aligitlall

user’s guide

Five-user

digitalequipment corporation

8888080808080 086006

EduSystem=20 BASIC

User's Guide

Time=-Sharing,

Five=User

For additional copies, order No.

DEC-8I-KJXA-D from

DEC, Direct Mail, Bldg. 1-1, Maynard, Massachusetts 01754

Price $2.25

First Printing, October 1970

Second Printing, April

Your attention is invited to the last two pages
of this manual. VYour filling in and returning
the Reader's Comments page will be benificial to
you and DEC. Your comments will be considered
for inclusion in subsequent manuals; and, in
case you require assistance, a knowledgeable

DEC representative will contact you. The

How To Obtain Software Information page offers
you a means of keeping up-to-date with DEC's
software.

Copyright (:) 1971 by Digital Egquipment Corporation

Supporting Documents:

Introduction to Programming, 1970

Programming Languages, 1970

These documents may be ordered from DEC, Direct
Mail, Building 1-1, Maynard, Massachusetts 01754.

Registered Trademarks of Digital Equipment
Corporation.

DEC PDP

FLIP CHIP FOCAL
DIGITAL COMPUTER LAB
UNIBUS OMNIBUS

ii

1971

PREFACE

This manual contains a comprehensive description of the EduSystem-20 BASIC!
Programming System -- a five-user BASIC system for use on a PDP—é, -8/L, or
-8/1 computer with from 8K to 32K words of core memory. The manual does not
require prior knowledge of the BASIC language or computers (except when loading

and starting the System, Chapter 9).

The first four chapters explain and show how to use the BASIC language
statements when writing your BASIC programs. Chapter five explains how to
correct and edit the program so that it can be run and, if desired, saved for

future use.

Chapter six reveals some advanced programming techniques which may be used
to enhance program preparation and execution. Chapter seven describes how to
load, start, and respond to BASIC's Initial Dialogue which configures the

System to the desired user configuration.

The CAMP (Computer Assisted Mathematics Program) manuals are available
for those interested in a text to teach BASIC in junior and senior high
schools . (even elementary schools). They were written by teachers for use
by students and teachers in (specifically) grades 7 through 12. Additional
manuals can be obtained from Scott, Foresman and Company, Glenview, Illinois
60025.

DEC provides one set of CAMP manuals with each machine sold, at no addi-
tional cost to the customer.

lBasic (Beginner's All-purpose Symbolic Instruction Code) is a trademark
registered by the Trustees of Dartmouth College.

iii

CHAPTER

CHAPTER

CHAPTER

CHAPTER

TABLE OF CONTENTS

1 INTRODUCTION TO BASIC PROGRAMMING

1.1 ABOUT COMPUTING
1.2 HOW TO USE THIS MANUAL

2 FUNDAMENTALS OF PROGRAMMING IN BASIC

AN EXAMPLE PROGRAM AND OUTPUT
REM STATEMENT

NUMBERS

VARIABLES

LET STATEMENT

ARITHMETIC OPERATIONS
PARENTHESES AND SPACES
FUNCTIONS

Sign Function, SGN(X)

Greatest Integer Function, INT (X)

Truncation Function, FIX(X)

Random Number Function, RND(X)
RANDOMIZE Statement
User-defined Functions, DEF

.

G s wh -

WVOOWWWOW W N O Ul s W N -

DMDNONPONONNOND N DD N NN NN DN
.
=

w

INPUT/OUTPUT STATEMENTS

w
.

READ AND DATA STATEMENTS
RESTORE STATEMENT

INPUT STATEMENT

PRINT STATEMENT

TAB FUNCTION

4 SUBSCRIPTS AND LOOPS

4.1 SUBSCRIPTED VARIABLES
4.1.1 DIM Statement

4.2 LOOPS

4.2 FOR Statement

4.2
4.2

.1
.2 NEXT Statement
3 Nesting Loops

iv

Page

LI T B B |

1
HHEHW®O®O ~J O U & D

NNNNNNIT)NNNNNNN
N - O

w
1
=

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

TABLE OF CONTENTS

TRANSFER OF CONTROL
Unconditional Transfer, GOTO

B DD N
WWwww w
NN DN

.1 IF-THEN and IF-GOTO
2 ON-GOTO

5 SUBROUTINES

GOSUB STATEMENT
RETURN STATEMENT

5.3 STOP AND END STATEMENTS
NESTING SUBROUTINES

6 ERRORS AND HOW TO MAKE CORRECTIONS

SINGLE LETTER CORRECTIONS
ERASING A LINE
ERASING A PROGRAM IN CORE
STOPPING A RUN

7 RUNNING A BASIC PROGRAM

RUN COMMAND
EDITING PHASE

LIST Command
DELETE Command
ALTMODE Key

PUNCHING A PAPER TAPE
READING AND LISTING A PAPER TAPE

> CS T NO 2N \C I G T G I
w N =

8 ADVANCED BASIC

EDIT COMMAND

COMMENTS AND REMARKS
INPUT STATEMENT
ABBREVIATING COMMANDS

0 0 o o
S Np

9 LOADING, STARTING, AND INITIAL DIALOGUE

9.1 LOADING AND STARTING BASIC

Conditional Transfer, IF-THEN, IF-GOTO, ON-GOTO

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

Figure 2-1
Figure 2-2

Figure 3-1

TABLE OF CONTENTS

BASIC'S INITIAL DIALOGUE
RECONFIGURATION
SYSTEM SHUTDOWN
NUMBER OF LINES ALLOWED
SUMMARY OF BASIC STATEMENTS
SUMMARY OF BASIC EDIT AND CONTROL COMMANDS
ERROR MESSAGES
IMPLEMENTATION NOTES

READ-IN MODE LOADER

ASCII CHARACTER SET

An Example BASIC Program
Modulus Arithmetic Program

Interest Program

vi

Page

CHAPTER 1

INTRODUCTION TO BASIC PROGRAMMING

BASIC is an easy to learn, conversational computer language for scientific,
business, and educational applications. It is used to solve both simple and

complex mathematical problems and is directed from the user's Teletypel

In writing a computer program, it is necessary to use a language or vocabulary
that the computer will recognize. There are many computer languages and BASIC is
one of the simplest because of the small number of readily learned commands
needed, its easy application in solving problems, and its practicality in an

educational environment.

BASIC is similar to other programming languages in many respects and is
aimed at facilitating communication between the user and the computer. The novice
computer user will benefit from reading the entire manual from the beginning
The user who is already familiar with a language such as FOCAL or FORTRAN should

first turn to the language summary at the end of the manual.

As a BASIC user, you type in your computational procedure as a series of
numbered statements, making use of common English words and familiar mathematical
notation. You can solve almost any problem by spending an hour or so learning
the necessary elementary commands. After becoming more experienced, you can add
the more advanced techniques needed to perform more intricate manipulations and to
express your problem more efficiently and concisely. Once you have entered your
statements, you give a RUN command. This command initiates the execution of your

program and causes the return of your results almost instantly.

1.1 ABOUT COMPUTING

As we approach a computer terminal, there is a certain way to solve a
problem. It is not enough to understand the technical commands of a computer
language, we must also be able to correctly and adequately express the problem
to be solved. For this reason, it will be helpful to outline the process of

setting up a problem for computer solution.

The first step is to define the problem to be solved in detail. Understand

each fact and possibility within the problem before attempting to go any further.

lTeletype is a registered trademark of the Teletype Corporation.

Problems to be solved with BASIC are generally of a level which admit to fairly

straightforward analysis.

In computing there is always more than one correct way of approaching a
given problem. Generally, a standard mathematical method for solution can be
found, or a method developed. Programs using the same method can still be

written in more than one correct way.

For some complicated programs, a flowchart is useful. A flowchart is a

diagram which outlines the procedure for solving the problem, step by step.

Having a diagram of the logical flow of a problem is a tremendous advantage
to you when determining the mathematical techniques to be used in solving the
problem, as well as when writing the BASIC program. In addition, the flowchart

is often a valuable aid when checking the written program for. errors.

A flowchart is a collection of boxes and lines. The boxes indicate, in a
general fashion, what is to be done; the lines indicate the éequence of the
boxes. The boxes have various shapes representing the type of operation to be

performed in the program (input, computation, decision, etc.).

‘ Following satisfactory completion of a flowchart, you proceed to write the
program. To do this, you need to understand the various instructions and
capabilities of the BASIC language. The rest of this manual is designed to
teach you how to write programs in the BASIC language in a minimal amount of

time.

Once the correct procedure has been coded, it is time to try it on the
computer. At this point it is possible the program will not work perfectly as
originally written. BASIC will locate any mistakes the programmer has made in
typing his program and print appropriate error messages to help him correct
them. It is important to understand that even if the program does run, the
results Will be correct only if the problem has been correctly analyzed and
properly written to achieve the correct solution. The computer can only do
what you tell it to do. If you have unknowingly told the computer to do something
other than what you wanted it to do, the results will be accurate according to
the information the computer processed. The computer cannot know what you really

want, only what you have told it.

1.2 HOW TO USE THIS MANUAL

The most straightforward treatment of the BASIC programming language will be

obtained by reading this manual from the beginning. Examples are taken directly
from Teletype output so that the reader will become familiar with the BASIC's
outputs and formats. Once you have mastered the principles of the BASIC language,

you will most likely only need to refer to the summaries appended to the manual.

Detailed examples appear and may be run on the computer as a first exercise

before attempting an original program.

The early chapters of this manual contain directions on how to write a BASIC
program. The appendix on Implementation Notes is recommended for every reader.
Once you have written several BASIC programs, you will find the section on Ad-
vanced BASIC helpful; reading that section too early in your programming experi-
ence may be confusing. As Soon as you are ready to try running a BASIC program
on EduSystem 20, turn to Chapter 7, Running a BASIC Program.

CHAPTER 2

FUNDAMENTALS OF PROGRAMMING IN BASIC

2.1 AN EXAMPLE PROGRAM AND OUTPUT

At this point, the program in Figure 2-1 may mean little to you, although
the output (following the word RUN) should be fairly clear. One of the first
things you notice about the program is that each line begins with a number.
BASIC requires that each line be numbered with an integer from 1 to 2046. When
the program is ready to be run, BASIC executes the statements in the order of
their line numbers, regardless of the order in which you typed the statements.
This allows for later insertion of a forgotten or new line. The programmer is,
therefore, advised to leave gaps in his numbering on the first typing of a

program. Numbering by fives or tens is a common practice.

The next thing we notice about the program is that each line begins with a
word, a command to tell BASIC what to do with the information on that line. Once
we understand the usage of these commands we are able to describe our problem to

the computer.

2.2 REM STATEMENT

The REM or REMARK statement allows the programmer to insert notes to himself

or anyone who will read the program later. The form is:
line-number REM message

Everything following REM is ignored by the computer. In Figure 2-1, line 10 is

a remark describing what the program does. It is often useful to put the name of
the program and information on what the program does at the beginning for future
reference. Remarks throughout the body of a long program will help later de-

bugging by explaining the function of each section of code within the whole program.
2.3 NUMBERS

In BASIC, as in all languages, there are conventions to be learned. The
most important initial concepts are (1) how do we express a number to the computer

and (2) how do we create algebraic symbols.

BASIC treats all numbers as decimal numbers, which is to say that it assumes

L REMARK =~ PROGRAM TN TAKI ATRRANCE N
15 RAMARKX - STIIIRNT GRADES ANV (),ASS GRADES
20 PRINT "HY%W MANY STUDENTS, HNY MANY GRADES PRR STIINENT';
33 INPUT A>R

4% LET 1I=9

50 FOR J=0 TN A-1

55 LET U=9

63 PRINT "STUDENT NUMBRR ="

75 PRINT "ENTRR GRADRS

76 LET D=gJ

8@ FOR K=D TN D+(1-1)

81 INRUT G

82 LET U=vU+gG

85 NEXT K

90 LET U=U/B

95 PRINT "AVERAGHK GRADE ='";y

96 PRINT

99 LET Q=Q+V

100 NEXT J

191 PRINT

122 PRINT

123 PRINT "CLASS AVERAGE =";3Q/4

1904 STNP

142 END

RUN
HOW MANY STUDENTS., HO%YW MANY GRADRES PRER STUIENT? 5,4
STUDENT NUMBER = g

ENTER GRADES

? 73

? 86

? 88

? 74

AVERAGE GRADE = B1.5

STUDENT NIMBER = |
ENTER GRADES

? 59

? 86

? 72

? 87

AVERAGE GRADZ = 755

STUDENT NUMBER = 2
ENTER GRADZS

? 5§

? 64

? 75

? 80

AVERAGE GRADT = £9.95

STUDENT NUMBER = 3
ENTER GRADES

? 88

? 92

? 85

? 79

AJERAGE GRADI = g4

STUDENT NUMBER = 4
ENTER GRADZS

260

274

? 85

? 87

AVERAGE GRADW 1575

1

'
il

CLASS avmRrAanGE T7«R
READY
Figure 2-1 An Example BASTIC Program

2=-2

a decimal point after an integer, or accepts any number containing a decimal
point. The advantage of treating all numbers as decimal numbers is that the
programmer can use any number or symbol in any mathematical expression, knowing
that the computer can combine the numbers given. (In some languages, integers

must be used separately from decimal numbers.)
A third form (other than integers and real numbers) we use in expressing
numbers to BASIC is called exponential form. In this form, a number is expressed

as a decimal number times some power of 10. For example:

23.4E2

]

é’F 7

0.8

is the same as
2340.

The E can be read as "times 10 to the --power", depending upon the positive or
negative integer following E. A number can be expressed in exponential form
anywhere in the program. You may input data in any form. Results of cdmputations
are printed out as decimal numbers if they are in the range .01<N<1,000,000. Out-
side this range, numbers are automatically printed out in E (exponential) format.
BASIC handles seven significant digits during normal operation and input/output,

as seen below:

Value Typed In Value Printed by BASIC
.01 .01
.0099 9.900000E-3
999999 999999
1000000 1.000000E+6

BASIC automatically omits printing leading and trailing zeros in integer

and decimal numbers, and formats all exponential numbers in the following form:

(sign) digit . six digits E + exponent value

For example:

-3.470218E+8 is equal to -347,021,800
7.260000E-4 is equal to .000726

All letters are printed as capitals at the Teletype console. Therefore, a
convention used by programmers (and which occurs on Teletype output) to

distinguish zeros from the letter "O" is to slash zeros (4). This enables

accurate input to BASIC (when you are typing a program previously written down)

and ease of understanding in reading computer output (in which zeros are slashed).
Notice that unlike a typewriter, the letter "L" does not produce the number "1" —
on the console keyboard. All numbers are on the top row of the keyboard.

Notice also that in BASIC commas are not inserted into large numbers, as we are

accustomed to doing (i.e., 1,742,300 is 1742300).
2.4 VARIABLES

A variable in BASIC is an algebraic symbol for a number, and is formed by a

single letter or a letter followed by a digit. For example:

Acceptable Variables Unacceptable Variables
I 2C - a digit cannot begin a variable
B3 AB - two or more letters cannot

X form a variable

We assign values to variables by either inputting these values or indicating

them in a LET statement.

2.5 LET STATEMENT

Before examining the LET statement, we should first clarify theAmeaning of

the equal sign (=). For example , the command:

19 LET 4 = B + C

tells BASIC to add the valuesof B and C and store the result in a variable

called A (the number 10 is the line number mentioned earlier).
29 LET D = 7.2
means to store the value 7.2 in the wvariable D.
39 LET D = 4326
causes the value of D which was 7.2 (above) to be changed to 406.

The equal sign means replacement rather than equality. In the statement:

1@ LET X = X + 1

we mean "add one to the current value of X and store the result back in the

variable X."

Values of variables can be reassigned throughout the program as the
programmer wishes. The equal sign, then, shows a replacement relationship where
the expression after the equal sign is evaluated and replaces the old value (if

any) of the variable indicated.
The LET statement is of the form:
line-number LET variable = formula
where a formula is either a number, another variable, or an arithmetic expression.
The LET statement is the most elementary BASIC statement, used when computation
is to be performed or, to put it more generally, whenever a new value is assigned

to a variable.

Since the LET statement is the most frequently used BASIC statement, the
word LET is optional. The statement V = @ is treated as LET V = {.

2.6 ARITHMETIC OPERATIONS

Looking at the console keyboard, we can find some of the usual arithmetic
symbols (+, -, and =). BASIC can perform addition, subtraction, multiplication,
division, and exponentiation as well as other more complicated operations
explained later. Each mathematical formula fed to BASIC must be on a single
line, with a line number and an appropriate command. The five operators used

in writing most formulas are:

Operator Meaning Example
+ ; Addition A+ B
- Subtraction A - B
* Multiplication A * B
/ Division A/ B
4 Exponentiation A 4+ B

(raise A to the

Bth power)

In BASIC, the mathematical formula:

A =7

would be written:
10 LET & = 7 % ((Bt2 + 4) / X)

How does BASIC know what operation to perform first? There are conventions
built into computer languages; BASIC performs arithmetic operations with the

order of evaluation indicated by the rules below.

1. Parentheses receive the top priority. Any expression within
parentheses is evaluated before an unparenthesized expression.

2. In absence of parentheses, the order of priority is:

a. Exponentiation
b. Multiplication and Division
c. Addition and Subtraction

3. If 1 or 2 does not clear ambiguity, the order of evaluation is

from left to right as we would read the formula.
So in the example above, B42 is evaluated first, then (B42+4) and then
((B42+4) /X), finally 7* ((B42+4)/X). Keeping the conventions above in mind,

AMBAC will be evaluated as (A1B)4C, likewise A/B*C is evaluated as (A/B)*C.

2.7 PARENTHESES AND SPACES

Use of parentheses allows us to change the order of priority of evaluation
in rule 2 above. They also prevent any confusion~or doubt on our part as to how
the expression is evaluated. To make a formula easier to write as well as
read, it is frequently a good idea to provide more parentheses than strictly

required. For example, which is easier to read?

A¥B12/7 + B/C*D12

(A%B12)/7 + (B/C)*D12
(CA*XB12)/7) + ((B/CY*Dt12)
(CCAXCBT2))/7) + ((BR/ZCY*(D12)))

Each of the above formulas will be executed the same way, but which makes the
most sense to the programmer reading it, or perhaps trying to make corrections

later? On the other hand, which has superfluous parentheses not required for

clarity?

Spaces may also be used freely to make formulas easier to read
1) LYET B= Dt + 1
instead of
LOLKWTB=D12+1
2.8 FUNCTIONS
BASIC performs several mathematical calculations for the programmer,
eliminating the need for tables of trig functions, square roots, and logarithms.

These functions have a three letter call name (the argument X can be a number,

variable, formula, or another function) and are written as follows:

Functions Meaning

SIN (X) Sine of X (where X is expressed in radians)
is returned.

COS (X) Cosine of X (where X is expressed in
radians) 1is returned.

TAN (X) Tangent of X (where X is expressed in
radians) 1is returned.

‘ATN (X) Arctangent of X is returned as an angle
in radians.

EXP (X) e® (where e = 2.718282) is returned.

LOG (X) Natural logarithm of X, log X, is returned.

ABS (X) ‘Absolute value of X, IX|, is returned.

SQOR(X) Square root of X, vX ,is returned.

CHR $(x) Cotrader Suiv orefp

These functions are built into BASIC and can be used in any statement as

part of a formula. For example:

I LET A = SIN(ABS(X))/D

will cause A to be set equal to one-half the value of the sine of the absolute

value of X.

Four other functions are available and, although they are not as readily
useful to the beginning programmer, they will become so as skill in designing

program logic increases.

2.8.1 Sign Function, SGN(X)

The sign function returns the value +1 if the argument X is a positive

value, 0 if X is 0, and -1 if X is negative. For example:
SGN(3.42) = 1, SGN(-42) = -1, and SGN(23-23) = 0

The SGN function is exercised in the following program (READ and DATA

statements are explained in Section 3.1).

19 REM - SGN FUNCTINN EXAMPLE

27 READ A,RB

25 PRINT '""a="4, ''8="13

32 PRINT "SGNC(A)X="'"SGN(AY, "SGN(B)="SGN(R)
47 PRINT "SGNCINTC(A))=""SGNCINT(A))

5@ DATA =-7.32, «44

60 END
RUN
A==T7.32 B= 44
SGN(AY=-1 SGN((BY= 1

SGNCINTCA))=-1

READY

2.8.2 Greatest Integer Function, INT (X)

The integer function returns the value of the greatest integer not greater

than the argument. For example:
INT(34.67) = 34
INT can be used to round numbers to the nearest integer by asking for INf(X+.5).
For example:
INT(34.67+.5) = 35
INT can also be used to round to any given decimal place,by asking for
INT(X*101D+.5)/101tD

where D is the number of decimal places desired, as in the following program.

The INT function is exercised in the following program (INPUT, PRINT, and

GOTO statements are explained in Sections 3.3, 3.4, and 4.3.1 respectively) .

1@ REM - INT FUNCTINN EXAMPLE

27 PRINT "NUMBEZR TN BE ROINDED';
37 INPUT A

42 PRINT "NN. NF DICIMAL PLACES';
5% INPUT D

672 LET B=INT(A*1Q01D+.5)/101D

7% PRINT '"A ROUNDEZD ="B

89 GNTN 29

97 END

RN

NUMBER TN BE ROUNDED? 55.65342
Nhe NF DECIMAL PLACES? 2

A ROUNDED = 55.65

NUMBER TN BE ROAUNDED? 78.375
NVe NF DECIMAL PLACES? -2

A RNUNDZD = 109

NUM3ER TN BE ROAUNDZID? A7.859

NNe NF DECIMAL PLACES? -1

A ROUNDED = 79

NUMBER TN BE RNOUNDED? (The S key was typed here.
STNP See section 6.4.) :
READY

For negative numbers the largest integer contained in the number is a

negative number with the same or a larger absolute value. For example:

INT(-23) = -23

but

INTC(-14.39) = -15

2.8.3 Truncation Function, FIX(X)

The truncation function returns the integer part of X. For example:
FIX(10.2) = 10
and
FIX(-11.001) = -11

Notice that FIX is like INT for positive arguments. In fact, FIX could be

defined as:

FIK(X) = SGN{X)*INTCABS(X))D

2.8.4 Random Number Function, RND (X)

The random number function produces a random number between 0 and 1. The
numbers are reproducible in the same order for later checking of a program. The
argument X in the RND(X) function call can be any number, as that value is ignored

and serves no function.

The RND function is demonstrated in the following program (FOR and NEXT

Statements are explained in Sections 4.2.1 and 4.2.2 respectively).

1@ REM - RANDNY NIM3ER EXAMPLE
25 PRINT "RANDOM NIIMBERS'

32 FNOR I=1 TN 33

42 PRINT RND(®),

59 NEXT I
60 END
RUN
RANDIM NUM3ERS
2431684 « 2988412 e 7TRI50NY - 3125257 3795865
«@4433979 4834217 4961024 < 5010924 s U132 71
«2373254 « 3046857 - 1923863 «9121199 «241212
9882844 + 2587987 - 3323189 « 871425 c921K89%
8252791 + 27937276 « 37472252 s P3A4THL c2A55176
9224232 2.951853k-3 - 03975794 TNRA242 < 146503
READY

In order to obtain random digits from 0 to 9, change line 40 to read:
42 PRINT INTCI@*RND(Q)),

and tell BASIC to run the program again. This time the results will look as

follows:

RUN

RAN DOM NUUM3ERS

2 2 7 3 3
4] /) 1 5 7l
2 3 1 9 2
9 2 g} < 9
g e R [} 1)
9 &} 0 7 1
READY

It is possible to generate random numbers over any range. For example,

if the range (A,B) is desired, use:

o

(B-A) * RNDCO) + A

to produce a random number in the range A<n<B.

2.8.4.1 Randomize Statement

If you want the random number generator to calculate different random numbers
every time the program is run, BASIC provides the RANDOMIZE statement. RANDOMIZE
is normally placed at the beginning of a program which uses random numbers (the
RND function). When executed, RANDOMIZE causes the RND function to choose a
random starting value, so that the same program run twice will give different

results. For example:

10 RANDNMIZE
20 PRINT RND(QD
3% END

will print a different number each time it is run. For this reason, it is good

practice to debug a program completely before inserting the RANDOMIZE statement.
The form of the statement is as follows:
line-number RANDOMIZE
or

line-number RANDOM (abbreviated form)

To demonstrate the effect of the RANDOMIZE statement on two runs of the same

program, we insert the RANDOMIZE statement as line 15 below:

15 RANDNY
29 FNR I=1 TN 5
25 PRINT "UALIJE"™ T "IS'" RNDC(M)
32 NEXT I
35 END
RUN
VALUE 1 IS 879566%4
VALUE 2 IS 9563412
VALUE 3 IS 5429998
VALUE 4 IS 7599257

VALUE 5 IS «62204965

READY

-11

[\§}

RUN

VALUE 1 IS 6914106 -
VALUE 2 IS 6435477
VALUE 3 IS «5136%95

VALUE 4 IS 6659648
VALUE 5 IS 3672036

READY
Clearly, the output from each run is different.

2.8.5 User-defined Functions, DEF

In some programs, it may be necessary to execute the same mathematical
formula in several different places. BASIC allows the programmer to define his
own functions and call these functions in the same way he would call the square
root or trig functions. ’

These user-defined functions are written in a defining or DEF statement.
The function name consists of a three-letter name, the first two letters of

which must be FN. The DEF statement is formed as follows:

line-number DEF FNA(X) = formula using X

where A is any letter. For example:

1@ DEF FNACS) = S112
will cause a later statement:
20 LET R = FNAC4Y+1
to be evaluated as R=17.
The two following programs

Program #1:

10 DEF FNX(A) = AtA
20 FNR I=1 TN 5

32 PRINT I, FNXCI)
40 NZXT I

59 END

Program #2:

16 DEF FNS5(X) = X1X
ag FOR I=1 TO 5

G PRINT I, FNSCID
40 NEXT I

5@ END

both cause the same output:

RUN

1 1

2 4

3 27

4 256
5 3125
READY

The argument in the DEF statement can be seen to have no significance; it
is strictly a dummy variable. The function itself can be defined in the DEF
statement in terms of numbers, dummy variables, real variables, other functions,

. or mathematical expressions. For examples:

1@ DEF FNA(X) = X12+3*X+4

15 DEF FNB(X) FNA(XY>/2 + FNACX)D

Il

20 DEF FNC(X) = SQR(X+4) + 1

The statement in which the user-defined function appears may have that func-
tion combined with numbers, variables, other functions, or mathematical expres-

sions. For example:
40 LET R = FNACX+Y+Z)D

The user-defined function can be a function of more than one variable, as

shown below:

25 DEF FNL(X,Y»Z) = SQR(Xt2 + Y12 + 7Z12)

A later statement in a program containing the above user-defined function might

look like the following:

55

where D, L,

1
16
11
12
20
21
22
30
31

100
11e
120
14¢
150
200
205
210
20
230
240
250
260
270
280
290
3N
304
310
3en
330
340
356
3A
a7
H10
[SPNG
B30
L0
H50¢
e
4570
1
890
SO
94 G

LFT b =

FNL CLL L5 KD

and R have some values in the program.

kb MODULUS AKITHMETIC
KFM KIND X MOD ™

DEF FNMOXsMI=X=-MAEINT(X/M)
KhEM

KFM FIND A+ MOD ™

DFEE FNACA, R>MI=F M A+, M)
RkM

REM FINI AXEF MODL ™

DFF FNLCA,P>MI=FNM(kM)
FEINT "ADNDITION ANID MULTIFLICATION TARLES MQOD
PRINT "GIVE MEF AN M'";
INFPUT M

PRINT "ADIITION TAMLES MOD'5M
GOSUF K@@

FCl I=¢0 TO ™M-1

PRINT I:" '35

FOR J=¢¢ TO M-1

PEINT FENvACI>JsM) ;5

NEXT J

PRINT

NEXT I

PRINT

PFINT

FFRINT "MULTIFLICATION TAKLES MGOL'™ M
GOSUR 8@w©

FCR I=¢ TO M-1

PRINT I5' '3

FOR J=¢ TO ™M-1

PRINT ENB(IsJsM);5

NFXT J

FRINVT

VEXT 1

STOF

FERINT

PEHINT TAFRC4D5 05

FCOEK I=1 T0 M-1

FRINT I

NEXT 1

PHINT

FOk I=1 10 3*%M+5

PHINT "-"'5

NEXT I

FEINT

K TURN

Fov L

M

Figure 2-2

Modulus Arithmetic Program
(continued on next page)

KUN

ADDITION AND MULTIFLICATION TAMLEFS MO M
GIVE MF AN M7 7

ADLITION TAMLES MOL 7

¢] 1 2 3) 5 &
1 1 2 3 4 € “
z 2 3 4 5 ¢ “ 1
3 3 4 5 6 0 1 g
4 4 5 6 2] 1 b 3
5 S 6 VW 1 2 3 4
6 6 4 1 2 3 4 5

MULTIFLICATION TAFLES MCL 7

[N R) I /R O
1 01 2 3 4 5 6
2 nw 2 4 6 1 3 5
3 z 3 6 2 5 1 4
4 0 4 1 5 2 6 3
) w5 3 1 6 4 2
3 w 6 5 4 3 2 1
KEADY

Figure 2-2. Modulus Arithmetic Program

\ T Shel Al eer— ‘

. -

CHAPTER 3

INPUT/OUTPUT STATEMENTS

One of the most important groups of statements is the group of Input/Output
(I/0) statements. These I/0 statements allow us to bring data into our programs
during execution when and from where we choose. Similarly, we can choose the
output format which best suits our needs. 1In the case of the example program
in Figure 2-1 (in Chapter 2), data was typed in at the console keyboard as BASIC

requested it.

3.1 READ AND DATA STATEMENTS

A simple way to put data into a program is with READ and DATA statements.
One statement is never used without the other. The READ statement is of the

form:
line-number READ variables separated by commas
For example:
10 READ A-E,C
where A, B, and C are the variables we wish to assign values. In order to
ensure that all variables are assigned values before computation begins, READ
statements are usually placed at the beginning of a program, or at least

before the point where the value is required for some computation.

Now that we have told BASIC to read the values for three variables, we

must supply those values in a DATA statement of the form:
line-number DATA numeric values separated by commas
For example:
70 DATA 15253
The DATA statement provides the values for the variables in the READ statement(s).
The values must be separated by commas, in the same order as the variables are

listed in the READ statement. Thus, at execution time, A=1, B=2, and C=3

3-1

according to lines 10 and 70 in the examples.

The DATA statement is usually placed at the end of a program before the END
statement, so as to be easily accessible to the programmer should he wish to change

his wvalues.

A given READ statement may have more or fewer variables than there are values
in any one DATA statement. READ causes BASIC to search all available DATA state-
ments, in the order of their line numbers until all values are found for each
variable. A second READ statement will begin reading values where the first
stopped. If at some point in your program you attempt to read data which is not
present, BASIC will stop and print an ERROR 47 message (see Appendix D) at the

console, indicating the line which caused the error.

3.2 RESTORE STATEMENT

If it should become necessary to use the same data more than once in a
program, the RESTORE statement will make it possible to recycle through the DATA
statements beginning with the lowest numbered DATA statement. The RESTORE state-

ment is of the form:

line-number RESTORE

For example:

85 KESTOREF

will cause the next READ statement following line 85 to begin reading data from
the first DATA statement in the program, regardless of where the last data value

was found.

You may use the same variable names the second time through the data or not,
as you choose, since the values are being read as though for the first time. 1In
order to skip unwanted values, dummy variables must be read. In the following

example, BASIC prints:

on the last line because it did not skip the value for the original N when it

executed the loop beginning at line 210.

L KFM - PROGEAM 10 ILLUSTHATE USF OF Kk STOKE
20 READ N

25 PRINT "VALUFS OF X Akk:"

3W FOR I=1 TO N

400 RFAD X

50 PRINT X,

600 NFXT I

70 RESTOFRE

185 PERINT

190 PFINT "SECONL LIST OF X UALUES"
20¢ PFINT "FOLLOWING RESTOKRE STATFEMENT:"™
21 FOh I=1 TO N
220 READ X
230 PRINT X
240 NEXT 1
250 DATA 45152
251 DATA 354

306 END
READY
RUN
VALUES OF X AFRF:
1 2 3 4

SECOND LIST OF X VALUFKS
FOLLCWING RESTOKE STATEMENT:

4 1 2 3
READY

3.3 INPUT STATEMENT

Another way to input data to a program is with an INPUT statement. This
statement is used when writing a program to process data which is to be supplied
while the program is running. The programmer types in the values as BASIC asks
for them. Depending upon how many values are to be brought in by the input
command, the programmer may wish to write himself a note reminding himself what
data is to be typed in at what time. In the example program in Figure 3-1, the
question is asked at execution time INTEREST IN PERCENT?, AMOUNT OF LOAN?,
and NUMBER OF YEARS? The programmer knows which value is requested and proceeds
to type and enter the appropriate number.

The INPUT statement is of the form:

line-number INPUT variables separated by commas

For example:

1l INFUT N> RBsC

1» KREM - PROGRAM TO COMEUTF INTERFST PAYMENTS
20 PEINT "INTEFFST IN FERCENT'";

25 INFUT J

26 LET J=J/100

3¢ PEINT "AMOUNT OF LOAN'S

35 INPUT A

479 PRINT '"WUMBEER OF YEAERS';

45 INPUT N

50 PKRINT '"WUMEER OF PAYMENTS PER YEAER';
55 INPUT M

60 LET N=N*M

65 LET I=Jd/M

70 LET B=1+I

75 LET R=A*%1/C1-1/BtND

7¢ PRINT
8¢ PRINT "'AMOUNT PER PAYMENT ="Kk
85 PRINT ""TOTAL INTEEKEST =" RxN-A
9¢ LET B=A
95 PFINT " INTEREST APP TO PFIN BALANCE"
19¢ LET L=B*I

119 LET P=E-L

120 LET B=B-P

130 PEINT L>P>B

149 1F B>=EFE GOTO 100

150 PEINT B*xI,R-B*I

160 PFINT '"LAST PAYMENT =" B*I+B

200 END

READY

RUN

INTEREST IN PERCENT? 9

AMCUNT OF LCAN? 2500

NUMEEE OF YEARS? 2

NUMBEE OF PAYMENTS PERE YEAE? 4

AMOUNT PER PAYMENT = 344.9617

TOTAL INTEREST = 259.6932
INTERFEST AFF TO PERIN BALANCE
56.25 288.7117 2211.288
49.75399 295. 2077 1916.081
43.11182 301.8498 1614.231
36.3202 30&.6415 1305.589
29. 37576 315.5859 990.0036
22.27508 322. 6866 667317
15.01463 329.947 337+ 37
7590824 337.3708

LAST PAYMENT = 344.9608

READY

Figure 3-1 Interest Program

will cause BASIC to pause during execution, print a question mark, and wait for
the user to type in three numerical values separated by commas and followed by

typing the RETURN key at the end of the list.

As you will notice in Figure 3-1, the question mark is grammatically useful
if you care to formulate a verbal question which the input value will answer.
This will be further explained in the next section (the PRINT Statement).

The output for the program begins after the word RUN and includes a verbal
description of the numbers. This verbal description on the output is optional

with the programmer, although it has a definite advantage in ease of use and

understanding.

When the correct number of variables have been typed, type the RETURN
key to enter them to BASIC.

If too few values are typed (entered), another question mark will be

printed.
If too many values are typed, the message:
ERROE 45 IN XXXX
will be given. (XXXX represents the line number of the INPUT statement.)

3.4 PRINT STATEMENT

The PRINT statement is the output statement for BASIC. Depending upon

what follows the PRINT command, we can create different output formats and even

plot points on a graph.

In order to skip a line on the output sheet, type only a line number and

the command PRINT:
12 PRINT

When BASIC comes to line 10 during the run,:the paper in the Teletype will be
advanced by one line. In the example program in Figure 3-1, line 78 causes
a blank line on the output sheet between the section where the user enters

data to BASIC and the section where BASIC supplies the results of the program.

In order to have BASIC print the results of a computation or the value of
any variable at any point in the program, the user types the line number, the
command PRINT, and the variable names, separated by commas:

12 FRINT A» C+B> SQRCA)
This will cause the values of A,C+B, and the square root of A to be printed in
the first three of the five fixed format columns (of 14 spaces each) which
BASIC uses for most output. For example, the statement:

10 PRINT AsB>CsDsE

will cause the values of the variables to be printed like this:

123 12.3 12.3 1

no
B
w

12.3
where A, B, C, D, E equal 12.3. When more than five variables are listed in
the PRINT statement and separated by commas, the sixth value begins a new line
of output.

The third possibility for the PRINT statement is to print a message or some
text. The user may have a message printed by placing the message in quotation
marks. For example:

19 PRINT "THIS IS A& TEST"

When line 10 above is encountered during execution, the following will be

printed:
THIS IS A TEST

Go back to the example program in Figure 3-1 and notice the function of lines
80, 85, and 95.

Figure 3-1 shows that the PRINT statement can combine the second and

third options above. One PRINT command tells the computer to print:
AMOUNT PER PAYMENT = 344.9617
The command which did this was line 80:

80 PRINT "AMOUNT PER PAYMENT ='";F

I
1

PRT Chr 9(5t) > Cher & ¢

It is not necessary to use the standard five-column format for output. A
semi-colon (;) will cause the following text or data to be printed following the
last character of text or data printed. A comma (,).will cause a jump to the next
of the five output format columns. BASIC allows the user to omit format control
characters (,) or (;) between text and data, and assumes a semi-colon. For

example:
PRINT "AMOUNT PER PAYMENT ="K
will result in the same output as line 80 above.

If you wish to skip over one of the five fixed format columns, simply use

two successive commas. For example:

5 LET A = 100
10 LET B = 100
20 PRINT A, B
25 END

RUN
100 100

KEADY

In addition to the capabilities already mentioned, the PRINT statement

can also cause a constant to be printed at the console. For example:

1@ PRINT 1.2345 SQRC100/4)
15 END

will cause the following to be printed at execution time:
1.234 5

Any constant present in a PRINT statement will be printed exactly as shown. Any
algebraic expression in a PRINT statement will be evaluated with the current

value of the variables and the result printed.
In Figure 3-1, line 160 reads:
160 PRINT '"LAST PAYMENTV=" BxI+E

and caused the following to be printed upon execution:

LAST PAYMENT = 344.9608

This demonstrates the omission of the format control character as well as the

ability of the PRINT statement to print text and do calculations.

The following example program illustrates the use of the control characters

in PRINT statements:

1% READ A>B-C

20 PRINT A>BsC>A12,Bt2,Ct2
30 PRINT

40 PRINT A3B3;C5;A125RB12;5C12
S50 DATA 4,556

60 END

READY

RUN

4 5 6 16 25
36

4 5 6 16 25 36

READY

If a number should happen to be too long to be printed on the end of a
single line, BASIC automatically moves the entire number to the beginning of the

next line.

3. 5 TAB FUNCTION

When using the PRINT statement thus far we have had to print a blank
character wherever we wanted blank space; there was no real control over print-
ing. The TAB function is a more sophisticated technique allowing the user to
position the printing of characters anywhere on the Teletype paper line. This
line is 72 characters long, and the print positions can be thought of as being
numbered from 0 to 71, going from left to right. The TAB function argument can
be positive or negative: TAB(-1) causes a tab over to position 71, TAB(3) causes

a tab to position 3. (The TAB function can be thought of as operating module 72.)

After performing TAB(n), the next character to be printed will be placed
in position n. If n is a position to the left of the current position, a carriage
return without a line feed is performed to correctly position the printing head.

For example:

19 PRINT "X ="3TARCZ2);5"/"53.14159
15 END

will print the slash on top of the equal sign, as shown below:

RUN
X # 3.14159

The following is an example of the sort of graph that can be drawn with BASIC
using the TAB function.

3¢ FOR X=p TO 15 STEP .5
40 PRINT TABC30+15%SINC(XI*EXP(=« 1%X))5 """

50 NEXT X
"60 END
RUN
*
*
*
%
*
*
*
*
*
*
*
*
*
*
*
*
sk
*
*
*
*
k
*
%k
*
*
*
*
*
*
*
READY

(O8]
|
o]

. -

CHAPTER 4

SUBSCRIPTS AND LOOPS

4.1 SUBSCRIPTED VARIABLES

In addition to simple variable names, there is a second class of variables
which BASIC accepts, called subscripted variables. Subscripted variables provide
the programmer with additional computing capabilities for dealing with lists,
tables, matrices, or any set of related variables. In BASIC variables are
allowed one or two subscripts. A single letter or a letter followed by a digit
forms the name of the variable; followed by one or two formulas in parentheses,
separated by commas, indicating the place of that variable in the list. For
example, a list might be described as A(I) where I goes from 1 to 5 as shown

below:
A(l),A(2),A(3),A(4),A(5)

This allows the programmer to reference each of the five elements in the list A.
A two dimensional matrix A(I,J) can be defined in a similar manner, but the
subscripted variable A can only be used once. A(I) and A(I,J) cannot be used in

the same program.

It is possible, however, to use the same variable name as both a subscripted
and as an unsubscripted variable. Both A and A(I) are valid variable names and

can be used in the same program.

Any formula (number, variable, function, or combination) can be a subscript.

For example:

190 LET A=1
20 LET B=3
30 LET D=C(A+1,5R)

is the same as:

1w LET D=C(2, 3>

If the formula is non-integer after evaluation, the value is truncated to

an integer. For example:

19 LET A=3
2u LET B=CCl+n/2)

is the same as:
19 LET B=C(2.5)
or
1 LET B=C(2)
In other words subscripts are like :
AlX>Y) = A(FIX(X)>FIX(Y))

The folloWing program illustrates the use of subscripted variables.

19 REM - PROGRAM DEMONSTRATING READING OF

11 REM - SUBSCRIPTED VARIABLES

15 DIM AC5), B(Z2,53)

18 PRINT "ACI) WHERE A=1 TO 5:"
: 20 FOR I=1 TO S

25 READ ACI)D

30 PRINT ACI);

35 NEXT I

38 PRINT

39 PRINT

49 PRINT "BC(I,J) WHERE I=1 TO 2"

41 PRINT " AND J=1 TO 3:"

42 FOR I=1 TO 2

43 PRINT

44 FOR J=1 TO 3

48 READ B(I>J)

5% PRINT BC(I,J)s

55 NEXT J

56 NEXT I

60 DATA 1,253,4555,65758

61 DATA 85,7,65554535251

65 END

RUN
ACI) WHERE A=1 TO 5:
1 2 3 4 5

B(I,J) WHERE I=1 TO 2
AND J=1 TO 3:

6 7 8
g 7 6
READY

4.1.1 DIM Statement

As in the preceding examples, we see that with the use of subscripts we

used a dimension (DIM) statement:

Since EduSystem 20 BASIC defines all variables as they occur, DIM statements are

ignored. For example:

19 REM - MATRIX CHECK PROGRAM
20 FOR I=0 TO 6

22 LET A(I,0) =1

25 FOR J=0 TO 1@

28 LET A(@>J) = J

30 PRINT ACI-J);

35 NEXT J
40 PRINT
45 NEXT I
5@ END
RUN
p 1 2 383 4 5 6 7 &8 9 10
1 o9 0 0 © © © 0 © @ 0
2 9 0 ©0 0 © © © 0 0 0
3 0 0 ©0 © @ © ©0 0 0 0
4 0 0 © 0 © © 0 0 0 0
5 0 0 0 0 © 90 0 0 0 0
6 » 0 0 0 0 0 0 0 0 0
READY

Notice that a variable has a value of zero until it is assigned a value.
The limits on subscript size are as follows:

1. sSingle subscript: 0 to 2047)
2. Double subscripts: 0 to 63 for each subscript

4.2 LOOPS

So far in these chapters we have seen FOR and NEXT statements used several
times in examples. These two statements define the beginning and end of a loop.
A loop is a set of instructions which modifies itself and repeats until some

terminal condition is reached.

4.2.1 TFOR Statement

The FOR statement is of the form:

line-number FOR variable=formula TO formula STEP formula

For example:
12 FOR K=2 TO 20 STEP 2

which will iterate (cycle) through the designated loop using K as 2, 4, 6, 8,...,20.
in calculations involving K. When the value 20 is reached, the loop is left

behind and the program goes to the line following the NEXT statement (described in
Section 4.2.2).

The variable mentioned in the definition must be unsubscripted, although a
common use of such loops is to deal with subscripted variables using the FOR
variable as the subscript of a previously defined variable. The formulas mentioned

in the definition can be real or integer numbers, variables, or expressions.

4.2.2 ©NEXT Statement

The NEXT statement signals the end of the loop and at that point BASIC adds
the STEP value to the variable and checks to see if the variable is still 1less
than or equal to the terminal value. When, after incrementing, the variable
exceeds the terminal value, control falls through the loop to the following
statement. If the STEP size is negative, control falls through the loop when

the variable is less than the terminal value.

4-4

When control falls through the loop, the variable value is one step beyond
what it was when the loop was last executed. For some programs, this information
may be useful.

If the STEP value is omitted, +1 is assumed. Since +1 is the usual STEP
value, that portion of the statement is frequently omitted.

In the following example, we see a demonstration of the second and third
paragraphs of this section. The loop is executed 10 times, the value of I is 11
when control leaves the loop, and +1 is the assumed STEP value.)

12 FOR I=1 TO 1@
20 NEXT I

30 PRINT I

49 END

RUN
11

READY

If line 10 had been:
12 FOR I=190 TO I STEP -1
the vaiue printed by BASIC would be 0.

The numbers used in the FOR statement can be formulas as indicated earlier.
A formula, in this case, can be a variable, a mathematical expression, or a

numerical value.

The value of each formula is evaluated upon first encountering the loop.
While the values of the variables, if any, used in evaluating these formulas can
be changed within the loop, the values assigned in the FOR statement remain as

they were initially defined.

In the last example program the value of I in line 10 can be successfully

changed in the program. The loop:

1@ FOR I=1 TO 10
15 LET I=10
20 NEXT I

will only be executed once, since the value 10 has been reached by the variable

I and the termination condition is satisfied.

4-5

4.2.3 Nésting Loops

It is often useful to have one or more loops within a loop. This technique
is called nesting. Nesting is allowed as long as the field of one loop (the
numbered lines from the FOR statement to the corresponding NEXT statement,
inclusive) does not cross the field of another loop. A diagram is the best way

to illustrate acceptable nesting procedures:

ACCEPTABLE NESTING . UNACCEPTABLE NESTING
TECHNIQUES TECHNIQUES

Two Level Nesting

FOR FOR
FOR FOR
NEXT NEXT
OR NEXT
EXT
NEXT

Three Level Nesting

——FOR
FOR
FOR
NEXT
FOR
NEXT
NEXT

——NEXT

If the value of the counter variable is originally set equal to the terminal

value, the loop will execute once, regardless of the STEP value.

It is also possible to exit from a FOR-NEXT loop without the counter variable
reaching the termination value. A conditional transfer may be used to leave a
loop. Control may only transfer into a loop which had been left earlier without

being completed, ensuring that the termination and STEP values are assigned.

4.3 TRANSFER OF CONTROL

Certain statements can cause the execution of a program to jump to a different
line either unconditionally or depending upon some condition within the program.
Looping is one method of jumping to a designated point until a condition is met.

The following commands give the programmer additional capabilities in this area.

4.3.1 Unconditional Transfer, GOTO

The GOTO statement is an unconditional command telling BASIC to jump either

ahead or back in the program. For example:

100 G

or

24 GO

0TO 50

TO 78

The GOTO statement 1is of the form:

line-number GOTO line-number

When the logic

of the program reaches the GOTO statement, the statement (s)

immediately following it will not be executed, but the statements beginning with

the line number indicated .are performed.

The program below never ends; it does a READ, prints something, and

attempts to do

an acceptable

10
11
20
25
30
35
40

READY

= 10
= 15
= 20
= 25

ERROR

READY

this over and over until it runs out of data, which is sometimes

(though not advisable) way to end a program.

REM - PROGRAM ENDING WITH ERROR
REM .- MESSAGE WHEN OUT OF DATA

READ X

PRINT ""X="X,'"Xt2="X12

GOTO 20

DATA 1555105155205, 25

END
Xte= 1
Xt2= 25
Xt2= 100
Xt2= 225
X12= 400
Xt12= 625

47 IN 20

4.3.2 Conditional Transfer, IF-THEN, IF-GOTO, ON-GOTO

If a program requires that two values be compared at some point, logic may

direct us to different procedures depending on the comparison. In computing, we

logically test values to see whether they are equal, greater, or less than another

value, or a possible combination of the three.

In order to compare values, we use a group of mathematical symbols not dis-

cussed earlier. These symbols are as follows:

BASIC Math BASIC

Symbol Symbol Example Meaning
= = A =B A is equal to B
< < A < B A is less than B
<= < A <=B A is less than or equal to B
> > A > B A is greater than B
>= > A >=B A is greater than or equal to B
<> # A <>B A is not equal to B

4.3.2.1 IF-THEN and IF-GOTO :

The IF-THEN and IF-GOTO statements both allow the programmer to test the

relationship between two formulas (variables, numbers, or expressions). Provid-

ing the relationship we have described in the IF statement is true at that point,

control will transfer to the line number indicated. The statements are of the

form:
line-number IF formula relation formula
{gggg‘} line-number
The use of the word THEN or GOTO is the programmer's choice.
For example:
1y IF A=5 GOTO 70

causes transfer to line 70 if A is equal to 5. If A is not equal to 5, control

passes to the next line of the program following line 10.
4.3.2.2 ON-GOTO

The ON-GOTO statement permits the program to transfer control to one of a

set of lines depending on the value of a formula. The statement is of the form

line-number ON formula GOTO line-number, line-number ...

4-8

The formula is evaluated and then truncated to an integer. This integer is
used as index to tell which of the line numbers to transfer control to. If the
integer is one, then the first line number is used. If it is two, then the
second is used. Similarly for high values. Obviously, the formula after trunca-
tion cannot be zero or negative or greater than the number of line numbers in the
list. For example:

10 ON A+2 GOTO 100,200,300, 400

If A is 2 then control is passed to line 400. The range A can have in this ex~
ample is -1 to 2.

. B—

CHAPTER 5

SUBROUTINES

When particular mathematical expressions are evaluated several times
throughout a program, the DEF statement enables the user to write that expression
only once. The technique of looping allows the program to do a sequence of in-
structions a specified number of times. If the program should require that a
sequence of instructions be executed several times in the course of the program,

this too is possible.

A subroutine is a section of code performing some operation that is required
at more than one point in the program. Sometimes a complicated I/O operation for
a volume of data, a mathematical evaluation which is too complex for a user-
defined function, or any number of other processes may be best performed in a

subroutine.

5.1 GOSUB STATEMENT

Subroutines are placed physically at the end of a program, usually before
DATA statements, if any, and always before the END statement. The program begins
execution and continues until it encounters a GOSUB statement of the form:

line-number GOSUB line-number

where the number after GOSUB is the first line number of the subroutine; control

then transfers to that line in the subroutine. For example:

50 GOSUB 207

5.2 RETURN STATEMENT

Having reached line 50, as shown on the previous page, control transfers to
line 200; the subroutine is processed until BASIC encounters a RETURN statement

of the form:
line-number RETURN
which causes control to return to the line following the GOSUB statement. Before

transferring to the subroutine, BASIC internally records the next line number to

be processed after the GOSUB statement; the RETURN statement is a signal to

SR S——

transfer control to this line. 1In this way, no matter how many subroutines or
how many times they are called, BASIC always knows where to go next. The

following program demonstrates a simple subroutine:

1 BEM - THIS PROGRAM ILLUSTRATES GOSUR AND RETUKY
10 DEF FNAC(X)= ARSCINTC(X))
20 INPUT As>R>C
30 GOSUR 100
40 LET A=FNACA)
50 LET B=FNACR)
69 LET C=FNACC)
70 PRINT
&0 GOSUB 100
99 STOP
10» REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
1190 REM - OF THE EQUATION: AXt12 + BX + C = 0
122 PRINT "THE EQUATIOV IS " A " %X12 + " B " % X + " C
130 LET D= B¥B - 4%A%C
140 IF D<>@ THEN 170
150 PRINT "ONLY ONE SOLUTIOV... X =" -B/(2%A)
160 RETURN
170 IF D<@ THEN 200
180 PRINT "TWO SOLUTIONS... X ='3
185 PRINT (-B+SQR(D))/(2%A) "AND X =" (-B-SQR(D))/(L*A)
190 RETURN
200 PRINT "IMAGINARY SOLUTIONS..« X = (';
205 PRINT -B/(2%xA) '"," SQR(-D)/C(2%A) ") AND ('3
207 PRINT -RB/(2%A) ",'" -SQR(-D)/(2%A) "'
210 RETURN
9¢Q END

RUN

? 1:051‘05

THE EQUATION IS 1 *X12 + 5 * X + -.5
TWO SOLUTIONS««.s X = «5 AND X =-1

THE EQUATION IS 1 #Xt2 + @ *x X + 1
IMAGINARY SOLUTIONSe.e«e X = C @ > 1)

READY

Lines 100 through 210 constitute the subroutine. The subroutine is executed

from line 30 and again from line 80. When control returns to line 90 the
program encounters the STOP statement and terminates execution. Note that even

though the program logically ends with a STOP, the END command must still be

present.

For another detailed example of a subroutine, see Figure 3-1.

5.3 STOP AND END STATEMENTS

The STOP statement is used synonymously with the END statement to terminate

execution, but the END statement must be the last statement of the entire program.
STOP may occur several times throughout the program. No BASIC program will run
without an END statement of the form:

line-number END
The format of the STOP statement is simply:

line-number STOP

STOP is equivalent to a GOTO nn, where nn is the line number of the END statement.

5.4 NESTING SUBROUTINES

More than one subroutine can be used in a single program, in which case they
can be placed one after another at the end of the program (in line number sequence) .
A useful practice is to assign distinctive line numbers to subroutines; for
example, if you have numbered the main program with line numbers up to 199, you

could use 200 and 300 as the first numbers of two subroutines.

Subroutines can also be nested, in terms of one subroutine calling another
subroutine. If the execution of a subroutine encounters a RETURN statement, it
will return control to the line following the GOSUB which called that subroutine;
therefore, a subroutine can call another subroutine, even itself. Subroutines
can be entered at any point and have more than one RETURN statement, where
certain conditions will cause control to reach any one RETURN statement. It is
possible to transfer to the beginning or any part of a subroutine; multiple entry

points and RETURNS make a subroutine more versatile.

CHAPTER 6

ERRORS AND HOW TO MAKE CORRECTIONS

6.1 SINGLE LETTER CORRECTIONS

Nobody being perfect, we all make typing errors if not logical errors. The
first is by far the easier to correct. If you notice an error immediately as

you type it, for example:
10 LEB

instead of LET, as you meant to begin the line, type the RUBOUT key or SHIFT/O
(back-arrow) once for every character you wish to remove, including spaces.
This will result in the printing of a back-arrow to show that the rubout has

been accomplished. Make the correction and continue typing as shown below.
19 LEB-T A=10%B

if that was the intended line. BASIC does not even see the mistake; it is
erased, except on the console as you typed it. The typed line enters the
computer only when you type the RETURN key. Before that tims, you can correct
errors with the RUBOUT key or SHIFT/O. 1If you desire a neat, corrected listing
at the end of your work, that is possible too. More on that later. For now,

consider that:
200 DEN Fe+«F FNAC(X,Y) = X12+3%Y
is the same as:
27 DEF FNA(X,Y) = X12+3%Y
to BASIC. Notice that you erase spaces as well as print characters.

6.2 ERASING A LINE

If at any time you have typed a line and not yet typed the RETURN key, the
line can be erased by typing the ALTMODE (ESCape on some machines) key.
BASIC will echo:

$ DELETED

at the end of the line to indicate that the line has been removed. You can
continue typing on that line as though it were the start of a new line or type
the RETURN key to start a fresh line.

‘Once you have typed the RETURN key and have entered a line into BASIC,
the line can still be corrected simply by typing the line number and proceeding
to retype the line correctly. The old line is automatically deleted as you

type the line number again, even if it was longer than the new line.

You can delete an entire line by typing the line number and then the

RETURN key. This removes the entire line and line number from your program.

Following an attempt to run a program, you may receive an error message.
Most errors can be corrected by typing the line number, typing the line over
again with the correction, and then typing the RETURN key. The program is then
ready to be run again. You can make as many changes or corrections between runs

as you wish. (For a more advanced technique in program editing, see Chapter 8.)

6.3 ERASING A PROGRAM IN CORE

Assuming you have written a program on-line in BASIC, have completed it,
and now wish to run another program in BASIC but do not wish to save the old

program, when BASIC prints READY, answer:
SCRATCH

The SCRATCH command will erase the old program and leave a fresh, blank area
in which you can work. Only the abbreviation SCR is necessary. BASIC will
again reply READY, and you proceed from this point. You can, alternatively,
reply to READY with NEW or BYE, which both clear core just as does SCRATCH.

If, after BASIC prints READY, you merely begin typing a new program without
clearing core, BASIC will retain the previous program and, in effect, you will
write over that program as though you were changing each single line. However,
if you do not remove or type over all of the previous line numbers, you will
discover the unchanged lines appearing in the new program as well. To avoid

this, tell BASIC to SCRATCH the old program.

6.4 STOPPING A RUN

If your program begins to print what you know will be a long list of
unwanted output for one reason or another, you can stop a running program
by pressing the S key; STOP will be printed, and the program will stop
execution, returning you to edit mode (BASIC prints READY).

CHAPTER 7

RUNNING A BASIC PROGRAM

7.1 RUN COMMAND

When your program is ready to be run (be sure there is an END statement),
type RUN, then the RETURN key, and the program will attempt to execute. If
there is some error in the way you wrote your. BASIC statements, an error
message will be printed, following which you may correct the errors one line at
a time. Then type the RUN command again. If the program executes correctly,
you will obtain whatever printed output you requested. When the END statement

is reached, BASIC stops execution and again prints READY.

7.2 EDITING PHASE

To simplify matters, we can think of BASIC as operating in two phases: a
run phase and an editing phase. The run phase is the interval between the time
you type RUN and the time BASIC prints READY; this is the time during which
BASIC is compiling and executing your program. Once BASIC has printed READY,
it is able to accept commands directly from your keyboard; during this editing
phase you can prepare your program and can direct BASIC to perform a variety
of services such as the SCRATCH command. The commands can all be abbreviated to

three letters, some have arguments, others do not, as explained below.

7.2.1 LIST Command

Once your program works, you may discover you have several feet of Teletype
paper filled with corrections. To obtain a clean listing of your program, type
LIST followed by the RETURN key. The whole program will be printed. You can
then tell BASIC to RUN, and your output will follow.

For debugging purposes, it is sometimes useful to list part of your program.
LIST or LIS, followed by one line number or two line numbers separated by a
comma, will result in BASIC printing either that single line or the lines

between and including the two numbers given.

7.2.2 DELETE Command

DELETE followed by two line numbers separated by a comma will cause all

lines between and including the two given to be deleted from the program. If

only one line number is given, that line will be deleted. For example:

DELETE 10, 2
causes all lines between 10 and 20 inclusive to be deleted.
7.2.3 ALTMODE Key
Typing the ALTMODE key (which prints a $) will cause any of the preceding
commands (DELETE, LIST, SAVE, etc.) to be =srased. ALTMODE must be typed before
the RETURN key which enters the command into BASIC. If you do change your mind

about a command, you can alter it as shown below:

DFLETE 10% DELETED

BASIC replies $ DELETED to show that the command has been erased; you may
then retype the line.

7.3 PUNCHING A PAPER TAPE

It may be useful in many cases to have a copy of a program you have written
in BASIC stored on paper tape. You can create such a copy quite easily. Once
you have completed your program to the point that you wish to copy it, punch a

listing of it through BASIC. The steps involved are:

1. Type TAPE followed by the RETURN key. Any characters you type
now will not echo on the console or on your tape.

Punch the ON button on the tape punch.

3. Type LIST followed by the RETURN key. This causes the program to
be listed on paper tape and on the console.

4. Punch the OFF button on the tape punch.
Using LIST when in TAPE mode will result in the following:

1. The word LIST will not echo.

2. Leader tape i1s punched before and after the program.

You will notice that when you tear off the tape from the punch there will be
an arrowhead on the tape; this shows the direction in which the tape is later

to be inserted into the machine.

tail

> %% > arrowhea;i

Figure 7-1 Paper Tape Diagram

Once you have finished punching your program, you will wish to return to
regular operating mode. During TAPE mode, no characters you type will be echoed.
Typing KEY followed by the RETURN key will bring you back to normal operating

mode. You may then continue working on that program.
A paper tape can be duplicated by positioning the tape in the reader, depres-
sing the ON button, turning the LINE-OFF-LOCAL knob to LOCAL, and turning the

reader control switch to START.

7.4 READING AND LISTING A PAPER TAPE

To read in a paper tape from the low-speed reader on the Teletype, proceed

as follows:

1. Position paper tape in the reader head:
a. Raise retainer cover,
b. Set reader control to FREE,

c. Position paper tape with feed holes over the sprocket
wheel, and the arrow (cut) pointing outward from the
console.

d. Close retainer cover to hold tape in position.

2. Type TAPE, then the RETURN key.

3. Set reader control switch to START until listing has been
completed. Reader will not stop at blank tape. You must
turn the reader control switch to FREE.

4. 1In order to get back into regular operating mode where the
characters you type will be echoed at the console, type KEY
and then the RETURN key.

5. BASIC will print READY; you can then ask BASIC to LIST and
RUN your program.

CHAPTER 8
ADVANCED BASIC
This section deals with additional features of BASIC which, once you have
learned the BASIC language, will make programming somewhat easier.

8.1 EDIT COMMAND

Frequently it is only necessary to correct several characters in a line.
Rather than retype the entire line, which may be a complex formula or output
format, there is a command which allows you to access a single line and search
for the character you wish to change. The form of the EDIT command is as

follows:

EDI 1line-number

Notice that the EDIT command may be abbreviated to three letters. It is then
followed by the line number of the statement to be changed. Enter the command
by typing the RETURN key. At this point, BASIC waits for you to type a search
character which BASIC will not print. The character you type will be some
character which already exists on the line (one of the legal BASIC characters,
ASCII 240 through 336 (excluding code 300,@) inclusive on the ASCII table

in Appendix F). After the search character is typed, BASIC prints out the
contents of that line until the search character is printed. At this point,

printing stops and the user has the following options:

1. Type in new characters which are inserted following the ones
already printed.

2. Type a Form Feed (CTRL/L); this will cause the search to
proceed to the next occurrence, if any, of the search character.

3. Type a BELL (CTRL/G); this allows the user to change the search
character. The user can specify a new search character.

4. Use the RUBOUT (or SHIFT/O) key to delete one character to
the left each time RUBOUT is depressed. RUBOUT echoes as <.

5. Type the RETURN key to terminate editing of the line at that
point, removing any text to the right.

6. Type the ALTMODE key to delete all the characters to the left
except the line number.

7. Type the LINE FEED key to terminate editing of the line, saving
the remaining characters.

On completion of the EDIT operation, BASIC prints READY. ©Note that line numbers

cannot be changed using EDIT, i.e., you cannot search for a line number digit.

8-1

The following example demonstrates the EDIT command where the incorrect

‘line reads as follows:

60 PRINT "PI=3.14146 ABOUx!"
To edit the line would result in the following output on the Teletype:
ECIT 60
PRINT "kI=3.14146-+-59 ALOU*«T!"
LIST €0
6@ PRINT "PI=3.14159 ABOUT!"

READY

The operations involved in editing the line were as follows: First the number 6
was indicated as the search character. When the 6 was printed, the RUBOUT key
was typed twice to remove the two incorrect digits and 59 was inserted in their
places. CTRL/BELL was typed, resulting in BASIC accepting another search
character. BASIC then prints to the search character * which is removed by a
RUBOUT and replaced with T.. The LINE FEED key was typed to terminate the edit

and save the remaining characters.

8.2 COMMENTS AND REMARKS

You may append a comment to any line by starting the comment with a single
apostrophe ('). All characters typed after the apostrophe are ignored when the

program is run. For example:

19 LET X=4 'SET X TO ITS INITIAL VALUE
20 GOTO 1@ 'LOOP BACK 10 START

Within the print literals, the apostrophe is not considered as the start of a

comment. For example:

12 PRINT "X'S vALUE IS":3X
which will print:

X'S VALUE IS 4
Now consider the following.

19 PRINT X,Y», "FINAL' 'LAST PRINTING

which will print:

2 3 FINAL
because the single apostrophe introduced the comment.

8.3 INPUT STATEMENT

When responding to an INPUT statement, you may add a comment which will

print on the Teletype but have no effect on the running program. For example:
19 INPUT X
20 PRINT X
3@ END
RUN
? 2 'LET X BE 2
2

READY

A trailing comma may be appended to the response of an. INPUT statement if it
is not after the last value to be entered. For example:

19 INPUT X.Y>2Z
20 PRINT X,Y»7
30 END
RUN
? 152,
23
1 2 3

READY

However, the following is illegal.

RUN
? 15,2535
ERROR 45 IN 10

READY

8.4 ABBREVIATING COMMANDS

All commands and statement keywords can be abbreviated to the first three
letters, as shown in Appendix A.

CHAPTER 9
LOADING, STARTING, AND INITIAL DIALOGUE

EduSystem 20 BASIC enables from one to five persons to simultaneously share
the resources of EduSystem 20 computer hardware. The minimal System contains

the following hardware:

One PDP-8, -8/L, or -8/I with 8K words of core memory

One to five ASR- or KSR-33 Teletypes and appropriate PT08 Units
or DC02 Unit.

The System requires a minimum of 8K words of core; additional core, up to 28K,
enhances the operation of the System. The addition of a High-Speed Paper Tape

Reader/Punch is optional.
The System software is supplied on two paper tapes:

System Tape —--.This tape contains the Binary Loader, the BASIC program,
and BASIC's initial dialogue. It is loaded into core using the
Read-In Mode (RIM) Loader (see Appendix E).

Configurator Tape -- This short tape contains the Binary Loader and
BASIC's initial dialogue. It is used to respecify the system
configuration (number of users, size of core, etc.) without
having to reload the entire lengthy System tape. It is loaded
into core using the RIM Loader.

9.1 LOADING AND STARTING BASIC

The procedure for loading either of the tapes follows.

1. Ensure that the RIM Loader is in Field 0 (see Appendix E).

2. Turn all Teletypes to LINE.

3. Set all Teletype tape readers to FREE.

4. Place the System or Configurator tape in the appropriate
reader with leader code (ASCII 200) over the reader head.

5. Set the Data Field and Instruction Field to 0.

6. Set the Switch Register to 7756. (RIM starting address)

7. Press LOAD ADDress and then START.

8. If using low-speed reader, set Teletype tape reader to START.

The tape should start passing over the reader head. If not, check that

the RIM Loader is in core correctly and that you are using the appropriate tape

.

reader as determined by the RIM Loader program (low- or high-speed version) ;

start over at step 1 above.

If the message EDUSYSTEM 20 BASIC does not print on the teleprinter when
the tape stops passing through the reader, the tape was not read into core cor-
rectly. Therefore, check the RIM Loader and start over at step 1 above.

When EDUSYSTEM 20 BASIC is printed, continue at step 9.

9. Remove the tape from the tape reader.

10. Answer BASIC's initial dialogue as explained below.

9.2 BASIC'S INITIAL DIALOGUE

When started, BASIC prints an identification message and then commences to
ask certain questions to which your response specifies the number of users and
the amount of core to be used during operation. If you have made a mistake any-
where during the dialogue, simply type an S in place of one of the responses;
BASIC will restart the dialogue.

The first question is printed two lines below the identification message:

EDUSYSTEM 20 BASIC
NUMBER OF USERS(! TO 5)72

to which your response should be a single digit from 1 to 5, depending on the
number of Teletype terminals to be used. BASIC automatically prints the next

question.

For example:

EDUSYSTEM 29 BASIC

NUMBER OF USERSC1 TQO 5)?4
HIGHEST CORE FIELDC1 TO 7>?

to which your response should be a single digit from 1 to 7, depending on the
size of core in which BASIC is to operate. For a minimal 8K core, your response

would be 1. Each digit is interpreted as follows:

8K core memory
12K core memory
16K core memory
20K core memory
24K core memory
28K core memory
32K core memory

Noond W+

The initial dialogue is diagrammed in Figure 9-1.

NUMBER OF USERS(1 TO 5)?

HIGHEST CORE FIELD(1 TO 7)°?

)

Yes

1 USER

<

PDP-8/L COMPUTER (Y OR N)?

Yes

S

STANDARD REMOTE TELETYPE CODES (Y OR N)?

Yes

TELETYPE #n DEVICE CODE? : As many times as needed

(up to 4) with n going
from 1 to 4

¥

> END OF DIALOGUE

Figure 9-1. Flowchart of Initial Dialogue

BASIC can use a maximum of 28K core memory. Therefore, BASIC will accept a response
of 7 but will use only 28K of core memory. More core provides for larger user
programs. If you specified the number of users as 1, the dialogue is complete.
However, for more than one user, e.g., if a total of four terminals were to be

used (the console Teletype plus three remote Teletypes) and your response was 4,
BASIC will automatically print the next question immediately after your response.

The next question is shown below.

EDUSYSTEM 2@ BASIC

NUMBER OF USERS(1 TO 5)?4
HIGHEST CORE FIELD(1 TO 7)>71
PDF-&/1. COMPUTERCY OR N)>?N

Here your response depends on whether you are using a PDP-8/L computer.
Type Y (yes) or N (no) accordingly. BASIC will conclude the dialogue
when your response is Y. For example, the entire printout might appear
as follows:

EDUSYSTEM 2@ BASIC

NUMBER OF USERS(1 TO 5>74
HIGHEST CORE FIELD(C1 TO 7)>?1
PDP-8/L COMPUTER(Y OR N)?Y

END OF DIALOGUE

READY

However, when PDP-8/L COMPUTER (Y OR N)? is answered with N, BASIC asks
that you respond with a PT08 device code for each terminal to be used
(excluding the console terminal). For example, the entire printout might
appear as follows:

EDUSYSTEM 2@ BASIC

NUMBER OF USERS(1 TO 5>24

HIGHEST CORE FIELDC(1 TO 7)71

PDP-8/L COMPUTERC(Y OR N)>?N

STANDARD REMOTE TELETYPE CODES(Y OR N)>24
INVALID RESPONSE

STANDARD REMOTE TELETYPE CODESC(Y Ok N)>2N
TELETYPE #1 DEVICE CODE?40

TELETYPE #2 DEVICE CODE?42

TELETYPE #3 DEVICE CODE?44

END OF DIALOGUE

READY

For a four-user system with standard PT08 device codes, the responses

would be 40, 42, and 44.
NOTE
Standard PT08 device codes are 40, 42, 44, and 46. When a sys-
tem using PTO08 Interface Units is first installed, determine
the specific device code for each Teletype and label each Tele-
type with its specific device code.

9-4

Your response to BASIC's first question determines how many times PTO08
DEVICE CODE? is printed -- once for each user terminal excluding the console

terminal.

When an invalid response is made to any of BASIC's questions, an error

message is printed and the question is repeated. For example:

STANDARD REMOTE TELETYPE CODESC(Y OR N)74

INVALID RESPONSE
STANDARD REMOTE TELETYFE COLRSC(Y OR N)?

When BASIC has accepted your responses to the initial dialogque, it prints
END OF DIALOGUE and then prints READY on each Teletype associated with the
specified device codes. BASIC is now ready and waiting for you to type a user

program or to issue one of its commands.

9.3 RECONFIGURATION

?

The Configurator Tape is used to change the number of users, size of core,

etc., without completely reloading the System Tape.

To use the Configurator Tape, the system must be inactive, i.e., BASIC
must not be running a program and no user typing. The S key may be typed to
stop a running program or the listing of a program. To ensure that no one
starts typing, turn all Teletypes to OFF. When the system is inactive, load

the Configurator Tape as explained in Section 9.1.

NOTE

If some other program has been loaded into memory since the
last use of BASIC, you must reload the System Tape as explained
in Section 9.1.

9.4 SYSTEM SHUTDOWN

To shut the system down, for overnight or any reason, the procedure in
Section 9.3 must be performed to ensure that the system is in the idle state
(inactive). Then depress the console STOP switch and turn off the console

power.
To restart BASIC, perform the following:
1. Set the console Data Field and Instruction Field to zero.

2. Set the Switch Register to 0200 (BASIC starting address).
3. Press LOAD ADDress and then START.

4. Turn appropriate Teletypes to LINE.

5. BASIC is running and ready for user input.
In the event of a power failure or accidental stopping of the computer,
a complete reloading of the System Tape is recommended. Under certain circum-

stances, restarting at BASIC's starting address (SR=0200) may be successful.

9.5 NUMBER OF LINES ALLOWED

The number of lines allowed varies depending upon the number of users and
the amount of core. For example, one user with 8K of core, is allowed approxi-
mately 300 lines of average BASIC program statements. Five users with 8K of
core are allowed approximately 50 lines each; and the lines allowed for two,
three, or four users will fall proportionally between 300 and 50. One user with
an 8K system is allowed an equivalent number of lines to two users with a 12K
system; two users with an 8K system are allowed an equivalent number of lines to

four users with a 12K system, etc.

4l K 12 &

. Usr 1

f— ofs —{—vn]

@i, e

) vemnz .
4

 —

0800 lingy— o V3¢r

APPENDIX A

SUMMARY OF BASIC STATEMENTS

Command Abbreviation Example of Form Explanation
LET LET v=f Assign the value of the formula f to
the variable v
READ REA READ vl,v2,..., Variables vl through vn are assigned
vn the value of the correspondlng numbers

in the DATA string.

DATA DAT DATA nl, n2,..., Numbers nl through nn are to be
nn associated with corresponding variables
in a READ statement.

PRINT PRI PRINT al, a2,..., Print out the values of the specified
an arguments which may be variables, text,

or format control characters (, or ;).
GOTO GOT GOTO n Transfer control to line n and continue

execution from there.

IF-THEN IF-THE IF f1l r £2 THEN n If the relationship r between the
formulas f1 and f2 is true, then
transfer control to line n; if not,
continue in regular sequence.

IF-GOTO IF-GOT IF f1l r f2 Same as IF-THEN.
GOTO n
- FOR-TO-STEP FOR-TO-STE FOR v=fl TO f2 Used to implement loops: the variable
STEP f3 v is set equal to the formula fl. From

this point the loop cycle is completed
following which v is incremented after
each cycle by f3 until its value is

greater than or equal to f2. If STEP
£f3 is omitted, f3 is assumed to be +1.

NEXT NEX NEXT v Used to tell the computer to return to
the FOR statement and execute the loop
again until v is greater than or equal
to f2.

GOSUB GOS GOSUB n Allows the user to enter a subroutine
at several points in the program.
Control transfers to line n.

RETURN RET RETURN Must be at the end of each subroutine
to enable control to be transferred
to the statement following the last

GOSUB.
RANDOMIZE RAN RANDOMIZE Enables the user to obtain an unre-
RANDOM producible random number sequence in

a program using the RND function.

Command

" Abbreviation

Example of Form

INPUT
REMARK

RESTORE

DEF

STOP
END

ON-GOTO

INP INPUT v1,

vn

REM REMARK text

RES RESTORE

DEF FNG (x)=
f (x)

DEF FNB(x,y)=

f(x,Y)

STO STOP
END

ON-GOT
ie.,n

Functions

v2,

ON f GOTO n,n,

e o o g

Exglanation

Causes printout of a ? to the user,
waits for the user to supply the
values of the variables vl through vn.

When typed as the first three letters
of a line, allows typing of remarks
within a program.

Sets pointer back to the beginning of
the string of DATA values.

own functions
program by
at the begin-

The user may define his
to be called within his
putting a DEF statement
ning of a program. The function name
begins with FN and must have three
letters. The function is then equated
to a formula f(x) which must be only
one line long. Multiple variable

function definitions are allowed.

Equivalent to transferring control
to the END statement

Last statement in every program;
signals completion of the program.

The formula is evaluated and the first,

second, third, etc.,

line number is

selected depending on whether the

truncated evaluation is 1, 2, 3,

etc.

In addition to the usual arithmetic operations of addition (+),

subtraction (-), multiplication (*), division (/), and exponentiation (4), BASIC

provides the following function capabilities:

SIN (X)
COS (X)
TAN (X)
ATN (X)
EXP (X)
LOG (X)

ABS (X)
SQR (X)

NOTE:

Sine of X
Cosine of X
Tangent of X
Arctangent of X
e® (e=2.718282)

Log of X (natural
logarithm

Absolute value of X ([|X])
Square root of X (v X)

Trig functions use radians.

INT (X)
RND (X)

SGN (X)
TAB (X)

FIX(X)

CHR#H ()

Greatest integer in X

Random number between 0
and 1,is a repeatable
sequence; value of X
ignored.

Assign value of +1 if
X is positive, 0 if 0,
or -1 if negative.

Controls the position
of the printing head on
the Teletype

Truncate X

we Lac Bpud f focry

APPENDIX B

SUMMARY OF BASIC EDIT AND CONTROL COMMANDS

Command Abbreviation Explanation
BYE BYE Clears out entire program.
DELETE DEL n Delete the line with line number n, an
n alternate form is to type the line
DEL n,m number and the RETURN key. Delete the
lines with line numbers n through m
inclusive.
EDIT EDI n Allows the user to search line n for

the character typed.

KEY KEY Return to KEY (normal) mode.
LIST LIS List the entire program in core.
LIS n List line n.
LIS n,m List lines n through m inclusive.
NEW NEW BASIC will clear core.
RUN RUN Compile and run the program currently in
core.
SCRATCH SCR Erase the current program from core.
TAPE TAP Enter TAPE mode, characters typed will

not echo on the console paper.

S S Restarts the Initial Dialogue when used
after a wrong response.
OR

Stops a running program, prints STOP,
and then READY.

| I

WHAT?
ERROR
ERROR
ERROR
ERROR
ERROR

ERROR
ERROR

ERROR
ERROR

ERROR
ERROR
ERROR
ERROR

ERROR
ERROR

ERROR
ERROR

ERROR
ERROR
ERROR
ERROR
ERROR

ERROR

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

U s w NN

o)}

10
11
12
13

14
15

16
17

18
19
20
21
22

23

24
25
26
27
28
29
30

APPENDIX C

ERROR MESSAGES

Command not understood - ready mode

Log of negative or zero number requested

Square root of negative number requested

Divison by zero requested

Overflow - exponent greater than approximately +38

Underflow - exponent less than approximately -38

Line too long or program too big

Characters are being typed in too fast - use TAPE command
for reading paper tapes

System overload caused character to be lost

Program too complex or too many variables

Missing or illegal operand or double operators
Missing operator before a left parentheses
Missing or illegal number

Too many digits in number

No DEF for function call

Missing or mismatched parentheses or illegal dummy variable
in DEF

Wrong number of arguments in DEF call

Illegal character in DEF expression

Missing or illegal variable

Single and double subscripted variables with the same name
Subscript out of range

No left parentheses in function

Illegal user defined function - not FN followed by a letter
and a left parentheses

Mismatched parentheses or missing operator after right
parentheses

Syntax in GOTO

Syntax in RESTORE

Syntax in GOSUB

Syntax in ON

Index out of range in ON
Syntax in RETURN

RETURN without GOSUB

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

ERROR
ERROR
ERROR

31
32
33
34
35
36
37
38

39
40
41
42
43
44
45

46
47
48

Missing left parentheses in TAB function

Syntax in PRINT

No END statement or END is not the last statement
Missing or illegal line number

Attempt to GOTO or GOSUB to a non-existent line
Missing or illegal relation in IF

Syntax in IF

Missing equal sign or improper variable left of the equal
sign in LET or FOR

Subscripted index in FOR
Syntax in FOR

No NEXT for FOR

Syntax in LET

Syntax in NEXT

NEXT without FOR

Too much data typed in or illegal character in DATA or
the data typed in

Illegal character or function in INPUT or READ
Out of data

Unrecognized command - RUN mode

APPENDIX D

IMPLEMENTATION NOTES

The BASIC language is compatible with Dartmouth BASIC except as noted

below:

1. There are no matrix operations.

2. There are no character string instructions.

3. There are no facilities which allow reading or writing of
programs or data files on disk.

4. User defined functions are restricted to one line.

) —

APPENDIX E

READ-IN MODE LOADER

The Read-In Mode (RIM) Loader is the very first program loaded into the
computer; it is loaded by toggling 17 instructions into core using the console
switches. The RIM Loader instructs the computer to receive and store, in core,

data punched on paper tape in RIM coded format -- primarily the Binary Loader.

There are two RIM Loader programs: one is used when the input is to be
from the low-speed (Teletype) paper tape reader, and the other is used when
input is to be from the high-speed paper tape reader. The-locations and
corresponding instructions for both programs are listed in Table E-1. The pro-
cedure for loading (toggling) the RIM program into core is illustrated in Figure

E-1. The RIM Loader is loaded into field zero of core.

Table E-1. RIM Loader PRograms

Instruction
Location Low-Speed High-Speed
7756 6032 6014
7757 6031 6011
7760 5357 5357
7761 6036 6016
7762 7106 7106
7763 7006 7006
7764 ‘ 7510 7510
7765 5357 5374
7766 , 7006 7006
7767 6031 6011
7770 5367 5367
7771 6034 6016
7772 7420 7420
7773 3776 3776
7774 3376 3376
7775 5356 5357
7776 0000 0000

e o

Set SR=7756

Load RIM into Field @

N5

Depress
LOAD ADD

No
PC=7756

?

Yes

Set SR=First
Instruction

Depress
DEP

Set SR= Next
Instruction

Depress
DEP

RIM is Loaded

Figure E-1. Loading the RIM Loader

After RIM has been loaded, it is good programming practice to verify that
all instructions were stored properly. This can be done by performing the steps
illustrated in Figure E-2, which also shows how to correct an incorrectly

E-2

stored instruction.

When loaded, the RIM Loader occupies absolute locations 7756 through 7776.
The BASIC System does not use the RIM locations; therefore, RIM need not be
reloaded to load the Configurator Tape after running the System unless, of

course, the contents of the RIM locations have been altered by the user.

Set SR=7756

Depress LOAD ADD

Depress EXAM <
Yes
Set SR=MA
N
N
Depress LOAD ADD
v /
Set SR=Correct
Instruction All
Instructions
Checked
WV

Depress DEP

<§IM Is Loaded)

Figure E-2. Checking the RIM Loader

Character

Ol

Code

M KX =T <aH®PWO WO ZEEHRUHTOWHEU QW

301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332

200

APPENDIX F

e CHF #(>)
Ree o
e
éééf Character Code
bs 0 260
66 1 261
é? 2 262
bv 3 263
by 4 264
70 5 265
71 6 266
7Z 7 267
7% 8 270
q 9 271

76

77

7%

79

%5

b

57

S

o

g0

64

F-1

ASCII CHARACTER SET

Ekf OQZJ
ég@g Character Code
4% ! 241
47 " 242
50 # 243
57 $ 244
52 % 245
7% & 246
54 ' 247
5y (250
=4) 251
5? * 252
+ 253

, 254

- 255

. 256

/ 257

272

; 273

= 275

? 277

[333

1 335

Bell 207

Tab 211

Line Feed 212
Carriage-Return 215

Space 240

Rubout 377

“ 337

Form 214

L‘@ ~J

&, g W

\,
ANy -~

|5 S

RGN (N
Dy, 4

!

B
W .
S?:g J R NS

[ORN
]

-~

INDEX

Abbreviating commands, 8-3
Advanced BASIC, 8-1
ALTMODE key, 7-2
Arithmetic operations,

ASCII character set,

2-5
F-1

Commands
abbreviating,
summary of,

Commands
DELETE,
EDIT, 8-
LIST, 7-
RUN, 7-1
SCRATCH, 6-2

Comments or remarks,

Computing procedure,

Conditional transfer,
IF-GOTO, ON-GOTO,

Configurator tape, 9-1,

Control transfer, 4-6

Corrections, see Errors and
corrections

8-3
B-1

7-1
1
1

8-2
1-1
IF-THEN,
4-7
-5

DATA statement, 3-1
Decimal numbers,
DELETE command,

DIM statement,

2-1,-2
7-1
4-3

EDIT command, 8-1
Editing phase, 7-1
END statement, 5-2
Errors and corrections,
erasing a line, 6-1
erasing a program,
single letter, 6-1
stopping a run, 6-3
Error messages, list,
Example program, 2-1,
Exponentiation, 2-2

6-1, 8-1

6-2

c-1
-2

FOR statement, 4-4

Functions
integer INT (X),
mathematical,
random number
sign SGN(X),
TAB, 3-8
trigonometric, 2-7
truncation FIX(X),
user defined DEF,

2-8
2=-7
RND(X), 2-10

2-8

2-9

2-12

5-1
4-7

GOSUB statement,
GOTO statement,

Hardware requirements, 9-1
How to use this manual, 1-2
IF-GOTO statement, 4-8
IF-THEN statement, 4-8
Implementation, D-1

Initial Dialogue, 9-1,-2
INPUT statement, 3-3, 8-3

Input/output (I/0) statements,
Integer function INT(X), 2-8
Integers, 2-2

Interest program, 3-4

Introduction to BASIC programming, 1-1

LET statement, 2-4
LIST command, 7-1
Loading system tapes,
Loops, 4-1, -4
nesting, 4-6

9-1

Mathematical operators, 2-5
Mathematical symbols, 4-8

Modulus arithmetic program, 2-

Nesting
loops, 4-6
subroutines,

NEXT statement,

Numbers, 2-1
decimal, 2-1, -2
exponential form,
integers, 2-2
real numbers,

5-3
4-4
2-2
2-2
ON-GOTO statement, 4-8

Operations, arithmetic,
Output, example program,

2-5
2-1,

Paper tape
punching, 7-2
reading and listing,
Parentheses, 2-6
PRINT statement, 3-5
Programming fundamentals,
Punching a paper tape, 7-2

7-3

2-1

Random number function RND(X),
Randomize statement, 2-11

Read In Mode loader (RIM), E-1

Reading and listing a paper tap
READ statement, 3-1
Reconfiguration, 9-5

X-1

3-1

15

2-2

2-10

e, 7-2

REM statement, 2-1 Statement summary, A-l

Restarting, 9-5,-6 Starting procedure, 9-1
RESTORE statement, 3-2 Stopping a run, 5-3
RETURN statement, 5-1 STOP statement, 5-2
RIM, see Read In Mode Subroutines, 5-1
RND function, see Random number nesting, 5-3
function Subscripted variables, 4-1
READ, 3-1 Summary
REM, 2-1 of commands, B-1
RESTORE, 3-2 of statements, A-1
RETURN, 5-1 System requirements
sToP, 5-2 hardware, 9-1
RUN command, 7-1 software, 9-1
Running a program, 7-1 System shutdown, 9-5
SCRATCH command, 6-2 _Transfer of control, 4-6
Shutdown, 9-5 conditional, 4-7
Sign function SGN(X), 2-8 unconditional, 4-7
Spaces, 2-6 Truncation function FIX(X), 2-9
. Statements
DATA, 3-1
DIM, 4-3 Unconditional transfer, GOTO, 4-7
END, 5-2 User defined function DEF, 2-12
FOR, 4-4
GOSUB, 5-1
GOTO, 4-7
IF-GoTO, 4-7, -8 Variables, 2-4
IF-THEN, 4-7, -8 subscripted, 4-1

INPUT, 3-3, 8-3
Input/output, 3-1
LET, 2-4

NEXT, 4-4
ON-GOTO, 407, -8
PRINT, 3-5
Randomize, 2-11

I

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements of new and revised software, as well as programming notes, software problems,
and documentation corrections are published by Software Information Service in the following

newsletters:
Digital Software News for the PDP-8 and PDP-12
Digital Software News for the PDP-9/15 Family
Digital Software News for the PDP-11

These newsletters contain information to update the cumulative
Software Performance Summary for the PDP-8 and PDP-12
Software Performance Summary for the PDP-9/15 Family
Software Performance Summary for the PDP-11

The appropriate edition of the Software Performance Summary is included in each basic software
kit for new customers. Additional copies may be requested without charge.

Any questions or problems on the articles contained in these publications or concerning the use
of Digital's software should be reported to the Software Specialist or Sales Engineer at the
nearest Digital office.

New and revised software and manuals, and current issues of the Software Performance Summary
are available from the Program Library. To place an order, write to:

Program Library

Digital Equipment Corporation
146 Main Street, Building 1-2
Maynard, Massachusetts 01754

When ordering, include the code number and a brief description of the program or manual
requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a
catalog of available programs as well as the DECUSCOPE magazine for its members and non-
members who request it. For further information, please write to:

DECUS

Digital Equipment Corporation
146 Main Street, Building 3-5
Maynard, Massachusetts 01754

READER'S

COMMENTS

EduSystem-20
User's Guide
DEC-8I-KJXA-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -~ your critical evaluation of

this manual .

Please comment on this manual's completeness, accuracy, organization, usability, and read-

ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Date:

Please state your position.

Name:

Street:

City: i .State:

Organization:

Department:

Zip or Country

- -——-——-—-————— ———— —FoldHere ~— = == -~ ——— —— — —— — _—————

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

dlilgliltiall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

