e . A ey - Y Y e - £ - - -~ - -

OOOOOOOOOOOOOOO

telstetctetctectetetetetetets

@S|@

O
X
@

digktal equipment corporation

DEC-08~-LBSMA-A-D

8K BASIC

For additional coples, order No. DEC-08-LBSMA-A-D
from Software Distribution Center, Digital Equipment
Corporation, Maynard, Mass.

digital equipment corporation - maynard. massachusetts

First Printing, July 1973

Copyright (:) 1973 by Digital Equipment Corporation

The following are trademarks of Digital Eguipment Corporation,
Maynard, Massachusetts:

CDP

COMPUTER LAB
COMTEX
COMSYST

DDT

DEC

DECCOMM
DECTAPE
DIBOL

DIGITAL
DNC
EDGRIN
EBUSYSTEM
FLIP CHIP
FOCAL
GLC-8
IDAC
IDACS
INDAC

KRAL1D
LAR~8
LAB-8/e
LAB-K
OMNIBUS

0s/8
PDP

PHA

P5/8
QUICKPOINT
RAD-8

RSTS

RSX

RTM

SABR
TYPESET 8
UNIBUS

contents

VWA ADLES oot e an et rrnanens

Arithmetic Operations ...,
Priority of Arithmetic Operationsccocccvveieeiin
Parenthesesoovreeiiiiiiniiiciin e

Relational Operatorsc.cooiiiii,

Immediate Mode et
PRINT Commandccccociiiiimiiiiiiiieessccineee s
LET Commandcccooiiiricimmmmm e

BASIC Statementsccccccoeiriimiiiiinii e
Example Programccoovvvviiiiniiiiin e,
Statement NUMDBETScccoiviiiiiiiiinin e,
Commenting the Programccooccvviiiiiinnninnnen,

REM it ettt
Terminating the Programcoooiiiinnnn,
END oo et s
STOP et e

LET et s
Input/Output Statementscccoeceeviveeeorierecoienienn.
READ and DATAccocimiiciceeies e
RESTORE ..o
INPUT e

—

DN D W00] = ROy W Bl W

[T N e T o T o YO S e
COVUNDh ANEM=DOO

Loopsoveeene

FOR, NEXT, and STEPccoccoocviiomiimiiieneeee e
Subscripted Variables ...

DIM

Transfer of Control Statementsoooovverer e,
Unconditional Transter—GOTOcoooviviiiiininnn.
Conditional Transfer—IF-THEN and IF-GOTO

Subroutines

GOSUB and RETURN ..o,

Functions

..

Sign Function—SGN(X)oociviiiniiiiiie
Integer Function—INT(x}cccoooiviiiiii
Random Number Function—RND(X)c.....o.....

TAR Function

PUT and GET Functions ..oooeeeeecevinieeieiiieneaieeannns

FNA Function

User-Defined Function—UUF ..o, .

Coding Formats

Floating-Point Format ...,

Addressing

Floating-Pomt Instruction Setc.covevviivevininnn. i

Writing the Prog
Examples

..

I .

Editing and Control Commands
Erasing Characters and Linesccccocooevveocvvervinninnn,

SHIFT/0, RUBOUTS, and NO RUBQUTS
Listing and Punching a Programcc........cococeen...

LIST

PTR ...

RUN

..

..

22
22
25
27

29
29
30
30
30
34
35
35
36
37
39
42

43
43
44
45
45

]
i

48

53
33
53
55
35
55
56
56
56
36
57
57

CTRL/C .o S 57

CTRL/O et 57
Erasing a Program 1n Coreocooccirnicciiiciinniinniinn, 38
SO R et s 58
Loading and Operating Procedures 58
BASIC Compiler ..o 58
User-Defined Functioncooovcevvvvvivveerviieevs e i annen 59
8K BASIC Error Messagescovoeiiinnniieicnnnnne. 59
8K BASIC Symbol Tableccccocoiniiniinnee, 61
Statement and Command Summariesccceeeeeennn. 67
Edit and Control Commandscocevevvviiviiceeireviinnes 67
BASIC Statements ..ot ee et eere e eaanns 67
APpPendix A ..o A-l
Appendix B ... B-1

vi

8K basic

INTRODUCTION

8K BASIC is an intcractive programming language with a vari-
ety of applications. It is used in Scientific and business environments
to solve both simple and complex mathematical problems with a
minimum of programming effort. 1t is used by educators and stu-
dents as a problem-solving tool and as an aid to learning through
programmed instruction and simulation.

In many respects the BASIC language is similar to other pro-
gramming languages (such as FOCAL and FORTRAN), but
BASIC is aimed at facilitating communication between the user
and the computer. The BASIC user types in the computational
procedure as a series of numbered statements, making use of com-
mon English words and familiar mathematical notations. Because
of the small number of commands necessary and its easy applica-
tion in solving problems, BASIC is one of the simplest computer
languages to learn. With experience, the user can add the advanced
techniques available in the language to perform more intricate
manipulations or express a problem more efficiently and concisely.

8K BASIC is an extended version of DEC’s 4K BASIC,! but
has additional features and reguires 8K of core. The user who has
no familiarity with the BASIC language may wish to refer to the
EduSystem Handbook for a background description of the lang-
uage fundamentals, and for information pertaining to working
with BASIC at the computer.

The minimum system configuration for 8K BASIC is a PDP-8

14K BASIC, or EduSystem 10, is the most fundamental BASIC in DEC's
series of EduSystems. This series is directed primarily for use in an educa-
tional environment. Information concerning the EduSystems may be ob-
tained from DEC's PDP-8 Educational Marketing Department.

1

series computer with 8K of core memory. Supported options in-
clude a high-speed reader and punch, and an LPO8 line printer.

New features provided by 8K BASIC include one and two-
dimensional subscripting, faster execution time, user-coded func-
tions, use of the LPO& line printer and high-speced reader/punch,
and specification of input and output devices from any part of a
program,

Loading and operating instructions and a command summary
are included at the end of the manual.

NUMBERS

BASIC treats all numbers (real and integer) as decimal numbers
—that is, it accepts any number containing a decimal point, and
assumes a decimal point after an integer. The advantage of treating
all numbers as decimal numbers is that the programmer can use
any number or symbol in any mathematical expression without re-
gard to its type.

In addition to integer and real formats, a third format is recog-
nized and accepted by 8K BASIC and is used to express numbers
outside the range .01<=x<=1,000,000. This format is called
exponential or E-type notation, and in this format, a number 1s
expressed as a decimal number times some power of 10. The
form is:

xxEn

where E represents “times 10 to the power of”’; thus the number
is read: “xx times 10 to the power of n.” For example:

23.4E2 =23.4%10° = 2340

Data may be input in any one or all three of these forms. Re-
sults of computations are output as decimals if they are within the
range previously stated; otherwise, they are output in E format.
BASIC handles seven significant digits in normal operation and
input/output, as illustrated below:

Value Typed In Value Qutput By BASIC
.01 .01
0099 9.900000E—-3
999999 999999
1000000 1.000000E+6

BASIC automatically suppresses the printing of leading and trail-
ing zeros in integer and dectmal numbers, and, as can be seen
from the preceding examples, formats all exponential numbers in
the form:

(sign) x.xxxxxx E (+or —) n
where x represents the number carried to six decimal places, E
stands for “times 10 to the power of,” and n represents the ex-
ponential value. For example:
—3.470218E+8 is equal to —347,021,800
7.260000E—4 is equal to .000726
VARIABLES

A variable in BASIC is an algebraic symbol representing a
number, and is formed by a single letter or a letter followed by a
digit. For example:

Acceptable Variables Unacceptable Variables
I 2C — a digit cannot begin
a variable
B3 AB — two or more letters
cannot form a vari-
able
X

The user may assign values to variables either by indicating the
values in a LET statement, or by inputting the values as data;
these operations are discussed further on in the manual.

ARITHMETIC OPERATIONS

BASIC performs addition, subtraction, multiplication, division
and exponentiation, as well as more complicated operations ex-
plained in detail later in the manual. The five operators used in
writing most formulas are:

Symbol
Operator Meaning Example
+ Addition A+B
- Subtraction A—B
* Multiplication A*B
/ Division A/B
7 Exponentiation ATB
(Raise A tothe
Bth power)

3

Priority of Arithmetic Operations
In any given mathematical formula, BASIC performs the arith-
metic operations in the following order of evaluation:

1. Parentheses rececive top priority. Any expression within
parentheses is evaluated before an unparenthesized expres-
sion.

2. In absence of parentheses, the order of priority is:

a. Exponentiation
b. Multiplication and Division (of equal priority)
¢. Addition and Subtraction (of equal priority)

3. If either 1 or 2 above does not clearly designate the order of
priority, then the evaluation of expressions proceeds from
left to right. '

The expression AtB1C is evaluated from left to right as follows:

1. A1B = step 1
2. {(result of step 1}1C = answer

The expression A/B*C is also evaluated from left to right since
multiplication and division are of equal priority:

1. A/B = step 1
2. (result of step 1)*C = answer
PARENTHESES

Parentheses may be used by the programmer to change the
order of priority (as listed in rule 2 above), as expressions within
parentheses are always evaluated first. Thus, by enclosing expres-
sions appropriately, the programmer can control the order of eval-
uation. Parentheses may be nested, or enclosed by a second set (or
more) of parentheses. In this case, the expression within the inner- .
most parentheses is evaluated first, and then the next innermost,
and so on, until all have been evaluated.

Consider the following example:

A=THC(BI12+4) /%)

The order of priority is:

1. B12 = step 1
2. (result of step 1)+4 = step 2
3. (result of step 2)/X = step 3
4. (result of step 3)*7 = A

4

Parentheses also prevent any confusion or doubt as to how the
expression is evaluated. For example:

A*Br2/7+B/C+Dt 2

(CA*Bt2)Y/7T)1+((R/CY+D 2D

Both of these formulas will be executed in the same way. How-
ever, the inexperienced programmer or student may find that the
second is easier to understand.

Spaces may be used in a similar manner. Since the BASIC com-
piler ignores spaces, the two statcments:

18 LET B = D12 + |

1ALETB=D12+1

are identical, but spaces in the first statement provide ease in
reading,

RELATIONAL OPERATORS

A program may require that two values be compared at some
point to discover their relation to one another. To accomplish this,
BASIC makes use of the following relational operators:

= equal to > greater than
< less than >= greater than or
<= less than or equal to

equal to <> not equal to

Depending upon the result of the comparison, control of program
execution may be directed to another part of the program, or the
validity of the relationship may cause a value of 0 to 1 to be as-
sociated with a variable (that is, if a condition is true, a value of
1 is assigned; if a condition is not true, then the value of O is re-
turned). Relational operators are used in conjunction with 1F and
LET statements, both of which are discussed in greater detail later
in the manual.

The meaning of the equal (=) sign should be clarified. In
algebraic notation, the formula X=X+1 is meaningless. However,
in BASIC (and most computer languages), the equal sign desig-
nates replacement rather than equality. Thus, this formula is
actually translated: “add one to the current value of X and store

5

the new result back in the same variable X.” Whatcver valuc has
previously been assigned to X will be combined with the value 1.
An expression such as A=B+C instructs the computer to add the
values of B and C and store the result in a third variable A. The
variable A is not being evaluated in terms of any previously as-
signed value, but only in terms of B and C. Therefore, if A has
been assigned any value prior to its use in this statement, the old
value is lost; it is instead replaced by the value of B+C.

IMMEDIATE MODE

There are two commands available which allow BASIC to act
as a calculator—PRINT and LET. The user types in the algebraic
expression which is to be calculated, and BASIC types back the
result. This is called immediate mode since the uscr is not required
to write a detailed program to calculate expressions and equations,
but can use BASIC to produce results immediately.

PRINT Command
The PRINT commangd is of the form:

PRINT expression

and instructs BASIC to compute the value of the expression and
print it on the Teletype. The expression may bc made up of any
dectmal number, the arithmetic operators mentioned previously, and
the functions which are discussed further on in the manual. (These
may be used in conjunction with a string of text, as explained in the
section concerning the PRINT statement.) For example:

PRINT 1/8%8
5.96B464E-08

LET Command
Values may be assigned to variables by use of the LET com-
mand as follows:

LET variable = cxpression

The computer does not type anything in response to this com-
mand, but merely stores the information. This information may
then be used in conjunction with a PRINT command to calculatc
results, For example:

LET P1=3.1415%

PRINT Pl#*41%2
50 .26544

BASIC STATEMENTS
Example Program

The following example program is included at this point as an
illustration of the format of a BASIC program, the ease in running
it, and the type of output that may be produced. This program
and its results are for the most part seli-explanatory. Following
sections cover the statements and commands used in BASIC pro-
gramming.

1® REM - PROGRAM TO TAKE AVERAGE OF
15 REM - STUDENT GRADES AND CLASS GRADES
2¢ PRINT "HOW MANY STUDENTS. HOW MANY GRADES PER STULENT';
39 INPUT A»B

42 LET I=p

58 FOR J=1 TO A-1

55 LET V=0

69 PEINT "STUDENT NUMEBER ='';J

75 PRINT "ENTER GRADES"

76 LET D=J

83 FOR H=D TQ D+(B-1)

81 INPUT G

82 LET W=U+G

85 NEXT X

9@ LET V=U/PR

95 PRINT "AVERAGE GRADE =";V

56 PRINT

95 LET Q@=R+V

133 NEXT dJ

1d1 PRINT

132 PRINT

183 PRINT "CLASS AVERAGE ="i@/A

134 STOP

143 END

RUN

HOW MANY STULENTS, HOW MANY GRADES FPER STUDRENT? 5,4
STULENT NUNMBER = @

ENTER GRALES

TTH

TEG

788

274

AVERAGE. GRADFE = 81.5

STULENT NUMPER = 1!
FNTER GRALDES

759

TE6

?79

THT

AVERAGE GRADE = 75.5

STULENT NUMBER = 2
ENTER GEADES

758

764

275

789

AVERAGE GRADE = 69.25

STULENT NUMBER = 3
ENTER GEADES

28E

7492

285

279

AVERAGE GEADE = 88

STUCENT NUMBER = 4
ENTER GRALES
760

778

785

780

AVERAGE GEALE

IE
-1
n
»
-1
wn

1

CLASS AVFRAGE T746

READY.

Statement Numbers

An integer number is placed at the beginning of each line in a
BASIC program. BASIC executes the statements in a program in
numerically consecutive order, regardless of the order in which
they have been typed. A common practice is to number lines by

8

fives or tens, so that additional lines may be inserted in a program
without the necessity of renumbering lines already present.

Multiple statements may be placed on a single line by sep-
erating each statement from the preceding statement with a back-
slash (SHIFT/L). For example:

13 A=5S\B=.2\C=3\PRINT "ENTER DATA"

All of the statcments in line 10 will be executed before BASIC con-
tinues to the next line. Only one statcment number at the beginning
of the entire line is necessary, However, it should be remembered
that program control cannot be transferred to a statement within
a line, but only to the first statement of the line in which it is con-
tained (see the section entitled Transfer of Control Statcments).

Commenting the Program
REM

The REM or REMARK statement allows the programmer to
insert comments or remarks into a program without these com-
ments affecting execution. The BASIC compiler ignores every-
thing following REM. The form is:

(line number) REM (message)

In the Example Program, lines 10 and 15 are REMARK state-
ments describing what the program does. It is often useful to put
the name of the program and information relating to . its use
at the beginning where it is available for future reference. Remarks
throughout the body of a long program will hclp later debugging
by explaining the purpose of each section of code within the
program,

Terminating the Program
END

The END statement (line 140 in the Example Program), if
present, must be the last statement of the entire program. The form
is:

(line number) END
This statement acts as a signal that the entire program has been

executed. Use of the statement is optional. However, if the pro-
gram contains an END statement, after execution, variables and

9

arrays are left in an undefined state, thereby losing any values they
have been assigned during execution,

STOP

The STOP statement is used synonymously with the END state-
ment to terminate execution, but while END occurs only once at
the end of a program, STOP may occur any number of times. The
format of the STOP statement is:

(line number) STOP

This statement signals that execution is to be terminated at that
point in the program where it is encountered.

The Arithmetic Statement
LET

The Arithmetic (LET) statement is probably the most com-
monly used BASIC statement and is used whenever a value is to
be assigned to a variable. It is of the form:

(line number) (LET) x = expression

where x represents a variable, and the expression is either a num-
ber, another variable, or an arithmetic expression. The word ‘LET”
1s optional; thus the following statements are treated the same:

139 LET A=a4tR+10 116 LET C=F/sC

1A A=ATE+]10 113 C=F/G

As mentioned earlier, relational operators may be used in a LET
statement to assign a value of O (if false) or 1 (if true) to a
variable depending upon the validity of a relationship. For example:

19D A=1\B=2
118 C=A=B

120 D=A>B

130 E=A<>B

1483 PRINT C,D.E
156 END

Translated, this actually means “let C=1 if A=B (0 otherwise);
let D=1 if A>B (0 otherwise)” and so on. Thus, the values of C,
D, and E are printed as follows:

10

RN
a 15 1

READY .

There is no Iimit to the number of relationships that may be tested
in the statement.

Input/Output Statements

Input/Output statements allow the user to bring data into a
program and output results or data at any time during execution.
The Teletype keyboard, low or high-speed reader/punch, and
LPO8 line printer are all available as I/O devices in 8K BASIC.
Statements which control their use are described next.

READ AND DATA

READ and DATA statements are used to input data into a pro-
gram. One statement is never used without the other. The form of
the READ statement is:

(line number) READ x1,x2,...xn

where x1 through xn represent variable names. For example:

1% REALD A.B,C

A, B, and C are variables to which values will be assigned. Vari-
ables in a READ statement must be separated by commas. READ
statements are generally placed at the beginning of a program, but
must at least logically occur before that point in the program
where the value is required for some computation.

Values which will be assigned to the variables in a READ state-
ment are supplied in a DATA statement of the form:

(line number) DATA x1,x2,...xn

where x1 through xn represent values. The values must be sep-
arated by commas and occur in the same order as the variables
which are listed in the corresponding READ statement. A DATA
statement appropriate for the preceding READ statement is:

7% DATA 1.,2,3

11

Thus, at execution time A=1, B=2, and C=3.

The DATA statement is usually placed at the end of a program
(before the END statement) where it is easily accessible to the
programmer should he wish to change the values.

A READ statement may have more or fewer vartables than
there are values in any one DATA statcment. The READ state-
ment causes BASIC to search all available DATA statements Iin
the order of their line numbers until values are found for each
variable in the READ. A second READ statement will begin read-
ing values where the first stopped. If at some point in the program
an attempt 1s made to read data which is not present or if the data
is not separated by commas, BASIC will stop and print the follow-
ing message at the console:

DATA ERROR AT LINE XXXX

where XXXX mdicates the line which caused the error,

RESTORE

If it should become necessary to use the same data more than
once in a program, the RESTORE statement will make it possible
to recycle through the DATA statements beginning with the lowest
numbered DATA statement. The RESTORE statement is of the
form:

(line number) RESTORE

An example of its use follows:

15 READ B,»C»D

55 RESTORE
60 READ E-F,Q

80 DATA 653,457,952

ta@ END

The READ statements in lines 15 and 60 will both read the first
three data values provided in line 80. (If the RESTORE statement

12

had not been inserted before line 60, then the second READ would
pick up data in line 80 starting with the fourth value.)

The programmer may use the same variable names the second
time through the data, or not, as he chooses, since the values are
being read as though for the first time. In order to skip unwanted
values, the programmer may insert replacement, or dummy, vari-
ables. Consider:

1 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE
2 READ N

25 PRINT "VALUES 0OF X ARE:"

3% FOR I=1 TO N

4¢) READ X

58 PRINT X

60 NEXT 1

78 RESTORE

185 PRINT

199 PRINT “SECOND LIST OF X VALUES"

20® PRINT "FOLLOWING RESTORE STATEMENT:"
214 FOR I1=1 TO N

22¢0 READ X

238 PRINT X

240 NFEXT 1

250 DATA 4,1.s2

251 DATA 3,4

360 END

RUN
VALUES OF X ARE:

1 2 3 4
SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT$

4 1 2 3
READY .

The second time the data values are read, the first X picks up
the value originally assigned to N in line 20, and as a result, BASIC
prints:

13

To circumvent this, the programmer could inscrt a dummy variable
which would pick up and store the first value, but would not be
represented in the PRINT statement, in which case the output
would be the same each time through the list.

INPUT

The INPUT statement is used when data is to be supplied by
the user from the Teletype keyboard while a program is exccuting,
and is of the form:

(line number) INPUT xI1, x2,...xn

where x1 through xn represent variable names. For example:

25 INPUT A-B»C

This statement will cause the program to pause during execution,
print a question mark on the Teletype console, and wait for the
uscr to type in three numerical values. The user must separate the
values by commas; they are entered into the computer by his press-
ing the RETURN key at the end of the list.

If the user does not insert enough values to satisfy the INPUT
statement, BASIC prints another question mark and waits for more
values to be input. When the correct number has been entered,
execution continues. If two many values are input, BASIC ignores
those in excess of the required number. The values are cntered
when the user types the RETURN key.

PTR

A PTR statement is used when data is to be input from the high-
speed paper tape reader. The format of the data on the paper tape
must be the same as it would be if it were input from the Teletype
keyboard. If more than one value is to be input at a time, the
values must be separated by commas, The tape must be positioned
in the reader before it is called by the program; while it is reading,
there is no echo (type out) on the Teletype. The form is:

(line number) PTR

The PTR statement is most useful for inputting large amounts of
data in conjunction with the INPUT command. The following
program accepts 20 data values from the high-speed reader, prints
a heading, the value input, and its sine on the Teletype:

t4

50 PTR

6@ PRINT "SINE TABLE"
18 FOR J=1 TO 28

113 INPUT A

120 LET B=S5SINCA)

133 PRINT A.B

1483 NEXT J

158 END

RUN

SINE TABLE

-.97 -« B248857

-+911 -«7901171

-+ 872 -« 7656171

-. 723 -.6616371

~.715 -+ 6586325

-~ 61 -« 572B675

-+ 502 -«4811798

-+ 346 -+«3321376

~+33 -+« 3284043

-.283 -+ 2792376

--175 -«1741481

-« 155 -« 1543801

-.02 -.81999867
«B3 -@299955
.93 -A92866
« 127 « 1266589
«13 - 1296341
42 ABTTEB5
« 529 - 50467633
+632 « 5987596

READTY .

PRINT

The PRINT statement is used to output results of computations,
comments, values of variables, or plot points of a graph on the
Teletype. The format is:

(line number) PRINT expression

When used without an expression, a blank line will be output on
the Teletype. For more complicated formats, the type of expression
and the type of format control characters following the word
PRINT determines which formats will be created.

In order to have the computer print out the results of a compu-
tation, or the value of a variable at any point in the program, the

15

user types the line number, PRINT, and the variable name(s)
separated by a format control character, in this case, commas:

5 A4=1A\B=5\C=4
168 PRINT A,C+R,SQRAD

In BASIC, -a Teletype line is formatted into five fixed columns
(called print zones) of 14 spaces each. In the above example, the
values of A, C+B, and the square root of A will be printed in the
first three of these zones as follows:

RUN
16 el 4

READY.

A statement such as:

5 8=2+3\B=21\C=156.75\D=1.134\E=23.4
1% PRINT A,B,C-DHE

will cause the values of the variables to be printed in the same
format using all five columns:

RLRY
2.3 21 156.75 1.134 23.4

READY.

When more than five variables are listed in the PRINT statement,
the sixth value begins a ncw line of output.

The PRINT statement may also be used to output a message or
line of text. The desired message is simply placed in quotation
marks in the PRINT statement as follows:

1 PRINT "THIS IS A TEST™

When line 10 is encountered during execution, the following will
be printed:

THIS IS5 A TEST

A message may be combined with the result of a calculation or a
variable as follows:

16

B@# PRINT ""AMOUNT PER PAYMENT ="H

Assuming R=344.9617, when line 80 is encountered during execu-
tion, this will be output as:

RUN
AMOUNT PER PAYMENT = 344.9617

READY.

It is not necessary to use the standard five zone format for out-
put. The control character semicolon (;) causes the text or data
to be output immediately after the last character printed (sep-
arated by one space.) If neither a comma nor a semicolon is used,
BASIC assumes a semicolon. Thus both of the following:

80 PRINT "AMOUNT PER PAYMENT ="R
B2 PRINT "AMOUNT PER PAYMENT =";R

will result in:
AMOUNT PER PAYMENT = 344.9617

The PRINT statement can also cause a constant to be printed on
the console. (This is similar to the PRINT command used in Im-
mediate Mode.) For example:

1@ PRINT 1.234,5QR14814)

will cause the following to be output at execution time:

1.234 1AG .37

Any algebraic expression in a PRINT statement will be evaluated
using the current value of the variables. Numbers will be printed
according to the format previously specified.

The following example program tllustrates the use of the control
characters? in PRINT statements:

2 The user may wish to refer to the section entitled Functions for in-
formation pertaining to three functions available for additional character
contiol—TAB, PUT, and GET.

17

1@ READ 8,B.C

2@ PRINT a.,B,C,At2,Rt2,Ct2
3@ PRINT

4@ PRINT ASB:CrAT23;Br2:Cr2
20 DATA 4,5:6

6@ END

AUN
36
4 5 & 16 25 36

READY.

As this example illustrates, if 2 number should be too long to be
printed on the end of a single line, BASIC automatically moves the
entire number to the beginning of the next line.

Another use of the PRINT statement is to combine it with an
INPUT statement so as to identify the data expected to be entered.
As an example, consider the following program:

19 REM - PROGRAM TO COMPUTE INTEREST PAYMENTS
20 PRINT "INTEREST IN PERCENT";

25 INPUT J

26 LET J=J/100

3% PRINT "AMOUNT OF LOAN";

35 INPUT A

49 PRINT "NUMEBER OF YEARS";

45 INPUT N

53 PRINT "NUMBER OF PAYMENTS PER YEAR";
55 INPUT M

66 LET N=N#*M

65 LET I=dJ/M

708 LET B=1+1

75 LET R=A*1/(1-1/BN)

78 PRINT

8¢ PRINT "AMCUNT PER PAYMENT ="3R

#5 PRINT ""TOTAL INTEREST =" R¥N-A

B8 PRINT

S@ LET B=A

95 PRINT ' INTEREST APP TO PRIN BALANCE"

188 LET L=B*I

1138 LET P=R-L

128 LET B=B-P

132 PRINT L,P,BE

142 IF B>=RGC TO 17O

158 PRINT B*I,R-B*I

163 PRINT "LAST PAYMENT ="B*I+B
200 END

18

RUN

INTEREST IN PERCENT?9

AMOUNT OF LOAN?Z2508

NUMBER OF YEARS?2

NUMBER OF PAYMENTS PER YEAR?4

AMOUNT PER PAYMENT = 344.%617

TOTAL INTEREST £59.6932
INTEREST APP TO PRIN BALANCE
56.25 2BE.T117 2211.288
49.75395 295.2077 1916.0881
43.11182 301.8498 1614.231
36.32019 308.6415 1305.589
29.37576 315.5859 9930 .0035
22.27505 322.6866 667317
15.21463 329.947 337.3699
T+590824 337.370¢8

LAST PAYMENT = 344.95808

HEADY.

As can be noticed in this example, the question mark is gram-
matically useful in a program in which several values are to be
input by allowing the programmer to formulate a verbal question
which the input value will answer.

LPT
The LPT statement is used to generate output on the LPOS line
printer, and is of the form:

(line number) LPT

By inserting this statement anywhere in a program, all subsequent
output, with the exception of error messages, will be printed on the
line printer. The LPT statement is particularly advantageous for
outputting large amounts of calculated data, as can be seen from
this and following examples:

e LPT

118 FOR F=30 TO 68 STEP 3
120 PRINT F.F12

1380 NEXT F

146 END

19

ie 32

33 18289
L] {296
3s 1521
42 1764
45 edas
48 234
s1 2bQ1
54 €916
57 1249
Y] Ia@

When the END statement is encountered in the program, the
output device is reset to the Teletype.

PTP _

The high-speed paper tape punch is also available as an output
device in 8K BASIC, permitting users to save data or output files
quickly on paper tape. When the statement is encountered, all
output is diverted from the Teletype to the high-speed punch. Con-
trol automatically returns to the Teletype when the END statement
is encountered. The form is:

(line number) PTP

By substituting this statement in line 100 of the previous program,
all output, with the exception of error messages, will be sent to the
high-speed paper tape punch instead of the line printer.

TTY IN AND TTY OUT

The Teletype may be placed under program control so that,
during execution of a program, I/0O may be obtained or sent alter-
nately between any available device. By issuing the statement:

(line number) TTY IN

control of input is returned to the Teletype if it has been previously
set to another device. Similarly, the statement:

(line number) TTY QUT
returns output control to the Teletype.
20

The following program makes use of most all the available [/0
devices. The output, with the exception of paper tape, is also
included.

198 LPT

11 PRINT "FIRST DEGREE EQUATION CALCULATION'
128 TTY 1IN

138 TTY OUT

135 PRINT "TYPE X1 Yl THEN X2 Y2"
140 INPUT X1,Y1,X2,Y2

158 X=X2-X1

168 Y=Y2-Y1

1780 M=Y/rX

182 B=Y2-Mx*X2

190 IF B>=¢ THEN 382

2@ PRINT "Y="M"X"B

213 LPT

220 PRINT "Y="M"X"B

238 GO TO 429

3080 PRINT "Y="M"X+'"B

318 LPT

328 PRINT "Y="M"X+"B

480 FOR Y=@ TO 1@ S5TEP 2
418 FOR X=@ TO 18 STEP .5
420 LET T=M%X+B-Y

430 IF T<>@ THEN 480

44@ PRINT X.Y

458 PTP

460 PRINT X,Y

4780 LPT

48@¢ NEXT X

490 NEXT Y

588 END

RUN

TYPE X1 Y1 THEN X2 Y2
7=3,-4,=-1,0

Y= £ X+ 2

READY.
The line printer output is the following:

FIRST DEGREE CALCULATIDON
Ys 2 X+ 2
4]

Ll - o N1 V]

1
e
3
4

21

NOTE

The Teletype low-speed reader and punch
may be used as I/O devices at any time. No
special statement is required. To read in data
from the low-speed reader, position the tape
over the sprocket wheel and set the reader to
START when input is required. The tape
will begin reading in. To punch a tape, set
the low-speed punch to ON and all ouput
will be punched on the low-speed punch.

Using the low-speed I/O devices is, in
effect, the same as using the Teletype key-
board. Characters will be typed on the Tele-
type keyboard as tapes are being read in or
punched.

Loops
FOR, NEXT, AND STEP

FOR and NEXT statements define the beginning and end of a
loop. A loop is a set of instructions which are repeated over and
over again, each time being modified in some way until a terminal
condition is reached. The FOR statement is of the form:

(line number) FOR v=x1 TO x2 STEP x3

where v represents a variable name, and x1, x2, and x3 all repre-
sent formulas (a formula in this case means a numerical value,
variable name, or mathematical expression). v is termed the index,
x1 the initial value, x2 the terminal value, and x3 the incremental
value. For example:

15 FOR K=2 TO 20 STEP 2

This means that the loop will be repeated as long as K is less than
or equal to 20. Each time through the loop, K is incremented by 2,
so the loop will be repeated a total of 10 times.

A variable used as an index in a FOR statement must not be
subscripted, although a common use of loops is to deal with sub-
scripted variables, using the value of the index as the subscript of

22

a previously defined variable (this is illustrated in the section con-
cerning Subscripted Variables).
The NEXT statement is of the form:

(line number) NEXT

and signals the end of the loop. When execution of the loop reaches
the NEXT statement, the computer adds the STEP value to the
index and checks to see if the index is less than or equal to the
terminal value. If so, the loop is executed again. If the value of
the index exceeds the terminal value, control falls through the loop
to the following statement, with the value of the index equaling the
value it was assigned the final time through the loop.3

If the STEP value is omitted, a value of +1 is assumed. Since
+1 is the usual STEP value, that portion of the statement is fre-
quently omitted. The STEP value may also be a negative number.

The following example illustrates the use of loops. This loop is
executed 10 times: the value of I is 10 when control leaves the
loop. +1 is the assumed STEP value.

i@ FOR I=1 TO 1@
20 NEXT 1

36 PRINT I

4@ END

RUN
10

READY »

If line 10 had been:

19 FOR 1=1@8 TO I STEP -1

the value printed by the computer would be 1.
As indicated earlier, the numbers used in the FOR statement

3 The user should note that this method of handling loops varies among
different versions of BASIC,

23

are formulas; these formulas are evaluated upon first encountering
the loop. While the index, initial, terminal and STEP values may
be changed within the loop, the value assigned to the initial formula
remains as originally defined until the terminal condition is reached.
To illustrate this point, consider the last example program. The
value of I (in line 10) can be successfully changed as follows:

18 FOR I=1 TO 1@
15 LET I=10
20 NEXT 1

The loop will only be executed once since the value 10 has been
reached by the variable I and the terminal condition is satisfied.

If the value of the counter variable is originally set equal to the
terminal value, the loop will execute once, regardless of the STEP
value. 1f the starting value is beyond the terminal value, the loop
will also execute only once.

It is possible to exit from a FOR-NEXT loop without the index
reaching the terminal value. (This is known as a conditional trans-
fer and is cxplained in the section entitled Transfer of Control
Statements.) Control may only transfer into a loop which has been
left earlier without being completed, ensuring that the terminal
and STEP values are assigned.

Nesting Loops

It is often useful to have one or more loops within a loop. This
technique is called nesting, and is allowed as long as the field of
one ioop (the numbered lines from the FOR statement to the cor-
responding NEXT statement, inclusive) does not cross the field of
another loop. A diagram is the best way to illustrate acceptable
nesting procedures:

24

ACCEPTABLE NESTING UNACCEPTABLE NESTING

TECHNIQUES TECHNIQUES
Two Level Nesting
—FOR FOR
' FOR FOR
NEXT NEXT
FOR NEXT
NEXT
L NEXT
Three Level Nesting
—FOR —FOR
~—FOR FOR
FOR [FOR
NEXT NEXT
FOR FOR
NEXT NEXT
—NEXT NEXT
L—NEXT —NEXT

A maximum of eight(8) levels of nesting is permitted. Exceeding
that limit will result in the error message:

FOR ERROR AT LINE XXXX

where XXXX is the number of the line in which the error occurred.

Subscripted Variables

. In addition to single variable names, BASIC accepts another
class of variables called subscripted variables. Subscripted variables
provide the programmer with additional computing capabilities for
handling lists, tables, matrices, or any set of related variables.
Variables are allowed one or two subscripts. A single letter forms
the name of the variable; this is followed by one or two integers
in parentheses and separated by commas, indicating the place of
that variable in the list. Up to 26 arrays are possible in any pro-
gram (corresponding to the letters of the alphabet), subject only
to the amount of core space available for data storage. For ex-
ample, a list might be described as A(I) where I goes from 1 to 5,
as follows :

25

ACL)-ACEI,AC(3),AC00),A(05)

This allows the programmer to reference each of the five elements
in the list A, A two dimensional matrix A(1, J) can be defined in a
similar manner, but the subscripted variable A can only be used
once (i.e., A(I) and A(1,J) cannot be used in the same program).
It is possible however, to use the same variable name as both a
subscripted and an unsubscripted variable, Both A and A(I) are
valid variable names and can be used in the same program.

Subscripted variables allow data to be input quickly and easily,
as illustrated in the following program (the index of the FOR state-
ment in lines 20, 42, and 44 is used as the subscript) :

16 REM - PROGRAM DEMONSTRATING READING
11 REM - OF SUBSCRIPTED VARIAELES
15 DIM A(3Y,B(2,3)

18 PRINT "ACI> WHERE A=} TO 53"
28 FOR I=1 TO 5

25 READ AcCID

3@ PRINT ACI};

35 NEXT 1

38 PRINT

39 PRINT

434 PRINT "B(I,J) WHERE I=1 TO 2:"
41 PRINT * AND J=1 TQ 3:"
42 FOR I=1 TO 2

43 PRINT

44 FOR J=1 TO 3

48 READ B(I.,dJ>

5@ PRINT B(1,J):

55 NEXT J

56 NEXT 1

60 DATA 1,2:3,455,6,7:8

61 DATA 8B,756:554,3,251

65 END

RUN
A¢IY WHERE A=1 TO 53
1 &8 3 4 5

B(I,J) WHERE I=1 TO 2%
AND J=1 TO 3:

6 7 8
g 7 6
READY .

26

DIM

From the preceding example, it can be seen that the use of sub-
scripts requires a dimension (DIM) statement to define the max-
imum number of elements in the array. The DIM statement is of
the form:

(line number) DIM v, (n;), v: (n,, m:)

where v indicates an array variable name and n and m are integer
numbers indicating the largest subscript value required during the
program. For example:

15 DIM A(H,185

The first element of every array is automatically assumed to have
a subscript of zero. Dimensioning A{6, 10) sets up room for an
array with 7 rows and 11 columns. This matrix can be thought of
as existing in the following form:

An,u An,1 .o Ao
Al,() A1.1 . A1,1u
A2,0 A2,1 . e s A2.10
Ae,u Agr . . . As,lo

and is illustrated in the following program:

27

12 REM -~ MATRIX CHECK PROGRAM
15 DIM A(E,18D
20 FOR I=@ TO 6
228 LET A(I.B8)=I
25 FOR J=@ TO 14
28 LET Al@.,J)=J
32 PRINT AC(I,J)s
35 NEXT J

4@ PRINT

45 NEXT 1

5@ END

=

DAL —32C
TSR e
TN
[R I R I R
[IR IR IV o
T EmE@™ !
DRI EAE M
[B R o s R |
Do m
Qe S®@ @Y
QaE=EaE -

READY.

Notice that a variable assumes a value of zero until another value
has been assigned. If the user wishes to conserve core space by not
making use of the extra variables set up within the array, he should
set his DIM statement to one less than necessary, DIM A(S5,9).
This results in a 6 by 10 array which may then be referenced be-
ginning with the A (0, 0) element,

More than one array can be defined in a single DIM statement:

1@ DIM AC2¢), B(4,7>

This dimensions both the list A and the matrix B,

A number must be used to define the maximum size of the array.
A variable inside the parentheses is not acceptable and will result
in an error message by BASIC at run time. The amount of user
core not filled by the program will determine the amount of data
the computer can accept as input to the program at any one time,
In some programs a TOO-BIG ERROR may occur, indicating
that core will not hold an array of the size requested. In that event,

28

the user should change his program to process part of the data in
one run and the rest Iater.

Transfer of Control Statements

Certain control statements cause the execution of a program to
jump to a different line either unconditionally or depending upon
some condition within the program. Looping is one method of
jumping to a designated point until a condition is met. The follow-
ing statements give the programmer added capabilities in this area.

UNCONDITIONAL TRANSFER—GOTO

The GOTO (or GO TO) statement is an unconditional state-
ment used to direct program control either forward or back in a
program. The form of the GOTO statement is:

(line number) GOTO n

where n represents a statement number. When the logic of the
program reaches the GOTO statement, the statement(s) immedi-
ately following will not be executed; instead execution is transferred
to the statement beginning with the line number indicated.

The following program never ends; it does a READ, prints
something, and jumps back to the READ via a GOTO statement.
It attempts to do this over and over until it runs out of data, which
is sometimes an acceptable, though not advisable, way to end a
program,

12 REM - PROGRAM ENDING WITHE ERROR
11 REM - MESSAGE WHEN OUT OF DATA
280 READ X

25 PRINT "X="X,"Xt12="X12

38 GO TO 28

35 DATA 1,55180,15,26,25

4@ END

RUN

X= 1 Xtz2= 1
X= 5 Xt2= 25
X= 10 xt2= 108248
X= 15 Xr2= 225
X= 20 X12= 420
X= 25 X12= 625

DATA ERROR AT LINE 20
29

CONDITIONAL TRANSFER—IF-THEN AND IF-GOTO

If a program requires that two values be compared at some
point, control of program execution may be directed to different
procedures depending upon the result of the comparison. In com-
puting, values are logically tested to see whether they are equal,
greater than, less than another value, or possibly a combination of
the three. This is accomplished by use of the relational operators
discussed earlier,

IF-THEN and IF-GOTO statements allow the programmer to
test the relationship between two formulas (variables, numbers, or
expressions). Providing the relationship described in the IF state-
ment is true at the point it is tested, control will transfer to the
line number specified, or perform the indicated operation. The
statements are of the form:

GOTO

(line number) IF vi <relation> v2 {THEN

}x Or expression
where v1 and v2 represent variable names or expressions, x repre-
sents a line number, and expression represents an operation to be
performed. The use of either THEN or GOTO is acceptable.

The following two examples are equivalent (the value of the
variable A is changed or remains the same depending upon A’s
relation to B):

129 IF A>B THEN 128
1182 A=A1B-1
120 C=A/D

12® IF A<=B THEN A=A1B-]
113 C=A/D

Subroutines
GOSUB AND RETURN

A subroutine is a section of code performing some operation
that is required at more than one point in the program. Often a

30

complicated I/0 operation for a volume of data, a mathematical
evaluation which is too complex for a user-defined function, or any
number of other processes may best be performed in a subroutine.

Subroutines are generally placed physically at the end of a pro-
gram, usually before DATA statements, if any, and always before
the END statement. Two statements are used exclusively in
BASIC to handle subroutines; these are the GOSUB and RETURN
statements.

A program begins execution and continues until it encounters a
GOSUB statement of the form:

(line number) GOSUB x

where x represents the first line number of the subroutine. Control
then transfers to that line. For example:

5@ GOSUR 207

When program execution reaches line 50, control transfers to line
200; the subroutine is processed until execution encounters a RE-
TURN statement of the form:

(line number) RETURN

which causes control to return to the statement following the
GOSUB statement. Before transferring to the subroutine, BASIC
internally records the next statement to be processed after the
GOSUB statement; thus the RETURN statement is a signal to
transfer control to this statement. In this way, no matter how many
different subroutines are called, or how many times they are used,
BASIC always knows where to go next.
The following program demonstrates a simple subroutine:

31

1 REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
19 DEF FNA(X)I=ABSCINT (X))

23 INPUT A,B.C

3% GOSUBR 100

40 LET A=FNA(AD

50 LET B=FNA(B)

6@ LET C=FNACC?

7% PRINT

8% GOSUB 100

9@ STOP

126 REM - THIS SUBROUTINF PRINTS OUT THE SOLUTIONS
110 REM - OF THE EQUATION: A(X12) + B(X> + C = 8
12» PRINT "THE EQUATION IS DATRXI2 4+ UBYxX + "'C
13 LET D=B*B-4%x/*(C

140 IF D<>@ THEN 170

153 PRINT "ONLY ONE SOLUTION... X ="-B/C2%A)

160 RETURN

17¢ IF D<@ THEN 200

183 PRINT "TWO SOLUTIONS... X ="3;

185 PRINT (-B+SQR(D)I)/(2+A)"AND X =""¢(-B-S5QRB(D)>/{2*A)
198 RETURN

20n PRINT "IMAGINARY SOLUTIONS... X = (' _

205 PRINT ~B/(2%A)","SQR(-DI/C2*%AIT"Y AND ("3

oM 7 PRINT -B/(2443","=SQR(-D)/(2%A)I" "

210 RETURN

9R@ FNT

RUN

Tlse55-05

THE EQUATION IS5
TWO SOLUTIONS.ss X

—

#X12 4+ .5 %X .+ -5
«5 abD X =-1

THE EQUATION IS L o*Xt2 + @ *xX + 1
IMAGINARY SOLUTIONS«..e X = (& > 1 > AND. € @ »-1)

READY.

Line 100 begins the subroutine. There are several places in which
control may return to the main program, depending upon a certain.
condition being satisfied. The subroutine is executed from line 30
and again from line 80. When control returns to line 90, the pro-
gram encounters the STOP statement and execution is terminated.

It is important to remeémber that subroutines should generally
be kept distinct from the main program. The last statement in the
main program should be a STOP or GOTO statement, and sub-
routines are normally placed following this statement.

32

More than one subroutine may be used tn a single program, in
which case these can be placed one after another at the end of the
program (in line number sequence). A useful practice is to assign
distinctive line numbers to subroutines. For ¢xample, if the main
program is numbered with line numbers up to 199, 200 and 300
could be used as the first numbers of two subroutines.

Nesting Subroutines

Nesting of subroutines occurs when one subroutine calls an-
other subroutine. If a RETURN statement is encountered during
execution of a subroutine, contrel returns to the statement follow-
ing the GOSUB which called it. From this point, 1t is possible to
transfer to the beginning or any part of a subroutine, even back to
the calling subroutine. Multiple entry points and RETURN state-
ments make subroutines more versatile.

The maximum level of GOSUB nesting is about thirty-three (33)
levels, which should prove more than adequate for all normal uses.
Exeeeding this limit will result in the message-

GOSUR ERROR AT LINE XXXX

where XXXX represents the line number where the error occurred.
An example of GOSUB nesting follows (execution has been stopped
by typing a CTRL/C, as the program would otherwise continue in
an infinite loop; see Stopping a Run.)

33

18 REM FACTORIAL FPROGRAM USING GOSUB TO
15 REM RECURSIVELY CGOMPUTE THE FACTORS
4p INPUT N

50 IF N=2@ THEY 120

68 X=1

T8 K=1

g2 GOSUB 200

92 PRINT "FACTORIAL"™N" ="X

119 GO TO 40

128 PRINT "MUST BE 2@ OR LESS"

1320 GO TO 412

ERG X=X*K

210 K=K+l

220 1F¥ K<=N THEN GOSUB Zg@g2

230 RETURN

249 END

RUN
72
FACTORIAL 2
24
FACTORIAL 4
25
FACTORIAL 5
?

STOP.
READY.

1}
Al

24

129

H

Functions

BASIC performs several mathematical calculations for the pro-
grammer, eliminating the need for tables of trig functions, square
roots, and logarithms. These functions have a three letter call
name, followed by an argument, x, which can be a number, vari-
able, expression, or another, function. Table 1 lists the func-
tions available in 8K BASIC. Most are self-explanatory; those
that are not and are provided in greater detail are marked with
asterisks.

Table1l 8K BASIC Functions

Function Meaning
SIN(x) Sine of x (x is expressed in radians)
COS(x) Cosine of x (x is expressed in radians)

34

Table 1 8K BASIC Functions (Cont.)

Function Meaning
TAN(x) Tangent of x (x is expressed in radians)
ATN(x) Arctangent of x (result is expressed in
radians)
EXP(x) e* (e=2.718282)
LOG(x) Natural log of x (log.x)
*SGN(x) Sign of x——assign a value of +1 if x is posi-
tive, 0 if x is zero, or —1 if x is negative
*INT(x) Integer value of x
ABS(x) Absolute value of x (|x|)
SQR((x) Square root of x (y/x)
*RND(x) Random number
*TAB(x) Print next character at space x
*GET(x) Get a character from input device
*PUT(x) Put a character on output device
*FNA(x) User-defined function
*JUF(x) User-coded function (machine language

code)

SIGN FUNCTION—SGN(X)

The sign function returns the value +1 if x is a positive value,
0 if x is zero, and —1 if x is negative. For example, SGN(3.42)=1,
SGN(—42)=-~1, and SGN(23-23)=0. The following example
in which X is assigned the sign of y illustrates the use of this

function;

25 X=SQR¢(A12+2*BC Y*5GN A

INTEGER FUNCTION—INT(X)
The integer function returns the value of the nearest integer not
greater than x. For example, INT(34.67)=34. By specifying

35

INT(x+.5) the INT function can be used to round numbers to
the nearest integer; thus, INT(34.67+.5)=35. INT can also be
used to round numbers to any given decimal place by specifying:

INT (x*10tD+.5)/10tD

where D is the number of decimal places desired. The following
program illustrates this function; execution has been stopped by
typing a CTRL/C:

18 REM - INT FUNCTIOGN EXAMPLE

28 PRINT "NUMBER TO BE ROUNDED";
32 INPUT A

4@ PRINT "NO. OF DECIMAL PLACES':
50 INPUT D

6@ LET B=INT(A*1@01D+.5)/191tD

7¢ PRINT *'4 ROUNDED = "B

80 GO TO 20

99 END

RUN

NUMBER TO BE ROUNDED?55.65342
NO. OF DECIMAL PLACES?2

A ROUNDED = 55.65

NUMBER TO BE ROUNDED?78.375
NO. OF DECIMAL PLACES?-2

A ROUNDED = 1Q@6

NUMBER TO BE ROUNDED?67. 89
NQ. OF DECIMAL PLACES7?-1

A ROUNDED = 72
NUMBER TO BE ROUNDED?
STOP.

READY.

If the argument is a negative number, the value returned is the
largest negative integer (rounded to the higher value) contained in
the number. For example, INT(—23)=—23 but INT(—14.39)=—-15.

RANDOM NUMBER FUNCTION—RND(X)

The random number function produces a random number be-
tween O and 1. The numbers are not reproducible, a fact the
programmer should keep in mind when debugging or checking his

36

program. The argument x in the RND(x) function call can be any
number, as that value is ignored. The following program illustrates
the use of this function to generate a table of random numbers:

18 REM - RANDOM MNUMBER TXAMPLE
2% PRINT "RANDOM NUMBERS"

3@ FOR I1=1 TO 30

49 PRINT RNDCA),

5@ NEXT 1

60 END

RUM

RANDOM WUMBERS
+ 9547609 + 2890875 «1416765 2482717 »2145417
«B5280478 « 3859534 « BA4DUTT4 «S692836 + 8514856
«GB4EBOE « 2466345 «&615BH +H4T55698 » 3124984
« 5828625 « TA26891 “GTR3T1G CAFBH29E +254B8316
+JA6T2IE4 « 9B68434 «2PB5633 1218251 2258269
«2585353 » 2187701 » THSEQ24 WBA58E368 » 2030807

READY.

It is possible to generate random numbers over any range by
using the following formula:

{(B—AY*RND(0)+A

This produces a random number (n) in the range A<n<B.
In order to obtain random integer digits in the range 0< = n<9,
line 40 in the previous example is changed to read:

40 PRINT INT(9*RNDC3).,

When the program is run again, the results will look as follows:

RANDOM NUMBERS
8

bl @@
IR o B
[n N R (R R
[S T I N R

8
2
7
2
E

READY-

Notice that the range has changed to 0< = n<9. This is because
the INT function returns the value of the nearest integer not greater
than n.
TAB FUNCTION

The TAB function allows the user to position the printing of
characters anywhere on the Teletype (or line printer) line. Print

37

positions can be thought of as being numbered from 1 to 72
across the Teletype from left to right. (For printing devices with
long lines, the number of positions may be as large as 255, but it
1s unlikely that more than 160 spaces will be required for most
printers.} The form of this function is:

TAB (n)

where the argument n represents the position (from 1 to the total
number of spaces available)} in which the next character will be
typed.

Each time the TAB function is used, posttions are counted from
the beginning of the line, not from the current position of the
printing head. For example, TAB(3) causes the character to be
printed at position 3; the following statement:

13 PRINT "X ="3TAB(3)3:"/"53.14159

will print the slash on top of the equal sign, as shown below:

X # 3.14159

HEADY .

The following is an example of the sort of graph that can be
drawn with BASIC using the TAB function:

38

3% FOR X=8 TO 15 STEP .5

4@ PRINT TABC3A+15%SIN(XI*EXP (- 1%X2) """
50 NEXT X

60 END

RUN

READY .

PUT AND GET FUNCTIONS

8K BASIC provides two additional functions, PUT and GET,
to increase input/output flexibility. Using these statements, the
programmer can “PUT” an ASCII character on the current output
device, or “GET” a character from the current input device. GET
is of the form:

GET (x)
39

where the argument x is a dummy variable which may be any
value. GET (x) will be assigned the decimal value of the ASCII
code of the next character input on the current input device.

For example, if the following statement appears in a program:

18 LET L=GET(X)

and the next character input is an M, the variable L will be as-
signed the value 77,0,
PUT is of the form:

PUT (x)

where the argument x represents the decimal value of the ASCII
code of the character to be output. For example, the statement:

15 L=PUT(GET<V3)

will wait for a character to be read from the current input device
and then print it on the current output device. A statement such as:

30 PRINT PUTCQ)

will print the character typed as well as the decimal value of the
ASCII code for that character. To get 10 characters from a paper
tape and print them on the line printer, a suitable program is:

16@ LPT

118 PTR

128 FOR A=1 TO 1@

138 LET B=PUT(GET(@3)
148 NEXT A

158 END

The GET(0) will contain the most recently obtained character
which is then “PUT” to the line printer. The user should be careful
to position the tape on the first character to be input. Otherwise

40

blank tape may be entered, resuiting in spaces being printed as
output.

The PUT statement can also be used to format output. For ex-
ample, to print a trig table on the line printer with a heading and
50 data lines per page, the line feed character (12,,) can be
“PUT?” to the printer as follows:

193 LPT

115 GOSUB 1200

126 GOSUE 528

125 REM - SET UP TRIG TABLE

130 FOR J=00 TO 360 STEP .5

142 LET L=L+1

153 LET B=Jrs1B@%3.14

163 PRINT J,S5IN(BILCOS(B,TAN(BI>ATN(E)
165 REM - PRINT S& ENTRIES IN TABLE

173 IF L=5@ THEN GOSUR 580

180 NEXT J

198 COSUB 1223

2¢3 GOS5UB 1488

219 STOP

503 REM PRINT HEADER

585 GOSUB 1000

519 PRINT

523 PRINT

530 PRINT "ANGLE"."SINE","COSINE","TANGENT" ,""ARCTANGENT"
4@ PRINT

558 RETURN

1983 REM FRINT FORM FEEDS TO ADVANCE PAFPER
1225 X=PUTC(12}

1818 L=@

1629 RETURN

1636 END

The beginning of the line printer output from this program follows.
The first page of the table continues through an angle of 24.5 de-
grees: then the header and the next 50 entries are printed on the
next page, and so on until the values have been output for all an-
gles through 360 degrees (in steps of .5).

4]

ANGLE SINE COSINE TANGENT AHCTANGENT

2 é 1 @]

-1 §,722118E=23% ,949996¢ 8,722444E-03 §,72¢RM21E=D3
1 A1Tau3se «9998479 fBlTaus2] MR ETELY]
1.5 JA2hlb36E L9996977 «RA261T264 2261687
2 L.N3488181 L 999391 % 83490325 B3a8lata
2,3 LA4359729 9990 abe LB43L38TS LJAUFSA3S
3 L0523094Y «99863B9 «P5238116 25228584
3,5 «P51B1763 + 9981 3k7 LHb113L54 +PBA9ITYIRA
4 JABATELILTY L 99TSEBLS «PA598%9525 Bs96b4B6
4,5 LAT84 94 +I96G22S NoEE-T.1-%8.1 +R7B3353S
5 28711147 9961988 LPBTA44D8 JRBTEREA4
5.5 LB95T79T3L 9954329 «P9623993 «29%65168
& JARNGa7S7 «9945274 1054586 +iB428KT
6.5 1131461 L9935784 1138774 L1129067
T .i218p79 » 9925537 1227217 .1215P85
T.9 « 1304604 « 3914535 131585 1308944
24 LABB5826 S 136318 JAGH9T43 2396494
24,3 214496 9128912 4954845 JAB3592%

The GET statement cannot be used to get binary characters.

FNA FUNCTION

In some programs it may be necessary to execute the same
mathematical formula in several different places. 8K BASIC al-
lows the programmer to define his own function in the BASIC
language and then call this function in the same manner as the
square root or a trig function is called. Only one such user-
defined function may be included per program. The function is
defined once at the beginning of the program before its first use,
and consists of a DEF statement in combination with a three-
letter function name, the first two letters of which must be FN.
The format of the defining statement is as follows:

(line number) DEF FNA {x)=formula(x)

A may be any letter. The argument (x) has no significance; it is
strictly a dummy variable, but must be the same on each side of
the equal sign. The function itself can be defined in terms of num-
bers, several variables, other functions, or mathematical expres-
sions. For example:

13 DEF FNAXKI=Xt2+3%X+4
or

2@ DEF FNC{(X)=5QR(X+4)+1]

42

The function:

18 DEF FNa(5)=512

will cause the later statement:
20 LET R=FNAC4)+]

to be evaluated as R=17.
The user-defined function can be a function of only one vari-
able.

USER-DEFINED FUNCTION-UUF

A special user-coded function is available for the programmer
who wishes to define an additional 8K BASIC function perma-
nently or one which cannot be defined with one BASIC expres-
sion, as an FNA function must be. The UUF function routine is
coded in PDP-8 assembly language. assembled with one of the
available assemblers, and loaded as an overlay to 8K BASIC.
While 8K BASIC is running, the special function can be used in
a fashion analogous to the regular 8K BASIC functions. The user-
coded function, if present, is referenced in the BASIC program as:

UUF(n)

where n can be any BASIC expression.

The programmer whodefinesthe UUF function should be familiar
with the information on asscmbly language programming which
is in Introduction to Programming 1972 chapters 1-5, and the
material on the Floating Point Package, chapter 8. He should also
be familiar with the information on the assembler he intends to
use by reading the appropriate manual.

Coding Formats

8K BASIC uses a floating point package which has been modi-
fied to allow 27-bit, sign-magnitude mantissa floating point. In
sign-magnitude convention the sign bit, rather than the mantissa,
expresses the sign of the entire number, This format is described
more fully below. All coding must be compatible with this format.
The floating point instructions are discussed fater in this manual.

43

Upon entrance to the UUF subroutine the value of the argu-
ment is in the FAC (floating accumulator). The value which is
calculated for the function must be in the FAC in normalized
form on exit.

When floating point statements are to be included in the pro-
gram, the start of a scries of floating point instructions must be
indicated by the mstruction:

FENTER

immediately before the first floating point instructions. Each series
of floating point instructions is terminated by the instruction:

FEXIT

immediately after the last floating point statement. There can be
as many sections of floating point code as necessary in the pro-
gram, but each must be delimited in this manner,

Floating-Point Format
The floating-point format used by 8K BASIC allocates three
storage words to each number as follows:

WORD 1 WORD 2 WORD 3

CLELEE e e e (e T T ET T

"
L EXPONENT MANTISSA
SIGN BIT

The FAC occupies five locations on page O:

1

Location Name Location Number Contents
ACS 0024 Sign
ACE 0025 Exponent (2003 biased)
ACl1 0020 High-order word
AC2 0017 Mid-order word
AC3 0016 Low-order word

The constant 2004 is added to the exponent to make its range
0to 377.

All of BASIC’s mathematical operations are in floating point
format. Therefore, if any temporary storage locations are to be
uscd, they will require three words, for example:

44

UTEMP.,@;:8:0

Addressing

The floating point package uses only relative addressing. There-
fore all statements that require an address specification must in-
clude one of the operators FWD or BKWD plus a reference to
the current location. Such a ‘ggﬁfl:r%r}ggﬂ_ias; generally of the form:

Vg A
instruction+FWD+LTEMP—.

or B oA =g L edd

instruction+BKWD }/:ﬂ:fEMP

where LTEMP is the first of the three locations containing the
number to be used. The operator FWD is used when the address
of the location to be referenced is numerically greater than the ad-
dress of the instruction; BKWD is used when the address of the
location to be referenced is numerically less than the address of the
instruction. The floating point interpreter uses the number of
locations between the instruction and the data to locate the data.
The location referenced must be within 2004 locations of the
instruction.

The following two examples cause the contents of LTEMP to
be added to the contents of the FAC, and the result left in the
FAC:

09200 4210 FAD+FUD+L TEMP~ .

*

PY210 BEAA LTEMP
A92211 2@2e
2212 AORH

=@

or

QP20 GO2EG LTEMP
PA201 PBRV
RO222 PRAG

o E

BO210 461D FAD+ B 4D+ . -LTEMP

Floating-Point Instruction Set

The legal instructions in the modified Floating-Point Package
used by 8K BASIC are explained in Tabie 2:

45

Table2 Floating-Point Instructions
Instruction Value Meaning
FST 2000 Store the contents of the floating accu-
' mulator (FAC). The contents of the

FAC are not changed.

FLD 3000 Load FAC with contents of relative
address.

FAD 4000 Add contents of relative address to
FAC,

FSB 5000 Subtract contents of relative address
from FAC.

FMP 6000 Multiply the contents of the FAC by
the contents of the relative address.

FDV 7000 Divide FAC by contents of relative
address.

FIMP 1000 Floating-point jump to relative ad-
dress.

FENTER 4435 Start floating-point code.

FEXIT 0000 Exit floating-point code. Return to
PDP-8 code.

FWD 0200 Access a relative location in the for-
ward direction,

BKWD 0600 Access a relative location in the back-
ward direction.

FSNE 0040 Skip if FAC #0

FSEQ 0050 Skipit FAC=0

FSGE 0100 Skipif FAC =0

FSLT 0110 Skipif FAC <0

FSGT 0140 Skipif FAC >0

FSLE 0150 Skipif FAC <0

46

The following list contains floating-point instructions for in-
direct relative addressing. The indirect addressing is similar to the
I construction used in regular PDP-8 assembly language coding.

Fioating-Point Instructions (Indirect Relative Addressing)

Instruction Value Opcration
FSTI 2400 Store
FL.DI 3400 Load
FADI 4400 Add
FSBI 5400 Subtract
FMPI 6400 Multiply
FDVI 7400 Divide
FIMPI 1400 Jump

Writing the Program

UUF must be made a defined function for 8K BASIC. This is
done by inserting the starting address of the UUF subroutine in
BASIC’s table of subroutine addresses. The subroutine address
must be placed in location 1156 of field 0. If UUF is the first
location of the subroutine, the following code is sufficient:

*1156
UUF

The UUF subroutine may be placed in the area of core nor-
mally occupied by the RIM and BIN loaders, location 7600-7777
of field 0. To do this, the loaders are placed in field 1. The loading
instructions for UUF are contained in the section called Loading
and Operating Procedures.

If mass storage devices are in use, they may destroy the data
break locations on the last page of field 0. If TC08 DECtape
is used, locations 7752 and 7753 must be reserved. If an RFO8
or DF32 disk is used, locations 7750 and 7751 must be reserved.

There are three subroutines in 8K BASIC which ar¢ available
to maintain a floating-point format acceptable to the modified
floating-point package in 8K BASIC. These subroutines are de-
scribed below. The listing of 8K BASIC is available from the
Software Distribution Center for the programmer who wishes to
call other subroutines in the compiler.

47

BEGFIX

ANORM

FIX

Examples

If a value is to be returned to the FAC as a result
of the UUF function, that value must be in nor-
malized floating point format in the FAC on exit
from the subroutine. If floating point arithmetic is
used throughout the user function, then the value
in the FAC is in normalized floating point format
and need not be converted. If fixed point arithmetic
(single word) is used anywhere in the function,
then the subroutine BEGFIX must be called to
initialize the FAC before the fixed point number
is placed in the FAC and subsequently converted
to floating point (see ANORM below). After
BEGFIX is called, the 12-bit number is stored by
a simple DCA AC3 instruction and then ANORM
is called. BEGFIX is located at 3762 and is called
with a JMS instruction; on return from BEGFIX
the AC is clear.

I a fixed point value is placed in the FAC,
ANORM may be called to normalize the FAC.
After the fixed point value has becn placed in AC3,
ANORM may be called to supply the acceptable
values for ACE, ACS, AC1, and AC2. ANORM is
located at 4600; on return, the AC is clear.

When the value in the FAC must be made into an
integer, FIX may be called to perfom that job. The
12-bit value of the FAC is Ieft in AC3 and that
value plus 1 is left in the AC. FIX is located at
i744. _ T

The following examples illustrate the method of writing and
calling a UUF routine.

Example 1:

This UUF routine is an example of a fixed point calculation.
The value of UUF(X) is 3X+2.

48

JUUF (X)) aTxe?

A1i54

QT6p2
ArYaRy
aTep?
nreas
AT&QL
RT6RS
BTePh
ATARY
BTHLD
ATHLY
BTa&L?
27613
87644

aTHLS3
AThbibk
B7h17
aTseR
B7621

@rThz?
AT&23
B7624
27625

gg1é
444
3762
anpa

gulol

1156
TeRa

TeR@
oee?
4623
7202
32e2e
4215
42¢5
4215
dbhgd
7326
ieaea
Inis
4625
56p@

Rage
1222
1etd
laz2
9615

eaa0
T4y
3762
1311

PALB=VY PAGE 1

JUUF[XIm3Xe2

ZENTER WITH x IN FAC

FEXIT WlTH UUF(X) IN FAL

JUSE FIXED POINY ARITHMETICL _ ;

ACS=14
FlemaTay
BEGFIXuedY6g
ANDQRMEY &N
FIELD @
*1156
UUF
«T608 CoL I e FED
usF, o P
JMS 1 IFIX /MAKE X & 12#BIT INTEGER
CLA S Set ACLTA
DCA ANSWER J St ANS B 0D
Jm§ LODP /JMULTIPLY X BY 3
JMS LDOP
JMS LOOP
JHMS 1 IBEG
CLA CLL CML RTL /SET ALw2
TAD ANSWER JFETCH 33X
DCa aCc3 /RETURN 3X#2 TO FAC
JMS 1 INDRM JNORMALTZE
JMP I UUF J-URETURN.—
LOORP, g . .
YAD ANSHER 7ADD ACY TD ACCUMULATED SumM
TAD AC3
DEA ANSWER atn - .
JHP 1 LOOP fonRETURNe=
ANSWER,

IFIY, FIx
18EG, BEGFIX
INORM, ANORM

5

The following BASIC program calls UUF(X) to print X and
3X+2 for a number of values of X:

READY »

199 FOR X=-3 TO 3 STEP .5
118 PRINT X, UUF(X}

120 NEXT X

132 END

49

Example 2:
This UUF routine is an example of a floating point calculation.
Like example 1, this routine returns a value of UUF(X)=3X+2,

FUUF L) a3x+g

p11s5é

avepa
erag|
ar6a@e
pTen3
pYhRL
areps
27606
eYenT
Rl61D
27611
Br&61 2
are13

4435
20ed
pape
egmn
6208
4ea9
eaLs
3Th2
4622

Bege

1156
Teg#

7400
aeae
4433
2216
aoae
7325
dged
4435
b211
2eé1a
2020
X268
4degd

— W WL DWW —
T

—

PALBeyYT 5725/72 PAGE 1

ZUUF (XY o3X»2

JENTER WITH X IN FAC

JEXIT WITH UUF(X) IN FaC

FUSE £&EAIIN5 PQIHT ARITHREYIC

FENTER® 4435

FSTa2p00

FROs200

FEXITapane

FMPA&BOP

FaDs4a@n

AC323%

BEGFIX=z37h2

ANDRMEUHED

FIELD @

w1156
LUF

«T600

UUF,) T -
FENTER -0 e T oo
FST+FuDeX=, /STORE X FROM FAC INTD L0C, X
FEXIT O
CLA CLL CML I1AC RAL /SET ACa=3
JMS FLOAT /GET A FLODATING POINT 3 IN YTHE FAC
FENTER et e
FMPoFWD*X=, JMULTIPLY X 8Y 3
FST+FRDeX=, /SAVE [T FOR LATER
FEXIT :
CLA CLL CML RYL /GET A 2 IN THME FAC
JHS FLOAY

50

BThi4 44lS FENTER

8Te15 4203 FAQeFWD#Xw, /ADD ¢ YD 3X

27616 AppR FEXIT ZLEAVE RESULT IN Fag
BTe&sT Sep@ JMP I UUF /==RETURN»=

arsza p@ed k., 1212

gre2t Qoep

#7422 o0o0QQ

@T623 0ePQA TEMP, 2

"BTh24 DPRARG FLOAT, @

a7Te2S 3223 CCA TEMP /STORE CONSTANT TEMPORARILY
DTb2k 4633 JMS I IBEG /PREPARE FAC YO RECEIVE VALUE
PTH2T 1223 TAD TEMP

2TA3ID 3916 DCA AC) /PUT CONSTANT IN FaC

27631 qe634 JMS 1 INORM /NORMALIZE IT

27432 5424 JMP 1 FLOAT /=eRETURNe=

aT633 3Te2 IBEG, BEGFIx
2763564 4600 INDRM, ANGRM

JUUF(X)s3x+p PALBavT Srs25/72 PAGE 1=}

The following BASIC program calls UUF(X) to print X and
3X+2 for a number of values of X. The results differ from those
in example 1 because of the capability of floating point arithmetic
to handle fractions.

READY «

198 FOR X=-3 TO 3 STEP .S
11@ PRINT X, UUF(X)

120 NEXT X

138 END

RUN

-3 -7

"2.5 ‘5-5

-2 -4

-1.5 "2-5

=1 =1

-5 » 5
2 2
53 A+ 5
1 5
1«5 LY
2 B
2.5 F.5
3 11

READY .

51

Example 3:

This UUF routine computes the square of the argument in float-
ing point format.
JUUF (X)) 3x*2 PALB=Y? 5/25/72 PAGE 1|

JUUFEX)ax™2

FENTER WITH X IN FAC

FEXIT WITH UUF{X} IN FAL

/JUAE FLOATING PCOINT ARITHMETIC

4335 FENTERSQ4135
20PQ FSTa2000
e2o@ FwDe229Q
6090 FMPsLRQP0
oree FEXITe=goge

gepe FlELD 2

1156 #1158
21156 7TT@Q UuF
Trea w«TT00
BTrOC Qme® UUF, a
A7rOL 4a3% FENTER
arrez 2204 FSTFub+si=, /S8TORE ARGUMENT N X
A7Ya3 4203 FMP+F pD*)A», JMULTIPLY FAC BY LOC, X {X»X)
pTTR4 QeRw FEXIY /RESULT I8 IN FaL
ar7es sSrEg JMP 1 UUF /mmRETURNw=
er’es page X, elpse
RY?eT el
2170 2o

The following BASIC program uses the above UUF to produce
a table of squares and square roots:

READY .

188 FOR A=1 TO 12 STEP 1
110 PRINT As, UUFCAY, SQRCA)

120 NEXT A
130 END
RUN
1 1 1
2 4 1.414214
3 2 1.732051
4 16 2
5 25 2.236083
6 36 2e 449 47
T 49 2. 645751
8 64 2.823 427
9 81 3
18 100 3. 162278
READY .

52

EDITING AND CONTROL COMMANDS

Errors made while typing at the console keyboard are easily cor-
rected. BASIC provides special commands to facilitate the editing
procedure,

Erasing Characters and Lines
SHIFT /O, RUBOUTS, NO RUBOQUTS

There are two methods available for erasing a character or
series of characters one at a time. Typing a SHIFT /O causes the
deletion of the last character typed, and echoes as a back arrow
(<) on the Teletype. One character is deleted each time the key
is typed.

The RUBOUT key may also be used for deletion of characters
one at a time providing the command:

RUBOUTS

has been typed on the keyboard before the editing is done. This
command enables the RUBOUT key to be used. If the user has
neglected to type this command, he may not use the RUBOUT key.
A later command of:

NO RUBQUTS

disables the key for use. (This is desirable when programs created
on other systems which use rubouts as null characters are to be
read into core. See the section entitted PTP AND LPT under
Listing and Punching a Program.) For example:

18 LER-T A=10%B

The user types a B instead of T and immediately notices the mis-
take. He may type SHIFT/O (or RUBOUT key, if enabled) once
to delete the B, and as many times more as characters, including
spaces, are to be deleted. After the correction is made, he may
continue typing the line. The typed line enters the computer only
when the RETURN key is pressed. Before that time any number
of corrections can be made to the line.

53

20 DEN F+=+=+«F FNAC(X,Yy=Xt2+3%Y

When the RETURN key is typed, the line is input as:
20 DEF FNA(X,Y)I=Xt2+3%Y

Notice that spaces, as well as printing characters, may be erased.

The user may erase an entire line (provided the RETURN key
has not been typed) by typing the ALTMODE key (ESCAPE
key on some keyboards). BASIC echos back:

DELETED

at the end of the line to indicate that the line has been removed.
The user continues as though it were a new line. If the RETURN
key has already been typed, the user may still correct the line by
simply typing the line number and retyping the line correctly. He
may delete the line by typing the RETURN key immediately after
the line number, thus removing both the line number and line
from his program.

If the line number of a line not needing correction is accidentally
typed, the SHIFT /O or RUBOUT key may be used to delete the
number(s); the user may then type in the correct numbers, As-
sume the line:

18 IF A=5 GO TO 238

is correct. The programmer mtends to insert a line 15, but in-
stead types:

18 LET
He notices the mistake and makes the correction as follows:

12 LETw«er+ 5 LET X=X-3

Line 10 remains unchanged, and line 15 is entered.
Following an attempt to run a program, error messages may be

54

output on the Teletype indicating illegal characters or formats, or
other user errors in the program. Most errors can be corrected by
typing the line number{s) and thec correction{s) and then re-
running the program. As many changes or corrections as desired
may be made before runs.

Listing and Punching a Program
LIST

An indirect program or data can be listed on the active output
device by typing the command:

LLIST

followed by the RETURN key. The entire program (or data) will
be listed.

A part of a program may be listed by typing LIST followed by
a line number. This causes that line and all following lines in the
program to be listed. For example:

LIST 100

will list line 100 and all remaining lines in the program.

PTP AND LPT
The LIST command may be issued in conjunction with the LPT
or PTP commands as follows:

PTP LPT
LIST LIST

This will list the current program on the high-speed paper tape
punch or line printer respectively. Control is reset to the Teletype
after the listing is completed.

Occasionally, when 8K BASIC is reading in a program from the
low-speed reader, it may drop a character since the Teletype
buffer cannot accept input at a prolonged fast rate. To eliminate
this possibility, use LIST as follows when punching out paper
tapes:

55

PTP
LIST*

This inserts null characters after carriage returns and is recom-
mended when punching any tapes that will later be read in from
the low-speed paper tape reader. (8K BASIC does not use rub-
outs as null characters.)

Reading a Program
PTR

The PTR command can be issued to read in a paper tape from
the high-speed reader. This mode is particularly useful for reading
in a user-coded “load and go” BASIC program. The tape should
be positioned in the reader before the command is issued; if not, or
if the reader runs out of tape, BASIC prints:

TTY

on the Teletype to indicate that there is no more input from the
high-speed reader, and that it is waiting for input from the Tele-
type.

The user may cause tapes to be read in from the low-speed
reader by simply placing the tape over the sprocket wheel and
setting the reader to START.

Running a Program
RUN

After a BASIC program has been typed and is in core, it is
ready to be run. This is accomplished by simply typing the com-
mand:

RUN

followed by the RETURN key. The program will begin execution.
If errors are encountered, appropriate error messages will be typed
on the keyboard; otherwise, the program will run to completion,
printing whatever output was requested. When the END state-
ment is reached, BASIC stops execution and prints:

READY »

36

PTP AND LPT

Either the high-speed paper tape punch or LPO8 line printer, if
available, can be used in conjunction with the RUN command.
After the command is issued, all output during program execution
is diverted from the Teletype to the specified device. The com-
mand sequence is:

PTP LPT
RUN RUN

This procedure climinates the need to insert the PTP (or LPT)
statement within the program. Qutput returns to the Teletype
after execution.

Stopping a Run
CTRL/C

To stop a program during execution or to return to BASIC at
any time, type a CTRL/C (accomplished by typing the CTRL
key and the C simultaneously). This causes the current operation
to be aborted immediately, and the message:

S5ToP.
READY»

to be printed indicating that an 8K BASIC command can now be
issued.

CTRL/O

The command CTRL/O (caused by typing the CTRL and O
keys down simultaneously) is used to stop output temporarily. The
program will continue to execute but output will not be printed on
any output device unless an error occurs or unless BASIC is
waiting for a command or for data from an input statement. In the
latter case, the Teletype is the expected input device. This feature
is particularly useful for programs that print lengthy introductions
and then request a user-specified parameter. Typing CTRL/O
after the program is started will cause BASIC to bypass printing
the introduction and wait until the parameter is specified, thereby
saving the time required to print the message. A second CTRL/O
will resume output.

57

NOTE

For most programs that do not wait for
input from the Teletype, processing of the
program after an initial CTRL/O will be
completed before a second CTRL/O can be
typed. Thus, it is very possible for no output
to be printed rather than the anticipated
partial output.

Erasing a Program in Core
SCR
The command:

SCRATCH
or
SCR

is provided to allow the programmer to clear his storage area,
deleting any commands, or a program which may have been
previously entered, and leaving a clean area in which to work. If
the storage area is not cleared before entering a new program,
lines from previous programs may be executed along with the
new program, causing errors or misinformation. The SCRATCH
command eliminates all old statements and numbers and should
be used before any tapes are read into core, or new programs
created.

LOADING AND OPERATING PROCEDURES
BASIC Compiler

The following procedure may be used to load in the 8K BASIC
binary tape.

1. Toggle the RIM Loader into field 0 and, using the appro-
priate reader, read the Binary Loader into field 0. (Refer
to Appendix A for details.) 8K BASIC will not use loca-
ttons 7600 to 7777, thereby preserving the Binary Loader if
it is present.

2. Place the 8K BASIC binary tape in the appropriate reader;
set switches 6-8 = (0, and 9-11 = 0; press EXTD ADDRess
LOAD,

3. Set the Switch Register = 7777 and press ADDRess L.LOAD.

58

4. If using high-speed reader, set the Switch Register =

3777 and press CLEAR and CONTinue; otherwise, sim-

ply press CLEAR and CONTinue.

After the tape has read in, sct the Switch Register = 1000.

6. Press ADDRess LOAD, and CLEAR and CONTinue.
BASIC responds by typing READY.

7. BASIC programs on paper tapes may be read in using the
PTR command explained earlier, or created on-line.

tn

User-Defined Function
The following procedure may be used to load in auser-defined
function.

1. Load the Binary Loader into field 1.

2. Load BASIC into field 0.

3. Load the user-function (binary paper tape overlay) into
field Ol BN Lo iy

4. Set Switch Register = 1000 press ADDRess LOAD and
START. N et :

Note that the Binary Loader is destroyed. To reload BASIC,
steps 1 through 6 must be repeated.
8K BASIC ERROR MESSAGES

The computer checks all commands before executing them. If
for some reason it cannot execute the command, it indicates this
by typing one of the error messages. The number of the line in
which the error was found is also typed out. The form is:

ERROR MESSAGE AT LINE XXXX

Table 3 lists the errors 8K BASIC checks for and reports
before execution:

Table 3 8K BASIC Error Messages

Message Meaning

ARGUMENT ERROR A function has been given an jllegal argument;

for example:

SQRC-12
DATA ERROR There are no more items in the data list,
FOR ERROR FOR loops are nested too deeply.

59

FUNCTION ERRCKR

GOSUB ERROR
LINE NO ERROR

NEXT ERROR

RETURN ERROR

SUBSCRIPT ERROR

SYNTAX ERROR

TOO-BIG ERROR

The user has attempted to call a function which
has not been defined.

Subroutines are nested too deeply.

A GOTO, GOSUB, or IF references a non-
existent line.

FOR and NEXT statements are not properly
patred.

RETURN staternent issued when not under
control of a GOSUB,

A subscript has been used which is outside
the bounds defined in the DIM statement.

The command does not correspond to the
language syntax. Common examples of syntax
errors are misspelled commands, unmatched
parentheses, and other typographical errors.
Reference to an undefined UUF will also pro-
duce this diagnostic.

The combination of program size and number
of variables exceeds the capacity of the com-
puter. Reducing one or the other may help.
If the program has undergone extensive re-
vision, punching it out, typing SCRATCH
and reloading should be tried.

The following programming errors are not reported by 8K
BASIC, but instead are used in the computation as specified. They
are included here for the programmer’s reference.

1. Attempting to use a number in a computation which is too
large for BASIC to handle will produce a resuit which is mean-

ingless.

2. Attempting to use a number in a computation which is too
small for BASIC to handle will result in the value zero being used

instead.

3. Attempting to divide by zero will produce a result which is

meaningless.

60

BASIC SYMBOL TABLE

Table 4 lists 8K BASIC’s symbols and their values. This
information is useful when writing user-coded (machine lan-
guage) functions.

Table 4 8K BASIC Symbol Table

A3CDEF 1756 BARROW 2665 £cT3 poise EPTR 2056
A3DCET 70Ys 8CDEFG 1757 SVTLOO 5024 ERROR 4142
A3pP #3125 BCKWDS 45872 DATAER 1667 Eval 1004
ABS £42% REGFIX 3762 DRAD 7513 EVALGO 1207
A1 2928 810LE 5713 DBBAD 7532 EXECUT p243
AT?2 2517 BKMWD A&02 DBGOT 7420 EXIT 2402
AZ3 2816 BRE AK 6522 DBISRT 7547 ExP LY4-J:)
ACCERT 7473 BSKIP 2738 OBLIT 7526 EXPGOO 5242
ATE se25 BUSY 6737 pEPUT 7554 EXPLON 5784
ACN 4417 CARRET 2792 DOLAST 7512 EXPOK 5245
ACOUNT Bg22 CCINTK 7465 DECEXP 2043 FAD 4202
ACS ¢oz4 CCXRa 7342 DECFRA 3366 FADEXT 1314
ADAL 225 CoEvcO epes ODEEPER (526 FalbI 4402
Aaz 2926 COINP 7445 DEF 1575 FATNAX 4273
ADAS eg27 CHECKW 2345 DELAY 7443 FATNC 6337
AJACPT 0OQ7 CHKFIT &4053 DELETE 65814 FATNCL 6324
Alg 7477 CLAB 6133 DELOUT p142 FATNCZ 6337
437 7477 CLBA 6136 DEVCOM 7175 FATNCI 6312
AJZZOR 2864 LG 7477 DEVCON 7176 FATNC4 &35
ADCL 6530 CLCa 6137 plco 6091 FATNCS 6329
AJCUNT 281D CLEAR 7432 DIGIN 3224 FATNCS 6323
ADCK €012 CLEARY 2452 CIGIT 3204 FATNCT 8326
AJDRES @867 CLEN 6134 DIGLUP 4557 FATNCE 6331
ALt 6536 CLKS™S B@asz DILC 6850 FATNCY® 6334
AJL™ 6531 CLoOCKI g173 DILE 6856 FATNCH 4342
4DJRB 6533 Ci0E 6132 DILX 6493 FATNCJ 4345
ADRS 6537 CLRCNT Q3637 oiLY 6054 FATNSX #6272
AJSE 6535 cLS 7477 DIM 6472 FATNY 6276
AJSXK 6534 CLSA 6135 DIMFLA 2334 FATNTT 6381
ADST 6532 CLSK 6131 DINP 7914 FENTLE 4685
ALET e3aL CLTEMP PP11 DI1RE 6057 FCNTLO &783
ALy 4654 CLZE 6133 DISAUT 8915 FOIGIT 3340
ALGNLP 44606 CNCLR 2143 Dise 2138 Fov 7800
ALl 3146 CNTLCF 6732 DISD 6082 Fovi 7403
ALLDC 1461 CNTLCR 6673 DIVLP 4735 FENTER 4415
A_TMOD 2663 CNTLD 2133 DIVXTE 3344 FEXIT eaoa
AMATCH 6526 CODELD 2084 DIxY 6055 FEXPLYL 6272
ANDRM 4602 COLUMN 2125 DLAST 7511 FEXPC2 40875
APYT 2263 COMMON 34832 DOAD n3s82 FEXPCI 4102
4PyTY 2823 COMPAR 2136 COADLP 03ss FEXPC4 6123
APyT2 @24 CONST 1347 DOITND 1247 FEXPCS 6186
ARy 4492 £os 5615 DOTZER 7371 FEXPCSH 6111
AGERR 7363 COWT 7326 DPFLAG 3385 FEXPF 6087
ARRLOC Q8203 COWTFP 7343 DGINTX 31%p FEXPI 6P41
ATEMP £323 COWTLP 7331 DSCREW 937S FEXPU 6DA4
ATEMPZ £324 COWTO 7342 DVLOOP 5245 FINDIT 2597
ATLINE 46451 COWTH 7344 EQILIT 2405 FINDLY @545
ATYN 5209 CRINTX 3876 END 2587 Fix 4744
ATNBIG 6265 CRLF 6531 ENQLIN 7643 FIXEXT 4773
ATNLDW 6220 CRLFPR 3742 ENONUM 3333 FIXITu 5260
ATNNAT 6237 CT1 2916 ENDPDL 77m4 FIXLIN 2143
AUTEMP 4263 cT2 @15 EQF AD 4526 FIXLUP 473D

61

Fixue
Fump
FJMP!
FAymp
FLD
FLat
FLOGEL
FLaGE2
FLOGC3
FLOGCS
FMp
FMpl
FMTL
FMTZ
FMT3
FMTENF
Fy
FNERR
FNEXIT
FOR
FORCY
fORDON
FORERR
FIRLIM
FORLIS
FORSTE
FORVAR
FOUND
FOURLF
FPADD
FPADDR
FPOLY
FPOOLT
FPFLAG
FPpoTOo
FPJMP
FPJUMP
FPLAL
FPLOQP
FPMUL
FPNOAD
FPOPER
FPrpis2
FPSKIP
FPSTO
FPSUB
FPT
FPTEMP
FPTR
FPZDIV
FRNDX
FRSTNE

5146
1922
14002
1139
3a2p
34020
6175
6158
€161
6164
6020
5420
8125
5853
5130
5123
5453
p3sz
12¢2
2413
ea63
2663
@521
2721
77235
e724
0452
@575
3557
4456
4304
4667
4237
2156
4273
4317
4274
4351
4202
4530
4276
43@5
4227
4314
4322
4453
4202
4578
2957
4736
5424
2155

Fs8
FSBI
FSEQ
FSGE
F8GT
FSHIFT
FSINLE
FSINCY
FSINC3
FSINC4
FSINCE
FSINCS
FSINC?
FSINM4
FSINOK
FSINE
FEINEZE
FSLE
FSLT
FSNE
FSQRX
FST
FSTI
FTANTL
FTANTZ2
FUNTAB
FUPRC1
FWD
FXXPFX
GALT
GDIM2
GET
GETADD
GETARY
GEYBLK
GETCH
GETJ
GETLIN
GETLRE
GETGOPR
GETVAR

GETWD

GLOOP
GOBOTH
GOLIST
GOSUB
GOTEMP
GOTO
GOTOPR
GOTSS
GOTSTE
GOUT

5800
5402
28%0
gieg
g14@
7443
Sé41
5713
5716
5721
5724
5727
5732
5735
5457
S7T@5
5712
Pi50
2118
@e42
5407
2e2en
2400
5477
5782
1131
5762
gzoe
65023
7247
1564
pag:
14@82
7462
1674
7201
177¢
2603
2600
1215
@311
177
2711
532
F725
3585
gass
e517
1222
1874
p634
7251

62

GRTF
GRE
GRDELA
GSBEND
GSBPTR
GSS1

G8s2

GTBKLP
GTEMP
GWHERE
HFOUND
HIGHWD
HLOQP
HPTR
HRCHAR
HRLOP
HRMES
TAMLES
1DLEAC
[DLECD
I0LEC]
10LELK
1GLEPC
IF
1GNORE
[IXR
IMMED
IN
INGHAR
INDEV
INDEX1
INDEX2
INLCTH
INLOOP
INLUPF
INDDUN
INQPPP
INQTTT
INPLUP
INPPTR
INPUT
INSERT
INSRTS
INT
INTAC
INTCOF
INTCIF
INTECD
INTEMP
INTER
INTEXT
INTL

I LY
7224
7222
7755
2165
1562
1563
174p
1294
727D
7321
4333
2722
gds1
7286
382
7323
2196
4782
4728
4736
4731
47313
3378
2115
7444
24%4
431
72%5
@127
pa{3
gR14
4085
0%z
pe32
8712
5541
6845
A0N4
4043
4007
2032
2032
4434
6734
4770
8771
8742
4716
§608
£744
4735

INTCU
INWDTM
IPNOFE
IPOINT
ISDEF2
1sDIG
1sDIM
ISET
IsiT
ISITOF
ISITFU
ISITLI
ISLIT
IS3OME
ISUMIN
ITSDEF
ITSOP
ITSE
1750P
I1T8F
WJBPENT
JOIGIT
JISDIG
JMATCH
JPUTCH
JTXXIT
Juste
JUSTOF
JUSTAP
JUSTY
JUST2
KEYWD
LaLupP
LBEGIN
LCF
LET
LETDO
LETTER
LFYLUP
LHALF
LIMIT
L INBUF
LINENOQ
LINFIX
LIST
LIsT2
LISTY
LI1ST4
LISTS
LISTAL
LISTLY
L187S0

8745
4084
ag24
7234
3512
6532
1473
7407
43486
25380
111p
4104
4133
1644
1043
3514
3256
3243
1220
3300
3707
3124
3367
2766
2777
3123
3150
3160
3183
3145
3147
g231
3644
7543
6662
p3i2
2205
3446
2333
sote
2993
7542
0032
2330
3680
3840
3855
3661
3876
36is
3620
3817

LITRAL
LLLJMP
LLLJMS
LLLUUU
LLS
LNDEND
LOADED
LOcCTR
LOCTEM
LOCTMP
Los
LOGACE
LOGFWD
LOGOKHW
LOWLOC
LPTOUT
LSF
LSTLOC
LUP
LUPF
MACHIN
MAYZER
MENDLI
MENDPD
MEVaAL
MEVALG
MGOL!S
MGSBEN
MINUS
MLBEGI
MLEND
MLINBU
MNSONE
MDRED!I
MOREIN
MORERD
MOVE
MOYLUP
MPY
MPYLUP
MTYXX1T
MULCLR
MULEXP
MULXTE
MUSTBRE
NOELAY
NEWCHA
NEWLIN
NEXT
NEXTER
NEXTVA
NINTEC

313
7457
7446
7140
6666
3630
4127
2245
2671
1673
6114
6170
6167
6172
2171
7163
6661
2160
3485
2426
0290
4612
2@41
2363
7415
7431
872¢
8525
1316
9173
0174
0840
8736
6479
4p09
1621
2012
2872
5321
4552
3201
4571
3346
3363
4579
7420
2615
2610
2600
2673
2637
7457

NOBUMP
NOCOMM
NOINT
NONBLN
NONZER
MOPARE
NOPCR
NORLFT
NORMED
NORMIY
NORUBO
NOSS1
NOSS2
NOY
NOTBAD
NOTBIG
NOTCR
NOTFRS
NOTHER
NOTKWD
NOTNOW
NOTSGN
NQTTXT
NOTVAR
NOTX1D
NPSPER
NSYMTA
NUL CMD
NULJOB
NULLOP
NUMBUF
ni299
01y
o1i1i@
012
0122
g13
0132
0137
014
014R4
01426
0143
017
01742
0175
0177
01774
02
0209
022404
RS2

4633
0335
$134
311@
5@16
1035
2216
6421
5220
5207
5574
1449
1433
3427
2127
4620
3f23
2961
P435
2313
2o0e
3321
2236
11085
5236
75585
eans
7454
T415
7430
5335
3950
P5a4
2361
2Q63
2771
19567
72565
7261
2360
@775
2772
7266
5147
3875
7267
poz7y
3376
BRs2
155
3373
5344

63

0a12
02L5
023
0233
o249
0203
028%
02964
02968
o2é&e
Qar
0385
032
036
37378
03754
03755
0377?
04

042
04201
D4AL4
n42
o42en
04213
o542
06]014
D6201B
pe2ez
o7

o072
oree
0720024
oT2peR
no7@aec
07877
n7%ze
07945
ar372
07877
Q8778
orépe
07681
arep3
oveLw
07812
QT84
074428
07640C
07473
0??
Q77R64A

oRin
erar
1348
3792
o991
5199
5181
s14s
6975
epiy
3372
5192
342

.27 a7

273
1162
1273
a1
0182
2770
7525
1163
3108
3185
{164
5347
8615
780%
6775
02
4774
{272
2942
3474
7438
{29
5183
4747
6496
4577
7584
43458
72682
27%4
5345
7262
g745
2783
7243
33s
pp%e
8544

07706C
07715
077254
077253
07737
07749
07741
07748
07745
07744
07753
09762
077634
077438
077644
077648
07784C
077640
07766
07770
07774
87772
07773
07774
67778
07776
07777
QADD
BAMIGH
OBLONW
0ROP
oce
GEMLIN
0COR
OCOUNT
0DEV
OFLAG
OFLOW
DJUMP
OLDOP
ONE
ONEDIM
ONESS
ONLY1
007580
007738
ord
oP2
opP3
OPDONE
oPL
OPERAN

3473
2778
3189
3371
sidz
2054
3745
4743
g1a2
7264
3104
2327
0774
3104
i2%4
3182
3374
8737
5134
2095
5155
5187
5346
1546
6t}s
3392
7114
4438
1177
1143
7401
5285
7145
7183
742
@132
7180
71;5
12%6
LI TYS
P181
1044
13%s
3322
5492
2326
peds
2p22
pg21
1263
2030
pot3

OPNUL
OPOINT
CPOTAB
OPRAST
ors
OPUTC
OTEMP
OTHER
OTST1
ouTD2
OUTDEL
OUTDEY
QUTIT
DUTNUM
oy
PACN
PALL
PANGRM
PARL
PARGER
PASSCR
PASSUM
PBEGFI
PEIDLE
PBOME
PRUSY
PCCUNT
PCHKF]
PCOMMO
PCOWTY
POEVECO
FOL
PDLIST
PEOIT
PERMSY
PERROR
PEVAL
PEVALG
PEXECU
PEXP
PFINDI
PF1X
PFNERR
PFPLOO
PGETAD
PGETBL
PGETCH
PGETLI
PGETLR
PGETOP
PGETVA
PGOLIS

7967
7065
7873
7155
PR26
7041
1271
3082
7112
0138
7146
#1311
7043
LT
o212
4742
FLT]
D146
9147
047
0472
744p
1776
7161
2367
7157
p744
G163
3357
@341
7442
2036
7644
0120
7922
2877
gio1
224¢
9103
5776
8672
g1e6
5546
4575
g102
9115
eR32
P124
3@22
9111
o113

164

PGOTOP
PHRCHA
PIGNOR
PINCHA
PINT
PISITL
PJSET
PLBEG]
PLETDO
PLETTE
PLIMIT
PLINBY
PLINF]
PLIST
PLITRA
PLOG
PLOT
PLOTE
PLUS
PMEVAL
PMPY
PNBF 6
PNOCR
PNONBL
PNOTNO
PNUMBU
POADD
POFLAG
POP
POP3
POPERA
POTHER
POUTIT
POUTNY
PPACY
PPAC2
PPACS
PPACE
PPACS
PPASSC
PPOLIS
PPERMS
PPFLOD
PPFORL
PPINT
PPOP
PPRINR
PPRINT
PPRINU
PPUSH
PPUTCH
PPXRA

gia7
6749
e471
6741
5878
2175
2461
el7e
peg4
3193
2861
eesz
161
2363
3377
5775
7422
7914
1312
7441
5140
5161
p757
piz2
2366
0d44
g157
6742
3551
4434
3127
2776
6743
aL1Li7
R4z
eo43
pAs4
gg45
1.2 1.}
gtie
@125
2565
4741
i740
6060
o185
2241
2114
2121
2194
o33
71462

64

PRENT
PRESET
PRINBL
PRINCOD
PRINHA
PRINGQU
PRINRE
PRINSE
PRINT
PRINTC
PRINTG
PRINTH
PRINTX
PRINUM
PRINVA
PRLOOP
PRSUBR
PRTEMP
PRTXRE
PSGN
PSKIP]
PSLOOP
PSPACE
PSTICK
PSTOVA
PSXERR
PSYMTA
PTABOE
PTABFL
PTABLE
PTEN
PTEXT
PTPOUT
PTRIN
PYUBIG
PUSERF
PUSH
PUTCDF
PUTCH
PUTCIN
PUTER
PUTJ
PUTLOC
PUTLP
PUTXRA
PXFORL
PXLINB
PXXCRL
PXXECF
PXXEX]
PXXLIT
PXXTHE

23{¢
21%7
22
2303
2240
2235
2242
23i2
2173
2207
2206
2232
3702
3747
3893
3711
3744
2042
3782
LTV L
isiz
#1is
1545
g121
g1i2
g100
00485
554p
55%
27%7
p145
2276
7164
7L%2
3921
BS54
2344
7037
B744
7023
T0¢de
1781
2172
Tea?
7%
LT
3748
3128
2544
3138
3139
2842

PEEROD
QB IDLE
QEAROR
QHRCHA
RANDAE
RBANCH
READ
READLD
READY
REALTI
REJECT
RELATE
REMPAC
RESETY
RESETZ2
RESTOR
RETNER
RETURN
REALF
RMLEFT
RND
RNDJHP
RTERR
RuUBOG
RUN
RUN2IN
RUN2LU
RUNZNOD
RUNIN
RUNLUP
RUNNOT
SCHWMOR
SCRATC
SEARCH
SETCLD
SETRAT
SETSGN
SETUP
SGN
SIMPLY
SIN
SINCHA
SJUMP
SKIPIT
SLASH
5_.00P
SLSHTM
SNUMFL
SPACER
SPECIN
SPLEFT
SQEX!IT

6545
y237
4190
7136

1138

2435
1823
Boss
4525
7443
7433
1342
3243
7116
7141
3773
g713
(T34
0%4
6443
5353
539p
73%3
5573
2492
2543
2514
2537
2533
2449
2437
1637
2440
1662
74%3
7473
4812
7430
pr2s
3446
8424
7442
2249
1T Y
1332
2787
1337
po44
23%2
pl4p
Pid4
5430

SaLooP
5QR
SSERR
55FIx
SSONE
SSTWO
STAR
START
S5TiCKI
STOP
SToVAR
SUBRA
SXERR
TAB
TABDES
TABCO
TABFLG
TABOK
TABTHR
TAN
TBEGF1
TEN
THESKI
THISTX
TIN
TIML
TimM2
T™MP
TOOLON
TPRINT
TRALUP
TRANSF
TRYAGI
TRYSTE
18T
TSTIFX
TSTP
TTYIN
TTyout
TUBIG
TWIDTH
TWOSS
TXTPAK
Uig
Uioe
Ui?
uiz7
Uir
uze
J4a787
UsSate
uz

5435
5412
15792
4775
0344
2345
1327
1000
6432
2579
g341
2161
6441
5547
6367
6350
2345
6362
2382
5400
5572
TLL
1353
3187
7477
EED
20@5
0931
5162
8379
2105
2103
5133
626
7421
7417
7431
7873
7165
2657
2357
1077
3846
2836
ea13
ggaz
2917
7503
7504
2228
2934
2933

u7760
u7767
u7775
u7777
UABAD
UAC1L
UAC2
UAC3
UACCPT
UADCB
UADCIN
UADCMY
UADCN
uCLeC
UcLOoP
ucLs
UgEVCD
UDOAD
UDOPER
UFFUD
UFJMP
UGETHWD
UGH1
UIEXT
WIEXT2
UIEXT3
UIEXT#
UINAC
UJMP
UJMS
UMEVY AL
UMOPER
UNDERF
UPAGET
UPARR2
UPARRO
UPARRX
UPCOMD
UPFIX
UPFUN
UPJMP
UREAL
UREJT
usE
USERFN
USETC
USETF
USETH
USETR
USKIPI
UTEMP
UTIH

pase
Pa35
g2:z21
pe52
pez23
ga37
ed42
2041
B453
0620
2613
B615
pez2
2345
geai?
2340
enss
a5
1363
2756
2757
257
3562
PE34
P243
B245
gaéo
2631
eas54
P55
2031
1321
4645
653
4365
6457
5740
731
ge32
8747
8736
@450
2456
7444
1629
p411
25583
D416
g400
7481
1 LR
2541

65

UJACL
VJAg2
VUACS
UUDATA
VUBEVE
UuruDG
UUJMP
UJJMS
UUMEVA
UUNCAD
UUPFLX
JUUSETF
UL JMP
UJUJMS
VUULLL
uypP
UWALT
UWALITC
VAR
VARTEM
YSCHIN
VYSCHLY
YSCHND
WalT
WAlTC
WOTEMP
WORD
XEXECY
XGISIT
XGMUST
X1817
XMYST
XRESTA
XXABS
XXACPT
xXADB
XXADC
XXATN
IXBSLS
XXCLC
AXCLEA
xXCLOS
XXELS
XXCOMM
xnGos
XXCRLF
XXOATA
XXDEF
XXDELA
X%XDIM
XXEG
XXEL

04554
-IT31
B&és
1847
3.1
2738
@722
araz
Bars
Y440
2477
032
2732
9721
e3I82
7582
P437
2440
#5343
2593
3524
3475
LLET.
493
7493
1878
T
ed4iz
' 1Y)
7345
4293
7342
180}
7434
Y446
7223
1196
140
7234
240
74986
7048
r2is
7042
7112
1226
7343
73335
74{2
?3{s
1046
1091

XXEND
XXECF
XxEQ
XXEXIT
XXEXP
XXFIN]
XAFN
XXFOR
XXGE
XXGET
XXROSU
XxGoTo
Xxar
XX1F
AXINPY
XXINT
XXLERA
XXLE
XXLET
XxLis
XxL18T
AxLITO
XXL0OG
XXLPT
XxLT
XXMINU
XXNE
XXNEXY
XXNRUB
AXOPEN
XXpLOY
XXPLUS
XXPRIN
XXPTP
XXPTR
XXPUT
XXRBRA
XXREAD
KXREAL
AXREJT
XXREM
XXRETR
XXAND
XXRSTD
xxAuB
AXRUN
XX8CR
ANSEM]
XXSETC
XASETA
AXAGN
XX$1IN

7232
7582
7084
7808
7126
7504
7187
7235
7042
7173
7244
7248
7062
7240
7283
7142
7198
7235
72%0
7182
7156
7306
7123
7344
1296
7925
7243
7294
73%7
7103
7422
7023
7309
7364
7347
71483
7e%0
7337
7416
7473
7337
7328
7148
7342
1372
7145
71%0
7064
7443
7433
7137
7i%0

XASLAS
XXSGR
XXSTAR
XXSTEP
XXSTOP
XXTAS
XXTAN
XXTEXT
XXTHEN
XXTIME
XXTO
AXTTY
XXTTY!
XXTTYD
XXUcoM
XXUNAR
XXUPAR
AXUSE
XXuur
AXWALY
YYWALT
ZEADON
2ERQ
EFINEX
E2ADR
Z2a0C

7031
713
Te27
7276
7312
72a7
7115
7501
7353
7204
772
7201
7347
7354
7462
7503
7033
7418
7212
7452
7456
5144
gi152
47647
8775
2773

66

STATEMENT AND COMMAND SUMMARIES
Summaries of the editing and program control commands
available in 8K BASIC are presented below.

Edit and Control Commands

Command Abbreviation
CTRL/C
CTRL/O
LIST LIS
LIS n
NO RUBCUTS
RUBOUTS
RUN RUN
SCRATCH SCR
BASIC Statements
Statement Example of Form
DATA DATA nl, n2,
...0n
DEF DEF FNB (x) =
f(x)
DEF FNB (x, v)
=f(x, ¥)

Action

Stops a rumning program. and
returns to the editing phase of
BASIC,

Stops output of a running BASIC
program. Remains in this state
until BASIC requests INPUT, an
error occurs, or until another
CTRL/Q is typed.

Lists the entire program in core.

Lists line n through end of pro-
gram.

Disables the RUBOUT key.
Enables the RUBOUT Kkey.

Compiles and runs the program
currently in core.

Erases the current program from
core.

Explanation

Numbers nl through nn are to be
associated with corresponding vari-
ables in a READ statement.

The user may define his own func-
tion to be called within his pro-
gram by putting a DEF statement
at the beginning of a program, The
function name begins with FN and
must have three letters. The func-
tion is then equated to a formula
f(x) which must be only one line
long.

Statement

DIM

END

FOR-TO-
STEP

GOSUB

GOTO

IF-GOTO
IF-THEN

INPUT

LET

LPT

NEXT

Example of Form

DIM v(s)

END

FOR v=fI TO f2
STEP 13

GOSUB n

GOTO n

IF f1 r £2 GOTO n

IF fI r £2 THEN n

INPUT vI, v2,

. ¥

LET v=f
LPT

NEXT v

68

Explanation

Enables the user to create a table
or array with the specified number
of elements where v is the variable
name and s is the maximum sub-
script value. Any number of ar-
rays can be dimensioned in a
single DIM statement.

Last statement in the program.
Signals completion of the program.

Used to implemnent loops; the vari-
able v is set equal to the formula
f1. From this point the loop cycle
is completed following which v is
incremented after each cycle by 3
until its value is greater than f2.
If STEP f3 js omitted, f3 is as-
sumed to be ;1. f3 may also be
negative.

Allows the user to enter a sub-
routing at several points in the
program. Control transfers to line
n.

Transfers control to line n and
continues execution from there.

Same as IF-THEN.

If the relationship r between the
formulas f1 and f2 is true, trans-
fers control to line n (n may also
represent an operation); if not, cont-
inues in regular sequence,

Causes typeout of a ? to the user
and waits for the user to supply
the values of the variables vi
through van.

Assigns the value of the formula f
to the variable v.

Assigns line printer as output de-
vice.

Used to tell the computer to re-
turn to the FOR statement and
execute the loop again unftil v is
greater than or equal to f2.

Statement Example of Form

PRINT PRINT at, a2,
... an

PTP PTP

PTR PTR

READ READ v, v2,
...vn

REM REM

RESTORE RESTORE

RETURN RETURN

STOP STOP

TTY IN TTY IN

TTY OUT TTY OUT

Explanation

Prints the values of the specified
arguments, which may be variables,
text or format control characters
(,or;).

Assigns high-speed paper tape
punch as output device.

Assigns high-speed paper tape
reader as input device,

Variables vl through vn are as-
signed the value of the correspond-
ing numbers in the DATA string.

When typed as the first three let-
ters of a line, allows typing of
remarks within the program.

Sets pointer back to the beginning
of the string of DATA values.

Must be at the end of each sub-
routine to enable control to be
transferrved to the statement follow-
ing the last GOSUB.

Terminates execution at that point
at which the statement is reached
in the program.

Assigns a console terminal as jinput
device.

Assigns a console treminal as out-
put device.

During input to the editor or when executing an INPUT com-
mand, the following messages may be printed in response to

the input:

Message

LINE TOO LONG

DELETED

Explanation

The line just typed exceeded the available core

buffer and must be retyped.

The line has been deleted in response to an
ALTMODE character and must be retyped.

Back arrow is printed any time a RUBOUT or
SHIFT/O is used. The previous character is

deleted.

BASIC prints TTY to indicate that there is no
more input from the high-speed reader and
that it is waiting for input from the Teletype.

appendix a
loading procedures

Initializing the system

Before using the computer system, it is good practice to initialize
all units. To initialize the system, ensure that all switches and con-
trols are as specified below,

Main power cord is properly plugged in.
Teletype is turned OFF.

Low-speed punch is OFF.

Low-speed reader is set to FREE.
Computer POWER key is ON.

PANEL LOCK is unlocked.

Console switches are set to 0.

SING STEP is not set.

High-speed punch is OFF.

DECtape REMOTE lamps OFF.

CReRXIANDE LN~

[+

The system is now initialized and ready for your use.

Loaders
READ-IN MODE (RIM) LOADER

When a computer in the PDP-8 series is first received, it 1s noth-
ing more than a piece of hardware; its core memory is completely
demagnetized. The computer “knows” absolutely nothing, not even
how to receive input. However, the programmer can manually
load data directly into core using the console switches.

The RIM Loader is the very first program loaded into the com-
puter, and it is loaded by the programmer using the console

A-1

switches. The RIM Loader instructs the computer to receive and
store, in core, data punched on paper tape in RIM coded format
(RIM Loader is used to load the BIN Loader descrjbed below.)

There are two RIM loader programs: one is used when the in-
put is to be from the low-speed paper tape reader, and the other
is used when input is to be from the high-speed paper tape reader.
The locations and corresponding instructions for both loaders are
listed in Table A-1.

The procedure for loading (toggling) the RIM Loader into core
is illustrated in Figure A-1.

Table A-1. RIM Loader Programs

Instruction
Location Low-Speed Reader High-Speed Reader
7756 6032 6014
7757 6031 6011
7760 5357 5357
7761 6036 6016
7762 7106 7106
7763 7006 7006
7764 7510 7510
7765 5357 5374
7766 7006 7006
7767 6031 6011
7770 5367 5367
7771 6034 6016
7772 7420 7420
7773 3776 3776
7774 3376 3376
7775 5356 5357
7776 0000 0000

After RIM has been loaded, it is good programming practice to
verify that all instructions were stored properly. This can be done
by performing the steps illustrated in Figure A-2, which also
shows how to correct an incorrectly stored instruction.

When loaded, the RIM Loader occupies absolute locations 7756
through 7776.

A-2

(INITIALIZE ’

SET ROTARY
SELECTOR SWITCH
TO MD

3

SET SWITCHES 6-8
TO DESIRED
INSTRUCTION FIELD®

[SET SWITCHES 9-11

#*DECTAPE USERS SHOULD DTI(\?‘I'E ESEIEIEJD*
1
LCAD RIM INTQFIELD @
}
PRESS

EXT LOAD ADDR

SET SR
T0 7756

PRESS
ADDR LOAD

SET SR=
FIRST INSTRUCTION

PRESS DEP

SET SRy
NEXT INSTRUCTION

| Press oer |

ALL
INSTR:JCTIWS

YES

RIM 15 LOADED

Loading the RIM Loader

Figure A-1.

{ INITIALIZE ’

SET ROTARY
INDICATOR
SWITCH TO MD

SET SWITCHES

SET SR=MA-1

ALL
NSTRUCTIONS ™ NO
CHEGKED

RIM IS LOADED

SET 5A= CORRECT
INSTRUCTION

PRESS DEP '

Figure A-2. Checking the RIM Loader

BINARY (BIN) LOADER—

The BIN Loader is a short utility program which, when in core,
instructs the computer to read binary-coded data punched on paper
tape and store it in core memory. BIN is used primarily to load the
programs furnished in the software package (excluding the loaders
and certain subroutines) and the programmer’s binary tapes.

BIN is furnished to the programmer on punched paper tape in
RIM-coded format. Therefore, RIM must be in core before BIN
can be loaded. Figure A-3 illustrates the steps necessary to prop-
erly load BIN. And when loading, the input device (low- or high-
speed reader) must be that which was selected when loading RIM.

A-4

—_—— — — - San Flgurms C21,02-2

SELECTOR Swi
TO MO

SET SWITCHES
§-8 TO FIELD
WHICH CONTAINS
Rl

!

S5ET SWITCHES
9-11 Ta FIELD iN
WHICH BIN 15
T BE LOADED

FRESS
EXT ADDR LOAD

SET SA=TTS6

PRESS ADOR LDAD

HIGH-SPEED
READER

LOW-SPEED

TURN TTY TO LINE

PUT BIN LOADER

PUT BiN LOADER
IN_HSR IN_LSR

LER TO START

PRESS HALT

SET SWITCHES
-8 TQ FIELD
BIN WAS LOADED
INTS
55
LIOAD

5
I PRE |
EXT aDDR

SET SR«Z2T7T

Figure A-3 Loading the BIN Loader
A-5

When stored in core, BIN resides on the last page of core, oc-
cupying absolute locations 7625 through 7752 and 7777.

BIN was purposely placed on the last page of core so that it
would always be available for use—the programs in DEC’s soft-
ware package do not use the last page of core (excluding the Disk
Monitor}, The programmer must be aware that if he writes a
program which uses the last page of core, BIN will be wip-
ed out when that program runs on the computer. When this
happens, the programmer must load RIM and then BIN before
he can load another binary tape.

Binary tapes to be loaded should be started on the leader-trailer
code (Code 200), otherwise zeros may be loaded into core, destroy-
ing previous instructions.

Figure A-4 lilustrates the procedure for loading binary tapes
into core.

SET SWITCHES
€-8 TO FIELD IN
WHICH BIN IS
LOADED

SET SWITLHES 9-11)

HIGH-SPEED READER

LET SR=3777
PUT TAPE IN HSR

LOW-SPEED READER

E
STOPS AT
NO /BEGINNING OF
ADER/TRAN ER,

YES
OBJECT TAPE
15 LOADED

F:gure A-4. Loading A Binary Tape Using BIN

A-T

appendix b

character codes

ASCII-1* Character Set
Decimal Decimal
8-Bit 6-Bit Equivalent 8-Bit 6-Bit Equivalent
Character Octal Octal (Al Format) Character QOctal Octal (Al Format)

A 301 01 a5 ! 241 41 — 1952
B 102 02 160 » 242 42 — 1888
C 303 03 224 # 243 43 —1824
D 304 04 288 $ 244 44 —1760
E 305 03 352 o, 245 45 —16%6
F 306 06 416 & 246 46 — 1632
G 307 07 480 ' 247 47 — 1568
H i 10 544 (250 50 —1504
I 31 1t 608) 251 51 — 1440
J 312 12 672 ¥ 252 52 —1376
K 313 13 736 + 253 53 —1312
L 314 14 800 ’ 254 54 — 1248
M 315 15 364 . 255 55 —1184
N 316 16 928 . 256 56 —1i20
0 317 17 992 Ve 157 57 —1056
P 320 20 1356 - 272 72 —352
Q iz 21 1120 ; 273 73 —288
R 322 22 1184 < 274 74 —224
S 323 23 1248 = 278 75 — 160
T 324 24 1312 S 276 76 —96
u 325 25 1376 7 277 17 —32
A 326 26 1440 @ 300 32
w 327 27 1504 [333 33 1760
X 330 30 1568 A 334 34 1824
Y XD 31 1632 1 335 35 1888
Z 332 32 1696 HAY 336 36 1952
0 260 60 992 (=) 337 37 2016
1 261 a1 —928 Leader/Trailer 200

2 262 62 —864 LTNE FEED 212

3 263 63 —800 Carriage RETURN 215

4 264 64 —736 SPACE 240 40 =206
5 265 65 —672 RUBOUT 377

6 266 66 —608 Blank 000

7 267 67 —544 BELL. 207

8 270 70 —480 TAB 211

9 271 71 —416 FORM 214

1 An abbreviation for American Standard Code for Information Interchange.
2 The character in parentheses is printed on some Telelypes.

B-1

ACl, 44
AC2, 44
AC3, 44
Acceptable nesting
techniques, 25
ACE, 44
ACS, 44
Addressing, 45
Indirect relative, 47
Relative, 45
ALTMODE, 54
ANORM, 48
Argument, 36
Arithmetic operations, 3
Priority of, 4
Arithmetic statement, 10
Array, 25
Maximum size of an, 28
ASCII character set, B=1

Backslash, 9
BASIC compiler, 58
BEGFIX, 48
BIN loader, A-4
loading the, A=5
loading a binary tape,
A-7
BKWD, 45

Character codes, B~1l
Character set, B-1
Characters,
Format control, 15
Checking the RIM loader,
A~-4
Coding formats (UUF), 43
Command ,
LET, 6
LIST, 55
LPT, 55, 57
PRINT, 6
PTP, 55, 57
PTR, 56
RUN, 56
SCR, 58
Command summary, 67
Commands,
Editing and Control, 53,
67
Commenting the program, 9
Conditional transfer, 24,
30
Control characters,
Format, 15
Ceontrol commands,
Editing and, 53, 67
CTRL/C, 36, 57
CTRL/Q, 57

INDEX

DATA statement, 1l

DEF statement, 42

Devices,

/0, 22
DIM statement, 27
Directing program control,
29
bummy wvariable, 13, 39, 42

E-type notation, 2
Editing and Control
commands, 53, 67

END statement, 9
Egual sign,

Meaning of the, 5
Erasing a program in core,

58
Erasing characters and
linesg, 53

Error messages, 59
Evaluation,

Order of, 4
Example Program, 7
Examples (UUF), 438
Exponential notation, 2

FAC, 44
FENTER, 44
FEXIT, 44
Field, 24
FIX, 48
Floating accumulator, 44
Floating=-point format, 44
Fleating=-point instruction
set, 45
Fleoating-point interpreter,
45
Floating=-point package, 43
FNA function, 42
FOR statement, 22
Format control characters,
15
comma, l6
semicolon, 17
Formats, coding {UUF), 43
Formatting output, 41
Formula, 22, 24
Function, 34
FHA, 42
GET, 39
INT, 35
pUT, 39
RND, 36
SGN, 35
TAB, 36
User-defined, 59
UUF, 43
Functions, 34
FWD, 45

Generating random numbers
over any range, 37
GET function, 39
GOSUB nesting,
maximum level of, 33
GOSUB statement, 30, 31
GOTO statement, 29

1/0 devices, 22

IF GOTO statement, 30

IF THEN statement, 30

Immediate mode, 6

Incremental value, 22

Index, 22

Indirect relative

addressing, 47
Initial value, 22
Initializing the system,
a~-1

INPUT statement, 14

Input/Cutput statements, 11

Instruction set,
Floating-point, 45

INT function, 35

Integer function, 35

Introduction, 1

LET command, 6

LET statement, 10

Level of GOSUB nesting, 33

List, 25

LIST command, 55

Listing and punching
program, 55

Loaders, A-~1l

Loading a binary tape
{using BIN), A~7

Loading and operating
procedures, 58

Loading procedures, A-1l

loading the BIN loader, A-5S

Loading the RIM loader, A-3

Loops, 22

Nesting, 24
LPT command, 55, 57
LPT statement, 19

Mass storage devices, 47

Maximum level of GOSUB
nesting, 33

Maximum size of an array,
28

Meaning of the equal sign,
5

Minimum system
configuraticn, 1

Mode,

Immediate, 6

Nesting loops, 24
Nesting subroutines, 33
Nesting techniques,
Acceptable, 25
Unacceptable, 25
Nesting, maximum level of
GOSUB, 33
NEXT statement, 22, 23
NQ RUBOUTS, 53
Normalized form, 44
Numbers, 2

Operating procedures,
Loading and, 58
Operators, 3
Relational, 5
Order of evaluation, 4
QOutput,
Formatting, 41

Parentheses, 4

PRINT command, &

Print positions, 37

PRINT statement, 15

Print zones, 16

Priority of arithmetic

operations, 4

Program control,
Directing, 29

Programming errors, 69

PTP command, 55, 57

PTP statement, 20

PTR command, 56

PTR statement, 14

PUT function, 39

Random number function, 36
READ statement, 11
Reading a program, 56
Relational operators, 5
Relative addressing, 45
Indirect, 47
REM statement, 9
RESTORE statement, 12
RETURN, 54
RETURN statement, 31
RIM, A-l
RIM loader,
Checking the, A=4
Loading the, A~3
RIM loader programs, A=2
RID function, 36
Rounding numbers, 36
RUBOUT, 53
RUN command, 56
Running a program, 56

SCR command, 58
SGN function, 35
SHIFT/L, 9

SHIFT/0Q, 53 Subscript, 27

Sign function, 35 Subscripted variables, 22,
Sign-magnitude convention, 25
43 Sumnary,
Statement, Command, 67
Arithmetic, 10 Statement, 67
DATA, 11 Supported options, 2
DEF, 42 Symbol Table, 62-66
DIM, 27 System configuration,
END, 9 minimum, 1
FOR, 22
GosvB, 30, 31
GOTO, 29 _
IF GOTO, 30 TAB function, 36
IF THEN, 30 Table,
INPUT, 14 Symbol, 62
LET, 10 Terminal value, 22
LPT, 19 Terminating the program, 9
NEXT, 22, 21 Transfgrf
PRINT, 15 Conditional, 24, 30
PTP, 20 Unconditional, 29
PTR, l4 Transfer of control
READ, 11 statements, 29
REM, 9 TTY IN statement, 20
RESTORE, 12 TTY OUT statement, 20
RETURN, 31 Two-dimensional matrix, 26
STEP, 23 .
sTOP, 10 Unacceptable nesting
TTY IN, 20 technigues, 25
TTY our, 20 Unconditional transfer, 29
Statement numbers, 8 User-defined function, 59,
Statement summary, &7 43
Statements, 7, 67 UUF function, 43
Input/Output, 11 .
Transfer of control, 29 Variable, 3
STEP statement, 23 Dummy, 13, 39, 42
STOP statement, 10 Subscripted, 22, 25
Stopping a run, 57
Subroutines, 30 Writing the program, 47

Nesting, 33

X-3

8K BASIC
DEC-08-LBSMA-A-D

READER'S COMMENTS

Digital Equipment Corporation maintainsa continuous effort to improve
the guality and usefulness of its publications. To do this effectively
we need user feedback--your critical evaluation of this document,

Did you find errors in this document? 1If so, please specify by page.

How can this document be improved?

How does this document compare with other technical documents you
have read?

Job Title Date:
Name : Qrganization:
Street: Department:

City: State: Zip or Country

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PEEMIT NO. 33
MAYNARD, MASS,

BUSINESS REPLY MAIL)
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilaliltiall

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachnseits (1754

	000
	001
	002
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	X-01
	X-02
	X-03
	replyA
	replyB

