Sgs'\'e,m

Mahag&r‘s

v
Gu:, de

For

PDP-&E

Dec Sﬂ.ﬂ'em

TGS 8.24 Monitor

-8

10
11
12

12

CHAPTER 1

INTRODUCTION TO TIMESHARING AND EDUSYSTEM 50

1.1 INTRODUCTION TO TIMESHARING CONCEPTS

In a typical programming environment, a user may desire to have
a computer edit, test, debug and execute a program. However, therec

are frequently léng periods of time when the computer waits for input

from the programmer. - At these times, it is desirable to find some-
thiﬁg else for the computer to do. One solution is called "time-

sharing”. Typically, a number of users each has a terminal connected

to a computer, and as each ugser requires computer time, the processor

assigns computerltﬁme to each user. Thus, by proper allocation of

processor time, each user, in effect, has all the computer time
recessary for a particular program. Users do not have to feel rushed

of be concerned about others who may desire to use the computer.

ﬁ_EdﬁSystem 50 1is such.a timesharing systerni. From the user's

viewpoint, each user on an EduSystem system has a terminal and 4K
ofICQre for his exclusive use. In addition, disk storage may ke
5od on a first-come/first-serve ba51s. aAny of the several pari-
pherals connected to EduSystem 50 may be reserved by a user
exclusively until completion of the program. The EduSystem 50
Monitor is the set of programs which allows a.l of this to happen.
_ The EduSystem 50 Monitor reserves fields 0 and 1 for its
exclusive use; the rest of core is given to users as they need it.
gince there may not be enough core for every user to simultaneously
acgupy 4K, each user has a 4K section of digk reserved for his

‘program. When there is not enough room in core, the entire 4K is

written to disk. Later, when enough core is available, the 4K is
read from the disk back into core again. This process is called

swapping, and the area on disk reserxved for it is called the swap

area. l | |
w7 Y« 2

1=-1

To prevent a~uaﬁf from interfering with tre operation of

others, several steps are taken:

a) An OSR‘is not allowed; this prevents disputes over
the switch register setting.

b} The user cannot perform an HLT.
¢} The program must be executed w1th the data field set

equal to the instruction field; no change is allowed

in either. 1In fact, the user may not do any kind of
I0T. . . : .

In rea}ity, any of the above instructions may be contained
in a user's program. They are trapped By the hardwére, which
does not allow them to function. Instéad, the time-~share hérd—
ware option raises a flag and causes an interrupt. The Monitor
must then determine the cause of the interrupt. If, for example,
the user does a KRB, the AC will not be altered. Insteaa,ufﬁe
KRB causes an interrupt into Monitor code, which looks back to
see what causes the interrupt. When is sees fhe KRB, it takes
the necessary steps to simulate the KRB. It then returns to the_
user's program. Thus, there are 512 different ‘I0Ts the use: gap.“
- &xecute:; the Monitor could be modified to perform almost ény-
desired function for them. These trapped: I0Ts, and the. trapped

R

. H.Ts and OSRs are sometimes referred tc an Unlmalemented USEr

Operations (UUOs). e e

The time-share hardware option makes this possible. The
t. : m

orocessor can be in one of two modes: executive mode and user

wode. In executive mode, the processor operates like a stan-
.ard PDP-8. However, when the processor is in user mode, the

i ! urn the
instructions discussed above cause an interrupt, apc ret

processer to executive mode.

1-2

NOTE

Instructions microcoded with HLT or O3R
will complete their functions normallvy
before the interrupt occurs.

\uﬂiio bégin_ugipé the_sysﬁeﬁfthe user must be identified at
iéﬁéféerminal. Each user haé-an account number, under which disk
filéé are stoféd.. The Monitor also keeps track of system usage
by:aqgount_number.“"$o p£otéc£ against misuse of the system, the
uééflmﬁst give'an aééouﬁt ﬁumber and a password to the system:
thié proéesé_is-célled-a LOGIN.

- 6nce logged in, the user may type various zommands to the
Monitor, execute a program (either original or from the library),
or type characters to be input to the program. When finished,

the uger logs out enabling others to use the tsrminal.

1.2 EDUSYSTEM 50 HARDWARE CONFIGURATIONS
- A minimum ccnfiguration for EduSystem 50 includes:

s a) PDP-8, 81, or 8E, with at least 12K memcry (16K memory
is better} and the time-share opticn. (All are referred
to in the following text as PDP-8.)

b) RFO8 with at least one RS08 (a DF32 with at least two
platters is acceptable, however, this is not recommended
because of the limited storage area and slow speed of
the device).

'e) Multi-terminal capability - one or more KL8Es or PTO8s
'~ or a DCOS8A.

All confiqurations, except PDP-8Is with a DCO8A, require
a real-time clock.
Optional hardware supported:
- a) Up to 32K memory.

| b) * DCOBA - may be used only on a PDP-8I and may be usad 1in
addition to PT08s.

C) 089AG modem controller - for use with DCOSA only.

d) EAE- all instructions of any standard EAE are supported
with the exception of the traditional PCP-8 step counter:
which is net saved or restored. :

e) High-Speed Reader - a paper tape reader is required to
build EduSystem. A low-speed reader may be used, however,
the build procedure will be very time consuming. -

£) High-Speed Punch.

q) Line Printer - LPO8/LES or LS08/ISS8E.

h) DECtape - TCOl or TCO8 and up to eight drives (TLS8E.
DECtape is not allowed.) S

i) Up to four disks (three additional RS08sg).

3) Card Reader.

k) RKBE (up to four drives).

SOFTWARE

The following sections présent an introduction to the comp-

L nrograms of EduSystem 50,

1 INIT | . !

INIT is the initializer program. It is the job of -INIT tc:
a) Build a new system on the system diskffrcm-pépér tapes.

b} Initialize a file structure on the disk for program
storage. S - '

Q) Allow the user to make patches to the_sysfem. This can :f
be useful if a particular system feature must be altered.

d) Allow the user to transfer the entire contents of the
disk to DECtape. This is called a "dump". : R

e) allow the user to load the entire disk from DECtape. .
This allows all saved programs, account numbers, etc., ;
to be restored to their condition when a dump was last '
taken. .

£) Allow the user to start the system so that it is in its
operating state. A start must set up fields 0 and 1 to
the proper initial conditions, start the real time clock,.
and transfer control to the monitor. -

1-4

- 1.3.2 ST
SI is the System Interpreter. Whenever a user types a command
at the console, SI analyzes the command. SI is stored on the disk

and is read into field 2 when it is needed.

.33 FIE

FIP is thelFile Phéntbm. Whenever certain IOTs (see Appendix C!
é#e executed, FIP is called in to handle them. FIP handles disk

i:fiia storage'ahd assigns devices to users when they reqguest them.
fIP is also stored on the disk and, when it is needed, it is read

into field 2.

1.3.4 TS8 and TS8II

TS8 and TSHBIT are the two sections of the resident Monitor
which are resident (always present) in fields 0 and 1, respect-
ively. The resident code is responsible for:

"a) Scheduling - The scheduler deecides who uses the computer

: and vhen. If the user types a command, the scheduler
brings in 8I. If more than one user wants a program to
run, the scheduler distributes time to the users. If
there 1s insufficient core for everyone to use at once,
the scheduler swaps users to and from the digk.

" b) UUO Handling ~ When the processor is in user mods, remembe
that if a user executes any type of IOT, an HLT, or an OSR.
The hardware does not execute the instruction, but causes
an interrupt. The IOT, HLT, or 0SR is called a UUO in thi:
case. The Monitor has the job of simulating the function
of the UUO, and nossibly returning control to the user.
By definition, resident UUOs are those which are handled b-
the code residing in fields 0 and l. Non-resident UUOs
must be handled by calling in FIP.

c) Interrupt Handling - All I/0 Interrupts must be isclated
and handled by the Monitor.

d) Keeping Time - Clock interrupts are counted and at certair
intervals certain tasks must be performed.

5 8vstem Programs

Th 've are several programs run by a user to perform certain

enient operations. For example:

a) PUTR - Used to transfer information from any device to
another device. This is the new program which replaces
the programs PIP and COPY which were operated under the
previous version of the Monitor. '

b) BASIC - A major interactive compiler language.

The list of programs is extensive and is covered in more detail

?r’

NUMBERS AND TERMINOLOGY

BduSystem 50 associates a number with each terminal. The

rinal with device codes 03/04 is called, variously K00, lire 0, E
ninal 0, or console 0. In order to accomplish anything, a user “
} terminal must "log in". To do this requires a 1 to 4 digit

0 . number"”, and a 0 to 4 character "password". Wher the user
-mpts to log in, the account number and password are given. If
7 are valid and if the system permits logging in, the system ;
lgns a "job number”. When the user is through,:a LOGOUT or L
} conmand ig required. At this time his aécount is”charged

the amount of time used. In this way system_usagéican be

ttered.

Sometimes account numbers are split into two, 2-digit numbers
separated by a comma. The first two digits are called the
iact number, and the last two digits are called the programmer

rer, Acecunt 1, 2 is the same as account (0102.

- F

There are three permanently defined account numbers. Account 1

mygs to the system manager. Anyone logged in under account 1 has

certain priveleges no other person has, such as defining othieor
account numbers and their passwerds. However, doing certain things
under account 1 could be detrimental to the system. Account 2
relongs to the system librarian. The common brograms are stored
uﬁder account 2, and any uéer can access them there. Account 3
belongs to the system operator who has certain privileges which

are not as detrimental as those granted to account 1.

1.5 SYSTEM CONVENTIONS |

: The disk is divided.into tracks. One track is defined as 4X
(4096 words) of disk storage. (Two revolutions of an RF08, four
réﬁoiutions of a DF32D, eight revolutions of a DF32.,) Thus, track ©
refers to the first 4096 words of storage on the RF08 or DF32. One
gegmeﬁt is defined as two pages, 400 (octal) or 256 {decimal) words

of disk storage. All disk files are measured in segments.

Unless otherwise noted, all commands and responses typaed by

the user should be terminated with a carriage return.

CHAPTER 2

BUILDING EDUSYSTEM 50 FROM PAPER TAPE

2.1 BUILDING EDUSYSTEM 50

Building an EduSystem 50 software system is accomplshed in four
phases.

I)' Loading and initializing the Moniﬁor.

II) Building the system program library.
ITI) DPefining account numbers, passwords and guotas.
IV} Dumping the newly built system to DECtape.

phase I requires the four custom-made Monitor paper tapes

{81, FIP, INIT, and TS8) plus the binary paper tape for PUTR.
These paper tapes will be loaded onto the system disk after which
a number of questions will be asked.

phase II is accomplished with the Edusystem 50 software running,
The system library is built in one of three ways, depending upon
which medium system library programs are distributed on. If the
library is distributed on DECtape, this step requires the library
pECtape. If the library is distributed on an RKOS cartridge, this
step requires the library cartrldge. If the library is distributed
on paper tapes, "this step requires the librezry vaper tapes.

Phagse III is alsco done while the EduSystem-50 Monitor is in
operation and uses the program LOGID to define user accouants.

phase IV applies only to systems which include DECtape. Tt i3
accomplished by running EduSystem 50 "INIT".

2,2 BUILD PROCEDURE
I. LOADING AND INITIALIZATION
1. Turn computer power key tc POWER (CN}
2. Turn the conole terminal ON (LINE or REMOTE).
3. Turn high speed reader ON
4, TLower, then raise the HALT switch.
NOTE: On PDP-8/I, to 'LOWER' a switch means

the top of the switch in, 'RAISE' means push
bottom of the switch in.

pDress
Tl

£, Raise the SING STEP switch. Lower the DATA FIELD
and INSTRUCTION FIELD switcnaes if included on vour
computer (PDP~8 and PDP-8/1; .

6. Press the CLEAR switch, {not present on PDP-§ or

PDP-8/1).
7 =1

For each step in the tabkle, place each of the console
switches numbered 0 to 11 either in the up position if
the corresponding table entry is 1, or in the down
position if the corresponding table ertry is 0. When
all 12 switches have been set to correspond to a line
in the table, follow the instructions in the right

hand column and proceed to the next line. The tables
also include octal values of the binary switch settings
for the benefit of users familiar with octal numbers.

-

Toble 2-1
RIM Loader Program {High-speed version) .

- . — — e

j reep Aot Switsh AR]
[] Valuen Sotcing Arel Jhon
912 | 345 | 678 | 91011
1 0000 ere | ooo | ooo | ooe press [XTH ADUA LOAD
2 7756 111 1ty |1er fone press ADDH LOAD
3 6232 110 | coo | o1 | glo. Lift DEP key
g 607t 1ta J aog o1y | oot 1ift DEP key
5 5357 1 10t | ot | 161 | 111 lity DUP key :
6 501 | tie | soo {11 { 110 1ift DEP key
7 106 111 | oot {ooo | 110 lift DEP Fey
d 7006 11 0oo 0u0 110 life Dre xey
9 7510 1. 101) ool } 000 lift DLV key
10 5357 1w | oil | ot |1 lifr DEP Xey
1 7006 ! 111 | 000 | @00 | 110 lift 5P kny
12 6031 110 | ogo | o1y { ool 1ifr DEP key
13 $367 10t [011 |11 | 111 life DEP key
14 6714 119 | 600 } o1l | ise 1ifr BEP %oy :
1% 7420 111 | soe | cio | oco 1ift DEF key
s 3716 - 611 | 111 p i |10 | 1ifr DEP key
|17 3176 0Ll f OtL } 211 | Ilg 1ife DEP key :
14 S156 tar p oor1 | ter | 110 lilt DLV key *
! TAOLE W-2. RIM LOADER FOR HIGH-SPELD READER
{Srnp Ortal Switch Salerr
}] Valurs Sewling hnd Then
| orz | 35 | 578 | 9101t
1 0000 002 | 000 | 060 | 000 press EXTO ADGI L3AD
: ? 7756 11l 111 10l ito press ADDR LOAD
: 3 614 1i0 ! oae | ool | 100 1ife OEP key -
i 4 6911 110 [eca | 0ot | 0ol lift DUP key
3 5 5157 tel | oetr §o1er 111 1ift DEP koy
. 3 GoL 110 | oo | oor | tio 111 DLP key
-‘ ? I 7106 111 } ooy | 000) 110 lift PEP key
. 8 ot | 11l 030 coa 110 Iiftt REP kpy
3 7512 11L | 101 | oor | 000 | kift DEP key
10 §374 101 | o1} | 111 | 1co ‘Litt DRP koy
11 1006 111] oo] ooo | 110 11fe CEP key
12 5011 110 | eoo | ner | ool lift DEP key
13 5307 121 § okl [L10 {111 i life DEF key
14 6016 t19 § eoo { 00l | lio 1ife DEP key
15 7420 111 | tso | ote { 000 1ifL DFP key
15 1774 ¢ll [111 | 1x1 | tie 1ift DEP Xey - - °
17 I37R o1l | ail 111 j 110 life DEP hey i
| 18 5157 ot f ool 1o {111 _lift DEP Xey :

'-‘3:,!-0_()3 FAal

—_—

KM:SS T-‘B

~

)

g

After RIM has beer loaded, it is good programming
practice to verify that all instructions were stored

properly.

illustrated in Figure 2-3

PRESS CLEAR
]

SET ROTARY

SELECTOR

SWITCE TC MD
t

SET ALL
SWITCHES

DOWN

PRESS EXTD
ADDR LOAD

SET SWITCHES
T 7756

! pRESS ADDR
LOAD

SsET SWITCHES=
FIRST INSTRUCTION

_

. LIFT DEP

[

PRESS CLEAR

SET ROTARY
INDICATCR
SWITCH TO MD

SET ALL
SWITCHES
DCWN

L

PRESS EXTD
ADDR LOAD

SET SWITCHES=
7

FRZ55 ADDR
LOAL

This can be done by performing the steps

- SET SWITCHES=

SET SE=MA-1

NEXT INSTRUCTICN

I

|

 —
hmpy—

LIFT DEP

PRESS ADDR

PRi155 EXAM

(RIM IS LOADED)

LOAD

SET SR=CORRECT
INSTRUCTION

N —

PRESS DEFP

D™~
ORRECT
INETRUCTION

2

Figure 2~3 Checking the RIM Loader

(2
12, After the RIM loader has been deposited and checked, raise
switches 0,1,2,3,4,5,6,8,9, and 10; lower switckes 7 and 1ll;
then press ADDR LOAD. AT Tt g AT
lr3. _) bl s (‘J
13. Eress the CLEAR switch; then press the CONT switch., If your
PLDP-8 has no CLEAR switch press the START switch.

{figure E-5 on next page}

tLpN
1 e LOLE

Ll

| R ——
_¥
LWL RAM
o
Mo
51T FrTARY
GELLCIOR
SWILCH ' MD
Y
ST ALL
SWITCHLS
POWN .

—

PRESS
BT AL LOAD

|
Y

SET SW1TINES

| i S
ALDR LOLL

y— ——

ATGH SPEED

READER

¥
TURN H.5.
READER ON

Y
PLACE IIIT
¥ H.S.R.

Y

WHICH S LOW SCLED
READILRT —

READII

TURM TTY TG
L1n

-

PLACE IRIT
N L.5.1

]

PPESS CLEAR .,
AND COoNT M
lf
APE
. ND
READS IN 1
>

\ ves

,w\ uy /7N
—5-

annoal N
l'crn:ina)/
rl .

~
}. YLS

W
15 1.GADED _

2-5leeb

PUT I..5.it TO
sTanT

14,

i5.

16.

17.

18,

19.

20,

21.

If the paper tape fails to read in at this point
go back to step 1.

When the paper tape stops the message:

LOADs, DUMP, START, ETC?

will be printed on the console, If this does not
occur, go back to step 1.

Type BUILD followed by a RETURN., The system prints:
' BUILD?

Fespond YES, followed by a RETURN, {labeled CR cn
csome terminals).

The system prints:
_ s1

Flace the paper tape 'SI' in the reader and tvpe a
FEETURN. The tape will read in. If an error occurs
while reading a tape, the wrong tape was loaded

the system will print:

TAPE READ ERROR OR PLEASE TRY AGAIM
PLEASE TRY AGAIN g1 1
51 t

In either case, reload the requested tape ('51° 1in
this example)and type a RETURN .

Zfter successfully reading 'SI' the system wi'l
request the paper tape 'FIP' be placed in the
reader and the RETURN key typed, exactly as whana
loading the 'SI' tape.

Mext the tape 'INIT' will be requested. This 15 the
same tape which was previously loaded.

Mext the tape 'TS8' will be requested,
L.astly the tape 'PUTR' will be requested.

If all Monitor subprograms have been loaded without
difficulty, the printout on the console will appear
s shown below,

LOAD» DUMP. STARTs ETC? BUILD
BUILD? YES

51 ¢
FIP 1t
INIT ¢
T58 v
FUTR ¢

“¥6

22.

Next the system will print:

MEV LOGIN MESSAGE?
Iy

he reply should be gﬂg or NO, depending on wheth
yhg ‘want to have a me ge prlnted on <ach console

hever it is logged in."™ The message may be a
greeting, caution, special instruction, or anythin
else you desire as long as the message has no more
than 127 characters. Each RETURN counts as two
characters.

“9mIf the reply is NO the system will print its next

23.

24.

25.

ry, (go to step 23). However, if the reply is’
YE the system will print: :

END WI!TH ALTMODE

and position the console paper so that your messag
can be typed on the next line. After typing the .
message, you should end by typing the ALT MODE key
(ALT MODE is labeled ESC on some terminals.) The;
printout and an example message would appear as
shown below.

NEW LOGIN MESSAGE? YES

END WITH ALTMODE

CONGRATULATIONS+ YOU ARE NOW ON-LINE WITH EDUSYﬂ
REFORT ANY PROBLEMS BY RUNNING “GRIPE".S$

When typing the ALT MODE key at the end of the meg
a dollar sign ($) will be printed as shown above.

The system asks:
LOAD EXEC DDT AT START-UP?

Respond NO, followed by RETURN.

The next query asks you to .specify the number of’
core fields available for user programs. Type a
number which is two less than the number of 4K fla
on the system, then type a RETURN. If the systemn
4 fields (16K of core) for- example, the response §
be 2 as below.i .

¢ USER FIELDS -~ 2

The system asks whether the CTRL/S feature is desi
This feature, which allows terminal cutput to be
stopped by typing CTRL/S and restarted by typing -
CTRL,Q, 13 parvicularly aseful con videc tarminals
such as the VT05 and VTS50. Respond YES or NO, fo_]é
by a RETURN. 3 '

ENABLE 'S FEATURE? YES

27.

28,

29.

30.

il.

Next, the power frequency may be requested. I£f the
power is 60 Hertz (normal in North America) respond
YES; if not, respond NO, then type a RETURN.

6@ HERTZ POWER? YES

The system asks whether the system disk should be
zeroed. Respond YES, followed by a RETURN.

WRTTE ZERO SYSTEM DIRECTORY? YES

Three passwords are requested, for accounts 1,
2, and 3, Enter these passwords, which may each
be up to four characters long, followed by a RETURN.

i SYSTEM PASSWORD? SYST
2 LIBRARY PASSWORD? LIBR
3 QPERATOR PASSWORD? OPER

The question "LOAD, DUMP, START, ETC??" is again
printed. This time respond START followed by a
RETURN.

LOAD, DUMPs START. ETC? START

When reguested enter the current month, day, and
year separated by hyphens followed by RETURN.

MONTH=-DAY -YEARt 1-23-75
Next type the time of day expressed in military time
using a 24-hour clock. Separate the hour and minutes
with a colon. For example, 9:45 a.m. is entered
9:45, 1:30 p.m. is 13:30, 9:45 p.m. is 21:45,.

HRIMIN - 13218

No additional questions will be asked after the time
has been entered. This completes Phase I of the
building process,

Your printout to this point might appear as follows:

LOAD, DUMP., START.: ETC? BUILD’
BUILD? YES

51 1

FI1P t

INIT v

TS »

FUTR ¢t

NEW LOGIN MESSAGE? YES
END WITH ALTMODE S
CONGRATULATIONS « YOU ARE NOW ON-LINE WITH EDUSYSTEM«~S52.
REFORT ANY PRUOBLEMS BY RUNNING "“GRIPE"™.S3 '

LOAD EXEC DDT AT START-UP? NO

¢ USER FIELDS - 2

ENABLE 'S FEATURE? YES

60 HERTZ POWER? YES '

WRITE ZERC SYSTEM DIRECTORY? YES
SYSTEM PASSVORD? SYST

LIBRARY PASSWORD? LIBR

OPERATOR PASSWORD? OPER

L.0AD» DUMP. START» ETC? START

MONTH-DAY -YEARt 1-23~-T75
HR:MIN -~ 13118

After entering the time of day and terminating the . ¢
line with the RETURN key, control 'is transfered

to the Edusystem-50 monitor. The system is now
on-line and ready to operate. However, there are no’
programs in the system library. '

BUILDING THE SYSTEM LIBRARY

Building up the system library is done while the

system is on-line, i.e., operatiomnal and running.

1. LOGIN with the system library account number
and password. Type

LOGIN 2 LIBR
replacing LIBR with the password for the library
account. Terminate this LOGIN command w1th the

RETURN key.

The command LOGIN and account number and password
will not echo (print) on the consolé paper.

When the LOGIN is accomplished, Monitor prints

the version number of the Edusysta2m-50 Monitor
being used, the job number assigned by the Monitor,
the account number of the job, the number of the
conscle being used, and the current time of day.

The login message is printed next, followed by
Monitor's dot indicating that the building session
has been successful to this point., For Example:

TS5/8.24 JOB 61 (d@,82]1 K0 13:18:10

CONGRATULATIONS+ YOU ARE NOW ON-LINE WITH EDUSYSTEM-~58.
REPURT ANY PROBLEMS BY RUNNING *“GRIPE".

Type "START 0" followed by a RETURN.

This starts the program PUTR which was loaded
during the build process. PUTR prints as
asterisk, indicating that it is ready to accept
a ccmmand.

+START O

At this time, one of three procedures must be
followed depending upon whether the library programs
.are supplied on paper tapes, Dectepes, or RKOS3

disk. If the library is on paper tapes, follow tha
steps in section A) below. If the library is on
DECtape, follow the steps in section B}, and 1f the
library is on RK05 disk, follow the steps in secticn
C).

A) The following steps are used to build the sys-
" tem library from paper tapes. First the system
programs will be loaded, (those labelled
"name.SAV", eg BASIC,SAV)

1} Load the paper tape labeled LOGOUT.SAV in
the high speed reader. In response tc the
* which PUTR has printed, type:

COPY LOGOUT.SAV=PTR1 /S5AV

and terminate the line with a RETURN.
PUTR will print "#". Respond by typilng a
RETURN. PUTR will print "NONAME.", read
the tape, and then print another *.

2)

3}

4)

Step 1 should now be repeated for any
other ".SAV" tapes to be lcaded, sub-
stituting the name of the tape for

"LOGOUT" in the COPY command., Fcr

example, if the tapes LOGID,SAV, BASIC.S5AV,
SYSTAT.SAV and PUTR2.SAV are loaded, the
printout would appear as follows:

*COPY LOGIDSAV=PTR:/S5AV
t

NONAME

*COPY BASIC SAV=PTHS /SAV
t

NONAME .

*COPY SYSTAT.SAV=PTR:/SAavV
t

NONAME .

*COPY PUTRE «SAU=PTRt/SAV
1

NONAME .

As a minimum include at least LOGID.SAV,
LOGOUT.S8AV and PUTRZ.SAV.

When all the desired ".SAV" tapes have
been loaded type EXIT in response to the
asterisk, followed by a RETURN.

Next type "R PUTR2" in response to the

period the Monitor has printed at the left

margin. PUTR2 will print an asterisk. The

printout should appear as follows :
SEXIT _ _ . (,
tBS '

+R PUTR2
> :

If BASIC is loaded and it is desired to

load some of the BASIC demonstration programs,
{"name .BAS") load the desired tape into the
reader and type, for example-

COPY FTBALL.BAS/BAS=PTRt

replacing FTBALL with the name on the tape.
PUTR will respond as it did in Step 1.

2-11

6)

7)

8)

If it is desired to 1nad any ASCII paper
tapes, ("name.,ASC"} load the desired tave
into the reader and type, for example:

COPY WDGAME.ASC/TS5B8=PTR?

repiacing WDGAME with the name on the
tape. PUTR will respcnd as it did in
Step 1.

Focal tapes ("name.FCL") must be loaded
from the terminal using FOCAL,

When all tapes have been loaded type EXIT
in response to the asterisk printed by

" PUTR followed by a RETURN.

Next type LOGOUT in response to the period
the Monitor has printed at the left margin,

This completes phase two of the building
process. Now go to Phase III.

PR

B) The following steps are used to build the
system library from the library DECtape.

1)

2)

3)

4}

5)

Mount the library DECtape on unit 1,

{see chapter 4 Introduction to Programming
for complete instruction) and writelock
the unit. In response to the * printed by
PUTR, type the following command line:

COPY =aDl1

This command regquests that all files on _
DECtape unit 1 be transferred to the system -
disk. :

As each file is transferred, PUTR will type
its name. When finished, PUTR will type
another *. :

In response to the *, type EXIT.

Next type "R PUTR2" in response to the
period the Monitor has printed at the left
margin. PUTR2 will print an asterisk.

The printout for this step should appear
as follows:

*EXIT
1BS

+R PUTR2
»

In response to the asterisk, type EXIT,
followed by a RETURN.

Next type LOGOUT in response to the
period that the Monitor has printed at
the left margin.

This completes phase two of the building
process. Now go to Phase III. :

C) The following steps are used to build the
system library from the library RKfS cartridge.

1) Mount the library cartridge in unit 2, and
- writelock the unit. In response to the *
printed by PUTR, type the following command
. line:

COPY #*=RKAS1

This instfucts PUTR to copy all programs
from the first half of the cartridge to the
. system library.

~As each file is transferred, PUTR will type
its name. When finished, PUTR will type

. another *, (The second half of the cart-

- ridge is a duplicate of the first half. To
use this second half, substitute RKBEg for
RKAM .)

2} In respohée to the *, type E or EXIT.

31 HNext type "R PUTR2" in response to the
period the Monitor has printed at the left
margin. PUTRZ will print an asterisk.

The printout for this step should appear
as follows:

*EXIT
tRS

«R PUTR2
*x

4) In response to the asterisk type EXI?, followed
by a RETURN

5) Next type LOGOUT in response to the pericd that
the Monitor has printed at the left margin.

This completes phase two of the bullding
process. NoOw go to Phase III.

9 -1y

TII.

Defining Account Numbers, Passwords and Quotarn.

Users should never operate under accounts 1,2, or 3, -*hereforg:
it is necessary to define additional accounts. Acod.nts can !
only be created by the system manager:; someone logged in under .
account number one. Each account is actually wo numbers, a

project number and a programmer numbei. Account nuobor 5440

is actually project number 54, programmer number 40, Account .
number 102 is project number 1, programmer number 2. iUsers

may specify that all other users may share their files, only
users whose project number is the same, or no other users at
all. See the Protect command in APandlY B for details. In. .
defining new account numbers it is useful to group uscrs into '’
projects, giving them account numbers which havre & common o
project number. - :

Ed

bl
Az each account is defined the system manager ilso gptermineswﬁ
the maximum number of disk segments that the azcount may own.
This is the quota for the account and is defin2d in gultiples .
of twenty- five (25) segments; a minimum of # sigments to a’ . ¢
maximum of 1575.For normal use 50 - 100 segmen:s will suffice. |
The system manager alsc defines another paramcter knoum as the
"Grace Quota This parameter applies egually to al)l accountsg,
The "Grace QLota“ defines the number of segments eacl account |
nay exceed its quota by for purposes of completing g program
run. When an account's quota has been exceed the mopitor will :
not allow any new files to be Created for that accot .+, however
any files already belonging to the account may be extended in
lenth until the “Grace Quota" has been reached. A% the time t}
system passwords for accounts 1,2 and 3 were defined the "Grace
Queota" was automatically set to 1f gegments ani the quotas for:
accounts2 and 3 were set to maximun.

Passwords and guotas, including the "Grace Quota”, nav be
changed at any time by the system manager and ~#ill {azke effect
immediately., Account numbers cannot be changalid, however accoux
may be deleted, provided the account is not hnlng nged. ' !

1.0GID is the program used to create the lmer acg counts and mOdlﬁ
pagswords and gquotas. Since it can only be used by the system
manager the next step requires that a console be logged in

under account 1. The following responce should ba fermlnated

with the RETURN key.

1.) Tvpe:
: LOGIN 1 SYST

replacing SYST with the system password given during phage
I step 28. The LOGIN command will not print ox tne

terminal.
2.} Next LOGID must be called by tyéing:
«R LOGID |
LOGID prints opening instructiohs, and then asks:

2-15

g

PLEASE &N’K’LR DISH auaTat

ter a mlmber wh;.dh is a multiple of 25 (£-1575). This
"nu. her will te used as the disk gquota for tha accounts
"defined ox changed from th:u; rcnm_ on.

L{JuID now prln\.s an as terlsk and waits for an account

aupher, password combination geparated by one space. Each
count numbcr can be -from 1 to 4 octal digits (no 8's or
'g). Each password is made up of a maximum of 4 charactors

*(all printable characters are legal). A maximum of 111

different accounts may be defined, (108 usor accounts plus

'tne 3 gystem accounts}.

Z'x\mlnq CTRL/C cauqeﬁLOGID to ask for the disk quota again.
'r'g,prefore a number of accounts can be entered using one anota
‘and then typing CTRI/C allows a new gquota to he entored foo
‘tha next group of accounts uth:h are definad. An exanple
'e;alomle might appear as follows

7SS 8.2 JOB ﬁl (%, 81) X#4 13:34:88
.R LOGID
. TS58 ACCOUNT MAINTENANCE -~

*ACC'T # <SPACE} PASSWORD (RETURN TO CRFEATE/CIIANGI,
ALTMODE TO DELETE>

PLFASE ENTER DISK QUOTA: 194

* 1¢ DEMO

- * 732 TOQUR

C* 1215 JOHN

* 10066 HARD

: 1383 orro.

PLEASE ENTER DISK QUOTA: 75

* 1185 DECM
7

“mo. change the password or disk guota for an account, type tho
account number and old password as above, followed by a Ri YURNL
10GID will ask for a new pasoword Enter the new password nd
dupe RETURN. | If only the guota is being changed simply toro
the RETURN key., no new password need be eatered. 1In eithoer

‘eage the quota last entered into LOGID will be applicd tc iln
-account. For exanple:

t 1366 HARO -
CHMANGE PASSWORD TO: DI8N

.
PLEASE ENTER DISK QUOTA: 150
& 132 TCUR

CHANGE PASSWORD TO1
s 13 DCMO

CHANGE PASSUORD TO: PLAY

]

The disk guota does not apply'to account 1. ”However,
whenever the system managexr's password is changed LOGID w:11
request that the "Grace Quota" be entered For example:

* | SYST

CHANGE PASSWORD TOt MNGR
GRACE?: 29 ' - -
-}

To change both password and "Grace Quota" or simply:

* 1 MNGR

CHANGE PASSWORD TO:
GRACE: 18
*

to retain the current password but change the “Grace Quota" .

To delete an account type the account number and password as

above but instead of typing the RETURN key, type tae Altmodo-
(ESC) dey. If the account is not being used 21l files :
belonging to the account will be deleted, ther the account wi:
be deleted. When the account has been completely deleted tha .
nmessages - - :

$ DELETED
Will be printed to the right Qf the_paSSword &5 below:

&« 1215 JOHN § DELETED
=

When all desired accounts have been defined, type CTRL/B
followed by S and RETURN. :

* tBS

In order to create a listing of the -accounts -hat have been
entered the program CAT should be run as ‘below:

*R CaT
SYSTEM ACCOUNT. 26-FEB-75 19318388
PASSWORD CPU © -~ DEV “DISK QUOTA
1 PR:00:0¢ DPOA11:05 12 18 CERab
2 @03100s00 @0:900:00 373 1575
3 @0:013108 @1:36125 41 1575
1@ PLAY 0Q0:00:00. 6Q:0010600 @ 159
732 TOUR ©0:00:00 00:28:00 @ 150
1066 D3BN 0D03199:00 - 8200300~ @ 7%
1290 0TTQ 003100308 GO:1¢R:00 2 109
1195 DECM 20:00300 :G@:G@a@ﬁ %) 5

(R " R A

RESET: YES

158 o
The RESET function causes the CPU and DEVICE time accumulato
for all accounts to ke set to zZero., Running CAT by typing
. CAT:R will cause CAT to skip its 1lstlng phase and 1mmcdlat“
"ask RESET?

2-17 e

«LOGOUT

To complete phase IXII of the Build process type IQGOUT in
response to the dot monitor has printed at the left margin.

JoB 1, USER C @s 11 LOGGED OFF KO@@ AT 18118157 OM 26 FE
RUNTIME £0:88:01 ¢ @+ CPU UNITS) FEB 7%
ELAPSED TIMT 08:03t24

thisg completgs pha§e IIT. If the system configuration includes
pDECtape ccntinue with phase IV, otherwise this concludes the
BUTLDING process. EDUsystem-50 is ready to use.

pumping thz System To DECtape

7o dump the newly completed system onto DECtape, restart
INIT. as follows:

1.} Lower, then Raise the HALT (STOP) switch.

2.) Raise switches @ and 4; lower switches 1,2,3,5,6,7,8
9,10, and 11. (The switches are now set equivalent to
4200 octal, the normal re-start address for Edusystem-50.)

3.) Press ADDR LOAD, then EXTD ADDR LOAD, then CLEAR, then
coNT. (PDP-8 and PDP-8/1 press ADDR LOAD, then START.)

4.) INIT will print the message:

LOAD. DUMP, START, ETC?

BOTE: For simplicity, these instructions assume a system
with one disk and at least two DECtapes. For other
system configurations, see the general instructions
in Section B.

4. Next mount DECtapes on units 1 and 2. Then set units
1 and 2 to WRITE ENABLE {see chapter 4 Introduction tg
praogramming for complete instructicens). Then type)
“pUMP. INIT will copy an image of the entire system

onto the DECtapes.

When INIT again prints:
LOADs DUMP, START, ETC?

the entire system has been copied. Remove the DECtapes
ard write some identification on the DECtape spools

pefore filing them. To make the system available for

use again, respond by typing START and complete the system
startup procedure. (As in phase 1 steps 29 throught 21)

a., General Instructions for Dumping Digks tco DECtape -
The contents of an RSJ8 disk (239K words; wilil not gulte
fit cn a single DECtape (190K words}. Part of a second
tape is required. 1In general:

Disks DECtapes

LTSRS)
VUL O

Thus, for a one-disk system, the LOAD ané DUM? process
reguires two tapes. Loading and dumping always proceeds
as follows: The DECtape selected as unit one (1) is
used first, then DECtape 2, then, if necessary, units
3,4,5, and 6. If the system includes as many DECtape
drives as are indicated in the table above, setting up
for a LOAD or DUMP is very simple., Select consecutive
units, starting with unit 1 and mount the appropriate
DECtapes. The LOAD or DUMP routine will access them in
order,

If there are not as many tape units as there are DECtapes
to be loaded or dumped, it is necessary to use them more
than once. The LOAD and DUMP routines work as follows:
they use DECtape 1, then look for DECtape 2. If they
find it available (i.e., a DECtape unit has been selected
as unit 2) the transfer continues on this unit. Then,

if a third DECtape is needed, the routines lock for unit
3. If at any peoint a unit is sought but not found, the
routines wait for it to be selected. Therefore, it is
possible to load the first tape of the system on unit
one, dismount the tape, place the second :ape on the

same DECtape unit, switch it to unit two, and have the
load continue automatically at that point. The following
procedure will dump the contents of two di.sks on a system
with two DECtape drives. {Assume that the system has just
typed out LOAD, DUMP, START, ETC?. First: set the
DECtapes to units 1 and 2 and write enable. Mount two
scratch tapes on these units labeled TAPE ONE and TAPE .
TWO. Now type DUMP. The system will completely write
DECtape 1, then automatically go on to DECtape 2.

After the tape on unit 1 has re-wound, dismount it and
mount a third DECtape on this unit, labeled TAPE THREE
sat the unit select to three, and then as the last

step, switch the unit to REMOTE. There is no need to,
hurry. If unit 3 is not ready when it is needzd, the.
system will wait for it. The same procedure is followed
for a LOAD. '

This same general procedure is followed for any system
where there are not enough DECtapes to select them all
simultaneously.

When INIT again prints:

LOADs, DUMP, START» ETC?

the entire system has been copied. Remcove the DECtapes
from the spindles and write some identification on the
DECtape spocls before filing them. To make the system
avrailable for use zgain, respond by tyvoing START and com-
plete the system startup procedure. (As in phase I steps
29 through 31.)

2-19

CHAPTFER 3

PATCHING EDUSYSTEM 50

—~q information in this chapter is not necessary to operate
Jugystem 50. Most gystem managers will use the Edusystem 50
sfrware exactly as it is supplied. Other users, however, will
ant to make minor modifications or, in some instances, major syster
wanges. This chapter describes the tools available for making sucl

ak
»anges.

. 4

3y

T

i1

L}

4.0 MODIFYING SYSTEM LIBRARY PROGRAMS

vsdifying system library programs is an on-line process. Users who
i+n familiar with Edusystem 50's advanced Monitor commands will finc
.t a simple procedure. Log in with the library password, load the
-wggcam into core, deposit the patches, then save the program again.

» example, a user may wish to modify EDIT so that it considers ewve

}:xth character position to be a tab stop. The process is as follos
ise the 1970 version of Edusystem 50 EDIT:

+LOAD EDIT

+DEPOSIT 2 =6

«SAVE EDIT

e~77 is now changed on the disk. 1If the system includes DECtape,
:‘;;,-:.p +he whole system so that the changed version is stored on the
;;ack\m tape. If the system does not include DECtape, but has a higt
“punch, a new SAVE format paper tape should be punched with
oOtherwise, the change must be made everytime the svstem is
Other system library programs may be modified in a similar

speed

SUTRe
‘muilt.

=annel.

;.2 MODIFYING EDUSYSTEM 50
A formal procedure exists for making patches to the Monitor. 1In
arder to understand this procedure, it is necessary to understand
» -sg Edusystem 50 is stored on the disk. The five pieces of
Viairor (SI,FIP, INIT, TS8, TS8II) are kept on the first 20K of
}}_e disk. Their respective disk addresses are:

51 00000-07777
FIP 10000-17777
INIT 20000-27777
TS8 30000-37777
TS8II1 4000047777

‘s1rhough the third section is referred to as INIT, it is actually
sde up of several programs, including the TS5/8 initializer, a
é-a'-::ugging routine (¥XDDT), and a disk patch routine (DISKLOOXK). To
he system, it is necessary to bring these routines into

=atch &)
) To do so, stop the system and then start it at 4200. INIT

rorE.

is brought in and prints LOAD, DUMP, START, ETC??. At this point
the layout of core and disk is as follows:

Highest _
Core Field INIT SWAP and FILE
= AREA <
TS8IT
Field 1
Field O - Ts8
Core Storage
INIT
FIpP
| - sT

DISK STORAGE

Starting at 4200 always brings INIT (plus XDCT and DISKLOOK) into -
the highest core field in the system. Thus, it comes into differer
fields for different systems. ' : :

There are now two options for patching the system: either patch
disk using an overlay tape created with an assembler such as PALD, -
or manually inspvect and change individual words using DISKLOOK.

3.2.1 Patching Edusystem 50 Monitor with an Overlay Tape. THe
overlay tape is created by writing and assemtling a PALD program.
The first item on the tape should be a field setting for the track
number where the patch is to be made. The second item is an
origin for the desired address within the field. Then include the
data for the words to be altered. For example, to change wowds

& and 7 of SI and FIP to €213 and 5407, use the following program:

FIELD 2 /PATCHE TO 51

*6 " /START AT LOCATION 6
621355487 /DATA FOR LOCATIONS 6 AND 7
FIELD 1 /PATCE TO FIP

.6 . :

621335407

$

Agssemble using PALD, and punch out the binary tape. (XDDT user:
may find this patch helpful.)

Load the overlay tape into the paper tape reader. In response
to INIT's "LOAD, DUMP, START, ETC??" message answer OVERLAY O
simply J. When the tape has been read, the patching is finishe:
TS there was a checksum error, a message "TAPE READ ERROR" will
printed. The data previous to the most recent field setting wi.
have been written on the disk and thus may be incorrect.

T

hrs
-; e S

3,2.2 Patching Edusystem 50 Using DISKLOOK - When INIT comes in,
iz prints LOAD, DUMP, START, ETC?2. To start the patching proce-
+ora, type PATCH, or simply P.

Ern Nelh

A

ISKLOOK is now running, allowing the user to examine and modify
single disk registers. To examine a register,type it's address (in
~ntal) followd by a colon. DISKLOOK prints the present content of
».at register on the disk and waits for a new value to be typed.

rmter the new value by typing 1 to 4 octal digits. Type the RETURN

4

ke tO close the line. If a register has heen opened but does not

noed changing, _type the RETURN key. To automatically open the next
g.juential register, type the LINE FEED key instead of RETURN.
.orper that disk locations are actually 7-digit addresses. For

oo

" oxample, location 2104 in TS8 is stored in disk location 32104.
. rceation 10 in FIP is 10010, etc.

yen all desired patches are made, type CRTL/C to return to INIT.

i?m‘emmmle of the usage of DISKLOOK:

LOAD, DUMP» START. ETC? P

42306t 5317 1604
-2 61008t 6637 1220
4@212: 6441 6051
492203 6451 6261
(CTRL/C typed by
LOAD» DUMPs START» ETC?

rion 2306 in TS8II is changed from a JMP to a LAS. This

- Laca
" e~ange allows the system manager to examine selected Monitor regist
by entering an address in the switches. If this patch is made,

.ser-programs may not use EAE Instructions. The pointer in locatic

| 6160 of SI is 2hanged to point to an error return. This patch
“sigables -the TALK Command. Finally, locations 0212 and 0220 ¢f

-201] are chaiged. This patch changes the device code of a termina

. #rom 44, 45 to 05, 06. (Note the exact locations may differ in

curure Monitors. These examples are for illustrations only.)

- #11 changes to Monitor are made on the disk. Starting the system

prings TS8 and TSB8II into core from the disk, SI and FIP are

- ewapped in by the system as needed, and INIT reads itself from the
:ﬂfis% pefore i:- does any important operation. Therefore, any patche
. w4ill become effective at the next startup and remain until the syst

race patched, the system should, of course, be dumped to DECtape
-5 preserve the patches. Systems without CECtape must be repatched
-very time they are built.

3.3 CONTROLLING MONITOR EXECUTION

e ¥DDT program, which is always in core with INIT, is verw

asef

ul for testing any modifications to Monitor.

- 7here are two ways to keep XDDT in core while the Monitor is in

- pperation. On systems with at least 16X, initialize the system
. epecifying one fewer user field that normal. Then, insuring that

INIT (with XDDT) is in the highest field, start the system. The
highest field will not be used by the Monitor, and XDDT will
remain there.

Another alternative for getting XDDT into core is to- initialize ti
system, and answer "YES" to the question about loading EXEC DDT.
The result will be that when the system is started, XDDT will be
placed into field 1 in an area normally used for free core. If
EXEC DDT is loaded, the Monitor capacity will be restricted
considerably, but otherwise will not be affected.

Once Edusystem 50 is up with XDDT in core, the system must be haly
to start XDDT. Press the HALT key. If the EMA=0 and the MA=5200,
fine. 1If not, press CONT and try again. Nevar attempt to halt

the system if any I/0 is in progress. Once the system has been _
halted at 5200 (this is the null job), restart the system at 700p:
in the field of XDDT. XDDT may now be used to examine registers, .
set a breakpoint, etc. Information on the operation of XDDT is

available from DECUS, order number 8-127. To restart the Monitor |
after being halted at 5200, start at 420l. (XDDT, type 0#4201°').

Type CTRL/C to return to INIT from XDDT.

CHAPTER 4

LOAD, DUMP, START, ETC. USING INIT

;.1 HOW TO OBTAIN INIT

1t is the program which allows the user to load, dump or start the
mztem. Whenever "LOAD, DUMP, START, ETC?" appears, INIT is avail-

_je. CTRL/C may be typed at any time to return to the entry point

.7 INIT.

ﬂstart INIT if it is already in core, start at 4200 of the field
.ore INIT is located. INIT can be found at various times in
fyﬂd 0, field 2, and the top field of the system.

< the Monitor is running, start at 4200 of field 0. TS8 includes
motstrap starting at 4200 to read in INIT from track 2 of the

iak to the hlghest field on the system, and transfer control to it.
»ﬁthe Monitor is on the disk, and the system has an EDU booctstrap,
= the SR to 5350 and press and raise the SW switch.

" . !‘i ““t

+¢ the Monitor is on the disk and there is no EDU bootstrap, load
-rafollow1ng into field 0, then start the computer at 7750.

Address Contents
7750 7600
7751 6603
7752 6622
7753 5352
7754 5752

I:the above measures fall, use the rim or binary lcader to lead
.na paper tape of INIT.

INIT OPTIONS

#2TL/C RESTART INIT -

5 Build TSS/8 from paper tapes.

¢ Transfer 4K sections between the system disk and core.
5 Dump the system disk to DECtape.

- Bootstrap to a DECtape on unit g.

Initialize TSS/8 parameters.
Bootstrap to RKBE unit J.
Load the system disk from DECtape.

" Compare the contents of two core fields.

i} _--,

4-3

-z at any time, a drive is not ready, INIT waits for it. Just
.+, the drive when ready, and the tape will start. At the end
. s1ch tape, the tape will automatically rewind and unload.

- -2 the tape, label it with the unit numbers, and save.

;.4 LOADING THE SYSTEM FROM DECTAPE
3= any time, the system may be restored to the state when the dump
T2 nactape occurraed., To do this, mount the dump tapes on the same
(=31t3 they were on for the dump, get INIT, and specify L for Load.

 £.5 INITIALIZING THE SYSTEM

=y ciange any of the parameters (except for passwords), defined
;zﬁvsumibuild time, get INIT, and specify I for INITIALIZE. One
Y ﬁow enter a new LOGIN message, change the number of user fields,
. ;‘: Upon the gquestion "WRITE ZERO SYSTEM DIRECTORY?" answer no,
* q= 3ll of the files on the disk will be destroyed. 1If the LOGIN
segzage is the only parameter to be changed, a CTRL/C may be
s-=¢d after the ALTMODE. The following is an example.

LOADs DUMP» START, ETC? I

NEW LOGIN MESSAGE? Y M

END WITH ALTMODE

THIS 1S THE LOGIN MESSAGE!S

LOAD EXEC DDT AT START-UP? N S S
USER FIELDS - 2 6 : 3““55*ﬁf -
ENABLE 'S FEATURE? & F ¥ A d

6@ HERTZ POWER? Y 'y

WRITE ZERO SYSTEM DIRECTORY? N
4.6 USING TAPE READ OR WRITE

';.] salacted number of disk tracks may be lcaded from or dumped to
: ..'.r;;ape. To do this, get INIT, and specify T for TAPE. Specify

v

Slw-mer to read the tape (load the disk) or write the tape (dump),

::;%ow many tracks are desired (in octal}. The following is an

srample.
LOADs DUMP, START» ETC? T

TAPE READ OR WRITE - R
-5

. » PSING THE 4K DISK-CORE TRANSFER

e f
« salected core field may be read from cr written to the @isk,
',Q'wor from any core field. To do this, get INIT ar_xd specify)
~" Temeon specify whether o read or to writz the disk, *hs fiald
e=ser, and track number (in octal). Type CRTL/C to terminate
':.s routine. The following is an example.

LOAD, DUMP» START» ETC? C

READ OR WRITE - R
F1ELD NUMBER =
TRACK NUMBER -

3
5

4.8 READING A BINARY TAPE

INIT contains a modified binary loader beginning at 7777 of th
field where INIT is. INIT's binary loader automatically choose
low-speed or high-speed paper tape reader. If the device read
responding, the loader times out in a few seconds, giving an
error message. This is not a problem unless the tape is loadi:
into the same £field as INIT. If there is an error condition, |
results will be unpredictable.

A binary tape may also be read by gettirg INIT, and specifying
{(Wwhere n is the number of the field to which the tape is to be
read). If a field setting for field n is encountered it will i
ignored. If any other field setting is encountered, the procc
willhalt with that field in the AC. Press CONTinue to ignore -
For those using a PDP~8/E, set the data field as desired and
CONTinue.

4.9 2ZEROING A PIELD

To write a zero in every location in a field, get INIT, and ty:
Zn, where n is the field number to be zefoed.

4.10 COMPARING FIELDS

To compare the contents of any two fields, get INIT and specity
for Match. Then enter the two fields desired and the address i
start at. Any differences between the two fields will be prinr
along with the address.

The printing may be interrupted by typing CTRL/C. The printinc
cccur on the line printer if present and ready, or else on the
terminal. If SRO is on, any mismatch with a zero on the first
field specified will be ignored. Type CIRL/C to halt printing.
The following is an example. _ .

LOADs DUMP» STARTs ETC? M
FIELD NUMBER =- @

FIELD NUMBER =~ 2

START AT - D

2o 5481 Q@72
gea1 4200 542
2ees Q477 0444
pa42 8473 2477

4,11 DUMPING CORE

To dump the contents of core in octal, get INIT, spec1fy'W; and
then give the desired field and starting address. Each line prim.
will contain a core address and eight data words. A dump may be
interrupted bv tvping CTRL /C. The dump goes to a line printer
i present and reaay, or else to the terminal. The folloW1ng is &
example.

LOan, !"J“"’n STAONTs ETC? W
“1"” B DEILR -6
STant T o

& [

2030 5481 4289 9033 2033 @124 0477 @33 Q124
9218 0Opa7 0818 2011 @912 8813 3553 B215 2816
2020 2020 06021 P28 PB23 0924 BB2S aB2¢6 8827

2,12 ROOTSTRAPING TO OTHER DEVICES

aeq INIT is running, a bootstrap to DECtape or RR05 may be performed.
‘ uaoptstrap to an operating system on an RKO5 cartridge, load the
"'..—-J_dge on drive zero and type K.

T
L wn wpokstrap to a DECta—ipe, mount the tape with unit 0 or 8 selected,
423 type Ee

~~ ronoot INIT, or another operating system which may be on the
'.g ;~em disk, type R.

. 4~ YSING XDDT UNDER TSS/8
Nt 4

¢+ INIT is running, type X to jump to 1ocat:].on 7000 \::hich is the
'v .jinning of XDDT. XDDT is an octal - symbolic debugging program
o preserves the status of the program interrupt system at
iaripoints. (XDDT is DECUS order No. 8-527)

' ld. In

- upies locations 4434 through 7577 cof any fie

'm;:‘-igg psymbols may be defined by the user. These symbols will
.'?_..Tvy 1c'acatlons 4433 down towards 000, destroying INIT or free
wveq XODT sets a breakpoint, it uses locations 6 and 7 of every

| l?—, £iald. This may cause problems if an attempt is made tc
T’u;c rreakpoint while user programs are running.

.~~~ ag described here, has been changed slightly from the

e wta

- 229TER available from DECUS. See the listing of INIT for these

At
B oy ‘\s.

CHAPTER 5

USING EDUSYSTEM 50

v LGGING IN

- neptect the system from unauthorized use, each user must be
\reified by an account number and a password. For example, LOGIN
) S0 is typed if the user's number is 456 and the password is DEC.
5 OGIN command is not echoed on the terminal in order to protect

¥ g:msword.

s ©7ATES OF THE SYSTEM

. gevborad can be in one of three states: not logged in, SI (or
sizpz) mode, or user mode {(not to be confused with the hardware
.- Mode, UM light on PDP-8E)}. When the keyboard is not logged in,
- cortain commands (such as LOGIN)} are effective. Wwhen in SI
i the system 1is waiting for a command to be typed. Anything
«j jg considered to be a command. A user program may or may not
"{a the process of running at the time. If a program is not runnir
¢ ¥onitor prints a dot to signify it is ready. When in user mode,
- jvwing the user types 1s placed in a buffer, waiting for his
s:eam to ask for it (with. a KEB, maybe). In summary, each charackts
.J+e than CTRL/B and CTRL/C) typed at the keyboard must go to one
“e4o places. In user mode, it is saved for the user's program.
";1‘.,:ni‘t0!' mode, it 1s saved and passed to SI as a command to the
3arcIAL CHARACTERS: RUBQUT, LINE FEED, CTRL/B, CTRL/C
~TRL/S AND CTRL/Q
ya characters have special immediate action and need not he
A ewad with a carriage return to be effective.

" & weyboard is not logged in or is in Monitor (SI) mode, a2 RUBQUT
. gn2 the jast character typed to be deleted. If the terminal is
#+3 in the rubbed-out character is printed to help the user make
4.ations. In user mode, RUBOUT is just another character, which
foiran may interpret in any way. Most programs delete characters
s RUROUT is typed. usually typing a backslash or backarrow to
§-2=e this function.

s a terminal is in SI mode, a LINE FEED can be typed to cause
-~ mrint out the current command line. The procedure is
<goutarly useful if the user is in the midst of a complex
«yn? and has used a number of RUBOUTS.

.3 {printed 4B on terminals) places the keybcard in Monitor

{ »n3 clears the user's kevboard buffer t£o make room for a
n=4, The raost of the line is given to SI as a command. If
veor's program is running, it continues 1;0 run. (Bowever, if
crogran tries to do tez.:m.}nal I/0, execution is temporarily
anded until the user finishes the command.)

CHAPTER 6
RESTARTIMG FDUSYSTEM-50

- 2 details 1.:he building procedure for the Monitor. Once this
on done, it is not normally necessary to repeat these procedures

Lt |
"“-ﬂ

e ine it is desired to staz:'t up EduSystem-50. Rather, a procedure
.g":l..:."j “pogtstraping” or "booting” is followed.

- ooy are several methods of booting Edusystem-30. The one which

: ;.It.r::}: appropriate at any one '.c:une depends upon several

L.ammy, guch as the configuration of the computer involved, and

. geate Of the disk and core memories. The first method listed
oy 48 the easiest and 1s ap;;roPriate most of the time. The

‘:,: rwn apply i:f.the system disk is intact, while the following
..y apply only if the system has been dumped to DECtape, and this
to be loaded back on to the system disk. If all else fails,

cem 38 : .
rem must be rebuilt from paper tapes, as detailed in Chapter

Sre BYS

1+ pRELIMINARY PROCEDURES
o using any of the methods listed below, it is necessary to
ize the computer system. If one of the methods is attempted
fails, this initialization should be repeated before trying
- methnd. To initialize the system: Ensure that the power

o eha computer is on, and that the switch is not in the PANEL LOCK
. micn. Also make sure that the console terminal is turned on
?m cn-line a;j.d ready. Now press and raise the HALT switch, raise
f’*.'; ¢*i5 STEP switch, and press the CLEAR switch. This completes

v i-irjalization.

[

1

METHOD 1
) Ao BT AL
f‘-ufst‘ meitches 0 and 4, while the others (1, 2, 3, 5, 6, 7, 8, 92,
i+ and 11) should be lowered. Now press the ADDR LOAD, EXNTD LOAD,
"llen and CONT Switches. The conscle terminal should print "LOAD,
;__'"';',’.‘_.."' ‘s7aRT, ETC?“ at which time the system may be STARTED. 9 X 20

METHOD 2

s zethod applies if the system disk is intact and if the computer
a MI8-EG. Method 3 is a substitute for systems without the

Users who are not familiar with the MI8-EG may try this
+'enzd anyway. If method 3 works where this one will not, the

"_;r-.’*ff'!‘f: does not have a MI8-EG. —
S 3 §5C

1. s ewitches C, 2, 4, 5, 6, and 8, while switches 1, 3, 7, &, i
1 vi ghould be down. Press and raise the SW switch. The terminal

.k 1
e A N . i - . - -
B DY ceim: "ILCAT, DUMP, START, ETC?" at which iime the systaxn

o

__-A

PR

[]
N

£y

A
- L d
Bl Te

b 'la STARTED.
METHOD 3

,.q method applies ‘whenever the contents of the system disk are

4
§151°% .

6-1

L e e - el 3005 s520WNR 2N the table below. For «
step in the -‘hL: E«avﬂ e..ch of the computer switch register swi
numbered O to L1 eitlher in the up position if the corresponding t
entry is @ 1 cr in the down position if the corresponding table e

is a 0. When all 12 swiitches have been set to correspond to a 1i

in the table, follow the instructions in the right hand column an
proceed to the next line.

At the completion of the last step, the ®nsole terminal should
print "LOAD, DUMP, START, EIC?" at which time the system may be
started.

Table 6-1 RF08/DF32 Disk Bootstrap

Step # Qctal Switch Register ~ And Then
Values Setting '
0l2 345 678 91011 o
1 0000 000 000 Q00 - 000 pPress EXTD ADDR LOAD .
2 7750 111 111 101 Q00 press ADDR LOAD
3 7600 111 110 000 Q00 1ift DEP key
4 6603 110 110 000 011 lift DEP key
5 6622 11¢ 110 o010 0l10 lift DEP key
6 5352 161 011 101 010 1lift DEP key
7 5752 101 111 101 010 1ift UEP key
& 7750 111 111 101 Q00 - press ADDR LOAD and
rress CLEAR and
press CONT
METHGCD 4

This method applies when there exists a set of duuap tapes which v.

dunped previously, which 1t is desired to load onto the disk. In
addition, this method makes use of the MIB-EG, and assumes that ¢
dump tapes have been specially prepared using DTBOOT (gsee below).

Method 5 is a substitute for systems without a MI3-EG, and Method -
is used when the dump tapes have not been specially prepared u91m“

LTBOQT.

Place dump tape number one on a DECtape drive, write locked. How
instead of selectlng it 1, place the unit select switch at 0 ot
8.

Raise switches 3 and 4, while the others (0, 1, 2. 5, 6, 7, 8, 9

10, and 11) should be down. Press and raise the sw switch. The-
should move for a few seconds, at which time the console should ¥
"LOAD, DUMP, START, ETC?" ' C

Turn the DECtape unit select switch back to its ncrmal position ¢
1, and LOAD the system as described in section 4.4. After the I

has been accomplished, the system may be STARTED.

METHOD 5

=

This method applies whenever it is desired to load a set of dump ~

taves tc the system disk which have been prepared with the progra
DTBOOT. If the tapes have not been sa prepared use method 6'.

6-2

"

.y 4uTD tape number one on a DECtape drive, write locked. However,
-3 9% selectling unit 1, place the unit select switch at 0 or 8.

. reeiomm the switch manipulations shown in the table below.
_;,ggxsteP in the table, place each of the computer switch register
;,gﬁsg“m&ered 0 to }l either in the up position if the correspondinc
-4 oty is a 1, or in the down position if the corresponding

Ly entry is a . When all 12 switches have been set to correspond
L iine in the table, follow the instructions in the right hand

o . and proceed to the next line.

Table 6-2 TCOLl/TCO8 DECtape Bootstrap

=

“ T Octal Switch Register And Then

e values . Setting

o 012 345 678 91011

. ' 0000 cg0 GO0 000 000 press EXTD ADDR LOAD
a 7613 111 110 001 011 press ADDR LOAD

o 6774 110 111 111 100 1ift DEP key

. 1222 001 010 010 o010 1lift DEP key

4 6766 110 111 11p 110 1lift DEP key
2N 6771 110 111 111 001 1ift DEP key

o 5216 101 010 001 110 1ift DEP key

" 1223 g0l 010 010 011 1ift DEP key

N 5215 101 Q10 001 101 lift DEP key

. 0600 000 110 G000 000 1ift DEP key

T 0220 00 010 010 000 lift DEP key

tr 7754 111 111 101 100 press ADDR LOAD

v 7577 111 101 111 111 1ift DEP key

g 7577 111 101 111 111 lift DEP kev

L 7613 111 110 001 011 press ADDRLOAD and

press CLEAR and
pbress CONT

W% .~ sna last step above has been performed, the tape should move
- w iz seconds, and then the console terminal should print out

@ .
Sp START, ETC?

i
. amg unit select switch on the DECtape back to its normal position
. 2=d LOAD the system as described in section 4.4. After the

R L3
51333 veen accomplished, the system may be STARTED.

¥ METHOD 6
i '

iy wetnod 3z us2d vhenever it is necessary to load DUMPed tapes
iﬂthave not besn specially prepared using DTBQOT.
‘<.- =n chapter two, following the steps for building a new svstem
;“'»hecmssage "T.OAD, DUMP, START, ETC?" appears on the conscls
wa’..v ac soon as this message appears, return to the follzwiny
wisna

-n.mznge to the question "LOAD, DUMP, START, ETC?" the system may
o -4 ioaDed, as described in section 4.4. After the load has been
:wlh-shed. the system may be STARTed.

[613

METHOD 7

When all else fails, the system must be rebuilt from scratch, as
detailed in chapter 2.

PREPARING TAPES USING DTBOOT

To specially prepare a set of dump tapes using DTBOOT, take tape
number 1 of the set of dump tapes, and mount it on a DECtape driv
However, instead of selecting the normal unit 1, place the unit :
switch at 0 or 8. Place the DECtape unit in the WRITE ENABLED
position. Now, with the EDUsystem-50 monitor in operation, type
"R DTBOQT" at any logged-in terminal {the program DTBOOT must,
of course, be stored in the system library prior to this step)..
all is well, the tape will move (possibly only a fraction of a r:
and 4BS will be printed. The completes the preparation of the t:
This preparation is permanent for this tape, and will normally ne
need to be repeated no matter how many times the system is LORD
from or DUMPed to that set of tapes.

A NOTE FOR 05/8 USERS:

INIT may be used to advantage when using the system disk for
running 0S/8. Load the paper tape of INIT using standard procedu
for binary paper tapes, and start it at 24200. Even better, crea
a SAVE format file of INIT, and simply run it. When INIT asks '
LOAD, DUMP, START, ETC?" dump 0S/8 to DECtzpe exacitly as if it
were EDU-5C. At the completion of the duwmp, INIT will boot the .
system which is on the system disk, which happens to be 08/8; hen
another 0S/8 monitor dot will be printed. Now, EDU-50 may be loz
At any future time, when it is desired to run 05/8, get back INIT
and LOAD the 0S8/8 tapes as if they were TSS/8 tapes. At the :
completion of the load, INIT will boot in the system disk, which:
contains 08/8 again, and an 0S/8 monotor dot will be printed.
Caution: do not attempt to use DTBOOT on these 05/8 dump tapes, a
do not trv to boot in these tapes dlrectly. Use INIT. =

NOTE T0 VERSION 3 USERS

The program BOOT may be used to boot EDU-50. When not running of
of the system disk, typing BO/RF will bring in INIT from the
system disk. When not runnlng from DECtape, typing BO/DT will bz
in INIT from DECtape unit 0, provided that it has been speczally
prepared using DIBOQT. _

CHAPTER 7

DETAILED MONITOR CPERATION: I

ine most fundamental job of a timesharing Monitor is the sequent

ecution (generally for short bursts, or quanta of time) of a number

. ¥ ;88T Prograns. This implies that the Monitor has a place availabl

i
, \gar DLOGrams when not being run. EduSystem 50 reserves one or more

s

b S

~g A& LSEr program ._c'an be brought to execute, and a place to oput

g fields within the PDP-8 as areas in which to execute user pro-

.+p78. A USeY program, and hence a user area, is 4X words long.

»s.eugtem 50 may have from 1 to 6 user areas, depending on the amount
PR

L4 :_?:}re available. Similarly, EduSystem 50 reserves a paortion of its

1 g¢ as a place in which to keep programs not being executed. These

" s,.2 areas’ are also 4K each. The number of user cores is not

IR e 1.3
Do, m4eT

pitaSe

arily dependent on the number of simultaneocus users; the
~ simply uses as many as it has availlable. The number <f swap
on the other hand, is directly related to the number of simul-
s users for which the system is configured. There is one

A e

.. 2izated 4K swap area on the disk for each simultaneous user.
1ger programs are executed by EduSystem 50 by bringing them into

4 wear core from theilr swap area, executing them, then returning them

.- sreir Swap area on the disk, so that the next user program may be

. weyrnt in. User’ programs may be brought intoc any available user

nut when they are swapped out, they always return to their

a4 -2

»d swap area on the disgk.

¥

At an

cduSystem 50's swapping algorithm may be best illustrated by
yog.7ing @ very simplified situation. EduSyster has a number oI
L4A7 OFCGrams running within it; each is compute bound, none (s
oy oaged in any input/output. Monitor first decides which user to

.-« =axt, It chooses the user who has waited to run the lcongest. It

isles this user to be brought into the user core. However, it

’,:f',f'.....'

+an oaly bring

tnls user intc a user core which is unoccupied. Therefore, it must
STTY are by swapping its present inhabitant (another user program)
vut. Before deing this, Monitor saves the running state of the pro-
vtam to e swapped. This information, the AC, FC, L¥, and EAE regis-
cets, is stored in Monitor core. The Monitaer then writes the user
orogram (whose state is saved) out onto its respective swap area. Now
the user program selected to run next may be brought into core. Once
it 1s in, 1%t5 run state is restored (the 2C, PC, LK, and EAE registers
~f esach vser are stored in the Monitor when they stop running) and
the progrem 15 started, This procedure is continued as long as the
user program needs to run.

Obviously, the Monitor has to maintain status irformation about
each user program, whether or not it is in core. Indeed, it must
maintain more information than just a user program's run state, It
must waintain all the information it needs in order to decide whether
-r not a user program needs to be run, In actual operation, most of
15 s atus informaticn deals with the state of a user program's '
input and output. In our simplified case, where no user is doing I/O;.
the-only information that needs to be maintained is whethér or not
the user has finished. 1If a user program completes its run, the
Mcrnitor remembers this fact. The program is swapped out and remains
cut. If a program does not complete ita run at the time when it musg’
be swapped out to allew another user to run, it is remembered to be
still runnabla. When its turn comes again, this user is swapped in to_'

run some more.

i —"——————

TL

- FILE AREA -

JOB n SWAP AREA

7]
* l
“ s

N

USER AREA WM 2 JO 2 SWAP AREA e
USER AREA #| % JOB i SWAP ARE A

RESIDENT “m‘g;g“

MONITOR (2OK)

i
LORE . ~ bISK STORAGE
as-oARd
Tigdre T-i. 19% IduSyszem 30 Configured Jor o User Programs

7-2

the process of deciding which user pragram to run next
{gcheduling) is an important function of the Meonitor. The Monitor
~relically scans a table which contains the status information for
~ach user pregram. If the user program being checked by the Monitor
cogs not have to be run {is not runnable}, it is skipped and the
Monitor goes on to look at the next user program. When it finds a
-user program which needs to be run, it goes through the process of
gwapping out a user program which has just been run but which is still
in core, in order to free a core field. 1t then brings in the user
program job which was selected to be run, starts it and allows iz to
run for a fixed time quantum. At the end of this time quantum ({as
indicated by a clock. interrupt) Monitor goes to the next user program
to see if it is runnable. When. lt has looked at all the user programs,
the Monitor s-heduler returns to look again ae the first job. It then
aptinues to ¢ycle through the table of user programs,

In a4 system with a single user field, the scheduling algorithm is
guch that some previous user progran job must always be swapped out to
make recom for the next. Once a user program is brought in and started,
there can be no further scheduling activity until it has completed 1ts
guantum. Similarly, once the user program in core has started to be
swapped out, the system must wait until the next user program is
completely swapped in before it can do anything. (A user program may
only be run when it is completely in core.) The only special schedul-
ing case for a l-core syatem comes when only one user program is
active in the system. Ussr programs are not automatically swapped
gut when they complete a time slice, They are only swapped out when
anctner user program must be brought inte core to be run. O©On the other
hand, when the scheduler decides that a given user job should be run,
iv does not plindly swap it in. It first checks to see if it is
already in care. Thus, if only one user program is runping, no swap-
ning oceurs. When the program has been run for a quantum, its run
state i5 saved but it is not swapped out. The scheduler scans
through the table of user programs locking for one to run. Since no
other pregram needs to be run, it gets right back to the program just
run as the proper one to run next. Finding this program still in core,
the scheduler simply restores its state and restarts it. Thus, axcept

for these periodic checks, the lone user job runs continuously.

The schieduling geta more complicated, and rore =fIicient when

there is more than one user core available. The scheduler maintains,

in addition to its table of all user jobs, a table of all user jobs
which are in user core. (A job may be in core, an the disk, or half-
way between when it is being swapped.) It actually scans the former
rable to decide which te swap next and the latter tezble to determine -
what to do in the meantime (while it is waiting for the swap to be
completed). The swapping, once set up, happens asynchronously with
respect to the scheduling. Once it has set up the gswsap, Monitor always
jqoes to its table of in-core programs looking for on: on which to .
wark. When a user program is scheduled to be swapped out, it disap—.
pears from the list of in-core programs. Zventually, the next program'
scheduled to be swapped in will be read :into core. 1t then appears

in the table of in-core programs and is subseguently run.

In the casas of a system with two user fields (16X system} the
table of in-cors programs has twe entries, Entry one indicates which, .
if any, user program is in field 2; entry two indicates which is in
field 3. In actual operation, there will seldom be user programs in
beth core filelds at once. In a 2-user-field system (again assuming
cur case aof several running, compute-bound user programs) one field
will always be swapping while a program is rumning in the other. This
15 because the quantum of time in which a user program i3 allowed to
run is (roughly} equal to the time it takes to do a swap {a write
followed by a read). This is explained in the following paragraphs,.

A user program which has just been run is scheduled to be swapped
gut. In the table of in-core programs, it is marked as no longer in
core. The scheduler then determines if there is anything in core to
be run. The only candidate is the other user core. If the timing is
right, a user program will just have finished beiﬁq swapped in.
Scheduler then sets up and runs it. (Note that if this swap is not
completed until after the second swap was stérted, the Monitor must
wait for it to be made. This situation would occur if a transient
error delayed the swap. ©On the aother hand, if latencies on the disk
were minimal, the swap might be completed before the otier program ' _
completed its run guanta. In general, however, these two events will
be almost simultaneous.} At this point, a user program has been
started at about the same time another is to be swapped out. At the.
end of its run quanta, the swap should be ccmplete and a new program

in and ready to run.

Thus, at any given tima, one of the user cores is heing swapped
while a user program is belng run in the other. The data-break
capability of the PDP-8 allows these two operations to occur simulta-
poously. Cycles are stolen from the running program to allow trans-
fors to occur in the other field. There is (in theory) no time lapse
petween the running of user'programs. The next one is always ready
at the time the user program being run finishes its time slice.

Using the standard time slice of 200 milliseconds, this allaws five
gsers a second to be run,

Thig situation is in sirong contrast to the situation with a
single-user core. Again, assuming a 200-millisecond time slice, only
palf as meny users may be run in the same time. This is because the
aystem capnot run one usey while swapping another. Ouring the 200
aillisecond swap time. tha system must simply wait for the swap to bhe
coppleted. In the l-user core system, swaps and runs alternate; in
a 2-user core system, they are sirultaneocus, It is a foreground-

nackground operation.

The acheduler deéends on various interrupts to continue this
process. s;ecifically, the scheduling is driven by the clock and disk
completion interrupts. After every successful swap and after every
1g# milliseconds the scheduler is run. If the scheduler is run
pecause of a2 clock interrupt, it checks to see if this 1s the second
auch clock interrupt it has encountered since it started to run the
present1y~running user program. If not, then this user program has
cot had its full quantum of runtime. It is therefore restar:ed.
when the second scheduler clock call occurs, indicating that the user
program has run for a full 200 milliseconds, it is marked as having
peen run. The scheduler then locks through its table of in-core user
programs until it finds one to run. If no other programs are in core,
it sees if a swap is in progress. If a swap is being made. the
acheduler knows that eventually a new user program will be in core.
1t returns and runs the same program. FEventually, the program being
swapped will be in core and run. Even if there is another program
in core, the scheduler checks to see if a swap is in progress. IFf it
ia, the scheduler simply starts and runs the next resident user

program. —

Whenaver the scheduler finds there is nc swapping, iz cheoks 4o
sge LT a swap is necessary. A swap is necessary if a user program is

cn disk which needs to be run. Thgs, when the s:zheduler finds no
swapping taking place, it checka its table of user programs to find a
runnable, swapped-out user program. If it dges, it schedulea this
program to be swapped in, (Generally, this means swapping out anothey
user’'s program.) Once thée scheduler has set up the swap (if one is
required}! it finds the next resident user program and starts ik,

{Note: the check for swapping activity actually acours every lﬁﬂ
milliseconds £o assure that the swapping rate is maintained.)

A swap is scheduled by putting a swap request in the disk gueus.
[f the disk is active at the'time the swap i3 scheduled, the transfer
15 not initiated immediately. However, if the dick is inactive, the
transfer ls initiated (by setting up and executing a DMAR or DMAW)
immediately. Either way, the user prograﬁ to be swapped is removed
trom the =able of in-core users. It is considered no longer to bhe in
core at the kime it is scheduled to be swapped,'even though it may
net actualily be written out until sometime later,

Everv time the disk completion interrupt occurs, a check is made

e
4]
4l

ee 1f{ there are any reguests pending in the disk quene. If there
are, the next is started immediately. If the disk tranzfer just
completszd was a swap-in, which means ‘that a new user program is now
in core, the table of in-core programs is updated t3> reflect the new

arrival,

Thus, scheduling consists of two asynchronous processes. Disk
handlers, running off the interrupt, are contlnually swapping users in
and cut of core areas. AS they do this, they update a table which '
indicates which user pregrams are in user cores. These routines work
on a quece of disk requests. As soon as a transfer is complete, as o
indicated by a disk completion flag, the disk routines immediately
rtart the next transfer on the queue. While the disk handlers are
urcecessing the requests on the disk gueue, other scheduler routines
are deciding what swaps, if any, to do next. Once they have made
that decision and gueued the appropriate disk request, they scan the
table of in-core user programs in order to select the next user pro-
gram to be run. This table is updated by the disk-swap handling part'
vf the scheduler. Thus, 2 user program which the scheduler selects to
be swapped in will eventually be swapped into & ¢ore and hence appear
in the table of in-core user programs., The scheduler, scanning this
tahle for a resident job to run, will find and runm it.

1t is important to gystem efficiency that, at the time the sched-
uler goes tc the table of in-core user programs to find one to run, it
finds one. If it does not, it schedules @ non-jobk, the "null job,"
i3 ke v, This null jeob is run until a valid user program is in
core. (The null job is a tight loop in Monitor core which increments
the accurulator. It does not occupy a user core. It is not swapped.)
Clearly, in a l-user core éonfiguration, the system spends a great
deal of tim:e in the null jdb. From the time a swap is initiated
until it is completed, the Monitor can do nothing but run null job.
In a 2-user core system, the effeciency is much greater, The back-
'ground swapping assures that a new user program will be in core at
about the time the currently active program completes its time slice.
More than two user cores virtually assure that time will not be wasted
running the null ijob.

The pravious discussion of scheduling is based on some radically
simplified assumptions. We asaumed a steady number of compute-only
jobs. With a more normal mix of programs, scheduling becomes much
nere complex; user programs are being continually started and programs
ara being continually started and halted. Those that are running may
need to be interrupted for input/output. All this increases che
complexity of the scheduling. How these additicnal complexities are

handled is discussed later in this manual.

7.2 SOME DEFINITIONS

In the preceding discussion, we have referred to the orograms
renning in EduSystem 50 as “user programs”. In fazt, in the system
documentation, they are referred to as "jobs™. Jchk, in this sansse,
means scimething slightly different than user program. + alsc wearns

gomething different than "job" as it is used ip batch processing systersz.

A job in EduSystem S50 is the capacity, or capability, to run a
pregram. A user, when he logs in, is assigned a job. He keers this
job, which has an associated number, until he logs out. A l6-user
system ig thus a l6-job system. At startup, it has a pocl of 16 avail-
able jobs which it assignhs to individual users as they lag in. Once
i+ has assigned all its available jobs, the Monitor cannot accept

more users until one logs out and releases his job.

The distinction between a job and a user program 1s claarest

rignt after logging in. The just-logged 1n user nas a O0. Ag A4

7-7

been assigned a terminal with which to intercommunicate, and a 4K swap
track in which to store his program. However, as yet he has no user
program, In short, the job is not the program, it is the capability
trr run a program. '

Once logged in, users are known to the system only by their job
numpers. The Monitor simply schedules and runs jobs. The job numbers
for a l6-user system are 1 through l6. The null job is assigned job
number zero., Users who are trylng to log in are assigned job numbers
{since a job number is required internally even to get through the
LOGIN procedure). If the LOGIN is succenssful, the user retains the
job number: if it is not, it is forgotten, '

The Monitor maintains a table, JOBTEL, which indicates the statusg
of each job. It has a l-word entry for each possible job. If the
job 13 unassigned, this word is zerced. While the job is defined, ita
word in JORTBL contains a pointer to the complete status information
for this jeb. The Mcnitor also maintains a table cf in-core jobs.
This table is calléd CORTBL. It is made up of a l-word entry for
cach available user core. Each entry contains the job number (and
some other status bits) of the job which occupies that particular core.
Finally, there is a single register, JOB, which indicates which job is
being run at a given moment. JOB is updated at the end of a job time
slice, CORTBL is updated with each swap., JOBTBL is updated on log-in

and log-out,

7.3 TALKING T2 THE USER PROGRAM

The preceding discussion is limited ta compute-bound jobs, those
that do neither input nor output. This sitwation is rare. Most user
jobs do a great deal of consale I/Q. For the Monitor to process this
console I/0, it must solve a number of imnediate problems._ Pirgt,
it must be able to handle multiple conscles. All EduSystem 5¢ con-
Figurations have multi-terminal hardware, allowing the sysfém to input
characters from any given console and outptt them to any console.
However, it must alsc determine which conscle is which, and which
characters ars received from whnich console. User programs on EduSystem
50 are regular PDP-f programs; as auch they input characters from the
ccnsole and output them to the console. Th2re is no ambign;fy in a
stand-alone system that has only one'consoie. In EduSystem 50, where
many jobs are outputting to the console, the potential for confusion

is considerable. Thg EduSystem 50 Monitor must maintain a table
1isting which console is used by what jobs. Thus, when a job does
console I/, Monitor knows the individual console involved.

These are the immediate problems the Monitor muat solva. However,
rg be usefal, it must also be efficient. Normally, a PDP-8 program
doing I1/0 spends virtually all its time“ﬁaiting for the device: it is
the monitor's responsibility to recover this time and use it to run
another jo3. Finally, the Monitor should smooth the I/0. EduSystem %0
is a swapping system; user programs are in core only for short periods,
then they are swapped out to the disk. If a user program could only
output when it is in core, its typeout would be sporadic., Input would
be WOrse. If a user program could only input when the job happened
r5> be in care, no input would be done,

This »roblem of smoothing I/0 is solved by maintaining buffers
within the Monitor. Thare is a terminal input buffer and an output
puffer for each job in the Monitor. On input, as characters are
received from the console, they are put into the console input buffer
ssr the jo3 associated with that console. Thus, the program to
receive th2se characters need not be in core. The same is true of
putput. Craracters taken from a job's console cutput buffer are sent

to the user’s terminal whether or not the associated job is in core,

This console character handler may be thought of as the asynchro-
nous part f{asynchronous in the sense that it happens independently
of the running of individual user programs). Each user's input and
cutput buffers are being filled and emptied (by Monitor} whether or
not the user's program is in core. It is essentially an overhead
function. A little processor time is taken from whatever program is

currently running and used to keep up the I/0 for all active users.

This interrupt driven terminal handler sclves the problem of
chuttling characters between conacle and buffers. There remains the
problem of passing characters between these buffers apd actual user
programs. This character passing oc¢curs via the EduSystem 50 hardware
rrapping capability. On input, the key instruction is KRB, the
xeyboard-read ICT. A user program, when it inputs a character,
executes this KRB. The bardware modification causes a trap to Monitor,
preventing harédware execution of the instruction. On identifving the

grapped ICT as a KRB, the Monitor gets a character Iram the input

butfer which corresponds to this job, puts it in the accumulator, and
returns to the user program at the instruction following the KRB,

The user proaram never knows that the KRB was simulated, It acts
—cacttyv 5 11 dees on a stand-alone PDP-8. The same procedure applies
tv ocutput. Execution of a TLS is preventei by the hardware; a trap to
Monitor cccurs instead. Once it has identified the trapped IOT as a
TLS, Monitor takes whatever is in the a;cumulator at the time of the
trap and places it in the appropriate ocutput buffer. Once again, the.
INT has been precisely simulated. (The asvn¢hronous terminal rcutine
assures that the characters placed in the output buffer are typed

eventually.)

However, the ability to simulate KRB end TLS is only half the
Job. There remain all the timing and synchronization problems which
are normally solved by the skip IOTs: KSF and TS5F. In a stand-alone
PUP-8, KSF means "Is there a character in the input buffer?" In TS5/8,
tre l-character hardware keyboard buffer is effectively replaced by a
multicharacter software input buffer. Thus, in EduSystem 30, KSF means
“"Are there any characters in the input buffer?” KSF, being an IOT,
traps from a user program. The Monitor, upon identifying the trapped
I&T as a XSF, checks that user's input buffer. If there are any charac-
ters in it, the Monitor simulates a skip by returning te the inastruc-
t_7n ! the user program which is two locat.ons buyond the KSF.

A .

This arrangement allows for efficient user program I/0. It
allows many characters to be paésed gquickly, between a user program
and the Monitor. In a stand-alone system, it is impossible to input
characters at more than 10 c¢ps, the terminal speed. Under TSS/8,
many KRBs or TLSs may be executed in a hundred milliseconds. For
example, consider the following gsequence of code: C

LOQP., TAD 1 AX - ZJAUTOINDEX
SNA ' T
HLT
TLS
CLAa
JMP LOOP

Fach TLS puts a character in the output puffer (assuming it is

not full). In this manner, a whole series of characters may be cutput
in a few milliseconds. (By output, we mean moved to the oqutput buffer.

1-10

1z may be many seconds before the asynchronous terminal handlers type
shem akl. This is, however, of no concern to the user program.)

gimilarly, if there are many characters waiting in the input buffer,
<y rould all be picked up at the same time by 2 KRB loop in a user

program.

‘ 1f the timing of thease functions céh be manipulated favorably,
‘:he gsystem car. handle input and output efficiently. The ohject is to
' neparate'the character I/C from the waiting I/0. Rather than wait 1/10
of a gsecond between each character, output 80 or 90 characters at
pnce, then wait 8 oxr 9 seconds. . By bundling the I/0 wait times into
usable amounts, like 8 or 9 seconds, the Monitor can use them to run
pther jobs. This ¢timing is handled by the scheduler and device
nandlers. It is important that the user never hang in a KSF; JMP .-1
$ncp as on 2 stand-alone system. This is the code normally used to
wart until more I/0 can be done, On EduSystem 50, the user jobh cannot
ﬁa jegft to waste precessor time in this loop, Therefore, when the
monitor detects a KSF which is false followed by a JMP.-1 {i.e., the
program must wait for the device}, it stops the program just as if the
time slice had been completely used. The state of the program is
gaved. However, the program is stopped in a special way. It is
~arked as not runnable and the reason why it is not runmnable (waiting
for inpht) is remembered. Since it is not runnable, it is dropped
ipcn the run gueue and, when the scheduler finds it the next time, it
will not be run. However, the Monitor continues to keep track of the
gtate of the I/0. At the time when the device is again available,

the Monitor chinges the state of the jeb back te runnable. How the
next time the scheduler looks at this job it will run., The job will

. ne started where it had stopped {at the skip irstruction} but this
pime the skip Ls true, allowing the program to continue. Thusg, by
rrapping the skip 10T, the Monitor has salvaged the wait time from a

+ob and used i: to run other jobs.

In order =0 make running user programg even more efficient, the
ponitor exerciuses control over the keyboard and teleprinter flags.
these flags are part of the status information for each user. The
sbiect is to turn on the flag, thus starting the user program only
4hen it is possible to process many characters. This is done on
input by setting up a "break mask." This break mask tells the
maniror what characters are important delimiters. For examplas, BASIC

considers carr.age return and rubout to be delimiters. When BASIC is

7-11

ready for keyboard input, it executes a KSF to see if there is any.
Typically, there is none. (The user has not yet begun to type in the
next line in his program,} Therefore, this user program is put in the
"0 wa:c state and is marked as not runnable, It stays in this state
antil a delimiter appears. The keybeoard flag is then set, the program
is returned to the runnable state, scheduled, and run. As soon as the
program starts, it executes KRBs to read inpjut characters, BASIC

can thus process a whole line of input in a single, 200-millisecond
time slice. Since this line prokably took several sesconds to input,
this user is actually using very little system time. The same situation
applies to output. As the program cutputs characters, these charac-
ters are placed in the output buffer. As lcng as the buffer iz not
filled, the program is allowed to run. However, when the buffer fills,
the program's teleprinter flag ia cleared, thus suspending execution’
of the program {it moves intc I/0 wait). As characters from this
huffer are subseguently typed, ending the puffer-full condition, the
teleprinter flag is held down and the user pfcgram is kept in tha non-~
runnable state until the buffer iu almost emptied. At this point, the
program is restarted so that it can put more characters into the
cutput buffer, keeping a gontinuous ocutput. Programs like BASIC can
fill a character output buffer in one time slice, Therefore, input,
like ocutput, is accomplished without substantial processor time.

It is the combination of the two ﬁarts of the I/0 handlers:
those driven by IOT traps and oparated synchronously with respect to
the user program, and those driven by device interrupts and-operated
asynchronously with respect to user programs, which accomplish 1/0.
The commor comnunication areas for these two routines are the console
input~ocutput buffers, and their associated flags. The problem of
efficient scheduling is solved by prudent manipulation of these flags.
This is done on input by means of rhe delimiter, or break mask. On
output, -t is done by detecting buffer-full and buffer-almost-empty

conditions.

The above discussion is somewhat simplified. Actually, programs
need not use the skip-on-flag instructions at all and may use string
I/0 instructions to transfer many characters at once. '

CHRPTER 8
MONITOR: A MORE DETAILED LOOK

Thua far, we have reviewed scome cof the operations of the EduSystem
53 Monitor 2nd how it responds teo varicus simplified situations. This
chapter discusses these operations in greater detail: the various
subsystems within the Moniter, the full scheduling algorithm, and the

#ata basea.

g.1 PANYITOR AS INTERRUPT HANDLER

The furdamental task of the time=-aharing system is to run user
programs. ime spent running the Monitor is nonproductive overhead.
chereforas, the Monitor must restrict its activities to the minimum
time necessary to keep user jobs flowing smoothly. In order to meet
-his goal of minimal overhead, the EduSystem Monitor is used as an
iaterrupt processor only. The Monitor is never run except in response
to an interrupt. The interrupt trap address in field ¢, location 8. is
jrs only entry paint. It always exits by dismissing the interrupt.
when it completcs the handiing of an interrupt, the Monitor dismisses
back to the user job. The job is allowed to run until the next
interrupt; this being the enly way in which the Monitor can regain
control onca 4 user job has been started. Since it is better for
+me system to be always running a job, the interrupt handling tech-

nigue 2gsuras that the system will be deoing that as much as possible.

Tnterrupts to the Monitor are divided intos three levels: level 0,
jevel 1, and level 2. The DCHBA clock is the only level Q interrupt.
»he warkings of the clock routines are dependent on the TSS/d
configuration. In a PT@8 or KLBE system, there is a line frequency
clock. 1In a DCAB, there is just the DBCPY baud clock. This clock
then serves both as the system clock and the signal to enter the
pcgf service routines. The Monitor dees not take action on every
clock interrupt. It waits for 1{@-millisecond intervals (12 ricks of

a line frequency clock -~ 55 ticks of a DCH8 clock]. Thus, when the

clock interrupt occurs, the c¢lock imterrupt handler simply increments
a counter to see if 100 milliseconds have'elapsed. If not, the inter-
rupt is dismissed. (On a DCPA8 system, the DCHB service routines are
run to scan the lines for incoming characters and to continue output.)
Crly at 100-millisecond intervals deoes it involve more Monitor
processing. In this case, it is treated as a level 2 interrupt.

LCEBA level ¢ has its own register save area and hence may interrupt
any other process.

The lewvel 1 interrupts are the device I nterrupts: reader, punch,
disk, DECtape, etc. If the system has PTHB: or KL8Es, the consale
terminal interrupts are alsc level 1. In the case of the paper tape
reader and punch, the interyupt processing generally consists of trana-
ferring a character between the device and 2 Monitor character buffer.
DECtape and disk error flags are also disposed of immediately; the
transfer is retried. In all these cases, the interrupt is dismissed
Lmmediately.

Since they are all brief, none of the interrupt processors'abcve
reenable the interrupt system before dismissing. Therefore, they have
no problems in protecting themselves against being re-interruptad.
This is not the case with any of the other irterrupt processors.

These "reenable interrupts" which are considered to be level 2 inter-
rupts, reenable interrupts before they atart processing, The level 2
interrupts may be best characterized as those which take a long time
to process. The level 2 interrupts censist of the 106-millisecond
clock, service for keyboards, teleprinters, r=ader, punch, or line
printer, operation complete for the card reader, disks, or DECtape, or
a trapped user IOT interrupt. Level @ and level 1 interrupt handlers
take up a miniscule amount of code. Therefore, the Monitor may be
thought of as a large level 2 interrupt processor. ' '

Since level 2 interrupts are serviced with the interrupt re-
enabled, there is the possibility that they themselves may be
re-interrupted. Level @ and level 1 interrupts present no p:oblem._
The lewel 2 interrupt code does its own registar savea (AC, PC, LK,
and location {) to assure that interrupts from the other levels do not
1nterfere,. & second level 2 interzupt, on the other hand, causes
problems. 1t makes no sense to suspend the handling of one level 2
interrupt to go off and start on anather. Therefore, the Meonitor
checks for. and srevents, this situaticn. Wherever a level 2 inter-—
rupt is detected, the Monitor checks to see whether it is a user mode

E=2

program whic1 is interrupﬁed.‘ {The state of the user mode bit is
asutomatically saved when an interrunt occurs.} 1f the processor

was interrupted out of the user mode, indicating that a user program
w15 runioang 2t the time of the interrupt, then it is permissible to
pcasess che level. 2 interrupt. Monitor proceeds to do so. If, on

the other haand, the processof interrupted out of exec mode, this means
the Mbnitor was in ;he procesg of handling level B or a previaus level
2 interrupt (the only conditiéns undey which an interrupt out of exec
msde could ormcur). In this case, processing the new level 2 interrupk
is deferred. It is placed on the level 2 queue. Entries in the level
7 queue are addresses of the routines to handle the specific inter-
rupt. Once this is doneé, the interrupt is dismissed, back to a
1acation witain the'Monitcr. At the completion of each level 2
interrupt, tae Monitar checks this level 2 gueue., If it is empty, it
digmisses back to the user program. If it is not empty, the Monitoxr
.;s reeacered to process the next request on the gueue. Only when the

tacklog on lavel 2 queune is exhausted does an exit occur from the

Menitor.

In the case of 100-millisecond clock interrupta, the level 2
nandlers sav: the whole state of the user job in his job status
registers. ‘When this interrupt is finally diemissed, the saved state
af the job, with its job number in core register JOB, is5 restored. If,
in the meantime, the scheduler has changed the contents of JOB, it is
-~ in fact & new job which is started. Thus, even the system scheduling
is accomplisied by means of the interrupt handlers.

it is important.tn keep this concept of the Monitor as interrupt
kandler in mind since the system ig incomprehensible when viewed in
any other lisht, All actions by the Monitor may eventually be traced
to some interrupt. Swapping occurs in response to a disk completion
fléq. wnen the disk completion is detected, the Monitor, via a 2-leval
interrupt, looxs to see what the next swap should be. When the swap
is found, thz Mecnitor initiatew it., Scheduling occurs as a rgsponse
ro the 100-millisecond clock lewel 2 interrupt. If it is the second
such interrust since a user job has been started, the HMonitor looks for
a new job £o run. Even . in the interim level 2 c¢lock interrupts, the
Monitocr tries to do some advance scheduling. If there is no swapping,
+he Monitor sees if it should begin swapping. Thus, while a job i3

running, the scheduler tries te get the next 4cb ready, so that it

Moy be started immediately after the current job completes its time
slice. When a job does complete itse time slice, the escheduler's
task is to set up and start the next job.

Ter.minal, paper tape, and line printer 1/0 are handled by special
level 2 routines. These routines 4re run every time an interrupt from
one of the devices occurs. In the case of terminal input and the .
paper tape reader, characters are stored in a ring buffer at level 1,
and removed and placed into the appropriate user butfer in free core
at level 2. In the case of terminal cutput, the paper tape punch, and
the line printer, there i§ a ohe-word buffer for each device. When a
device interrupts, a character is removed from this one-word buffer
(if there is one there) and immediately transmitted. Later, at level 2,
a character is removed from the appropriate free-core buffer and placed
1nto the one-word buffer. Special code allows the line printer to
£:11 its hardware buffer at level 2 with the interrupt system cnabled
and without going through the one-word buffer. '

311 interaction between the jobs and the systen takes place
throdgn the medium of the ICT traps. The scheduler is heavily
dependent on the state of each job's input and output. For now, we
will just look at the IOT trap handling in general, indicating how
various ¢lasses of I0Ts are handled.

Once the Moniter has identified an IOT trap interrupt, it tries
to identify the IOT that caused the interrupt. At the time of the
interrupt, the PC, which is stored in location 0, is set at the address
following the IOT. This pointer is backed up and the IOF is fetched
from the user's core. This IOT is then tested against a dispatch
table of 211 valid IOT;. If the trapped 10T is found, the Monitor
dispatches to the appropriate routine. If it is no% found, the IOT
is undefined. <Control is returned to the user program. The IOT is
treated as a NOP. -

Some valid trapped instructions do not return o the usey proqiam
at all. HLT is the obviocus example. HLT means, quite specifically,
do not return control to the progrem. Control of this job passes ﬁo
she system. (How all this operates is duscussed in the next section.)
Some IOTs always cause control to be returﬁed to the user program '
immediately. Among these are all the IQTs such as TQD, USE, etc.,.

which have nothing to do with the actual input/output. IOTs, as they
are used by rrograms rupning under TS85/8 do not necegsarily mean
instructions used to drive I/Q devices. They are actually instructions
whih 21low a2 job to talk to the outside world, whether it be a
peripiieral or just FduSystem 50 Monitor. Those IOTs which communicate
.just with the Mcnitor return to the user program immediately.

The IOTs which correspond to the actual devices, such as the
terminal IOTS}'may or may not'return to the user program irmediately.
A true RSP {the keybocard buffer has one or more delimiters in it},
allows control to be returned immediately to the user's program (with
the skip simulated). Similarly, a KRB which successfully gets a
character and a TLS which does not £ill the output buffer allow
control to be returned to the user program. In these cases, the user
program is able to do more useful running. After a true XSF, the
proaram can do a XRB to pick up the character. After the KRB, it
can process the character, then lock for more input,

§.2 I/0 WAIT COWDITION

_The user program is only allowed to run again after one of these
10Ts if the program is free to do zome useful work. In the opposite
cases, where the output buffer is full or the input huffer empiy, there
is no expectation that the user program can continue processing. It
is an I/0Q wait state if the user program is looking for input which is
not there (false XSF or unsuccesaful KRB) or trying to cuiput where
there is no room. On a stand-alone PDF-8, the program goes into a wait
" lJoop until it can do more 1/0. Under EdySystem-50, user programs whioca
must wait foirr I/0 are not allowed to loop. They are stopped until the
.wait condition has ended. ({Note that this prohibkits programs from
pverlapping /0 and processing within themselves. Time spent in I/GC
wait is used to run other joba ratker than the job which is in the
1/0 wait. HNote alse that the wait condition does not oceur on a
character-by-character basis. A2ll 1/0 is done cn a buffer-by-buffer
bagis to allow programs to keep up full I/0 rates, even though they
spend much of their time in I/O wait states.) All other user job
1/0 is handlsd in a manner analogous t¢ that of the terminal, 1In
all cases, biffers of characters are passed between Monitor and user
programs. The programs enter an I/0 wait until Monitor has éucceSSEully

completed the transfer of that buffer.

8-S

Scheduling is highly dependent on the state of the 1/0. Therefore,
the IOT trap handlers keep a status register {the "wait mask") to indi-~
cate for what I/0 device the user program is waiting. The mask, which
verresi«nds exactly to the user's status register (STR1), has a
dummy bit, the “"Job is not waiting® bit that is set when the user
program is not in an I/C wait. Whenever an IOT trap occurs and tha
user program is to be stopped, the bit Eofrespondinq to the device
for which the program is waiting is set., Thus, if the user program
executes a KRB when its input buffer is empty, thz bit in the wait
mask which corresponds to the keyboard flag is set, The user progran
is not restarted and control returns to scheduler so that ancther user
program can be run. Thus, whenever a user progran is in an I/0 wait,

a single bit in the wait mask indicates the devic: for which it ié
waiting. {(Some transfers, such as file reads and writes, always place
the user program intc a wait state. Others, like the terminal do so
only when a buffer fills,)

‘the scheduler uses the wait mask to decide which jobs to run.
First, the scheduler keeps a run bit in the job s:atus register for
each user. A& user's run bit is on if there ig a program in'progress.
The run bit is set when the user starts his program., It remains set
until the preogran is halted. Those uwsers whose run bits are not set
are never scheduled to be run. Among those johs having run bits set,
enly those not in an I/0 wait state are actually sicheduled to run., '

In deciding what user to schedule next, the uscheduler scans the
list of active jobs lcoking for one wizh its run bit set. Finding
such a job, it sees if the wait mask ANDed with the job status flags.
is nonzere, if it is, the job is runnable and is acheduled to be run.

HOTE

If the job is not in I1/0 wait, the cummy
hit, the "job is not walting” bit, is set
to assure that the job will be runnzble,

If the dob is in an I/0 wait, the wait mask PNDed with the status

bits is zero. Only one hit in the wait mask is set ~ the bit cor-
responding to the flag for which the job is waitirg. This flag is

8-6

zern at the time the wait mask bit is set {otherwise, the job would
not be in an I/0 wait).. 1In this way, jobs which are in an I/0 wait
are prevented from being scheduled.

A iob breaks out of an I/0 wait when the flag corresponding
te the bit in the wait magk comes oa. For example, assume that a job
is waiting for the keyboard. Eventually, the user tvpes a delimiter
gn the keybcard. This cauges the delimiter bit to be set. The next:
time the scheduler checks this user's status, the wait mask ANDed with
she status buts will be nonzero. The job is then runnable again. In
general, flays are cleared by IOT trap-handling routines. Clearing
a flag means a wait condition; at the same time 2 flag is cleared,
the corresponding bit in the wait mask is set. Flags are generally
set as a result of level 1 interrupts; i.e., those that do the data
transfers. They are detected by the level 2 scheduler when it looks
gor thz nex: runnable job.)

This mosdle of operation characterizes the whole Monitor. The
Monitor is made up 0f a number of asynchronous elements which com-
runicate via status registers and request gqueues. The Scheduler, which
is the heart of the Monitor, is guaranﬁeed to be rur every 100 milli-
seccnds., Therefore, it ia not necessary for another routine, such as
the disk handlers, to jump directly to the ascheduler in order to indi-
cate that a swap is complete. To indicate the new system status, the
disk rontines need only set the apwropriate status bits. The next
time the schoeduler is run, it finds this updated status and acts
.accordinqu. Similarly, if the scheduler decides that a swap 15 needed,
it may simplv queue this request if the disk is active. When the
completion flag for the present transfer is processed, the disk quene
is checkazd and the gueued transfer initiated. However, if there is no

- disk transfe: in progress when the scheduler decides to do a swap, it
capnot just Jueue the regquest. In this case, the scheduler itself

pust initiate the transfer.

g.3 OTHER PARTS OF MONITOR

The Monitor code which perfarms the functions discussed z0 far is
germanently resident in field zero while EduSystem 30 is operating.
;ield zero contains almost all the resident code. The Monitor aiuo
gccupies field one. About 1K of fieid one is used for code, most of
it for devic: handlers. fThe remainder is for tables and buffers,
nearly all of the resident Monitor data base 1s in field one.

B-7

In addition, there are two neonresident sections of Monitor code.
They are the System Interpreter (SI} and the file handl:r (FIP),
These routines are not frequently used and do not need to be core
residznt. FIP is a 4K block of code which resides in the second 4K
hlock of the disk (disk locations 10000-17777). SI makes up a 4K
block of code which resides at the bottom of the disk ({idisk locations
0-~7777). When needed, these routines are brought into field two for
execution. They do not overlay the resident Meonitor; they go into
the first ugzer field. 1In fact, the scheduler sets them up just like
a user program, They run in the place of the user préqram which called
them. For this reason, they are referred to as "Phantons,"”
(FIP = File Phantom). They are not, however, identical to user pro-
grams hecause they are run in exec mode. This means they may read
and write physical disk segments (in the case of FIP) ard get at field
0 and 1 data and subroutines.

9.4 THE WMONITOR DATA BASE

some mention has been made of the tables and buffers used by the
Monitor., Diagrams of the tables and buffers used by the Monitar may
be found in Appendix D. These should be referred to as specif.c
tables are menticned. A brief discussion of the tables follows,

The Monitor does a great deal of dynamic séoraqe agsignment.
It uses a paol of 8-word blocks known as the free list., At system
startup, the unused area in field 1 is divided into these 8-word blocks
and linked together by a list structure.

A location in field 0, called FREE, contains a "pointer” to the
first unused block of free core. A pointer is simply the address of
the first word in the block. The first word of this block contains a.
pointar to the next block, etc., to the end. When a routine needs
some place to store data, it can remove a block from free core,
adjust the list accordingly, use the block, and later return i,

(233 I—_ J £ e | —_—— |]

QRGANIZATION OF FREE CORE

As blocks are removed from and replaced back into free core, a
count is retained of free core size. This is in location FRECHT.
FRECNT always ¢ontains the number of unused 8-word free core blocks.

Nete —<hat all free core blocks begin at an addreas divisible
by 8; that is the last octal digit is a @#. If a free-core block ever
cecms to start at an address which does not have the last digit 0,
the system 2.6 in trouhble.

This free core is used by the Monitor for a variety of purposes.
Terminal bufera are made up of linked blocks of free core; device
and job status information are alsc stored in the free core. Free
core is also used in a number of instances for temporary scratch

storage.

The device handlers for terminals and the assignable devices
make extensive use of free core. Both are based on a single, fixed-
length table of devices, DEVTBL. DEVTAL contains a l-word entry
for each system device (a conscle counts as two devices: keybeard
and telepriater}. 1If the device is unused, the entry is zero. If
the device is active, the entry contains a pointer to a block of free
cora xnown as the Device Data Block (DDB). This block containg the
status informatien for that devica. In addition, there is a buffer
for each device. For most devices, the buffers are dynamically
allocated from free core. As characters are entered from the
xeyboard and put in the buffers they are put inte d-word blocks of
free core. As one block fills, another ia fetched from free core and
linked to it. As characters are fetched from the buffer and passed
to the user program (via trapped KRBs), blcckxs at the other end cf

the buffer are emptied and returned to frea core. Within the DDB

are pointers to the head of the buffer {(the "fill pointe:" which
indicates where the next character ia to ke put into the buffer} and
tie tail of the buffer (the "empty pointer®, which indicates the next
charactar te be pulled ocut of the buffer). Input uffers and output

buf fers work in the same way.

Thus, console input and output coperate independently from the
rest of the system. As characters are entered, they are put into
input buffers {(up to about 9§ characters), If the character is one
designated as a delimiter, the user's keyboard status hit is set. Asg
characters appear in the ocutput buffer, they are typed. Buffers .
expand and shrink to meet the needs of the moment. This is the limit
of the responsibility of the terminal hendler. The terminal handler
merely passes characters and adjusts the appropriate flags.

Just as each active console ig marked in DEVTR.L, each active job
18 marked with a job status table, JOBTBL, which is a fixed table with

a l-word entry for each possible aystem job. HNon-existeni. jobs arxe
marked by zerg entries. Existing jobs have an entry which is a
pointer to an assigned free-core block which is its first job status
block. Each job actually has several blocka of statwa information
linked together; these status blocks contain all information about
this job's running state. If there are open files, blocks exist
which contain their status.

Finally, there are tables the Monitor keeps whizh. indicate the
status of the system. CORTBL, which indicates where jobs are in user
cores, is the most important cof these. : - '

CHAPTER 9

SYSTEM STORAGE AND COMMUNICATION

« 1 TALKING TO THE USER

yntil now. we have assumed that jobs running in the system
ither did no 1/0 or simply did console I/0. In doing this console
¢ 5; characters were passed in a manner analogous to a stand-alone
;-3-8, No menntion was made of how the program was started in the
-_-:.st place, mu_ch less how it was loaded and otherwise controlled.
.-zg2 are functions which, on a stand-alone machine, are not per-
carmed through the términal at all -- they are done through the
siitches on the console. When talking to EduSystem 50, however,
.menais only one physical device, the user's terminal, through
+ich to pertorm these two kinds of communication: communicating
- .th EduSystem 50 and communicating with a user program running as

a i0b within that system.

FduSystem 50 makes a careful distinction between these two
~sdes. A us"er is always uniquely in one mode or the other, dependi
+3 the state of his jok. Whenever a user starts executing a progral
nig console is put in pfogram communication mode. It stays in that
~3de until the program is interrupted or terminated. If the progra
‘5 terminatéd, the console automatically returns to system oormuni-
-3tion mode. It is also possible tc make cne-shot inputs to the

«stem without halting the user program.

In order to minimize confusion, EduSystem 50 has some conven-
tiéns to distinguish between system and user mode. The system alws
syes a period at the margin o indicate that a terminal is in syst
_‘,f:;je and that the system is ready to accep: a new command. The
~~RL/B character tells the system that regardless of the mode ¢f ti
«erminal, the characters feollowing the CTRL/B are to be treated as
syough the terminal were in system mode. Thus, even if the termin
i¢ in user program mode, all characters fcllowing a CTRL/B up to t

~ext carriage return, are input to the svstem.

When the user walks up to an EduSystem 50 console, he firnds it in
system mode. If the user types a carriage return, thereby.entering a
null command, EduSystem 50 responds with a periocd at the margin. The
e ~an then type a command to the system. At this point, tte ter-

winal s oacrually in a special system mode -- it is logged out. This

al Input i5 not echoed tg the terminal, and

b} Cnly selected commands, such as LOGIN, TIME, and VEFSION,
are considered valid,

To the system all other commands are illegal. Thus, the first
thing & user does is type a LOGIN command, which consis:s of the
command LOGIN followed by an acgount number and a password. If the
account number and a password are valid, the user is logged in. The
terminal remains in the system mode, but input is now duplexed and
all system commands are pow valid. (If the login is invalid, the
user must try again.) '

The user remains in the system mode then types a cemmand which
causes a program ta be started. Thig is done by means of the START
command which takes an octal address as an argument. (2 progran
can also be started with an R or RUN command.} The STAFT command

starty the program and puts the terminal in user prograr mode.

Cnce a program has been started, there are two ways to stop it,
thereby returning the conscle to system comnmunication mode, one
way is for the program to execute a HLT, The other way is to type
an 8 (for S5TQP) command to the system. However, since the terminal
is in user program mode, it is necessary to preface this S by a CTRL/B -
in order to get the attention of the system, Notice that by typing
CTRL/B while a program is running, many commands may be =ntered to the
system. Only S, however, will send the terminal back to system mode,
With the other commands, the program continues to run and hence the

terminal returns to user program moda.

So far only three Monitor commands have been discussed: START,
STOP, and LOGIN. There are, however, many more. {They are described
in Appendix B.) s

The ser of commands enumerated in Appendix B is designed o qiveﬁ
the user convenient and comprehensive control over programs. The user
can do debugging tasks with commands such as EXAMINE and DEPOSIT;

store and retrieve programs with commands such ag SAVE, LOAD, and
RUH; and control additional peripherals with commands such as
ABSIGN and HELEASE, ete,

ihe handling of all these dystem commands is accomplished by
means of a nonresident system phantom called the System Interpreter.
5l's task i3 to scan and interpret system Iinput strings and either
execute them directly or reduce them to a concise ccded form to he
' eéecuted by ancther part of the EduSystem 50 Moniter. 51 is called
by the terminal handlers (part of resident Monitor) whenever a system
comnand (ofzen referred to in the documentation as an SI string) is

input.

Characters being input to the System Interpretsr are handled by
the terminal input routines exactly the same way as characters being
- input to a user program. In either case they are placed in the
Multicharacter terminal input buffer until a delimiter is detected,
{(Delimiters for SY stringas are CR, LF, vertical tak, form feed, and
~rubout if the buffer is empty.} It is only when the delimiter is seen
that the two types of input strings are treated differently. 1In the
one case, the characters are passed to the user prugram; in the other

they are passed to SI.

A bit in the input Device Data Block, the "roate characters to
SI" bit, is used to remember that an input string is actually an S5I
string., This bit is always set when the terminal is in $1 mode.
It is also set whepever a CTRL/B i3 input. A ¢omrand to start running
a user program clears the bit,

If the "route characters tgo SI™ bit is set, input characters are

~ checked ag:inst the System Interpreter delimiter mask {carriage return,
YT, FF line¢ feed, and rubout). If the input character is a delimiter,
a seccnd DDB bit, the "SI command delimited” bit, is set, Also, a
scheduler register, COMCNT, im incremented.

COMCNT, at any given instant, reflects the number of users who
have typed in a whole command ta the system and 2re waiting fer a
response. The scheduler ¢hecka COMCNT every time it runs. As long as
COMCHT is zero, everything is up to date. However, 1f CCMCNT »f, this
means that someone has an $I string waiting. In this case, the Systam
interpretar is schaduled to be swapped in and run. It ig brought inte
field two and started up just 23 any other user program. The principal

Jditfference is that 5I, being a system phantom, is run in exeg mode.
This means it can execute [0Ts without trapping back to field zero.
Specifically, it may do a CBF into the Monitor core in order to ‘inspect
DPBs . Wuen 1t finds an "SI command delimited" bit set, S knows what

called ic.

Cnce i1t has found what called it, 51 reads the command string to
find the basic command. SI has a dispatch table for all valid
commands. For commands which take arguments, the string is scanned
to pick them up. If an error is detected anywhere along the line, SI
exits back to the Monitor after typing an error message back to the
user, If the command is valid, SI must decide what to do with i,

51 1s capable of executing many commands on its own. For the rest,
it calls for help. For all file operations, it must call still
another nonresident subsystem, the File Phantom. For thes:z commands,
531 reduce: the input Btring to a concise command code whict is then

passed on to the appropriate portion of the Monitor.

SI itself is essentially reentrant. It gets its inpu:, the
command string, from the Monitor core, 51 operates on it, and puts
any output, either a response string to the teleprinter or a toncise
zommand to be executed by some other part of the system, back into
Menitor core. SI may be thought of as the English language interface
between the user and the system. It allows the user to enter
commands in a simple format, These input strings are translated by
$1 into a form that the rest of the system can understand. It resides
on the disk and is called in to perform this interpretation and

translation function whenever a user reguires it.

9.2 DISK STCRAGE AND FILES

Up to now, the EduSystem 50 disk has been mentioned orly as a
swapping cevice. For each job, there is a dedicated 4K area on the
disk in which the job is stored when it is swapped out. This is not,
however, the only way in which the disk 13 used. The low-order fracks
of the first disk are used to hold an image of .the system. @#~77'7 con-
tains the System Interpreter Phantom. 1gp#F-17777 contains the File
“hantcm, part of which is tables and part of which is code, The entire
3K of FIP is brought in whenever it is called. If FIP updataes any of
its tables, these are written back out to their place within the disk
image. SI, which €ontains no internal tables, is never written back
after it is called. The next 4K of the disk contains an image of the

system initializer. Tt is brought in only at system startup time, it
is not:usei while the system is up. It is kept on the disk to allow
for easy system restarts. The next BX is used to hold an image of
the & :x ad2nt Monitor. It ia brought into fields zero and one by

the initializer at system startup time. It is not accessed by the
running system. Like thé image of INIT, it is kept on the disk to
allow rapid recovery from crashes.

The area of the disk immediatély above the system image is used
for the swap areas. There is 4K for each possible system job. (A
16 usexr sysEem thus uses 64K of the disk for swap tracks. This, plus
the 20X cf system image, totals B4K of disk which is taken for
system usage,)

All remaining space on the diask is devoted to on-line file
storage. 1f the Syséem has more than one disk, thie additional
surfaces are completely devoted to file storage. The file area is
alleocated in 256-word segments,

EduSvstem 50 provides users and user progrars with the capability
of setting up files in this area of the disk and of reading and writing
them. These files may be of arbitrary size; they are, however,
made up of an integral number of disk segments. Creating a file
reserves a segment af file épace on the 4isk and associates with it
the symbolic name specified in the create command. The user may open
this file, thereby allowing it to be manipulated. He may extend the
file a gisen number of segments, thereby reserving more segments of
the disk for the file. Extending a file puts the new segments on the
"end" of the already allccated segments. Reducing a file returns cne
or more segments from those reserved for this file to the pool of
available segments. The user may alsc rename a file. These four
basic functions of creating, extending, renaming and reducing {delating
is accomplished by reducing a f£ile until there is nothing left} have
nothing to do with the contents of the file. They merely define and
reserve a certain amount of space on the disk,

As far as the user is concerned, these segmnents are contiguous,
He addresses, and therefore manipulates, the file as though it were
cne big long disk area. The actual size of the file, as determined
by creates, extends, and reduces, is important only in that a user
cannot write off the end of the file.

F

The file itself is considered to be made up of 12-bit data words.
There are no control words in the file; all the space within a file
which a user has defined is available for program storage. Tre user
addres-2g a file by internal file number and an address withir, that
file. The first word of the file has address zero., Using this file
address, the user may transfer data between a selected part of the 4K
core and the addressed point in the file. Although only 4K may be
transferred between core and a file in one transfer, the size of files
¥ by no means limited to 4K; 18 bits gre allorated Ior digi #ils

CTanlioa ToL Mo DU T TET L IEETT . L0 ST i SuEe

vetween typos of [iles. Al f£ilieg are made up of lZ~bit data words.
Whether these 12-bit words contain single ASCII characters {or, indeed,
characters of any other code}), pairs of trimmed characters, numbers,

or whatever, is immaterial to the system, How the data cf a given
file iz interpreted by a program is, of course, what matters. '

That segments cf a file appear to the user to be contiguous is
an iilusion. Disk segments are, in fact, allocated at random. Edu-
System 50 maintains directories in order to remember the segments
allocated to certain files. As mentioned above, the actual segments
which make up a disk file are pure data area. Segments cf a file are
not chained together; there are no header weords attached to a sagment.

For each user, EduSystem 50 mainta;ns a User File Directory (UFD)
that holds the names of all files a given user is maintaining and the

disk segments of which it is comprised.
HNOTE

The diagrams at the end of this manual
will help in understanding the EduSystem
50 file structure.

The UFD is divided into B-word entries. For each file there is
a single filename entry. The first three words contain the filename
{6 characters packed in EduSystem 50 internal format}.

words 4-6 contain information about this file. Word 3 containe
a pointer to the next name block in this user's UFD. This pointer is -
ssed to chain through the UFD name blocks. The final word of the ’
name block (Word 7} contains a pointer to a File Retrieval Information

3-6

Block. Each name block hae associated with it sne or more of thesa
retrieval blocks., They are alac 8~word blocks and are interspersed
with the nime blocks in the UFD file (hence the nesd to chain the

name l..ocKoji. The first word of the retrieval block is a pointer to
the next retrieval block for this file {or zero if this is the final
bleoek). The next seven words contain a list of segment numbers of the
segments which comprise the file. The file is considered to run from
the first segment in the file to the last. (A zero segment number
terminates the list.) The algorithm for asscc:ating addresses within
a file (th: meang by which a user addresses hir file) and physical adishk
addresses {the system's ways of addressing) is straightforward. The
file address is divided by the segment size. The Juotient is the
logical file segment number. Counting down th. file retrieval block's
list of seyment pumbers to this rumber yields -he physical seament
number. (If the list runs.out too soon, the u.er has run off the end
of hirs fil=.)}

In the actuai implementation, the UFDa are files, They are mad:
up of disk segments just lixe anv other file. {The 8~word blocks
into which the UFDs are divided are merely a siftware division.,} In
order to keep track of these UFD files, there .3 =£till another
directory, the Master File Directory. 1In format, it is virtually
identical to a UFD., It is broken down into 8~word name and retrievai
informaticn blecks. The 3-word names in the name block are, however,
legin IDs rather than filenames. The first word contains the account
number as a 12-bit binary number, the next two words contain the
4-character password, packed in internal code. Taken altogether,
these three words constitute the "name”™ of the UFT. {The MFD is5, nf
course, also wsed at login to see iLf the account number and passworn
are valid.) The file retrieval information black linked to the rname
Kleck {in the case of the MFD, only one retrisval block per UFD 1w
allowed) contains the numbers of the segments which make up the UFD

for the usrer,

To complete the symmetry, the MFD is in turn a disk file made up
of segmens. It, however, always starts with segment 1.

The MFD and UFDs take care of the problen of allccated disk
segments. There is one further table, the Strrage Allccation Table
{SAT), which keeps track of unallocated segme:.ts. SART is a bit rabla
which is set up when the system is initialize-'. It contains a bit

for each segment . . . the bit is cleared if the cerraspnrding segren

9-7

15 available, it is set if that segment is allocated. &AlL requests

tor disk segments get the segments from the S5AT table rou:ines. Simi-
larly, no longer needed segments are returned to the SAT. For example,
Lf 2 f'le is to be extended a segment, the 5A7 routines are called.
They tv.turn with the number of an available segment, whici is added to
the list of segments in the retrieval blocks for that fila., Files are
reduced by deleting the last segment number or numbers from the list
and clearing the corresponding bit(s) in the SAT table.

2.3 TALKING TO THE DISK: THE FILE PHANTCM

Most of the tasks described in Section 9.2 are accomplished by
a second nonresident section of Monitor, the File Phantom (FIP), FIP
handles all disk manipulations extept actual reads and writes., Like
the System Interpreter, it resides on the disk. It is called ty the
Monitor to perform functions which canneot be handied by residert
routines. All tables relating to the disk files are kept within the
4K which FIP occupies. They are swapped in with FIP whenever it is
called. Wwhenever they are updated, the table:s are immediately
written back to the disk by FIP. 1In this way, the disk always
contains all information about itself. The disk is thus protected
against loss in most system crashes,

FIP's primary task is to do the file handling, It maintains the
UFDs, the MFD, and the SAT, performs all the needed searches of
these tables, and executes the basic file commands of CREATE, LEXTEND,
REDUCE, and RENAME as discussed above. These all happen independently
of the resident Monitor; they result in changing the status of the
disk only. PROTECT is similar; it allows the protection code on a
file to be altersad, but nothing more. ' OPEN and CLOSE, however, are

somewhat different in nature.

OPEN and CLOSE do not alter the disk in any way, they simoly
establish a link between the resident Monitor and a disk file. (It~
is important that OPEN and CLOSE do not affect the disk. Newly-
created files exist even if they have not yet been closed out.) Each
job may have up to four files open simultanecusly. Ther: are four
registers in the last jcb status block which record the status of these
four internal files, If there is no file copen on an inta2rnal file
number, its corresponding job status block word is zero. (See diagrams
of job status blocks, Figure D-8.) When a file OPEN commnand is given,

TTO zers up 1 a2w Sils centrol block in free corez. This block is

9-8

usaed to hold pertinent information about the open file. A pointer to
this file cortrol block which remains set up as long as the file is
open, is placed in the job status block register for this internal
file. At the sawms time, FIP sets up a second block in free core for
this file. This block, the f£file window, ¢ontains cne of the file
retrieval information blocks from the UFD, At the t:me of the OFEN,
the first file retrieval information block is put in the window. At
. the same time, the fact that this is the first window is recorded in
a register o the file control block. Once all this is done, the
OPEN is complete. CLOSE merely dismantles all this and zeroes the
register in the last job status bleck which corresposds to this open
file., Opening a file automatically closes any file which was open
on that internal file at the time.

CREATE is the only file command that dees not have to be preacedsd
by an OPEN. All other file commands operate on internal file numbers
rather than filenames. In the case of EXTEND, REDUCE, and PROTECT,
this i3 to allow for file protection. The file protection apparatus
is part of tie OPEN routinea. Piles which are read-protected against
a user cannc: be opened by him. If a user is allowed to read but not
write, he is allowed to open a file but a write-protected bit is set
in his file zontrol hlock in free core. EXTEND and REDUCE are consi-
dered to be the same ag writing. They are prohibited if write-protect
is indicated., The PROTECT command, which sets these variocus modes of
protection, is illegal except for the file owner. Finally, there is
an implied protect on files open t¢ more than one user. If a file to
be opened is already open to another user, it is write-protected to

prevent confusion.

RFILE and WPILE, the file reald and write commands, require the
file to be open, because they need the information .n the cven file
information bleocks. RPILES and WFILES do not, in general, require
FIP to be called. The Resident Monitor attempts to execute them
itself. It takes the file address given as a parameter to the
command and compares it against the state of that fille's window. It
sees if the segments in the window correspond to the part of the file
invoived. If so, it executes the transfer. (Mote, that if it is a
write, the write-protect bit in the file control black block is
checked first.} If the window is not properly set, the resident
Monitor c¢alls FIP to move the window go that it is looking at the
specified part of the file. FIP then returna to the Monitor so that

3¢ can do the tranafer.

FIP is called whenever the Monitor discovers a request that it
cannot handle. Before calling, it must set up the appropriate
command and parameters so that FIP will know what to do., This command
1s always in the form of an I0T; one of the EduSystem 50 IOTs. If
parameters are involved, they are passed in precisely the format that

they are specified for the IOT itself. Thur, CREATE takea three words
of parameters, OPEN 5, etc,

Whatever the IOT, the IOT and all i+

-5 parameters are placed in
block of free.rore A pointer

to this block is placed in the job status
block register referred to as JOBLNK. FIP is then called., If FIP is

to return parameters, it does so in this same block. As scon as the
block iLs no longer needed, it is returned to free core. Some IOTs do
not take parameters. The AC is the only parameter. In this case, no
IOT Parameter Block is needed. ‘The 10T gees into JOBLNK. (The AC is, .
of course, stored in another job status block.) If JOBLNK is leus than
400, it contains an IQT with the first 4 bits stripped off. 1If

JURLRY 13 400 or greater, it contains the acdress of a free-core block
which contalas the 10T,

FIP maintains the Storage Address Table {SAT) which is located
in the high end of FIPs 4K. Whenever the SAT is changed {a segment is
aliocated or deallocated), it is written back to the disk so that the
next time FIP is brought in, an updated version of the SAT will come
in with it. The SAT is the only permanent table that FIP maintains,
It is never changed by a system restart, (Iritializing, of course,
clears the SAT.) All other tables and data areas maintained within
FIP are kept only as long as individual users are logged in. They
are cleared on a gystem restart.

FEP handles all the open-file information lirked into job atatus’
blocks. These are set up on an DPEN, cleared out on a CLOSE, and
suitably updated whenever a file is changed. FIP also maintains some
internal tables which make its operation more efficient. For example,
when a user logs in, FIP opens that user‘s UFD. It gets the retrieval
information block from the MFD and stores if. in a table, - By doing
this, FIPF does not have to scan the MFD évery time it wants to find a
UFD. FIP also remembers how many users are logged in under this
account number or are using a file belonging to the account,

Finally, FIP does all updating of the directories, the MFD and
UFDa. It has a 256-word buffer into which it can read directory

F=ad

segments, FIP scans directories by reading them in one segment at a
time until the desired entry is found. If it is changed, this segment
is then writien back out to the disk. If the directory is extended or
reduced, FIP updates the appropriate retrieval information block in
the MFD.

See Appiondix D for a more detailed discussicn of the FIP tabies,

9.4 DISR THANSFERS

All disi transfers, whether they are swaps, user program 1/0
requests, or FIP table or directory transfers, are handled by a common
disk routine. Most disk transfers go between user fields; resident
Monitor never does transfers into field @, and only the DECtape handler
requests traisfers in field 1, The common disk routine takes a
standard set of parameters which are stored in a bloack of free core.
They are: direction of the transfer, the field invalved, the disk
addresa {physical), the core addresa, the number of words to be
transferred, and the address of the routine to go to when the transfer
has heen complated, The disk routine sets up the transfer, does it
and then dispatches. If it tries three times and fails, it dispatches
to an error handler instead.

Since reguests to do disk transfera can pile up, there needs to
be some place to queus them. . In the case of swaps, there is a single
register SWREQ. If it is zera, no swap is pending. If it is nonzero,
it points tc a parameter bleck for the next swap, in or out. Swaps
get first priority. When the current transfer is done, this swap

will be done next.

All other transfer requests are held in DSUTBL (often referred
to as the disk gqueue). DSUTBL has a A-word entry for each core field.
A nonzero ertry indicates that a transfer is pending for that core
field. (The entry points to the parameter block.) Within the 4-word
entry, each word corresponds to an open file. Thus, if the job in
field 3 wishes to read open file 2, it executes an RFILE., The
resident Monitor uses the retrieval window for that file (caliling FIP
to move it, if necessary) to figure out the physical disk address. It
then builds a parameter block in free core, and puts a peinter to it
in the third word of the DSUTBL entry for field 3. The program is
then put into the wait state until the transfer is ccmplete. 1t is,

however, prevented from being swapped while this transfer is taking

g-11

place. This is done by setting the LOCK bit in CORTEL to lock the user
into core. This bit is cleared when the transfer is completied. (Disk
transfers on the system disk and the RK05, and card reader t:ransfers,
tthich are not buffered in Monitor core, require that the program

remain in cere,) Even FIP, when doing directory transfers in and out

of its own area, or writing out its internal tablea, -ases the DSUTBL
for queueing reguests.

9.5 ASSIGNABLE DEVICES

All EduSystem 50 systems include a high-speed paper tape reader.
Sume may include opticonal devices, guch as a high-speed punch and
DECtape. These devices comprige the assignable devices for the sys-

tem. They may be used exclusively by individual on-liale users.

Assignable device handling breaks down into three sections:
assigning and releasing the devices, a device handler, and ceode to
pass data between the Monitor buffers and the user program. Assignable
devices have their slots in DEVTBL just as the terminals do. If the
device is not assigned, the corresponding register in DEVTHL contains
zero. When a user reguests a device (and it is available) a Device
Data Block 1s set up and linked into PEVIBL. Within tha DDB is
stored the number of the job which now owns the device. Whenz2ver a
refereﬁce is made to this device, the referencing dob is chec<ed
against the job number to assure that it is the right cne. WNo error
checking is done at assignment time. Thus, all eight DECtapes could
be assigned even though only two transports exist. When a user
releases the device again, the DDB is freed and a zero is returned to
the DEVTBL entry. Also, the amount of time that the device was
assigned 1s added to the user's device time. 1In this way, usc of
assignable devices is reflected in the accounting informatien.

Different assignable devices use different methods of bulfering
tneir I/0. For example, the paper tape reader, which uses a free-
core buffer, is activated by a RRB IOT. Pinding the buffer empty, the
Monitor puts the user job into an I/0 wait state. This clears its
reader flag and sei:s the corresponding bit in the wait mask. It then
sets up the reader service routine to read characters inty the reader =
buffer. When the buffer has been nearly filled, the user's re¢ader
flag is reset, making the program runnable -again. The program then

executes successive RRB IOT=s to pick up individual characters, When
the buffer empties again, the process repeats,
the buffer by executing an RCB ingtruct:icn.

The user may clear

Cperation of thae high-speed gunch is very similar. The running

pregram passes characters to the Meonitor, via trapped PLS instructions.

These go into the punch buffer. If the buffer £ills, the job goes
into the wait state until it is emptied again, One difforanca is thav

- punching is bequn whanever any charasress are in thm rusgh

tos¥tmy
The MOnitor does not walt for the pulfer to ... g Boo& wnrt s
FIET I3Y LVEIISS g pAti v 4 wimE gl iy 4 ks &% W e el
vrz il i fine g

FLAtar I8 nandied in & manner Sl ar kA

[k RS A 1)
speed punch.

DECtape handl:ng is different.
~assigned and returned when released,

ET5tapes, the Moniinr regesv

DDBs are ser up when they are
Since there are zighe

25 eignt words in LEwHL
zTe used for reads and writaes.

RGinla
Tra eern LA

Bince the DECtaps controilae AL riwm
. acress to only one transport ak a timn,

Ehemen Sn neo pooaat o LN SR Y]
- a Monitor buffer £3r aach onn. In farre,

bhmre M mnd g cn, e gar U s
cf the nunber of units. At the tirg a usar LRCrgr ot 1 m gt b

transfer, the Monitor starts the desired transport toward the
requested block, and the job is put into a wair atata. When the block
is almost at hand. the Monitor amsigns the DECtape buffer vo that
job, stopping the tape to wait for the buffer if necessary. On & read,
the selected block is now read into the huffer, and transferred to
_.the user, either ty transferring to hia core field or by writing it to
. nis swap track on the disk. Conversely, on a write, the tlock is
moved from the user's core or from his swap track to the CECtape
puffer, and then written to the tape.

The RK0S5 and card reader are similar in that they both lock the
yser into core and transfer directly to/from his buffer.

Although these are the only peripheral devices supported by the
pduSystem 50 Monitor, they provide a good model for users who may wish to
incorporate their own special devices. In all cases, three software
podules are involved: one to handle device assignment, one to handle
data transfers between the user program and the Monitor, and one to de
the actual device handling. Space in the Monitor is available but
ot in large quantities.

9-13

9.4 ERROR HAHULING

The EduSystem 50 Monitor allows the user program a great deal of
wreedon 1n the way it uvtilizes system resources. Therefore, system
error checking is kept to a minimum. A user may have a job do anything
that does not affect another job, or the system as a whcle. For exam-
ple, a program may wipe itself out without interference from :he system.

The first level of error handling comes when a user program
requests the Monitor to do something it cannot do, for exampls, cpening
a file that does not exist, or reading from an internal file number for
which no file is apen. For all such logical errors, the Moni:-or
returns an error <ode to the user program. (For more informa~ion,
see Appendiz B.) Not all of these errors are simple
iggic problems. For example, trying to creste or extend a file when
the disk is full returns an error. Running the same prcgram some
other .ime would give no error. Another norn-~logic error is tne parity
error or directory error on a file read or write. This is ths result '
cf physical malfunction of the disk, a transfer error occurred either
within the file itself or within one of the Monitor's directories.

The second level of error handling also comes when a user program
requests scmething which the Monitor cannot do. For exzmple, the user
program reguests gervice from the high-speed reader when somepne else
cwns it, or when it is assigned properly, but there is ro tape in it.
Another example is a physical disk error when trying to swap this job in
or out. In these cases, 1t is impeossible for these jobs to continue.
Therefore, the HMonitor terminates them, and types out ar error message
and the state of the active.r&gistars. User programs may, however,
requesat that they be allowed tc¢ handle such problems. They do this
by executing an SEA IQYT, which gives the Monitor an address to JMS to
when such an error occurs. This routine is responsaible for finding
ocut what the error was {(the error code is in job status word 1 where
it may be fetched by a CKS IOT)}, and responding to it. The user must

clear the error status via a CLS IOT.

The Monitor also does internal error checking which is not
apparent to the user., All disk transfers are tried three times. Only
after the third try is a disk transfer error actually reported. All
I/0 devices except the system disk have a timer. Rach time &n I/0
operation is started, the timer is set for a number of seconda,
depepdling cpon che Jdevice., II an interrupt does not occur berore the

timer times out, the Monitor will signal a hung device. 1In the case
of a terminal printer, the putput buffer is simply cleared. All other
devices report a system errcr when hung.

When the punch or line printer hangs, the Monitor reports the
error and attempts to re-report 1t every five secondsa until either
the device is put on line, or the device is released, In the first
case, output vontinues, and in the second, the buffer is cleared.

If 51 is called to report a hung device, it will report it only once.
1f 81 continuas to ke called every 5 seconds, it will simply ring the
terminal bell, trying to get the user to do something.

APPENDIX A

UTILITY PROGRAMS

The following programs are usad commenly in EduSysatem 50. The
information ¢iven here is meant to be only a quick summarv of their

use. For more information, refer to Users Guide.

A.l BASIC

Type R BASIC to execute BASIC. BASIC asks "NTW OR OLD?.”
arswer CLD to executa a program stored on disk. BASIC asks for the
name of the program. Respond with the name if the program is storaed
under your account number. If the program is stored under account 2,
respond with the name immediately followed by an asterisk. Optlonally,
follow the pame with a space and an account number.

BASIC naQ responds with "READY." You may now add or change any
lines simply by typirg them, list the program by typing LIST, or run
it by typing RUN, To interrupt a running program, type a CTRL/C. T2
return to the Monitor from BASIC, type BYE.

A.2 car

A user may type R CAT to run CAT, and cbhtain a listing of disk
files.

The aystem manager, logged in under account 1 may type R (AT to
run CAT and cbtain a listing of ali users, their parnswords, amount of
time used, etc, The accumulated time may be reset by answering "YES"
to the gqueation "RESET?".

The system manager may type & R CAT:L to get a diask directory of
any user, CAT asks the account number of the direct:ory it is
requested to list,

Any user may type R CAT:S to obtain a short SYSTAT.

The system manager may type R CAT:R to reset all users'! CPU

rime.

A.3 LOADER

The LOADER loads BIN format files into core from disk. For inpue,
type the name(s} of the input file(s}, separated by commas. For
option, specify D if debugging using ODT is desired. Normally, just
give a carriage return. The LOADER will not correctly load Locations

7767 - 7777, 1f ODT is used, locations 4 and 7000 to
must be reserved for it.

~1

~J
=]
1

A.4 LOGID

The system manager {account 1) may define, change, and Jdelete
sccounts and passwords at will. Swme Section 6.1, defining accounta
and passwords.

A.S LOGOUT

LOGOUT is run in response to the LOGOUT or KJOB Mconitor commands.
See LOGOUT under Monitor commands for additional details,

A.6 PIP: PERIPHERAL INTERCHANGE PROGRAM

PIF moves files between paper tape and disk, deletes disk files,
or prints them on the line printer. PIP has been replaced by PUTR,
However, in case some systems desire to use PIP, here are inatructions.

When PIP requests INPUT or OUTPUT, respond with a carriage return
only, to specify a paper tape reader, paper tape punch, or terminal,
Respond with a filename for a file under your actount. Respond with
a filename, space, then account number for a file stored under

someone else's account.
when PIP requests OPTION, choose from the following list:

B - Transfer a BASIC program file between the disk and the |
high-speed reader or punch. The responee to INPUT: and
CUTPUT: indicates thea direction of the transfer. '

A2

D - Delete the file specified for input.
F - List a BASIC program on the line printer.

K - load a save format paper tape from the terminal. The
Monitor must be patched to enable this option to operate
properly, as it normally forces the parity bit on for
terminal input.

L - Transfer an ASCII file from the disk to the line printer.
P - Punch the contents of a disk file on the high-speed punch,

R - Read a tape from the high-speed reader and store it as
a disk file.

S ~ Tranafer a SAVE format file between tre disk and the
high-speed reader or punch. The response to INPUT: and
QUTPUT: indicates the direction of the transfer.

T - Tranzfer a file between the disk and the terminal reader
or punch. The response to INPUT and CUTPUT indicates
the direction of the tranafer.

A.7 SYSTAT

SYSTAT may be run to chtain the status of the system by typing
SY cr SYSTAT. The SYSTAT may be cutput to the line printer by typing

SUUTAT L.
A.8 PUTR

PUTR i3 a program designed to transfer information from any
EduSystem 593 device to any other EduSystem 50 device, with numerous
options for different formats., For further details see Uscrs Guide

A.9 PTLOAD

PYLOAD is TSS/8's version of the Binary Loader. To use FTLOAD,
load a binary tape in the appropriate tape reader, and type
"R PTLOAD"™. To “OPTION-*, respond with np* for the terminal (low-
speed) reader, or "H" or any other letter for the high-speed reader,
when using the low-speed reader, fturn it off when the tape reaches
trailer code. Binary tapes may not be read from a terminal without

patching the monitor.

A,10 GRIPE

GRIPE is a program which allows any user to leave a message for
the system operator. To initialize GRIPE, log in under account 3 and
type "R GRIPE". GRIPE should print "THAT'S ALL", and return tc the

Monitor. The initialization is complete.

To use GRIPE, any user types "R GRIPE", GRIPE prints "ENC WITH
ALTMODE", and then allows the user to type his message, after which
he should type an ALT MODE (sometimes labelled ESCAPE).

When the operator desires to read the collected messages, he
should log in under account 3 and type "R GRIPE", After the messages
have all been printed, they will be deleted and GRIPE will be ready
to collect more messages,

NRIPE stores gripes in an unprotected file under account I named
" GRIPE" Any user who discovers this can remsd or destroy this file

if he wishes.

A,l11 CTHER PROGRAMS INCLUDED IN THE LIBRARY:

CATALOC may be LISTed under BASIC for a list of some BASIC
games and demonstration programs.

PLOT is 'a FOCAL program to plot a damped sine wave,
RAMURS is a FOCAL game, as is ROCKES

HAMURA and ROCKET are saved images of BAMURS and ROCKES which
are run by simply typing "R HAMURA"™ or "R ROCKET",

WDGAME is a FORTRAN demonstration. It may be used as follows:
«R FORT
INPUT -~ WDGAME
CUTPUT -
INPUT - DATA
QUTPUT -

MATRIX is a FORTRAN demonstration which multiplies 2 sgquare
matrices,

TYPE is a PALD demonstration program., Wwhen assembled, loaded,
and started at 444 it prints "Pl23456789".

A-4¢

AL32 TELD DGO

The following prograns arxe wrltton ocpocifically +o run under
pduSystem 5C and to test various capabilities of the Monitor.
Thege programg can be used as system confidence tests, or
they may be used by service personnel to exercise peripherals
without bringing down EduSystem 50.

| A.12.1 TSTMEM |

This is an EduSystem 50 memory diagnostic, If an error is
detected, the diagnostic prints a message or halts.

€

Execution:
‘To execute TSTMEM, type "R TSTMEM". The program prints "il"
occasionally to indicate that it is running. Otherwise, the

program runs until an error occurs, oxr urtil it is stopped.

- A.12.2 TSTDT
This is an EduSystem 50 DECtape diagnostic which writes and
reads random data on random blocks in a random directiecn with

a random current address. Data and status errors are raoorted,

and a status report is availabhle.

Execution:
If a line printer is available and on line, type "R 7Z7.7:.Lr",
where n is the number of a DECtape drive which has a

scratch tape mounted on it. The drive should be placed in

A-5

remote, write enabled. If a line printer is not available,
type "R TSTDT", and the diagnostic will ask for the desired

unit number.

The diagnostic initially confines itself to the first 200
biocks on the tape. After a short while, it prints a

status report, and then begins exercising the entire tape.

STATUS REPORTS:

Typing any charactexr other than CTRL/C causes a status repﬁﬂ
to be printed. If the character is an E, the diagnostic wﬂi-
stop after the status report (the operator may type "START"
to continue). The status printed includes the total number '
of blocks read and written, the numbexr of words of data ert@f
the number of status errors, and the Inclusive OR of all .
status bits returned by the Monitor. Thesie status bits

correspond to TCOl/TCO8 status registex B.

ERROR REPQORTS:

If a status on data error occurs, the printed information
will include the DECtape ﬁnit number, stétus A and B for thfi
transfer, the block number of the transfer, and the buffer
address. In addition, if there were data errors,'a tally
will be printed, followed by the locations in error.- rheg“
first address in the block should be the.plock number. Thig
will be at the high end of the core buffer, if the block wat

read in reverse. The data is printed as it would appear in

vy 1f the block had been read in the fomwand dircection.

sonever a read error occurs there ig no way of knewing

-~y long ago, or in which direction the block was written.
-: the user desires to stop a long error report, he types

y CTRL/C. This halts printing and resumes testing.

. 12.3 TSTRK

‘~is is an EduSvstem 50 RX05 diagnostic which writes and
-pads a random number of pages of random data beginning
;z a random core address and a random gector. Data and

;tatus errors are reported.

jgmécution:

¢f a line printar is available and is on line, type "R TSTRK:Ln",
:ﬂwre n is the aumber of a disk drive which has a scratch pack
-ounted on it. The drive should be iﬁ the ready position, not
site-protected, If a line printer is not available, type

rg TSTRK" and the diagnostic will ask for the desired drive number.

she diagnostic exercises the disk until it is stopped.
after 4096 transfers, it prints a "PASS COMPLETE" messace.
7o exit from the test, type E, followed by a carriage
return. If there is a long data error, prini:ing can be

stopped and testing can be resumed by typing CTRL/C.

ERROR REPORTS:

If an error cccurs, the transfer parameters are printed.
This includes whether the transfer was a read or a write,
the unit number, the number of pages in the transfer,

the RK05 status, the contents of the AC after the DLAG,
the initial sector, and the beginning current address.
The status returned corresponds to the RK0S status register,
but will be 0 if no error has occuxred. 'The value returned
in the AC, after the DLAG, should be the number of blocks
successfully transferred. If the transfer is completed
normally, this will be (P+1)/2, where P is number of pages

transferred.

In addition, 1f data errors were detected, the information
printed will include the disk sector number where the error -
occurred, the address within this sector (0-377) and the

good and bad data.

A.12.4 TSTPT

This is a test of the high-speed paper tap2 reader and pund
The test punches the special binary count.pattern and reads
either the special binary count pattern, OR A ONES AND ZERJE

TEST TAPE.

mornertt o

gype "R T3TLPWY. The tosh prints a gquick option suvmmary

and waits for a command. If a P is typed, the punch begins
punching. After a sufficient amount of tape has been punched,

type P again to stop the punch.

If an R is typed, the reader starts when the test reads the
_first non-zero frame,; it deci&es which type of tape is in
the reader, and then it continues. 1If the user wants to
stop the reader, he has to type another R. Typing CTRL/C

" gauses the test to halt after releasing the devices.

ERRORS :

if the first non-zero frame, on a tape being read, is

not 001 or 377, the test prints a message requesting the

" paper tape. If an error is e;countered within the tape, the
expected and read values are printed. Because of the buffer-
ing by the Monitor, the physical position ¢of the tape will
not be close to the frame in error. If a "HUNG DEVICE"
meszage is printed, the paper tape punch is probably not
turned on oI is not responding for some reason. This could
also occur if the reader was turned off. If the reader
hangs (reads to the end of the tape), the message "READER
ASSUMED", may be printed. When a device is8 hung it is not
always possible for the test to know whether it was the
reader or punch which hung. But if it was wrong, the punch

will hang again in a few seconds.

An "ILLEGAL IOT" message probably means that another job owns
the punch or reader, and it cannot be assigned. The PC does

not necessarily point to the invalid IOT in question.

A.12.5 TSTLPT

This is a test of the ability of EduSystem 50 to output to the
terminal and the line printer. Tﬁé test will randle 72, 80,

or 132 column printers or terminals, 64 or 96 characters, and

four different patterns.

Execution:

Type "R TSTLPT". The test prints a gquick opticn summary and
then waits for a command. If a "T" is typed, the terminal
begins printing. If a "T" is typed again, the printing stops.
The same is true of "L", and other commands may take some time

to take effect.

Typing a 0, 1, 2, or 3 causes the pattern on tke line printer
or terminal to change. If "T" was typed more recently than "L%
the terminal pattern will be affected, and conversely, if "Lv
was typed more recently than "T", the line prirter pattern

will be affected.
Typing a 9 causes the line printer or the terminal to use 96 -

characters. Typing a 6 restores the normal case of 64 charactel

This affects "L" or "T" as above.

A-10

mryning a 7 causes the line printer or terminal to use 72
columng; 8 causes the line printer or terminal to use 80
columns; W (for Wide) causes the line printer or terminal
~ to use 132 columns. -Again, this affects either "L" or "T"

as expiained above.

Typing CTRL/C causes the diagnostic to halt and the line printer

to be released.

- Errors:
 _The diagnostic itgelf detects no errors. Printed output should
pevisually inspected. If the line printer is not on line or

does not respond, the monitor prints a "HUNG DEVICE” message.

A.12.6 TS5STBAS
This is a test of the ability of EduSystem 50 BASIC to interact

with a user.

Execution:

Type the underlined parts 3f the following dialoque:

<} _BASIC

NiIW OR OLD--0LD
0.D PROGRAM NAME--TSTBAS*

READY

RUN

At this tim2, there is a pause for compilation. Then ianstruc-
tions for use of the program are printed. To terminats the

test, do the following:
°g

HEADY

BYE
1 BS

A-~11

A.12.7 TSTFOC
This is an EduSystem 50 FOCAL program which plots a damped

sine wave on the terminal, testing terminal output.

Execution:

To execute TSTFOC, type "R TSTFOC". Thé progranr prints an
asterisk (*). Type G, followed by a carriage return,

and the plotting should start. TSTFOC continues until it

1a stopped.

A-12

APPENDIX. B

MONITOR COMMANDS

An alphasetical list of all Moenltor commands is included hare to
make it easy to find any particular one, Some are restricted, and
may be used only by someocne logged in under account 1 or 3.

wWhen typing a command, it is not always necessary to type the
entire word., 1In fact, each command may be shortened as long as that
command does not become ambiguous. For example, EXAMINE may be typed
instead as EXAMI, EXAM, or even EXA. However, EX or I cannot be used,
because there is a command named EXTEND, and System Interpreter (SI)
would not knew which one was wanted,

All numbers in SI commands are cctal, with two exceptions.
The word count in the EXAMINE command and disk segmert. counts in
all cases are in decimal.

Commands may be concatenated by putting a semicolon between them;
for example, DEPOSIT 0 5000; EXA 0 1l: START 0 causes three commands
to be executed in sequence. Some commands may be entered while a
pragram is running. To do this, preface them with a CTRL/B. CTRL/B
foliowed by AWUERE will allow a user to find out what hia program is
doing without stopping it.

All commands, terminated by a carriage return, 2avae SI to be
read from track 0 into field 2 to interpraet the command. Many
commands require File Phantom (PIP) for processing. BSI then cauaes
FIP to be read from track 1 into fleld 2 over SI and executed. When
FIP is finished, it must cavse SI to be read in over PIP to finish

up.

Nota that the functions of many of these commands may alsc be
accomplished by having a program execute a UUO, which often results
in ¢alling FIP,

8.1 ASSIGN

Purpose

To allow a user to reserve a device. Devices are:
R - High-speed paper tape reader
P - High-speed paper tape punch

L - Line printer

D - DECtape o

C -~ Card reader

K

- RK8E

Example

«A R

R ASSIGNED
A D

D @ ASSIGNED
A D4

D 4 ASSIGNED

Note that one may eithexr request a specific DECtape unit or one
can request any DECtape unit. The same is true for the RKSE.

f a specific unit is not requested, an available unit is assgiw:

How? SI calls FIP to complete this cormand. FIP checks
whether the user will get the device and, if so,

sets up a DDB and puts its address in DEVTBL.

B.2 BREAK

Purpose

To fiﬁd or to chanée the value of the user's break mask.
When in user mode and tyﬁing at. the keyboard, the user's
break mask dstermines which characters are significant
encough to caase the user program to restart execution (if
it is waiting for input). See IOT 6400-KSB Appendix C

for details.

Example:
«BEREAK 40p3

+BIEAK
48349

First, the break masgk is set to 4000. Then its value is

determined.

How? The break mask is kept in the third word of thea
keyboard DDB. It is retrieved from there or

stored there by SI.

B.3 BROADCAST

Purpose

To allow a message to be sent simultaneously to all users.

May be used only by 2 user under account 1 or 3.

Example:

« BROAD THE SYSTEM IS GOING DOWN FOR P4 IN S MINUTES
#%# THE S5YSTEM IS5 GOING DOWN FOR PM IN S MINUTES

OK

The message is sent to everyone, including the sender.

Yiow? The message is simply jammed inte all output
buffers. &I checké to make sure the account
number of the sender is 1 or 3, If free core
runs out before the message has been given to

all terminals, SI returns the error message

"BUSY". Otherwise, the message OK is printed.

n.4 CLOSE

Purpoae

To inform the Monitor that the user is finished with a file.

See OPEN.

Example:_

+CLOSE 2

More than one unit can be specified at the same time.

Example:

LLOSE B2 1 2

How? FIP is called to process the command. FIP
‘simply undoes everything done hy an OPEN

command.

B.5 CREATE

Purpose

To allow the user to create a new file with the length of one
segment. The file must have a name congisting of 1 to 6 cha:-
acters, the first one being a letter. If a file already

exists by that name, it is first deleted.Under acccunt 1, the

crea?e command will not delete files (UFD?
duplicated account numbers to be created.

Exanple:

S) nor will it allc

« CREATE FILE23

flow? FIP checks for validity of the command, deletes
any file named FILE23, makes a directory entry
for FILE23, and reserves one disk segmeni: for
the file. A protection code of 12 is assigned

o the new file {see PROTECT).,

3.6 DEPOSIT

purpose

To allow the user to change any words in the 4K of core at

will. The user gives any address, and up %o ten (decimal)

values in octal to deposit.

Example:

+DEP 10 7001 6046 5210

This deposits3 a simple program starting at leccation 0010.

How? As needed, SYI either stores the values directly

in the user's core area or writes the information

t> the swap area on the disk.

B.7 DUPLEX
Purpose

To put the user's terminal into duplex mcde. Normally,
when a user program is being executed, and the cerminal is
in user mode, characters typed aﬁ the keyboard are not
printed unless the program causes it. Putting the terminalp.n

in duplex mode causes the Monitor o perforn this function

automatically.
Example:
+« DUPLEX
How? SI sets the duplex bit in the terminal keyboard

DDB. This is bit 4 of the first word of the DDB.

5.8 EXAMINE

urpose

" allow the user to examine his 4K of core at will.
-ype the initial address first, and then the number

2f words wanted (in decimal, up to 10), if greater

than one.
xamples

+EXAMINE 10 2

7021 6046

+EXA 12

5810
fow? SI either takes the information directly

from the user's core or, if necessary,

reads the information from the user's swap

area.

B.9 EXTERD
Purrose

To increase the size of a file. The file must b2 opened first
(see OPEN). Give the internal file number, and then the numbe:

vf segments (in decimal).
Enample
+EXTEN 1 1@

Tiiia extends the file, which is presently open under internai'_

file number 1, by ten segments. The segments are added to

+he end of the file; any previous contents are unaltered, Any

f.les belonging to account 1 (MFD and UFD's) may not be extmﬁ»;

How? FIP processes the EXTEND. FIP reserves the requiﬂl_
disk segments by setting bits in SAT, and makes the

necessary changes in the user's directory.

B.10 F
Purpose

To get information about a file. The file must first be

bpened (see OPEN) .

Example:
Protectem
Code
«F 1 r'4
#@a3 FILE23 qg 12 1)
; b st Tgie
accowmt | Ertpse

fﬁ14 FLiipae
This indicates the file currently open under internal

file number 1 belongs to user (or account number) 3,
is named FILE23, has an extension of 0, has a protection
code of 12 (see PROTECT), and has a size of 11 segments

(decimal).

How? - PIP is called to ohtain the needed informa-

tion, which is then printed by SI.

B.11 FORCE
Purpose

The FORCE command helps the system manager control the other
users, If desired, the manager may interrupt or even log out
& user. The FORCE command allows the system maniager or operato:
(anyone logged in under account 1 or 3) to connect to any other -
terminal long enough to issue a command. For example, if the
user at keyboard 10 has the reader and will not release it,
the system managei may type:

+FORCE 12 RELEASE R
RILEASE R will be printed on the user's console [just as though

tlie user had typed it), and the reader will be released.

The PORCE command works exactly like typing on the affected
console. Commands entered by FORCE are freated &8 Monitor c&r.
mands only if that console is in Monitor mode. The user at g
console uses the CTRL/B (echoed +B) to put the console in Monﬁ-i
mode. Within a FORCE command, + is used to indicate that the
next letter typed is a control character. For example, the -
above command should really be typed:

+«FORCE 18 tBS3 RELEASE R
The uparrzow followed by BS (not CTRL/B followed Ly S) acts jus:
like CTRL/B followed by S and assures that whatever the userﬁtf
console 10 is doing is terminated, allowing the release comm#ﬁ'ﬂ

to be executed. In general, when forcing a Monitor command:

B-12

precede it by an uparrow followed by BS and semicolon, as
shown above. Terminating the force comrand with a form~feed
(CTRL/L) will prevent a carriage return from being sent ‘o

the forced terminal.

For example,-if the user at K10 complains that his terminal
is completely dead, the operator may discover with SYSTAT
that he typed a CTRL/S accidentally. To restart this user,

the operator may type:

+ FORCE 12 190

and terminate the command with CTRL/L (Form Feed) instead
of a carriage return. Terminating with CTRL/L is also use~

ful when forcing a CTRL/C to a user.

When bringing down the system, the following command wi'l

stop most obstinate users:
+« FORCE 10 tB®BS;K:q

Care should be exercised. If there is an error in typing the
FORCE command, the error message may show up on the forced

console, and the user will not know what happened.

How? The forced command is zlaced into the proper
keyboard buffer. If the command includes an
uparrow, the next character is changed to a

control character.

B~13

B.12 KJOB

Purpose
A KJOB is identical to LOGQUT in function. See LOGOUT.

B.13 LCAD

Purpose

The LOAD command allows the user to load the core area with
data from a disk file. Often, this file is created by a SAVE
cermand, and has an extension of (SAV. To use load, type
{Qsparated by spaces):

a) LOAD

b) The account number the file is under. May be
omitted if it is the user's own account.

c) The name of the file.

d) The address within the file at which to start.
I1f omitted, 0 is assuned,

e) The address in core at which to start. 1If
omitted, 0 is assumed.

f) The address in core at which to stop. May be
omitted. The transfer will continue until one
of three things happens:

1) The end of core is reached

2} The end of the disk file is reéched, or

3) The core stopping address {(if given) is femf'

B-14

Exampless:
aLOAD PIP
«LDAD 2 SYSTAT

+LOAD PIP 200 300 400
+LOAD PIP 208

The first example reads the file named PIP into the user's
core, starting at location zero. 'The secend example does
the same task for the program SYSTAT which is stored under
account 2. The third example reads 201 words from the file
named PIP into core, starting at file address 200 and con-
tinuing through core address 400. The fourth example reads

the file PIP starting at file address 200 and core address {
How? SI calls FIP to open the file under internal numbe:

3, and then passes a RFILE parameter block to the

file handler in the resident monitor.

B-15

B.l4 LOGIN

Purpose

To notify the Monitor that a person wishes to use a terminal,
and to give an account number and password. Type LOGIN,
then a space, the account number, a space, the password,
and then a carriage return. If the LOGIN command is
terminated with a line feed, the login message will not be

printed.

Note that the command itself is not printed, to protect the

password.

How? First, SI checks the command for validity. Then
FIP is called to set up a number of tables to
indicate terminal assignments, what time the user

obtained it, and the user’s job number, etc.

B~-16

- 15 LOGOUT

::ypose

-y indicate to the Monitor that the user is finished and ready to

.save the term:inal. Also, LOGOUT gives the user a number of

_:ﬁwenient cptions. Type LOGOUT:? for an explanation of opt.ions,

.- substi

tute one of the following for the ?2;

to cause the LOGOUT to delete all non~protected filass,

to list the user's disk directories.

to save all non-temporary files, or

to individually determine whether to save .or delete

each of the user's files. Each filename will be printed.
Type a P if it is desired to protect this file, an 5 to
save it as 1is, or a carriage return only to delete the
file.

to logout guickly and quietly.

¢ﬂnhg ne option causes a logout with the default option, which 1is

,.$

 sxample:

LOGOUTE]

NK +ASC

«RT +SAY
| P
:ILE23

<12» 1+ BLOCKS

<l2% 6+ BLOCKS 31 §

<l8> &« BLOCKS ¢ § :
<12> 1+ BLOCKS : DELETED
<[2> ile BLOCKS : P

8 1s USER [@, 3] LOGGED OFF KO0 AT 21:16139 ON 20 JUL 74

CILETED
“NTIME @0

2 FILES ¢« 2+ DISK BLOCKS?

ILES ¢ 23. DISK BLOCKS)
1331168 ¢ 1. CPU UNITS)

~APSED TIME 20106349

n_.17

B.1lg6 OFF
VAT e

When the manager desires to bring down the system for vario: -
reasons, the OFF command is given. .YThe manager must be loggedif
under account 1 or 3). Then, anyone who does a LOGOUT cannot L0%
unless the account number is 1, 2, or 3. See ON. The managerC?

then broadcast warnings and/or force a LOGOUT.
Examule:

« OFF

w? SI sets: FIFFJ in field 1 to 7774, allowing only accos .

1, 2, or 3 to log in.
B.17 ON

Furpcse

S
Al

The opposite of the OFF command. See OFF. Used by accom¢*=
only. The system is restored to its normal state so that any us® -

may LOGIN,
Example:

«ON
How? SI sets FlOFFJ in field 1 to ZERO, its normal value. - .

B-18

1.18 OPFEI
Purpose

Whenever files are manipulated by the user, they are
identified by "internal file numbers." At any one time, a user
may have access to up to four files, with internal numbers ¢
through 3. The open command associates the internal file
numbers with the actual file on the disk.

Example:
«OPEN 1 FILE23

Assuming that file FILE23 already exists (see CREATE)},
this statement now allows the file named FILE23 to be refarencad
with the intzrnal file number 1.

Account 1 may open any user file and not be protected
regardless of the setting of the filels prctection word, provided
the file,is not open to anothexr user. Account 1 files are
always write protected even against account 1.

Account 1 has the privilege of deleting any file which 1is
not in use merely by cpening and reducing the file. For axample:

+OPEN @ GAMES 14.,3;REDUCE 2 3900

will delete the file GAMES which belongs to account 14@3. See
alsc REDUCE command ,

B.19 PROTECT

Purpose

Fach file has a protection code assigned. This ccde

- determines who may read or write the file. The protecticn word

is stored in the disk directory, and includes the protec:iinn
code and the filename extension, as follows:

0 1 2 3 4 5 6 7 8 9 10 11
Filename Extension Unused Protection Ccde

Bit 11, if 1, means that the file cannot be read by users
whose project number differs from the owner's.

© Bit 10, if 1, means that the file cannot be altered bv users
" whose project number differs from the cwner's.

Bit 9, if 1, means that the file gannot D@ r2ad o7 U3II3 WALl
project number is the same as the owner's.

' pit 8, if 1, means that the file cannot be altered by users
whose project number is the same as the owner's.

i

Bit 7, if 1, means that the user cannot alter his own file,
without first changing the protection.
B-19

NOTE

A user's project nunbar is the first 2
digits of the 4-digit account number,
The asystem normally sets bits 8 and 10
for the uper protectlon code 12,

The filename extengion gives additional information asbout the

file, which is printed in some directory.listinge, The filenome
axtengsion codes ara:

0 blank
1 JASC ASCII files, such as FORTRAN sourca.
2 .SAV Sava format files.
k! LBIN Binary files; must be loaded with program
LOADER,
4 .BAS BASIC source file,
5 BRC BASIC compiled program file.
6 LFCL FOCAL file.
7 .THP Temporary file
10 blank
11 .DAT BASIC data file.
12 .LST Listing file
13 .PAL PAL scurce

14-17 blank

The protection word may be lit by using PROTECT:
+FPROT B 8217

This changea the protection of the file open undar internal file
number 0 so that the file ham an extension of ,ASC, and that it cannot
be raad or written by any person other than itg owner.

This command changes the protection word of the file, currently
openad under internal file number zero, to F217. Since bits F-4 are
equal to A1, the files have an extension code of ,ASC. Since bitm
8,9,10 and 11 ara ;at, the file will not bes accessible to anyons
other thap the uasar, The protect command cannot be uSed for MPD's
UrD's., 3See the REN ICT for details.

How? PIP in calied to do the actual protect word changirg. The
protact word is in word four of the name block for the file
in tha user's UFD,

B-20

B.20 R

PFurpose

The R command searches the directory of account 2 (Library) for
a program and, if found, loads it and starts execution at laocation 0.
If the program name is followed by a_number, execution will start at
that address inustead of at 0.

Example:

+ R CAT

CAT will be executed, and will list the directory. R CAT is
equivalent to RUN 2 CAT.

How? SI calls FIP to open the file for the program, then pagses
a RFILE parametar block to the file handler in the Monitor
to read it in. Xt then causes execution to start at loca-
tion 0, or the addreas specified, The R and RUN commands
operate slightly differently than the LOAD command. If the
program to be rvun is shorter than 4K, the unused portion of
ccre may end up containing part of SI rather than what was
there before the R or RUN,

B.21 REDUCE

PBIEOS&

To make a file smalley, HEDUCE removes segments from the end
of the file, leaving the others (if any) intact. If a file is
reduced until there is nothing left, the file is deleted completely,
including the entry in the user's directory.

Example:

+RED 1 5
+RED 2 1000

The first command causes the file open under internal file number
1 to be shortened by five segments. The second command deletaes the
file open under internal file number &, provided its length g 1C00
segments or lesus, :

Account files (UFD's) cannct be redoced if there arc any
users logged in on or using the UFD, or if tha UMD owns any files.

How? 5I calls FIP to do the REDUCE, FIP finds the first segment
of the file to be deleted, removes it from the directory,
calculates its bit in SAT, cleare that bit, and repeats the
whole operation the desired nember of times.

B.22 RELEASE

Purpose

To release devices so that other peopla may use them. The
opposite of ASSIGH.

Example:

+REL R
«REL D }

The first command releases the high-~speed reader. The second
cormmand releases DECtape unit 1.

How? Provided the user owns the device, S5I calls FIF which
zeroes the proper word in DEVTBL, releases tha DDB to. free
core, and charges the user's account for the elapsed time.

B.23 RENAME
Purpose

To allow the user to rename a disk file.
Example:

+REN 2 HELPME

The file currently open under internal file number 2 is given the
name HELPME The keyboard RENAME camnmand will not rename a MFD or UFD .
(whicn would change passwords).

How? ST calls FIP, which changea the name ln the user's UFD.

B.24 RESTART

PurEose

To set or determine the restart address.

Example: o

+RESTART 209
«RES
a22e0

When the program is running and CTRL/C (4C) is typed, the Monitor
causes the program %to restart execution at the restart address.
Thus, after the firat command above has been given, if the user types
CTRL/C {*C} during program execution, the effect will be a CLA CLL
and a JMP to location 200, Monitor also clears the terminal buffers
when it recognizes the tC., The second command determines the current

restart address.

How? 51 sets the restart address in the user's job status
block 0, the 7th word.

B.25 RUN

Purpose -

The HUN command searches under an account number for a file,
If it is found, it is loaded into core and executed. If the program
name is followed by a number, execution will begin at that address:

ctherwise it will begin at 0,

Example:

«RUN MYPROG
+RUN 1234 PROGB

The first command requests the program named MYROG to be loaded
and executed. Since no account number is given, the user's account
number is used to search for the program.

The second command requests execution of PROGR, stored under user
number 1234, It is equivalent to LOAD 1234 PROGB; START O,

B~23

How? SI calls FIP to open the demired f£ile, then pagssg a RFILE
parameter block tc the file handlaer in the Monitor to read
it into core. It causes the user to start executing at
locaticn 0, or the address specified.

B.26 S
Purpose

Stop the user's program, The terminal is in Monitor mode at this
time.

Example:

E'()%+, -./P123456T7895 3 <=>?0ABCDEFGHI JKLMNOPQRS 1BS

It is necessary to typa CTRL/B, to put the keyvboard in Monitor
mede, before the § can be typed. If unwanted output ias occuring,
the user can type CTRL/B twice to stop the output, followed by S8 and
carriage return to stop the program,

How? 5I clears the run bit in the user's STRO.
B.27 5SAVE
Puropose

To write ¢ut portions of the user's core area to a disk file.
The SAVE command has the same format as the LOAD command {zee LOAD).

Example:

+« SAVE NEWPROC
« SAVE PROGZ 200 20¢

Be sure that the named disk file exists and i3 the proper size.
How? T calls FIP to open the desired file, and then pasgses a

WFILE parameter block to the file handler in the Monitor
to do the requested disk transfer.

B.28 START

Purposa

To begin or continue the program which is already in core.
Example:

+ START
+«START 140

The first command is similar to the PDP-8 continue key. A
program is continued from the place where a HLT instruction was
executed or a CTRL/B followed by S was typed. The second command
clears the AC and LINK and begins execution at address 10.

How? The START command, if an address is given, causes SI to
alter the user's saved registeres to the proper valus,
The run bit is then set, allowing the jcb to execute.

B.29 SWITCH

PUrEOS&

To find the value of or set the user's switch reglster. The
switch register is implemented hy software to prevent users from
having to set the computer's switches, There is no way that the
uger can determine the hardware SR setting, short of looking.

Example:

+SWITCH 32104
«SY
32149

The first command sets the awitch regieter to 3210. The second
command determines the value from this point. Whenever the user does
an OSR, the constant 3210 will be ORed into the AC.

How? Each user's switch register is stored in the job status
black 1. SI simply stores the SR there.

B.¥ SYSTAT
Eyrcose

To obtain information about the status of the SYSTEM.

Fxample:

«SYSTAT

STATUS OF TSS/B.24 DEC PDP-8 e} AT 19:42:29 ON 20 JUL 74

UPTIME ©0@t27:55

JOB WHO WHERE WHAT 5TATUS
1 @s 3 Koo SYSTAT RUN e
2 @, 3 Koy P1P 1BS tQ

AVAILABLE CORE @K FREE CORE=311
EUSY DEVICES
DEVICE J0B

Kl 2

219 FREE DISK SEGMENTS

For installations with a line printer, type

SYSTAT:L

How? SYSTAT effectively causes a R SYSTAT.
B.3X TALK

Furpose

To enzble messagea to be sent bhetween terminails.

RUNTIME

BB:GB:G‘J-
@0: 20:08

Example:

.TALK | DID YOU HEAR ABOUT JOHN?

If terminal 1 is not busy, the above message is printed on the
console, 1If it is busy, SI will return the error message "BUSY."
Accountn 1 and 3 are usually allowed to. interrupt even when a terminal
is buay.

B.32 TIME

PurEose

To get information.

Exampies:

« TIME
Pa240:85
+TIME @
22112238
«TIME 2
PO30B225

The first example gives the elapsed processcr time used by the
user issuin& the TIME command slnce he logged into the aystem. The
" second example gives the time of day. The third example gives the
amount of processor time used by job 2 since the user legged in.

How? SI takes the information from the proper leocation, converis
and prints it.

B.313 UNDUPLEX
Purpose

To take the user’'s terminal out of DUPLEX mode, ({See DUPLEX).
Example:

« UNDUP

How? S1 clears the DUPLEX bit in the user's kevboard DOB,

B,34 USER

Purgose
To find informaticon about a selected job.

Example: -

«USER

JOB 01 ([@9,031 Koo
+USER 2

JOB @2 (21,231 Koa

The first command informs the user that he is job 1, account 3,
and is at console 0, The second command asks about job 2, which is
being used by account 123 at terminal 4,

How? SI takes the information from varicus tables in ccre.
B.315 VERSION

Purgose

To determine the veraion number of the Monitor currently running.

Example:
«VERSION
TS5/78 .24
How? ST printa the answer,

B.36 WHERE
Purgose
To determine the status of the user's program.

Example:

+WHERE
SwW=3210 PC=00082 L=8 AC=0000 MQ=5682

B-28

all registers relevant to the user are printed. SW ig the switch
register (see SWITCH). This command is useful when used in con-
junction with a CTRL/B, it enables the status of an executing

[

, 1 ! wWdLwal. a0 . .
program to be determined without stopping.

" How? SI takes the information from the user's job status

block 1.

APPENDIX C

UNIMPLEMENTED USER OPERATIONS
{UU0s or user IOTs)

This Appendix includes a numerical list of all the valid UuCs.

vhenever an IOT is executed by a user, 1t causes a trap inte the
:tor, The Monitor locks for the IOT in a table, and one of several
g5 happens.

1f the IOT is not found in the table, the Monitor simply retarns
12 user's program; the IOT functions as a NOP,

~ 1f the IOT is resident - i.e., if code tc handle the IOT is in
< - the Monitor executes the proper routine,

1f the I0T is non-resident, FIP must be called, If the IOT is

- i.e.,

if all information transfer is through the user’'s

fﬁters - the I0OT is ANDed with 0377 and stored in JOBLNK in the
~'g job status block 1. If .the I0T is a long non-resident 107,

. aC will contain the address of some parameters. These paramecters,
4y with the IOT, are transferred to a free block, the address of the
- block is placed in JOBLNK, and FIP is called. Note that freae
s always starts above address 377 so that FIP can tell whethor
-JK contains a free core pointer or an IOT. If FIP cannot firure
why it was called, it executes a HLT,

6004

6005

€006

- GTF -~ Get Flag {PDP~8/E only)
The link is placed intoc ACQ, and the EAE GT flag (:Ff preserﬂ
is placed into ACl. The rest of the AC is cleared.

- RTF -~ Restore Flags {PDP-8/E only)
ACO is placed into the link, and ACl is used to set or clear
the EAE 6T flag. (if present) The AC is not change:l.

- 8GT
This JUO causes a skip if the GT flag is set, Applicable
only to B8E systems with EAE.

6010 - RRS - Read Header 5tring

6011

6012

6014

6¢1le

6017

6G

0

Before executing the RR3, load the Lgoad AC with the address
cof a 2-~word block, where: '
Word 1: is minus the number of charactzrs to be transferred.

Word 2: is the address of user core, minus one.

This starts the transfer, These characters will be read
from the hiyh-speed reader and placed in the user's buffer.
The AC is cleared by BRS. The two words are incremented
according to the nunber of frames read. A system error is
generated if the tape runsa off the end. See 6431-SEA.

- RSF -~ Skip on Reader Flag

The next instruction is always skipped.

- RRB - Read Reader Buffer

The next character from the high-speed reader buffer is ORed
into the AC. If the buffer was empty, the reader is started
ard this command is not executed until the buffer is nearly

full.

NOTE

Successive RRBs will not retriave the same
character.

~ RFC ~ Reader Fetch Character

This instruction performs no operation,

- RRB RI'C

Functions as a RRB.

- RCB ~ Reader Clear Buffer

This IOT causes the high-speed reader buffer to bz cleared
oF any frames read from the tape but not yet transferred to
the user's core. This is useful between tapes whan reading

mure than one tape.

- P3T - Punch String

Befora executing P3T, load the AC with the address of a
2-word block where word 1 contains the negative of the num-
ber of characters to punch {word count}, and word 2 contains
beginning address minus 1 of the string to be punched

{current address). The block of data will be punched and

control returned to the IOT+2 with clear AC. If tha PST

dees not punch all the characters, control is ra*urned to
the IOT+1.

ROTE ‘-

On most string I0Ts, the following pro-
gramming seguence may be used:

TAD ADDR
FST
JMP 0-2

-

ADDR>» TWOWD
TWawWD, =10
BUF -}

As characters are placed into the punch buffer, the word

count ¢

zeron, t

nd current address are updated. If word count reaches

he strang 10T skips, going to the instruction follow-

ing the JMP. However, if the buffer Fills up, the Monitor

returns control to the JMP.-2, causing the I0T to ke retriaed.

If des.red, the JMP.-2 may be replaced with a jump to other

processing, which can later return to retry the string 10T.

This allows a program to overlap 1/0 to a4 greater extent.

6321 -~ PEF - Skip on Punch Flag

The next instruction is always skipped.

6024 - or K026 - PL5 - Punch Load Sequence

The AC

is placed intoc the punch buffer, but not cleared.

Note that bit 10 of a PL3 is ignored (6022 is a NOP).

6030 - KSR - Read Kevboard String

Execution of this instruction initiates a transfer of onz or

more characters from the user's keyboard to a designated core

area.,

Before executing KSR, load the AC with the address of

a 2-word black, where:

Word 1:

Word I:

negative of the number of charactesrs to be
transferred.

address of the corz arza into whizh charactars ara
to bg placed, minus one.

c-3

6031

6032

6034

6036

6049

'he transter is terminated winen either:

al the ind:cated number of characters have been input, or,

b} a2 delimiter is seen, At the end of the transfer, the
word count and core address are updated and the AC is
cleared.

~ KSF ~ Skip on Keyboard Flag

Operation - the next instructfgn is skipped :.f the keyboard
flag is set. The flag is set whenever a delimiter character
is typed. If the KSF deces not skip, and is folliowed by a
JMP.~1, the user will be put into a wait state until a
delimiter 1s typed. :

- KCC - Clear Accumulator.

- KRS

A character from the keyboard buffer is ORed into the user's '
AC. If none arc available, the job is put tc sleep until a
delimiter is typed. User will be put into a wait state until
a delimiter is typed. See 6400 -~ KSB,

- KRB - Read Keyboard Buffer
A combination of the 6032 and 5034 instructicns.

- SAS - Send a String
Causes a block of data to be cutput to the user's terminal,

Before executing ap SAS, load the AC with the address of a
2-ward block, where:
Word 1: contains the negative of the number >f characters
tc be sent.
Word 2: contains the address -1 of the first word of the
string.
The characters are stored one per word right justified start-
ing at the address specified by word 2. Upon execution of |
578, the system takes only as many characters as will fit
inte the output buffer. It then makes the appropriaste
adjustment to word 2 to indicate a new starting address and
to word ! to indicate the reduced character count. It then.
returns to the instruction following the 5aS, If the
character count is reduced to zero, the instruction follow-
ing $AS5 is skipped., The instruction feollowinyg the 5AS should
contain a JMP.-2 to continue the block transfer of terminal

characters. The AC is cleared by SAS.

See 6020 - (PST) for sample string programming.

6{141 - TSF - Bkip on Teleprinter Flag

The rnext instruction is always skipped.
6042 ~ TCF ~ no operation is performed.

6044 = 6046 - TLS - Load Teleprinter Sequence
The contents of the AC are placed into the user's teleprinter
buffexr.

6200 - CK$ - Check Status
Load the AC with the address of a 3-word block and execute
the CX5. Upon return, the AC will be 6. STRO, STR1, and
the cdevice status register will be placed into the 3-word
block. The formats of these registers are:

STRO- Bits
0 Run Bit User program is in the run state
Exror Enable Program handles its own errors

2 JCOMBD Program was compute bound

3 JSPEEK . Uaer has R privilege

4 JSACC User is privileged aceount

i JSIOT Syatem use only

t JSTOTC Syatem use only

v Not useq

3 JSINER Sy stem use only

9-11 Exrror Code Systam detected arror condition:
1 Iliegal IOT
2 GSwap read error
3 Swap write error
5 Disk file ervor
&6 Hung device
5TRY Bits
H Timar Time is up
* Fiie 0 Internal f£ile 0 is not busy
- 2 Fite 1 Internal file 1 is not husy

3 File 2 Internal file 2 is not busy

1 File 3 Internal file 3 is not busv

3 Keyboard There is a delimiter in the
input buffer

3 Line Printer Qutput buffer is not full

7 Teleprinter Output puffer is nct fall

3 Reader Character in rezder buffer

3 Punch Punch buffer is not full

6400

65401

10 Error System error detected, code in
bits 9 through 1. of S$TRO

11 Wait Job is not walting.
Device status register: Sea IOT 6772-RDS- for details.

- KSB - Set Keyboard Break
This performs the same function as the Monitor BREAK

command.

Cperation: FRather than activate a user's program to receive
cach character as it is typed, EduSystem 50 accumulates

input characters until a certain character(s), is seen.
To tell the Monitor which characters to look for (these

characters are referred to as delimiters), load the AC with
a l2-bit magk before executing a KSB. For eaca bit set in
the mask, the Monitor considers the corresponding character

or characters to be delimiters.

Bit Specifies

¢ 0 check rest af mask
1 any character is break
301-332 {all lLetters)
260-271 (all numbers)
211 {horizental tab)

212-215 (line feed, wvertical tab, form feed;
RETURN}

241-273 (14588 {) %+, - /13)

240 (zpace)

274-300 (<=>724)

333-337 (] 4 &)

377 {RUBOUT}

315 {ALT MODE}

any characters not mentioned above.

o

B b

(L =S¥ = R < Y S« (S ¥ 1]

1
1
Alternatively, clear the AC and execute the KSB. The Monitor

will return the current value of the user's break mask in the

AC.

-~ SBC - Set puffer Control

SBC permits the user program to clear its terminal input
and/or cutput buffer. Before executing 5BC, set bits 0 and
1 of the AC as indicated below:

Bit O 1 ¢lear ocutput buffer.

Bit 1 = 1 <Clear input buiffer.

v4N032

8403

6405

65406

6411

6412

64113

6414

6115

- DUP - Duplex
Performs the function of the DUPLEX Monitor command. No
user registers are aftffected.

- UKD - Unduplex
Performs the function of the UNDUPLEX Monitor command. No
user ragisters are affected. |

- CLS -~ {lear Status

Load the AC with the address of a 3-word block. Any bits

set in this 3-word bleck will be cleared in the user's STRO,
STR1, and device status register. Use this ICT with caution.

- SEGE =~ Segment Count
The nimber of available disk segments is returned in the AC.

- URT ~ User Rupn Time

Load +hm AC with the address of a 3-word block; where word 1
conta.ns the number of the job for which the run time is
sough:., The run %time is returned in the last two locations
af the block. If job 0 ia specified, the run time of the
current job is returned. The AC is cleared.

- TOD - Time of Day

Locad the AC with the address of a Z-word bilock. The value
of the system clock will be placed in the two locatiens, and
the AC will be clearcd.

~ RCR - Return Clock Rate

The number cf clock-ticks per second {tern decimal) is

returned in the AC,

- DATE - Date

Retutrns the date in the AC. The farmat of the date is
{(YEAR~-1974)*12+ (MONTH-1}}*31+DAY-1. This numbesr will
overilow in 1} years, 4 days; Jan. 4, 1985 135 the last day

which will work without changing the basc year.

- 5¥{ - Quantum Synchronization

This instruction causes the scheduler to allow any cther
program to run. When this program is restarted after the
SYN, it will have a full gquantum (230 ms) of execute time

without being swapped out.

5416 - STM -~ Set Time
Load the AC with a number. The job will be suspended for
the pumber of seconds in the AC. The user's job is put into
a wait state, and the two's complement of the AC is placed
into CLKTBL, where it is incremented once a second. When

it reaches zero, the job is allowed to run acain.
AT

6417 ~ 5RA ~ Set Restart Address
This command allows the user to specify an address to which
control is transferred when CTRL/C is typed ¢n the user's
conscle. Load the AC with the restart address and execute
SRA., If CTRL/C i3 detected, the program's input and ocutput
buffers are cleared, the AC and Link arxe cleared and control
goes to the restart address.

This function is also performed by the RESTAFT Monitor

comnand,

6420 - TS5 - Skip on EduSystem 50
The next instruction is skipped and the current version
number of EduSystem 50 is placed into the AC. This instruction
is useful in programs which may run under EdLSystem 50 and also
under other operating systems, where it will function as
a HNOP.

6421 - USE - lser
Returns in the AC the number of the current job.

6422 ~ CON - Console
Returns in the AC the console number assigned to the job

whose number was in the AC. If that job does not exist,

-1 is returned.

6423 - PHEK ~ Peek
Allows the user to inspect the Monitor core; fields ¢ and 1.
Load the AC with the address of a 4~word block whers

Word 1 = Monitor field in bits 6-8
Word 2 = Starting Monitor address
wWord 3

4

Word

= Starting user address

= Two's complement of number of words to transfer

The specified Monitor information will be traasferred to
the user's core, and the AC c¢leared. ’

PEEX is a privileged IDT. Privileged I10Ts may be executed
only in 2 cases: If the account number of the user is 1
throuch 3, or if the IOT is executed by a library program.
The privilege for the second case is enabled by the R,
SYSTAT, LOGQUT, and RKJOB commands, and is cleared every
time 51 is entered. The privileged IOTS are allowed if
either privilege bit in STRO i3 set; if not, the IOT gen-
erates an error condition.

6430 - 55W - Set Switch Register
The content of the AC is stored in the user's switch
register, and the AC is cleared. The Monitor command

SWITCH performs the same function.

6431l - SEA - Set Error Address

This instruction allows the user to specify an address to
which control is transferred in the event of a system esrror.
Load :the AC with an address before executing SEA. 3if a
system error is detected, the Monitor simulates a JMS +to the
error address. The program counter is stored in the error
address and control transferred to the error address +1.
AC, Link, and input/output buffers are not affected. The
error code of the system error is in STRO bits %~11.

The error routine rnust road these bits (by
a CKS) to determine the cause of the error, then clear them
by means of a CLS.

The only error code that occurs in normal systen dsage 1s
due to a hung device. The error occurs, for examplae, whon
1} the user attempts to use a punch not already turned on oT,
2} allows the paper-tape reader to run off the end of a tapo.
The i1llegal 10T error probably means that an assitanable device
10T was executed without the device first being assiuned. Swap
and tile ¢rrors occur if a hardware error is detected while the
Monitor is swapplng user programs, or reading or writing Zile
directories. These are system malfunctions from which there
is nc recovery.

6440 ~ ASD - ASgigm Device
1f the device specified by the content of the AC is avail-
able, it is assigned to the user program and the AU i3
cleared. Otherwise, the job number of the device 1s placed
in the AC. If the device does not exist, 7777 1s returned

in the ACZ,

4000 Paper-tapre reader -

4001 Paper-tape punch

4003 Line Printer

4004 Card Reader

4005+N DECtape unit N, N=@F-7
4015+N RK8E drive N, N=@-3

The assignment is in effect until a corrxesponding REL instruction
or LOGOUT.

The same function is performed by the ASSIGN Monitor command.
NOTE

The device number for the line printer
has been changed to 4003 from 4002.

6442-REL-Release Device
The device specified by the contents of the AC is released
(providing it was owned by the user executing the REL), The
AC is cleared, Releasing a device makes it available to
other users. '

The same function is performed by the RELEASE Monitor
command.

6600~REN-Rename a File
REM is used to change the name of a file. Load the AC with the

address of a 4-word block where:

Word 1: contains the internal file numbier associated
with the file whose name is to be changed,

Words 2-4: contains the new name. This name is in 6-bit
characters and packed two in a word.

The same function is performed by the RENAME Monitor command.

Waon exacutodc aader acoount 1, the REN IOT has a special function. Load

Word 1: Contains the account number of an existing user
Words 2-3: Contains the desired password for that acecount, and
Word 4: Contains the desired disk quota for the user.

The UFD to be renamed need not be open., The quota is placed in the word
ccarved for the protestion cade in files. For UFD's, bits @ through 5 of the
~:ta are reserved ror future use, Bits 6-11 contain the disk quata for that
~s.oount divided by 5. The guota word for the MFD contains the grace quota. This
»a 12-bit number 'not divided by 25) which determines hew many segments ovor
“i7 quota a user may extend his files,

Upon return “rom all file IOTs, the AC is either cleared or contains
-2 of the following error codes:

40Q0 There was no file open on the specified internal
file numbar. On an open command, this error indicatos
the open failed because of a 1 ck of table space or
free core.

4400 Attempting to alter a file which is open to another
user {or to cone user?)}

c=-11

“c e et LOX A user whose directory is
full, or uho has ’Plcjed oz exceeded his disk guota.

£330 Bad directory

vU00 File protection violation

6400 Invalid file name

Y000 Attempting to open a nonexistent file

7400 The disk is full.

01 - OPEN - Open a file

Open is used to associate a file with an internal file number.
This 1s necessary because all file operations are in terms of
internal file numbers. Before executing the OPEN IOT. load the

AC with the beginning address of a 5-word block, where:

word 1: contains the internal file number.

wWord 2: contains the account number of the file owner.
If 0, the account number of the current user is
specified.

Word 3-5: contain the name of the file to be opened. This nane
is in 6-bit characters packed two to a word.

It there was another file associated with the internal file number.
heford the execution of the QPEN IOT, it is closed automatically.
This is done before the new file 1is associated with the internal *-
mimber. Account 1 may open any used file and not be protected,
recardless of the setting of the file's protection word Howeve,
avcount 1 files, (MFD,UFD'S), are always write-protected even agi-
account 1.

J2 - CLDS - Close a file

CLOS terminates the association between files and their internal
file numbers. Before executing CLOS, load the AC with a selectith
pattern for the internal file numbers whose associated files are U
L'e closed. The file is closed if bit I is 1, where I = bit 0,1.2-

The same function is performed by the CLOSE Monitor command.

i3 ~ RPILE - Read file and - 6605 - WFILE - Write file .
Once the association of a file with an internal file number has -
beon made, these IOTs allow the actual file reference to be mada
-re illegal on a file that has not been opened {associated wlth

gdternal file number).
c-12

coaf nr write a file, Joad tha AC with the address of a 6-word
then execute the IOT. Thoa format for the é-word block is:

R contains the high-order file word address
21 containsg the internal file number.
a3 contains the negative of the number of words for the

operation. This number is either the number of words
-te be read or the number of words to be written.

LA 4 contains a pointer to the beginning address -1 of a buffer
located in the user program. On a read cperation this
buffer receives the information from the file; on a write
operation this buffer holds the information that is to bLe
sent to the file.

¢4 5 contains the least significant 12 bits of the initial fil«

word addrzss to begin the operation.
~d 62 contains an error code:

If no error

If parity error

If file shorter than word count
If file not open

If protection violated

W g O

%]

s read or write begins at the word specified by words 1l and
For example:

TAD X -
WFILE
X ot]
8
i
-200
6477?
200

;aangs write 200 {octal) words starting at word 200 of the file =zsocioar

+h internal file number one from a core area starting at location &3G.0.

iy g

BB 05

SYCHNE:

6611

After completion of the transfer, the word count {word 3} and
core address (word 4} are updated. If an error was detected
the appropriate error code is placed in word 6.

- PROT - Protect a file

To use, load the AC with the desired protection word in bits
0-% and 7~11, and the intexnal file numker of the file to be
nrotected in bits 5-6. The meaning of the bits is explained
in the PROTECT Monitecr command. (See 6600~REM for error
conditions.) For directories, the REN I0T must be used.

-~ WFILE - Write a File
WIILE uses the same calling form as RFILE; gee. 6603 - RFILE.

This command performs the same function as the SAVE Monitor
command.

- CRF - Create a File

The user can reguest the system to create a new file of one
segment. The user provides the new name for the file. Load
+he AC with the beginning address of a 3-word block, where:
Werd 1 through 3: contains the t-~character name.

If there is some reascon why the request cannct be granted,
the system will return a non-zZero error code in the AC,

{see 6600-REN for error conditions.) The protzction code

of a newly created file is 12. When account 1 creates a file,
the two accounting words are zeroed by file; as is the file
itself. _

This command performs the same function as the CREATE Monitor
command.

- UXT - Extend a file
To extend the length of an existing file, that file must be

currently copen. Load the AC with the beginning address of
a Z-word block, where:

Word 1l: contains the internal file number of the file to be
extended, '
word 2: contains the number of segments the system should

append to the file.

When a £t
extend w.t
an extend

Monitor wi
Deen excocd
txtended <
Print an &

Jhere MYFI
“hen a use

AN attempt
fail,

1, for sol
; he ac wil
failed to

“his comma
“12 - RED
: To xro
rentl
hlack
Word

Word .

[3

ihis reque

1 "7 anothern
;-R00-REN ¥

=3 inactiv
-2 leted 1f

ning:
Wordl

Word:

Word

Word:.:

1-51¢

is to be extended,

a check is made to see if the entire

succeed. If not, the extend will not be started. If
auses a users total file size to exceed his quota, tho

1 allow that file to be extended only until the quota Tas
ed by the grace quota. The first time that any file is
that its owning account is over quota, the Monitor will
formational message such as:

MY FILE EXCEEDING DISK QUCTA

E is the name of the file being extended.

has reached his quota, he may no longer create any file.
do extend an account one file (MFD or UFD's) will always

2 reason, the request to extend a file cannot be granted,
contain 4000, 4400, 6000, or the number of segments it
ppend. See 6600~REN for error conditions.

1 perforns the same function as the EXTEND Monitor command.

~ Reduce a file

ace the length of an existing file, that file must be our-
open. ILoad the AC with the beginning address of a 2-word

where s

containg the
reduced.

2 contains the
If negative,

[

t is granted unless
iser or if the file
t error conditions.
and owns no files.
vord 2 is non-zero.

- FPile I¥nformatiocn

internal file number of the file to ke

number of segments to be removed.
the file will be deleted.

the file to be reduced is currently apened
is write protected against the uzer. See
A UFD can only be reduced if the account
Reducing a UFD always causes it to bhe

:1ables a user program to determine what file, if any, is
iated with an internal file number Load the AC with the begin-

idress of a 7-word block, wheres
+ contains the internal file number for which the user
programn wishes information.

2~7: contain the information that the system returns affer

exeouting FINF.

contains the account number of the owner, or zero, i1f no

file number, that is, the file is not open.

contain the name of the file in 6-bit code.

c-15

rd 63 contains the protection code. See the Monitor command PROT:
{(Disk quota if directory)

=
—
3
i
~1
e

contains the number of segments which compose the file.

1is coumend performs the same function as the F Monitcr command.

u

>ld - SIYZE - Return segment size

Thes UUO sets the user's AC to 0400, the size of a disk segment.
214 -~ LIN - Log In

Wien 8I calls FIP with a 6614, FIP will perform a LOGIN. A prog:

cannot execute this I0T (see SIZE).

»L3 ~ LOSOUT - Log out

This is a triple purpese IOT. If the AC is zero, it will return

the rumber of users logged in with the same account number as the
uzen oxecuting the IOT. If the AC contains the job number of the
usicr's job, the user will be logged out. All assigned devices al:

roleased, and user's terminal becomes inactive. LOGOUT is a priv-
iledoed IOT. See 6423 - PEEK for details. If account 1 execute?
the IOT with AC equal to negative job number, FIP will reset all

~ri and device time accumulators in the MFD; this is used by the

Resat command in CAT,

»16 - WHO - Who

The account number and password of the current job are returned
to *he 3-word block whose address is in the AC and the AC is
clueared.

1

317 ~ ACT - Account

Load the AC with a job number. The account number of that job.
is returned. If the AC is 0, the account number of the current.
jok is returned. If the requested job does not_exist, 0 is ’
returned.

332 ~ RCRA - Read card Alphanumeric
134 - RCRE - Read Card Binary
~o6 - 32322 - Read Zard Compressed

the AC with the address munus 1 ¢f an 80-word buffer. A c&;
L3 read and the data is put into the buffer in the same form as *
chrresponding hardward IOT. The UUO returns in the AC the nuﬂﬁ{
caaracters successfully transferred to the user's buffer. (See ™
6772 - RDS.) |

LR
3

{ L

C~1l6

- L8T - Line printer Send-a String

Performs the same function as a 6020 - PST, except that the output
goes to the line printer.

. - LSF - Line printer Skip on Flag
- The next instruction is always skipped.
i = 6664 - LPC - Line Printer print

The contents of the AC are loaded into the line printer buffer. The
. AC is not cleared. Note that bit 10 of the IOT is ignored; 6662 is

v~ DLAG - Disk Load Address and go

Eﬁllows the user to read or write on the RKBE. To use, load the AC
:with the address of a three word block, where:

S fiord 1: Bit 0 = 0 for a read,
= 1 for a write)
Bits 3-8 contain the number of pages to
read/write, 1 to 40.
Bizs 9-10 contain the drive number 0 to2.
: Bit 11 contains the hich order sector address.
- Word 2: contains the core buffer address minus one,
Word 3: contains the low order sector address,

a2 return, the AC contains the number of blocks transferred. To detormi
ar conditions, see 6772~RDS. The disk transfer is made in 400 {actal)
xs. Bach RKOS drive contains 14540 (octal) blocks. To specif the
ial block number, the high ordexr bit goes into word 1 of the paramete-
%, and the remaining 12 bits into word 3. If the transfer reoquests ar
intmber of pages on a write, the last page of the last block on the dics
t contain zeros. Upon return, the AC contains (P+1)/2, where P is the
oy 0f pages successfully transferred.

4 - DTXA - DECtape go
L.oad the AC with the address of a 3~word block, where:

Word 1 Contains the unit, direction, and function
Word 23 Contains the block number
word 3= Contains the core buffer address minus one.
1 0-2 of wor@d 1 csntain the unit number. Ri= 3 of word ghe il o

QW in reverse. 3its 6-8 of word 1 should be 2 to read, 4 to write.

4 return, none of the parameters are altered, and the AC is clexred. T
- should execute a 6772-DTRB instruction to find out whether the trunsi
successful.

C-17

17

1

Note that this allows the user to read or write a block in the
reverse direction. The user must be aware that if a block is
written in one direction and read back in the opposite direction,
the order and contents of the data words will be changed.

- DTSF - Skip on DECtape flag. The next instruction is always
skivped.

s

- DTRB - Read DECtape Status B, or

- RDS - Read Device Status

The information obtained pertains to the RKS8E, DECtape, or Card
Reader, depending on which was most recently used. The contents
of the device status register are:

RX¢E: RKBE Status Register
Bit 0: Contrel done

l1: Heads in motion

3: Seek fail

4: File not ready

5: Busy errcr

6: Time out error

7: Write lock out error
8: CRC error

9: Data request late
10: Drive status error
11: Cylinder address error

DECtape: TCO08/TC0l Status register B
Bit 0: Error flag
1: Mark track error

2: End of tape

3: Select error

4: Parity error

5: Timing error

1l1: DECtape flag

he status register for DECtape may also include 4499 or 4831, fThese?
oftware generated errors such as block number out of rang.

13

LR |

Card reader: The device status register contains the addreon o
last word of data transferred to the user's buffer. In addisinn,
device status wegister may contain 7777. This indicates that OIRL
followed by S was typed while a DECtape or RK@5 transfer was in
progress, and the transfer was not finished.

4

- DTSF DTRB -

The status is placed into the AC and the next instruction is skippe

APPENDIX D
DETAILS OF MONITOR'S DATA BASE

INPUT/OUTPUT DATA BASE

- All I/0, except for the disk, is controlled from a single, fixed-
»gth table, DEVTBL. Actual data about the status of each device is
;4 in a Device Data Blcck (DDB)}. DDBs are dynamically assigned

'eks of free core. The actual data to be transferred is contained in
;fers. In the case of terminal I/0, the high~spced reader and punch
.» the line printer, these buffers are dynamically assigned blocks of
;e core. One or nore (linked) blocks of free core make up a buffer.
;ainals are considered to be two devices: a kevboard and a telc-
rater, Each as a DDb, and each has its own buffer. Some of the assign
:ices, which have higher data rates, do not use dynamic core buffers.
2 DECtape uses a fixed 201 word buffer, the disks and card reador
~ansfer directly to and from the user's core area.

The tables, DDiis, and buffers are linked together by pointers.
WTBL is, in fact, a table of pointers. If a device is inactive (a
asminal not logged in or other devices ncot assigned) the corresponding
nle entxy is zerc. If the device is in use, the table entry is a
inter to its DDB. The DDB for each device also contains pointers,

2 £111, and the enpty pointer. The fill peinter points to where the
¢t character to be put intc the buffer should go: it points to tho
23d" of the buffer. The empty pointer points to the next charactor
-be taken from the bhuffer., Each buffer block c¢ontains in its [:rat

+d a pointer to the next block. The last block in the buffer contains
7111 ccunt indica:ing to which position in that block the next onar-
+er should go. Filgure D-1 shows the relaticnship of tables, DDr:,

«1 buffers.

cEVTEL DEVICE DATA BLODK CHAR BUFFER

L

FlLl FOYNTER —

EMPTY POLINTER

CHar JUFFER
. FlLL COUNT
L R
FiLL FOINTER
FMETY POINTER -
CHAR RUFFER
i LT?'E__- LOUNT

GEVICE DATA SLOCH

af - DA%

Flgure D-1. Relationship of DEVTBL, DDBs, and Buffers

DUUNRL is set up with the terminal entries first, the entries for
the rezder, punch, an unused entry, the line printer, the card reader
second, eight entries for DECtape, four entries for RIK05 third, and
finally a 7777 terminator. The number of entries for terminals, and
hence the size of the table, is dependent on the configuration
parameters specifying the number of terminals. DEVBE marks the
berinning of the assignable device section of DEVBL, which always con-
t 15 17 entries even though all these devices may not be included in
the system, All slots in DEVTBL which correspond to non-existent
devices are filled with dummy pointers to prevent assignment. See .
Figure D-~2. ' '

D=vice Data Blocks are always 8-word blocks assigned from free
core. The DDBs for the assignable devices exist for as long as the.
device is assigned. For all DDBs, bits 7 through 11 of word zero con-
tain the unit number. Bits 7 through 11 of word 1 coatain the job-
number which owns the device. Word 3 contains the time at which the -
device becomes active. This 12-bit time is taken from bits 3 througi
11 of CLK2, and bits 0 through 2 of CLKl. The use of the remainder of -
the DDB depends on the particular device.

There are a number of status bits in word zero of the keyboard
DDBR. The XON bit is set when a buffer is almost full and XOFF is sent
to the terminal. When the buffer is emptied, XON must be sent. I i
set to indicate that the terminal is in Monitor mode. DUP is set to X~
cate that the terminal is in duplex mode. SICOM, when set, indicates

that <he uszar has just finished typing a command to SI.

-

? BFEGIL MAIR

1 VM AT ASIINMENT

4] FILY, BLICKE POINTER

|
CHATACTER COUNT i
|

el EMPTY ALCCK COUNT

?’% EMPTY SLOCK POINTEY i

Figure D-3. Keyboard Device Data Block

4 T:‘.;]'WEEN'..] WHIT A
Fal- I ;
!
H !
E TIME AT ASS:GHMENT
+ FrLL BLOCK POTRTER
L] FHEHACTER COUMT
5 EMETT HLOCK COUMT I
FubTrT RIGIL BQITER |

FPigure D-4. Device Data Block-Teleprinter, Reader, Punch
and Dine Printer.

Free core buffers are packed 10 charachters to a block. Charactess
1 throught 7 go in bits 4 through 11 of words 1 through 7. Characters
8,9, and 10 are split and packed into the high-order bits of words 1
through 6. Bits 0 through 3 of word 7 are unused. BSee Figure D-5.

| ROINTER TO WEXT BufTER
o| "ok Fug ot |

1 CHAH T
CHan g
2 CHAR ©
3 CHaR 3
THAR 9
4 cHaR 4 !
E THAR [
THARIG f———— ’
3 CHAH 2 |
T Oiam I
A Darl

Figure D-5. Character Buffer
D-4

07

B
oL Ag L &L W7
e T T e s]

Ll il - ’ \..
o h.‘/.ﬂ_! T\mﬁt.ﬁﬂ_
TATE 5 nd

The DDBs for DEChape and NEYS oxa shoun in Ficures D~6 and D-7

e S
B %a;n
L] e
o— ma ! [k

21 CURBLAT = ~rx yn 1

R t -

1 TIMF AT 45 uMENT X) |r . S - J
- TriwE A% L Y] 7T

4| T NCTON A DIRECTION |

1| HER e GMETETY wORD 4
1 TESMCL HOta WO f"‘"'_"_'—”"“' e
I OSFR SYRMAMY L WORD

&) CTRE BUFFEA ADDFESS~1 I -
1
1

& USER PARARETL - w0 3
7| SEARTN TimEn '. - (r
‘gure D-6. Device Data Blogk - Figqure D-7. Device Data Block
DECtape RKO5

, 2 USER_PROGRAM HTATUS

. All job status information is based on a single, fixed-length

:ple in Monitor core, JOBTBL. JOBTBL has a l-word entry for each
tssible job. If the job doeg not exist, that is, no one is logged in
: that job, the corresponding entry in JOBTBL is zero. If that jrb

25 exist, the entry contains a pointer to the first of three (]linxed)
' Status Bleocks. These contain complete informaticn about the running
;ate of that job. For each file open to that job, there are twn
ﬁitional bhlocks: one additional block contains information about the
.le, and the other additiocnal block indicates where it is on the disk.
iile a file transfer is in progress, still another block exists which
:ntains parameters for the transfers. Finally, when exXecuting an IOT
ich requires a FIP call, a block may be set up to pass the parancters
e Figure D-8.

. . — —
Joa Jg8 Joa) FILE riLE
208 2 ITaTus STATUS STATUS CINTAZL RETRIEvaL
BLOCK BL9CK aLorx a.os :
Ton L L OTR INFQA
o ' 2 ~ -l BLoER
! | ! SR E t
— — : Do |
i :
U toT o #ELE !
+ 1 . LEr :
.. L eamameren | L) wep L
L soer | foer i
BLOCK
Jom Ty,
Pigure D-8. Job Status Infcrmation

The three job status blocks exist for all jobs

saved state for the job, AC, PC, LK, and the EAE registers
contain the status of the job's I/0. See Figure D-9.

= ey - - .
T T w0
@4 S5 (BTR@ ?| JOBLWK Wl T
t eTE 3 | SWIFCH RELILIER LF CTNTROL
21 DEVICE 3T .Tws 1] FPC 201+ LoNTO0L
- - ——
B waT ms (=N EENTTY T E D CONTRLN
5 4T3 1 AL FOR S L TR |
b — - [| —_———— -
3 FrelagT s oIRg 12 LI 23 0w 0TMEA T,
6| EFFOR ADCAES W SC . GT_ NOQE i 24 H-DADER FUN
SRR

R ——— s

FPigure D-9. Job Status Blocks

STRO contains status bits which are not directly associated with
I,/0. STR1l contains bits which may be considered flags. They are set
und cleared accerding to whether the associated device is ready or ne
reeady. The "wait mask" masks STRL. When a job is waiting for a
device, a single bit in the wait mask, corresponding to the deévice bil
in STR1, 1s set. When that device finishes, its bit in STR1 is set.
STR1 and the wait mask are "ANDed" together, aad if the result is now
zero, the scheduler knows that the job should be run. When a job is
not waiting, bit 11 (the dummy wait bit) is set in both STR1l and the
wait mask, allowing the job to run. See Figure D-10.

—.--‘ TinER '
s | 1 lenea
1 AR ElGai ._5_._ g
._2__' COMATE BOUND - _;‘irm: .
.—iu F By ILEGE »—‘—-nl‘ s
4 ACCT SAWILEGE —:'— N YELARD
%3 | NOM-RESIDENT OT;- Ling PRIER
& |CoPY [OY FERULYS 1 reri-ten
T FESECUTE DMLY p EADER
8 | EFRGR WL L inET _; 4 -
> }) j ERMOA
L+] SYSTEM EPDR (P ™ oY WY
it -

Figure D-10a

STRO

Figure D-10b

STR1

They contain th:
They als:

-t

The DRECtape, caxd reader, and RK3R are exceptions. When a "¢l isg
salting for one of these device, *he wait mask is set to zeoro g
1-8 of wait 2 are set to the address of the DDB for the device, and
hits 9-11 are set to 1 or 2 for NDECtape, 3 for RK0O5 or 4 for the curd
reader.

If a user program IOT or an SI command requires FIP to be called,
.an IOT parameter blcck is set up to hold the IOT and its parameter.:
A pointer to this block goes into JOBLNK. If a FIP IOT is to be
;2xecuted which requires no parameters, the IOT itszlf goes into JORLNK,
“and no IQT parameter block is set up.

Within Job Status Block 2 are four registers which correspond to
&he four possible irternal files. If a register is zero, no file is
iopen on that internzl file. When the file is opened, a file contrsl
‘plock is set up and a pointer to it is put in Job Status Block 2. At
‘the same time, the first 8-word File Retrieval Information Block for
ithat block is fetched from the UFD and is set up in another block of
free core. Referred to as the file window, this retrieval block i=
used to calculate addresses for file reads and writes. If part of the
file being accessed does not correspond to this window, FIP is callad
to move the window to the appropriate arca. Word 1 of the contro.
block remembers which retrieval information block is in the retrioonl
window.

When a user program executes an RFILE or WFILE, the transfer
parameters (word count and file address) are stored in the file control
;block The file address 1s an address within the logical £ile. 7o
address of the transfer parameters in the user program is also s

. Then, using the file window, the logical file address 1s reduced 0 a
;physical disk address. A pointer indicating where to go in the
‘Monitor, when the transfer is complete, is also stored. This biock iz
‘also linked into the disk queue (DSUTBL). See Figures D-11 and D-1ZI.

CLKTBL is used to execute the STM instruction. It has a l-word
‘entry for each job. If that job is not waiting out an STM, its entrv
+ig zero. If it is waiting, the entry contains the number of seconds
left to wait (in 2's complement). When the counter gces to zero, the

timer flag for that job is set. See Ficure D-13.

ADURESS OF FILE POINTEA TO NIXT
O | winogw ® | wircow ¥ UPD ¢ 403/6£08
SEGHENT INDEX th | _
1 WINDOW 1 SEQ » i DIgK EXTENDED ADD .
2 | file statub 2 | sesa 2 11134 ?,'%E
ALORESS OF R/W
3 | FiLE PaR. BLK. 3| seaw 3 | -WORD COUNT
FILE EXTENDED - \
4 ADDAESS 4 i & X 4 CORL ADDREDS
5 | FUE ADDRESS s | sege A s | oiax acomena
& | -WORD COUNT 4 | SEg@ o | E&urceTion ADD.
; { ADDRMESS OF LSEN ALOYESY OF FILE
7 1 panauetens T s 7 | _conTROL
oA-OBTrY oR-0ATY
Figure D-lla, Figure D-11b. Fignre D-12,
File Control File Window, or Read/Write
Block File Retrieval File Paramater
Information Block Block
w SECONDS JOO 1 CONSOLE % com 3t
SECONGS CONSOLE & 208 2
R e s e et —
T e e .'_____—R._-’
ot » CONSOLE & JOB N ’
CLXTBL CTTYYEL

Figure D-13. CLKTBL and TTYTBL

The TTYTBL table has a l-word entry for each possible system job.
Each entry contains the number of the terminal associated with that
jok:. See figure D-13. ' '

(=]
L]

MONITOR SCHEDULING DATA BASE

DEVTEL, JOBTBL, and related status blocks maintain some EduSystEﬁ?U
tatus information relating to individual jobs. The monitor also maln«
ains some of i1ts own tables. These are used primarily to schedule.

ct

CORTBL contains the status of the user fields. It is a 7-word .
table in monitor core, each word corresponding to a core field. Within
each entry, bits 7 through 11 contain the job number of that field. 15
the field is empty, a zero is stored there. If the job that occupies
1 ficld is not completely there, bit 0 is set to indicate a swap is in
nrogress. A job is considered to be in a field from the time it is
scheculed to be swapped in until the time it is completely swapped out.

Bit. 7 ig

Bit 2 is et if the job

a v
sov 1F

swapped oult until it has been run.

the sense that theyv rn
1s running, the calling
set to remember that it
in field 2. CORTRBL has
whether it is available

e job in that core field cannot he swapr

in that field has not been run. It can
FI? and SI are called phant
in place of a user job. Therefore, whe
job number is stored in CORTEL. Bit 3
is actually a phantom. Phantoms can ri
an entry for every core field bui fiele

or not. At startup time, the Monitor':

and neonexistent fields have their lock bits set to prevent use.

Figure D--14.

CORTEL

Figure

FIELD

FigLD 2

FIELD 3

FIELD 4

FIELD %

FIELD &

VRIS [y ENIEY R W SO ————

FIELD 7

LOCK
ROTRUN
FIF

L1

33 P

o4-0% T8

D-14. CORTBL

PRGTBL maintains information on what program each user is

It has a 3-word entry for each pcssible job.

or RUN command,

EduSystem 50 SYSSTAT.

DSUTBL is the disk request gueue.
sach core field in the system.

gpach 4-~word entry
‘iles open to the
zero, there is no
1ser in that core
;3 parameter block

field.

he transfer to take place.
See Figure D-15.

-0 do transfers.

When & uszer tvne

the filename {one to six characters raicked in
format) i1s stored in PRCTBL.

This information is uscd solely !

It contains a «-word e:
A 7777 word terminates DSUTRL.

there is a register for each of tne four pos:
user currently in that core {field.
file transfer pending for the internal

S

If the entrv is nonzero, it a poi-

{the RFILE/WFILE parameter blcck} which dose

A polinter, DSXPTR, cycie:z tnrough

DsuTE, +7 DECTAFE ENTRY FORFIELD Y

---------- ENTRIES FOR FIELD 2

e e e ——

N

|] ENTRIES FOR FIELD N

e END OF LIST

Figure D-15. DSUT)

DISK FILE DATR BASE

For each pduSystem 50 account number ther is a separate disk
2 library that contains named files. The User File Directory,
zr sntains the filename {and some associated information) and
2 1ucation information for each file, contreols this library.
name 1s in an 8-word name block:; the retrieval informatior is
sne or more B-word file retrieval information blocks. The UFD
2lf is stored in disk segments, up to a maximum of seven,

The first 8-word block of the UFD is a dummy block. It con-
15 2ll zeros except for a pointer to the next block.

The MPFD is i1dentical in form to a UFD. The only difference
in the contents of the name block. Where the UFD has six file-
> characters packed into three words, the MFD has the account
yer in the first word, then two words of password. Altogether,
se¢ three words are the name of the associated UFD. See Figure

S

] r
1o > DUMMY BLOCK 4 0
i ;
l i
. J u ———
- . - T
Aoositnt Mo o.oe
FILE MAME - 4}
FPers.. o0
Ftr ta reat nams Qlols Prr o1y peal rome §iask
- ! ! NAME BLOCK) rem e
Eat] Profasten ouobts In. b Ot
! — e % A———tre] p— o — e
File Si2s CRU Yyme oneg
Cute of Cragticn Coavice *ma uae
Ptr. ta Nafrieya’ ook ' L Brr o satr vl Diacox

Ptr. to naxt Fatrieves Binch =}

%

Sagmant 4 FILE RETRIEVAL | Seamart

INFORMATMHJBLOCN] Segment

i

Segment A
- L]

L .

t
Y J N

h Jy

kP
<
1

12 Bit Grare Wour . i A
UrGo YRS
- - - . D S Rt L =
Fiqure D-16. File Directories 77 ——

D.5 FILD PIIOWTOM DATAR DPRSE

The priwmary data haszs of the File Prhanton is the dirootories,
MFD and UFDs. Althouni thev may be accessed as files by oo nner Foz
in with the syster pascword, these diroctorics avs norme” 1y eoad
Ly PID. In addition, to kaop tvack oF disk usage, PP oo

Storage Allocation Table {(SAT). The SAT is a bit map ¢ i

spasc,. The 12 bits in each SAT word correspond to 12 disbv

£ the segment iz used, 0 17 it is availakble. At refro-n time I
5]

i 3 s
sets all baits which courrespond to nonesistent disgk to 15, The onv
c

ated at Lhe top of FPIP's 4K, It is theorefcore gswapped 1nts oo

FIp, If the SAT 1z updaterd, it 13 writton Lack to the
|5
SAT s a register, SATCNT, wihich rocords the numbaer of frea o

ments. Soe iigure D17,

[g-1s]

SAT

FTIT

oD-05E8%

Fiqure D-17. SAT

FIP also maintains some convenilent tables within its own 4K arca.
These tahles allow FIP to get at freguently used information quickly.
For example, when 2 user logs in, tho retrieval bkleowx, which indicates
whore his 0D 15 locaced, is fetched from the MFD and stered in a table.

¥IP need not then scan Lhe HFD for this user every time he opens a £ile.

JORTAY ccntains a l-word entry for each possiblo system job. If
no one is looggsd in for that job, the entry is zero. 1f there is a
vaer logoed in, the account number 18 stored. (Do 1ot confuse FIP's

JOBRTAS withh the Monitour's JOBTBL.) See Figurz D-18,

o RCLATIVE PURTER 1
NTO RETTHL
—————————— “ FILE ©
JOB 1 | ACCOUN HUMBER ADDRESS N UFD
JUB 2 | ACCOUNT KUMUER POINTER
T FILE 1
ADDRESS
POINTER
R Rt FILE £
ADDRESS
A ~
POINTER
- - = = = = = =~ w={ b FILEZ
JUB R ACTULI T NiMBER ADDRESE
JOBRTAB ENTTul ENTRY
o8-0% 81

Figure D-18., FIP Talles

ENUTBL contains an B-word block for each possible system job.
wrth:in theso elght words are four 2-word entries, cone for each pussible

cpen file for thet job. If the entry is zero, the file is not open.

If the file is open, the first word points to the entry in
RETTBL for this file. The seccond word points to the lecation

within the user's UFD where the File Retrieval Information Blocks
for this file begin. See Figure D-18.

' UFDTBL and RETTBL work together to maintain retrieval inform-
ation for all UFDs in use within the system. A UFD is in use if
‘one or mere users are logged in with that accourt or if the user
has opened a file from the library of another user. There is only

one entry in UFDTBL and RETTBL for each UFD, even if morc than one
user is using it.

UFDTBL is a table of 4-word entries. The first is the account
mumber of the UFD which is open, the second is the number of uscers who
tave access to it. (this number 1s decremented =zach time a user stops
ysing that UFD. If the count goes to zero, the entry is removed Irom
fFDTBL and RETTBL.) The access count is in 2's complement form.

_ RETTBL contains the File Retrieval Information Block for the UFD
jhich corresponds to the account number in UFDTBL. There are no
jointers between the two tables. Entries correspond positienally.

he number of entries in these tabhles is at least the number of on-line
isers. The number of additional entries depends on the amount of file
maring. For instance, the library UFD is invariably open to several
sers. See Figure D-19.

UFDTBL RETT L

Figure D~19. UFD Retrieval Data

UFDTBL and RETTBL are initialized to have the system account
(#1) open as the first entry with an access count of 1 (actually -1).
This allows FIP to get at the MFD while processing a LOGIN request.

All FIP tables except the SAT are cleared at system startup time.
SAT 1s cleared at initialize time.

CORTBL
LEQTB

SKPTBL
LHUOoDTHR
UUOTEL
R WTBRL
LLYTRL
JOBTBL
CLXTBL
TTYTBL
FRGTBL
DEUTBL
JIUABLE
ENTABL
UTABLE
RTABLE
SATTBL

T=NULINE+1

MONITOR TABLES

WHERE

TS8

TS8

TS8I1L1

Ts58

TS8

TS8

TS8II

TS8II

TS8II

TS8IX

TS8LL

TS8I1X

FIipP

FIP

FIP

rip

FI1P

J=JOBMAX -

TABLE SIZE

6

16

2xT+4

56

56

33

2xT+18

J+1

J+1

J+1

3xJ

4xUF+1

J+1

BxJ

8xJ

lexJ

344

"

'

—

UF=# USER FIELDS

ENTRY SIZE
1l

1

1/12

APPENDIX E

ASSEMBLING AND LOADING EDUSYSTEM 50 FROM SCURCES

£.1 ASSEMBLING EDUSYSTEM 50 MONITCR

* - Use the following command lines under 0S/8 version 3 to assemble
Monitor, where CONFIG.PA has been modified to reflect the desired
confiqurations

»PAL S1<CONFI1GsPARASSI/K

+PAL FIP<CONF1G-PARASFIP

«PAL INIT<CONFIGsPARA»INIT

«PAL TSHE<CONFIG+FARA»T38,TSBII/K

' When using CREF, the M option will be necessary. The binaries

may be punched on paper tape, or on 20K or larger systems, a shortout
may be taken. Type, under 05/8,

+LOADN INIT«S51,FIP.TS8/6=242020

Use the C option in INIT to write fields @ through 4 to tracks
d through 4 on the disk, initialize the system, load PUTR using the

0 option, start the system, log in under account 2, type "START 4",
and the system is up.

‘B.2 ASSEMBLING AND LOADING BASIC

To assemble BASIC under 0S/8 version 3. type:

+FAL BASED

«PAL BASCOM
+ PAL BASLDH
« PAL BASEXC
+PAL BASICH

v create a SAVE format file, the binaries must be transferred to

\System 30 library.

Then, perform the Zollowing under EduSystem 50:

«CHE BASIC;QPE 3 BASICIEXT 3 37

+H LOADER
INPUT-BASED
OFPTI1ION-

tBS

+ SAVE BASIC:H LCADER

INPUT~BASCOM
OFTION-
185

«+SAVE BASIC 6144 4305R LOADER

INFPUT-BASLDR
OPTION-
tES

«SAVE BASIC 13150 4003R LOADER

INPUT-BASEXC
OPTION=-
tBS

+SAVE BASIC 13714 4003R LOADER

INPUT-BASICN
CPTION=-

vBS

+«SAVE BASIC

SSEMBLING AND LOADING

14157 400

THE FORTRAN SYSTEM

o assemble the FORTRAN system under 0S/8 version 3, type:

«PAL FORT,»DECODE
+«PAL FOSL,DECODE

«PAL FDCOMP
« PAL FOSSIL

o create the new SAVE

+CRE FORT:OPE
+CRE FOSL;QPE

+CHE FDCOMPiCFPE
+CRE FOSSIL:OPE

files under EduSystem 50, first type:

3
3

FORTIEXT 3 5
FOSL;EXT 3 5
3 FDCOMPZ EXT 3
3 FOSSIL;EXT 3

i4
9

	000
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-04
	2-05
	2-05a
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	3-01
	3-02
	3-03
	3-04
	4-01
	4-03
	4-04
	4-05
	5-01
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	D-01
	D-02
	D-04
	D-04a
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	E-01
	E-02

