RTS/8

User’s Manual
Order No. DEC-08-ORTMA-C-D

RTS/8

User’s Manual
Order No. DEC-08-ORTMA-C-D

Version 2B

digital equipment corporation - maynard, massachusetts

First Printing, June 1974
Revised: September 1975
February 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Eguipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Rquipment Corporation assumes no responsibility for the use

or reljability of its software on equipment that is not supplied by
DIGITAL.,

Copyright (C) 1974, 1975, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document reguests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBCL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECsystem=-20 TYPESET-11

RTS/8

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

%]

4 4 8% & s 4 & 8 ® ¥
[y Q=TS I ST NPV (N N
+ & =
o

[N S A A L

|

CONTENTS

INTRODUCTION

RTS/8 DESCRIPTION
REAL-TIME SYSTEM OPERATION

USING TASKS UNDER RTS/8

THE STRUCTURE OF RTS/8 TASKS

CONCEPTS OF TASK COMMUNICATION
Task Synchronization Through the Use of
Event Flags
Intertask Messages

EXECUTIVE INTERNAL TASK TABLES

RTS/8 EXECUTIVE REQUESTS

COMMUNICATION WITH THE RTS/8 EXECUTIVE
ERs USED TO COMMUNICATE BETWEEN TASKS
SEND ~ Send Message
WAITE - Wait on Event Flag
SENDW - Send and Wait
RECEIVE - Receive Message
POST - Post Event Flag
Example of ERs for Message and Event Flags
ERs USED TO SET AND CLEAR TASK FLAGS
BLEKARG - Block Task for Specified Reason
UNBARG - Unblock Task for Specified Reason
SUSPND - Suspend a Task's Execution
RUN - Run a Task
USING INTERRUPTS IN RTS/8
EXECUTIVE REQUEST WAIT STATES

RTS/8 SYSTEM TASKS

CLOCK HANDLER
Examples of Clock Handler Calls
TERMINAL HANDLER
additional Assembly Parameters Affecting
Terminal Handler Properties
Useful Equates in the Parameter File
Examples of Terminal Handler Messades
LINE PRINTER HANDLER
MASS STORAGE HANDLERS
Floppy Disk Handler
LINCtape Handler
Example of Mass Storage Handler Call
POWER FAIL TASK
0S/8 SUPPORT TASK
Mapping of Fields with 08/8 Support Task

iii

[FER S SCI L oS Y
[T T T I I T I I I A U I

HFOOWMOEAhD O eWWwws PR

Ll Lo LD b ol W

B

b b
[
'—l

[L]

CONTENTS (Cont,}

05/8 - RTS/8 COMMUNICATION (OSBCOM)
.1 Using the 0OS8COM Tasgk
2 Other Techniques
08/8 FILE SUPPORT TASK
UNIVERSAL DIGITAL CONTROLLER/INDUSTRIAL
CONTROLLER SUBSYSTEM {UDC/IC3) HANDLER
AQ Analeg Qutput
AT Analoyg Input
DO Digital Output
DI Dpigital Input
GEC Generic Code
EC Enable Counter
i Read Counter
DC Disable Counter
ECT Enable Contacts
CS8 Change of State
BCT Disable Contacts
UDC/ICS Assembly Parameters
UDC/ICS Error Conditions
CASSETTE HANDLER
.1 Handler Function
4.10.2 Utility Function
4.11 CASSETTE FILE SUPPORT HANDLER
4.12 PDP~B8A NULIL TASK
4,13 KLB-A SUPPORY
4.13.1 Executive KL8-A Support
4.13,2 TTY Task KL8-A Support
4,13.3 KL8~A Support for the 0S/8 Support Task
4.13.4 KL8-A Support for a User Task
4,14 EXIT TASK

HE R WD 00l SV B
o)
0

Wk = o

SO ¢ 2 & 4 4 o 84 s e

CHAPTER & MONITOR CONSOLE ROUTINE

MCR COMMAND ARGUMENTS
MCR COMMANDS
1 DAte [mm/dd/yyyy [,Time~of~-day]]
2 TIme [Time=-of~day]
3 Name Task-ID,Newname
4 REquest Task-ID [, (@Time-of-day ! Interval)
{;Interval]]
STop Task-ID
DIsable Task-ID
ENakle Task~ID
CAncel Task-ID
S¥stat [Task-1D]
OPen Address [,Count)
EXamine Address [,Count]
DEposit Address,Word [,Word] [,Word}
POst Address
EXIT
MCR ERRORS
NONRESIDENT MCR

nornyiong;

UL RN RV L RN N R T RT

. L] - L] » - » » - - L] »

B WM RNNNMD DN
. [) - [] . L] - L] [] L]
H P WD @) Oy
BWNHO

=2}

CHAPTER ASSEMBLING AND LOADING TASKS FOR RTS/8

PARAMETER FILE STRUCTURE
Executive Specifications

o th
- L]
bt
[]
‘_l

iv

(93]
—

aadiaw;
NN

ruLn L non
LI T I I e I I I R |
[Lalea By TR e T R T, S-SR S SN S

[+ giunwdigiuran W

S
]
LS

CONTENTS (Cont.)

Page
6.1.2 Task Definitions 6-2
6,1.3 System Task Specifications 6-3
6.1.4 System Wide Definitions 6-3
6.1.5 Task Setup 6-4
6.2 CREATING AN RTS/8 SYSTEM 6=5
6.3 USING THE 0S/8 BITMAP PROGRAM 6=7
6.4 SAMPLE RTS/8 TASK PROGRAM 6=-"7
6.5 USE OF CONTROL FILES UNDER RTS/8 6~9
6.6 RTS/8 SYSTEM TASK PARAMETERS 6=10
6.6.1 Clock Handler Parameters 6—-10
6.6.2 Swapper Parameters 6-11
6.6.3 Terminal Handler Parameters 6-11
6.6,4 Monitor Console Routine Parameters 6=-12
6.6.5 0S/8 Support Task Parameters 6-13
6.6.6 KLB-2A Support Parameters 6-13
6.6.7 Line Printer Handler Parameters 6=14
6.6.8 DECtape Handler Parameters 6-14
6.6.9 EXIT Task 6-14
CHAPTER 7 NONRESIDENT TASKS 7-1
7.1 OVERVIEW 7~-1
7.1.1 Writeable Tasks 7=3
7.l.2 Checkpointable Tasks 7=3
7.1.3 Interaction Between Tasks 7=-3
7.2 MEMORY PARTITIONS 7-3
7.2.1 FREE Command 7=4
T3 NONRESIDENT TASK INITIALIZATION F=5
7.3.1 Parameters for Nonresident Tasks 7-5
7.3.2 Assembling Nonresident Tasks 7-6
7.3.3 Creating the SAVE Image File 7-6
7.4 PARAMETER INITIALIZATION FOR PARTITIONS T7=7
7.4.1 General Information 7-7
7.5 NONRESIDENT TASK IMPLEMENTATION 7-8
CHAPTER 8 DEMONSTRATION PROGRAM B~1
8.1 MODIFIED PARAMETER FILE (PARAM.PA} g=-1
8.2 NONRESIDENT TASK LISTINGS §-8
8,2,1 Nonresident Task NR20 8-8
8.2.2 Nonresident Task NR22 8~9
8.3 ASSEMBLY AND LOAD PROCEDURE 8=10
g.4 NONRESIDENT TASK ASSIGNMENT AND EXECUTION 8=-11
CHAFTER 9 ADVANCED RTS/8 PROGRAMMING TECHNIQUES 9-1

PERFORMING A RESCHEDULE

Writing Delicate Code

Inhikiting Task Switching
EXECUTIVE REQUESTS FOR ADVANCED APPLICATIONS
.1 WAITM - Waiting for Multiple Event Flags
.2 WAITX - Wait for Exactly This Event Flag
«3 DERAIL - Derail a Task's Execution
o3
.3

. »
L% I ol
LI I |

Dangers of DERAIL

Restrictions Using DERAIL
STARTING PARTITIONS AT AN ARBITRARY BOUNDARY
DIRECT REFERENCES TO SYSTEM TABLES

.l
.2

WAL W WD WD D WD WD DO D
D oE 4 4 & & ¥ 4 8 o8
[N S LR S SESESE N S

O OAD D W D WD WD DD DD
1
o ~) =] ~1aind b b

v

CONTENTS (Cont.)

Page
APPENDIX A RT5/8 DISTRIBUTED SOURCE FILES A-1
APPENDIX B RTS5/8 COMPONENT SIZES B-1
APPENDIX C RTS/8 FLOWCHARTS c-1
APPENDIX D RTS/8 ASSEMBLY ERRCR MESSAGES D=1
APPENDIX E EXECUTIVE INTERNAL TASK TABLES E-1
GLOSSARY Glossary-1
INDEX Index~1
FIGURES
FIGURE 2-1 Message Format and Linking of Messages 2=4
7=-1 Nonresident Task Implementation 7=-2
B-1 RTS/8 System Memory Map {Default Memory
Allogation) B-4
E-1 Executive Internal Task Table Structure E-5
TABLES
TABLE 1-1 RTS/8 System Tasks 1-2
2-1 Summary of Event Flag States 2-3
3-1 Summary of Executive Requests 3=-2
3=-2 Symbolic Names for Specifying WAITBITS 3-7
3-3 Summary of Wait States Incurred by Executive
Requests 3-12
4-1 Sunmary of Terminal Handler Assembly Parameter

Default Values 4-~-9
g-1 Summary of Task Switching Flag (TSWFLG) States 9-4
B-1 RTS/8 Component Sizes B-1
B-2 MCR Component Size B=5

vi

PREFACE

This manual describes the PDP-8 Real-Time Operating System (RTS/8}) .
Knowledge of PDP-8 assembly language programming (PAL8) is essential
for a complete understanding of this manual. In addition, the user
should be familiar with real-time systems in general and with the
operation and use of the development system for the PDP-8, 08/8. The
information in Chapter 9, "Advanced RTS/8 Programming Techniques" is
for the experienced RTS/8 user. It should be read after the user has
gained familiarity with RTS/8.

This version of the manual has been enlarged and expanded to
incorporate several new RTS/8 features. The Major features include
KL8-A Support, PDP-8/A Null Task, the EXIT Task, and two new
Executive Requests. Other features are the nonresident implementation
of the MCR, UDC/ICS support, an 0S8COM facility that allows the 08/8
system to talk to an RTS/8 task, and control files that allow the user
to efficiently make multiple task copies. RTS/8 flowcharts have been

added to show system operation.

The following PDP-8 handbooks will be helpful for review and
reference:t

INTRODUCTION TO PROGRAMMING (DEC-08-XINPA-A-D)

SMALL COMPUTER HANDBOOK (90P45)

0S/8 HANDBOOK {DEC-S8-0SHBA-A-D)

UDC8 UNIVERSAL DIGITAL CONTROL SUBSYSTEM MAINTENANCE MANUAL
{(46H745)

PDP-82 MINICOMPUTER HANDBOOK (EB0621976)

1CS8 INDUSTRIAL CONTROL SUBSYSTEM MAINTENANCE MANUAIL (EKOICSE8MM)

vii

CHAPTER 1

INTRODUCTION

1.1 RT5/8 DESCRIPTION

RTS/8 is a compact real-time system designed for the PDP-8 family of
processors (except the PDP-8/5). This system allows up to 63 tasks to
run concurrently and compete for resources on a fixed priority basis.
It can be used for a wide range of applications in which a number of
processes must be monitcred and controlled. As with other real-time
systems, RTS/8 responds to physical or conceptual events to permit the
timely execution and. scheduling of tasks.

The RTS/8 Executive controls execution and interaction among all
tasks. The Executive decides which tasks should run {based on the
priorities of the runnable tasks), and services the tasks by means of
Executive Requests (ERs}).

A task is the basic program unit within RTS/8. RTS5/8 system tasks
(DEC-supplied) and their file names are listed in Table 1-1. The
system supports both resident and nonresident tasks. A resident task
resides permanently in memory; a nonresident task is one in which the
major portion of the task resides on a mass storage device and is
loaded into memory only when that task becomes executable. Using
nonresident tasks permits portions of several tasks to share the same
areas of memory, providing economical use of memory.

RTS/8 includes system tasks that control mest standard DIGITAL I/0
devices. A full complement of peripherals is supported, including RKS8
and RKS8-E moving-head disks, DF32 and RF0B fixed-head disks, TCO08
DECtape, RX8 floppy disk, LINCtape, DEC cassette, and LE8 and LSBE
line printers {RTS/8 does not support TDBE DECtape}. The Monitor
Console Routine {MCR) task provides an interface between the user at
the console terminal and the system. The MCR provides the user with a
cseries of commands to control, inspect, and, to some extent, debug the
system. The MCR commands are straightforward and easy to use. They
allow the wuser to schedule and execute tasks at specified intervals,
suspend task execution, and print system status reports.

A system task also is provided that allows a single copy of the O0S/8
operating system to run in the background, creating a real-time
foreground-05/8 background system. With 0S/8 in the background, the
user has the facilities for program assembly, debugging, and editing.
The minimum RTS/8 hardware configuration required for a foreground
only system is a PDP-8 family processor, 4K words of memory, and a
console terminal capable of papertape input. A system capable of
running a real-time foreground and 0S/8 in the background reguires a
PDP-8 family processor with KM8-A, KM8-E or TS5-8 Time Sharing
options, & mass storage device (such as an RKBE cartridge disk or RXSB
floppy disk), and two terminals (one must be dedicated to 05/8 system
execution).

INTRODUCTION

RT5/8 tasks are created by editing the RTS/B master parameter file ¢to

produce

a parameter file that descri

Task source files are then assembled with the edited parameter

using the PALS assembler.
the 0S/8 support system under

The asse

all task binaries are joined into a complete RTS/8 system.

bes the user's particular system.
file
mbler can run either under Cs/8, or
RTS/8. Then using ABSLDR under 0s/8,

Table 1-1
RTS/8 System Tasks
Task Name File Name Task Function
- PARAM.PA System parameter file with
equates blank. Appropriate
values should be inserted to
create specific parameter files.
RTS8.PA RTS3/8 Executive
MCR MCR.PA Monitor Console Routine
null task MCR.PA Null task '
ose OS85UP.PA 05/8 Support Task
OS8F 0583UP.PA 0S/8 File Support Task
PWRF PWRF.PA Power Fail Task
CLOCK CLOCK.Pa Clock Handler Task
TTY TTY.PA Terminal Driver Task
LpT LPT.PA Line Printer Driver Task
DTA DTA.PA TCO8 DECtape Driver Task
RK8 RK&.PA RK8 Disk Driver Task
RKS§ RK8E.PA RK8E Disk Driver Task
RF08/DF32 RF08.PA RF08/DF32 Fixed-BHead Disk Driver
Task
CSA C8A.PA Cassette Driver Task
CSAF CSAF.PA Cassette File Support Task
UDC/1Cs UDCICS.PA Universal Digital Controller/Industrial
Controller Subsystem Handler Task
RX8A RXQ1RT.PA Floppy Disk Handler (1lst controller)
RX8B RXO01RT.PA Floppy Disk Handler (2nd controller}
RX8C RXO1RT.PA Floppy Disk Handler (3rd controller)
RX8D RXCQ1RT.PA Floppy Disk Handler (4th controller)
LTA LTA.PA LINCtape Driver Task
SWAPPER SWAP. P2 Nenresident Task swapper
NULL8A NULLBA.PA Null Task for PDP-8A
EXIT EXIT.PA Exit Task

1.2 REAL-TIME SYSTEM OPERATION

A multiprogramming
available resources (such as memory, CPU time,
to be shared by several tasks.

machine

gystem

a software framework that allows

convention since it overlaps with the definitions of "program”

and peripheral devices)
Basically, a task is a portion
code that performs a specific function;

of

a task is defined by
and

"subroutine."

Multiprogramming allows many tasks to be in some state of execution
simultaneously. If a task cannot use available central processor time
because it is waiting for completion of an I/C operation (or is
blocked by some other «condition), the central processor can be
switched to another task to use the available time, thus increasing
system efficiency.

INTRODUCTION

Most real-time systems are regquired to serve a group of tasks that run
at varying times or frequencies and alternate between being compute
bound or 1/0 bound. If machine resources are to be efficiently used,
these tasks cannot be run in series since the central processor will
be poorly utilized during the periods the tasks are I/0 bound. In
addition, most real-time tasks are essentially time-critical and
should not wait for a slow, less important I/0 or compute bound task
to finish before being executed. Thus, multiprogramming and a
priority scheme for scheduling the central processor provide maximum
resource utilization.

Thus, a real-time system is a multiprogramming system that must, in
addition to the multiprogramming features, respond quickly to critical
internal or external events. The real-time system is required to
suspend the operation of a less important task and start the task that
deals with the critical event.

A priority scheme establishes the relative importance of various tasks
in the system. This allows a less important task to be interrupted to
permit execution of a critical real-time task. For RTS/8, a fixed
priority scheme was chosen because such a scheme is simple and
reliable, and regquires low scheduling overhead.

1-3

CHAPTER 2

USING TASKS UNDER RTS5/8

2.1 THE STRUCTURE OF RTS/8 TASKS

The RTS/8 Executive is the controlling program in an RTS/8 System.
The Executive decides which task should run based on the priorities of
the runnable tasks {those tasks not waiting for completion of any I/0
or other events). It also provides services to the tasks by means of
Executive Requests. Executive Reguests are discussed in Chapter 3.

The user assigns uniqQue task numbers to each task in an RTS/8 System.
He can assign up to 63 (77 octal) task numbers, and must account for
system tasks within the total number of tasks. A task number, once
assigned, cannot change during the execution of the program, since
RTS/8 uses a fixed priority system. Task numbers serve the following
purposes:

1. The task number is used by the RTS/8 Executive as an index to
various system tables which contain information about each
task.

2. The task number is used by other tasks in the system to
reference a particular task when performing certain Executive
Requests (such as sending a message).

3. The task number determines the task's priority - the Ilower
the task number, the higher the priority of the task.

The Executive uses five internal tables to maintain information about
the tasks in the system. A brief description of these tables is given
in Section 2.3.

2.2 CONCEPTS OF TASK COMMUNICATION

RTS/8 is event driven, i.e., the highest priority runnable task
executes continuously until it is completed or some event or condition
in the system causes it to be suspended. Another change or condition
can reactivate the task. Tasks can be self-starting if assembled to
run at system startup, started by another task, or started by the user
at the terminal console using the MCR task. RTS/8 performs two main
types of task communication, as follows:

1. Task synchronization through the use of Event Flags

2. Intertask messages

USING TASEKS UNDER RTS/8

2.2.1 Task Synchronization Through the Use of Event Flags

Whenever two processes occur independently, one process may need to
wait until the execution of the other is finished. This can be
illustrated by using the PDP-8 terminal interface as an example. The
FDP~8, when ready to generate the first character, alerts the terminal
by issuing a Load Teleprinter Sequence (TLS) instruction. The PDP-8
must now wait in a TSF; JMP.-1 loop if it wishes to do further I/0
immediately. It cannot proceed with the next character until the
terminal raises its ready flag to signal that it is finished printing
the first character. When the flag is raised, the PDP-8 then exits
from the wait loop and proceeds to load the next character.

Similarly, RTS/8 provides Event Flags as a signalling mechanism to
syhchronize tasks with each other. An Event Flag is a user-chosen
location that contains the status of an event. The events are either
1} physical processes such as a clock ticking or a valve closing, or
2} conceptual occurrences such as a certain string of characters typed
by the operator or scheduling a task for execution. Like device
flags, an Event Flag can signify either a busy or a completed state,
defined as PENDING (>0) and FINISHED {=0) , respectively. Thus, a task
can direct another task via a message to perform a specified action,
at which time it sets a mutually-agreed upcn Event Flag to the PENDING
value. When the second task has completed the specified action it
sets the Event Flag to the FINISHED value; this is known as Posting
the Event Flag. As a simple example, if the first task has been
waiting for the Event Flag with the instructions:

TAD Event Flag /LOAD EVENT FLAG IN AC
SZA CLA /1F EVENT FINISHED, SKIP
JMP . -2 /KEEP TRYING

then the Posting of the Event Flag will cause the first task to exit
from its loop, continuing on with the knowledge that the second task
has completed its processing.

Since this loop ties up the PDP-8 precessor, Event Flags wunder RTS/8
have an additional state, WAITING (<D). Using the example just cited,
the addition of the WAITING state now allows the first task to tell
the RTS/8 Executive that it wants to WAIT until the Event Flag
signifying the status of the second task is FINISHED. The monitor
saves the contents of the waiting task's PC and sets the Event Flag
Wait bit in its Task Flags Table Word. The Event Flag is set to the
WAITING state., The WAITING state for an Event Flag is octal 4000 plus
the waiting task's Task Number. When the Event Flag is POSTed via an
RT5/8 Executive Request call, the task WAITING for it is automatically
taken out of Event Flag Wait by RTS/8, (If no other blocking bits are
set, the waiting task is again runnable, and will resume execution
when higher priority tasks are blocked.) WAITE is the mnemonic for the
RTS/8 Executive Reguest that Waits for an Event Flag.

This code would look as follows:
CAL
WAITE
event flag

All Executive Requests are described fully in Chapter 3. A summary of
Event Flag states is shown in Table 2-1.

USING TASKS UNDER RTS/8

Table 2-1
Summary of Event Flag States
Event Flag State Value
FINISHED (posted) 0
PENDING >0
WAITING <0 (4000 + Task No.)

2.2.2 Intertask Messages

Just as Event Flags under RTS/8 are analogous ta hardware device
flags, messages are analogous to data-sending hardware 1I1/0
instructions (for example, TLS). That 1is, messages start a task,
vroviding the task 1is WAITING for a message, and at the same time,
they pass information to the task. Messages are transmitted by
Executive Requests.

An RTS/8 message consists of a three-word Message Header followed by
any number of contiguous words of information to be exchanged between
two tasks. The Message Header is used exclusively by RTS/8. The
first word of the Message Header is the Event Flag for the message.
When the message is sent, the RTS5/8 Executive sets the Event Flag to
the PENDING state. This signifies that the message has been sent but
not yet completed. No action occurs to the Event Flag upon receipt of
the message by the receiving task; however, RTS/B requires that the
receiver POSTs the Event Flag when it has performed the action
specified (or implied} by the message. This posting serves twWo
purposes:

1. It informs the task which sent the message (the "sender")
that the requested action has been completed, and

2. It allows the message to be sent again (see Item 2 helow).

If multiple messages are waiting to be received by a task, RTS5/8 uses
the second and third words of the Message Header to link these
messages together (see Figure 2-1). The second word is a CDF (Change
Data Field) instruction to the field of the next message. The third
word is the address of the next message. A second word of 0 gignifies
that this is the last message. If the receiving task is not actively
waiting for a message, the message is placed on the receiving task's
Input Message Queue. Messages are then queued in order of decreasing
priority of the sender (increasing task number). Messages sent from
the same task are gqueued in the order in which they were issued.

USING TASKS UNDER RTS/8

RTS/8 EXECUTIVE

MSGTBL MESSAGE 1 MESSAGE 2 MESSAGE 3
CDF Event Flag Event Flag Evant Flag
Message
PTR CDF CDF a Header
PTR PTR

Massage
Content

Figure 2-1 Message Format and Linking of Messages

The rest of the message can contain any desired information. Sending
a message does not physically move the message information to the
receiving task, but provides the receiver with the field and address
of the first data word of the message.

It should be noted that the information in a message is not copied
into the receiver's area. This has the following implications:

1. bata in a message should not be modified by the sender while
the Event Flag for the message is PENDING.

2. The same message cannot be sent a second time before its
Event Flag is FINISHED the first time. RTS/8 enforces this
by checking the message Event Flag on a2 SEND operation and
putting the sender "into Event Flag Wait if the message is
still PENDING,

3. It is legal for the receiving task to store information in
the body of the message. In this way, an "answer" to the
message can be returned without the complications of sending
a return message back to the sender. For example, when a
task sends a message to the disk driver task reguesting 1/0,
the driver places the error status of the completed operation
in a specific word in the message to indicate whether an
error occurred.

USING TASKS UNDER RTS/8

2.3 EXECUTIVE INTERNAL TASK TABLES

The Executive uses five internal tables to maintain information about
the tasks in the system. A brief description of these tables is as
follows:

Table Description

Task State Table (TSTABL) Contains informaticn such as the
contents of the task's PC, Link and AC
at the time the task stopped running.

Task Flags Tabkle (TFTABL) Contains information about why the task
is not running, i.e., it indicates for
what conditions (blocking or wait bits)
the task is waiting.

Task Input Message Queue Contains messages that have been sent
Header Table (MSGTBL) to this task. This table is referred to
simply as the Message Table.

Residency Table (RESTEL) Used for nonresident tasks, this table
specifies where the task is to reside in
memory, and where it resides on the swap
device.

Partition Takle {PARTBL) Used for nonresident tasks, this table
contains information about each memory
partition, such as length and location
of the partition. Memory partitions are
shared by nonresident tasks.

The user does not need to know the format of these tahles to use
RTS/8. However, a detailed explanation of these tables is given in
Appendix E.

CHAPTER 3

RTS/8 EXECUTIVE REQUESTS

3.1 COMMUNICATION WITH THE RTS/8 EXECUTIVE

RTS/8 tasks communicate with the RTS/8 Executive via Executive
Reguests (ERs). RTS/8 uses locations 20-27 in every field as a
communication region for ERs to facilitate Executive Requests across
field boundaries. The Executive can be called in any field via a JMS
20 instruction (designated symbolically as CAL). The Data Field (DF)
does not have to be any specific value when the CAL is given, since
the code in location 20 sets the DF to the Instruction Field (IF),
sets the IF to 0 and jumps to the RTS/8 Executive.

A summary of Executive Requests is given in Table 3-1. Most of the
Executive Requests are explained in detail in this chapter. The
RESCHD, WAITX and DERAIL Executive Requests are described in Chapter
9.

The RTS/8 Executive will not honor any request to switch tasks arising
from an interrupt if the interrupted task's Program Counter (BEC) was
less than 100(octal). This protects the RTS/8 Executive's entry peint
(location 20 in each field) from being destroyed. User tasks must be
written so that instructions are never executed below 100 in any
field.

All ER's except DERAIL and SKPINS can relingquish processor control to
higher-priority tasks as a result of their action.

3,2 ERs USED TO COMMUNICATE BETWEEN TASKS

The five ERs associated with the Intertask Messages and the Event
Flags are SEND, WAITE, SENDW, RECEIVE and POST. An example of their
use is shown in Section 3.2.6. In addition, a sixth ER called WAITX
is described in Chapter ¢, Advanced Programming Techniques {Section
9.2.2}).

RTS/8 EXECUTIVE REQUESTS

Table 3-1
Summary of Executive Requests

Code! Symbolic Description Section Reference
Name

0 SEND Send a message to a task 3.2.1

1 RECEIVE Look for and/or receive a 3.2.4
message from a task

2 WAITE Wait for an Event Flag to be 3.2.2
posted

3 RUN Run a task 3.3.4

4 SUSPND Suspend execution of a task 3.3.3

5 POST Post an Event Flag 3.2.5

6 SKPINS Insert code inte interrupt 3.4
skip chain

7 DERAIL Derail or force a task's 9.2.3
execution to a new address

10 BLKARG Block a task from running for 3.3.1
a specific reason

11 SENDW Send a message and wait for 3.2.3
it to be received

12 UNBARG Remove a reason that a task 3.3.2
is blocked from running

13 RESCHD Force the RTS/8 Scheduler to ruml 9.1.2

14 WATITX Wait for a particular Event 3.2.2

Flag to be posted

3.2.1 SEND - Send Message

Format: CAaL
SEND
TSKNUM
MESSAG

The SEND ER sends the message located at MESSAG in the field of the
CAL instruction to the task whose number is TSKNUM. If the receiving
task has a higher priority than the sender and is waiting for a
message, the sender is temporarily suspended and the receiver runs,
In this case, the sender is not put into any WAIT state once the
messade is sent. However, if the Event Flag in location MESSAG is
PENDING {nonzero), meaning the message is still busy from a previous
SEND, the sender will be put intec Event Flag Wait on location MESSAG,
and only when the Event Flag becomes FINISHED (Zero) will this SEND be
performed. Care should be taken that a message is sent from only one
task as only the last request to send a busy message is remembered:
the first task can go to sleep in Event Wait permanently.

RTS/8 EXECUTIVE REQUESTS

3.2.2 WAITE ~ Wait on Event Flag

Format: CAL
WAITE
EFLG

The WAITE ER checks the status of leccation EFLG and if it is FINRISHED,
returns control to the caller. If EFLG is PENDING, its state is
changed to WAITING and the calling task is put into Event Flag Walit.
When location EFLG is POSTed by another task or interrupt routine, the
calling task becomes runnable again. The Event Flag must be
initialized (set to 1) before use in most cases, particularly when a
task is initiating an event to be completed by another task. The
waiting task must reset the Event Flag before using it again in that
the Event Flag does not reset itself.

NOTE

In advanced applications, the user may
be waiting for multiple Event Flags (see
Section 9.2.1 for description of WAITHM).
In this case the task will run whenever
any one of the Event Flags is posted,
and not necessarily the one specified in
the WAITE. To insure that a particular
Event Flag is posted, use the WAITX ER
described in Section 9.2.2.

3,2.3 SENDW - Send and Wait

Format: CAL
SENDW
TSKNUM
MESSAG

The SENDW ER is exactly eguivalent to the sequence:

CAL

SEND /SEND THE MESSAGE

TSKNUM

MESSAG

CAL

WAITE /WAIT FOR RECEIVER TO ACKNOWLEDGE
MESSAG

3.2.4 RECEIVE - Receive Message

Format: TAD TSKNUM /ONLY TO RESTRICT TO ONE
CAL /SENDING TASK
RECEIVE
MADDR, 0 /MESSAGE ADDRESS STORED

J/HERE; CDF TC MESSAGE
/FIELD IN AC ON RETURN

If the AC is zero when the RECEIVE ER is issued, the calling task's
Input Message Queue is examined. If there are messages in the calling
task's Input Message Queue, the first (i.e., highest-priority) message
is dequeued and the address of its first data word is placed in MADDR.
A CDF to the field of the message is stored in the AC.

3-3

RTS/8 EXECUTIVE REQUESTS

If there are no messages, the task is placed in Message Wait until
such time as a message is sent to this task. However, a task may
first examine its Input Message Queue Header in field 0 to determine
the state of the Input Message Queue.

If the AC is nonzero when the RECEIVE ER is issued, the calling task's
Input Message Queue is searched for a message whose sender's Task
Number matches the contents of bits 1-11 of the AC., If such a message
is found, it is removed from the gueue as specified above; if a
message is not found, the issuing task is placed in Message Wait.
This allows a message from only one given task to be received.

NOTE

The following information is useful to
the advanced user. When a task is in
MSGWT, after just having done a RECEIVE,
its PC as stored in the TSTABL points
back to the location containing the CAL.
Thus, when a meéssage comes in, the task
re—executes the RECEIVE ER and accepts
the message. This mechanism is normally
transparent to the user. One
implication is that no harm is caused by
taking a task out of MSGWT because once
the task starts up again, it wil1
re-execute the RECEIVE ER, and go back
into MSGHT.

Normally, if there are no messages in the Input Message Queue when a
task performs a RECEIVE, the tasck is put into Message Wait. However,
2 1 in bit 0 of the AC {i.e., the AC is negative) when the RECEIVE is
issued indicates that the task is not willing to wait. Thus, with no
messages in the Input Message Queue (or none sent by the task
specified in bits 1-11 of the AC), the task will then continue to run
{at CAL +3) with the AC egual to zero. The zere AC provides the means
for the RTS/8 Executive to inform the tagk that there were no messages
(of the desired type) pending.

3.2.5 POST - Post Event Flag

Format: TAD EFPTR /POIRTER TO EVENT FLAG
CAL
POST
CDF EFFLD /FIELD OF EVENT FLAG

The Event Flag pointed to by the AC, in the field specified by the
CDF, 1is set to the FINISHEED {zero) state. If its previous state was
WAITING, the task that was waiting for it is cleared of its Event Flag
Wait. This ER never sets the calling task in a WAIT state. If the
task waiting for the Event Flag is of a higher priority than the
calling task, the calling task is temporarily suspended while the
cther is run.

RT3/8 EXECUTIVE REQUESTS

3.2.6 Example of ERs for Message and Event Flags

The following example illustrates the RTS/8 ERs dealing with Messages
and Event Flags. Since I/0 and interrupts under RTS5/8 have not been
discussed yet, this example is elementary. There is ne advantage to
keeping the functions of the two tasks separate, and the entire
gend/receive structure is being used here as an elaborate subroutine
call. A description of the execution seguence follows the example.

Task A
Al ALQOOP, CAL
SEND /SEND TASK B MESSACGE 1
B
MES1
A2 CaL
SEND /SEND TASK B MESSAGE 2
B
MES2
a3 CAL
WAITE /WAIT FOR MESSAGE 1
MES1
Ad JMP ALOOP J/LQOF
MES1, ZBLOCK 3 /MESSAGE 1
15 /RANDOM NUMBERS
37
23
MES2, ZBLOCK 3 /MESSAGE 2
-1 /RANDOM NUMBERS
4
Task B
Bl BLOOP, CAL
RECEIVE /GET A MESSAGE
MADDR, 0
B2 DCA EFCDF /SAVE MESSAGE CDF FOR POST
B3 TAD EFCDF
B4 DCA .+1 /PUT CDF INLINE
B5 HLT /CDF TO MESSAGE FIELD
Bb TAD I MADDR /GET 1ST DATA WORD OF
/MESSAGE (DO NOTHING WITH IT)
B7 CLA
B8 5TA CLL RTL /=3 IN AC
B9 TAD MADDR /AC POINTS TO MESSAGE
/JEVENT FLAG
B10 CAL
POST /DECLARE MESSAGE RECEIVED
EFCDF, ALT JCDF TO MESSAGE FIELD HERE
B1l1l JMP BLOOCF /LOOP

The flow of execution in this example depends on which of the two
tasks has higher priority. Assuming that at some time both A and B
become runnable and task A has higher priority, the sequence of
execution is as follows:

Sequence Reason For Execution
Al Tagk A has higher priority than task B.
A2 Task A has higher priority than task B.
A3 Task A has higher priority than task B.
Bl Task A is now in Event Flag Wait since MESI

was PENDING; MESl is now in WAITING state,

3-5

RTS8/8 EXECUTIVE REQUESTS

Sequence Reason For Execution

B2-B10D Task A is still waiting; the RECEIVE at Bl
received MES]

54 The POST at B1l0 posted MES1 and "woke up" A,
which has higher priority than B.

al A continues executing.

a2 A tries to send MESZ2 again; B has not yet
processed it; MES2 is PENDING.

Bl1l Therefore, A is put into Event Flag Wait and
B is resumed; MES2 is now WAITING.

Bl-B1l0 B now RECEIVes and POSTs MESZ.

A2 This brings A out of Event Flag Wait: the
RTS/8 Executive has modified task A's program
counter so that it will re-execute the
cffending SEND.

A3 A3 now waits for MES1 to be POSTed.

If task B has higher priority, the sequence of execution is:

Seguence Reason For Execution
Bl Task B has higher priority than task A.
A1 Task B is placed in Message Wait since there

are no messages in its input queue. Task A
then sends MES1 to Task B.

B2-Bl0 Task A's message brings task B out of Message
Wait: since B has higher priority, A is
stopped and B runs.

B1ll The POST at Bl0 sets MES] to FINISHED but has
ne other effect.

Bl Now task B tries to get another message.

A2 There are no other mesgages, so task B is put
in Message Wait and A is run.

B2-B11 Task A sends MES2 which “"wakes ugp" B; B
processes MES2 and

Bl returns for more,

A3 and is put in Message Wait, Since MES1 is
FINISHED

Ad the WAITE at A3 has no effect and task A

Al loops back to Al and sends MES] again.

3.3 ERs USED TO SET AND CLEAR TASK FLAGS

Several ERs allow a task to explicitly set and clear flags in the Task
Flags Table entry of another task, and to set flags in its own table
entry. These ERs are BLKARG, UNBARG, SUSPND and RUN.

3.3.1 BLKARG - Block Task for Specified Reason

Format: TAD TASKNDM /OR 0 IF SELF
CAL
BLEARG
WAITBITS

TASKNUM contains the number of the task to be blocked (that 1is, not
allowed to run). WAITBITS specifies one or more bits to be set in
that task's Task Flags word. Assuming WAITBITS is nenzero, this will
cause the specified task to become non-runnable. If TASKNUM contains
zero, the issuing task will be blocked on the specified wait bits.

3-6

RTS/8 EXECUTIVE REQUESTS

The TASKNUM=0 form of this ER is the only legal way to specify the
issuing task as the task to be blocked; if TASKNUM is equal to the
issuing task number, the action of this ER is undefined.

Exanmple:
rask 14 is placed into User Wait by executing the following code.
TAD {14
CAL
BLKARG
USERWT

Symbolic names for specifying the condition for blocking or unblocking
a task in the WAITSITS word is given in Table 3-2.

Table 3=2
Symbolic Names for Specifying WAITBITS

Symbolic Name Value Meaning

NONRWT 4000 Nonresident Wait - This task cannot run
because it is not in memory.

EFWT 2000 Event Flag Wait ~ This task is waiting for an
Event Flag {which contains a WAITING value
corresponding to this task) to be POSTed.

RUNWT 1000 Run Wait - This task is waiting for a RUN ER
to be executed with its number in the AC, or
for the operator to type "REQUEST task" to the
Monitor Console Routine (see Chapter 5).

SWEWT 0400 Swap Wait - This task cannot run because it is
in the process of being brought into memory.

EQRMWT 0200 Event or Message Wait - This task is waiting
for an Event Flag to be posted or a message to
arrive, whichever happens first.

USERWT 0100 User Wait - This bit is reserved for use by
user—-written tasks. RTS/8 does not use this
bit.

ENABWT 0040 Enable Wait - This task 1is waiting to be

Enabled. Use of this bit is restricted to the
Monitor Console Routine for the "ENABLE task"
and "DISABLE task" commands (see Chapter 5).

MSGWT 0020 | Message Wait - This task is waiting to be sent
a message.

DNEWT 0001 Task does not exist. This bit should never be
set or cleared by a user task.

RTS/8 EXECUTIVE REQUESTS

3.3.2 UNBARG - Unblock Task for Specified Reason

Format: TAD TASKENUM
CAL
UNBARG
WAITBITS

TASKNUM contains the number of the task to unblock, and WAITBITS
specifies one or more bits to be cleared in that task's Task Flags
word. If the Task Flags word becomes Zeroc as a result of this
operation, the specified task becomes runnable; 1if the specified task
has higher priority than the issuing task and becomes runnable, the
issuing task is temporarily suspended while the higher-priority task
runs.

This ER is a no-op (no operation) if issued with TASKNUM egqual to the
issuing task's number.

Example:
Task 14 is taken out of User Wait by executing the following code.

TAD (14
CAL

UNBARG
USERWT

3.3.3 SUSPND - Suspend a Task's Execution

Format: TAD TASENUM /0 IF SELF
CAL
SUSPND

This SUSPND ER is identical in action to the following instructions:

TAD TASKNUM
CAL

BLKARG
RUNRWT

3.3.4 BROUN - Run a Task

Format: TAD TASKNUM
CAL
RUN

This RUN ER is identical in action to the following instructions:

TAD TASKNUM
CAL

UNBARG
RUNWT

The SUSPND and RUN ERs exist because their function is performed often
enough to warrant a shorthand version. An example that shows how they
can be used in a task follows.

A data collection task is to print a report every 1000 data points

without interrupting the data collection/reduction process. When
executed, the Report Generation Task comes up running, so that the

3-8

RTS/8 EXECUTIVE REQUESTS

first report occurs on the first data. In this simplified example,
the data operated on by the report program may have been already
updated for the next cycle before being reported. A full example
would require a scheme such as double buffering to protect the data.

Data Control Task

DLOOP, TAD (=1750 /1000 DECIMAL
pCca COUNT
DATALF, CAL
WAITE
DATAEYF /WAIT FOR DATA READY

. /CODE TO STORE DATA
. /POINT IN BUFFER
. /GET A DATA POINT
157 COUNT /BND PROCESS IT

JMP DATALP /COUNT OFF 1000 POINTS
TAD {REPORT
CAL /RUN REPORT TASK
RUN
JMP DLOOP /KEEP COLLECTING
COUNT, 0

Report Generation Task

RLOOP, CAL /AC=0, SUSPEND
SUSPND /UNTIL NEEDED
JMs TITLE /HAS BEEN RUN

. /PRINT REPORT
. /WITH TITLE

JME RLOOP /REPORT OVER-~GO
/BACK AND WAIT

To eliminate interference with the data collection, REPCRT should have
a lower priority than DATA.

3.4 USING INTERRUFTS IN RTS/8

The RTS/8 Executive contains code to receive and dismiss hardware
interrupts and to perform interrupt-initiated task switching, but it
does not provide room for an interrupt skip chain. Instead, the skip
chain is 1literally a chain and 1is built up dynamically at system
startup time via the SKPINS ER. A description of the SKPINS ER is as
follows.

Format: CAL
SKPINS
MODULE

MODULE is the address (in the current field) of an interrupt
processing module.

RTS/8 EXECUTIVE REQUESTS

An interrupt processing module has the following format:

MODULE, 0 /THIS WORD GETS A POINTER

/TO THE NEXT MODULE

0 /MODULE ENTERED HERE - CONTAINS
/CDF CIF TO NEXT MODULE FIELD

SKDR /SKIP ON DEVICE READY

(SKP) /{ONLY I#¥ SKDR REALLY MEANS SKIP
/ON DEVICE NOT READY)

JMP T MODULE /NOT READY - GO TO NEXT MODULE IN
/CHAIN

CDF CIF CUR /THIS ONE IS MINE ~ SET DF AND IF
/CORRECTLY

. /INTERRUPT PROCESSING

CIF ¢ /DISMISS THE INTERRUPT, MAYBE POST

POSTDS /AN EVENT FLAG DEPENDING UPON

/CONTENTS OF AC
See item 7 below for the definition of the POSTDS instruction.

Whenever a task executes a SKPINS ER, the interrupt chain is broken at
the very end and the user's interrupt module is inserted. This is
usually done by tasks at systenm start-up time only. The last
interrupt module points to the interrupt dismiss routine as its "next
module". 1In this way, RTS/8 tries to avoid superfluous interrupts.
SKPINS always inserts at the end of the skip chain. This implies that
the skips in the skip chain are ordered roughly by priority of the
task which inserted them, since any SKPINS ERs in a task are usually
executed as once-only code at system start—-up time.

Once an interrupt module receives control (i.e., 1its 1I/0 skip
succeeds), there are several restrictions on its execution:

1. The interrupt module must clear the interrupt reguest.

2. The Data Field and Instruction Field are those of the next
interrupt module: the user must correct this as described
above before any indirect addressing or jumps are performed.

3. An interrupt module may not issue any RT5/8 ERs,

4. Ap interrupt module should not compute excessively when
interrupts are off. Typical execution time should be under
75us. If considerably more computing than this is needed, a
task should be scheduled to perform it by POSTing an Event
Flag. A POSTDS instruction is used to wake up the task from
Event Wait,

5. Interrupt medules must not turn interrupts on because the
state of the interrupted task will be destroyed by a second
interrupt.

6. On entry to the interrupt module, the contents of the AC,
Link, and Data Field have already been saved, but not the
contents of the Multiplier Quotient (MQ) . Therefore,
interrupt modules requiring the use of the MQ should save it,
and then restore it before dismissing the interrupt.

7. Interrupt modules must dismiss the interrupt by setting the
Instruction Field to 0 and issuing a POSTDS instruction.
POSTDS is defined as a JMP I 24 instruction. An Event Flag
may be POSTed when the interrupt is dismissed by setting the

3-10

RTS/8 EXECUTIVE REQUESTS

Data Field to the field of the Event Flag and placing the
location of the Event Flag in the AC prior to issuing the
POSTDS. For example:

CDF CUR /DF = THIS FIELD

TAD (EVFLG /EVFLG MAY NOT BE AT LOCATION 0
CIF D

POSTDS /DISMISS INTERRUPT AND POST EVFLG

1f an Event Flag is not going to be posted by the interrupt
routine, the AC must be cleared prior to issuing the POSTDS
instructien.

For example, an RTS/8 Paper Tape Punch handler task might contain the
following sections of code:

In the initialization code (contained in a task that is runnable at
system start-up time):

START, CAL /LINK THE PUNCH SKIP
SKPINS /INTO THE SKIP CHAIN
PTPINT

GETREQ, CAL
RECEIVE /WAIT FOR MESSAGE

L}
.

As a character punch subroutine used by the main body of the task:

PUNCH, 0 /ENTER WITH CHAR IN AC

DCA TEMP /SAVE CHAR
CAL /WAIT UNTIL PUNCH READY
WAITE
PTPEF

/SET PUNCH EVENT FLAG
182 PTPEF /TO THE PENDING STATE
TAD TEMP
PLS /PUNCH CHAR
CLA
JMP I PUNCH /RETURN

Interrupt skip chain code:

PTPINT, ZBLOCK 2 JUSED TC CHAIN SKIPS
PSF /CHECK PUNCH FLAG
JMP I PTPINT /NOT READY
CDF CIF CUR /SET CORRECT DF, IF
PCF /CLEAR PUNCH FLAG
TAD (PTPEF
POSTDS /DISMISS INTERRUPT,

/POSTING PTPEF

PTPEF, © JPUNCH INITIALLY READY
TEMP, 0

RTS/8 does not provide a mechanism for removal of entries from the
interrupt skip chain.

RTS/8 EXECUTIVE REQUESTS

3.5 EXECUTIVE REQUEST WAIT STATES

A summary of wait states
Table 3-3.

geénerated by Executive Requests is

Table 3-3
Summary of Wait States Incurred by Executive Reguests

shown in

ER Wait State Condition PC Suspended
At
SEND none EFWT for SEND if -
message busy at
'CAL'
RECEIVE MSGHT If no messages "CAL!
{No wait in Input Queue
if AC=4000Q) and AC positive
WAITE EFWT If Event Flag "CAL'+3
{No wait if not FINISHED
EF ‘'‘done')
RUN none - -
SUSEND RUNWT If task = self "CAL'"+2
POST none - -~
SKPINS none - -
DERAIL none - -
BLEKARG any (given by If task = gelf "CAL"43
argument)
SENDW EFWT If message free 'CAL'+3
but Event Flag
not FINISHED
EFWT If message busy 'CAL'
UNBARG noene - -
RESCHD none - -
WAITX ECRMWT If specified Event 'CAL’
Flag not FINISHED
WAITM any (given by - 'CAL'+3
argument)
NOTE: (a) 'CAL' denotes the address of the CAL instruction in the
Executive Request.
(b} A message is said to bpe busy if its Event Flag has not yet

been POSTED by its

previous user.

3-12

The RTS/8
standard
provides
allows a
backgroun
however,
available

CHAPTER 4

RTS/B SYSTEM TASKS

system includes system tasks that control most of the
Digital PDP-8 1/0 devices. Alsc included is one task that
interactive system control from the console terminal and
single copy of the 0S8/8 monitor system to run in the
d. Foreground tasks are protected from background tasks;
the reverse is not true. The complete list of system tasks
in the RTS/8 system is as follows:

Clock Handler - accepte requests in the form of RTS/8
messages to perform actions after a specified time has
elapsed.

Console and Non-console Terminal Handlers - handle a single
terminal in either line or character mode.

Line Printer Handler - supports an LS8, LS8E, LP8 or LV8 line
printer.

Mass Storage Handlers - Control the passing of information
from these devices to and from memory for the RK08 and RK8-E
moving-head disks, DF32 and RF08 fixed-head disks, and TCOS
DECtape unit. Data is read and written in the standard RTS/8
block format (400 octal contiguous words).

Floppy Disk Handler - provides support for the use of the RX§
floppy disk.

LINCtape Handler = supports both 05/8 and DIAL-format
LINCtapes.

05/8 Files Support Task - allows the user to look up, create,
and delete files in 0S8/8 directories from a foreground task.
This task, when used with the mass storage handlers, provides
the capability to read or write 05/8 files on mass sterage
devices.

05/8 Support Task — supports the execution of an 05/8
operating system in the background.

UDC/ICS Handler - enables the user to control the various
types of UDC/ICS modules.

Cassette Handler - allows the user to read or write data on a
tape cassette.

Cassette File Suppert Handler - allows the user to look up,
enter, and delete files from a DECcassette in CAPS-8 format.

RTS/8 SYSTEM TASKS

¢ Power Fail Task = when used with power fail hardware, it
provides for an orderly shutdown when AC power is lost.
Also, it allows a programmed restart when power returns.

] Exit Task - allows the user to perform special processing
before making an exit from RTS/S8.

» PDP-8A Null Task = allows the user to count in decimal on the
LED display of the PDP-8A.

The sources of the system tasks are supplied with the RTS/8 system.
The tasks referred to as "handlers" are completely message-driven,
i.e., when idle they are in the Message Wait state. Other tasks send
these handlers 1I/0 request messages. When the handler completes the
I/0 operation, it POSTs the Event Flag associated with the request
message and issues another RECEIVE ER.

4.1 CLOCK HANDLER

The Clock Handler Task can be assembled to handle any one of four
hardware clocks. The wuser selects the clocks by setting the symbol
CLKTYP in the parameter file to 0 for KD8-EA/DKS-EC, to 1 for KWl2, to
2 for PDP-8A, or to 3 for DEB-EP. The Clock Handler accepts RTS/8
messages and inserts the entries into an internal clock gueue. As the
entries become due, they are removed from the queue, and the request
is decoded and executed. The user fixes the length of the gqueue at
assembly time by defining the symbol CLKQLN in the parameter file to
the minimum number of entry slots. The default value for CLKQLN is
20.

The format of a clock message is:

CLEMSG, ZBLOCK 3 /3 WORDS RESERVED FOR RTS/8
COMMAND+TASKHC /TASKNO=0 MEANS TASKNQ=SENDING TASK
TIMEHI
TIMELO
EXTRAl
EXTRAZ

The words TIMEHI and TIMELOC specify a time interval from the present
time in terms of ‘“system ticks®. The user specifies the number of
system ticks in a second in the RTS/B parameter file by defining the
parameter SHERTZ. The hardware tick rate (in ticks per second) is
specified by the parameter HERTZ. CLKTYP and HERTZ are determined
completely by the wuser's hardware configuration. SHERTZ equals the
reciprocal of the software system clock resolution. HERTZ must be an
exact multiple of SHERTZ. For example, the parameters for a
line-frequency clock might be:

DECIMAL
HERTZ= 120
SHERTZ= 10

indicating that there will be 10 "system ticks" per second based on a
60-cycle c¢lock. Such parameters might be used if only 1/10 second
resolution is necessary in the Clock Handler. Note that the maximum
interval that can be expressed in TIMEBI and TIMELO is (2**24) /SHERTZ
seconds. This is approximately three days if SHERTZ=60.

Other RTS/8 system tasks use the symbol CLOCK when referring to the

Clock Handler. The wuser should define this symbel in the RTS/8
parameter file to be egual to the Clock Handler's task number. It

4-2

should
system.

COMMAND
Octal

0000

1000

2000

3000

7000

RTS/8 SYSTEM TASKS

be undefined

if a Clock Handler is not to be included in the

{See Chapter 6 for a description of the parameter file.)

is the type of reguest and has the following meanings:

Symbolic

MARKTIME

SCHECULE

TIMOUT

SCHEDULE PERIODICALLY

CANCEL

Description

POST the event flag CLEKMSG
specified interval elapses.
EXTRALl, and EXTRAZ are ignored.

after the
TASKNQ,

POST CLKMSG immediately. Execute a
RUN ER on the task specified by TASKNO
after the specified interval elapses.
EXTRAl and EXTRA2 are ignored.

POST CLKMSG immediately. DERAIL
task specified by TASKNO into a
subroutine whose address is specified
in EXTRAl after the specified interval
elapses. EXTRAZ is ignored.

the

POST CLEMSG immediately. Execute a
RUN ER on the task specified by TASKNO
after the specified interval elapses,
and re-gueue this command with the
parameters EXTRAl and EXTRA2 in place
of TIMEHI and TIMELO. This has the
effect of running the specified task
periodically with a period specified
by EXTRA]l and EXTRAZ.

Cancel all the clock regquests for the
task specified by TASKNO. TIMEHI,
TIMELO, EXTRA], and EXTRAZ are
ignored. POST CLEM3G immediately.
Note that the requests are not
actually deleted and that they still
occupy space in the gqueue until they
time out.

0 1 2 3

——

Commmm:______J

0 MARKTIME

1 SCHEDULE

2 TIMOUT

3 SCHEDULE PERIODICALLY
7 CANCEL

Task nurmber

Command Word Format - Clock Handler

RTS/B SYSTEM TASKS

The Clock Handler also maintains the current time-of-day (in system
ticks until midnight), in symbolic locations TCDH {high-order) and
TODL (low-order) in Page 0 of Field 0. When this time-of-day reaches
zero (i.e., at midnight), it is reset to the quantity — (SHERTZ*86400)
(24 hours until midnight} and an 0S/8-format date word in symbolic
location DATE in Page 0 of Field 0 is incremented by one day.

Note that in order for the gquantity SHERTZ*86400 to be contained in 24

bits, SHERTZ must be less than 192. If SHERTZ is larger, an assembly
error will result while assembling the Clock Handler.

4.1.1 Examples of Clock Handler Calls

CAL /WITH A 60HZ SYSTEM TICK RATE,
SENDW /THIS CAUSES THE CURRENT TASK
CLOCK /TO "GO TO SLEEP" FOR 2 SECONDS,
SLEEPM

SLEEPM, ZBLOCK 3 /MESSAGE HEADER
0 /SET EVENT FLAG AFTER INTERVAL
03170 /INTERVAL IS 120 (DECIMAL) SYSTEM

/TICKS

If the user changes the value 170 to the assembler expression
2°SHERTZ, the preceding sequence becomes configuration-independent.

CAL /RUN THE TASK REPORT ONCE
SEND /EVERY HOUR, INDEFINITELY,
CLOCK /ASSUMING A 60HZ SYSTEM TICK RATE
RUNMSG
RUNMSG, ZBLOCEK 3 /MESSAGE HEADER

SCHEDULE REPORT PERIODICALLY
/RUN REPORT AFTER SPECIFIED
/INTERVAL AND PERIODICALLY

/THEREAFTER,

0;1 /FIRST RUN IS ALMOST IMMEDIATELY
/1{1/60 SECOND)

6435654 /PERIOD BETWEEN RUNS IS 216000

/{DECIMAL) SYSTEM TICKS = 3600
/SECONDS = 1 HOUR.

4.2 TERMIRAL HANDLER

The RTS/8 Terminal Handler handles a single terminal in either line or
character mode. Input in line mode is terminated by a carriage return
or an ALTMODE character and may be edited using the RUBQOUT and "U
characters. The RUBCUT character deletes the last valid character
typed and prints a backslash; the "U character deletes the entire
line and returns the carriage. Character mode input is not echoed and
is terminated by overflow of a specified character count.

If multiple terminals are to be handled, multiple copies of this
Terminal Handler must be assembled. Assembly parameters in the body
of the handler specify which device codes the handler will use to
access its terminal. These parameters also specify whether the
handler is to be a “"console" Terminal Handler, that is, the terminal

4-4

RTS/8 SYSTEM TASKS

on which the MCR program is going to be run. The console Terminal
Handler invokes the MCR whenever a ~C is typed on the keyboard;
nonconsole terminal handlers treat “C as any other character. For the
console handler, "C wakes up MCR by POSTing an Event Flag.

The parameters edited into the distributed version of the Terminal
Handler assemble the handler to handle the PDP-8 console terminal as a
*console" device. Thus, when the MCR function is required, both the
MCR task and the Terminal Handler task must be assembled and included
as part of the RTS/8 system. Modification of the Terminal Handler to
support a VT50 terminal and other features are described in Section
4.2.1.

The format of messages to the Terminal Handler can be either of the
following:

ZBLOCK 3 ZBLOCEK 3

command+length ASSGN+tsknum

INBUF

CQUTTXT

Description: Description:

Types text specified by ASSGN=200

QUTTXT and command, then Assigns Terminal Handler to task specified
reads text into INBUF. Deassigns Terminal Handler if tsknum=0

Legal Commands, which can be combined, are as follows:

Octal Symbolic Action if specified Action if not specified

4000 NOPACK Qutput text is in Qutput text is in
unpacked ASCII, one packed 6-bit, two
character per word characters per word

terminated by a 0000. terminated by a 00.

2000 NOCRLF Do not type a CR/LF Type a CR/LF after

after the message. typing the message.

1000 IND QUTTXT points to the QUTTXT is the first
first word of the word of the output text.
output text.

0400 NOLINE Input is in character Input is in line mode;
mode; terminated terminated by a CR
after 'length' input or ALTMODE (ESC). The
characters read. length is still tested.

Length Is a seven-bit field which specifies the

maximum size of the input buffer if input is
in line mode, or the number of characters to
input if input 1is in character mede. If
input is in line mode and there are LENGTH-1
characters in the input buffer, characters
other than carriage return, ALTMODE, RUBCUT
and “U will not be accepted or echoed the
message Event Flag is Posted.

INBUF Is a pointer to the input buffer; if it is
zero, no input is taken. The input buffer is
filled with input characters packed one per
word with the parity bit (bit 4) forced on.
If input is in line mode, the last character
of the line is followed by a zero word (if a

4~5

QUTTXT

ABSGN =200

tsknum

Command {hits 0-4)

Q:
1: Unpacked ASCII

0:
»

o e

0:
1

Bit 4 must be a 0

Packed ASCII| }

CR/LF at end of message
. No CR/LF at end of message

QUTTXT is the first word
OUTTXT points te first word

Input in line mode l

RTS/8 SYSTEM TASES

carriage return terminated the 1line) or a
=1(7777) word (if an ALTMODE character
terminated the line).

Is either the first word of the output text
string (if IND=0) or a pointer to the first
word of the output string (if IND=1000) ir
the same field as the message.

"Assigns" the Terminal Handler to the
specified task. This will cause the terminal
handler to only accept messages from the
specified task. If ancther task tries to
SEND a message to the Terminal Handler while
it is assigned, the message will be placed in
the Terminal Handler's Message Input Queue
but will not be removed for processing by the
Terminal Handler until the assignment is
released. The task to which the Terminal
Handler is assigned can release the
assignment by sending a message assigning the
Terminal Handler to task number 0. No I/0
operation is performed by an assignment
message.,

Is a 6-bit field used with the ASSGN command
to specify the task number of the task to
which the terminal is to be assigned. If
this field is zero, the terminal 1is
deassigned allowing the terminal task to
accept commands from any task.

}___._.

Input in character mode §

Length (bits b-11}

If bit 3=1, no, of characters to input

If bit 3=0, maximum size of input buffer’

Command and Length Word Format - Terminal Handler I1/0 Mode

Unused

Bit 4 must be a 1

Urusaed

RTS/B SYSTEM TASKS

Task Mumber

Command Word Format - Terminal Handler ASSGN Mode

4,2.1 Additional Assembly Parameters Affecting Terminal Handler

Properties

Several assembly parameters are available to the user as an aid in

using the

TTY task.

This section describes these parameters. A

summary of their default values is shown in Table 3-4.

VT30

WIDTH

SCOPE

=0

=n

Do not treat CTRL/S and CTRL/Q as special
characters.

Support CTRL/S and CTRL/Q. If this feature
is enabled, typing CTRL/S while data is being
printed/displayed on the terminal will cause
data to stop until the next CTRL/Q is typed.
This can be used on £fast CRT terminals to
temporarily "freeze" the screen. This
parameter must be set to 1 1if the user's
terminal is a model VTS50 or VTS52 since these
terminals will occasionally send
synchronization characters to the host
computer of their own volition.

Where n is an octal number that sets the page
width to n characters. TTY width is
currently set to 120(octal) characters. For
example, setting the parameter

WIDTE = &0

changes the TTY page width to 80(decimal}
characters. After n characters are printed
on the terminal, the handler will
automatically type out a carriage-return
line-feed. Sometimes it 1is desirable to
suppress this CR/LF (for example, when using
direct cursor addressing). In this case,
WIDTH should be set equal to 0.

This option is used to determine treatment of
the RUBOUT key as follows:

SCOPE=(0 provides the normal mode of RUBCUT
support {(echo rubouts with a backslash}.

4-7

TAB

FILL

CONSOL

OLDTTY

LSBOT

TTFLD

TTLOC

RTS/8 SYSTEM TASKS

SCOPE=1 causes RUBOUT to move the cursor left
one position, physically removing the
character from the screen. If the cursor 1is
in c¢olumn 1, RUBOUT still werks, but has no
visible effect.

This option is used to simulate tabs by the
proper number of spaces. This is
accomplished via the assembly parameter TAB
as follows:

TAB=0 specifies that the hardware does not
support tabs. The software simulates tabs
with spaces.

TAB=1 specifies that the hardware does
support tabs.

Fill characters are supported via the
assembly parameter FILL as follows:

FILL=0 provides no fill characters.

FILL=n sends n fill characters (nulls) after
a8 line feed. The number n must be in the
range l-5. FILL=4 is recommended for 2400
baud vVT05s.

CONSOL = 1 means the handler is being
assembled for the console terminal {default).

CONSOL = 0 means that this handler will not
wake up the MCR when a "C is typed.

OLDTTY = 1 specifies the use of the o0ld
two-page handler which was supplied with
RTS/8 version 1. This handler has fewer
features than the new handler but it is a
page shorter. The parameters VTS50, WIDTH,
SCOPE, TAB and FILL described herein have no
effect when using this handler.

OLDTTY = 0 specifies the use of the new
3-page terminal handler.

LSBOT = 1 specifies the listing of both the
old two-page and new three-page.

LEBOT = O(default) causes only the handler
selected by the OLDTTY parameter to be
listed.

Specifies the field of the TTY Handler task;:
for example, 20 designates field 2.

Specifies the starting location of the TTY

Handler task; for example, 3000 designates
the starting location at 3000.

4-3

RTS/8 SYSTEM TASKS

Table 4-1

Summary of Terminal Handler Assembly Parameter

Default Values

Parameter Default Value Meaning

VT50 1 Support "8, "Q

WIDTH 120 Page width of 80 (decimal) characters

SCOPE] Rubouts echo as \

TAB 0 Simulate tabs

FILL ¢ No fill characters

CONSOL 1 “C wakes up MCR

CLDTTY 0 Use 3-page TTY task

LSBOT v} List only TTY task selected by OLDTTY

TTFLD 10 Not a default wvalue, but given as an
example to show that the given number

TTLOC 5000 assignments for TTFLD and TTLOC load the
TTY Handler in field 1 starting at
location 500D

4.2.2 Useful Eguates in the Parameter File

Several useful eguates (described in Section 4.2) are available which
when sending messages to TTY or LPT tasks. They are as

can be used
follows:

NOPACK

NOCRLF

il

IND = 10

NOLINE =

AB5GN =

KL8ALINE

4000

2000

00

400

200

= 100

Used if output message is not 6-bit ASCII
format.

Used if output message should not be followed
by carriage return/line feed.

Used if OUTTXT points to the first word of
the output text.

Used if input is in character mode.

Used to assign the device handler for use
only by this task.

Used with KL8-A support (see Section 4.13.2).

4.2.3 Examples of Terminal Handler Messages

HIYA,

ZBLOCK 3 /MESSAGE HEADER

0 /PACKED TEXT, END WITH CR/LF,
1] /NO INPUT

TEXT /BELLO/ /TEXT TO BE OUTPUT

Sending the above message to the Terminal Handler prints HELLO on the

terminal.

4-9

RTS/8 SYSTEM TASKS

QUEST, ZIBLOCK 3 /MESSAGE HEADER
NOCRLF+60 /PACKED TEXT, WO CR/LF,
/48-CHARACTER INPUT LIMIT
ANSWER /POINTER TO INPUT BUFFER

TEXT /TYPE THE ANSWER:/

Sending the above message to the Terminal Handler prints TYPE THE
ANSWER: on the terminal and inputs a reply without first returning
the carriage. The answer cbtained from the above message could be
printed on the terminal by sending the following message:

TYPANS, ZBLOCK 3 /MESSAGE HEADER
NOPACK+IND /UNPACKED TEXT, INDIRECT, WITH CR/LF
0 /NO INPUT
ANSWER /POINTER TO QUTPUT TEXT

4.3 LINE PRINTER HANDLER

The RTS/8 Line Printer Handler cutputs to an LES, LS&E, LP8 or LVE
line printer. The format of messages to the Line Printer Handler is
identical to the format of messages to the terminal handler, but the
INBUF word and the LINE kit are ignored {the INBUF word must, however,
be present in the message).

0 1 2 3 4 5 6 7 8 L] 10 11
| 4 | 'l 4 S

Command {hits 0-4}

0' Packed ASCI

1: Unpacked ASCII

0: CR/LF at end of message

11 No CR/LF at end of message

0: OUTTXT is the first word

1. OUTTXT points to first word

0: Input in line mode

1: Input in character mode

Bit 4 must be a2 O

Length (bits 5-11)

If bit 3=1, no. of characters to input

It bnt 3=0, maximum size of input buffer]

Command and Length Word Format - Line Printer Handler I/C Mode

RTS/8 SYSTEM TASEKS

Unused

Bit 4 must be a 1

Urnused

Task Number

Command Word Format ~ Line Printer BHandler ASSGN Mode

4.4 MASS STORAGE HANDLERS

Handlers are available for TC08 DECtape, DF32 and RF08 fixed-head
disks, RK8 and RK8E moving-head disks, RX0l floppy disks and LINCtape.
A11 mass storage handlers accept the same message format to read or
write blocks on wvarious mass storage devices. However, the Floppy
Disk Handler and the LINCtape Handler allow the use of additional
parameters other than the ones described herein. These parameters are
described in Sections 4.4.1 and 4.4.2.

The format of messages to mass storage handlers is:

MSMESG, ZBLOCK 3
UNIT
RW + PAGES + FIELD
BUFADD
BLOKNO
STATUS

where:

UNIT Is the number of the logical unit on which the operation
is to be performed. DF32 and RF08 disks consist of only
one unit. TC08 DECtape has logical units 0-7
corresponding to its physical units 0-7. LINCtape has
logical units 0-7 corresponding to its physical units
0-7. RK8 disk has logical units 0-3 corresponding to
its physical units 0-3. RKBE disk has 1legical wunits
0-7. Units 0-3 correspond to the outer (lower track
numbetr) half of physical wunits 0-3, and units 4=7
correspond to the inner {higher track number) half of
physical units 0-3, respectively. RX0l has units 0 or 1
which corresponds to the left and right drive,
respectively.

RW Is 0 for a read coperation, 4000 for a write operation.

PAGES Bpecifies the number of ({l128-word) pages to transfer
{(times 100 octal). For example, PAGES=2000 specifies
the transfer of 20(octal) pages or 204B words; if
PAGES=0, 40(octal) pages or 4096 words are transferred.

FIELD

RTS/8 SYSTEM TASKS

Is the PDP-8 field in which the transfer takes place
ftimes 10 octal). For example, if FIELD=30, the
transfer takes place in field 3.

The RW+PAGES+FIELD word is sometimes called the function word of the

message.

Resarved for task use

Unit

0. Read operation
1: Write operation

No. of pages to transfer
0-7: Field of transfer

Reserved for task use

BUFADD

BLOKNO

STATUS

Unit Word Format - Mass Storage Handlers

Function Word Format - Mass Storage Handlers

Is the starting address of the buffer to be transferred.

Is the block number on the device from which the
transfer will beqgin. All deviges are assumed to have
256~word blocks. On DECtape, the first 128 words of
each of an even/odd pair of 129-word DECtape records are
considered to be a block.

Is a word that the handler sets on completion of the
cperation. It contains a zero if the operation is
successful, otherwise it will contain a nonzerc quantity
which is the contents of the device status register.
Tasks which use the mass storage handlers should test
this word after the I/0 operaticn has been completed
(that is, after the Event Flag has been POSTed) to
determine if any errors occurred during the transfer.
All RTS/8 mass storage handlers retry operations three
times if errors are encountered before setting the
STATUS word to a nonzero.

Note that the middle three words of a message to the RTS/8 mass
storage bhandlers are identical to the arguments to an 05/8 handler
when the same operation is performed.

4-12

RTS/8 SYSTEM TASKS

4,4.1 Floppy Disk Handler

Each copy of the Floppy Handler can control one single or dual RX0l
drive; for more than one RX0l, multiple copies of the haqdler are
required. The format of messages to the Floppy Pisk Handler 1s:

ZBLOCK 3
CODE+DEL+MODE+UNIT
RW+PAGES+FIELD
BUFADD

BLOKNO

STATUS

where:

CCDE =0 Regular condition. BLOKNO is interpreted as an
05/8 logical record number. Also, PAGES 1is
interpreted in the 0S/8 sense to mean the number
of pages of data to transfer. The DEL bit is
ignored.

4000 Special Physical Sector Condition. PAGES is
ignored. One sector 1is transferred. It is
specified by BLOKNO which is to be interpreted as
TTTTTTTSSSSS. That is, the high order 7-bits of
BLOKNO represent the physical track number. This
number must be in the range 0-76 decimal (0-114
octal). The low order 5 bits of BLOKNO represent
the sector number on that track. This number must
be in the range 1-26 decimal (1-32 octal).

DEL

1]
o

Deleted data marks should not be congidered.

2000 Handle deleted data marks (if CODE=4000) as
follows: If writing a sector, write deleted data
indication. Do not note this fact in STATUS word.
If reading a sector, set bit 5 of STATUS word to a
1 if read deleted data indication. In such a
case, the STATUS word may be nonzero even though
no physical error has occurred. Other STATUS bits
are relevant and S3TATUS negative means hard error.

MODE

1}
o=

Specifies transfer in 12-bit mode.

100 Specifies transfer in 8-bit mode.

0s/8 format uses 12-bit mode. 1In 12-bit mode, the
64 12-bit words that comprise an 0S/8 floppy
sector are packed into the first 96 bytes of the
sector, while the last 32 bytes contain random bit
patterns. In B-bit mode, an 8-bit byte on the
floppy disk corresponds to the low order B8-bits of
a 12-bit word in memory. Data in the high order 4
bits of a word in memory is not transferred to the
floppy disk.

In 12-hit mede, a sector contains 64 (decimal)
12-bit words of data. In 8-bit mode, a sector
contains 128 8-bit bytes of data.

UNIT = Specifies the drive unit number. It may be 0 or
1. The number 0 refers to the unit on the left of
a dual drive.

RTS/8 SYSTEM TASRS

0: Regular condition
Special physical sector condition

-

0: Do not handle deleted marks
Handle deleted marks

0: Transfer in 12-b1t mode
- Transfer in 8-bit mode |

0: Left unit of dual drive
1: Right unit of dual dnive

CODE = 4000 (bit 0 set to 1} transfers one sector specified by
BLOCKNO as follows:

Physical track no.
{0-114 octal)

Sector no. on track
{1-32 actal)

Unit Word Format - Floppy Disk Handler

Hard error

Deleted data

INIT done

Parity error

CRC error

Status Word Format - Floppy Disk Bandler

The largest legal 0S/8 block number on a floppy disk is 755 octal. If
block 756 1is referenced, an error is generated. Use of larger block
numbers may produce unpredictable results. Specifying an illegqal
track or sector may produce an error with STATUS = 4000.

4-15

RTS/8 SYSTEM TASKS

The standard 05/8 Interleave Scheme is as follows:

08/8 Logical Block (octal) Floppy Sectors (track/sector in decimal)

0 i/1, 1/3, 1/5, 1/7
1 1/9, 1/11, 1/13, 1/15
2 1/17, 1/19, 1/21, 1/23
3 1/25, 1/2, 1/4, 1/6
4 1/8, 1/10, 1/12, 1/14
5 1/16, 1/18, 1/20, 1722
6 1/24, 1/26, 2/1, 2/3
7 2/5, 2/7, 2/9, 2/11
10 2/13, 2/15, 2/17, 2/19
11 2/21, 2/23, 2/25, 2/2
12 2/4, 2/6, 2/8, 2/10
13 2/12, 2/14, 2/16, 2/18
14 2/20, 2/22, 2/24, 2/26
15 3/1, 3/3, 3/5, 3/7

*

Track 0 is not used by 05/8, and cannot be accessed in the 12-bit
mode.

4.4.2 LINCtape Handler

The LINCtape Handler supports both 05/8 and DIAL format LINCtapes.
The format of messages to the LINCtape Handler is:

ZBLOCK 3

MODE+UNIT

RW+PAGES+FIELD

BUFADD

BLOENO

STATUS

where:

UNIT= Specifies the LINCtape unit number in range 0 to
7.

MODE=0 Specifies 0S/8 Mode. A LINCtape is presumed to
contain 200 or 201 ({(octal) words per physical
block.

=4000

RW =0

=4000

PAGES

FIELD

BUOFADD

BLOKNO

STATUS

RTS/8 SYSTEM TASKS
Specifies DIAL Mode. A LINCtape is presumed to
contain 400 {octal) words per physical block.
Note: The LINCtape used is not checked to see if
it is properly formatted for the specified mode.
Use of a LINCtape with improper physical format
will produce unpredictable results.
Read data from LINCtape
Write data to LINCtape

Specifies the number of 128-word pages to transfer
(times 100 octal). For example, PAGES=2000

transfers 20 octal pages or 2048 words; if
pages=0, 40 octal pages or 4096 words are
transferred.

Specifies the PDP-8 field in which the transfer
takes place (times 10 octal}. (For example,
FIELD=30, the transfer takes place in field 3).

Is the starting address of the buffer to be
transferred.

Is the block number on the device from which the
transfer will begin. All devices are assumed to
have 256-word blocks. On 05/8 LINCtapes, two
consecutive physical blocks comprise one O5/8
logical block. Only the first 128 words in each
physical block contain meaningful data.

When running in DIAL mode, BLOKND represents a
physical LINCtape block number. In this case,
PAGES must be even because an even number of pages
is transferred. If PAGES is (incorrectly) odd,
the last page is not transferred, except if
PAGES=1 which will result in one block (2 pages)
being transferred.

is the ones complement of tape check (checksum).
The value 0 means no error. STATUS is always 0 on
a Write operation. Three software retries are
attempted on a checksum read error. Note that the
hardware performs infinite retries on most errors
(write-lock-out, tape not mounted, bad spot on
tape) and does not return control to RTS/8 until
successful.

CAUTIORN

In the 0S5/8 mode, the word following the

of the buffer is temporarily

destroyed while a LINCtape operation 1is

progress. The location is then

restored upon completion of the
operation. However, since RTS5/8 is a
real-time system, code may be executing
while the tape operation is in progress.
The user must make sure that this word

never referenced while the LINCtape

is being used. Under no circumstances
should the word following the end of the
buffer belong to another task.

4-17

RTS/8 SYSTEM TASKS

0: 05/8 mode _
i: DIAL mode

Unit number

Unit Word Format - LINCtape Handler

4.4.3 Example of Mass Storage Handler Call

CAL
SENDW
DTA /SEND A MESSAGE TO THE DECTAPE
/HANDLER
DTAMSG /AND WAIT FOR COMPLETION
TAD STATUS /CHECK THE STATUS OF THE OPERATION
SZA CLA
JMP ERR /BAD - GO TO ERROR ROUTINE
/OK - CONTINUE PROCESSING
DTAMSG, ZBLOCK 3 /MESSAGE HEADER
4 /DECTAPE UNIT 4
4210 /WRITE 256 WORDS FROM FIELD 1
BUFFER /ADDRESS QF BUFFER
55 /INTO BLOCK 5% {(RECORDS 132 & 133)
STATUS, 0 /STATUS OF OPERATION STORED HERE

4.5 POWER FAIL TASK

The Power Fail Task provides the mechanism by which the system
recovers from power failure. If the power-fail fauto-restart hardware
option is present and if the System parameter PWRFAL was equated to a
nonzero value, the SPL (Skip on Power Low) instruction is included in
the interrupt skip chain. If a power 1low condition gccurs, the
Processor state 1s saved and the processor is halted. when power
comes back, the processor state is restored and an Event Flag is
POSTed which wakes up the Power Fail Task. The Power Fail Task
restores the clock, console terminal, and 0S/8 terminal if they are
present, and also performs an action for each task in the system based
on the contents of an internal table. Each task has a one-word entry
in this table, which contains:

0 If nothing should be done for this task (default value)
-1 If the EFWT (Event Flag Wait) bit should be cleared in

the Task Flags Table entry for this task (i.e., this
task should be taken ocut of Event Flag Wait)

4-18

RTS/8 SYSTEM TASKS

ADDR If the task should be DERAILed to location ADDR in phe
field in which it is executing as well as having its
EFWT bhit cleared.

Each task in the system may alter its entry in the Power Fail Task's
table by sending a message to the Power Fail Task. The format of the
message is:

PWRMSG, ZBLOCK 3
WORD

where:

WORD is the new contents of the Power Fail Task's table entry
for the sending task.

4.6 05/8 SUPPORT TASK

The 0S/8 Support Task supports the execution of the 0S/8 operating
system as a task under RTS/8. 0S/8 is run in the top two or more
memory fields under control of the KMB-E memory extension and
timeshare option (standard on PDP-8/E, 8/F, or 8/M with 8K or more of
cote memory) or T85-8 time sharing hardware option.

NOTE

A jumper on the KMB8-E module is used to
select the timeshare function. The
module is shipped with this Jjumper in
place (timeshare function disabled).
The PDP-8A utilizes the memory extension
anéd timeshare option provided by the
KM8-A extended option board. A switch
on the EKM8-A module is used to enable
the timeshare function.

The 0S/8 Support Task is configured at system startup time to
establish a correspondence between O0S5/8 devices and RTS/8 handler
tagks. Terminal input and output from OS/8 are ring-buffered by
several characters to minimize input loss due to the usurpation of the
CPU by tasks of higher priority. Because of the large number of
trapped CDF instructions in 05/8 and its Commonly Used System Programs
(CUSPs), response time is slower than a stand-alone 08/8 system but
still guite reasonable. The background 05/8 task must have the same
system device that was used by the.05/8 system to load RTS/8. The
0S/8 Support Task cannot run on a stand-alone PDP-B without 08/8.

Several parameters in the system parameter file control the assembly

of the 05/8 Suppert Task. The parameters and their meanings are as
follows: .

OSFLDS : Defined as the number of fields to be dedicated to
: . 0s/8. :
Example: OSFLDS=2 specifies two fields or 8K of
mnemory for 0S/8.

OSKBDV : Set equal to the keyboard IOT code of the 05/8
terminal.
Example: OSKBDV=03 specifies the use of the
console terminal keyboard of 0S/8.
Note: O©8/8 requires its own dedicated terminal.

4-19

RTS/8 SYSTEM TASKS

OSTTDV Set equal to the teleprinter IQT code of the 0S/8
terminal.
Example: OSTTDV=04 specifies the use of the
console teleprinter for 0S/8.

OSFILL Specifies how many null characters must follow a
line-feed character on the 05/8 terminal. This
allows high-speed VTO0S terminals to be used as
0S8/8 terminals, Por standard Teletypes! and
DECwriter terminals, this parameter should be
set to zero.

Example: OSFILL=4 allows the use of a 2400 baud
VT05.

0SSYSD Specifies the 0S/B system device driver task.
Example: OSSYSD=DTA specifies DTAQ as the 05/8
system device.

NOTE

The user does not need to include a
terminal driver for the 0S/8 terminal
device (it is built into 0S8SUP).

The 0S/8 system that runs under the 08/8 Support Task runs all Qs/8
CUSPs except BUILD, BOOT, PIP10, INDUSTRIAL BASIC, and BASIC and
FORTRAN LAB runtime functions. All references to the kevboard and
teleprinter are diverted to the specified 08/8 keyboard and
teleprinter. References in 0S/8 to the LES, LS8E, LPB or LV8 line
printers are diverted to the RTS/8 line printer handler if the system
parameter LPT is defined; otherwise they are executed directly by the
Support Task. References to the following 08/8 device names will be
diverted to the corresponding RTS/8 handler if one is defined:

DTAC~DTA?
LTAQ-LTA7Y
REKA0-RKA3
RKBO-RKB3
RXAQ-RXA7

If one is not defined, 0S5/8 will perform the I/0 directly using the
standard 05/8 handler.

In addition, the 0S/8 handlers SYS and DSK are diverted to the handler
specified by the parameter 0SSYSD. Other references to I/0 under the
supported 05/8 system may cause the 0S/8 support task to hang in a
loop. References to a handler called RTSB are diverted to OS8COM (see
Section 4.7).

4.6.1 Mapping of Fields with 0S/8 Support Task

The parameter HGHFLD in the parameter file must specify the highest
field available to the entire RTS5/8-05/8 system. This is usueally the
highest field available in memory (e.g., 30 for a 16K machine). The
0S85UP task maps 0S/8 fields into real fields as follows. The field
which 05/8 uses as field 0 is actually HGHFLD. O0s/8 fields 1, 2, 3,
etc. are mapped into consecutive fields beginning with field

ITeletype is a registered trademark of the Teletype Corporation.

4-20

RTS/8 SYSTEM TASKS

HGHFLD-OSFLDS+1, proceeding upward. If an 0S/8 program references a
field greater than HGHFLD, unpredictable results will cccur, as these
fields are mapped over the lower 0S/8 fields.. The software core size
is correctly set to OSFLDS and should be used by multi-field 08/8
programs.

4.7 08/8 - RTS/8 COMMUNICATION (OS8COM)

The 0S/8 Support Task contains a mechanism by which 08/8 can talk to
an RTS/8 task. To perform this communication, the 0S5/8 system must be
configured with a handler called RTS8. This handler can be a dummy;
it need not do anything. In fact, it can be some other handler to
which the name RTS8 has been assigned. The 05/8 Support Task traps
all calls to this handler. The arguments that are passed to the RTS8
handler by an 0S/8 program will be passed to an RTS8 task called
OSBCOM. The user is responsible for writing this 038COM task.

The OS8COM task performs an RTS/8 RECEIVE ER. The task can then
receive a message any time an 0S/8 program reads or writes to the RTS8
handler. This message looks like any other message to a mass storage
device. O0S85UP does make one change to the arguments. Bits 6 through
8 of the function word originally contain the field of the buffer.
This is the field where 05/8 expects the buffer to be, When OS8COM
gets control, these bits identify the actual field that contains the
buffer. 0S8COM can return information to 0Q5/8 through these
arguments.

4.7.1 Using the 0S8COM Task

An 0S/8 program that runs an RTS/8 task as specified by the 05/8 user
is shown in the following example.

Example:
USR=7700 /LOCATION OF 0OS/8 USER SERVICE ROUTINE
JMS PRINT /PRINT MESSAGE "WHAT TASK WOULD YOQU
/LIKE TO RUN?" ON THE 0S5/8 TERMINAL
JMS READ /READS RESULT FROM 0O5/8 KEYBOARD
/RETURNS TASK NUMBER IN RANGE 1-77
/ IN AC
DCA TASKNWUM /STCRE IT AWAY
CIF 10
JM8 I ({(USR /CALL USR
1 /TO DO A FETCH
DEVICE RTS8 /OF DEVICE 'RTS8'
ENTRY, ADDR /DUMMY ADDBRESS (HANDLER WILL ALREADY
/BE RESIDENT
HLT /ERROR {HANDLER NOT FOUND)

/NOTE THAT THIS CODE IS NOT REUSABLE AND THAT LOCATION
/'ENTRY' IS SET TO THE ENTRY POINT FOR THIS HANDLER

CIF 0
JMS I ENTRY /CALL HANDLER
0 /DUMMY READ
TASKNUM, 0 /TASK NUMBER
ZBLOCK 2 /DUMMY
JMP T (7605 /RETURN TO 0S/8

It should be noted that TASKNUM is being passed as the second argument
instead of the first because 0S85UP automatically modifies bits 6-8 of
the first argument, presuming that a mapped field number 1s located

4-21

RTS/8 SYSTEM TASKS

there, 058COM expects three arguments after the handler call plus an
error return. These must be specified by the user.

Where the 08/8B portion of the program has been written, the QS8COM
task that handles the RTS/8 side of the communication must be written.
088COM is written like any other RTS5/8 user task, and an example of
what it might look like is as follows:

TASK=0S8C0OM /OS8COM IS ASSIGNED A PRIORITY IN THE
/PARAMETER FILE
INIWT=0 /COMES UP RUNNING
CUR=40 /SPECIFY FIELD HERE
FIELD CUR%10
*200 /STARTING ADDRESS
START, CAL
RECEIVE /IMMEDIATELY GO INTQ RECEIVE WAIYT
MADDR, 0 /ADDRESS OF MESSAGE LEFT HERE
DCA MSGFLD /CDF TO MESSAGE FIELD LEFT IN AC
MSGFLD, iaLT
' ISZ MADDR /POINT TO FUNCTION WORD
ISZ MADDR /POINT TO BUFFER ADDRESS
/{SECOND 08/8 ARGUMENT)
TAD I MADDR /GET TASK NUMBER
CAL
RUN /RUN THIS TASK

/08S8COM WANTS TO BE HIGHER
/PRIORITY THAN TASK IT IS RUNNING

TAD MSGFLD
DCA EFCDF
TAD {-5
TAD MADDR /GET ADDRESS OF EVENT FLAG
/FOR MESSAGE
CAL
POST /POST MESSAGE
EFCDF, HLT
JMP START /GET ANOTHER MESSAGE

In this example, the task number was put in the second argument of the
0S/8 call. However, it became the third word of the RTS/8 message
because OS8SUP always adds a word to the mass storage call argument
list, namely the unit number. For a description of the 05/8 standard
handler call format, see Section 4.1 of the O0S/8 Software Support
Manual. For a description of the standard message format for mass
storage devices, see Section 4.4 of this manual.

4.7.2 Other Techniques
Other techniques which can be employed by the user are as follows:

1. 1If the RTS/8 handler STATUS word (word 5) of the message
posted by OS8COM is nonzero, then return is taken to 0S/8 at
the error return of the handler call.

2. Arguments may be passed back to 085/8 through the argument
list.

3. If more than three words of data need to be passed to OS8COM
from 08/8, the user can pass a CDF and address of the area
where the data resides. If the CDF occurs as the first
argument to the handler call, it automatically will be
relocated before being passed to OSS8COM.

RTS/8 SYSTEM TASKS

4.8 0S/8 FILE SUPPORT TASK

The 0S8/8 File Support Task (0S8F) allows other tasks to loock up,
create, and delete files in 0S/8 directories. This task is included
in the same source file as the 0S/8 Support Task, but the user can
assemble it independently of that task (depending on which tasks are
defined in the system parameter file). The format of messages to Q58F
is:

OSFMSG, EZBLOCK 3

DEVHND" 10+UNIT+FUNCT
FILPTR
STATUS
BLOKNO
LENGTH
where:

DEVHND Is the task number of the handler for the desired
device.

UNIT Is the unit number on which the operation is to be
performed.

FUNCT Represents the function to be performed. It «can
have the following values:

0 Looks up the specified filename and returns
its starting block number in BLOKNO, and its
length in LENGTH {as a two's complement
number).

2000 Enters the specified filename into the first
empty space f{on the device) whose length is
equal to or exceeds the wvalue 1in LENGTH.
Returns the starting block number of the new
file in BLOKNO. If a file of the same name
previously existed on the device it |is
deleted. The value of LENGTH is unchanged.

4000 Deletes the specified filename.

PILPTR Is a pointer to a 4-word filename in the same
field as the message. The PALS pseudo-op FILENAME
can be used to generate these filenames.

STATUS Describes the final status of the operation as
follows:

0 Operation successful.

1 File not found on Lookup or Delete.

2 No room for file on Enter.

>2 I/0 error occurred. The wvalue is the
hardware error status of the device.

-1 Invalid directory on device.

RTS/8 SYSTEM TASKS

Fumctian ——e
0 Lookup

1 Enter

2 Delete

3 Unused

Unused

Task number

Unit

088F Call Function Word

If both 0S8F and the 0S/8 Support Task are present in a sgystem, an
interlock 1is set up to prevent simultaneous updating of directory
blocks by both systems. Because 0S/8 tends to leave directory blocks
in memory for long periods of time, this interlock scheme causes
lengthy delays for the OS8F task. Before & Delete or Enter operation
is performed, 0S8F waits until 0S/8 is in a state in whichs:

1. There is no active temporary file on the 05/8 device
correspending to DEVHND and UNIT.

2. 08/8 has just loaded the Keyboard Monitor, Command Decoder,
or USR into core.

Look up operations are not interlocked since they do not modify the
directory.

4.9 UNIVERSAL DIGITAL CONTROLLER/INDUSTRIAL CONTROLLER SUBSYSTEM
(UDC/ICS) HANDLER

The UDC/ICS handler gives the user the capability to control the
various types of UDBC/ICS functional devices. This handler performs
two types of action: immediate and associated. Immediate actions
include reading and sending analog and digital values to appropriate
UDC/ICS functional devices. Agssociated actions can be 1linked to
specified events within the UDC/ICS (counters overflowing, switches
being thrown). The associated actions can do the following:

1. BRun a specified task when the event occurs
2. Set the' Event Flag when the event occurs
3. DERAIL a specified task when the event occurs

The number of associated requests that can be rending simultaneously
is determined by the size of the buffer, which is specified by the
assembly parameter RINGBUF.

RTS5/8 SYSTEM TASKS

The UDC/ICS handler permits the following operations:

l. Analeg Output - send a 10-bit value to an analog channel
2. Analeg Input - accept input from analog subchannel

3. Digital Output - send a 12-bit value to a digital channel
4, Digital Input - read a digital channel

5. Get Generic¢ Code - determine the generic code for a

specified channel

6. Enable Counter - permit interrupts from a counter channel

7. Read Counter - tead current value of the counter
channel

8. Disable Counter - disable interrupts from a counter
channel

9. Enable Contacts - permit interrupts from a contact channel

10. Change 0f State - find the current CO0S value for a contact
channel

11. Disable Contacts - ignore interrupts from a contact channel

Each operation is discussed in detail below, including the format of
the message for specifying the operation. The first three words are
required for use by the Executive. Word 4 specifies one of the 11
UDC/ICS operations which are as follows: AO=0; DO=1; DI=2; GC=3;
EC=4; RC=5; DC=6; ECT=7; Cs=10; DCT=11; AI=12. Word 5
designates the channel being used for the indicated operation. Words
6 through 8 may be required to completely specify the operation, and
the number used is dependent upon the operaticn. The word that
follows the last word specifying the desired operation is used for the
value read or the value returned. Word 10 of &li UDC/ICS messages
contains the error state.

The general format for a UDC/ICS message is:

ZBLOCK 3
OPERATICN
CHANNEL
OPWORD1
OPWORD2
OPWORD3
VALUE
STATUS

4.9.1 &AO Analog Output

Format: a0
channel number
subchannel & value

Channel number is the analog output channel. The subchannel and value
word is formed by the subchannel (0-3) in bits 0 and 1 and the 10-bit

value in bits 2~11. For example, a message for an analog output
operation:

RT5/8 SYSTEM TASKS

AQEX, ZBLOCK 3

AD /BNALOG OUTPUT
23 /CHANNEL 23
4614 /SUBCHANNEL 2, VALUE 614
ZBLOCK 3
AOER, 0 /ERROR INDICATOR

Sube annel _J

Value

Subchannel and value Word Format - UCC/ICS Handler

4.9.2 AT Analog Input

Format: Al
channel
subkchannel & gain
answer

where channel is the analog input channel. The subchannel and gain
word need only specify the gain in bits 1-3 and the subchannel in bits
9-11 for UDC, and 5-11 for ICS. The handler automatically sets bit 0
(enable conversion) and read control register (UDC bit 8; ICS bit 4)-.
The ICS analog converters must have addresses which are less than 20
(octal) since all converter modules must be located in the first 16
slots of the ICS unit. After conversion, the digitized value is
placed in the answer word.

Enable conversion

Gain

ICS read control register;
(for UDC, hit 8)

CS subchannel;
{for UDC, bits 9-11)

Subchannel and Gain Word Format - UDC/ICS Handler

i
4

26

RTS/8 SYSTEM TASKS

An example of a message for an analog input operation is as follows:

AIEX, ZBLOCK 3

AI /BNALOG INPUT

17 /CHANNEL 17

3 /SUBCHANNEL 3, GAIN 1
AIANS, © : /RESULT HERE

ZBLOCK 2
AIERR, 0 /ERROR INDICATOR

The user should ensure that for each major channel there is sufficient
time (approximately 250 microseconds for UDC; 5 milliseconds for ICS)
for each subchannel conversion to be completed before another is
indicated. In general, it may be helpful if all A/D converzions for a
major channel are initiated from the same task.

4.9.3 DO Digital Qutput

Format: DO
channel
value

Channel is a legal digital output channel and value is the number to
be output. .For example:

DOEX, ZBLOCK 3
DO /DIGITAL GUTFUT
20 /CHANNEL 20.
7777 : /VALUE = 7777
ZBLOCK 3.

DOER, 0 /ERROR INDICATOR

4.9,4 DI Digital Input

Format: BPI
channel
result

Channel is the appropriate digital input channel and result will
contain the value of the channel when read. For example:

DIEX, ZBLOCK 3
DI /DIGITAL INPUT
27 : /CHANNEL 27
DIANS, O /VALUE OF CHANNEL 27 WILL BE PUT
/HERE
ZBLOCK 3
DIER, 0 /ERROR INDICATOR

4.9.5%5 GC Generic Code

Format: GC
channel
result

RTS/8 SYSTEM TASBKS

The generic code of the specified channel is put in result. For
example:

GCEX, ZBLOCK 3
GC /DETERMINES GENERIC CODE
27 /CHANNEL 27

GCANS, D /GENERIC CODE PUT HERE
ZBLOCK 3

GCER, 0 /ERROR INDICATOR

Generic codes are as follows: 0 - No interrupt; 1 - Controller
error; 2,3 - Contact Interrupt Modules; 4 - Counter Module; 7 - A/D
converter,

4.9.6 EC Enable Counter

Format: EC
channel
initial value
reload value
event action
address

Channel is the counter channel to be enabled, iInitial value is the
first value tc be loaded into that channel, and relocad value is the
value with which to relcad the channel after every event. If the
reload wvalue is 0, the counter is not reloaded. The event action and
address words specify what happens when the counter interrupts. There
are three mutually exclusive possibilities, indicated by setting the
appropriate bit in the event acticn word as follows:

Bit 0 =1 - set Event Wait Flag of this job; continue
execution of this job when the event occurs.
Address word not used.

Bit 1 =1 - Run a task that sent the message; run task
specified by bits 4-11 of event action word.
Address word not used.

Bit 2 =1 = DERAIL the task that sent the message; the
address word is only used by the DERAIL operation
and specifies the address of the DERAIL
subroutine. The subroutine must be in the same
field as the calling task.

Bit 3 =1 - Do action just once. If bit 3 = 0, specified

action is performed after each interrupt. Bit 3
indicates whether action is to occur once or
repeatedly.

Several enable counter examples follow: -

ECEX1, ZBELOCK 3

EC /ENABLE COUNTER

4 /CHANNEL 4

7700 /INITIAL VALUE OF 7700

7710 /RESET TO 7710 AFTER EACH EVENT

4000 /POST EVENT FLAG ON EVENT EVERY TIME
/IT OCCURS

0 /UNUSED

ECER1, 0 /ERROR INDICATOR

RTS/8 SYSTEM TASKS

ECEX2, ZBLOCK 3

EC /ENABLE COUNTER
4 /CHANNEL 4
1205 /INITIAL VALUE OF 1205
0 /DON'T RESET
2016 /RUN TASK 16 ON EVENT EVERY TIME IT
/OCCURS
0 /UNUSED
ECER2, O /ERROR INDICATOR
ECEX3, 2BLOCK 3
EC /ENABLE COUNTER
5 /CHANNEL 5
10 /INITIAL VALUE OF 10
7760 /RESET TO 7700
1015 /DERAIL TO TASK 15 EVERY TIME IT
/OCCURS
5620 /AT LOCATION 5620
ECER3, O /ERROR INDICATOR

4.9,7 RC Read Counter

Format: RC
channel
result

where channel is the counter channel whose c¢urrent value 1is to
read. That value is placed in result. For example:

RCEX, ZBLOCK 3
RC /READ COUNTER
6 /CHBANNEL 6

RCANS, a /VALUE OF CHANNEL 6 PUT HERE
ZBLOCK 3

RCER, 0 /ERROR INDICATOR

4.9.8 DC Disable Counter

Format: DC
channel

where channel is the counter channel from which interrupts are to
ignored. For example:

DCEX, ZBLOCK 3
DC /DISABLE COUNTER
6 /CHANNEL 6

DCER, ZBLOCK 4
0 /ERROR INDICATOR

4.9.9 ECT Enab. Contacts

Format: ECT
bit & channel
event action
address

be

be

RTS5/8 SYSTEM TASKS

where the bit & channel word specifies the bit on the contact channel
from which to enable interrupts. Channel is specified in bits 4-~11
and the contact bit is packed in bits 0-3 as a value from 0-13(octal).

Event action and address are specified in the same manner as in the
enable counter function. For example:

ECTEX1l, ZBLOCK 3

ECT /ENABLE CONTACTS
5401 /FROM BIT 13(OCTAL) OF CHANNEL 1
2013 /RUN TASK 13 AFTER AN EVENT OCCURS
ZBLOCK 3
ECTE1lR, O /ERROR INDICATOR
ECTEX2, ZBLOCK 3
ECT /ENABLE CONTACT
1001 /FRCM BIT 2 OF CHANNEL 1
4000 /ON 18T OCCURRENCE OF EVENT, POST
/EVENT FLAG
ZBLOCK 3
ECTE2R, O /ERROR INDICATOR

Twelve messages are required to enable the entire channel.

4.9.10 Cs Change of State
Format: Cs
channel
result

where channel is the contact channel whose current change of state
value is to be placed in result. For example:

COSEX, ZBLOCK 3

Cs /READ COS
1 /CHANNEL 1
COSANS, 0 /RESULT HERE
ZBLOCK 3
COSER, 0 /ERROR INDICATOR

4.9,11 ©DCT Disable Contacts

Format: DCT
bit & channel

where bit & channel is specified as in enable contact. That is, bits
0-3 specify the bit (0 - 13 octal) and bits 4-11 specify the channel
to be disabled. For example:

DCTEX, ZBLOCK 3

DCT /DISABLE CONTACTS
5401 /FROM CHANNEL 1, BIT
/13 (0CTAL)
ZBLOCK 4
DCTANS, 0 /ERROR INDICATOR

RTS/8 SYSTEM TASKS

4,9.12 UDC/ICS Assembly Parameters

The UDC/ICS handler has several assembly parameters that the user must
specify to indicate the UDC/ICS configuration. The number and address
is reguired only for those modules that perform interrupts. They are
as follows: :

RINGBF Number of interrupts that can be stored in the
ring buffer.

NCNTR Number of counter modules.

NCNTC Number of contact meodules.

NAD Number of analog input converter modules.

FCTR Bddress of the first counter module. The modules

must be at contiguous module addresses.

FCT Address .of the first contact interrupt module.
Interrupt modules must be at contiguous module
addresses.

FAD Address of the first A/D converter module. Analog
input modules must he at contiguous module
addresses.

NMPLX Number of multiplexer modules per analog converter
{ICS only).

These parameters are used mainly to specify the sizes of several
tables in the UDC/IC3 handler, allocated as 30(octal)} words per
contact module, 3{octal) words/counter module, and lé(octal} words per
analog module. The UDC/ICS handler currently assumes that the handler
and all its tables are entirely within the same data field (although
the user could easily reprogram this).

The user must keep in mind when establishing RINGBF size that if the
buffer is full, UDC/ICS interrupts are disabled until there is room in
the buffer. Also, each interrupt requires two entries in the buffer;
that is, the actual buffer size is 2 * RINGBF.

4,9.13 UDC/ICS Error Conditions

To indicate error conditions, the UDC/ICS handler places a value in
the tenth word of the task's message. The values and meanings are:

Value : Meaning
1 Illegal generic code for specified channel and
operation
2 Channel or subchannel value not valid
3 Illegal function code
5 UDC/ICS control not responding (power off or

hardware error}

4-31

RTS/8 SYSTEM TASKS

The user should initialize and check the error word. A no error
condition puts a 0 in this location.

Only errors encountered at noninterrupt time are returned in this
manner, thus they may also indicate a faulty UDC/ICS hardware

functional device. Generic codes of 0 or 1 encountered at interrupt
time are ignored.

4.10 CASSETTE HANDLER

The Cassette Bandler (CS5A) allows the user to read and write
variable-length records on DEC cassettes, as well as to perform
various special functions (such as rewind and write end-~filej. One
copy of the Cassette Handler can operate eight units.

There are two general categories of cassette operation:
1. Handler functions - read and write

2. Utility functions - rewind, backspace file gap, write file
gap, backspace block gap, and skip to file gap

The user should call these functions in a meaningful sequence. The
first word of the message defines the cassette unit and either the
handler or utility call.

4,10.1 Handler Function

The format of a message to the Cassette Handler when using a handler
call is:

ZBLOCK 3

CALL + UNIT

RW + FIELD + NONSTORE
BUFADD

SIZE

STATUS

For a handler function, the words after the RTS/8 message header are
defined as follows:

Word 1 bit 0 = ¢ Utility call
bit 1 =20 Handler call
bits 9-11 Cassette unit
Word 2 bit 0 = 0@ Read
0=1 Write
bits 6-8 Field of buffer
bit 11 Do not store data (applicable to read
only)
Word 3 Buffer address
Word 4 Record size in bits 4-11
Word 5 Status return

RTS/8 SYSTEM TASKS

| | —
0: Handler calt
1: Utility call
Unit
Unit Word Format - Cassette Handler

0 1 2 3 4 5 6 ? 8 9 10 11

1 [—— L
0: Read
1: Write
Field
0: Read into memury}

1: Check data

Function Word Format - Handler Call

Cassette conventions specify a record size of 200 bytes, but the user
can use any size up to 377 (8 bits are transferred). The buffer
specified by the message cannot cross field boundaries. For a read
operation, the buffer 1is optional (although its word in the message
must be included), according to bit 11 of word 2. The nonstore
capability can be wused for advancing through a long file, Word 5
contains the contents of status register B, which is defined by the
bit setting as follows: :

Bit Meaning

CRC /block error
Timing

EOT/BOT

EOF

Drive empty
Read/write
Write lockout
Ready

et D OO~ O LR

| il

noHon ok onnnn

RTS/8 SYSTEM TASKS

CRC/block error

Timing

EOT/BOT

EQF

Drive empty

_Read/write

Write lookout -

Ready

Status Return Word Format - Cassette Handler

At the end of each cassette operation, the user should examine Word S
to check for errors encountered. '

An example of a cassette handler message to write 100 bytes from a
buffer starting at 21200 to cassette unit 3 is as follows:

MSG1, ZBLOCK 3
- 4003 /HANDLER OPERATION ON UNIT 3
4020 _ /WRITE FROM FIELD 2 THE
1200 : /BUFFER AT 1200 WHICH IS
0100 - /100 BYTES LONG
0000 /STATUS RETURN

To read and not store 200 bytes from unit 2, the message is:

M5G2, ZBLOCK 3
4002 /HANDLER OPERATION ON UNIT 2
0001 /READ AND DON'T STORE
0oao /UNUSED
0200 /200 BYTES
0000 /STATUS RETURN

4,10.2 OUtility Function

The format of a message to the Cassette Handler when using a utility
call is:

ZBLOCK 3
CALL+UNIT
FUNCTION
STATUS

RTS/8 SYSTEM TASKS

For a utility function, the words after the RTS/8 message header are
defined as fellows:

Word 1 bit 0 = 0 Utility call
it 0 = 1 Handler call
bits 9-~11 Cassette unit

Word 2 {function in bits 6=8): 10 Rewind

nn

30 Backspace file gap
40 = Write file gap
50 = Backspace block gap
70 = Skip to file gap
Word 3 Status return
0 1 2 3 4 5 8 7 8 9 0] 11
| —
Function:
1 Rewind
3 Backspace file gap
4 Write file gap

b Backspace block gap
7 Skip to file gap

Function Word Format - Utility Call

For example, to reguest a rewind on unit 1, the message is:

MSG3, ZBLOCK 3
0001 JUTILITY GPERATION ON UNIT 1
0010 /REWIND
0000 /STATUS RETURN

If an error is encountered, the operation is retried 3 times, except
when a write lock out 1is placed on a write operation or an error
occurs while reading CRC.

The CAPS-8 User's Manual {DEC-BE-OCASA-A-D) is suggested reading for
users who are unsure of cassette conventions.

4.11 CASSETTE FILE SUPPORT HANDLER

The Cassette File Support Handler (CSAF) supports the DEC standard
cassette format and allows the calling task to look up and enter files
on cassettes in that format. This handler requires the cassette
handler (CSA) to perform the actual I/O operations involved.

The cassette operations ENTER, LOOKUP and CLOSE are performed by the
Cassette File Support Handler {CSAF) which in turn calls the cassette
handler ({(CSA). ENTER and LOOKUP regquire the user to put ' appropriate
information 1in a record header area with which CSAF performs the file
operations. The header area must be at least 40({octal) words long and
cannot cross field boundaries.

RTS/8 SYSTEM TASKS

Word definitions for a CSAF message are as follows:

Word 1 bit
bit 1
bhit 2
bits 9

Word 2
Word 3

Word 4

In all cases, the status

ENTER
LOQKOP
CLOSE
unit

Address of header for ENTER and LOOKUP;
status return for CLOSE

Field of header for ENTER and LOOKUP {bits
6-8)

Status return for ENTER and LOOKUFP

return is the contents of Status Register B.

0 1 2 3 4 5 6 7 8 9 i0 '
Functian: §—,
1 Close
2 Lookup
4 Enter
Unit

Unit Word Format - Cassette File Support Handler

For ENTER and LOOKUP, the

cassette standards (and

format is as follows:
Byte
0-5
6=-10

11

12-13

14-15

16-23

24-35

format of the header area must conform with
therefore is compatible with CAPS5-8). This
Use
Filename
Filename extension
File type
1l = ASCII
0 = undefined
File receord length.
Currently word 12 must be
0]

Unused

Date {ASCII) specified as
addmmyy

Unused

Reference is to 8-bit bytes, one per word, right
Justified

For an ENTER operation, if a file with the name specified in the
header area is found on the specified unit, it is deleted.

4-36

RTS/8 SYSTEM TASKS

For a LOOKUP operation, the record size of the specified file |is
returned in location header+13 (byte 13). If the file is not found ot
if an error occurs, this location contains 0.

The CLOSE operation is automatically followed by a REWIND.

Examples of messages follow.

MSG4, ZBLOCK 3
4000 /ENTER ON UNIT O
6400 /INFORMATION IN HEADER STARTING AT
/6400
0010 /OF FIELD 1
0000 /STATUS RETURN
MSGS5, ZBLOCK 3
1003 /CLOSE ON UNIT 3
0000 /STATUS RETURN

4.12 PDP-8A NULL TASK

The PDP-8A Null Task counts from 1 to 9999 in decimal in the AC
display. It alsc counts frem 1 to 7777 in octal in the MQ display.
The source which is called NULL8A, takes up a page. The user ¢an
configure the null task into an RTS/8 system by inclusion in the
parameter file of its task name and the statement

NULL82 = NTASKS+1

4.13 XL8-A SUPPORT

The XL8-2 is a 4-serial line asynchronous multiplexer for the PDP-8/A
that has three lines with partial modem control and one line with full
modem control. KL8-A support is available to the RTS/8 Executive, the
TTY task, and the 0S/8 Support Task. To use KL8-A support, the user
should perform the procedures that are described in the following
sections.

4.13.1 Executive KLB-A Support

The symbol KL8A in the parameter file is set to a value equal to the
number of KL8~A units being employed by the user. If one KL8-A is
being used, then KLBA=1l is sprified.

If the symbol 'KLBA' is set to 0 or undefined in the parameter file,
no KL8=A support will be provided by RIS/8.

KL8-A support is provided by the RTS/8 Executive. The source file
RLBASR.PA must be assembled as follows:

.PAL KLSBASR<PARAM,KLBASR

RTS/8 SYSTEM TASKS

The parameters in the parameter file that relate to KLS-A service are
as follows:

KLBA

0 or undefined means that no KL8-A service is desired.

= n means support for n physical 1lines is
desired. Each physical KL&8-A provides
four lines.

KLEADV

Device code for the first KL8-A,
Default is 40, Each EKLB-& uses tweo
consecutive device codes (e.g., 40 and
41). If multiple KLB-A's are used, they
should have consecutive device codes.

KLBACT = Bpecifies page for start of KL8-A
connect routine, Default is 7400 (if
KLBA = 1). The KL8-A connect routine
must be located in field 0. It is
l-page long for one KL8-A and grows a
page for every three additional KL8-A's
used (or part thereof). The default
value of this parameter is such that the
KLB-A support routine gets Jammed up
against the end of field 0, ending at
location 7577,

4,13.2 TTY Task EL8-A Support

KL8-A support in the TTY task is initiated by setting symbol KL8A in
the parameter file to nonzero. Then the KL8-A line to be used is
specified in place of the terminal IOT device code plus 100. For
example, if the TTY task is to control line 3 of a KL§-A,

TTDEV = KLS8ALINE+3

is specified in the parameter file. (The symbol KLBALINE is defined
tec have the value 100 in the parameter file.) If more than one XKL8-A
interface is used, the lines are numbered consecutively beginning with
0 and continuing across interfaces. Thus, KL8-A logical line number 5
actually is physical line number 1 of the second KL8-A interface.
Physical lines are numbered from 0 to 3.

KLB-A support requires additional memory in field 0 for Executive
Support but does not increase the size of the TTY task. KL8-A support
is included in both the old (2-page) and new (3-page) TTY task.

4.12.3 EL8-A Support for the 05/8 Support Task

KL.8-A support for 085/8 is similar to that described for the TTY task.
However, the following preocedure is used. PFirst, the symbol KLB8A is
set to nonzeroe in the parameter file. Then, the particular KL8-2& line
is specified by using a number of the form 100+line in place of the
device code, where "line" is the line number of the KL8-A that is 05/8
being used. The symbol KLBALINE is conveniently defined as being 100
in the parameter file. For 08/8 support, the parameter

OSTTDV = KLSALINE+2

RTS/8 SYSTEM TASKS

specifies that terminal output goes to line 2 of the KL8-A. When more
than one KLB8~3 is used, the lines should be numbered successively as
described for the TTY task support in Section 4.13.2.

4,13.4 KLB8-A Support for a User Task

The KL8-A support in the Executive alloﬁs a user to program the KL§-A
in a manner similar to the KL8-J,

First, the user task must insert the KL8-A into the interrupt skip
chain and provide a kevboard and printer interrupt routine to service
the line he wishes to use. This is accomplished wvia the following
code:

CDF CUR

CIF 0

IOF

TAD (LINE"4

JMS T (KLBACT

REYBD INTERRUPT ROUTINE
PRINTER INTERRUPT ROUTINE

where LINE is the line number of +the KL8-A desired. EL8-2A line
numbers are consecutive, begin at 0, and may span across KL8-Bs. The
KL8-A line number is actually of the form 4a+b where a is the number
of the KL8-A (0,1,2...) and b 1is the physical line number of the
specific KL8-A (0-3).

Second, the user must define the instruction corresponding to the TLS
instruction that will be used when outputting to the KLB-A line.

For example, if the device code for the KL8-2& is 40, then the wuser
will probably want an instruction such as

TLSX=6404
in his task.

Normally, a program would contain the follewing code to output a
character:

TAD char
TLS

When using a KL8-A, the task would first connect up the KL8-A support
by c¢alling EKLBACT, Then, to output a character, the following code
would be used:

TAD line ~
TAD char
TLSX

400

The AC is not cleared by the TLSX.

4,14 EXIT TASK

The EXIT Task is not required for RTS5/8 operatien. If this task is
included in a system, it is run by the MCR EXIT command. The EXIT
task performs the same functions as those performed by the MCR EXIT
command, that is, it waits for any pending operations to be completed,

4-39

RTS/8 SYSTEM TASKS

then turns off interrupts and returns to the 0S/8 operating systen.
In addition, the EXIT Task allows a user task to request additional
special exit processing just prior to shutting down RTS/S8. This is
done by having the user task send a message to the EXIT Task. This
message contains a single word. This word is the address of a routine
(in the same field as the message) that will be called {(via a JMS)} at
the time of the exit. When the MCR EXIT command is typed, these

routines will be called and executed in the order that they were sent
to the EXIT Task.

NOTE

Any message sent to the EXIT Task will
net get posted. Also, do not use the

MCR REquest command to run the EXIT
Task.

CHAPTER 5

MONITOR CONSOLE ROUTINE

The Monitor Console Routine (MCR) provides functicns that the user can
regquest from the conscle terminal to control, inspect, and debug (to
some extent) his system.

The MCR indicates that it is active and ready to accept commands by
printing the prompting character > on the system conscle terminal. An
MCR command consists of a command word followed by arguments and
terminated by either a carriage return or an ALTMODE. Only the first
two characters of the command are significant except for the EXIT
command. Commands c¢an be a maximum of 40 characters long. If a
carriage return terminates the command line, the MCR returns to the
terminal for another command when it finishes processing the current
command. If an ALTMODE terminates the command 1line, the MCR puts
itgelf in a wait state when it finishes processing the command. The
MCR is brought out of this wait state by typing “C (CTRL C) on the
conscle terminal.

When the MCR prompts with its > and is waiting for input, no other
RTS/8 task can use the terminal. Therefore, if the terminal is used
for something other than an exclusive MCR terminal (for instance,
error logging), type "C, type the MCR command and terminate it with an
ALTMODE character. This procedure prevents the MCR from tying up the
terminal.

5.1 MCR COMMAND ARGUMENTS

Certain syntactic censtructions are used as arguments to several MCR
commands., The definitions of these arguments follow.

A single comma or a single space may be used
interchangeably to separate arguments to MCR
commands.

Task-1ID A Task-ID is either an octal number or a
name. If it is a number, it represents the
internal RTS5/8 Task Number. This number also
designates the priority of a task. 1If it is
a name, the first 4 characters of the name
are loocked up in the MCR's Task Name table to
produce a Task Number.

Time-cf-day A time-of-day is of the form hh:mm, where hh
represents hours past midnight and mm
represents minutes past hh:00.

Address An Address is an octal number from 1 to 5
digits that represents a PDP=8 memory

5-1

MONITOR CONSOLE ROUTINE

address. If the address is less than five
digits long it 1is assumed the high order
digits are 0.

Word A Word is an octal number from 1 to 4 digits
long.

5.2 MCR COMMANDS

In the MCR command descriptions that follow, the significant portion
of the command word is capitalized. Optional arguments are enclosed
in sgquare brackets {!1) and choices are embedded in parentheses,
separated by exclamation points (1}« <Commands preceded by asterisks
(*) are not present if the user did not define the symbol CLOCK in the
RTS/8 parameter file ({indicating that a clock is not in the system},
or if the symbol MCRCLK ig set to 0 (in order to shorten the MCR code
length).

5.2.1 * DAte [mm/dd/yyyy [,Time-of-day]]

The date mm/dd/yyyy, if specified, becomes the system date. For the
year portion of the date, only the last digit is significant; the
others are ignored since 197 assumed. The RT3/8 system date is
automatically incremented at midnight, but all months are treated as
being 31 days in length. The second argument, if specified, 1is set
equal to the systenm time-of-day. If no arguments are specified, the
current system date is printed on the console terminal in the form
mm/dd/7y.

SDATE 07/31/76
>DATE
07/31/76

5.2.2 * TIme [Time-of-day]

If a Time-of-day command is specified, it becomes the system
time-of-davy. If no argument is specified the current system
time-of-day is printed out on the console terminal in the form hh:mm.

>TIME 14:00
>TIME
14:00

5.2.3 NAme Task-ID,Newname
The character string Newname becomes the new name of the task if
specified by this command. The o0ld name of that task (if any) is
lost. Newname can be any length, but only the first 4 characters are
stored. Newname should not be the name of any other task or an error
message results,
Examples:

>NAME 7 REPORT

Task number 7 is given the name REPO.

5-2

MONITOR CONSOLE ROUTINE

>NAME REPORT,FOQOC

Task number 7, which is known as REPO, is now known as FOOQ,

NOTE

The system initializes the MCR name
table at assembly time to contain the
names of any DEC-supplied tasks that are
listed in the parameter file (e.g., if
the symbeol CLOCK is defined in the
parameter file as CLOCK=2, task number 2
getg the name CLCK). By editing the
file MCR.PA after the label NMTEBL, user
task names can be permanently included
by modifying the MCR name table.

5.2.4 REquest Task-ID [, (@Time-~of-day ! Interval)|[,Interval]]

The REguest Task-ID command reguests a task to run immediately (if
only Task-ID is specified), at a given time-of-day, after a given
interval, or at a given interval.

Interval is of the form:

nH n hours

nM n minutes

ns n seconds

nT n system ticks

Requesting a task clears the RUNWT bit in the Task Flags Table entry
for that task. The interval, given in the third argument, specifies
the period at which the task is rerun. If the parameter CLOCK in the
RTS/8 parameter file is not defined, the second and third arguments of
this command are ignored and the given task runs immediately. In the
examples given below, three different formats are used for the REquest
command, but only the first two characters are significant except when
using the EXIT command.

Examples:
>REQUEST X

runs task X immediately.
>RE F00,@2:00

runs task FOO at 2:00 am (if it is after 2 am, FOO will run tomorrow
at 2 am}.

>RE 5,10M,5M

runs task number 5 *en minutes from now and every five minutes
thercafter.

>REQ HIPR,1T, 6T
On a machine with a 60 Hz clock, this command runs the task HIPR

immediately (that ig, .016 seconds from now, and 10 times per second
thereafter}.

MONITOR CONSQOLE ROUTINE

NOTE

If, at the time the REquest c¢ommand is
executed, (which may be several hours
after it is typed in} the task specified
by Task-ID does not have the RUNWT bit
set in its Task Flags Table entry, then
the REquest command is a no-op (no
operation), that is, the command has no
effect. Similarly, the task will not
run upon execution of the REquest
command if it had other bits set beside
RUNWT; the task will run only when the
other blocking bits are cleared.

5.2.5 B8Top Task-ID

The STop Task=-ID command suspends execution of the task specified by
Task-ID by turning the RUNWT bit on in the Task Flags Table entry for
that task. A task that has been stopped can be restarted by using the
REquest MCR command (in this instance it is easier to think of it as
the REsume MCR command).

5.2,6 DIsable Task-ID

The DIsable Task-ID command disables future execution of the specified
task by setting the ENABWT bit on in the Task Flags Table entry for
that task.

5.2.7 ENable Task-ID

The ENable Task-ID command c¢lears the ENABWT bit in the Task Flags
Table entry for the specified task, thus enabling it to run. If the
ENABWT bit was not set, the command is a no-op.

5.2.8 * CAncel Task-ID

The CAncel Task-ID command cancels any clock queue entries invelving
the task specified by Task-ID. This includes l)}any entries made by
the MCR (from previous timed Request commands), 2)entries involving
the specified task made by other tasks (e.g., a timed DERAIL) and
3)entries made by the specified task involving itself (e.g., a timed
POST) . In the «c¢ase of the timed POST, the event flag is not POSTed
and the task may hang up forever waiting for it.

5.2.9 SYstat [Task-ID]

The S¥stat command, depending on whether an argument is specified,
prints either a general system status report or a status report in
greater detail on a single task. If no argument 1is gpecified, the
S¥stat command prints a system status report. Each line of the report
describes an existent task in the system. For each task the report
prints the task number/priority, task name (if it has one), and what
blocking bits are on in its Task Flags Table entry. Each blocking bit

5-~4

MONITOR CONSOLE ROUTINE

is printed as a one-letter code, preceded by a space. The one letter
codes and their meanings are:

Waiting for event flag

Waiting for a message

Walting for an event flag or a message
Waiting to be REquested or RUN

Waiting to be swapped in

Disabled

USERWT bit set

Nonresident wait

ZCcownmosEMm

In addition, an asterisk printed at the end of the line means the task
has messages waiting in its input queue.

A more detailed status report on a single task is obtained by
specifying the Task-ID of that task as an argument to the SYstat
command. The detailed report contains all the infermation in the
general status report, followed by five octal words:

WORD 1 The location of the Task State Table
entry containing words 2-5; this
word is followed by a colon

WORD 2 Task Link in sign bit, IF in bhits 6-8,
DF in bits 9-~11 (PDP-8/E and 8/A Flags

Register)
WORD 3 Task PC
WORD 4 Task AC
WORD 5 Task MQ

Examples:

A general S¥stat command might produce the following sample output
line:

13 CARD E *

This line means task number 12, named CARD, is in Event Flag Wait and
has input messages pending. The command:

>SYSTAT CARD
might produce the single line:
13 CARD E * 1320: 0022 1741 0000 2525

This line indicates that CARD is stopped at locatien 21741 with its AC
and Link zero and 2525 in its MQ.

The user can leave the S¥stat facility out of the MCR assembly by

setting the system parameter MCRSYS to 0 in the RTS/8 parameter file.
Leaving it out saves one page of code.

5.2.10 OPen Address [,Count]

The OPen Address command displays the Count locations in octal
starting at Address on the console terminal in the form:

11111/ ccecce

The range of locations displayed may cross a field boundary. If Count
is not specified, it is assumed to be 1.

5-5

CHAPTER 6

ASSEMBLING AND LOADING TASKS FOR RTS/8

The user assembles RTS3/8 tasks with parameter files, using the 05/8
PALS8 assembler. RTS/8 parameter files are all edited versions of a
master parameter file (PARAM,PA) that is included in the distributed
sources. Appendix A lists the RTS/8 source files. All definitiens in
the master file which are to be supplied by the user are left blank in
the file. For example, a sample line in the file is:

PDP8E= /1 IF PDP 8/E OR PDP 8/A, ELSE 0

If this parameter is set to 1, the specified machine is a PDP-8/E or a
PDP-8/A. 1If either machine is not used, this parameter is set to 0.

Thus, a unique parameter file is created for the particular RTS/8
environment, where environment 1is a combination of the available
hardware and the set of tasks being run.

The structure of the parameter file is discussed in the next section.
Other secticons in this chapter describe 1) the 0S/8 BITMAP program
which allows the user to construct a map showing the memcry locations
used by given binary files, 2) a sample RTS/8 program 3) a general
procedure for creating an RTS/8 system, and 4) a listing of parameters
and their functions that affect the individual RTS5/8 system tasks.

6.1 PARAMETER FILE STRUCTURE

The parameter file contains the parameters that the user must define
to specify a particular RTS/8 system configuration. A parameter file
that has been modified for the demonstration program 1is shown in
Section 8.1. This file also <c¢ontains user-defined symbels for
DECNET/8. For further information on DECNET/8, see RTS/8 DECNET/8
Programmer's Guide and Reference Manual (DEC-08-LDPRA-A-D}.

The parameter file is divided inte the following five sections. These
sections are labeled as follows:

1. Executive Specifications
2. Task Definitions

3. System Task Specifications
4, ©System Wide Definitions

5. Task Setup

ASSEMBLING AND LOADING TASKS FOR RTS/8

b.1.1 Executive Specifications

The parameters in the Executive Specification section control the
assembly of the Executive, and therefore are essential to the RTS/8
system. The parameters in this section and their meaning are as
follows:

Symbol Meaning

FDF8E Set to 1 if PDP-8/E, PDP-8F, PDP-8M or PDP-B8/A 1is
the machine being used; if not, this symbol must
be set to 0.

PDP12 Set to 1 if PDPl2 is the machine being used; if 0
or undefined, the PDP-12 is not being used.

EAE Set to 1 if the system should save contents of the
MO during an interrupt or task switching.

PWRFAL Set to 1 if power fail/restart is enabled in the
hardware.

KL8A Set to a nonzero if KLB-A support routines should
be loaded into system.

HGHFLD Set to a value designating the highest field used;
for example, HGHFLD = 30 specifies field 3 when
using a machine with 16K core memory.

NTASKS Set to an octal value that specifies the total
possible number of tasks in the system. It also
represents the highest number that can be assigned
to any task in the system. MNot all possible task
numbers need be assigned to actual tasks; thisg
symbol merely sets the length of system tables.

CHECKPp Set to 1 if any nonresident task is
checkpointable.

PARTNS Set te the number of memory partitions allocated
in the system. Set to zero if there are no memary
partitions defined in the system. For example,
PARTNS = 2 indicates that there are two memory
partitions defined, that is, partition number 0
and partition number 1.

6.1.2 Task Definitions

The Task Definitions section defines symbolic names for the various
system tasks. The names of all system tasks which are to be included
in the system are defined here. BAny system task not included should
have the 1line which defines it deleted from this section. Perform
this deletion by inserting a slash (/) character at the beginning of
the line, which makes the entire line a comment. Symbolic definitions
of the user's own tasks can be added to this section. The user 1is
reminded that the assignment of task numbers in octal indicates task
priority, that is, the lower the number, the higher the priority of
the task.

ASSEMBLING AND LOADING TASKS FOR RTS/8

The Task Definitions section, as it initially appears to the user, is
shown below.

/COMMON TASK WUMBERS - EDITED BY USER

/1T 1S ADVISABLE TO DEFINE ALL TASKS HERE. NAMES GIVEN BELOW
/ARE USED BY SOME SYSTEM TASKS AND SHOULD REMAIN COMMENTED OUT
/IF THE CORRESPONDING TASK IS NOT INCLUDED IN THE SYSTEM

/PWRF= /POWER FAIL HANDLING TASK

/CLOCR= /CLOCK HANDLER - SHOULD BE HIGH PRIORITY
/SWAPPER= /NONRESIDENT TASK SWAPPER TASK

/TTY= /TELETYPE DRIVER TASK

/LPT= /LINE PRINTER DRIVER TASK

/MCR= /MONITOR CONSOLE ROUTINE

/DTA= /DECTAPE DRIVER TASK

/LTA= /LINCTAPE DRIVER TASK

/RK8= /RKS OR RKBE DISK DRIVER TASK

/RF08= /RFO8 DISK DRIVER TASK

/DF32= /DF32 DISK DRIVER TASK

/CSA= /CASSETTE DRIVER TASK

/CSAF= /CASSETTE FILE SUPPORT TASK

/UDC= /UNIVERSAL DIGITAL CONTROLLER TASK
/RXBA= /FIRST PLOPPY CONTROLLER

/RX8B= /SECOND FLOPPY CONTROLLER

/RX8C= /THIRD FLOPPY CONTROLLER

/RX8D= /FOURTH FLOPPY CONTROLLER

/088= NTASKS /0S8/8 SUPPORT - NORMALLY LOWEST PRIORITY
/0OS8F= /0S8/8 FILE SUPPORT

/DDCMP= /DDCMP TASK FOR DECNET

/NSP= /NETWORK SERVICES PROTOCOL TASK

/NIP= /NETWORK INFORMATION PROGRAM

/TLK= /NETWORK TERMINAL COMMUNICATIONS TASK TRANSMITTER
/LSN= /NETWORK TERMINAL COMMUNICATIONS TASK RECEIVER
/NULL8A= /NULL JOB FOR PDP-8/A

/EXIT= /EXIT TASK

/DRC8A= /AUXILIARY DKCSA HANDLER

This section of the parameter file is shown in Secticn 8.1 after it
has been modified for the demonstration program. It also shows the
addition of the two nonresident tasks used 1in the demonstration
program.

6.1.3 System Task Specifications

The parameters in the S5ystem Task Specifications section control the
assemblies of the various RTS/8 system tasks. The set of parameters
controlling a specific task are all grouped together and assemnbled
conditionally only if that task name is defined in the Task
Definitions section of the parameter file. The user edits the
parameters in this section. The parameters and their meanings are
listed in Section 6.4.

6.1.4 System Wide Definitions

The System Wide Definitions section includes the definitions of the
symbols that RTS/8 uses to describe Executive Requests and Task Status
Flag bits. It also contains useful definitions such as instruction
equivalences, monitor c¢all wvalues, UDC/ICS functional values and
system locations. The user should not alter this section.

6-3

ASSEMBLING AND LOADING TASKS FOR RTS/8

6.1.5 Task Setup

The Task Setup section uses five symbols that the user defines in the
body of this task to initialize the RTS/8 table entries needed to put
that task in the system. These five symbols and their definitions
area:

TASK Pefines the task number of the task by a statement
of the form:

TASK=symbol

where "symbol" is the symbolic name for the task
that the user has defined in the RTS/8 parameter
file.

CUR Defines the field of the task's starting address
in bits 6-8 fe.g., CUR=1D).

NOTE

The user must place the task's starting
code in the field specified by CUR. This
is done by using the PALS assembler
peeudo-op FIELD.

For example, FIELD CUR%10 places the
task's starting code in field 1.

START befines the task's starting address {not
necessarily the lowest address in the task)

INIWT Defines the initial wait bits in the Task Flags
Table entry for this task. For example, INIWT = 0
means the task is runnable when the system starts
up; INIWT = RUNWT (1000 octal) specifies that
this task is not runnable initially and is in a
Run Wait condition. This task becomes runnable
when another task issues @ RUN ER or when the
operator types a Request command to the MCR. If
INIWT is undefined, the task starts up being

runnakle.

VERS Defines the task's wversion number, this is an
opticnal parameter. By «c¢cenvention, the task's
version number becomes the tagk's initial MQ
value.

The wuser can define up to three tasks in one assembly. The
corresponding symbols for the other tasks are TASKZ2 and TASK3, CUR2
and CUR3, etc. The task setup section Places its data into the RTS/8
tables by origining into them; no executable code is generated. If
desired, more than three tasks can be created in one assembly by
adding the <c¢ode for any additional tasks at the end of the PARAM,.PA
file. It should be noted that only one task 1is defined in the
demonstration program in Chapter 8.

ASSEMBLING AND LOADING TASKS FOR RTS/8

6.2 CREATING AN RTS/8 SYSTEM

An RTS/8 System can be created by using the general procedure that is
described in this section. It is assumed that the user has physically
mounted a copy of the distribution medium, and has bootstrapped the
development system. Although nonresident tasks are treated in this
procedure, greater detail on employing nonresident tasks is given in
Chapter 7.

The general procedure for c¢reating an RTS/8 System is as follows:

1. Layout on paper the system and user tasks required for the
particular RTS/8 configuration to he employed. Utilize the
tables and memory map given in Appendix B that show the RTS/8
components, their sizes, and their default origins to
determine where the tasks are to be loaded into memory.

2. Assign task names and task priorities. If nonresident tasks
are used, assign the Swapper Task a higher priority than any
of the nonresident tasks. Remember that the lower the value
assigned to a task, the higher its priority.

3. When large programs are involved, a documentation file should
be created as a user convenience to maintain a directory of
the system configuration. This file can contain information
such as the tasks employed in the system, task names, task
pricrities, and contreol files.

4. Obtain a listing of the master parameter file (PARAM.PA).
Use the 05/8 command

.LIST PARAM.PA

to get a listing from a line printer, or

.TYPE PARAM.PA
to get a listing from a terminal.

5. Use an editor (EDIT or TECO under 05/8} ¢to establish the
values of the parameters in the parameter file (PARAM.PA).
The structure of the parameter file is described in Section
6.1, and the parameters affecting the individual RTS/8 system
tasks are described in Section 6.6.

PARAM.PA should be read in as an input file, edited, and then
renamed as an output file. This procedure maintains the
integrity of DIGITAL-supplied sources.

6. Create and edit any control files that are used (See Section
6.5},

7. Assemble the tasks with the parameter file after all the
required parameters are defined. This can be accomplished by
individually assembling each task with the parameter file as
follows:

.PAL, RTS8<PARAM,RTS8

or

.PAL PARAM-NB, RTS8

10.

11.

ASSEMBLING AND LOADING TASKS FOR RTS/8

The CCL option -NB indicates that a binary file should not he
created. Shown is the assembly of the RTS/8 Executive. This
has to be done for every task that is included in the system.
Each c¢ontrol file used must also be assembled. Assemble the
control file with the parameter file, placing the control
file between the parameter file and the required module as
follows:

+PAL TTY1<PARAM,TTYCF1,TTY

An alternate and more efficient method that can be employed
is to use a Batch stream. The assembly, lcad and save
commands for the system are generated as a Batch Jjob. The
05/8 SUBMIT command is then used to run BATCH which will use
the Batch job commands as inputs and execute thenm. This
method can also be used for installing nonresident tasks into
the system.

The assembly of each task, preceded by the parameter file, is
trequired because there is no linking leader function with
RT5/8. The assembly Process creates binary files from the
sources that are ready to be loaded and run. Each RTS/8
System task contains assembler code that assembles it for
loading into a specific area of core memory. The user can
assemble tasks to load into areas of memory not used by
system tasks, or edit the system tasks for leading into
specific areas. Page 0 locations and auteindex registers
used by system tasks can also be redefined by editing the
affected tasks.

Obtain a bitmap of RTS/8 tasks to determine if two or more
tasks are erroneocusly loaded into the same memcry area or use
the same page 0 locations (See section 6.3).
Load the system after all the tequired tasks are assembled.
All required system tasks, user tasks, and control files can
be loaded at one time as follows:

. LOAD RTS8,CLOCK,TTY,MCR,UT1,UT2

The RTS/8 Executive Task always must be loaded first. Also,
nonresident tasks are included in this step in order to locad
their resident portions and executive table entries.

Save the system after it is loaded by using the following
command :

-SAVE SYS filenane

If the system is saved, the user does not have to rebuild it
each time it is needed.

When using nonresident tasks, create a SAVE image file
{nonresident disk image) for each nonresident task from its
binary file as follows:

.LOAD TASKX

Then save the nonresident portion of the task on the swap
device:

.SAVE DSK TASKX N1-N2

where DSK is the swap device, N1 is the lowest address in the
partition, and N2 is the highest address in the partiticn.

6-6

ASSEMBLING AND LOADING TASKS FOR RTS/8

12. Start the system by using the following command:
.R filename

The following is applicable when using nonresident tasks.
When the system starts, it calls the 05/8 command decoder,
which types an asterisk on the conscle termipal. At this
time, initialize the block address of each nonresident task
core image as follows:

*DSK: TASKX=N

In this command line, DSK is the swap device and TASKX is the
core image file containing the nonresident portion of task N.
Repeat this procedure for each nonresident task, one task per
line, and terminate the 1last 1line with an ALTMODE. This
procedure automatically initializes and starts the real time
system.

An RTS/8 system created with the procedure just described has
a starting address of 006200. If an RTS/8 system was not
specifically configured for a PDP-8/E or PDE-12, it halts
initially to allow the operator to clear any stray device
flags by operating nonstandard hardware switches or by
pressing START., Press START tc resume operation on a PDP-8,
8/I or 8/L.

6.3 USING THE 05/8 BITMAP PROGRAM

The 0S/8 BITMAP program can be extremely useful in determining that no
two RTS/8 tasks are loading into the same area or using the same Page
0 locations. O©0S/8 BITMAP accepts a list of binary files as input and
produces as its output a map of core memory. Each location of core
memory is represented in this map by a single digit which has the
following meaning:

] Nothing has been loaded into this location

1 Information has been loaded into this location

2 Information has been loaded into this location twice

3 iqformation has been lcaded into this location three or more
imes

There are certain places in core memory where 2's are allowed to
appear in the bit map. These areas are the RTS/8 Executive Tables
(starting at location 01200}, the MCR name table in the MCR, the power
fail action table, and nonresident task partitions (which may contain
2's and 3's). Appearance of a 3 or a 2 in an area other than these
three areas just mentioned in the bit map indicates that two or more
tasks are being loading into the same location.

6.4 SAMPLE RTS/8 TASK PROGRAM

The task that is used as an example in this section was selected for
its simplicity, and to show the basic concepts of RIS/8 operation.
The purpose of the task is simply to print "HELLO". The user requires
an RT5/8 system configuration that includes a console Terminal Handler
(TTY} and the Monitor Console Routine (MCR). It is assumed that the

6-7

ASSEMBLING AND LOADING TASKS FOR RTS/8

tagk will be running on a PDP~-8 E/F/M/A with BK of core memory and a
standard console terminal.

The program (SAMPLE.PA) listed below is complete, and when assembled
with the parameter file, will run as task 5 in a properly-configured
system. The task is initially in the Run Wait state. When requested
by the wuser through the Monitor Console Routine, the task prints
"HELLO" on the console terminal, and then suspends itself. If again
requested by the user, the same sequence will occur.

/SAMPLE RTS/8 PROGRAM

TASK=5 /GIVEN A PRIORITY OF 5
CUR=0 /IN FIELD 0
INIWT=RUNWT /SET TO RUN WAIT STATE
FIELD 0 /PLACED IN FIELD 0
*3000 /BNY AVAILABLE PAGE
START, CAL
SENDW /MUST BE DEFINED AS "START"
TTY /SEND AND WAIT
MSG1 /THE TERMINAL
CAL /THE MESSAGE BLOCK
SUSPND /SUSPEND THE TASK
JMP START /RESUMES HERE IF REQUESTED
MSGl, ZBLOCK 3 /RTS/8 LINKAGE
0;0 /TERMINAL OPTIONS

TEXT /HELLO/ /TYPE HELLO
$

An edited version of PARAM.PA now is required for this configuration,
and it is named PARAMS.PA. To produce PARAMS.PA from PARAM.PA, the
following definitions are edited into the parameter file:

PDPSE=1
HGHFLD=10
NTASKS=10
TTY=4
MCR=3

NTASKS is the largest task number used with this system. It is
assigned any number greater than the values for MCR, TTY and the
samble task, and which is smaller than 100 octal. The task values for
SAMPLE, MCR and TTY were arbitrarily chosen in the range greater than
zero and less than NTASKS.

The program is then assembled as follows:
+R PALB
*SAMPLE.BN<PARAMS . PA,SAMPLE. PA

The system for the sample task requires the Executive Task RTS8 plus
the TTY and MCR Task to run. This can be accomplished by using the
following Batch stream:

$JOB

.PAL PARAMS-NB,RTS8

. PAL PARAMS-NB,MCR

.PAL PARAMS-NB,TTY

.PAL PARAMS-NB,SAMPLE
.LOAD RTS8,MCR,TTY,SAMPLE
.SAVE SYS:SAMP

SEND

ASSEMBLING AND LOADING TASKS FOR RTS/8

Assembly and loading of the tasks, including saving the program, is
now complete. The CCL option -NB indicates that PARAM is not to be
used as the name of the binary file being created.

The system now can be run as follows (user input is underlined):

.R_SAMP /0S/8 RUN COMMAND

>RE 5(%) /REQUEST SAMPLE FROM MCR
HELLO /TASK EXECUTES AND SAYS 'HELLO'
c /RETURNS CONTROL TO MCR
>SYSTAT /SYSTEM STATUS COMMAND

03 MCR /MCR TASK

04 TTY /TERMINAL TASK

05 R /TASK 5 WAITING TO BE RUN
>RE 5(%) /RUN TASK AGAIN

BELLO /TASK SAYS 'HELLO' AGAIN
°c /RETURN CONTROL TO MCR
>EXIT /RETURN TO 05/8

. /08/8 MONITOR

NOTE

($) is the ALTMODE character; all other
input lines are terminated by a Carriage
Return.

&.5 USE OF CONTROL FILES UNDER RTS/8

There are times when a user may want to assemble a given source module
in more than one way and use the results under RTS/8. For example,
suppose there are three terminals that a user wants to service under
RTS/8. Fach terminal has its own characteristics, and each copy of
the TTY task needs to have its own set of parameters. The user must
load three copies of the TTY task into memory at different locations,
and possibly in different fields. This cannot be accomplished
efficiently when wusing a single parametetr file. With a single
parameter file, three copies of the file TTY.PA must be made and each
one edited to produce three individual tailored copies of the TTY
task. This procedure is not convenient or modular.

A better way to do this is to use a control file that contains all the
equates necessary to define the parameters needed by a particular TTY
task. The control file then is assembled together with and placed
between the parameter file and the TTY module. For example,

.PAL TTY1l <PARAM,TTYCF1,TTY

creates a binary file called TTYl from TTY.PA using a control file
called TTYCFL.

To facilitate using this procedure, a skeleton TTY control file is
supplied with the RTS/8 task sources. It contains all the parameters
that the user normally defines in the parameter file. Thus, a user
who wants to use multiple terminals, instead of editing the parameters
in the parameter file, can create a control file for each terminal
that is used, and then edit the control file to make multiple copies
as necessary.

An example of a TTY Control file after it has been edited by a user is
shown below,

6-9

ASSEMBLING AND LOADING TASKS FOR RTS/8

TASK=TTY]
/DEFAULT IS 'TTY'
/ TTDEV= /PRINTER DEVICE CODE - DEFAULT IS 04
/ XKBDEV= /KEYBOARD DEVICE CODE - DEFAULT IS TTDEV~1
CONSOL=1
/ VT50= /1 ENABLES CTRL/S AND CTRL/Q
SCOPE=1
/ FILL= /NUMBER OF FILL CHARACTERS, I.E. 4
/ WIDTH= /TTY LINE WIDTH (0 MEANS INFINITE), DEFAULT
/120
/ TAB= /1 IF TTY HAS HARDWARE TARS
OLDTTY=0
/ LSBOT= /1 LISTS BOTH HANDLERS (DEFAULT 0)
TTFLD=20
TTLOC=3000

This example shows a TTY control file that has been edited for task
TTY1. This terminal handler task will be assembled for the console
terminal. Setting SCOPE=1 causes RUBQUT to move the cursor left one
vosition, physically removing the character from the screen. The new
three-page handler is specified. It is Placed in field 2, starting at
location 3000.

A skeleton control file is also supplied for the RX01 floppy. Users
can easily generate and use control files for other purposes.

6.6 RTS/8 SYSTEM TASK PARAMETERS

This section provides a convenient grouping of those parameters which
affect the individual RTS/8 system tasks. Given for each system task
is the parsmeter, its function and where applicable, an example. The
section or chapter where a detailed description of the task appears in
the text of this manual is noted after the task subhead.

6.6.1 Clock Handler Parameters (Section 4.1}

PARAMETER MEANING
CLKTYP Specifies selection of hardware clocks as follows:
0 = DK8-EA/DKS8-EC
1 = KwWl2
2 = PDP-B/A
3 = DKB-EP
CLKQLN Specifies minimum number of entry slots 1in the

clock gueue (default is 20).

HERTZ Specifies number of hardware ticks per second.
HERTZ and SHERTZ are decimal values in that they
are preceded in the parameter file by the
pseudo-~operator DECIMAL.,

SHERTZ Specifies the number of system ticks per second.
This parameter is followed by the pseudo-operator
OCTAL, which resets the radix to its original
octal base.

ASSEMBLING ANP LOADING TASKS FOR RTS/8

6.6.2 Swapper Parameters (Section 7.4)

SYS

SUNIYT

Specifies the swap driver task; for example,
SYS = RKB specifies the RK8 driver task.

Specifies the swap device physical drive unit;
SUNIT = 0 selects RKAO.

6.6.3 Terminal Handler Parameters (Section 4.2)

PARAMETER

TTDEV

KBDEV

MEANING
Is set to the proper printer device code; default
value is 4.

Is set to the proper keyboard device code;
default value is TTDEV-1l.

The following parameters are available to the user to facilitate the

use of the TTY task.

YT50

CONSOL

WIDTH

SCOPE

TaB

Is set to 1 {default) to enable CTRL/S and CTRL/Q
functions. When set to 0, CTRL/S and CTRL/Q are
not treated as special characters. Typing CTRL/3
while data 1is being printed/displayed on the
screen stops the data presentation until the next
CTRL/Q is typed. This parameter must be set to 1
if the user's terminal is a VT50 or VTS2. Both
CTRL/S and CTRL/Q turn off the echo flag.

Is set to 1 to specify that the handler is being
assenmbled for the console TTY {(default). BSet to O
to specify that this handler should not wake up
the MCR when “C is typed.

Is set to an octal number that specifies the TTY
page width. TTY width 1is currently set to 120
foctal}, that is, a page width of 80 decimal
characters. WIDTH = 60 sets the TTY page width to
48 decimal characters.

This option is used to determine the treatment of
the RUBOUT key as follows:

SCOPE=0 {(default) provides the normal mnode of
RUBOUT support.

SCOPE=1 causes RUBOUT to move the cursor left one
position, vhysically removing the character from
the screen. If the cursor is in ¢olumn 1, RUBCUT
still works, but has no visible effect.

This option simulates tabs by the proper number of
spaces. This is accomplished wvia the assembly
parameter TAB as follows:

TAB=0 {default) specifies that the bhardware does
not support tabs. The software simulates tabs by
spaces.

TAB=1 specifies that the hardware does support
tabs.

6-11

ASSEMBLING AND LOADING TASKS FOR RTS/8

FILL

OLDTTY

LSBOT

TTFLD

TTLOC

Several eguates are
sending messages teo

NOPACK=4000

NOCRLF=2000

IND=1000

NOLINE=400

ASSGN=200

KLBALINE=100

Fill characters are supported via the assembly
parameter FILL as follows:

FILL=0 (default) does not provide any fill
characters.

FILL=n sends n fill c¢haracters {nulls) after a
line feed; n must be in the range 1-5., FILL=4 ig
recommended for 2400 baud VT5's.

Is set to 1 to specify the use of the old 2-page
TTY handler. Set to 0 (default) +to use the
standard 3-page handler. The o0ld handler has
fewer features, but it is a page shorter. The
parameters VTS50, WIDTH, SCCPE, TAB and FILL have
no effect when using the old handler.

Is set to 1 to list both the old 2-page and new
3-page handler. Set to 0{default) when only the
handler selected by OLDTTY is to be listed.

Is set to specify the field of TTY Task; for
example, 20 specifies field 2.

Is set to specify the location of TTY Task; for
example, 3000 specifies a starting location of
3000.

listed in the parameter file. They are useful for
TTY or LPT Tasks. These aequates follow:

Used if the output message is not 6-bit ASCII.

Used if the output message should not be followed
by carriage return/line feed.

Used if OUTTXT points to the first word of the
cutbut text.

Used if the output is in character mode.

Used to assign the device handler for use by only
this task.

Used with KL8-A support (see Section 4.13.2).

6.6.4 Monitor Console Routine Parameters (Chapter 35)

PARAMETER

MCRSYS

MCRCLK

MCRFLD

MEANING

Is set to 1 if the SYSTAT facility is desired for
printing system status reports of existent system
tasks.

Is set to 0 if the clock functions are not wanted
by the user,

Is set to the field in which it is desired to

locate MCR, MCRFLD = 30 places the MCR in field
30

6-12

ASSEMBLING AND LOADING TASKS FOR RTS/8

MCRPRT

MCRORG

MCRCDV

6.6.5 08/8 Support

PARAMETER

OSFLDS

OSKBDV

OSTTDV

0SSYSD

OSFILL

Is set to the number of the partition into which
the nonresident portion of the MCR will be
swapped. This parameter makes the MCR
nonresident; however, the first page of the MCR
is always resident,

Is set to specify the starting location of the
MCR. Default causes the MCR to load against the
end of the field.

Set to task name of task which is to be the MCR
console device. Default is TTY.

Task Parameters (Section 4.6)

MEANING

Is set to the number of fields allocated for 05/8.
OSFLDS = 2 specifies two fields or 8K of memory
for 05/8.

Is set to the device <¢ode that selects desired
0S/8 keyboard terminal. OSKBDV = 03 specifies the
use of the console terminal keyboard for O085/8.
Note: OS/8 requires its own dedicated terminal.

Is set to the device code which selects desired
05/8 teleprinter. OSTTDV = 04 specifies the use
of the console teleprinter for 05/8.

Is set to select the 0S/8 system device driver
task. 0SSYSD = DTA specifies DTAO0 as the O05/8
system device.

Is set to the number of null characters that must
follow a line feed character on the 0S5/8 terminal.
OSFILL = 4 is specified when using a 2400-baud
VT05 terminal. Set to 0 when using standard
hard-copy terminals.

Note: A terminal device handler dcoes not have to
be included for the 05/8 terminal device.

6.6.6 KLB-A Support Parameters (Section 4.13)

PARAMETER

KLE8ADV

KLBACT

MEANING

Specifies the device code for the first KL8-A.
Default is 40, If multiple KL§-A's are used, they
should have consecutive device codes.

Specifies the page for the KL8-A connect routine.
Default is 7400 {if KLBA=1). The KLB-A connect
toutine must be located in field 0.

ASSEMBLING AND LOADING TASKS FOR RTS/8

6.6.7 Line Printer Handler Parameters (Section 4.3)
FARAMETER MEANING
LPTLOC Specifies the starting location of the Line
Printer Handler Task.
LETFLD Specifies the field of the Line Printer Task.
6.6.8 DECtape Handler Parameters (Section 4.4)
PARAMETER MEANING
DTALOC Specifies the starting 1location of the DECtape
Handler Task.
DTAFLD Specifies the field of the DECtape Handler Task.

6.6.9 EXIT Task (Section 4.14)

PARAMETER
EXITFLD Specifies the
EXITLOC Specifies the

MEANING
field of the EXIT Task.

starting location of the EXIT Task.

CHAPTER 7

NONRESIDENT TASKS

7.1 COVERVIEW

2 nonresident task is a task or a portion of a task that resides on a
mass storage device during the time the task is not runnable. The
mass storage device 1is called the swap device. It can be any mass
storage medium ({e.g., an RKB cartridge disk or an RX8 floppy disk).
When a nonresident task becomes executable, the Executive posts a
residency reguest. The Executive then runs a special task called the
Swapper to load the nonresident or portion of the nonresident task

into memory. The loading process 1s called a swap. The memory atea
inte which or out of which the nonresident task is swapped is called a
partitien. A partition is a contiquous block of memory that is used

for task execution; it is readable in a single mass storage call.
The use of nonresident tasks permits several tasks to share the same
areas of memory, optimizing the use of available memory.

Tasks can be either totally or partially nonresident. Very few tasks
are totally nonresident; in most applications, the nonresident
portion includes all, or nearly all, of the active locations. Active
locations are those that contain executable instructions or data that
are never accessed by other tasks. The resident portion of a task
includes messages, event flags, buffers and similar passive registers
that may be needed by other tasks.

NONRESIDENT TASKS

POFP-3 MEMORY

SWAP DEVICE
0K {Disk, DECcassette, etc.)
REAL TIME PROGRAM AREA f)
ontains
Contains: nonresident
1. Resident tasks portion of &
2. Resident portians of task
non resident tasks
pK
PARTITION AREA
SWAPPER TASK
1. Contains non resident partion {SWAP PA)
of nanresident task when that 1. Loads nonresident
task is being executed, plc:rtion of task into
2. Allows multiple tasks of same gwe;n\i;y.s out non-
relative size to run in the re\:sidentptask onto
SBME Memory area, Swap Device
. . . ol
3. The characteristic of a partition fwa‘;e::\?\fr?tae:sbll":nd
is as follows: checkpointable tasks,
al Has a starting address
b} Resides completely within a
single memory field
ct Length has (o be an integral
number of pages
i} Cannot overlap anather partition
nk

Figure 7-1 Nonresident Task Implementation

The process that swaps the nonresident portion of a task intc memory
is similar to the overlay capability found in 0S8/8 FORTRAN IV and
related programs. However, swapping 1is much more powerful than
overlaying. Every nonresident task has two properties that establish
when and how it 1is swapped 1into or out of memory. These two
properties are “writeability" and "checkpointability".

A task is made “"writeable” if its nonresident portion must be written
onto the swap device whenever it 1is swapped out to make room for
another task. A writeable task is any task that is
self-modifying ~ i.e., the task's code 1is changeable during task
execution, and any task that must initialize before it can start. The
writeability feature guarantees that the nonresident portion of a task
is always up to date by refreshing the swap device image of the
nonresident portion whenever the task is swapped out of memary.

A task is made "checkpointable™ if it may be swapped out of memory
automatically, without its consent, to make rcom for a higher priority
task. A task that was checkpointed and swapped out of memory is
swapped back automatically as soon as all higher priority tasks have
relinguished the necessary memory space. Execution then continues at

the point where it was interrupted, and the task is not aware that it
was interrupted.

NONRESIDENT TASKS

Some nonresident tasks have both writeable and checkpointable
characteristics. Writeable tasks are utilized when a task must modify
itself (for example, it includes JM& instructions or temporary
locations). Tasks suitable for c¢heckpointing are those that are
1) fairly long-running, and 2) are required only occasionally.

7.1.1 Writeable Tasks

A writeable task is one that includes code that is self-modifying, or
code that must be initialized before execution. Before execution
begins, all nonresident tasks must reside ag core image files 3n the
swap device. The core images are created by loading each nc¢resident
task separately, and executing an 0S/8 monitor SAVE command; this can
pe done under BATCH. When a task is executed, its nonresident portion
is read from this core image file by the swapper. If a task is
writeable, its nonresident portion will be written into the same file
when it is swapped from memory. It is likely that a task, writeable
at execution start-up, would flag itself not writeable at some later
time when all initialization is completed. The nonresident portion of
a task is writeable if it must be saved on a mass storage device (swap
device) before overwriting it in memory with another task.

7.1.2 Checkpointable Tasks

Checkpointing is ideally suited for long-running tasks. The system
can run short tasks in the same area, swap them ocut of memory, and
swap the long running task back again.

7.1.3 Interaction Between Tasks

Resident tasks can interact with the resident portion of any
nonresident task. Two nonresident tasks that occupy overlapping
memory regions can interact with each other through their resident
partitions. For example, if a nonresident task is executing, it sends
a message and is then checkpointed. The message recipient can
acknowledge the sender's message even though the sender is not totally
resident. However, the message sent must be resident.

7.2 MEMORY PARTITIONS
The swappable portion of a nonresident task regsides in a memory
partition. This partition is simply a contiguous block of memory
locations that iz readable in one mass storage call. Every partition
has the following characteristics:
e It is wholly contained in cne memory field.
e It has a starting address.
e It has a length (size) that must divide evenly by 200 (octal)
since 0S/8 file structured devices read and write in one-half
block (one page) increments.

e It normally begins at an address which is a multiple of 400.

NONRESIDENT TASKS

The user can set the parameters for establishing the partition either
in the parameter file or the source of the Swapper Task. This
procedure is described in Section 7.4.

Partitions are mutually distinct, that is, one partition cannot
overlap another. Any number of partitions can be defined. The n
partitions are numbered in any order, from 0 to n-1, with partition
number 0 being the first partition. They need not be adjacent.

Only one task can occupy a partition at any given time. The occupying
task owns the partition until that task executes a "free" command
(described in the next section), or (if the task is checkpointable) as
long as higher priority tasks that share the partition remain
nonexecutahkle,

It is most convenient if every partition begins on the first location
of even-numbered pages, that is, the starting address is a multiple of
400 octal.

7.2.1 FREE Command

A free request can be appended to the function argument of some ER's
{for example, SEND, RECEIVE, etc.) as follows:

CAL /A CALL TO THE EXECUTIVE

CCMMAND+FREE /"COMMAND" IS ANY RTS/8 EXECUTIVE
/REQUEST. THE
/ISSUING TASK IS TO BE SWAPPED OQUT OF
/MEMORY IF SOME OTEER TASK
/BECOMES EXECUTABLE AND REQUIRES THE
/BARTITION BEFORE THE FREEING TASK
/CANCELS THE FREE REQUEST.

A free request must be combined with some other executive request, If
the seguence:

CAL
FREE

is issued, it will be interpreted as:

CAL
SEND+FREE

Only nonresident tasks may issue free requests; other free reguests
are ignored. A task may free its own partition, but never the
partition of another task.

A task normally frees its partition whenever it must wait for an
event, If any other task has a pending request for the partition, it
is swapped into the free partition immediately. If there 1is no
pending reguest for the partition, the freeing task continues to wait
in the free partition until some other occupant requests residency.
In either c¢ase, once the freeing task becomes executable again, it
must compete for the partition aleng with any other executable
occupants. The freeing task may become executable before any other
task requests residency in the partition. In this case, the free
command is cancelled, and the freeing task retains possession of the
partition. No read or write operation is necessary to effect this
swap in this case. By freeing the partition whenever the occupying
task (which may or may not be writeable) must wait for an event, the
programmer is assured that the partition contains a running (i.e.,

7-4

NONRESIDENT TASKS

nonwaiting) task whenever possible. TIf there are no wr%teable‘ tasks
in the partition, no swap device I/0 is involved in freeing the
partition.

7.3 NONRESIDENT TASK INITIALIZATION

The following procedure is recommended to implement any RTS/8 system
containing honresident tasks.

1. Code and debug each nonresident task as a resident task.
During the debugging, load the task being debugged and only
the tasks required for execution of the task to be debugged.
Once the task executes correctly while resident, make it
nonresident. Making a task nonresident is described in the
sections that follow.

2. On a listing, mark the nonresident portion of each
nonresident task. Determine the size of each task’'s
nonresident portion. Then design the partitioning scheme and
allocate nonresident tasks to memory partitions by medifying
the parameter file as described in Section 7.4.

3. Re-origin each nonresident task so that 1its nonresident
portion lies within its partition. If necessary, ensure that
resident portions of nonresident tasks do not overlap Iinto
another partition. BITMAP, an OS8/8 utility program, is
useful for this since it allows the user to determine if two
or more tasks are errvoneously being lcaded into the same
memory section. The use of BITMAP is described in Section
6.3. A detailed description of BITMAP is given in Chapter 2
of the 0S/8 Handbook. Execute the task as a resident task
once more to make sure it does not contain location dependent
code. Also, if any memory partition begins on an odd
numbered page, temporarily relocate each task that resides in
that partition. An example of starting a nonresident task at
an arbitrary boundary is given in Section 9.3.

7.3.1 Parameters for Nonresident Tasks

Several assembly parameters must be initialized when employing
nonresident tasks. Five of the parameters are located in the
parameter file (PARAM.PA) and three must be included in the
nonresident task itself.

The parameter file (PARAM.PA) contains five parameters (PARINS,
CHECKP, SWAPPER, SYS and SUNIT) which must be initialized when

employing nonresident tasking. These parameters are defined as
follows:

PARTNS is set to the number of memory vpartitions defined.
PARTNS is set to zero in the parameter file to indicate
that no memory partitions are defined in the system.

CHECKP is set to 1 if any nonresident task is checkpeintable.

SWAPPER is the nonresident task swapper task; it must be
assigned a task number that is of higher priority than
the task it swaps, that is, a number lower 1in value
than that of any nonresident task in the system.

NONRESIDENT TASKS

SYS is set to designate the swap device driver task; for
example, SYS = RKS§ specifies the disk driver task.

SUNIT is set to specify the swap device physical drive unit;
for example, SUNIT = 0 specifies the disk cartridge
drive,

Every nonresident task source must include the following three
parameters:

PARTNG= n, where n is the task's partition number (starting at 0)
CPABLE= 0, if the task is not checkpointable
1, if the task is checkpointable
WRITE= 0, if the task is not writeable
l, if the task is writeable

Failure to initialize these parameters correctly causes the program to
execute unpredictably. ‘The presence of parameter PARTNO identifies a
task as a nonresident task. Hence, the variable name PARTNO should
not ke used except in nonresident tasks.

A nonresident task is not appreciably different from a resident task.
However, buffers should not be in nonresident portions of a task since
the buffers will be out of memory when that task is not being
executed. There are no special coding restrictions. The nenresident
portion is always present in memory while a nonresident task is
executing. It 1is generally safe to assume that the nonresident
portion is never present when the task is not executing. There 1is a
slight structural difference between resident and nonresident tasks;
nonresident tasks have clearly defined resident and nonresident
portions that cannot be intermixed.

7.3.2 Assembling Nonresident Tasks

Each nonresident task is assembled separately. The nonresident task
must include the parameter TASK, but never the parameters TASK2 and
TASK3 (see Section 6.1.5%, Task Setup).

The swap device file that contains the nonresident portion of the
nonresident task requires special treatment. This file must contain
the first word of the nonresident portion in the first location of
relative block 1, the second word of the nonresident portion in the
second location, and so on. This file must be a core image; however,
the 0S/8 monitor requires that the first location of any core image
section load into & memory address that divides evenly by 4Q00(octal).
If the lowest address in the partition alsoc divides evenly by
400(octal), this condition is met. There ig no problem because every
task can be assembled in the partition directly.

Modify - the parameter file (PARAM.PA) to establish the desired
parameters. Then assemble the nonresident task and the parameter file
together.

7.3.3 Creating the SAVE Image File

Create a SAVE image file (nonresident disk image} from the binary
image file as follows:

.R ABSLDR

*TASKX.BNS$
+SAVE DEV TASKX.SV N1-NZ

7-6

NONRESIDENT TASKS

For each task, where DEV is the swap device, Nl is the lowest address
in the partition, and N2 is the highest address in the partitien. The
resulting core images contain only the nonresident portions of each
task and meet all the reguirements previously outlined. However, the
first block of the core image (relative block 0) is the core control
block, which is not used by the swapper. As stated previously, it is
strongly recommended that the partitions begin at a location that is a
multiple of 400{octal) since the 08/8 SAVE command only saves areas
starting at 400(octal) boundaries.

NOTE

SAVE image files can be constructed
under 0S/8 BATCH. Also, the 05/8 CCL
command LOAD may be used to create the
SAVE image.

7.4 PARAMETER INITIALIZATION FOR PARTITIONS

The user must initialize certain parameters to define the partiticning
scheme. They can be set in either PARAM.PA or SWAP.PA. The following
three variables are required for each of the partitions:

MFLDnn= MEMORY FIELD OF PARTITION N
ADDRnn= MEMORY ADDRESS OF PARTITION N
SIZEnn= GSIZE OF PARTITION N, SPECIFIED IN PAGES

The user can set up the parameter file to accept eight sets of
partition parameters. When more than eight partitions are defined,
the parameter table must be extended according to instructions
contained in source. Since adding extra partitions does not increase
system overhead, it is best to have as many partitions as possible.
This minimizes the number of tasks that must share a partition. Each
partition should have at least two occupants; otherwise, there is no
reason for making the task nonresident. The partitioning scheme can
also be defined by initializing the required parameters within the
swapper source.

7.4.1 General Information

The entire partition table appears on the swapper PAL or CREF output

listing. The user should check it carefully to ensure that all
partition parameters (MFLDnn, ADDRnn and SIZEnn for each partition)
were defined correctly. The parameter file generates the residency

table entry for each nonresident task and it appears on the PAL or
CREF output listing for that task. The user should examine word 1 of
this entry to verify that the nonresident task parameters PARTNO,
CPABLE, and WRITE were initialized correctly. Word 2 of the residency
table entry will be zero because the task's block address on the swap
device 1is unknown at assembly time. This location is initialized by
the 0S/8 command decoder shortly after program startup, and it can be
examined anytime thereafter. 1In the usual case, where the file is a
core image, this location should contain M+l, where M 1is the block
address returned by the following command:

.DIR DEV:TASKX.S5V/B

NONRESIDENT TASKS

TASKX.SV is the core image on the Swap device containing the
nonresident portion of the task.

7.5 NONRESIDENT TASK IMPLEMENTATION
Perform the following procedure to implement nonresident tasks.

1, Assemble every task that will be included in the program as
described in Section 7.3.2. Obtain PAL or CREF listings and
bitmaps. Finally, obtain a bitmap of the entire system and
verify that memory is allocated correctly. On the bitmap, 3s
are legal only within partitions.

2. Create the SAVE image file as described in Section 7.3.3.

3. Load the binaries of the RTS3/8 executive and each task,
including nonresident tasks. Always load the executive
first. Nonresident tasks are included in this operation in
crder to load their resident portions and Executive table
entries. Either save the loaded program as a core image file
or start it from the keyboargd.

4. Start the real-time program wusing the monitor R command.
This calls the 0S5/8 command decoder, which types an asterisk
on the console terminal. At this time, initialize the block
address of each nonresident task core image as follows:

*DEV:TASKX.5V=N

In this command line, DEV is the swap device and TASKX.SV is
the core image file - containing the nonresident portion of
task N. Repeat this procedure for each nonresident task, one
task per line, and terminate the last line with an ALTMODE.
This procedure automatically initializes and starts the
real-time program.

This initialization procedure may be executed automatically
under OS/8 BATCH control.

Example:

$JOB SYSTEM

/RUN "SYSTEM" AND INSTALL

/NONRESIDENT TASKS.

-RUN 5YS8 SYSTEM

*TASK1=35 /TASK 35 IS "TASK1" SAVE IMAGE
*TASK2=36% /TASK 36 IS "TASK2" SAVE IMAGE
SEND

Submitting SYSTEM.BI runs RT5/8 user system SYSTEM.SvV,
installing its two nonresident tasks,

5. Debug the entire program. Accomplish this by selectively
placing HLT instructions (preceded by ICF, NOP, if
apprepriate) and examining the memory cnce the HLT has been
executed. Use the MCR and/or the console switch register to
place and remove HLT instructions and to modify all
Permanently resident areas. When using MCR, remember that
MCR output represents a snapshot of memory at some
undetermined point in time that is long past by the time the
MCR has output to the terminal.

CHAPTER B

DEMONSTRATION PROGRAM

This chapter contains a demonstration of RTS/8 with nonresident tasks
executing in the foreground. Included is a listing of the modified
parameter file {PARAM.PA). In addition, there is an example of
nonresident tasks (Tasks NR20 and NR22) and the assembly and load
instructions required for implementing the demonstration program.

8.1 MODIFIED PARAMETER FILE (PARAM.PA)}

/2.8 PARMHMETERS FOR RTS/8 T4SKS5 YEB+OECNET

LSTFLGad FCHANGE B TU 3 TO PREVENT LISTING PARaM
ALIST LSTFLG

COPYRIGHT (C) 1974,1975,1976 BY OIGITAL EQUIPMENT CORPGRATION

R T T

/THE INFORMATIOM IN THIS COCUMENT 1§ SUBJECT TO CHANGE wITHOUT NOTICE
ZAND SHOULD WOT BE CONSTRUED AS A COMMITMENT @Y DIGITAL EQUIPMENT
/CORPORATION, DIGITAL EQUIPMENT CORPORATION ASSUMES NQ RESPONSIBILITY
¢FOR &NY ERRORS THAT MAY APFEAR IN THIS DOCUMENT.

/

/THE SOFTWARE DESCRIBED IN THIS DOCUMENT J3 FURNISHED TO THE PURCHASER
FUNDER A LICENSE FOW USE ON 4 SINGLE CUMPUTER SYBTEM AND CAN 8E COPIED
FIWITH INCLUSION OF GIGITAL"S COPYRIGHT NOTICE) ONLY FOR USE IN SLCH
FSYSTEM, EXCEPT A% May OTHERWISE BE PROVIDED IN WRITING BY DIGITAL,

/

JOIGITAL EQUIPMEN! CORPORATION ASSUMES ND RESPONSISILITY FOR THE USE
/0R RELIASBILITY OF ITS BOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED 8Y
/DIGITAL,

T T s

DEMONSTRATION PROGRAM

/RTSB V2 EXEC PARAMETERS = EDLITED BY USER
POPBEX]
PDP{208
EAERQ
PHRFALER
KL 8amQ /NUMBER OF KLBA*S IN LSE
/leb. 1 IF ONE KL8A (UP TO 4 LINES)
HGHFLD®3d
IFDEF LUR «
IFNIRD HGHFLD=CURB4EOR <CURBIG, ERROR »» /FLAG WARNING If UNDEFINED FLELD SEEN
NTASKS823
CHECKPE]
PAHRTNS®]
/LTHE N PARTITIONS ARE NUMOSERED FRGM 2 TO Nel)

/COMMON TABK NUMBLRS = EDITED HY uSER

/1T 18 ADVISABLE TO DEFINE ALL TASKS HWERE, NAMES GIVEN BELOW
/ARE UBED BY SOME SYSTEM TASKS AND SHOULD REMAIN COMMENTED OUT
/1F THE CORRESFONUING Ta8x 1% NOT INCLUDED IN THE 3YSTEM

/PWRFR /POWER FAIL HANDLING TaSK

CLOCKN]

SWAPPER2)1p

TTYw2

LFT®3

MLRay

FDTAR /PECTAPE URIVER Ta5K

FLTA® FLINCTAPE DRIVER TASK

RKdx7

/RFOB. /RFD8 D1SK LRIYER TasK

/DF3gs /OF32 DISK DRIVER TASK

JCShn JCASSETTE URIVER TaSK

/LUAFS FLASSETYE FLILE SUPPORT TASK

fulCm FUNIVERSAL UIGITAL CONTROLLER TASK
FRABAE /FIRST FLOPPY LONTROWLLER

FRXEBE /3ECOND FLOPRY CONTROLLER

/RXBCe /TRIRD FLOPPY CONTROLLER

/RABOW /FDURTH FLOPPY CONTROLLER
DS8WNTASKE

Q88Fm15

NRZDmZQ

NR22s2g

J0CMPa JODCHP TASK FOW DECNET

fhEFPE /NETWORK SERVICES PROTOCOL TASK
tNIPE FNETWORK INFORMATION PROGRAM

FTLKS INETwORK TERMINAL COMMUNICATIONS TASK TRANSMITTER
/L.Sha /NETWORK TERMINAL COMMUNICATIONS TASK RECEIVER
ANULLE AR FHULL JDB FOR POP=&/4

FEX]Tx JEXIT TASK

FORCBAn FAUXKILIARY UKCBA RANDLER

/30FTWARE PARAMEYERS = EDITED BY USER

X187 1

IFDEF 0sa <

ALIST L3TFLG
DAF_DS=2
O§TTDva31
0SKkBRy=3R

/DEFAULT 15 DSTTDy=}
DE3YADwwKS
O5FILLu=G
/CEG 4 FOR 24@0 BauD vTs)

f05B0URGa FURIGIN (IN FIELD @)

XL1st 1»

IFDEF MCR €

XLIsT LITFLG
/HMCRCLKa /@0 IF MCR 10D FACILITIES YO BE OMITTED (DEFAULT = 1)
MCRSYS#)

41 IF UESIRED (DEFAULT)
/MUCRFLDa /FIELD OF MCR
/MCRORGY FLOCATION OF MCR (DEFAULT IS END OF FIELD)
/MCRPRTH /PARTITION NUMBER OF MCR (IF NOUN=RESIDENT)
/HCRCDVa /COMSOLE YD BE USED BY MCR, E.G, TTY
FDEFAULT 1§ TTY
XLIST IR

IFDEF CLOLK]
XLIsT LSTFLG
CLEKTYPeQ
CLKGLNRZR
/MAY BE CHANGED 8y USER
DECIMAL
HERTZ=1dER

DEMONSTRATION PROGRAM

SHERTZ =4
IFNIRQ CLKYYPL] <HERTZ=)752» /FORCE DKBEP,KWl2 10 1 XH1
aCTAL
XL IAT 1>
IFDEF LFT <
fLPTLOCE
ALPTFDe
»
1FOEF bra <
FOTALQES
FOTAFLD»
»
TBLLETe B FSET TD TLSTFLG® IF ¥0u DON'Y DESIRE

/T0 SEE TABLES WHEN PARAMETER FILE 1§

FNOT LISTED,
/SYSTEM LOCATIONSG

MEGTBLE 120@-2 /TASK MESSAGE TABLE
TSTABLE NTASKS#2TdeMBGTAL~4 FTASK STATE TABLE = MWOLDS

FTASK LINK,uM,OF,IF,PC,AC,HQ

TFTABLE NTASKS¥2 4+TSTABL=] /TABK FLAGLS TABLE = MOLDS
/TASK STATUS FLAGS
ALI8Y 1
IFDEF AWAPPER «
XLIST L8TFLG
SYSEZRKE
SUNITER

IFNDEF SUNIT SSUNITe B> /DEFAULT SWAP UNIT I35 @

FIELD ©

f
FPARTITION TABLE (PARTBL) ENTRIESS
FHUST HE INITIALIZED BY USER A5 EXPLAINED IN THE COMMENTS

/DON*T FORGET TD REMOVE LEADING "/" FRQM LINES USED

/

RESTHLE TFTABLeNTASKES2 /RESIDENCY TASLE
PARTBL® NTASKS=SWAPPER®2+RESTBL+38T7T4 /PARTITION TABLE

MFLDRZE]

wPARTEL

XLIST
IFNZROD
X I81

ADDRPZELRQ

SIZE@@»1

MFLCD1s
aDOROLE
5lZEe1a

MFLDR2E
ADDRR2=
al2Ep2nm

MFLOR3E
ADDRQ3m
SIZEQ3s

MFLDDa®
ADCRQu4m
SIZEQasw

i
PARTNS <
TELLST

SIZEQR=1Q+MFLDER" 1+4R0R

ADDROD
1BLOCK
XLI3T
IFNZRD
AL18T

PARTNG=] .

TBLLST
/MEMORY FIELD OF PARTITION #}
JLOWEST ADDRESS IN PARTITION ¥l
F8IZE DF PARTITION #1 (CGRE PAGES)

SIZEBI“1Q*MFLOBI™1R+4BR2

ApDROY
IBLOLK
XLIST
IFNZRQ
X187

FARTNS»2 <

TELLST
/MEMORY FIELD DF PARYITION #2
FLOKEST ADDHESS IN PARTITION #2
/311E GF PARTITION w@

SIZEQ@2"1@*HFLDO2™10+43P0

ADQRRE
ZaLoCk
XL 187
IFNIROD
ALIAT

2

PARTNARS ']
TBLLST
JPARTITION #3

SIZER3“1@+MF DD} 12+200Q

ADDRD3
Z6L0OCK
XLIST
IFNZIRD
ALISY

2

PARTNS=Z <
TOLLST
JPARTITION %4

SIZERATLQ*MFLORA 12 +UROR

ADDRAG

8-3

DEMONSTRATION PROGRAM

BLOCLh 2
XLI3T
IFNZRD PARTNS=S <
xp.lar TELLST
MFL D25 /PARTITION #5S
LR R
SIZEQS5w
SITEPST10+MFLDDS 1D+ d0QR
ADDR@S
ibLoCr 2
XLIST
IFNZIRO PARTNS=4 <
XLIST THLLST
MFLDOO N FPARTITION #b
AODR2bw
dIZEYLw
SIZEPL™1B+MFLORL ™1 @+000Q
ADDRRL
IBL0CK 2
X Is8vy
IFNIRO PARTNS=Y <«
XLIST THLLST
MFLL@7N FPARTITION a7
ADDRDYY
S51ZEQ7e
SIZEAT=1Q+MFLURT*1P+dR0u
ApDDRBY
TBLOCK 2
ILIST lasrnnnss
/
fADDITIONAL PARTITIONS MAY BE DEFINED BY THE USER A5 3HOWN ABDVE
/FURTHERMORE, THE PARTITION TAHLE MAY RESIDE ANYWHERE IN FIELD ZERQ
/

PRTEND=, /NDTE END OF PARTITION TABLE
XLI18T 1»
IFDEF TTy .
XLIST L8TFLG
/ TTOEVS /PRINTER DEVICE COOE = DEFAULT I3 o
/ KBDEVs /KEYBUARO CEVICE CODE = DEFAULT IS TTDEWs1
/ CoNSOLs /1 MEANS CONSOLE TTY (DEFAULT)
’ vTSas 71 ENABLES CTRL/Y AND CTRL/G
/ SCOPEm /1 MEANS TTY CAN DO & PACKSPACE
/ FILLE ANUMBER OF FILL CHARACTERS, 1,E, &
/ WIDTHE JITY LINE WIDTH (@ MEANS INFINITE), QEFAULT IS t2e
/ YiBs /3 IF TTY HAS RARDWARE TABS
/ OLDTTYa /1 TO USE OLD 2=PAGE TTY WANDLER
14 LSBOT /1 LISTS BOTH HANDQLERS ([DEFAULT @)
/ TIFLDa AFIELD OF TTY TASK (TIMES 1@)
4 TTLOCH /LOCATION OF TTY Task
LT 43 S
IFNIRD KLBA <
YLIST LSTFLG
FKLBADYS /KL8A DEVICE CODE = DEFAULT IS 4@
JELBACTe FKLBA CONMECT ROUTINE PAGE = DEFALLT IS 7agg
XL IS8T 1>
IFDEF EXIT <
XLIST LHTFLG
JEXITFLD® VIELD OF EXIT TASK (TIMES 1@)
JEXITLOCS JLOCATION OF EXIT TASK

LIS 1>
LIRS D) LETFLEG

IFNDEF PUPEE <POPEEm]>»
IFNDEF PpuP)2 <POFiged>»
IFNDEF EAE <EAERD>
IFNOEF PWRFAL <PWRFALu@»
IFNDEF KLak CKLBAND>

XLIST g
IFDEF N3P «
XLI8T LSTFLG
MAXCCBE #NUMBER OF LOGICAL CHANNELS (CCB*S) BEING USED
7E, 6, 3 FOR 3 CMANNELS
/THESE ARE NUMBERED 1,2,3
MAXNODa /NUMBER OF NODE NAMES IN NOLE TaBLE
N$PFLDn /0IELD OF NSP TASK AND MDST NETWORK TABLES (£,G. 3@)
#UTABLES INCLUGE CCBTAB, LNKTAB, NODTAB AND NETTAB)
NSPLOCE 2408 /ORIGIN OF N&F TASK, MUST BE ,LE, 3220
7THE DEFAULT 18 CURRENTLY 32¢0
NOOHUKE #MQDE NUMBEK QF THIS NODE

DEMONSTRATION PROGRAM

/IMPORTANT RELATIVE ORIGINS WITHIN NETWORKS TAEKS

DRLXTITE NIPLOC+440@ /ADORESS OF AST DE~UUEUER

CCETABm DRLXIT+2D0 #ADDRESS OF CCB TABLE

NDOTARS CCBTAR+10Q /AQORESS OF NOGE TABLE

KETTABe NOOTaR¥EY /ADURESS OF NETWORK *INFORMATION' TABLE

/THE CEFAULT NETWURKS TASKS LSt CORE A% FOLLOQWS:

/DDCHMFE PAGE @, @4QU=-3577 (1 LINE, 2 PAGE NODE POOL)
FNEPY PAGE B, 3£02«735177

SNETWORK Ta8KS USE PAGE B AS FOLLDWST

FODCFLD: 1B=12, 30-T7
FNSPFLOG 19=17, TI177

/NODE TABLE ENTRILES

FEACH ENTRY HAS TME FDRM

/WORDS 1=3 NOBE WAME (&eBIT, @=PADDEL)
fWQRD 4 LINE NUMBER

/HURD 5 BlT @al IF ADJACENT NOODE

/ BITS 4e11 CONTAIN NODE NUMBER

IFCEF TaSK < IFZERD TASK=N3P «
FIELD NSPFLDXi@
ANQDTAB

NGDTAB, TEXT FNAME /S
e JLINE NUMBER

2 FNODE NUMBER

ANETTAB4

NODNUM /0uM NODE NUMBER

TEXT /NAME/ /OUR NDDE NaME

FIELD 2

ay

»

XLIAT 1
IFDEF DUCHMP <
ALIST LSTFLE
MAXLINE /NUMBER QOF PHYSICAL LINES BEING USED
/b, i, 3 FOR 3 LINES
/THESE ARE MUMBERED B,1,2
MAXPRTE 24 /8ET TQ WUMBER DF NODE PDOL PACKETS TO ALLOW
/Tmk NGDE POOL EXISTS AT THE END OF DOCwMP
/JUST BEFDQRE THE LCd TABLE (SIMILAR TO THE CLOCK QUEUE)}
/EACH PACKET REQUIRES 14 WORDS OCTAL, (ABQUY 1@, FER PAGE)
/UTHE DEFAULT REQUIRES 2 FPAGES CORE)
/KGBER JAET TO IDT SKELETON IF WGHE IS PREZENT (E.G, 6118}
UDCFLDw JFIELD OF DOCMP TASK,LCBTAB AND *NODE POOL* (E.G, 22)
fTHLIS FLELD MUST BE ODIFFERENT FROM NSPFLD
DOCLOCT Dg2ad ZORIGIN OF DOCMP TARK
/THE ABODYE MUST BE REL0OW SEQ@~SIZE OF NODE PDOL AND LCBTAR
/THE DEFAULT IS CURRENTLY 202

LCBSIZE 32 /GLOPAL DEFINITION OF LCB SJZE (00 NDT ALTER)
PKSIZE® l4 /BLDBAL DEFINXITION OF PACKET SIZE (DO NAT ALTER)

POCFNCe DRCLOC /ADORESS OF DODCMF "FUNCTICON CALL*® ROUTINE
HEAQPKS DUCLOC+3020 /ADORESS OF START OF PACKET FREELIST
LCBTABN MAXPKY"PKSIZE+HEADPK /ADDRESS OF LINE CONTROL BLOCK TABLE

fIMPORTANT NETWORKS PAGE @ GLOBALS

DDCEFa 4 /00CMP 1/0 EVENT FLAG
FREWODE af ZLOCATION OF 170 PACKET FREELIST HEAD
DOCTLe 350 JPOINTS TO TAIL OF DOCMP INPUT GUEUE
DoCHDe 51 /PDINTS 70 mEAD OF DDCMP IMPUT QUEUE
ATNINFPE® Se /POINTS TD YRANSMIT COMPLETE RING BUFFER
QHDRE L] /LOCATION OF WEADER BUFFER FOR TRANSMITS
QCRCLe &3 /HEADER CRC FOR TRANSMITS
OQCRCLe 63 /DATA CRC FOR TRANSMITS
DUTLDF® &7 JOATA DESCRIPTOR FOR TRANSNITS
DDCP3KE NIP #DEFAULT WSER OF DDCMP TASK
XL I8y i»
XLIST 1
IFGEF NIP L
XKLIST L3TFLG

INIPFLD® /FIELD OF NIP (TIMES 19)

ANTPLOCE /LOCATION OF NIP

/NIPARY /PARTITION FOR NIP

FGKIMPm FSET TD 1 TO GET SHQORT NIP

8-5

DEMONSTRATION PROGRAM

INIPLOGH /DEVICE NIP QUTPUTS TO
/REFAULT I8 LPT IF IT EXISTS (OTHERWIME TTY)
INIPRESS /LOCATION FOR RESIDENT PORTION OF NIP

/REQUIRED ONLY IF NIPART DEFINED
/DEFAULT IS NIPLDCe2@D
»

XLIST i

1FDEF TLX <

XLIsT LSTFLG
FTLKFLUS /FIELD OF TLK Task
FTLALOCS FSTART OF TLR TASK
TLKCHNE /CCB CHANNL TO ASSIGN TO TLK TASK

XLIST 1 »

IFDEF L&N «

XLIST LSTFLG
/LINFLDS FFIELD OF LSN TASK (TIMES 1©)
/LSNLDCE /START UF TLK TASsK
LENCHNE FCCH CHANNL TO AS3IGN TO LSN TASK

XLIST i »

xLIsT LSTFLG

FEQUIYALENGCES!

ACTT76= CLL STA RAL
ACTT75® CLL 9Th RTL
ACdgDes CLa 5TL RAR
ACITT?® CLL 8TA RAR
ACZR@D® CLA 3T RTR
ACER@2s CLA 8TL RTL

/MONITOR CALL VALWVES:

CAL® PLE] ¢ FCALL THE EXECUTIVE
PO3TRSE JNP 1 24 /DISMISS AN INTERRUFT
WATTME Ju8 1 25 /WAIT FDR MULTIPLE EVENTS

/NOTEs "wa" MEANS CRITICAL VALUE MAY NOT
/BE CHANGED WITHDUT MDDIFYING SYSTEM COQE!)

SEND® B #SEND MESSAGE
RECEIvVm } /RECEIVE MESSAGE
WATTEx @ /WALT FOR EVENT FLAG
RiNa 3 FLONTINUE TASK EXECUTION
SUSPNDE g /BUSPEND TASK EXECUTION
PDSTe 5 FPGST AN EVENT FLAG
SKPINSH 6 /INSERT CODE INTU INTERRUPT SKIP CHAIN
DERAILN 7 FINITIATE ENU=ACTION
BLKARGY 1@ FBLOCK TASK FOR REASON SPECIFIED IN ARG
SENDW® 113 /BEND MESSAGE AND wAlY
UNBARGE 12 FUNALOCK TASK FOR REASON SPECIFIED IN ARG
RESCHD= 13 /FORCE & RESCHEDYLE
WalTxs 14 /WALT FOR EXACTLY THIS EVENT FLAG
FREES e s*eFREE PARTITION
XLIAT 1
IFDEF LOC <

XL I8T L3TFLE
AD=2fDOnifDlugysGLa3jECuUfRCAS
CCme)ECTRT)CSalpOCYalifAIng2
ELIST i»

XLIAT LITFLG

FTASK BTATUS FLAGS:

NGNRWTS 4200 /®eNONRESIOENT TASK WAIT

EFWTs 2290 JEVENT FLAG WAIT

RUNWTE 1p@Q /SCHEDULE WAIT

SWPWTE 2ude /FAnSWAPPER WaALT

EQRMKT= 2282 FEVENT FLAG OR MESSAGE WAIT

USERNT® Q1@0 /YIER SPECIFIED wWaIT

ENABWTE Q040 FENABLE WalT

MeGWTE QP20 /MESSAGE WALT .

NETWT® QL2 /NETWORK wiIT (RESERYED FOR POSSIBLE FUTURE USE)
DNEWTa pQet FwDQES NOT EXIST WAIT

IFNZRD KhL3a «IFNOEF KL8ALCT «
KLUDE KLBA=1/3"200
KLSACTa T4@QuKl|jO>>

TEWFLGY 35 #TASK SW INHIBIY FLAG IN FIELD @
TOOLw 36 /LOW ORDER YIME QF DAY 1IN FIELD 2
TOOHw 17 /HIGH ORDER TIME OF DAY IN FIELD @
DATEw 42 /DATE IN D88 FORMAT IN FIELD @
MCREFe 43 FMCR START EVENT FLAG IN FIELD @

B-6

DEMONSTRATION PROGRAM

JSOME USEFUL EQUATES FOR TTYY AND LPT MESBAGES?

NOPACK=4RER
NOCRLFs2a¢e
INDuiRRd
NOLINE®mQRY
ASSGNu2DE
KLBALINES1D®

wist 1
IFOEF CLOCK
ALIST L&TFLG

FTEAT IS NOT PACKED IN &=BIY

JOUTPUT SMOULD NOT BE FOLLDWED BY CR/LF
JOUTTXT PTS YO FIRST wORD OF TEXT
FINPUT 18 IN CHARACTER MODE

/ASSIGNS DEVICE

/USED TO SFECIFY A LINE OF A Kidk

[

SOME ULSEFUL EQUATES FQOR STANDARD LLOCK MESSAGEST

MARKTIMES
SCHEDULED
TINGUTE
PERIQOICALLY=

CANCELS
XLIET 1>

¥LIST 1
LFDEF TASK
A 18T

2 FPOST EVENT FLAG AFTER SPECIFIEU INTERVAL

1080 FRUN TASK AFTER SPECIFIED INTERVAL

2a8a JOERAIL TASK AFTER SPECIFIED INTERVaL

fRRY fUSED A% MODIFIER TO *SCHEDULE’
/HE=QUEUES RUN REQUEST AFTER SPECIFIED INTERVAL
FEWGe *SCHEDULE FOO PERIQDICALLY®

Toek /DELETE ALL REGUESTS FROM SPECIFIED TASK FROM QUEUE

/FORCE LISTING GFF
]

FTASK TABLE SETUP = “TASKY, "CUR™,"INIWT", ANC "START"
/MUST BE DEFINED BY TASKS

IFNDEF INIwT

IFNDEF INIwWTZ2
IFNQEF INIWT3
sTASK=2+MSGTBL
IBLOCK &
*TASK"4+TBTARL
CURXIP+CUR
START

[}

XL I8T: IFPDEF
XL18T

YERS

xLlar >
XLIAY
sTAhSK«TFTARL
INIW?

XLIST

»

I1FDEF TASK2
XLIST
ATASK2™2+MBGTHL
IBLOCK Z
WTASK2 e TSTABL
CUR2X1B+CURE
STARTE

]

XLIST) IFDEF
¥LIST

YERZZ

XLIST »
XLIST
*TASKESTFTABL
INIWTR2

XLIST

»

IFREF TASKS
NL_IST
CTASKIT24+MSLTHL
ZBHLOCK @
*TASKI“4+TATABL
CURIXLO+CURS
BYARTY

[}

XLIST) IFOEF
XLIST

YERS3

X187 >
XLIST
*TAIKI+TFTABL
INJHTS

X137

13

CINIWTER>

<ININTEZsD>»

<ININTSeR>

/MESSAGE BUFFER IMITIALLY CLEAR
FINLTIAL FLABS

FINITIAL AL @
YERS <

ZINITIAL MG

/MESSAGE BUFFER INITIALLY CLEAA
FINITIAL FiLAGS2

ZINITLAL AC B
VERSE <

FINLTLIAL MG

SHESSAGE BUFFER INITIALLY CLEAR
FINITIAL FLAGS3

FINITIAL AT @
VERS3 <

ZINITIAL MQ

DEMCNSTRATION PROGRAM

IFDEF TASK <
LEDEF PARTND «
iLIsT

/RESIDENCY TABLE (RESTBL) EMTRY!
ZINITIALIZED FOR MONRESIDENT TASKS GNLY

4TASKeSHAPPER=1%2+REATHL
PARTNO 4ePARTBL+CPABLESCPABLE+NRITE

uLIY
IFNREF SWAPPER <HOSWAP, ERROR_ > /SWAPPER MISSING
IFNIRO TASKeSWAPPERS4PED <SWPRID, [ERROR_»/NONeRESIDENT TASK

/HAS PRIURITY HIGHER THAN SWAPPER
»»

IFOEF PARTNO <
IFNDEF TASK “hOTASK, ERRQR, > /PARTITION BUT NO TASK

IFNQEF SwaPPER <NOSWAP, ERROA » /PARTITION BUT NO SWAPPER

IFNDEF PARTNS <NOPART, ,ERROR, > /MISSING PARTITIONS

IFZERD PARTND+PARTNSE4ORR «PRTERR, _ERROR » FPARTND ,GE,PARTNS
>

XLIAT [}

8.2 NONRESIDENT TASK LISTINGS

The following are listings of nonresident tasks (NR2C and NR22)}:

8.2.1 WNonresident Task NR20

TASKR2D
G228 TASKE20
9020 TASKa2p
2400 START=40Q
eant WRITE=}
veal CPABLE®]
2010 CUR®{D
S@pR INIWTSRUNNT*NONRWT
aepa PARTNO=D
eapl FIELD CURX1®
ga4pd wd@

10402 4020 CAL

10401 4011 SENDW+FREE

10492 popl CLOCK

10403 Q829 SLPMSG

18404 4020 CAL

19405 4911 SENDW+FREE

104046 QD@3 LPT

12487 0806 LPTMSG

12410 S2pe JMP START
Qbpe »620

16609 09028 SLPMSG, ZIBLOCK 3

10603 poga 2

12624 2200 dFSHERTZ

10685 @20p1}

12606 QP2 LPTMSG, ZBHLOCK 3

18611 Qeeo 2

igéle oa@oee 2

10613 2421 TEXT /TASK 22 RUNNING/

1064 2313

12615 4ps2

10616 BRYY

10617 22gs

18623 1618

10821 1116

12622 0O7ed

DEMONSTRATION PROGRAM

8.2.2 HNonresident Task NR22

TASK=Z22
@@z2e TASKSs2e
pgee TASK=2¢
va2Q START=42Q
P0g! WRITEw]
Rl CPABLEs}
ggie CURS1R
5022 INIWTARUNKRT+NONRWT
pepd PARTNO®Q
20214 FIELD CUR%1Q
ddpe * 4B

[R498 4220 CAL

10401 4011 SENOW+FREE

1482 0031 CLOCK

104038 Pe32 SLPMSG

12404 4¢P CAL

10405 4213 SENDw+FREE

10406 2203 LPT

104087 0636 LPTMSG

10412 Se2p@ JMP START
2630 «&32

10639 02@R SLPM5G, ZBLOCK 3

12633 Q020 d

18634 9220 BISHERTZ

10635 @ogl

La636 QQed LPYMIG, ZBLOCK 3

10641 Q2002 e

igd42 doa@a 2

1P643 2d4pi TEXT /TASK 22 RUNNING/

10b4u 2313

10645 de2

19646 6240

18647 2225

12650 i6ib

12651 1116

10652 d7@a

DEMONSTRATION PROGRAM

8.3 ASSEMBLY BAND LOAD PROCEDURE

The assembly and load procedure for the demonstration program 1is as
follows:

+FAL RTS8CFARAMYRTSES
ERRORS DETECTERD O
LINKS GENERATED: ¢

LPAL CLOCKIPARAM CILOCK
ERRORS NETECTED: &
LINKSG GENERATED: ¢

+FAL MCRIFARAM s MUK
ERRGRS NETECTED! ¢
LINKS GENERATEDR?! ¢

Fal OSBEURPFARAM 0S8SUF
ERRORS DRETECTEN: ©
LINKS GENERATED: ©

fFal. TTYSFARAM TTY
ERRORS DETECTEDD 0
LINKS GENERATEDD ¢

Fal LPTFARAM LPT
ERRORS NETECTERS 0
LINKS GENERATEL? 0

»FAL REKAESFARAM y RRKBE
ERRORS DETECTEN? o
LINKS BENERATER: 0

fFAL NRIOCFARAM NR2O
ERROAS DETECTENG
LINKS GENERATED: 0

fPAL NRZZCFARAOM y NR22
ERRORS DETECTEDY o
LINKE GENERATEND O

LPAL SWAPSPARAM Y SWAP
ERRDRS RETECTER:T 0O
LINKS GENERATED! O

R ABSLIR
¥NRI0%
+SA BYS NRZO 1040010877

+R ARSLDR
ANR2ZS
50 BYS NR22 1040010577

+R ABSLIR

¥RTESG»MOCR CLOCKyRKBE TTY o L.F'T » DSBSUR
KEWAF NRZ20OYNR22S

+38 BYS RTSHVZ

This example shows the assembly of the parameter file and the source
task itself. The binaries of each nonresident task are then loaded
into memory, and their nonresident portions saved on the swap device.
&411 tasks are then loaded using the ABSLDR with the RTS/8 Executive
being loaded first. Finally, the core image of all the tasks in
memory is saved using the 0S/8 SAVE command.

8-10

DEMONSTRATION PROGRAM

8.4 NONRESIDENT TASK ASSIGNMENT AND EXECUTION

The following is the execution of RTS/8 showing the assignment of
tasks NR20 and NR22 to the system.

B RTHBV2

¥NR20=20
KNR22=22
KEGY

01 CLCK 0
02 TTY ™
63 LEPT M
04 MCR

07 HRKE8 ™
15 0S8F M
16 SWaF R
20 R N
22 RN
23 058 K
FRE 20O

FRE 22

FEXIT

+*

In the above example, the user terminates the installation of
nonresident tasks with an ALTMODE, and returns to the MCR. A S¥stat
command is executed which prints a system status report ({see Section
6.2.9). The REquest command is then used to run tasks NR2(Q and NR22.
Shown below is output from tasks NR20 and NR22 on the line printer.

TASK 2@ RUNNING
TABK 20 RUNNING
TASK 22 RUNNING
TASK 20 RUNNING
TASK 28 RUNNING
TASK 20 RUNNING
TASK 22 RUNNING
TASK 2@ RUNNING

The EXIT command is typed to terminate RTS/8 execution and return to
the 08/8 monitor.

CHAPTER 9

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

9,1 PERFORMING A RESCHEDULE

9.1.1 Writing Delicate Code

Frequently, a task needs to manipulate data in another task or a
common area. Since tasks are running 'simultaneously', problems will
arise if two tasks want to access the same data at the same time.
Consequently, delicate code wants to run with interrupts disabled
while accessing data in another task.

NOTE

Interrupts may be disabled temporarily
using either a IQF/ION pair or, on
machines with memory extension, a CIF
instruction which inhibits interrupts
until the execution of the next JMP or
JMS instruction.

For example, suppose Task A increments location COUNT cccasionally and
Task B decrements location COUNT from time to time during program
execution. The code might lock like the following:

/TASK A
LOOPA, .
X, ISZ COUNT
JMP LOOPA
COUNT, 0
/TASK B
LOOPB, .
STA
Y, TAD COUNT
2, DCA COUNT

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

L3

JMP LOOPB

If Task A increments COUNT the same number of times that Task B
decrements COUNT, it would be assumed that COUNT would be 0 at the end
of the program. However, this is not necessarily so since a race
condition can occur.

Suppose that Task A has a higher priority than Task B, and Task 2 is
waiting for an event to occur with COUNT currently containing a 6,
Task B is ready to decrement COUNT, However, an interrupt occurs
after location Y has been executed. The AC contains a % and Task B is
ready to store a 5 back into COUNT. The interrupt service routine,
noting that the event Task A was waiting for has just occurred, now
suspends Task B and resumes Task A. Task A now humps COUNT from 6 to
7, and then goes back to sleep. Task B then resumes with the AC
containing a 5 and stores a 5 into COUNT which is incorrect for proper
Program execution.

This situation is prevented from happening by disabling interrupts
around the delicate code. Either of the following twe solutions can
be employed:

Solution 1 Solution 2
/TASK B /TASK B
LOOPB, . LOOPE, .
STAa CIF CUR
I0F STA
Y, TAD COUNT Y, TAD COUNT
Z, DCA COUNT Z, DCA COUNT
I0ON
JME LOOPR JMP LOOQPB

Solution 2 (only usable on machines with memory extension) uses the
CIF instruction since it temporarily inhibits interrupts until the
next JMP or JMS instruction is executed.

9.1.2 1Inhibiting Task Switching

Although the procedure in the previous section can be used, it at
times can be very inefficient. If it is desired to perform a lot of
manipulation on data which could be accessed by other tasks, it may be
inappropriate to turn off interrupts. Inhibiting interrupts for long
periods of time could affect other portions of the system where timped
events are very important. Also, an interrupt can be lost (for
example, clock interrupts} if interrupts are turned off for a
significant amount of time.

For this case, another solution is possible. A task can inform the
RTS/8 Executive that it wants to continue te run, and that while it is
executing a certain piece of code, no other task should run even if a
task of higher priority becomes runnable. This process is known as
inhibiting task switching.

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

Task switching should be inhibited only under uwnusual circumstances
and performed with care. While task switching 1is 1inhibited,
interrupts may still occur and the interrupt service routine will get
control. However, if task switching 1is inhibited, the interrupt
cervice routine will always return control to the interrupted task
after the interrupt has been serviced even if higher priority tasks
are now runnahle.

NOTE

If the user wishes to manipulate data
which is accessed by an interrupt-level
routine, interrupts must be 1inhibited
since inhibiting task switching alone
will not be sufficient in this case.

There are two methods of inhibiting task switching which are as
follows:

Method 1: Task switching is automatically inhibited whenever a task's
PC is less than 100. Thug, delicate code could be placed in the
bottom of page 0 of any field.

Method 2: A task may inhibit task switching by zeroing location 35 in
field 0. This 1location is symbolically referred to as TSWFLG (task
switching flag) and is defined as such in the parameter file. In
either case, after the task is through with its delicate code, it may
not be sufficient for the task to reset TSWFLG to its original
value(1l}. This is due to the fact that there may be some other
higher-priority task that is entitled to run but did not run because
task switching was inhibited. The user can find this out by
interrogating location TSWFLG. If another task became runnable while
task switching was inhibited, the RTS/8 executive sets the task
switching flag to -1. When a task is ready to allow task switching
again, it must examine this flag before resetting it to 1. If it was
-1, the task returns control to the RTS/8 scheduler. This is
performed by using the RESCHD ER as follows:

CAL
RESCHD

This ER causes RTS/8 to perform a reschedule that allows the runnable
task of highest priority toc be executed. If a user does not perform a
RESCHD after re-enabling task switching, then a higher priority task
which 1is entitled to run might not run until the next interrupt
occurs., The interrupt may never occur, or if it does, it may be too
late for proper program execution,

The preferred code for inhibiting task switching for Task B which was
described previously is shown below:

/TASK B

LOOPB, .
CDF O
DCA I {TSWFLG /INHIBIT TASK SWITCHING
STA

Y, TAD COUNT

Zy pCA COUNT

ISZ I (TSWFLG /ALLOW TASK SWITCHING

9-3

ADVANCED RTS5/8 PROGRAMMING TECHNIQUES

JMP . +3 /SHOULD WE RESCHEDULE?
CAL /YES
RESCHD
CDF CUR /N0
&MP LOOPE
NOTE

Interrupt level routines should not look
at or set the TSWFLG.

A summary of TSWFLG states is shown in Table 9-1.

Table 9-1
Summary of Task Switching Flag (TSWFLG) States

TSWFLG State Value
Task switching allowed 1
Task switching inhibited 0

Tagk switching inhibited;
reschedule as soon as possible -1

9.2 EXECUTIVE REQUESTS FOR ADVANCED APPLICATIONS

9.2.1 WAITM - Waiting for Multiple Event Flags

Sometimes it is desirable to wait for a logical combination (AND or
OR) of Event Flags. Waiting for the logical AND of two Event Flags is
quite simple. The sequence:

CAL
WAITE

A /WAIT FOR EVENT FLAG A
CAL

WAITE
B /AND THEN WAIT FOR EVENT FLAG B

waits until both A and B have been POSTed.

Waiting for the logical OR of several event flags is more difficult
since there is a possible race condition between the various tests and
the interrupts (or task executions) which POST the Event Flags
involved. The key to waiting for an OR of several Event Flags
successfully is not to allow any interrupts to occur between the
testing of the first Event Flag and the placing of the task in a Wait
state if none of the flags were POSTed.

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

This is accomplished by using a special sequence of instructions and a
special RTS/8 ecall named WAITM. WAITM is defined as JMS I 25. It
must be executed with interrupts off, the Instruction Field set to 0
and the Data Field set to the current field, and it must be followed
by a word containing the blocking bit(s} to be set in the Task Flags
Table. The action of WAITM is equivalent to the action of the RTS/8
BLKARG ER except that a fast path through the RTS/8 Executive is taken
and interrupts remain off until the blocking bits are on in the Task
Flags Table.

For an example of the use of WAITM, assume that a task "TASK" wants to
test two Event Flags A and B. If A is POSTed, control should go to
locaticn ADONE; if B is POSTed control should go to 1location BDONE.
If neither is POSTed, the task must wait until one of them is POSTed.
The code to perform this function is:

TESTAB, IOF /INTERRUPTS OFF - DELICATE CODE

TAD A

SNA CLA

JMP ADONE /ADONE MUST TURN INTERRUPTS ON

TAD (4000+TASK /SET A TO "WAITING" STATE
/INDICATING

DCA A /THAT THIS TASK IS WAITING ON IT

TAD B

SNA CLA

JMP BDONE /BDONE MUST TURN INTERRUPTS ON

TAD (4000+TASK /SET B TO "WAITING" STATE
/INDICATING

DCA B /THAT THIS TASK IS WAITING ON IT

CIF 0

CDF CUR

WAITM

EFWT /BLOCK TASK ON EVENT FLAG WAIT

JMP TESTAB /WE'RE BACK - ONE OF THE TWO

/EVENT FLAGS HAS BEEN POSTED.
/GO BACK TO FIND OUT WHICH ONE

9.2.2 WAITX - Wait for Exactly This Event Flag

The WAITX ER is similar to the WAITE ER. The exception is that if the
Event Flag is not FINISHED, the task goes into EORMWT {instead of
EFWT}, and the task's PC in the TSTBL points back to the location
containing the CAL of this ER. Thus, when the task resumes execution,
it will re-execute the WAITX. If the EORMWT bit was cleared for some
reason other than the Posting of the Event Flag in gquestion, the task
will immediately go back into EORMWT.

Consequently, control will never flow past this ER unless the Event
Flag specified is actually posted (see discussion of DERAIL, Section
9,2.3). If a WAITE had been used and 1if the task was waiting on
multiple Event Flags (which can happen using WAITM), then control
conceivably could start up after the WAITE ER because some other Event
Flag, and one that is no longer cared about, was posted. This
situation can not occur with a WAITX.

9.2.3 DERAIL - Derail a Task's Execution

The DERAIL ER modifies the execution of a specified task and transfers
control to a special subroutine of the task to process some
exceptional condition. It does not cause any wait bits to get set or
cleared.

9-5

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

Formakt: TAD TASKNUM
CAL
DERAIL
ADDR

This ER simulates a "JMS ADDR" for the task whose number is contained
in TASKNUM (the "derailed" task). ADDR is assumed to be in the same
field in which the derailed task is executing. The derailed task's PC
(from its Task State Table entry) is stored in ADDR; the PC entry in
its Task State Table entry is then set to ADDR+1. Twoe important
points concerning the operation of the DERAIL ER are as follows:

1. The derailed task's AC, Link, and Data Field settings are not
saved by the DERAIL ER; therefore they must be saved and
restored by the derail subroutine. 1In thig sense, a derail
subroutine is very much like an interrupt at the task level.

2. The contents of the derailed task's Task Flags word are not
affected by the DERAIL ER, If the derailed task is not
runnable, the derail subroutine will not be executed until
the task becomes runnable.

The DERAIL ER is generally used by a high priority task to signal an
emergency condition to lower priority tasks. A&n example would be a
pProcess—-ceontrol environment where it is sometimes necessary to abort
all operations 4if the room temperature exceeds some critical value.
This can be checked by a task which measures room temperature every 10
seconds. It is inefficient and unmodular to include shutdown code in
this "watchdog task" for all machinety being controlled. A better
solution is to provide a location to which each equigment-controlling
task can be DERAILED in order to shut down its own piece of equipment,
The RTS/8 Power-Fail task uses the DERAIL ER to provide a similar
facility on power-fail recovery {see Section 4.5), which can be used
to reinitialize a task.

Example:

An example of a DERAIL routine is as follows:

DENTRY, 0 /DERAIL ROUTINE ENTRY POINT
DCA SAVAC /SAVE AC
RAR
DCA SAVLNK /SAVE LINK
RDF
TAD (CDF
DCA DFRESET /SAVE DATA FIELD
CDF CUR
. /HANDLE EMERGENCY CONDITION
. /BRANCH TQ 'RESUME' IF YOU WANT
. /TO RESUME WHERE YOU LEFT OFF
. /BRANCH TO 'NORESUME' IF NOT
RESUME, TAD SAVLNK /RESTORE LINK
CLL RAL
TAD SAVAC /RESTORE AC
DFRESET, HLT /RESTORE DF
JMP I DENTRY /RESUME {SAME FIELD)
NORESUME, CLA CLL
CDF COUR
JMP RESTART /RESTART TASK
SAVAC, 0
SAVLNK, 0

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

9.2.3.1 Dangers of DERAIL - A task can get into serious trouble if
it is derailed while already in a derail routine. 1If this happens,
the original PC, AC, link, etc., will be lost. There 1s no simple
solution. Turning off interrupts in the derail routine may be too
late to prevent this - the second derail could have already occurred
before the derail routine was even entered the first time.

Consequently, a user doing a DERAIL should make sure that not more
than one DERAL is done at a time. Alternatively, before doing a
DERAIL, a task can check an interlock flag (which it must maintain) to
see whether the target task has been derailed or not. The test and
set of such a flag should be performed with interrupts inhibited.

9.2.3.2 Restrictions Using DERAIL - If a task is not runnable,
derailing it will not make it runnable. If the task is in Event Flag
Wait, it will remain in Event Flag Wait until the event accurs. When
the Event Flag is POSTed, the task will wake up and begin to run in
its derail routine rather than in the mainline routine. Thus,
derailing a task to get it to perform some important job immediately
may not always work. The task might be in cne of the Wait states and
may not be able to run for some time. For example, if the task were
in Receive Wait at the time, the derail routine would not run until a
message came in for that task.

A partial solution around this restriction is to code the task to be
derailed so that it always waits on events using WAITX instead of
WAITE. Then, if the user wants to derail this task, the task is first
taken out of MSGWT or EORMWT and then derailed.

An example of the code for this situation is as follows:

TAD TASKNUM

CAL

UNBARG /URBLOCK THE TASBK

MSGWT | EORMWT /FROM MESSAGE-RELATED WAITS
TAD TASKNUM

CAL

DERAIL

DENTRY

This will work because both the RECEIVE and the WAITX Executive
Requests bump the PC back to the CAL before going into a Wait state.
Thus, no harm is done if the task is taken out of that wait state for
an incerrect reason. When the task resumes running at that peint, it
will re-execute the CAL (RECEIVE or WAITX) and go back into the Wait
state as necessary. This methed will net work if the task was in EFWT
due to a WAITE ER because the task would resume running thinking the
Event Flag had been posted when in fact it had not. A way to
circumvent this (other than WAITX) is for the task to do WAITM instead
of a WAITE, and poll the Event Flag upon waking up.

9,3 STARTING PARTITIONS AT AN ARBITRARY BOUNDARY

The advanced user can start a partition at an arbitrary boundary by
using the following assembly and loading procedure. The example given
assumes that the partition in which the user writes the nonresident
portion of the task to run is three pages long (11200-11777}). The
PAL8 pseudo-cperaters FIELD and RELOC are used, and described in
detail in the 0S5/8 handbook.

ADVANCED RTS/8 PROGRAMMING TECHNIQUES

/TASKX

FIELD 1 /SET FIELD

*1000 /LOAD THIS CODE AT 11000-11577

RELOC 1200 /BUT ASSEMBLE IT TO RUN AT 11200-11777

<CODE>

PAGE

.

<CODE>

RELOC

The assembly, load and save procedures for the code are:

.R PALS

*TASKX<PARAM.PA,TASKX. PA {(ASSEMBLY OF TASK)

.R ABSLDR

*TASKXS {LOADING OF TASK INTO 11000)

- SAVE DEV TASKX 11000-11577 (SAVING OF TASK-THREE PAGES OF

CODE})

The swapper, upon loading this task, places it into the partition at
11200, which is where it was assembled to run.

9.4 DIRECT REFERENCES TO SYSTEM TABLES

A task may directly interrogate 1locations in the RTS/8 Executive
tables to obtain informaticn about itself or any other task, as long
as the following two restrictions are observed:

1. Due to the interrupt-driven nature of the system, these table
entries may change at any time; therefore, interrupts should
be inhibited between the time these entries are tested and
the time that processing which depends on the testing is
completed. For example, testing the Message Queue Header for
a task may show no messages, but an I/0 interrupt occurring
immediately after the test might allow a higher priority task
to run. This task might send a message, invalidating the
result of the test. To prevent this, interrupts should be
turned off during and after the test.

2. System table entries may be changed only through RTS/8
Executive Requests.

Symbols have been defined in the system parameter table that permit
symbelic references to be made into these tables symbolically. The
symbolic expressions which yield the address of the system table
entries for task N are:

N+TFTABL Task Flags Table entry for task
N; if zero, task N is runnable.

N” 24MSGTBL Input Message Queue Header For
task N; if zero, task N has no
messages in its gQueue,

ADVANCED RTS/8 PROGRAMMING TECHNIQUES
N~ 4+TSTABL First word of Task State Table
Entry for task N.

N™2+RESTBL First word of Residency Table
entry for nonresident task N.

For example, for a task to determine whether it had messages 1in its
input gqueue without issuing a RECEIVE request, the code would be:

CDF 0 /EXEC TABLES IN FIELD 0
IOF /TURN INTERRUPTS OFF
TAD I (TASK”2+MSGTBL

SNA CLA /ANY MESSAGES?

JMP NONE /NO

ION /YES

The code at NONE must eventually turn interrupts back on.

APPENDIX A

RTS/8 DISTRIBUTED SOURCE FILES

The RTS/8 source files included on the distributed tape are:

File Name Task Name Task Function

PARAM.PA System parameter file with all equates blank.
Appropriate values should be inserted to create
specific parameter files.

RTS8.PA RTS/8 Executive

MCR.PA MCR Monitor Console Routine

MCR.PA null task Null task

O58SUP.PA 0S8 0S/8 Support Task

0S850P.PA QS8F 0S5/8 File Support Task

PWRF.PA PWRF Power Fail Task

CLOCK.PA CLOCK Clock Handler Task

TTY.PA TTY Terminal Driver Task

LPT.PA LET Line Printer Driver Task

DTA.PA DTA TC08 DECtape Driver Task

RK8.PA REK8 RK8 Disk Driver Task

RK8E.PA RK8 RK8E Disk Driver Task

RF(08.PA RFO8/DF32 RFO0B/DF32 Fixed-Head Disk Driver
Task

C5A.PA CSA Cassette Driver Task

CSAF, PA CSAF Cassette File Support Task

UDCICS.PA unc/ICs Universal Digital Controller/
Industrial Controller Subsystem
Handler Task

RX01RT.PA RX8A Floppy Disk Handler (1lst contrecller)
RX01RT,.PA RX8B Floppy Disk Handler (2nd controller)
RX01RT.PA RXBC Floppy Disk Handler (3rd controller)
RX01RT.PA RX8D Floppy Disk Handler (4th controller)
LTA. PA LTA LINCtape Driver Task

SWAP.PA SWAPPER Nonresident Task Swapper

NULL8A.PA NULLBA Null Task for PDP-8A

EXIT.PA EXIT Exit Task

The following table gives the approximate size and default origins
An RTS/8 memory map showing

each

component

APPENDIX B

RTS/8 COMPONENT SIZES

of the

RTS/8

system.

default memory allccation is shown in Figure B-1.

placed

anywhere
CLOCK and SWAP.

in

indicated in the tables.

The following

of

The modules may be

memory at the user's discretion except for RTSE,
Also, certain modules must be placed in field 0 where

parameters, which are used in Table B-1, are defined as
follows:
NTASKS = Number of tasks in system
CLEQLN = Number of entries in clock gqueue
MCRS5YS = 1 if MCR SYSTAT function desired, else D
MCRCLK = 1 if MCR CLOCK functions desired, else 0
KLINES = Number of physical KL8-2& lines
Any fractions from divides should be dropped.
Table B=1
RTS/8 Compocnent Sizes
Number of Pages
Software Default Required {1 page
Component Origin =128 words) Comments
RTS/8 00200 S+NTASKS/18 Must he in
Executive locations 00200~
01200. Uses page
0 locations 0=-3
and 20-47 and
auto-index
register 17.
Clock Module lst page 3+CLKQLN/22 Must be in field

New
Terminal
Module, V2
014
Terminal

Module, V1

after end of
RTS/8 Executive
{or SWAPPER)

03400

3400

0. Uses
auto-index
register 10.

{Continued on next page)

RTS/8 COMPONENT SIZES

Table B-1 (Cont.)
RTS/8 Component Sizes

Number of Pages
Software Default Reqguired (1 page
Component Origin =128 words) Comments
Line Printer 14400 1
Module
TC08 DECtape 14600 2
Module
RK8E Disk 04200 2
Module
DF32/RF0O8 04400 1
Module
LINCtape 15000 2
RK8 Disk 04200 1
Module
Power Fail 10200 1+NTASKS /32
Module
UDC Module 10600 7-11 depending Uses page 0
on table space locations 130-144
desired.
Cassette 13600 3
Module
Cassette Label | 13000 3 Reguires cassette
Support Module handler.
05/8 File 04600 if 08/8 6 Requires a mass
Support Module | support present, storage handler.
otherwise 06200! Must run in field
0.
0S/8 Support 06200%* 6 Must run in field
Task 0 - requires 8K
for 05/8 plus a
mass storage
handler. Uses
page 0 locations
164-177.
Monitor Console| 17600 minus 5+3xMCRCLEK+ Requires “"console"
Routine Task length (15200 MCRSYS + terminal handler
with all {NTASKS+40} /64. and page 0
options and locations 100-117.
no KLBA support) See Table B-2 for
more details.

'Moves down by length of KL8A support code if KL8A support present.

(Continued on next page)

RTS/8 COMPONENT SIZES

Table B-1 (Cont.)
RTS/8 Component Sizes

Number of Pages

Software Default Regquired (1l page

Component Crigin =128 words) Comments

RX01 13200 2

SWAPPER lst page after 2 Must ke in
end of RTS/8 field 0
executive

EXIT 15000 1/2 May relocate

within a page

NULL8A 13600 1

KL8A Support 17600 minus 1+KLINES+1 Must be
length 3 in field 0.

RTS/8 COMPONENT SIZES

ATS/B SYSTEM MEMORY MAP (Default Memory Allacation)

PAGES FIELD 0 FIELD 1
0
2000 - I~
TPWHF
400 [~ B
RTSB
600 [~ (20 tasks) n T
1000
= — upcics
¥
2000
- SWAP —
. =
CLOCK
3000 }
CSAF
| _ - RX01RT
TTTY,VE‘ ITTY.VI :I-NULL&A TCSA
po T
Img IJT
— RKBE B
B]}ms
k]}m
— JexiT
= - CTA
I~ osad T
8000 A
- L —
B | Large
MCR
- — Srnall
0sB5UP MCH
7000
A _tKL&ASR | £

KEY:

RT5/8 modules may vary in size and placement in mermory depending upan the chosen system configuration.
The following symbolagy has been chosen 1o show companent default allocation in memory.

Fixed Expandable Relocatable Relocatable
and Expandabte

Figure B-1 RTS/8 System Memory Map (Default Memory Allocation)

RTS/8 COMPONENT SIZES

Table B-2
MCR Component Size

If less than 34{octal) tasks

NO SYSTAT
NO CLOCK

SYSTAT
NO CLOCK

CLOCK
NO SYSTAT

SYSTAT
CLOCK

LENGTH:
DEF ORIG:
IF NONRS:
PART:

LENGTH:
ORIG:

IF NONRS:
FART

LENGTH:
ORIG:

IF NONRS:
PART:

LENGTH:
ORIG:

IF NONRS:
PART:

5 pages
6400

6200
6400-7377

6 pages
6200

6200
6400-7577

10 pages
5600
5600
6000-7577

11 pages
5400
5200
5400-7377

If 34(octal) or more tasks
LENGTH: 6 pages
ORIG: 6200
IFf NONRS: 6200
PART: 6400-7577
LENGTH: 7 pages
ORIG: 6000
IF NONRS: 5600
PART: 6000-7377
LENGTH: 11 pages
ORIG: 5400
IF NONRS: 5200
PART: 5400-7377
LENGTH: 12 pages
DEF ORIG: 5200
IF NONRS: 5200
PART: 5400-7577

APPENDIX C

RTS/8 FLOWCHARTS

This appendix contains RTS/8 flowcharts that graphically show RTS/8
system operation.

No

RTS/8 FLOWCHARTS

Calling Sequence:

p-1 TAD VAL

P CAL
iz FUNCTION CODE
pt2 ARGI
pt+3 AGR2 (or returm)
SAVE AC IN pra RETURN
Al
CARG CAL = JMS 20
Thru Corrent Field:
20 0
M CDF CUR
2 CiF O
23 CMP CALIOF (field 0)
24 DSPOST
TASK- - 75 XWAITM
SWITCHING TSWF:‘G _
ALLOWED ~1No,
N Rescan
) 1 ASAP
Yes
INHIBIT TASK.-
SWHTCHING.
CLEAR HESCAN EXECUTE
FLAG DISPATCH JUMP
THRU COMMAND
- ™ TABLE. IGNORE
FREE BIT
1oN Function
Code
! JMP I +FLINC-1
X .
SAVE CALLING 0 SEND Pe. C4
FIELD
1 XRECEIY Pg. C-11
1 2 XWAITE Pg. C-7
o
SAVE RETURN 3 *RUN Pa. C-20
ADDRESS
4 XSUSPND Pg.C-20
5 KPOST Pq. C-14
GET FUNCTION 6 XSKPINS Pg.C15
CODE
7 XDERAL Pg. C-16
) 10 XBLKARG Py C-13
SAVE 1 XSENDW Pg.C4
COMMAND
12 XUNBARG Py C.12
W 13 XTSTOP Py. C:8
SW designates an operation that is parformed
anly when using nonresident operalions, 14 XWAITX Pg. C.7

EAE designates an operation that is perfarmed
only when the Extended Arithmelic Elemant
i3 used.

Cannot
Mappen

TSWFLG=1

RTS/8 FLOWCHBARTS

SET UF
RETURMN FIELD

e

TSWFLG- 1
TASKSWITCHING
NEEDS RESCAN
?

KEEP TASK-

SWITCHING
IMHIBITED

TSWFLG=0
Mo

ALLOW TASK-
SWITCHING
JRP 120
RETURN TO
CALLING TASK

Pg. C-B

SEND
SENDW

RTS5/8 FLOWCHARTS

Calling Sequence:

SET CLEAR 0 CAL
WAIT FLAG WAIT FLAG ptl SEND (W
ptd TASK = (Sending tot
pi3 MSGADR
* P~4 RETURN
GET TASK
NUMBER TO
SEND MSG TO
Initial Values Becr'lmes
o MSGADR, 0000 Sending Task =
P+l 0000 CDF to nex:
msg. i¥ any
GET MESS5AGE
ADDRESS P2 0000 Addr of next
Tsg (i noneg}
pel Start af Message
MESSAGE
Yes ALREFADY IN QUEUE
[FIRST WORD OF MESSAGE
=0)
H
MNo
BACKUP RETUKN
TOYCAL
ADDRESS
BUMP RETURN
O
CAL+4
y
A
MESSAGE FIND RECEIY-
ADDRESS NG TASK =5
ENTRY IN
MSGTEL
i
Pg.C.7 GET DATA
FIELD QF ADDTOOQ Pg. C.8
MESSAGE

RTS/8 FLOWCHARTS

ADDTOG

GET FIRST
QUEUE WORD
{CDF TO NEXT}

ENDGFO

CLDF INTO
NEXT
MESSAGE

1S

SENDING TASK

NUMBER LESS THAN TASK

NUMBER IN THIS

QUEUE MSG
?

™ Yeg

PUT CDF TO
MSG AND PC OF
MSG INTO
QUEVE WORDS

GET TASK 2
TO SEND
MESSAGE TO

1o page C-6

FIND NEXT
MESSAGE IN
OUEUE

ADDTOQ

Pg. C-8

oo

I DC O - Z

e r

= —

moQo0 “mi=T4d

Link indicates whethar
a new task should be
U or not.

Trg ik status will be
checked later on :n
POSTEX.

RTS/8 FLOWCHARTS

| trom page C-5 '

1

FREF MSG WAIT
AND/OR EVENT
WAIT BITS 1M

STATUS TABLE

|

L-1IF RECEIY-
ING TASK 15
RUNNABLE & OF
HIGHER PRICRITY
THAMN SENDER;
L-0IF NOT

|

STORE SENDING
TASK NLUMBER
IN MSG HEADER

F

STORECDF TO
MEXT M5G IN
MEGHDR

[

STORE PC OF
MNEXT MSG (N
MSGHDOR

¥ia cafl 1o FREEY

This will be tested |f
this CAL wiis a SEND and

not 3 SENDWY.
=01f none
-0 f nane Message is now
linked into the
Message queus
Mer

Pg. C-12

Pg.C4

RTS/8 FLOWCHARTS

WAITE
WAITX

Calling Sequence
CLEAR SET ACARG
ACARG TGO -1 B CAL
ntl WAITE
p+2 EWENT FLAG ADDR
p+t3 RETURN
Erter Here From GET ADDRESS
SEND or SENCW OF EVENT
FLAG
WaITSs -
SAVE ADDRESS
ACARG+ -1 OF EVENT FLAG
I
10F
Yes Restart caller if
TASKSW allows
Pq. C-3
N
EVTFLG -
4000 + TASK NO Give it waiting status
3
PUSH PC BACK
TOPOINT
TO CAL
Srore Event Flag Wait
AC=EFWT in Flag Table
AC-EORMWT
Jump with [ink clear
! [tested at TSTOP)
Pg.C-B
TSWAIT Pg. C-B

RTS/8 FLOWCHARTS

Wart for message,
Enter here from RECEIVE.

BACKUP
CALLING PC
TO DO CALX
AGAIN

SET LINK

AC = MISGWT Message Wait Status

SAVE AC
IN MASK

TSWATX
y

STORE IN
TASK =%
FLAG TABLE
ENTRY

Interrupts were off here
i we came from XWAITE.

CLEAR TASK AC

SAVE AC IN
ACARG

GET TASK
NUMBER'S
ENTRY IN
STATUS TABLE

to page C-9

RTS/8 FLOWCHARTS

‘ from page C-8 I

SAVE RESTART
FLAGS, FC, AC

SAVE MO}

EAE
i

FREE PARTITION

IN FREE B1T
WAS SET IM
COMMAND
W FINDJ RTS8 Scheduler
L
Schedule next
runnable task TASK #=1
{start scan
fram topl
ENABLE

TASKSWITCHING

Y

SET 'MACHINE
STATUS UNIM-
PORTANT'
FLAG

L

FIND.IL 1

GET TASK #7
ENTRY IN
FLAG TAELE

Interrupts tempararily
inhibited here,

FLAGS=0

{RUNNABLE] Pg. C-10
H

Note no end of table
check - there must be

a runnable task, (Null
task is always runnahble.)

BUMP TASK
NUMBER

RTS/8 FLOWCHARTS

Here from FINDY (Scheduler)
Found a runnable task

10N

i

GET TASK =75
ENTRY IN
STATUS TABLE

10JF

SAVE QLD
STATUS IN TEMP
LOCS OF INTER
RUPT ROUTINE

Interrupt
Dismiss DISWIS
Code

This is tested on an
8/E or 8/A only

PENDING

INTERRUPTS Pg.C17

SWEEPOLD
STATUS INTO
DF,IF, AC, PC,
ETC,

RESTORE MQ

EALE

10N

IMFP 1 D
RETURN FROM
INTERRUPT

RTS/8 FLOWCHARTS

1

GET ENTRY
IM MESSAGE
OUEVE

GET FIRST
WORD OF
QUELIF ENTRY

ADVANCE TO
MEXT MERSAGE
OMN THE QUEVE

SENDING
TASK OF MSG
- ARG
?

Mo

Calling Sequcnde:

a1 TAD ARG
P CAL

p+l RECEIY
P2 MADDR, 0
pt3 RETLUIRN

RECEIV

Py C8

LN INE THIS
MESSAGE FROM
THE QUEUE

STORE ADQDR OF
MESSAGE N
CAL+2

AL = CDF
TO MESSAGE

FXRET Pg.C3

UNBARG

RTS/8 FLOWCHARTS

GET BIT MASK
FROM ARG,
LIST

]

CLEAR MASK
BITS IN FLAG
TABLE

Call FREEJ

L=1 frlearing mask
bits makes task
runnable and it is
higher prigrity; L-0
atherwse,

Fg. C-3

BLOK

RTS/8 FLOWCHARTS

XBLKARG

GET WAIT BITS
FROM ARG.
LIST

CALLING
TASK TO BE BLOCKED
(TASK #=0)
?

SET MASK BITS
IN FLAG TABLE
ENTRY OF SPEC-
IFIED TASK

Pg C-3

p- 1

p+1
pt2
pt3

TAD TASK=
CAL
BLKARG
WAITBITS
RETURN

BLKARG

POST

RTS8/8 FLOWCHARTS

SAVE ORIGINAL
EVENT FLAG

i

CLEAR EVENT
FLAG

WAS
SOMEQNE
WAITING FOR THIS T
HAPPEN {OLD FLAG
MEGATIVE!

GET WAITING
TASK'S = FROM
LOW ORDER BITS
OF THE QLD
FLAG

[

CLEAR BOTH
EVENT FLAG
WAIT AND
EVENT OR MSG
WAIT

Calling Sequence;

n=1
P

ptt
pi2
ptd

Fg. C-12

TAD EFPTR

CAL

POST

ECDF, CDF EFFLD
RETURN

Pqg C-3

RTS/8 FLOWCHARTS

SKPINS

Calling Sequence:

p CAL

pel SKPINS

ptl MODULE ADDR
pt3 RETURN

GET FIRST
MODULE WORD

No ALREADY IN
THE SKIP
CHA NI

PUT DISMIS
ROUTINE ADDR Py. C-3
IN 15t WORD

1

PUT COF, CIF
QF GISMIS 1IN
2nd WORD

PUT MODULE
ADDRESS AND
CDF, CIF IN
LAST MOMULE
OF INTERRUPT
SKIP CHAIN

Py.C-3

DERAIL

RTS/8 FLOWCHARTS

GET TASK &%

STATUS TABLE p—1

POINTER p
Pt
p+2

] pt+3

STORE

RESTART PC

IN SLIBR

STORF. SUBR+1
IN RESTART
PC

Pg. C-3

Calling Sequence:

TAD TASK#
CAL

DERAIL
SUBROUTINE
RETURN

RTS/8 FLOWCHARTS

INTERRUPT
AOUTINE

TIME-

GO TO

SHARING 05/3 1t present
INTERRUPT SUPFORT

?
SAVE THE
MACHINE
STATUS

USERSK

USER-INSERTED
SKIPS FOR ANY SFETRL;BL_E%{J
CRUCIAL DEVICES w AL BEe ART

GO TO

APPROPRIATE ‘NT:;%PT HALT \
INTERRUPT , \
MODULE - }

POWER-UP
RESTART

POWER
FAILURE

AC = POWER UP
EVENT FLAG
ADDRESS

GOTO
CLOCK
HAMDLER

Py. C-18

If present

GO TO FIRST
USER INTER-
RUPT MODULE

POSTDS

Run the waiting task il
its flag word 15 now zerp
and it 15 higher priority
than the current user.

RTS/8 FLOWCHARTS

SAVE THE OLD
EVENT FLAG
VALUE

ZERD EVENT
FLAG

WAS &

TASK WAITING
ON THIS FLAG? (OLD
VALUE NEGATIVE?)

CLEAR EVENT
FLAG AND EVENT
OR MESSAGE
WAIT BITS IN
TABLE ENTRY

OF WAIT TASK

RUN
WAITING
TASK
?

Come here from user
13suing POSTDS

TAD EFPTR
CIFD
POSTOS

-3 COF EFFLD
1

T oD

Call FREEY

Pg. C10

Py C10

RTS/8

from page C-18

FLOWCHARTS

TASK
SWITCHING
INHIBITED

SET RESCAN
FLAG
CTEWFLG - —1

15

SAVE STATE

FLAG -1
2

SAVE CURRENT
TASK'S PC, AC
INITS STATUS
TABLE ENTRY

SAVE
TASK'S MC

EAE

10N

PREPARE TC
START NEW
TASK

START.

Start Swapper

Fg. 10

Pg. -9

RUN

-0

RTS/8 FLOWCHARTS

AT = RUNWT

SUSPND

sONOs

Pg. C-12

Rum Wait

Go and set
the flag bits

AL = AUNWT

‘

Pg. C-13

Calling Sequence:

o
P

n+1
p+d

TAD TASK=
Cal

RUN
RETURN

Catling Sequence:

p—1
p

ptl
pti

TAD TASK=
CAL
SUSPND
RETURMN

RTS/8 FLOWCHARTS

XWAITM

SAVE AC

TN "CORMMARND"

SW

CLEAR AC. L

FAKE A CAL

DISABLE
Task
SWITCHING

PUT WAIT
BITS IN &C

TSWAIT

Py. C-8

WAITM

RT8/8 FLOWCHARTS

RTS/BSCHEDULER
FINDJ FIND A TASK TO RUN

ENABLE
TASK
SWITCHING

i

GETSETTO
EXAMINE
FIRST TASK

ZERD SAVE
STATE FLAG

10N

L

BUMP TQ
NEXT TASK

|OF

GET
TASK FLAGS

BLOCKING

BITS OTHER THAN

HRWT
?

CONTINUE
NEXT FAGE

RTS5/8 FLOWCHARTS

FROM
PREVIQUS PAGE

1S
TASK
RESIDENT

STARTS

Start task

PUT TASK
INTO SWPWT

5w

TAKE SWAPFPER
OUT OF RUNWT

SW

FIND.I

APPENDIX D

RT5/8 ASSEMBLY ERROR MESSAGES

Certain user errors are caught at assembly time. They produce
standard PALS8 error diagnestics on the terminal of the form

IC

US tag
IC

where the tag specified indicates the type of error as described
below,

Tag Module Possible Error

MCRBLK MCR.PA MCR was declared nonresident (MCRPRT
defined) and MCR origin was incorrectly
a multiple of 400, HNonresident portion
of MCR 1is second page which must start
on a block boundary.

Fix: Redefine MCRORG.

SYSERR several System error; should not occur unless
user medified RTS/8 sources.

Fix: See comments on source line
which generated the error.

TBLERR RTS8.PA& Internal Executive tables were generated
incorrectly. See source.

CURBIG FARAM. PA User task specified a value for CUR
which was larger than HGHFLD.

Fix: Redefine CUR.
RATERR CLOCK.PA HERTZ is not a multiple of SHERTZ.

Fix: Redefine HERTZ or SHERTZ in
parameter file.

TODERR CLOCK.PFA SHERTZ is too large. SHERTZ must be
less than 192 (decimal).

Fix: Redefine SHERTZ in
parameter file.

Tag

NORLS8A

KLOERR.

HITMON.

NOSWAP

SWPRIO

FLDERR

CURERR

RTS/8 ASSEMBLY ERROR MESSAGES

Module

KLBASR.PA

KLBASR.PA

KLBASR. PA

PARAM. PA

PARAM.PA

PARAM. PA

PARAM. PA

Possible Error

The symbol KL8A was not defined in the
parameter file.

Fix: Set symbol KLBA in parameter file
equal to number of physical
KL8-A's present.

The symbol KL8BA was set equal to 0 vet
the file KLBASR.PA was assembled.

Fix: Do not assemble KLBASR.PA if KLB-A
support is not desired or redefine
KL8A in the parameter file.

The KL8~A service overlaid location 7600
in field 0. Ignore this error if you do
not want to preserve 0S/8 resident code.

Fix: Redefine KLBACT in parameter file.

A nonresident task was assembled in a
system with no swapper.

Fix: Define SWAPPER in parameter file
or undefine PARTNC in user task.

& nonresident task was given higher
priority than the swapper.

Fix: Change priority of swapper or user
task.

Some parameter representing a field
number times 10 was not in the correct
form {e.g. HGHFLD, MCRFLD, etc.)

Fix: Correct wvalue of parameter in
parameter file,

One of the symbols CUR, CUR2, or CUR3
was not of the proper form.

Fix: Correct value in user task to 10
times field of task.

APPENDIX E

EXECUTIVE INTERNAL TASK TABLES

The Executive uses five internal tables to maintain information about
the tasks in the system. Each task's task number is used as an index
into the first four tables to retrieve and update information for that
task. The internal tables are as follows:

1. The Task State Table (TSTABL) - contains 4-word entries
holding the most recent contents of CPU registers for each
task as follows:

Word 1 - contains the link (bit Q)
the Greater Than Flag (bit 1) =if flag
exists on machine being used
the User Mode Flag (bit 5) =if flag
exists on machine being used
the Instruction Field {(bits 6-8)
the Data Field (bits 9-11)
Word 2 - contains the contents of the Program Counter
{FC)
Word 3 - contains the contents of the Accumulator {AC)
Word 4 - contains the contents of the Multiplier

Quotient (MQ) register 1if the system has been
assembled to save the MQ.

Whenever the system executes a task, it loads the contents of
the task's Task State Table entries into the corresponding
CPU registers. Whenever a task stops executing, its Task
State Table entries are set to the new contents of these
registers, The Task State Table is located after the Message
Table, that Is, at location NTASKS+2" 24+MSGTBL-4 in field D.

Example:
Consider the following TSTABL entries for a task.

4012
3376
1234
0211

The task is interrupted just as it is about to execute the
instruction at location 3376 {entry 2) of field 1 (bits 6-8
of entry 1}. At this point, the contents of the CPU
registers for this task are entered in the TSTABL. The AC is
1234 (entry 3), and the MQ is 0211 (entry 4}. The 1link is

set (bit 0 of entry 1), and the data field is 2 (bits 9-11 of
entry 1).

Qcta

4000

2000

1000

0400

0200

0100

go40

0020

0olo

000l

0Qo0

EXECUTIVE INTERNAL TASK TABLES

The Task Flags Table (TFTABL) - contains 1l-word entries
holding various flags {bits) for each task to determine
whether the task is runnable, A task is runnable only if its
Task Flags Table entry contains zero. Each flag (bit} which
is set in a nonzero word indicates a reason why the task
cannet run. The currently defined flags, if set, and their
meanings are as follows:

1 Symbolic Meaning

NONRWT Nonresident Wait - This task cannot run
because it is not in memory.

EFWT Event Flag Wait - This task is waiting for an
Event Flag (which contains a WAITING value
corresponding to this task) to be POSTed.

RUNWT Run Wait - This task is waiting for a RUN ER
tc be executed with its number in the AC, or
for the operator to type "REguest task" to
the Menitor Console Routine {see Chapter 6).

SWPWT Swap Wait - This task cannot run because it
is in the process of being brtought into
memory.

EORMWT Event or Message Wait - This task is waiting

for an Event Flag to be set or a message to
arrive, whichever happens first.

USERWT User Wait = This bit is reserved for use by
user~-written tasks. RTS3/8 does not use this
bit.

ENABWT Enakle Wait - This task is waiting to be

Enabled. Use of this bit is restricted to
the Monitor Console Routine for the ™ENable
task™ and "DIsable task" c¢ommands. {See
Chapter 6).

MSGWT Message Wait - This task 1is waiting to be
sent a message.

NETWT Reserved for future use.

DNEWT Does Not Exist Wait - This task c¢annot run

because it is nonexistent.
- Task is runnable.

The Task Flags Table is located after the Task State Table,
that is, at location NTASKS+2"4+TSTABL-1 in field 0.

Examples:
1. TIf the TFTABL entry for a task is
1000

the task is waiting to run.

EXECUTIVE INTERNAL TASK TABLES

2. TIf the TFTABL entry for a task is
0440

the task was disabled from running by the operator at the
MCR terminal while the nonresident portion of the task
was walting to be swapped in.

3. If the TFTABL for a task is
0gooQ

the task is runnable. However, this task wmay not run if
a task of higher priority has precedence.

The Task Input Message Queue Header Table (MSGTBL) - contains
2=wor@ entries that represent the "head" (start) of the input
messaje qgueue for each task:

Word 1 ~ if zero, there are no messages in the queue;
if non-zero, the word is a CDF to the field of
the first message in the gueue.

wWord 2 - if word 1 was not zero, this word is a pointer
to the address of the first message in the
queue.

The Message Table is 1located at the end of the RTS/8
Executive in field 0.

Example:

Consider the following MSGTBL entries for a task.

6211
2044

Since the first entry is a nonzero, there are messages in the
input gueue waiting for this task to receive them. The first
entry is & CDF instruction to field 1. The second entry is a
peinter indicating that the first message begins at location
2044 in field 1,

The Residency Table ({RESTBL) - contains Z2-word entries for
each nonresident task.

Word 1 - contains a pointer to the task's Partition
Table entry in bits 0 through 9. Bit 10 is set
if a task is checkpointable, and bit 11 is set
if a task 1is writeable. Checkpointable and
writeable tasks are defined in Section 5.1.

Werd 2 - contains the absolute block address (plus 1 to
allow for the core control block) of the task's
core image on the swap device.

The Residency Table is located after the Task Flags Table,
that is, at location TFTABL+NTASKS+2 in field Q.

EXECUTIVE INTERNAL TASK TABLES

Example:

Consider the following RESTBL entries for a task.

161l
0124

This task has a nonresident portion. The 4-word partition
table entry used by this task begins at location 1610. The
task is not checkpointable (bit 10 of entry 1 is a 0), but it
is writeable (bit 11 of entry 1 is a 1).

The disk-resident portion of this task begins at block 124 on
the swap device. (The save image begins at block 123.)

5. The Partition Table (PARTBL) =~ contains a 4-word entry for
each partition. It is indexed into via a partition number.

Word 1 - contains the length (size) in bits 1-5 and
field (bits 6-8}) argument of the mass storage
device driver call that reads an cccupant into
the partition with the "WRITE" bit set. Bit 11
of this word is the partition busy flag.

Word 2

[

contains the memory address of the partition.

Word 3

contains a pointer to word 1 of the occupant's
RESTBL entry.

Word 4 - unused

The Partition Table must begin at an address that is a
multiple of four. It is located after the Residency Table,
i.e., at location NTASKS-SWAPPER" 2+RESTEL+3&7774 in field 0.

Example:

Consider the following PARTBL entries for a particular
partition.

5421
1400
1553
0000

This partition is currently in use (bit 1l of entry 1 is a 1)
by a task whose 2-word RESTBL entry begins at location 1553
(entry 3). The partition begins at location 1400 (entry 2)
of field 2 (bits 6-8 of entry 1). The partition is 14
(octal} pages long (bits 1-5 of entry 1l}.

Figure E-1 summarizes the internal task table structure of the
Executive. The Residency Table and Partition Table are optional in
that they are used only when nonresident tasks are employed. The
exact location of these tables in memory depends on the number of
tasks and other parameters in the parameter file. They can be found
for a particular assembly under the "System Locations:" heading at the
end of the parameter file assembly listing.

Word 1

Word 2

Word 2

Word 4

TASK 5TATE
TABLE (TSTABL)

TASK FLAGS
TABLE (TFTABL)

TASK INPUT YESSAGE
QUEUE HEADER (MSGTEL)

RESIDENCY
TABLE IRFSTRELI]

PARTITION
TABLE (PARTEBLY

Instruction Drata
Field Fie d

Link GT UM {IF) {DF)
1] 1 5 68 g1

Bits determine if task is
runnable

W zero, no messages n aueue, if
nanzero, word is COF o the field
of First message

Contains pointer 1o task PARTEL
entry i it 09 it 10 check-
pomtable; bit 11 - writeable

Cantains the Length {size] and
Field argument ibits 1-8l of the
mass storage device driver call
thal reads occupant nto partiteon
with "write' bit set (bit O}

Coments of Program
Counter [PL)

Contents ol Accumulator
{ALC)

Contents of Multiplier
Quotient {MQ)

& Upon task execution, TSTABL
loaded into carresponding CPU
registers

« LIpon task intarruntion, TSTABL
entry set 10 new contents of CPU
registers

» Task runnabls if entry
COonta ns zero

Figure E-1

If nonzero, this word is pointer
ta the first message in the queue

Block address plus 1 of the task’s
core image on swap device

Contzins starting sddress of
the partition

« Represents the "head”” of the
input message queue for each
task

e Bir 10 of word 1isser f rask
checkpointable

&« Bt 11 of word 1is ser f rask
writable

Executive Internal Task Table Structure

Containg pamter to word 1 of
the accupant’s RESTBL entry

Unused

= Bit 015 always set {write)

s Bit 11 of word 1 is the
partition memory flag

SHT19VL ASVI TYNYILNI IJAILNIIXT

Accumulator

Analog

Analcg Channel

Argument

Assembler

Auto-index register

Auto-restart

Baud

Bit

Bit Map

Block

Block Gap

Blocking Bits

Byte

Cassette

GLOSSARY

The register in which the arithmetic
operations are performed (abbreviated AC).

Representation of information by continuvous
variables.

An UDC/ICS functional device.

A variable or constant which is given in the
call of a subroutine as information to it; a
variable upon whose value the wvalue of 2
function depends; the known reference factor
necessary to find an item in a table or arvay
{i.e. the index).

A program which translates symbolic op-codes
into machine language and assigns memory
locations for variables and constants,

Whenever one of the absclute locations fronm
0010 through 0017 in any memory field is
addressed indirectly, the contents of that
location 1is incremented by one, rewritten in
the same location, and used as the effective
address of the current instruction.

The ability to start the CPU automatically on
power-up.

A unit of measure of data flow (one bit per
second} .

A binary digit {each PDP-8 word 1is composed
of 12 bits).

A method of keeping track of used and unused
entities by assigning one bit in a table to
each entity.

.Y set of consecutive wachine words,
characters or digits handled as a unit,
particularly with reference to 1input and
output; an 0S5/8 block is 400 octal
contiguous words; also te inhibit a process
from continuing.

The blank space between blocks on a recording
medium.

Bits in an RTS/8 Monitor Table which specify
why a given task is blocked.

2 group of binary digits usually operated
upon as a unit.

A magnetic tape device used for program and
data storage,

Glossary-1l

Central Processing Unit

Checkpointable Task

Clear

Clock

Communication Region

Compute Bound

Configuration

Contact Channel

Contiguous

Controller

Core Image File

Core Storage

Counter Channel

CPU Registers

Data

Data Field

Debug

The unit of a computing system that includes
the circuits controlling the interpretation
and execution of instructions (abbreviated
Cr).

A task is checkpointable if it may be swapped
out of memory automatically, without its
consent, to make room for higher priority
tasks.

To erase the contents of a storage location
by replacing the contents, normally with
Zercs,

A time keeping or measuring device within the
computer system; provides periodic
interrupts.

Locations 20-27 of every field, used to
simplify passing executive request across
field boundaries.

Requiring extensive (or total) use of the CPU
relative to other hardware elements {such as
I1/0 devices).

The number and types of hardware present on a
system.

A UDC/ICS functional device.

Code which resides in memory immediately
adjacent to other sections of code.

The circuitry that controls a device.

A file 1in core image format (i.e., a
‘picture' of core); also known as SAVE file.

The main high-speed storage of a computer in
which binary data 1is represented by the
switching polarity of magnetic cores.

A UDC/ICS functional device.

High-speed circuitry used to Store
information affecting the operation of the
CPU {e.g., PC, IF, DF).

A general term used to denote any or all
facts, numbers, letters and symbols. It
cennotes basic elements of information which
can be processed or produced by computer.

A 3-bit register which determines the memory
field from which operands are taken 1in
indirectly addressed instructions
{abbreviated DF}.

To detect, locate znd correct mistakes in a
program.

Glossary-2

Deferred Actions

Deferred Reguests

Derail

Device Codes

Device Status Register

Digital

Digital Channel
Driver

Dynamic

Entry Point

Event Flag

Executive

Executive Reguests

Field

File Gap

Functional Devices

Gain

Generic Codes

Handler

I/C Bound

Actions which are considered low-priority and

are not performed until higher-priority
actions are serviced.

Requests which are c¢onsidered low-priority
and are serviced after high-priority

reguests,

To transfer contrel or execution of a
specified task to a subroutine.
device 1in the

Numbers each

system.

assigned to

A register which contains the current status

of a device.
Representation of information
units.

by discrete

A UBC/ICS functional device.
See Handler.

Pertaining to a guantity that is affected by
some condition {such as time) and 1is

therefore relative to the conditien; also
refers to features at system run-time.
The location in a routine to which control

can be transferred and execution begun.

The location which contains the status of an
event {event being either a result of some
operation, or a physical occurrence).

The program which contrels the execution of
other programs or routines.

Means of communication between tasks and the
RTS5/8 Executive.

A division of memory on a PDP-8§
referring to a 4K section of memory.

computer

A fixed length of blank tape separating files
on a recording medium; generally several
times the size of a block gap.

The devices available for use under the

UDC/ICS handler.

An increase in signal power.

Codes used to identify which type of UDC/ICS
functicnal device caused an interrupt and to

direct progtam control to service routines.

A routine which is designed to
operation of a device.

centrol the

A condition in which a process is performing
much I/0 but using very little CPU time.

Glossary-3

Indirect Address

Initialization Code

Input Buffer

Instruction Field

Interactive

Interface

Interlock Scheme

Interrupt

An address in a computer instruction which
indicates a location where the address of the
referenced operand is to be found.

Code which sets counters, switches, and
addresses to zero or other starting values at
the beginning of or at prescribed points in a
computer routine.

A section of memory used for storage of input
data.

A register which holds the contents
determining from which field the operand of a
directly addressed instruction should be
taken (abbreviated IF).

Highly respeonsive to real-world inputs.

The common hardware and/or software boundary
between two devices or systems.

Arranging the c¢ontrol of devices so that
their operation is interdependent.

A break in execution caused by some external
event: execution 1is wusually resumed at a
later time.

Interrupt Processing Module

Interval Queue

Line-frequency Clock

Link

Logical OR

Loop

Mass Storage Device

Master Parameter File

Memory Address

A routine which acts upon the external event
which caused an interrupt.

A list of actions to perform, each
accompanied by the interval of time which is
to elapse from the previous actien to the
current one.

A clock whose ticking occurs at a multiple of
the power line freguency.

A one-bit register in the PDP-8; an address
pointer generated automatically by the PALS
assembler to indirectly address an off-page
symbol.

A logical function of two or more inputs
which is true whenever either input is true.

A seguence of instructions that is executed
repeatedly until a terminal condition
prevails.

A device such as disk or DECtape which stores
large amounts of data readily accessible to
the central processing unit.

A4 file included in the distributed sources of
RTS/8 which the wuser can edit to indicate
parameters specific to his system
configuration.

A register which holds the address specified
by a memory reference instruction.

Glossaxry-4

Message

Message~driven

Mnemonic

Module

Monitor Console Routine

Multiplier Quotient

Multi=-programming

Nonresident Task

No-op

Null Characters

Overflow

Pack

Page

Parameter file

Parity Bit

Pointer

Fost

Posted

A contiquous area of memory which contains
information about execution of tasks.

An RTS/8 task is called message-driven if it
only executes in response Lo nessages
received from other tasks.

Alphabetic representation of a function ot
octal machine ingtruction.

A routine which handles a particular
function.

The Monitor routine which provides the usar
with functions which allow him te control,
inspect, and debug his systenm.

A 12-bit register used in conjunction with
the accumulator to perform mathematical
operations (abbreviated MQG).

Two or more programs (tasks) in memory at the
same time which execute alternately depending
on the current state of the system.

A nonresident task is a task or a porticn of
a task that 1is swapped into memory when it
becomes executable.

No ogperation occurs; control proceeds to the
next instruction in sequence.

-

Characters with ASCII code 000.

A condition that occurs when a mathematical
operation yields a result whose magnitude is
greater than the data presentation is capable
of storing.

To conserve memory by combining information.

A 128-word (decimal) section of PDP-8 core
memory bheginning at an address which is a
multiple of 200 (octal}.

A file used to record arguments which may be
assigned different values,

4 bit which indicates whether the total
number of binary one digits in a word is even
or odd.

A4 word containing the address of another word
in memory.

To post an Event Flag means to set it to a
FINISHED state via an RTS/8 Executive
Reguest.

One of the states of an event flag,

indicating that the event is complete; same
as "FINISHED".

Glossary-5

Power-fail

Priority Scheme

Program Counter

Prompting Character

Queue

Ready Flag

Real-time System

Receiver

Record

Record Header Area

Ring-buffer

Scheduling

Sender

Sign Bit

Simulate

Skip Chain

State

Status

An interruption of power to the computer.

A scheme by which certain operations or the
execution of a set of instructions is given
preference over other operations.

A register which contains the address of the
next instruction to be executed t{abbreviated
PC}.

A character which prints on the console
terminal and cues the user to perform some
action.

A waiting list (e.g., a queue of programs
waiting for processing time).

A bit which a device controller sets when it
is ready to accept commands from the CPU.

A system in which computation 1is performed
while a related physical process is occurring
so that the results of the computation can be
used in guiding or measuring the physical
process,

The task which has received a message from
another task (sender}).

A collection of related items of data treated
as a unit.

An area of at least 40{octal) words in length
which contains information necessary to
perform cassette operations.

A storage area for data accessed on a
first-in, first-out basis. Similar to Queue,
but usually involves storage of character
codes.

The operation of sharing resocurces amang
computing tasks.

The task which has sent a message to another
task (receiver).

The bit which contains the sign of a number,

To represent the functien of a device, system
or program with another device, system or
program.

An instruction sequence which determines the
source of an interrupt regquest on a PDP-8:
contains one or more tests for each possible
(hardware) interrupt condition.

A complete description ¢f the condition of a
piece of hardware or of a task.

That portion of the state which other devices
or tasks might be interested in.

Glossary=-6

Subchannel

Suspend

Symbols

Synchronization

System Ticks

Task

Task Flags Table

Task Input Message Queue
Header Table

Task Number

Task State Table

Task Switching

Terminal

Utilities

Word

One of the 4 channels of a UDC/ICS analog
functional device.

To temporarily halt execution of a task while
another task of higher priority runs.

Names which can be assigned values or which
can be used to indicate specific locations in
a pregram.

3 means of coordinating tasks {through event
flags) so that one task executes while others
wait.

An RTS/8 convention designed te obviate the
tasks in the system from knowing the
freguency of the clock.

A task 1is a routine which performs a specific
function. & task may be "resident" or
"nonresident”. A resident task is
permanently located in memory. A nonresident
task is loaded into memery as it is needed
and can be overlaid after its completion.

A table of l-word entries in the RTS/8
Executive whose contents determine whether or
not a task is runnable.

A table of 2-word entries which represent the
head of the input message gueue for each
task.

A unique number between 1 and &3 (decimal)
assigned to each task in an RTS/8 system.

B table of 4-word entries which contains the
ost recent contents of CPU registers for
.ach task.

The act of stopping execution of one task and
ontinuing execution of another from the
point that it was last stopped.

4 peripheral device in a system through which
data can enter or leave the computer.

Routines t¢ perform non-Monitor related
functions.

In the PDP-£, a l2-bit unit of data which may
be stored in one addressable location.

Glossary-7

INDEX

ALTMODE, 4-4, 5-1
Analog input UDC/ICS operation,
4-26
Analog output UDC/ICS operation,
4-25
Arbitrary boundaries, 9-7
Assembling nonresident tasks,
7-6
Assembling tasks, 6-5, 8-11
Assembly,
nonresident tasks, 7-8
Assembly error messages, D-1
Assembly parameters, UDC/ICS,
4~31

Batch control,
nonresident tasks, 7-8

Batch gtream, 6-6, 6-8

BLXARG ER, 3-6

Buffers, 7-0

CaL instruction, 3-1
CAncel command, 5-4
Cassette file support handler,

4-35
Cassette file support system
tasks, 4-35

Cassette handler, 4-32

Change of state UDC/ICS opera-
tieon, 4-30

Character mode, 4-4

Checkpointable tasks, 7-3

Clock handler, 4-2

Clock handler system parameters,
6-10

CTRL/C, 4=5, 5-1

Communication regicn, 3-1

Compcnent sizes, B-1

Control files,

use of, 6-9

Core image, 7-6, 7-7

Creating an RTE/8 system, 6-

Creating SAVE image file, 6-
7=6

3
6

!

DAte command, 5-2
Debugging,
nonresident task, 7-8

DECtape handler system parameters,
6-14

Demonstration program, B8-1

DEposit command, 5-6

DERAIL ER, 9-5

Digital input UDC/ICS operation,
4-27

Digital output UDC/ICS operation,
DIsagiz?command, h~4

Disable contacts UDC/ICS operation,
Disaéziocounter UDC/ICS operation,
Distgggated source files, A-1

Editing pavameter file, 6-5, &-8
ENable command, 5-4
Enable contacts UBC/ICS operation,
4-29
Enabkle counter UDC/ICS coperation,
4-28
Error conditions,
upCc/1Cs, 4-31
Event flag states summary, 2-3
BEvent flags, 2-2
EXamine command, 5-6
Executive internal task tables,
2-5, E-1
Executive KLB8-A support, 4-37
Executive request wait states,
3-12
Executive requests,
BLKARG, 3-6
DERAIL, 9-5
POST, 3-4
RECEIVE, 3-3
RUN, 3-8
SEND, 3-2
SENDW, 3-
SKPINS, 3-
SUSPND, 3
UNBARG, 3
WAITE, 3-
WAITX, 9-5
EXIT command, 5-6
EXIT task, 4-39
EXIT task system parameters, 6-14

Field mapping, 4-20

FINISHED state, 2-2

Floppy disk contrel file, 6-10
Floppy disk handler, 4-13
Flowcharts, C-1

FREE command, 7-4

Generic code UDC/ICS operation,
4=-27

Inhibiting task switching, 9-2
Instructions,

CAL, 3-1

POSTDS, 3-10

Index-1

INDEX (CONT.}

Instructions {cent.),

WAITM, 9-4
Interrupt meodule restrictions,
3-10

Interrupt skip chain, 3-9
Intertask messages, 2-3

KL8-A support system parameters,
6-13
05/8 support task, 4-38
TTY task, 4-38
Usger task, 4-39

LINCtape handler, 4-16
Line mode, 4-4 :
Line printer handler, 4-10
Line printer system parameters,
6-14

Leading,

nonresident tasks, 7-8
Loading tasks, 6-6, 8-11

Mass storage handlers, 4-11
MCR command arguments,
address, 5-1
comma, 5-1
single space, 5-1
tagk-ID, 5~1
time-of-day, 5-~1
word, 5-1
MCR commands,
CAncel, 5-4
DAte, 5-2
DEposit address, 5-6
DIsable; 5_4
ENable, 5-4
EXamine address, 5-6
EXIT, 5~6
NAme, 5-2
QFen address, 5-5
POst address, 5-6
REquest, 5-3
STop, 5-4
S¥stat, 5-4
TIme, 5-2
MCR component size, B-5
MCR error messages, 5-6
MCR system parameters, 6-12
Memory partitions, 7-3
Message header, 2-3
Message table, E-3

NAme command, 5-2

Nonresident MCR, 5-6

Nonresident task debugging, 7-8

Nonresident task implementation,
7-8

Nonresident task initialization,
7=5

Index-2

Nonresident task parameters, 7-5
Nonresident tasks, 7-1
Nonresident tasks,

assembly, 7-8

batech contreol, 7-8

loading, 7-8

SAVE image file, 7-8

starting, 7-8

Obtaining listings, 6-5

OPen command, 5-5

0s/8 file support task, 4~23

0S/8 operating system, 4-19

05/8 support task, 4-19

05/8 support task system param-
eters, €-~13

08/8~RT5/8 communication, 4-21

Parameter file,

task definitions, 6-2

task setup, 6-4

task specifications, 6~3
Parameter file structure, 6-1
Partition parameter initializa-

tion, 7-7

Partition tabkle, E-4
PDP-8A null task, 4-37
PENDING state, 2-2
Performing a reschedule, 9-~1
POst address command, 5-6
POST ER, 13-4
POSTDS instruction, 3-10
Power fall task, 4-18

Read counter UDC/ICS operation,
4-29

Real~time system operation, 1-2

RECEIVE ER, 3-3

REquest command, 5-3

Residency table, E-3

RTS/8 description, 1-1

RTS/8 task structure, 2-1

RUBOUT, 4-4

RUN ER, 3-8

Sample task program, 6-7
SAVE image file,
creating, 6-6, 7-6
nonresident tasks, 7-8
Saving the system, 6-6, 8-11
SEND ER, 3-2
SENDW ER, 3-3
SKPINS ER, 3-9
Starting,
nonresident tasks, 7-8
STop command, 5-4
SUSPND ER, 3-8
Swap device, 7-1, 7-6

INDEX (CONT.)

Swapper system parameters, 6-11
Syntactic constructions, 5-1

Terminal handler, 4-~4
Terminal handler system param-

SY¥stat command, 5-4 eters, 6-~11
System parameters, Terminal parameter default values,
clock handler, 6-10 4-9

DECtape handler, 6-~14 TIme command, 5+~2
EXIT task, 6-14 Timeshare function disabled, 4-19
KL8-A support, 6-13 TTY control file, 6-9
line printer, €-14 TTY task KLB-A support, 4-38
MCR, 6&-12
0s/8 support task, 6-13 UDC/ICS assembly parameters, 4-31
swapper, 6-11 UDC/ICS error conditions, 4-31
terminal handler, 6-11 UDC/ICS handler, 4-24
System status report code, 5-5 UDC/ICS handler system tasks, 4-24
System tables direct references, UDC/ICS operation,

9-8
System task summary,
System tasks,

analog input, 4-26
analog output, 4-25
change of state, 4-30

4-1

cassette file support, 4-35 digital input, 4-27
cassette handler, 4-32 digital output, 4-27
clock handler, 4-2 disable contacts, 4-30
EXIT, 4-39 disable counter, 4-29
floppy disk handler, 4-13 enable contacts, 4-29
LINCtape handler, 4-16 enable counter, 4-28
Line printer handler, 4-10 generic code, 4-27
mass storage handler, 4-11 read counter, 4-29
08/8 file support, 4-23 UNBARG ER, 3-8

08/8 support, 4-18

6-9

Use of control files,

PDP-8A null, 4-37 User task KLB-A support, 4=-39
power fail, 4-18 Using BITMAP program, 6-7, 7-5
terminal handler, 4-2 Using interrupts, 3-9
UDC/ICS handler, 4-24
WAITBITS symbolic names, 3-7
Task communicaticn, 2-1 WAITE ER, 3-3
Task flags table, E-2 WAITING state, 2-2
Task number, 2-1 WAITM instruction, 9-4
Task state table, E-1 WAITX ER, 9-5
Task status report, 5-5 Writeable tasks, 7-3
Task synchronization, 2-2 Writing delicate code, 9-1

Index-3

Pleass cut along this line,

RTS/8 User's Manual
DEC-08-0ORTMA-C-D

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion., Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement,

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher~level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmexr interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or
Country

Fold Here

Do Not Tear « Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

l

Postage will be paid by:

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

RW

PAGES

FIELD

BUFADD

BLOKNC

STATUS

il

]

i}

4000

Cn pe
might
the ¢
messa

RTS/8 SYSTEM TASKS

Read data from floppy disk.
Write data to floppy disk.

Specifies the number of pages to transfer {times
100 octal}. Pages = 0 transfers 40 pages (a full
field). This value takes the range 0-37 1in bits
1-5 of this word. PAGES 1is ignored if CODE =
4000. In that case, either 100 (octal) 12-bit
words or 200 8-bit bytes (from 200 words) are
transferred depending on MODE.

Specifies the field of buffer (times 10 octal).
Bits 6-8 of this word have the range 0-7.

Specifies the address of the first word of the
buffer containing data. Field of buffer is
determined by FIELD. Length of buffer depends on
PAGES if CODE = 0 or on MODE if CODE = 4000.

Represents first logical 05/8 block to transfer if
CODE = 0. Each 0S/8 block consists of 4 sectors.,
Track 0 is ignored and a 2-to-1 interleave sScheme
is emploved. If CODE = 4000, this word contains
physical track and sector numbers in the format
TTTTTTTSSESS.

Receives the status of the operation upon
completion. If negative, a hard error has
occurred. If 0, no error has occurred. This word
may be positive nonzerec only if DEL = 2000.

The meaning of the STATUS bits is as follows:

Bit Meaning if 1

0 Hard error

1-3 Not used by controller

4 Not used by RTS/8

5 Deleted data indication

6-7 Not used by controller

8 Reserved for future use by
controller

9 INIT done ({can occur after

temporary power failure to
centroller)

10 Parity error
11 CRC error
NOTE

wer fail restart, the INIT error

oCccur. When this error occurs,
alling task should send the 1I/0
ge again.

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Index-01
	Index-02
	Index-03
	replyA
	replyB
	Untitled43

