LOW BYTES OF THE ADDRESS SPECIFICATIONS
ARE REVERSED

This message only occurs when the starting and ending
block specifications are the same.

The load command can be used to redefine the current
window on the data buffer. If the buffer is defined as
extending from 2040 through 27#377 and the lollowing
comunand is issued:

*L T2H#0;734377;

9-18

MRP will display the following message:

CLEARING THE DATA BUFFER
THE NEW DATA BUFFER [S FROM
BLOCK 70 TO BLOCK 77

The user has the option of electing not to redefine the data
buffer at this time. If an error has been made or if valuable
information is still in the current data buffer, the user can
simply type CTRL/C at any time while the message is being
displayed. After the message has been typed completely,
the data bulfer will be redefined as extending from 7040
through 77#377.

Although the data buffer can be redefined by specifying an
address range in the new data buffer, a load cannot actually
cross the boundary of a data buffer. Therefore, if the
current data buffer extends from 20#0 through 27#377,
the following is legal:

*1 TOR07T#377,

but the following example is illegal and resulis in the
message displayed:

*L 26#032#377;

THIGH BYTE OF ADDRESS SPECIFICATION
IS OUTSIDE THE RANGE OF THE
CURRENT DATA BUFFER

This chapter contains a series of sample programs that
might be usefu] as a reference when the user begins to
construct programs based on the syntax described in
Chapter 6. This sample code is heavily commented and is
included in the form of assembly listings. Symbo! table
listings are included when indicated by the setting of the
PDP-8 Switch Register.

10.1 LOADING REGISTER IN RAM
The following example illustrates suppression of symbol
table output during assembly.

*77#200
RAM = 76#340

CHAPTER 10
SAMPLE PROGRAMS

JOTERATION = LOAD ADDRESS OR JUMP TO 77#200

/PUT REGISTER H IN REGISTER D
/PUT REGISTER L IN REGISTER E

{OPERATION = LOAD ADDRESS OR JUMP TO 77#202

77 200 335 SAVELIL, LDH

77 201 346 LEL

77 202 066 SAVREG, LLI RAMT
340

77 204 056 LHI RAM
076

77 206 370 LMA

77 207 060 INL

77 210 371 LMB

77 211 060 INL

77 212 372 LMC

77 213 060 INL

77 214 373 LMD

77 215 060 INL

77 216 374 LME

TP 217 000 HLT

§
000 ERRORS

10-1

/SAVE REGISTERS A—E
/IN LOCATION 764340 (37340)

/STORE A
/B

/C
/D
/AND E

/HALT

10.2 READING A BLOCK OF DATA

J/READ IN A BLOCK OF DATA OF 10{OCTAL)

OPDEF INPUT;INP® /DEFINE OPCODE INPUT
OPDEF CALL;106;2 /DEFINE OCPCODE CALL
START = 04#200
*START
04 200 056 LHI BLK? /LOAD ADDRESS BLOCK TO H AND L REGS
Q04
D4 202 066 LLI BLK
230
04 204 016 LBI 10 /SET COUNT TO 10
010
04 206 106 AGAIN, CALL READIN /READ A BYTE OF DATA
220
004
04 211 370 LMA /STORE IT IN BLOCK
04 212 060 INL J/INCREMENT POINTER IN BLOCK
04 213 011 DCB /DECREMENT COUNTER
a4 214 110 JFZ AGAIN /IF NOT DONE, GO BACK FOR NEXT
206
004
04 217 000 HLT
04 220 103 READIN, INPI {INPUT STATUS
04 221 044 NDI 40 /MASK “DA” (IGNORE ERRORS)
040
04 223 150 JTZ READIN {WAIT FOR “DA™
220
004
04 226 101 INPUT /GET A BYTE OF DATA
04 227 007 RET /RETURN
04 230 000 BLK, BLOCK 10
000
000
000
000
000
Q00
000
§

AGAIN 04 206
BLK 04 230
READIN 04 220
START 04 200

000 ERRORS

10-2

10.3 CONVERSION/PRINT SUBROUTINES
The following subroutines arc included as examples of MLA
code. They must be assembled with other segments of a

program.
/BINARY TO DECIMAL CONVERSION AND PRINT
/B AND C REGISTERS ARE USED FOR WORKING VARIABLES
/E REGISTER WILL HOLD FINAL DIGIT TO BE PRINTED
JCAL DCM TO PRINT INTEGER PORTION OF NUMBER
JCAL FRA TO PRINT FRACTIONAL PART
/CAL EITHER WITH DATA IN AC
224042
22 042 066 DCM, LLI TENS
062
22 044 026 LCT-3 /TYPE 3 PLACES BEFORE DECIMAL POINT
375
22 046 104 IMP DCP
055
022
22 051 066 FRA, LLI TENTH
065
22 053 026 LCI -2 /TYPE 2 PLACES AFTER DECIMAL POINT
376
22 055 310 DCP, LBA /SAVE BINARY IN B
22 056 046 LEI 60 /INIT E TO CHAR (0)
060
22 060 104 IMP SKP
064
022
22 063 310 SVB, LBA /SAVE NEW B
22 064 250 SKP, XRA /CLEAR AC & CARRY
22 065 201 ADB /ADD B TO AC
22 066 207 PTR, ADM /TRIAL SUBTRACT OF CONVERTER
22 067 100 JFCCNS /SKIP IF CARRY NOT SET
076
022
22 072 040 INE
22073 104 JMP SVB /ELSE, BUMP DIGIT AND LOOP
063
022
22 076 106 CNS, CALTYP /PRINT DIGIT
361
021
22 101 046 LEI 60 /RESET ‘E’
060
22 103 060 INL JADVANCE TO NEXT CONVERTER
22 104 020 INC /ARE WE DONE?
22105 110 JFZSKP /NO
064
022
22 110 007 RET /YES, RETURN TO CALLING ROUTINE

10-3

24 062

24 065

21
21

2t

21

21
21

361
362

364

367

370
371

234
366
377
347
375

103
044
020
150
3601
021
304
121
007

*24#062

TENS, DATA 234366377 [-100,-10,-1
TENTH, DATA 347,375 /-.1,-.01
*21#3601
fTYPE A CHARACTER FROM REGISTER ‘E’
/
TYP, INP1 {READ TIIE *UART' STATUS
NDI 20 {TRANSMITTER BUFFER EMFTY?

JTZTYP {NO, WAIT

LAE {PRINT CHARACTER IN REGISTER ‘E’
OUuTo
RET

10-4

APPENDIX A
SUMMARY OF EDITOR (MLE) COMMANDS

Category Command Example Function Reference

READ R R Read text from paper-tape rcader and 5.6.1
' append it to text buffer.

APPEND A A Read text from terminal and append it to 56.2
text buffer,

INSERT I I Insert text from terminal before line I in 5.63
text buffer,

nl 31 Insert text from terminal before line n in 5.6.3
text buffer.

LIST L L List the contents of the text buffer on 5.7.1
the terminal.

nL 100L List line n of the text buffer on the 5.7.1
terminal.
maL 1,50L List lines m through n of the text buffer 5.7.1

on the terminal,

PUNCH P P Punch the contents of the text buffer on 572
the high- or low-speed paper-tape punch
(selection depends on setting of Switch
Register bit 10).

nP 6P Punch line n of the text buffer on the 57.2
paper-tape punch.

m,nP 100,120 Punch lines m through n of the text 5.7.2
buffer on the paper-tape punch.

FORM FEED F F Punch a form feed (four blanks, a form 573
feed character, and approximately iwo
inches of blank tape) on the paper-tape
punch,

Al

Category Command Example Function Reference
TRATLER T T Punch a trailer {approximately four 5.7.4
inches of blank tape) on the paper-tape
punch.
NEXT N N Perform the functions of P, F, K, and R 5.7.5
respectively.
nN 10N Perform the functions of P, F, K, and R 5.7.6
respectively, n times in sequence.
CHANGE nC 100C Delete line n of the text buffer and 5.8.1
replace it with the text entered from the
terminal.
m,nC 1,10C Delete lines m through n of the text 5.8.1
buffer and replace them with the text
entered from the terminal.
DELETE nD 42D Delete line n from the text buffer. 5.8.2
m,nD 12,20D Delete lines m through n from the text 582
buffer.
GET G G Qutput the first tagged {labeled) line after 583
the current location in the text buffer on
the terminal.
nG 15G Output the first tagged line after line n in 583
the text huffer on the terminal.
KILL K K Kill (erase) the entire contents of the text 5.84
bufTer.
MOVE m,n$iM 1,10820M Move lines m through n in the text buffer 5.84
to the location just before line j.
SEARCH s S Search the entire text buffer for all 5.8.6
oceurrences of the character entered from
the terminal, but not echoed, after the
carriage return.
nS 108 Search line n for occurrences of the 5.8.6
character entered from the terminal and
then allow command madification.
m.nS 1,108 Search lines m through n for occurrences 5.8.7

of the character entered from the
terminal and then allow command
modification.

A-2

APPENDIX B
SUMMARY OF ASSEMBLER (MLA) INSTRUCTIONS

Instruction Example Function Reference

Li{1)(2) LAB Load register 1 with the contents of register 2. 3.3.1

LM LDM Load a register with the contents of memory. 3.31

LMr LMA Load memory with the contents of a register. 331

Li LAI A+B Load a register with the byte of data immediately following 332
the instrugtion,

LMI ILMI 104 Load memory with the byte of data immediately following 332
the instruction.

Inr INL Increment a register. 333

DCr DCB Decrement a repister. 334

ADr ADD Add the contents of a register to the accumulator. 34.1

ACr ACB Add the contents of a register and the carry flip-flop to the 34.1
accumulator.

SUr SUB Subtract the contents of a register from the accumulatos. 34.1

SBr SBD Subtract the contents of a register and the carry flip-flop 34.1
from the accumulator.

NDr NDB Logical AND the contents of register with the accumulator. 34.1

XRr XRA Exclusively OR the contents of a register with the 34.1
accumulator.

ORr ORB Inclusively OR the contents of a rogister with the 34.1
accumulator.

CPr CPB Compare the contents of a register with the accumulator 341

and set the status flip-flops.

ADM ADM Add the contents of memory to the accumulator. 34.2

B-1

Instruction Example Function Reference

ACM ACM Add the contents of memory and the carry flip-flop to the 34.2
accumulator.

SUM SUM Subtract the contents of memory from the accumulator. 34.2

SBM SBM Subtract the contents of memory and the carry flip-flop 3472
from the accumulator.

NDM NDM . Logical AND the contents of memory with the 342
accumulator.

XRM XRM Exclusively OR the contents of memory with the 342
accumulator.

ORM ORM Inclusively OR the contents of memory with the 342
accumulator,

CPM CPM Compare the contents of memory with the accumulator 34.2
and set the status {lip-flops.

ADI ADIL 2 Add the byte of data immediately following the instruction 343
te the accumulator,

ACI ACl104 Add the byte of data immediately following the instruction 343
and the carry flip-flop to the accumulator.

Sul SULt Subtract the byle of data immediately following the 343
instruction from the accumulator,

SBI SBI & Subtract the byte of data immediately following the 343
instruction and the carry flip-flop from the accumulator.

NDI NDI 100 Logical AND the byte of data immediately following the 343
instruction with the accumulator.

XRI XRI 340 Exclusively OR the byte of data immediately following the 343
instruction with the accumulator.

ORI ORI 102 Inclusively OR the byte of data immediately following the 343
instruction with the accumulator.

CPl CPl4 Compare the byte of data immediately following the 34.3
instruction with the accumulator and set the status
flip-flops.

RLC RLC Rotate the contents of the accumulator one bit to the left 344
and into the carry flip-flop.

RRC RRC Rotate the contents of the accumulator one bit to the right 344

and into the carry flip-flop.

B-2

Instruction Example Function Reference

RAL RAL Rotate the contents of the accumulator one bit to the left 344
and through the carry [lip-flop.

RAR RAR Rotate the contents of the accumulator one bit to the right 344
and through the carry flip-flop.

IMP JMP CKDONE Jump unconditionally to the address specified in the 351
instruction.

JFe JFZ NXTBLK Jump on a false flip-flop conditicn to the address specified 351
in the instruction.

JTc JTS ER Jump on a true flip-flop condition to the address specified 351
in the instruction.

CAL CAL GETBYT Call unconditionally the subroutine specified in the 352
instruction,

CFc CFZ ALL Call on a false flip-flep condition the subroutine specified 352
in the instruction.

CTc CTP CKIT Call on a true flip-flop condition the subroutine specified in 3.5.2
the instruction,

RET RET Return unconditionally from a subroutine, popping the 353
stack up one level.

RF¢ RFZ Return on a false flip-flop condition from a subroutine, 353
popping the stack up one Tevel.

RTc RTS Return on a true flipflop condition from a subroutine, 353
popping the stack up one level.

INP INP Read one byte of data from the input device into the 3.6.1
accumulator.

ouT ouT Write ane byte of data from the accumulator to an output 36.2
device.

INPO INPO Rcad data from the UART. 363

INP] INP1 Read status from the UART. 3.0.3

OuUTo OUTO Output data to UART. 3.63

HLT HLT Halt the Assembler. 3.7.1

RST RST Restart the Assembler with a call to low memory. 3.7.2

ION ION Enable external events. 373

IOF IOF Disable external cvents. 373

B-3

APPENDIX C
SUMMARY OF
ASSEMBLER PSEUDO-INSTRUCTIONS

Pseudo-Instruction Function Reference

$ Signals end of assembly language program. 6.10.1

PAUSE Causes pause in Assembler processing until CONTinue 6.10.2
switch is pressed.

*expression Specifies initial program location counter and can be 6.103
used to reset current location counter.

OCT Sets radix for subsequent numbers in program to 6.10.4
actal (base 8).

HEX Sets radix for subsequent numbers in program to 6.104
hexadecimal (base 16).

DEC Sets radix for subsequent numbers in program to 6.10.4
decimal (base 10).

EXPUNGE Deletes instruction symbol table. 6.10.5

OPDEF mnemonic ¥aluetype Allows programmer to define own instructions 6.10.6
according to value and type given.

tabel, DATA nO;ninZ;nm Assigns values to incremental memory locations. 6.10.7

label, BLOCK size[iinitial[sincrement]) Assigns a block of memory of the size given with 6.10.8
values of zero, an initial value, or a set of increments.

tabel, TEXT literalsy Specifies ASCH character strings and/or numeric 6.10.9
representations of ASCII characters to be included in
a program.

label, ADDR a0ala2;...am Assigns address constants to memory locations, 6.10.10

APPENDIX D
SUMMARY OF MICROPROCESSOR

DEBUGGING PROGRAM (MDP) COMMANDS

Command Example Function Reference
R R Read paper tape from low-speed 8.8.1
reader.
Paddriaddr2 P A #041#377 Punch out an address range on 882
low-speed punch.
T T Produce leader or traiter tape (octal 883
code 200} on low-speed punch.
E E Punch cnd block and trajler tape on 8.8.4
low speed punch.
addr/ | #0/f Open specified location for 8.9.1
examination or modification; specific
line lerminators may cause additional
locations to be examined:
<cr>» close location. 8.9.2
<If> close location and open next 893
onc.
close location and reopen it. 8.9.4
t close location and open 8.9.5
previous one.
D addrl;addr2 D 1#0;14377 Dump specified address tange on 8.10.1
Teletype printer.
S 5 Display and allow modification of 8.10.2
status register contents,
X X Display and allow madification of 8.103
index register contents.
G addr G 104121 Execute program to breakpoint 8.11.1

D-1

location.

Command Example Function Reference

B addr B 37#0 Set program breakpoint at specified 8.11.2
location,

L addr] addr2;fconstant] L 76#340;76#377;7 Load a segment of memory with a 8.11.3

specified constant.

D-2

APPENDIX E
SUMMARY OF MICROPROCESSOR
ROM PROGRAMMER (MRP) COMMANDS

Command Example Function Reference
R R Read paper tape from low-speed or 9.10.1
high-speed reader.
Q Q Clear data buffer and continue to read 9.10.2
paper tape.
P addrl addr2 P 45#100:47#377 Punch out an address range on 9,103

fow-speed or high-speed punch.

T T Produce leader or trailer tape (octal 9.10.4
code 200) on punch.

E E Punch end block and trailer tape on 9.10.5
punch,

F addrl addr2 F 30#0.30#377 Read contents of PROM into data 9.11.1
buffer.

C C Check that each location of PROM is 9.11.2
clear.

W addrt addr2 W 1#0;14377 Write (program) PROM from data 9.11.3
buffer.

V addrladdr2 V T4#100;744#377 Verify that addresses in data buffer 9.11.4
and PROM are the same.

addr/ 1404 Open specified location for 9.12.1

examination or modification; specific
line terminators may cause additional
locations ta be examined:

<er>> close location. 9.12.2

<If>> close location and open next 9123
one.

. clese location and reopen it. 9.124

t close location and open 9.12.5

previous cne,

E-1

Command Example Function Reference

D addrl addr2 D 1#0;7#377 Dumyp specified address range on 9.13.1
Teletype printer.

L addrl addr2;[constant] L 20%343;27#377;1 Load a segment of the data buffer 9.13.1

with a specified constant.

E-2

APPENDIX F
BLOCK-OFFSET TO OCTAL CONVERSION

This appendix can be used if it is ever necessary to convart the block-offset notation in assembly langnage programs
and output to octal notation. Only the first and last conversions are given for each block. To convert an offset
within a given block, simply add the offset to the starting octal location in the block. For example:

Block Offset Octal
11 0 4400
11 377 4777

Ta convert block 11 offset 227 to octal, simply add 227 to 4400. The correct octal equivalent is thus 4627.

Block Offset Octal Decimal . Block Offset Octal Decimal
1 0 0400 0256 5 0 2400 1280
1 377 0777 0511 5 m 2977 1535
2 0 1000 0512 6 0 3000 1536
2 377 1377 0767 6 377 3377 1791
3 0 1400 0768 7 0 3400 1792
3 377 1777 1023 7 377 3777 2047
4 0 2000 0124 10 0 4000 2048
4 377 2377 1279 10 377 4377 2303

F-1

Block
11
12
12
13
13
14
14
15
15
16
16
17
17
20
20
21
21

22

22

Offset

377

377

377

377

377

377

377

377

377

377

Octal

4400

4777
5000

5377
5400

5777
6000

6377
6400

6777
7000

1377
7400

T
10000

10377
10400

10777
11000

11377

Decimal

2304

2559
25600

2815
2816

3071
3072

3327
3328

3583
3584

3839
3840

4095
4096

4351
4352

4607
4608

4863

F-2

Block

23
23
24
24
25
25
26
26
27
27
30
30
31
31
32
32
33
33

34

34

Offset

377

3

377

377

377

377

377

377

377

377

Octal

11400

11777
12000

12377
12400

12777
13000

13377
13400

13777
14000

14377
14400

14777
15000

13377
15400

15777
16000

16377

Decimal

4864

5119
5120

5375
5376

5631
5632

5887
5888

6143
6144

6399
6400

6655
6656

6911
6912

7167
7168

7423

Block

35
35
36
36

37

37
40

41
42

42

43

43
44

45
46

46

Offset

0

377

377

377

377

377

3

377

377

377

377

Octal

16400

16777
17000

17377
17400

17777
20000

20377
20400

20777
21000

21377
21400

21777
22000

22377
22400

22777
23000

23377

Decimal

7424

7679
7680

7935
7936

8191
8192

8447
8448

8703
8704

8959
8960

9215
9216

2471
9472

9727
9728

9983

F-3

Block

47
47
30
50
51
51

52

52
53

54
55

55
56
56
57
57

60

60

Offset

377

377

377

n

377

377

377

377

377

377

Octal

23400

23777
24000

24377
24400

24777
25000

25377
25400

25777
26000

26377
26400

26771
27000

27377
27400

27777
30000

30377

Decimal

9984

10239
10240

10495
10496

10751
10752

11007
11008

11263
11264

11519
11520

11775
11776

12031

12032

12287

12288

12543

1

62
62

63

63
64

65
56

66
67
67

70

70

Offset

377

377

377

377

377

377

377

377

Octal

30400

30777
31000

31377
31400

3
32000

32377
32400

32177
33000

33377
33400

33777
34000

34377

Decimal

12544

12799
12800

13055
13056

13311
13312

13567
13368

13823
13824

14079
14080

14335
14336

14591

F4

Block

71

71

72
72
73
73
74
74
75
75
76
76

77

77

Offset

377

377

377

377

377

3n

377

Octal

34400

34777
35000

35377
35400

35777
36000

36377
36400

36777
37000

31377
37400

37777

Decimal

14592

14843
14848

15103

15104

15359
15360

15615

15616

15871

15872

16127

16128

16383

APPENDIX G
7-BIT ASCII CODE

Qctal Char. QOctal Char. Octal Char. Octal Char.
Code Code _ Code Code

000 NUL 040 Y 100 @ 140

001 SOH 041 ! 101 A 141 a
002 STX 042 » 102 B 142 b
003 ETX 043 # 103 C 143 6
004 EOT 044 $ 104 D 144 d
005 ENQ 045 % 105 E 145 e
006 ACK 046 & 106 F 146 t
007 BEL 047 ' 107 G 147 g
010 BS 050 (110 H 150 h
01t HT 051) 111 I 151 i
012 LF 052 * 112) 152 i
013 VT 053 + 113 K 153 k
014 FF 054 . 114 L 154 1
015 CR 055 - 115 M 155 m
016 SO 056) 116 N 156 n
017 SI 057 / 117 0 157 o
020 DLE 060 0 120 P 160 p
021 DCI 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t
025 NAK 065 5 125 U 165 u
026 SYN 066 6 126 v 166 v
027 ETB 067 7 127 W 167 w
030 CAN 070 8 130 X 170 x
031 EM 071 9 131 Y 171 y
032 SUB 072 : 132 Z 172 z
033 ESC 073 : 133 [173 i
034 FS 074 < 134 \ 174 |
035 GS 075 = 135] 175 }
036 RS 076 > 136 { 176 ~
037 Us 077 ? 137 - 177 DEL

G-1

KORTHEAST
REGIONAL DFFICE:
335 wyman Steest. 'Wilthem, Megs 02154

Tulephone: ([B17)500-0530:0410 Daiaphone: S17-200-30012 or 3003
CONNLCTICUT

Meriden

240 Pemoroy fve , Manden, Cann, 00540

Tolephone (2032276414738 Dataphone: $03-237-2005
Fulrfinld

1275 Pogt Poed, Falrfleld, Conn. 08430

Telephena: (203)-255-5661

NEW LIRK

Rachaalar

13 Allgne Creeh Acadl. Pochesied. Naw Yorh

Tataphone (7'61481-1700 Daluphons: TIE-244.1080
Byracums

B0 Tlanapgan Aoad. Syracuse, Mew York F211

Tolephians (215)-437-153373045 Datgohone: 054544157
MASSACHUSEFTS
Marltoraugh

Lra Iron Way
Marloarcagh. Mass, 01752
Telaphonn (8174617410

MID-ATLANTIC

RECTOMNAL QFFICE.

L 5. Aouts 1. Princelen, Mew larasy 8540

Te'sprota. (603) 4522540

FLORIDA

Cvlanda

Sutta 130, 7041 Lede Elenyr DOrlve, Drlandg, Flgride 3809
Teldphona. [EFASTHE Detaphone 3058592360
GECRGEIA

Atlgnta

2815 Clearelew Placea. Sulta 100

Atlantn, Gaargla 040
Talephone: (404)-451-1411
NORTH CARCLINA
Durham/ Chapel Hill
Exacutlve Park

ore] Chesal HII Bliwd.
Ourham Nerth Cornlina 3707

Talaphone [F8-483-3347 Oatephons 910405152
HEW JERSEY

Fafinld

253 Fanaelc Ava., Faidleld. New largey 071

Talephona. (0032279080 Datoghcne 20:-?27—92&)
Meluchen

BS Muain Struet, Metuchen. Mew larsey DE34T

Telephora: [H]-543-4' 00/2000 Dmanhono 20454801 84

Talaxn F10-W7-034

Diwteplionn. 305-855-2360

EUROPEAN HEADD‘UARTEFIS
Dgitel E Eurapa
81 route da I"Arrg
1211 Ganave ¥ Swilzarland
Telaprota. 42 70 5D Talma. 22 E83

FRANCE
Digieal Equipmant Fronce

Conirg Stz — Cidax L 225
4533 Aungle, France

Telapnana BET-2333 Telax 2040
CRENDBLE

Ligieal Equigment France

Tour Mangin

18 Rug My Gl Mangie
W wensble. Frante
Tuelaphuna {76]-87-584H Tafew 212.70802

GERMAM FEDERAL REPUBLIC
Diglral Equigmant GmbH
MUNICH

8 Muanchan 13, Watlenmtalnploiz 2
Talgphone: 081135051 Telss- S24000
COLOGNE

b Koaln a1, Amcherar Stragas 311
Talaphora: 02214440 55 Tnlex SAB-2MD
Tulegrarn FIp Chip Koeln
FRANKFURT

B2 Wi lrenburg 2

Am Forgtaun Orawvslruch 57
Talephons: 081025528 T
HANNOVER

3 Hunngver, Podbrel skistrange 102
Telaphonn: d5I-69-0085 Tales: GEROG)
STUTTGART

073 Kamam. Sluttpert
Moo Pole-Swrases 1
Talaphons: {0771]-45-50 65

AUSTRIA

Dighel Equipmem Carcorstian Ges m.b.H.
VIEMNA

Marlahlfarecragan 134, 1150 Vianna 15, Ausiris
Telephann. 85 50 8A

UNITED KINGDOM
Cighal Equipment Co. Lid.
UK, HEADOQLIARTERS:
Fountsln Housn. Butls Cantre
Readinp RG1 TOM. Ergland
Trlaphone. (FFM] 583558
BIRMINGHAM

Manay Bulldirgs

B3 Birminghemr B, Sullon Coldlietd
‘Warelckahire. England
Talaphans: 0213555600
BRISTOL

Fiah Fonds Raad. Fish Ponds

Brigtal. England BE1EHD

Tulephons. Briatnl B81-43)

EALING

Bllton Houge Lebridge Rimad, Ealing, London W 6
Talephona 0157920 Telex X3M
EONAURGH

Shial Flcuss, Craigshil, Livingston,

Weat dpihinn. Scodlang
Talaphong F27T35 Telez
LONDOW

Manngamant Houns

A3 Parkar 51, Halborn, Lendon
Wi 7B SPT. England

Telaphuns D1-405- 29147 4067
MAMCHESTER

Arndate Haues

Choater Pond, Swollord, Manchasiar M3E SBH
Tolenhone. {081)-855-70011 Telex:

A179:82

Talme: BA1-722 DE3

Talow BERTR

Telax: XG7.000

3

Talws: 27550

dlilgli]tall

LIGITAL EQUIPMENT CORPORATION
WORLDWIDE SALES OFFICES
CUMPONERTS GROUP HEADGUARTERS

CINE IO AAY. EALBOALDUGH, MAESAC HUEETS D26

e ceipded tADImAEe 8L piohald and g rira Il DT B4B0 05 es [WGE 0ndp) Pesssauhosting cesalenns Taif IYTIAT 7400

DOMESTIC

MIC-ATLANTIC (cont)

Pringeton

5 Raure 1. Princatan. Mow lorsoy 065ad
Telephone. [839) 452 Zaad Drolaphorg: 05403 2040

MNEW YORM

Long Island

1 Huntlngten Quadrangls

Suim 1527 runtrglen Station, Mow York 11745
Talephone. (S15) 634 4131, (212)-Be-8005
Datopnans §1-253- 2815

Manhattan

B1d Fth Sovg., Fhnd Flomr

Mow York, MY G

Talephone: [212H562-2300

PENMNEYLVANIA

Fhiledalphin

Digital Hell

1740 Walton Foad, Blue Sell. Pennaylvarla 19422
Talaphore {215)-025.4200

TENNESSEE

Knaurilie

8311 Kanpaton Pike, Sute 21E
“nosvilla, Tannrasas 37819

Telephene- (615)548-651

WASHINGTON OO

Lanhan 30 Dfice Building

4500 Princman Gardan Parkway, D anham, karyland
Talephone: (3414587900 Darophoae: 301-459-7900 $53

CENTRAL

REGIONAL OFFICE:

1850 Frontape Ruad. Morthbruuk, Blnesle G052

Talephone. (3345982500 Dntaghone. H2-450 2500
Ex 8

Dlatephore: §)5-59405T1

INDIAMA

Indienapalia

21 Boachwoy Drive. Sate G
Indlengplie. Irdlans 48224
Telephone: [37]-245-6341

ILLENE

Chicage

1450 Frontage Rosd

Marlhbresk. |1linels BOE2 Dataphans. 312-493-2500

LOLISTANA
Maw Qrieons
4100 Ridgalake Otlva, Sults 108
Metainie. Louls ans T002
Tolaphane [W)-AA0367

Datsphena. 3172471242

Malapheas GBS 2800

CENTRAL {cont}

MICHIGAN

Arn Arbor

230 Huron Vigw Boulevard, rn arbor, Michigan 8163
Telephona. [315]-760-1150¢ Drataphina: 313-739-9863
Crarronl

23777 Creendrald Aoad
Sutte 138

Soanhflmlg. Michigan 46075
MINNESOTA
Minneazol &

0 Codnr Ava. South, Minnrapalls, Minnesals S50
Talephons, [17)-B5-652-34-5 Dratephone: B12-864-1410
MiSS0URI

Warmda Clhy

12401 Enat d3rd Street, Indageidence, Miwssarl E4155
Telephore- (80437522300 Detephone: E19.431-100

St Loulas

Futw 110, 115 Profre sk Parkway

Marylpnd Heights Misrour! £3043

Talephone: (3476420 Dateghone: GRG-a51-3 60
OHID

Clevelund

2500 Enclid Avenyn, Ewclid, Ohle 44117

Telephong: (216)-245-0484 Dataphong: 210-046.8427
Craytor

311 Kartering Aoulsard
Daylon. OFlg €593
Talephone: (513)-24-3351
DRLAHCMA

Tulsn

341 5. Winsan
Wingtan Eno. Bldg. Sulta 4, Tutss. Ohlshsma 74135
Talaphone: (515)-793.0478 Dotaphone: 018 749 2H4
PEMMSTLY ARIA

Pitlabutgh

A% Fenn Centar Boulavard. Pitlaburgh, Peanoylvanis 15198
Talephons (1712430404 Dwtnphaom 412-824.5736
TEXAS

Dhallge

Plmza Morth, Sulle 513

2660 LBl Framwuy, Duloy, Tean 75034

Telephone: (241620206 Dintaphore: 214-620-2081
HOUSTON

E4SH Hormwatd Dilve

Mantcray Perk. Houston, Tesan 73008

Talephone (M3 715.H71 Datsahane: 71371100
WISCONSIN

llwaLbes

353 Weat Caphal Doive. Milwaukes, Wikeonein B2
Talaphone (1434835110 Dawsphone- 4149820005

Dalaphona: 313-537-3063

Doluphone: 513-208-4724

INTERNATIONAL
UNITED KINGDOM (conl.} ISRAEL
READING DEG Syslems Computars L.
Faunte'n Forsa. Buite Centra TEL Awlv

Asgding HG1 FQM. England
Telephane, [I7M)r533505

NETHEALANDS

Digiel Equipment KA.

THE HAGLUE

Sir winaion Charehllllan 370
Fliawl i/ The Hague, Heiherlards
Talaphone: B4 @7 Telex 2050

BELGIUM
Cigiat Equipment NAJS &
BRUSSELS

Ta'ex B4ET2I8

104 Ave DArlan
045 Brursels, Balglun:
Telephone: 02-13258

SWEDEN

Digital Equipmant AR

STQCKHOLM

Englundavagen ¥. 171 At Salne, Swecan
Telephane. 081390 Telex 170 50
Cohla Digital Slachhglm

NORWAY
Cigial Equipment Corp. ASS
O5LO

Talee: 22T

Trandheimevalon 47
Oelo 5. Morwey
Telephons: $2/68 34 40

DENMATK

Cighat Edutpment Aktlabolag
CLPEMHAGEN

Hallarugvag 63

2200 Halferup, Danmatk

FINLANC

Dignal Equipment 4B
HELGINKI

Titinmaantis &

SF 00T:0 Halainkl 71
Talaphane (R 320133
Cable Dighar Halalnk

SWITZEALAND
Cighal Equiamant Corporation 5.4,
EMEVA

Talsa: 10073 GEC H

2, Qual Eraser Ansarine

Haits Peaale 23, 1211 Gannve B, Switcorland
Talephone fa. (3202 #6 I ond 30 58 B2 ond 30 €€ B3
Te'we 2852010

J‘UR:CH

el Equipment Corp A5

Scl wlfhwusnrstr 35

CH 8051 Zurick, Swatzerlwnd

Talsphony (484141 Telwx 55053

ITALY
Digital Equipmer! S.p.4.
WiLaN

Coese Garlpaldi 4. 20021 Mitano. haly
Telephone- Q2FEMCI51F2000ar5 Telwe- 34333800

SPAIN
Digltal Equinmant Corporation Ld
MADRID

Aaig 'ngenigron 5.4., Earlqun Lariata 12 Madrid 18

Talephon: 215 35 43 Telgs. 3ok
BARCELONA
Alale A, d . lonn @

Talephnna; 221 44 64

Huite 103, Soulhern Hpaakik Siraet
Tal Aviv, e

nel
Talephonrs: (Y] 443114/ 440763 Telax: 322-30-3183

TANADA

Drlgitsl Equipment of Canada, Led.
CANADIAN HEADQUARTERS
P.O. Boa 11500

Qitaws, Ontoriz, Sanads
KZH dKB

Talephone: (613)-502-5F11
TORONTD

2550 Goldgaridge Road, Miuwlosuuga, Sirlarls
Telephone: (416.270.5400 TWH E1{-402-T118
MONTREAL

HMs Cole [e Lisazs

Daoeval. Duebee. Canada hal iy

Talephane (SL4-BXE-53F Teley 610 4224124
CALGARY fEdmantun

Sults 143, 540 Flghar Acad 5 E.

Ca'gaty. Albaria. Coneds

TW¥: 819 542 BT32

Talephoro. (#03) 435 4881 TWI: 403-255-T400
VANCOUVIR

Sulle 202

544 55 Marine Or, Veacowver

British Colurmuia, Canada V82 5¥1
Talephons. (5043253231 Telox. G14-329.2006

GEMERAL INTERNATIGNAL SALES
REGIONAL OFFICE
149 begin Steget, Magnard. Magaachussits 01754
Tulvphone: (B17) BI.5111
From Metrupod L Baston, 636500
TWx: TIQT0207 0212
Cable: CIGITAL MAYR
Talax: BA-B45T

AUSTRALIA
Dig tal Equipmoent Auatralla Py Lid
ALELADE

A Mantrase Avanus

Marmaad. South Sutirelia 5067

Talephone (08) 421333 Talnx: 70082025
BRISBANE

133 L chhardt Street

Spring Ml

Briabana. Quednalnnd. Austrahis 430
Talephone. {072)- 205088 Telax. 200 40618
CANBERRA

27 Collie 5t

Fyahwick, AL T W08 Auglralia

Talaphane: [GE-050075

MELBDURNE

0 Fark Sieam. South baslbaur . vicearla 3303
Hanrralla

Teleghona [03)-000- 266
PERTH

BT Marray Strast
Waal Parth, Wastarn Auglrel o §005

Talephone [6FRI1-431 Telex TH0-E2140
SYDHEY

PO Box 41, Crows MNem
HEW. Auatealis HES
Talaphane. (0 4352566

NEW ZEALAND

Cugets! Equipmant Gorpareten Lo
AUCKEAND

Hiltan Hrua, 43 Quasn Strast, Box 2471
Auchland. Kaw Tanlard

Telephona TES33

Telax. 80 30700

Talsx. TBO-20740

WEST

REGIONAL OFFICE:

313 Sqqupd Way. Sunnyvals, Caliiornla B4066
Telephons: (HE0-715.5200 Dotsphone: 4081251820

ARIZONA

Proonlx

4258 Eam Brogdway Poog, Phoonix, Arizone BSO)
Talagnans (MI5-268-3a88 Oatpphone BOC-268- 1371

CALIFORMIA

Serta Ane

211D . finne Street, Sante Ana. Colitornis B2
lolpphorg: [F4-05-2050 Ogtaphons: 714078 7850
San Dlago

§154 Mlenlon Gorga Rood

Suite 100, Han Mego. Cahfornia
Telephore: {714)-260- 78607070
San Heangcn

1400 Tarcs Bulla. Mountala Yimw, Calbfernis G4oed
Tatephorm: (4159546200 Dataphons 415964 1438
Dk and

RSN Capawater Nelva, Oahland. Coliforni e 94821
Telephyurs: (N51635-5453/ 760 Dataphons 4355827180
West Loa Angatan

1510 Cotrnr Awanas. Log Angslas. Callfornla BOO2S
Tatephore: [213}-475-3791 /4316 Dataphcoe 215478 524
COLDRADD

7301 E. Brellavas Avenye

Suite 5 Eng'swoed. Colorads B0

Telaphore: (A3 7H-8I50 Dataphone. 3637708638

HEW MEXICO

Albaguerque

100 Wearoal ME.. Albeasaroque. Mew Meees 81112
Telophone: [5l5) 296 541105008 Dataphena. S06 334 13%)

QRGO

Paruant

Su'tn 188

5319 & W Wastgote Crive Portiend, Cregon G20
Telmphone: {S03-297-3781./5785

Dataphane 7143801895

uTAR
Salt Laks Criy

429 Lawn Dola Drva Sall Lake iy Lah 84115
Talophone (%:1].4874668 Dataphons 8074670530

WASHINGTON

Ballnwue

13400 W E Bellavur, Redmand Road, Su te 11
Bellevue. Weaahia A0S

guan
Tolephora: (208) 545 4058, 4555404 Cavaphona: 208 747-3754

1APAN

Ciglal Equlpment Corporation Inlernatioral
Kwes Bullding Mo, 18 — Aanes. First Flogr
920 Aksaska 1-Chome

Minato Ky, Tokya 107. lapen
lelaphans: 53627271 Telwy 124408
Mikel Tradlng Co , Lid. [aalsn anlyh
Koama.Kalkan Blrg.

Nr 1804 Nighighimgpshi F-Choma
Minno-Ku, Takyo, Jepes

Talephore: B354 Tolex: TET-4208

PUERTD RICO
Migital Equipmam Corcarsilon De Puatto Ao
407 dal Pargue Strean

Santurce, Puwrta Nico 0817
Talaphore. (806} FE06RF87

ARGENTINA

BUENDS AIRES

Copaln BA,

Wirrey ded 1hnn. 4071 Busnca Bures
Telephone S2UBE Talsw. 0122754

BAAZIL

RIQ DF JAMEIRD — QB
Ambrinx 5.4,

Rup Capcd. 104, 2 8 3 anderes 7C - 19
Flo D lanelrs — GB

Talephora. 284 T408/ 0481 /7828
FAQ PAULC

Ambrivs 5.4

Fum Tuml 535

Saa Ppula -

Talaphors: 42- rmehm £1-012
PORTE ALFQRE — AT

Aua Coranel Vicena 1217001
Porla &lagre -- RS

Telaphona. 27411

CHILE

SANTIAGD

Comaln Cheis Lida. [4alas anhd
Cunilla 14568, Correg 15,

Tetaphona %603 Cabla: COACHIL

INDi A

aomBay

Hinditrar Compubess P L1d.
EI/A L. Imgmohandas Marg
Bamaay-8 (W8} Indin
Tokeuham- 3-1815 38-54
Caialn. TEKHIND

MEXICO

MEXICD CITY

Mealiek. 5 A,

Eupania 406 Ceptoa. 1
Apdo. Postal 12-1012
Maxica 12, O.F.
Taleahone- (90 53009 10

FHILIPPINES

MANILA

Stanlord Compuler Corporaiion

PO Bos 1808

418 Dasnarines E1., Manlla
Telephons 46006 Telp: 742 (357

YEMNEZLIELA

CARACAS

Coanln. £.4.

Apariada BGE

Tinbane Oeande He 1. Carscas 105
Talephone TH-BSEY. TE-0ET7
Coble INSTAUVEN

v 38 0058

Twlez: 011-7554 Planty

COMPON
GROUP

DIGITAL EQUIPMENT CORPORATION, COMPONENTE GROUP, ONE IRON WAY, MARLBOROUGH, MASSACHUSETTS 01782
16171481-7400 TWX 710-347-0348

CRINTED IN U.S5,A. L1174 531008/04/14 20

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	10-01
	10-02
	10-03
	10-04
	A-1
	A-2
	B-1
	B-2
	B-3
	C-1
	D-1
	D-2
	E-1
	E-2
	F-1
	F-2
	F-3
	F-4
	G-1
	xBack1
	xBack2

