
CHAPTER 17

FUTIL

17.1 INTRODUCTION

FUTIL enables you to examine and modify the contents of mass storage
devices. It is the only program currently available that you can use
to patch programs containing overlays (F4/LOAD outputs). Other
possible uses include examination and repair of OS/8 directories; bad
block checking and correction; decimal/octal conversion of double
precision numbers; output of the Core Control Block (CCB) of .SV
files and the HEADER of .LD files; and the creation of special
directories. Supporting these functions is signed double-precision
arithmetic expression evaluation that you can use in the command
syntax whenever you need a numeric value.

FUTIL commands are divided into two groups. The first group uses
single letters to direct the program in the examination and
modification of single words on the device specified. The second
group of commands uses command words to direct the program in the
dumping, listing, modifying and searching of the device on a
block-by-block basis. Also included in this group is a series of
commands to direct the program in some auxiliary functions including
setting and resetting switches and variables within the program,
showing current FUTIL parameters.

Several examples appear in Section 17.4. The first two examples are
especially simple and well-documented and can acquaint you with the
features of FUTIL. You may want to look at them at this point to get
a better understanding of the material that follows.

17.1.1 Special Characters Used in FUTIL

Several characters, when keyed, cause immediate action from the
program. Typing either CTRL/P or CTRL/C will immediately cause the
program to stop whatever it is doing. CTRL/P then causes the program
to go back to command input mode and wait for you, while CTRL/C
returns control to the OS/8 Monitor. CTRL/S and CTRL/Q control
program execution (including all I/O). Typing CTRL/S at any time will
cause the program to pause and wait for either CTRL/C, CTRL/P or
CTRL/Q. Typing CTRL/Q will then allow program execution to resume.
Any other characters entered at this point will be simply ignored. If
a CTRL/Q is typed by itself at any time, it is simply ignored.

17-1

FUTIL

NOTE

CTRL/S and CTRL/Q are active at all
times, not just during console output.
The result is that both input from the
console and program execution with no
console interaction (such as SCAN, WORD
and STRING command execution) will pause
and restart with these keys.

During console terminal input, three other keys help with editing the
input string of characters. These keys are RUBOUT, CTRL/U and CTRL/R.
The action of RUBOUT and CTRL/U is exactly the same as for the OS/8
Monitor and Command Decoder (including usage of "scope mode" operation
to change the action of the RUBOUT key from echoing the rubbed out
characters between backslashes to erasing the characters from the
screen). The action of CTRL/R is the same as that of the LINE-FEED
key for the Monitor and Command Decoder.

If you have upper-lower case terminals, the program translates all
lower case characters received from the keyboard to upper case. The
characters are echoed and handled internally as upper case characters.
While this makes use easier, it does not allow any lower-case
characters to be input directly.

In those cases where you need lower-case codes in the modification of
a file, either use the codes directly or use a text editor. This
translation occurs only on input. Lower-case characters in a file
will be printed to the best ability of the output device. This may
produce incorrect results on upper-lower case line printers.

All of the commands are taken in context. This means that many of the
characters in the single character command set will not be considered
to be commands if they are included in a line that begins with a
command word or if they are embedded within expressions.

The carriage-return always starts command execution and terminates all
word-type command lines.

17.1.2 Running FUTIL

To run FUTIL, type:

.R FUTIL

or

.RU dev:FUTIL

When started, FUTIL is set up to access the system device, the ERROR
message output mode is set to LONG, the access MODE is set to NORMAL,
and no file is known. To access some other device, type:

SET DEVICE dev

To set the ERROR mode to SHORT, type:

SET ERROR SHORT

17-2

FUTIL

To use some other access mode, type:

SET MODE <mode>

command with a <mode> of LOAD, OFFSET or SAVE. When in OFFSET mode,
the OFFSET to be used can be specified by the command SET OFFSET nnnn.
Lastly, a file lookup can be performed by giving a FILE command (with
three default extensions).

17.1.3 Access Method

The program accesses the OS/8 device one OS/8 block (256 words) at a
time. For every location specified, the real block and word are
determined and compared with the current block in memory. If the
desired block and current block are not the same, the
<something-changed> flag is checked to see if anything has been
changed in the current block. If nothing has been changed, the new
block is read in.

If something has been changed, the current (modified) block is first
written out and then the new block is read in. This action happens
correctly even when the access mode is changed because it is done at
the level of the OS/8 block number just before calling the current
device handler. The status of the <something-changed> flag can be
determined by simply SHOWing ABS, REL or ODT locations. If the flag
is set, the word MOD will be output following location information.

The contents of the OS/8 device, therefore, do not change unless the
block in which changes are made is written out either implicitly, as
described above, or explicitly, using the WRITE command (discussed
near the end of the section on word-type commands). The result is
that typing CTRL/C before writing out the current block (assuming it
has been modified) will return to the Monitor without modifying the
contents of the device.

Note, also, that only
program. Should an
example, write-locked
to actually write out

one implicit write
error occur when

device), an explicit
the block.

attempt is made by the
the write is attempted (for
WRITE command must be given

If you change the words within
<something-changed> flag can be
reset the device (described further
device currently being used. This
flag, the current block in memory,
core-control-block/header-block (if
command) •

some blocks accidentally, the
reset by using the SET command to
along in this writeup) to the same
will reset the <something-changed>

and the file start block and
they had been set by a FILE

The resetting of the current block in memory will cause the next
access to the device to read in the block desired. The resetting of
the file information will require a new file command to be given to
set it back up. If you cannot remember the current setting of the
device, use SHOW DEVICE first and then set it the same.

Files stored on an OS/8 mass-storage device generally fall into one of
four categories. The program has four corresponding modes for
accessing the device. The current mode of the program can be set by
the SET command or by chaining (as described previously) and examined
by the SHOW command (to be described later).

17-3

FUTIL

The four categories and their corresponding modes are:

1. General (binary, ASCII and data) files - NORMAL mode

2. Core image (save) files - SAVE mode

3. FORTRAN IV load modules - LOAD mode

4. System overlays - OFFSET mode

The actual operation of the program for each of these modes is as
follows:

NORMAL

SAVE

LOAD

OFFSET

The high order 7 bits of the 15 bit address are
to the current block number to get the actual
number. The low 8 bits of the 15 bit address are
to specify the desired word within that block.

added
block

used

The file to be examined must be set up by a FILE
command. Block numbers are used to specify an overlay
number (future MACREL/LINK support) and must be exactly
zero (0) for files without overlays (generated by the
monitor SAVE command). The core segment data (pages
and fields) from the file's CCB (core-control-block) is
used to determine where on the device the desired word
is located. This is done by first determining the
correct block from the file's CCB and then using the
low 8 bits of the address to specify the desired word
within that block. Specifying a nonexistent address or
overlay for one of the single-character (ODT) commands
will cause an error. Specifying a nonexistent address
or overlay for any of the word-type commands will cause
the program to ignore the address and access no data.

The file to be examined must be set up by a FILE
command. Block number specifications are actually
taken as FORTRAN IV overlay specifications and must be
contained within the file. You use the information
from the OIT (overlay-information-table) in the header
block of the file to determine where on the device the
desired word is located. Nonexistent addresses are
handled the same way as for SAVE mode.

NOTE

Because the block part of the location
specification changes definition depending on
the mode in use, it is recommended that the
first operation following a switch to SAVE or
LOAD mode explicitly specify a block part of O.
Otherwise a previously specified block part
will be taken to mean a non-existent overlay
number, causing an error.

The 12-bit OFFSET (set by the SET command and examined
by the SHOW command) is subtracted from the low order
12 bits of the address and then the same arithmetic as
with the NORMAL mode is used. This mode is used mostly
with system overlays whose start block number and
actual loading address is known. By setting the OFFSET
to the loading address (which can only be a 12 bit
number), the 12 bit actual addresses of the overlay can
be used.

17-4

FUTIL

The SAVE and LOAD modes are mentioned together throughout this chapter
as MAPPED modes because their method of address translation uses a
descriptor block from the file of interest to control access to the
file in a noncontiguous manner.

NOTE

For all access modes, the OS/8 block
number for the block to be read is
stored (for display) in the computer MQ
register (if present). The value is
stored before checking if the current
block needs to be written. It is
particularly useful for following the
progress of the SCAN command.

17.1.4 Referencing Words on the Device

The words on the OS/8 device are referenced by their location (often
abbreviated as <1». This location consists of an optional block or
overlay number (which must be followed by a "." if present), and an
address or displacement. The block/overlay number is a 12-bit number
which must be in the range 0 thru 7776 (octal), or 4094 (decimal) •
Block number 7777 (or 4095, decimal) does not exist under OS/8, and
the program will ignore this number.

The overlay number is further limited to the number of overlays at a
given address. Whenever the block/overlay part of the location is not
used, the program will use the last specified value. The
address/displacement is a 15 bit number (5 octal digits), but leading
O's need not be specified. Thus, the forms and their corresponding
examples are as follows:

Form Example

<block>.<displacement> 1201.37524

3.57633

15721

<overlay>.<address>

<address>

<displacement> 223

CAUTION

Neither this program nor the OS/8 device
handlers generally incl.ude checking for
legal block numbers. It is assumed that
all accesses to the device will be done
after checking with the directory for
legal file start blocks and lengths,
which is the normal mode of operation
under OS/8. This can have very
interesting results with this program;
for example, the RK8/E handler, given a
block number greater than 6257 (octal)
on device RKAO, will continue on into
device RKBO.

17-5

FUTIL

For the rest of this document, unless otherwise stated, block will
mean block or overlay and address will mean <address> or
<displacement>, depending on usage. Therefore the definition will be:

[block.]address=<location>=<l>

Since these location references
characteristics described next
locations.

17.1.5 Numeric Item (or Numbers)

are numeric
can also be

input, all of the
used when specifying

The program uses two switches, CTRL/D and CTRL/K, to allow the input
of octal, decimal or mixed numeric input wherever numeric input is
used. Each new command line always resets the input mode to octal.
The character CTRL/D switches the input mode to decimal. The
character CTRL/K switches the input mode back to octal. These two
switches may be located anywhere in numeric input.

For example, when inputting a string of numbers, the input would be
alternately decimal and octal if it were

Two other characters, the double quote (") and the apostrophe ('), may
be used for numeric input. The double quote functions the same way in
this program as it does in PAL8: the 8-bit ASCII value of the
following character is used as a number. As with all character input,
the special characters described earlier cannot be used. The
apostrophe functions in the same way that the TEXT pseudo-op operates
in PAL8: the following two characters are masked to 6 bits each and
packed into a 12-bit word. Two characters must always follow the
single quote. If you desire to pack one half of the word with a 6-bit
00, use the character "@". For example, a string equivalent to the
file name PIP.SV would be represented by the following string:

'PI,'P@,O,'SV

Expressions may also be used for numeric input when enclosed in
parentheses. Use parentheses for each expression, thereby making all
the options of the EVAL command available for numeric input. For
example, the contents of the switch register can be used for a number
by the expression (S), or the current block number +5 could be used by
the expression (B+5). See the discussion of the EVAL command for the
other options available.

NOTE

Parentheses must surround the
expression. Neither digits nor the
switch characters may be outside of the
parentheses or an error will result.
This is required because many of the
non-alphabetic characters have multiple
meanings (commands or operators) so the
use of parentheses eliminates ambiguity.

17-6

FUTIL

17.1.6 Errors and Error Messages

Whenever the program recognizes an error, it outputs an error message.
The message tells both what went wrong and where in the command line
the error occurred. Depending on the setting of the ERROR mode
switch, either short or long messages are output:

?<ee>at<cc><error messdge>

or

?<ee>at<cc>

where <ee> is the error code, <cc> is the number of the column in the
command line where the program stopped scanning, and <error message>
is the message itself. There are currently 45 error conditions with
corresponding codes and messages to assist you. The error codes and
their messages can be printed out by the SHOW ERRORS command. The
ERROR mode is set by the SET command.

The error messages are swapped with the USR but not in the normal
manner, allowing write-locked startup with the loss of the message
text (see Section 17.5 for more information).

17.2 SINGLE-CHARACTER (ODT-LIKE) COMMANDS

These commands allow you to modify and examine words on an OS/8 device
in the same way that ODT allows you to modify and examine main memory.

In all of the following commands where the numeric item <n> is
specified, the operation of closing the location is to place the value
of <n> into the word, if open. If the current location is not open,
or if <n> is not specified, no change takes place. Refer to
Introduction to Pr~ammi~ and to Chapter 19, on ODT, for more
information. Note that [<n>] (with the following commands) means that
a numeric item may be supplied optionally.

<1>/

/

[<n>]t

[<n>]$
(dollar sign)

[<n>]%

[< n>] &

[<n>] :

Open and output the contents of location <1> in
the current OUTPUT mode.

Reopen the last location opened by one of these
commands and output its contents in the current
OUTPUT mode.

Close the current location, reopen it
its contents in BCD (3-digit
dec imal) .

and output
binary-coded

Close the current location, reopen it and output
its contents in OS/8 ASCII.

Close the current location, reopen it and output
its contents in BYTE octal (8 bits with OS/8
packing) .

Close the current location, reopen it, and output
its contents in XS240 format packed ASCII.

Close the current lcoation, reopen it, and output
its contents in SIGNED decimal.

17-7

[<n>]<

[<n>] =

[<n>]>

[<n>] ?

[<n>]@

[< n>] [

[<n>] \

[<n>]]

[<n>]$

FUTIL

Close the current location, reopen it, and output
its contents in OCTAL.

Close the current location, reopen it, and output
its contents in UNSIGNED decimal.

Close the current location, reopen it, and output
its contents in PDP (symbolic).

Close the current location, reopen it, and output
its contents in DIRECTORY format [negated DECIMAL,
DATE (see "@" next) and packed (ASCII)].

Close the current location, reopen it, and output
its contents in DATE format: dd-mmm-yy 2 digits
each for the day and year and 3 alphabetic
characters for the month (except for illegal month
numbers, which are output as a space and 2 decimal
digits) .

Close the current location, reopen it, and output
its contents in ASCII.

Close the current location, reopen it, and output
its contents in FPP (symbolic).

Close the current location, reopen it, and output
its contents in packed ASCII.

(" ALTMODE" or
"ESCAPE" key)

Close the current location, reopen it, and type
its contents as specified by the current FORMAT.

[<n>]<cr>

[<n>] :

Close the current location.

Close the current location and open the next
sequential location. Neither address nor contents
are output, but one space is echoed.

NOTE

The ";" command advances through
addresses without outputting their value
in octal when some other format is more
helpful. For example, when examining a
directory, the file name and extension
can be output using the "]" command
(PACKED ASCII), the date can be output
using the "@" command, and the file
length can be output using the ":"
command. All of this information can be
made to appear on one line by using the
";" command. This does the incrementing
between each of the output commands.
The result would look similar to this:

17-8

FUTIL

For the following commands, the location of the newly opened word is
output before the contents are output. This location is composed of
the 12-bit block number (4 octal digits), a "." for a separator, and
the 15 bit address (5 octal digits). This is immediately followed by
a slash (I) to separate the contents from the address.

[<n>] <line feed>

[< n>] !

[<n>]A(circumflex
or up-arrow)

[<n>] (backarrow
or underline)

<1>+

<1>-

Close the current location; open and output
the contents of the next sequential location
in the current OUTPUT mode.

Close the current location; open and output
the contents of the previous sequential
location in the current OUTPUT mode.

Close current location; open the location
(that would have been referenced if the
contents were a PDP-8 memory reference
instruction), and output the contents of the
new location in the current OUTPUT mode.
This command works like the stand-alone
version of ODT (not like the OS/8 version).
Even if bit 3 of the word is set, this
command will not do the equivalent of an
indirect reference.

Close the current location, take its contents
as an address, open that location, and print
its contents in the current OUTPUT mode.
This operates as an indirect address into the
current field. The field currently being
examined (the high octal digit of the 5-digit
location) will not be changed by this
operation.

Open the location <1> locations forward from
the current location, and output its contents
in the current OUTPUT mode. 15-bit
arithmetic is used and the block part is
ignored, so this will operate across field
boundaries, that is, within a 32K area.

Open the location <1> locations backward from
the current location and output its contents
in the current OUTPUT mode. Same
restrictions as with the '+' command.

The current OUTPUT mode has been mentioned several times above. The
program will output the contents of a location either as a four-digit
octal number or as a four-digit octal number with two spaces and the
symbolic representation (PDP or FPP) of the word. See the SET and
SHOW commands (Sections 17.3.2.4 and 17.3.2.5) and the following
section.

17.2.1 Symbolic Output Formats

The symbolic typeout is in nearly the same format that input to an
assembler would need to be to generate the contents of the current
location. It is assumed that these contents are either a PDP-8 or an
FPP-12/8A instruction, depending on the output selected. If the word
to be output is not an instruction (as is the case for the second word
of all 2-word instructions), the decoding will be meaningless.

17-9

FUTIL

For PDP-8 instructions, decoding into mnemonics is done for all memory
reference instructions, for all legal operate instructions (including
8/E EAE instructions except for SWAB), for all 8/E processor, extended
memory and memory parity lOT's, for teletype and high-speed paper-tape
lOT'S, for 8/E redundancy check option lOT'S, for programmable
real-time clock lOT's and for FPP lOT's.

There are currently a total of 96 lOT'S, and the program has space for
an additional 32 lOT codes and their mnemonics. These can be patched
directly into the program using itself. The first word of each
four-word entry is the lOT code (for example, 6221 for CDF 20),
followed by 3 words containing up to 6 packed ASCII characters padded
with trailing O's.

No attempt is made to decode any micro-coded lOT's. Either an exact
match for the current contents will be found in the table or the
program will output:

lOT nnnn

where nnnn is the octal typeout of the low 9 bits of the code.

The next free location in the table (in field 1) is pointed to by the
contents of location 10000. The table is terminated by the first 0
for an lOT code, so additions must be contiguous and added directly at
the current end of the table.

For FPP instructions, the full FPP-8/A instruction set is decoded
except for IMUL, which is actually an integer mode LEA. For the data
manipulation instructions, the op-code mnemonic is followed by a "t"
for the long-indexed format, by a "%" for the indirect-indexed format,
and by a space for the base addressing format.

For the indirect-indexed and base addressing formats, the operand
address is output as:

B+nnn

where nnn is the 3-digit octal value of the displacement (3 or 7 bits)
multiplied by 3. These formats are those used by the RALF assembler.
This is also true for LEA instructions (that is, LEAl is decoded as
LEA%) .

Both jump and load-truth instruction decoding is done as a single
mnemonic whose last two characters indicate the specified condition.
All instructions that use two words are decoded with an asterisk in
the location in the normal assembler format where the value of the
second word would go.

Index register number and "+" for auto-increment (if used) are also
shown in the assembler format. Any combinations that are not in the
FPP-8/A instruction definitions are output as unused.

NOTE

For both of these output formats, the
use of the mapped access modes (and the
OFFSET mode for PDP decoding) allow the
use of the actual addresses when
decoding the instruction.

17-10

FOTIL

17.3 WORD-TYPE COMMANDS

These commands are grouped by function, as follows:

Group 1:

DUMP
LIST
MODIFY

Group 2:

WORD
STRING
SMASK

Group 3:

SET
SHOW
FILE
WRITE
SCAN
REWIND

Group 4:

OPEN
CLOSE

Group 5:

IF
END
COMMENT
EXIT

Group 6:

EVAL

type/list out the contents of one or more blocks.
type/list out the contents of one or more locations.
modify one or more locations.

word search
string search
set up string search mask

set up program switches and variables
show settings of program switches and variables
look up file(s) on device
write out current buffer
scan for bad blocks
move device to block 1 and reset directory segment

open an output file on a file-structured device
close the open output file

cause command skipping based on expression value
resume command execution after unsatisfied IF
pass user commentary to output device
exit to OS/8 (same as CTRL/C)

evaluate a signed, double-precision expression.

Command words may always be abbreviated to their first two characters,
as with the Monitor and BUILD, and some of the commands and their
options may also be abbreviated to only one letter. When this is the
case, the command forms given will include the one-letter form. The
option forms will give the one-letter form directly under the full
word form.

NOTE

In many cases, two or more words start
with the same letter. In these cases,
only one of these words may be
abbreviated to one letter.

The descriptions for each command include each of the possible forms
of the command; an example of that form follows it on the same line.

17-11

FUTIL

17.3.1 Output Formats

The FORMAT option is used to SET up the output format for the "$"
(ALTMODE or ESCAPE) command, described earlier, and the default format
for the DUMP, LIST and MODIFY commands, described below. The syntax
of this command is shown with the other SET commands, but is described
here to make the descriptions of the following three commands more
understandable. The format may be one of the following:

ASCII
A

PACKED
P

OS

XS240

BYTE

UNSIGNED
U

SIGNED
S

OCTAL
o

BCD
B

PDP
FPP

DIRECTORY

output each word as a single ASCII character.

Output each word as two 6-bit trimmed and packed
ASCII characters. This is the format of PAL8 TEXT
strings.

Output each word as 1
characters. The even
character and the odd
characters.

or 2 OS/8 packed ASCII
address words output 1
address words output 2

Output each word as two 6-bit packed
characters by adding a space (240 octal)
contents of each 6-bit byte. This is the
of PAL12 SIXBIT strings.

ASCII
to the
format

Output each word as 1 or 2 OS/8 packed bytes of 8
bits each as 3-digit octal numbers. The even
address words output 1 number and the odd address
words output 2 numbers.

Output each word as an unsigned decimal number.

Output each word as a signed decimal number.

Output each word as a 4-digit octal number.

Output each word as 3 BCD digits. The digits 0
through 9 are followed by":" (10), ";" (11), "<"
(12), "=" (13), ">" (14), and "?" (15).

Output each word as an octal number, followed by
2 spaces and its mnemonic representation, assuming
it to be a PDP-8 or an FPP-8A instruction. See
the symbolic output description.

Output each word in octal, decimal (signed), date
(see "@" command) and packed ASCII formats.

The FORMAT is initialized to packed ASCII.

The output from the DUMP and LIST commands for each of these formats
is set up as follows:

1. At the beginning of each line the current location is output
in location format with a 4 digit block number and a 5 digit
address, both in octal, as

<block>.<address>:

For example, 1271.17205: - location 17205(8) relative to
block 1271(8).

17-12

FUTIL

2. The maximum number of words per line is set up as follows:

a. The four character formats output 16 words per line with
no extra characters.

b. The five numeric formats output 8 words per line with 2
spaces between each number.

c. The symbolic and directory formats output 1 word per
line.

For LIST with A or B, the first line may be shorter than succeeding
lines to force the second and following address outputs to be even
multiples of 10 (octal).

17.3.1.1 DUMP - The DUMP command outputs one or more whole 256-word
device blocks in the default or an optionally supplied format. This
command has the following forms:

DUMP [<format>] <block string>

DUMP <block string>
D <block string>
DUMP <format><block string>
D <format><block string>

DU 100,200-213,250
D (B)-(B+10),(S)
DU PA 212
D OS 514

where the optional <format> is one of those given for the FORMAT
option above, and the <block string> is one or more numeric items
separated by commas and dashes. The dash is used when it is desired
to dump a group of blocks, and is used as

<start block>-<end block>

the comma separates single blocks or groups of blocks if there is more
than one per line.

NOTE

In a mapped mode (SAVE or LOAD), the
DUMP command cannot dump any block
except that block containing location O.
To eliminate the confusion that this
would produce, the command will simply
output an error message reminding you
that the proper command to use in a
mapped mode is the LIST command.

The output from the DUMP command is sent to the DDEV (dump device),
which can be either the console terminal, the line printer, or a file.
See the SET command for setting the dump device and output mode.

17.3.1.2 LIST - The LIST command outputs the contents of one or more
words on the device in the default or in an optionally supplied
format. This command has the following forms:

LIST [<format>] <location string>

LIST <location string>
L <location string>
LIST <format><location string>
L <format><location string>

17-13

LI 123.200-517,200.0
L 312.10-17,100-117,176
LI UN 200-227
L SI 200-277

FUTIL

where the optional <format> is one of those given for the FORMAT
option above, and the <location string> is one or more locations,
separated by commas. When it is desired to list a group of words, the
dash is used to separate the start and end addresses as

[<block>.]<start address>[-<end address>]

If the block part is not specified, the last block number specified to
the program will be used. If an end address is specified, the start
address is assumed to be in the same field as the end address (that
is, the highest octal digit of the 5-digit address), so a maximum of
4096 words can be specified by each group.

As with the DUMP command, the output from the LIST command is sent to
the DDEV. For more information see the last paragraph of the DUMP
command, the SET command, and Section 17.5.

17.3.1.3 MODIFY - The MODIFY command allows a string of locations on
the device to be easily changed. Specify the format of the input,
letting the program do the work of storing the data properly. This
command has the following forms:

MODIFY [<format>] <location string>

MODIFY <location string>
M <location string>

MO 200.0-17,35-43
M 32745-32777

MODIFY <format><location string>
M <format><location string>

MO PA ~2342-12360
M AS 367.7261-7275

where the <location string> has exactly the same format as for the
LIST command (the <format> options are shown below). If the <format>
is not specified (as with the first form), the program will pick the
format that corresponds to the current setting of the FORMAT option.
The formats are shown below.

MODIFY format

ASCII
A

PACKED
P

OS

XS240

FORMAT setting and MODIFY action.

ASCII - one character of input is stored in
each word to be modified.

PACKED - two characters of input are packed
as trimmed 6-bit characters, padded with
trailing OO's. Control characters (those
with codes less than 240 octal) are packed as
a 6-bit 77 (flag) and the low-order 6-bits of
the character. Note that this means that "@"
is packed as a terminator (00) and that "?"
is not unique.

packed
In this

even and

OS - three characters of input are
into two words to be modified.
format, the start address must be
the end address must be odd.

XS240 - a space (240 octal) is subtracted
from each character and then it is packed as
6-bit bytes. Control characters are handled
as with PACKED format.

17-14

NUMERIC
N

FOTIL

SIGNED & UNSIGNED decimal, BCD, OCTAL, BYTE,
PDP, FPP and DIRECTORY formats - the input is
a string of numeric items which are stored
one per 12-bit word. See the section on
numeric items. Note that bcd, byte,
directory and symbolic are not included, that
decimal or octal input are determined by the
CTRL/D and CTRL/K switches and that signed
numbers must be input enclosed in
parentheses, for example, 17, (-10), A D2 00 ,
(-AK3 1 2), 40, (-AD35*129).

For each location or group of locations specified by the <location
string>, the program will prompt for the input by printing the start
location in the same format as described under the output format
options above.

CAUTION

The program always modifies exactly the
number of words specified by each item
in the <location string>. If you input
extra characters for the character
formats or extra numeric items for the
numeric format, they will be ignored.
If you do not input enough characters or
items, the rest of the words to be
modified will be set to the FILLER value
(see the SET command). The program will
not output any message if either of
these things takes place. This does,
however, make it possible to fill from 1
to 16 blocks on a device with zero or
some other value by specifying all the
words to be filled in NUMERIC format and
then responding to the prompt with a
single F (the value of the FILLER) and
RETURN.

Input to the program is always terminated by a carriage-return. It is
not possible to insert a carriage-return into a word using this
command. All of the editing keys are available for use during input,
so the CTRL/C, CTRL/Q, CTRL/S, CTRL/R, CTRL/P, CTRL/U and RUBOUT
characters cannot be entered using this command. For all of the
character input formats, spaces (excluding leading spaces, which are
ignored) and tabs in the input string are packed as they are seen.
For numeric input, spaces are ignored and the numeric items must be
separated by commas.

You can always abort the command by CTRL/P if you change your mind
before you press the RETURN key.

17.3.2 Search Limits

The program has two search commands: the WORD search and the STRING
search. Both search from a lower limit to an upper limit. The limits
are either the LOWER and UPPER limits set by the SET command (the
default) or the limits set up by the FROM <1> and/or TO <1> clauses
that can optionally follow the command word. FROM <1> overrides the
lower limit, and TO <1> overrides the upper limit. Leaving out the

17-15

FUTIL

block parts of either of the two temporary limits will cause the
program to use the block part of the corresponding default limit set
by the SET command. In a mapped (SAVE or LOAD) access mode, searching
through non-existent locations or overlays will never produce a match.
Whenever a match is found, the program outputs the location where the
match occurred, followed by the word or string that matched.

NOTE

You cannot search through more than one
overlay per search command. To do so
would require different and separate
handling of the block and address parts
of the limits when in the mapped modes,
including the resetting of the address
part. The result is that, in the mapped
modes, the block parts are used to set
the overlay to be searched (lower limit
only), and only the address parts are
used in the determination of the number
of words to be searched.

17.3.2.1 WORD (Search) - The WORD search command searches for a word
or words which, masked by the MASK (which is set by the SET command) ,
will match the search word (also masked). This command and its five
options follow:

WORD [UNEQ] [ABS] [MEM] [FROM <1>] [TO <1>] <n>

WORD <n>
W <n>
WORD UNEQUAL <n>
WO U <n>
WORD ABSOLUTE <n>
W A <n>
WORD MEMREF <n>
WO M <n>
WORD FROM <l><n>
W F <l><n>
WORD TO <l><n>
W T <l><n>

WO 217
W (5)
W UN 0
WO U (C&377>
WO AB 7402
W A 7000
WOR HEH 41
WO H 40
WO FR 213.0 2317
W F 1.35 (5)
W TO 213.345 1111
WORD T 6257.377 7777

... and any combination and order of the above options.

In this command and its options, <n> is the bit pattern being searched
for, UNEQUAL means that all words which are not equal to <n> under the
mask do match, and the temporary limits clause is as described above.
ABSOLUTE means that the location where the match occurred is to be
output as an absolute block number and displacement rather than as a
relative location. MEMREF means that only words whose high-order
octal digit is 0 thru 5 (that is, the PDP-8 memory reference op-codes)
are allowed to match, independent of the setting of the MASK.

When you want to search for those words that reference a specific
location, set the MASK to 377 (octal) and then use the MEMREF option.
This will exclude all Operate (op-code 7) and lOT (op-code 6)
instructions from the output. This will make it easier to find the
desired information (for example, you will not output the location of
every CIA, 7041 octal, when you are looking for references to location
41 octal).

17-16

FUTIL

NOTE

UNEQUAL has a higher priority than
MEMREF, so first each word is tested
under the mask for equal/UNEQUAL and if
the specified condition is true, then
the word is tested for the MEMREF
condition.

17.3.2.2 STRING (Search) - The STRING search command searches for a
string of numbers (bit patterns) under an optional string mask. This
command has four options and has the forms:

STRING [MASKED] [ABS] [FROM<l>] [TO<l>] <numeric string>

STRING <numeric string>
STRING MASKED <numeric string>
ST M <numeric string>
STRING ABSOLUTE <numeric string>
ST A <numeric string>
STRING FROM <l><numeric string>
STR F <l><numeric string>
STRING TO <l><numeric string>
ST F <1> T <l><numeric string>

ST 4557,0,0
ST HA 4577,0,1203
ST H 5566,0
ST AB 'PI,'P@
ST A "A, "B
STR FR 100 1,4000,2
ST F 123.4567 (S),(-S)
~TR T 7577 'ER, 'RO, 'R@
ST F 1.0 T 7.0 'FO, 'TP

... and any combination and order of the above options.

In this command and its options, the numeric string is simply a string
of numeric items separated by commas. MASKED specifies that the
search is to be done under the string mask. ABSOLUTE is as for the
WORD search, and the temporary limits clause is as described above.

When the MASKED option is used, each item of the numeric string is
masked by a separate mask word from the string mask. If the string
mask is shorter than the search string, it is used in a circular
fashion (the first word follows the last) as many times necessary to
mask all of the items of the search string. If the string mask is
longer than the search string, the extra words are not used. This
feature allows for very complex searches to be done.

For example, you want to find all calls to a certain subroutine in a
file and also see their arguments. This could be done as follows:

FILE FUTIL
FUTIL.SV 6070-6120 ~P
SE HODE SAVE
SHASK (-1),0,0
ST H 4547,0,0

-look up file to be searched
-you stop typeout
-set access mode to mapped
-set mask for 2 arguments per call
-search for 4547 and 2 dummies

The output will give the address of the subroutine call (which
requires an exact match due to the mask of 7777) and the contents of
the two following words (which can be anything, since they are masked
by O).

Using the mask specified above, a search could be made for an exact
match, 2 "don't care words" and another exact match by simply
specifying a search string with 4 arguments. The first item of the
string mask will be used to mask both the first and the last items of
the search string.

This command can be particularly useful when trying to find certain
kinds of references in programs for which no CREF listing (or perhaps
no listing at all) is available.

17-17

FUTIL

17.3.2.3 SMASK - The SMASK command sets up the string mask.
the following form:

It has

SMASK <numeric string> SM (-1),0,0,7000,0

where the numeric string is the same as for the STRING search command
above. The current contents of the string mask may be examined by the
SHOW command.

17.3.2.4 SET - The SET command sets up various switches and variables
within the program. It has many options, each the name of the switch
or variable, and is always followed by a word or number describing how
it is set. All items are separated by spaces. The command has the
following two forms:

SET <option(s»
S <option(s»

SE OU PDP ERR LONG MODE SAV
S LO 100.0 UP 123.377 lDEV LPT

where the options are as follows:

OUTPUT
OUTPUT
o
o
OUT
o

ERROR
E
E
ERROR

OCTAL
o
PDP
P
FPP
F

SHORT
S
LONG
L

FORMAT <format>

OFFSET <1>

FILLER <n>

LOWER <1>

UPPER <1>

Set the output mode
single-character commands.
to OCTAL.

for the
Initialized

Set the mode for error message output.
The SHOW ERRORS command will list
all error messages. Initialized to
LONG. Also set to SHORT by
write-locking system device.

Set output format for LIST,
The formats have been
previously. Initialized
ASCII.

DUMP, etc.
described

to PACKED

Set the offset to the low 12 bits of
<1>. Initialized to O.

Set the filler to the low 12 bits of
<n>. Initialized to O.

Set the lower search limit. Initialized
to 0.200.

Set the upper search limit. Initialized
to 0.17577.

DEVICE <device name[:]> Set up the OS/8 device for access. The
handler is fetched at this time.
Initialized to SYS (device 01). ":" In
<device name[:]> is optional. <device
name> is an assigned or permanent OS/8
mass storage device name.

DDEV <device name[:]> Set up the dump device. Initialized to
SYS. See also DMODE below and OPEN and
CLOSE' commands.

17-18

MODE
MODE
MODE
MODE
MO
MO
MO
MO

DMODE
DMODE
DMODE

MASK
M

TEMP

NORMAL
N
SAVE
S
LOAD
L
OFFSET
0

NONE
PART
ALL

<n>
<n>

<n>

FUTIL

Set up the device access mode. These
have been described previously.
Initialized to NORMAL.

Set up the dump output mode.
Initialized to NONE, which sends all
output to console only. PART sends
DUMP, LIST and SHOW ERRORS output to the
DDEV (perhaps to a file). ALL sends all
output to both the console device and to
the DDEV. (See section on file output.)

Set the WORD
bits of <n>.

search mask to the low 12
Initialized to 7777.

Set the TEMP storage to the 24-bit value
of <n>. Value is returned by subsequent
use of the T in expressions.

As many options as desired may be specified on one
separated by spaces. In the event of an error, none
past the point where the error occurred will have been
have any question, use the SHOW command.

command line,
of the options
set. If you

17.3.2.5 SHOW - The SHOW command lists the current setting of any of
the program switches and variables set by the SET command and other
information. The program outputs either words or numbers to best
describe the current settings. As with the SET command, as many of
the options for this command as desired may be specified on single
command line, separated by spaces. This command has the form:

SHOW <option(s» SH BL CCB LOW UP ODT REL ABS

where the options are as follows:

BLOCK
B

CCB
C

HEADER
H

Output in octal the start block number of the last
file specified by the last FILE command.

Output the core control block of the last file
specified by the FILE command. If the file is not
a SAVE file, an error will occur. The start
address of the file is output as a 5-digit octal
number, the job status word (JSW) is output in
octal, and the core segments are output as 5-digit
octal addresses.

Output the header block information for the last
file specified by the last FILE command. If the
file is not a LOAD file, an error will occur. The
start address is output as a 5-digit octal number,
followed by the next free address as a 5-digit
octal number, the loader version number in octal
and a message if Extended Precision is required.
Then, for each level, a line is output with the
number of overlays, the 5-digit start address, the
relative start block and the length of the
overlays (in blocks) for this level.

17-19

ABSOLUTE
A

RELATIVE
R

ODT

LOWER

UPPER

FILLER

MASK
M

SMASK

OFFSET

MODE

DEVICE

DDEV

OUTPUT
o

FORMAT
F

VERSION

ERRORS
E

FUTIL

Output the absolute location of the last word
accessed on the device in <location> format (a 4
digit octal block number, an" and as-digit
octal address) and the word MOD if the current
block has been changed (the <something-changed>
flag is set).

Output the relative location (what you specified)
of the last word accessed on the device in <1>
format and the word MOD if the current block has
been changed.

Output the relative location of the last word
accessed by one of the special-character commands
in <1> format and the word MOD if the current
block has been changed ..

Output the search lower limit in <1> format.

Output the search upper limit in <1> format.

Output the value of the filler in octal.

Output the WORD search mask in octal.

Output the current contents of the STRING search
mask as a string of octal numbers.

Output the value of the offset in octal.

Output the name of the current setting of the
device access mode switch (NORMAL, SAVE, LOAD or
OFFSET) .

Output the 05/8 deivce name and number.

Output the name of the dump device.

Output the name of the current single-character
(ODT) command OUTPUT mode (OCTAL, PDP or FPP).

Output the name of the current output format.

Output the current version number of FUTIL.

Output a complete list of all error codes and
their corresponding messages. Note: this list is
output to the DDEV (dump device) so that it can be
output using the LPT handler for your system.
Note that Version number is also output with
errors.

17.3.2.6
sets up
CCB, etc.

FILE - The FILE command locates files on the OS/8 device and
the start block of a file for the mapped access modes, SHOW
This command has the forms:

FILE <file name string>
F <file name string>

FI FUTIL PIP.SV
F MICRO.LD

where the <file name string> is a string of one or more OS/8 file
names, separated by spaces. Any other characters except "." will be

17-20

FUTIL

taken as part of the file names. The program assumes extensions of
.SV, .LD and null (in this order) when looking up the file. This can
lead to a substantial amount of time when a large directory is
searched three times for a file that does not exist. Specifying an
extension will cause only one lookup attempt to be made. A null
extension, if desired, may be specified by making the "." the last
character of the file name. The program does one or more separate
lookups for each file name specified and outputs either

<file name> ssss-eeee 0000 (dddd) b.lll dd-mmm-yr

or

<file name> ssss-eeee 0000 (dddd) b.lll

or

<file name> LOOKUP FAILED

where "ssss" is the start block of the file in octal, "eeee" is the
last block of the file in octal, "0000" is the length of the file in
octal, "dddd" is the length of the file in decimal, "b. Ill" is the
block (segment) and location within that block of the first word of
the file entry (the first two characters of the name) in the
directory, and dd-mmm-yy is the file date. If the directory does not
contain the extra word required for the date or the date word of the
file is 0, the second form with no date will be output rather than the
first form. The LOOKUP FAILED message means either that the file name
was not found on the device or that the device is a write-only device.

The actual lookup operation is performed by the OS/8 USR, which is
swapped as needed (see section on program execution). Since the USR
keeps track of the current device once the first FILE command is
given, it will have the wrong directory in memory if the medium (tape
or disk) is changed on the physical device. This can be solved one of
three ways:

1. Use the REWIND command to rewind the device being removed and
clear the directory segment from the USR.

2. Do a SHOW ERRORS and abort the output when the message output
begins. This will have swapped out the USR. If messages are
not available, use 1 or 3.

3. Use EXIT or CTRL/C to return to OS/8 and then directly
restart FUTIL with the OS/8 START command. This will have
swapped out both error messages and USR from memory.

Any of these methods should be followed by a SET command to reset the
device and the rest of the I/O parameters desired.

The last file name specified that did not have a LOOKUP FAIL will be
the file used in the mapped access modes, SHOW CCB, etc. The program
is initialized with no known file, so attempting to access any
location in a mapped access mode or attempting to SHOW CCB or SHOW
HEADER without giving a valid FILE command will cause an error.

17-21

FUTIL

17.3.2.7 WRITE - The WRITE command forces the program to write out
the block currently in memory. It has the form:

WRITE [<block>]

where the optional <block> overrides the default number of the block
that was read to specify where the current block is to be written.
This dangerous operation does allow a limited amount of copying in a
special situation, e.g., allowing a directory to be backed up by
moving a copy to the end of the device (see the examples section) or
copying a single block from one device to another by changing the
DEVICE and then doing a WRITE (with or without an argument). Again,
as stated in the section on accessing the device, caution must be used
because attempting to write beyond the end of a device may not be
checked by the handler.

17.3.2.8 SCAN - The SCAN command does a rapid scan for read errors on
the current device. It has the form:

SCAN <block string> SC 0-6257

where the block string is of the same form as for the DUMP command.
Each block is simply read. If an error occurs, it is reported as:

0000 BAD BLOCK

where "0000" is the block number in octal, and the scan continues.
This is the only FUTIL command that will continue on a read error. If
the current block has been changed, and if any other blocks are
included in the scan, an implicit write will be attempted by FUTIL.
An error on this implicit write will be reported and then the command
will be aborted. This is the only time that this command will attempt
a write. The command can then be repeated if desired and it will
execute (only one implicit write attempt is ever made by FUTIL).

NOTE

The OS/8 actual block number for the
block to be read is stored for display
in the computer MQ register, if present.
It is particularly useful for following
the progress of this command. The value
is stored before checking if the current
block needs to be written.

17.3.2.9 REWIND - The REWIND command is used to move a tape back to
block 1 and to reset the USR directory segment. It has the form:

REWIND

and must
of the
memory) .
read.

be terminated by the RETURN key. It causes a read of block 1
device and resets the directory segment in the USR (if in

Any subsequent FILE command will cause the directory to be

17-22

FUTIL

17.3.3 File Output

Output to file-structured or non-file-structured dump devices is
provided through two commands, OPEN and CLOSE, and two SET options,
DDEV and DMODE. They can be used to simply make fast hard copy output
from the DUMP, LIST and SHOW ERRORS commands, to provide a hard copy
log of all operations carried out with a video terminal, to provide an
ASCII file output of some data for later processing by another
program, etc.

Output to file-structured and to non-file-structured devices (serial
devices) is handled in two separate ways. Output to the
file-structured device is done by first setting the DDEV and DMODE and
then OPENing an output file. No output to the device will be done
until the file is open (to protect your directories), and then output
will be done one block at a time. When output to the file is
complete, CLOSE your file to make it a permanent file (properly
terminated with a CTRL/Z and padded with nulls).

Output to a non-file-structured device is done by simply setting the
DDEV and DMODE. Output to the device will be done one line at a time,
as soon as specified by the DMODE, and neither the OPEN nor the CLOSE
commands are needed. The output is done by padding the buffer with
nulls after each line is ready and then calling the output device
handler, so the handler used should ignore nulls (which leaves out the
PTR: handler, for example).

17.3.3.1 OPEN - The
structured devices
has the form:

OPEN <file name>

OPEN command opens an output file on file
for partial or total output from the program. It

where the file name should be a standard 05/8 file name. The
extension defaults to .DU (for dump) if none is supplied.

WARNING

FUTIL gives significance only to the
characters space, carriage-return and
"." when scanning file names. It is
your responsibility not to include
characters that are not legal to other
OS/8 programs or the files will be able
to be accessed only through FUTIL or the
CCL command decoder.

This command must be given after the dump device is SET by the DDEV
option. The output specified by the DMODE will then be sent to this
file, one block at a time (packed only 8 bits per word), until either
the DMODE is changed or the file is closed.

Files can be opened at will without closing any previous file. This
gives the user additional flexibility, but at the expense of possibly
losing an output file if it is not closed.

Should an error occur on the output device while doing output, the
file is simply thrown away (it cannot be closed).

17-23

17.3.3.2
opened.

FUTIL

CLOSE - The CLOSE command closes an output
It has the form:

CLOSE

file previously

and must be on a line by itself. If given with no file open, it is
simply ignored.

17.3.4 Batch Operation

Operation of FUTIL under BATCH allows repeated operations to be done
without re-entry. All of the operations provided under interactive
operation are provided except that the RUBOUT character is simply
ignored, input is taken directly from the BATCH stream and console
output goes to the log output device.

Four commands have been added specifically to support use of FUTIL
under BATCH: IF, END, COMMENT and EXIT. These commands are also
available for interactive use, but are not as important in that mode.

17.3.4.1 IF - The IF command was implemented specifically to allow
FUTIL, when operating under BATCH, to be sure that the correct
operations are proceeding before modifying something incorrectly. It
has the form:

IF(expression> IF C-3575

where (expression> is a general expression of the same form as used by
the EVAL command. If the expression evaluates to exactly zero (as a
24-bit integer), command execution will continue as though the command
had not been seen. If the result is not exactly zero, command
skipping will begin and will continue until a line containing the
single word END is found. Command execution will then resume.

This command was set up to test only for zero under the assumption
that a test is to be made for some exact quantity. However, the
capabilities of the expression evaluator can be used to generate
sufficiently complex expressions for other tests. For example:

IF 40000000&(•...••) will test for positive
IF -(40000000&(... »-1 will test for negative
IF 10000&(-(77770000! (... ») will test for l2-bit non-zero

17.3.4.2 END - The END command re-enables command execution following
an unsatisfied IF command. It has the form:

END

and must be on a single line by itself. When encountered during
command execution, it is ignored. The IF/END commands cannot be
nested because the first END found will re-enable command execution
for any number of previous IF commands. For example:

IF .. .
IF .. .
IF .. .
END will terminate all three.

17-24

FUTIL

17.3.4.3 COMMENT - The COMMENT command allows optional comments in
command input which will simply be ignored during execution. It has
the forms:

COMMENT [<comment>]
C [<comment>]

COMMENf THIS IS ONE
C

where [<comment>] is an optional comment. Note that blank lines may
also be used for formatting of the output log but that they will also
close any open location.

17.3.4.4 EXIT - The EXIT command provides a method of return to OS/8
other than CTRL/C. It has the form:

EXIT

and the rest of the line is ignored. Exit does not write out the last
block modified. Use WRITE to make changes permanent.

17.3.4.5 EVAL - The EVAL command evaluates a parenthesized expression
of signed double-precision integers. It has the forms:

EVAL <expression>
E <expression>

~v S*~D4096tD

E B*400tL

where the <expression> follows the normal rules for arithmethic
expressions. Legal operators, in their order of precedence are:

(
I
*

+
&

evaluate inner expression
signed division
signed multiplication
subtraction
addition
logical product ("and")
logical sum ("or")
expression end

Besides 24-bit numeric input (which can be octal, decimal or mixed
octal and decimal) under the control of the CTRL/D and CTRL/K switches
and ASCII and packed ASCII using" and " the following variables may
be used:

C current contents (of location L).
L current location (15 bit, same value as is output by the

SHOW RELATIVE command).
B current block number (as for L).

F contents of FILLER (12 bits).
T contents of TEMP (24 bits).

S contents of the console switch register.

R the remainder of the last division or the high product of
the last multiplication. (24 bits, the sign may not be
correct.)

D contents of OS/8 Monitor date word.

17-25

FUTIL

Overflow on addition, subtraction and multiplication are ignored, but
trying to divide by 0 will cause an error.

If no errors occur, the program evaiuates the expression and types out
the results in the form:

=00000000 (sddddddd)

where "00000000" is the double precIsIon result in octal and
"sddddddd" is the signed double precision result in decimal (the sign
is either a dash or a space).

17.4 EXAMPLES

These examples help provide an overview of the use of the program.
The first two examples are discussed in detail to illustrate the
mechanics of the operations, while the following examples are intended
primarily to show what can be done with the program. Should questions
arise on the mechanics, review the first two examples and the
discussions of the commands in question.

Example 1:

Assume that you would like to know what CeL remembers of your last .UA
command. What it remembers is stored on block 65 (octal) of the
system device. As described in the source of CCL, each unit of what
it remembers is allocated 40 (octal), or 32 (decimal) words in this
block. The first four of these words contain binary information, and
the last 34 words contain the last input command, stored as packed
ASCII characters. The lines contain the inputs for the commands as
follows: TECO and MAKE (line 0), EDIT and CREATE (line 1), COMPILE
and EXECUTE and PAL (line 2), UA (line 3), UB (line 4), and UC (line
5) . Thus, the saved .UA command can be listed by outputting the
contents of the 4th through 37th words of area 3 in block 65 as packed
ASCII characters as follows:

• R FUTTL -call FUTIL from OS/8

EVA 3*40+4
~00000144 (0000100)

-calculate start displacement
-of the 3rd line (=144[8])

Now list the words of this line with the LIST command, specifying
the output format to be PACKED ASCII characters and the words to
list to be block 65 locations 144 (from above) through 144+33
(the expression for the location of the last word of this line).
FUTIL responds with the start location and a line of characters,
and the next location with a multiple of 10[8] as an address and
a line of characters.

I T<";r PAChE[I "''').144-(144+33) -list the words wanted

')Oc-. r-}.O,'L4'l! TIU,; FUFlll'i''i''i'.*/E/R=3
u0A~.00LAO: -that's it!

NOTE

For the examples above and below, the
symbol <cr> is used to show that you
need to terminate your command lines
with a carriage return. All other lines
above are output by the program.

17-26

FUTIL

Example 2:

Now assume that you would like to make the simple patch for OS/8
FORTRAN IV users with an FPP-8/A to use the lockout feature of the
FPP-8/A (from the August 1976 DIGITAL Software News) . This requires
changing the contents of location 15776 of FRTS (the Fortran Run Time
System) from 400 to 410 (which adds the lockout bit). You also want
to update the date word of the directory entry for FRTS (the 4th word
beyond the start of the entry) to show that the file has been updated.
This is done as follows:

.R FUTIL -call it

SET MODE SAVE
FILE FRTS

-set FUTIL to a mapped mode
-look up the file to map

1.327 31-DEC-75 FRTS.SV 0671-0722 0032(0026)
-1.327 is start of entry!

Now use ODT command / to open and change one word.

15776/0400 410 -add LOCKOUT bit

SET MODE NORMAL -switch to unmapped

Now use ODT command / with an expression to open the date word,
command @ to output it in date format and then put today's date
(as an octal value) in its place.

1.(327+4)/6375
@31-DEC-75(D) -change file date to today's date

WRITE

Example 3:

-send out this change

NOTE

First the file FRTS.SV is changed, and
then the OS/8 directory is updated to
the current date. Changing the address
desired from FRTS to the directory
automatically writes out the modified
block of FRTS before reading in the
directory segment that contains the file
name. However, the changed directory
segment must be written out explicitly
because there are no other blocks to
examine for this example.

While doing a /S transfer with PIP, PIP gives a read error in your
file SOURCE.PA. Attempting to read it with EDIT causes EDIT to type
?O~C and return to the Monitor. Find out what is wrong as follows:

.R FUTIL

FISOURCE.PA -look up the file
SOURCE.PA 0243-0351 0107 (0071) 2.005 30-AUG-74

SE MASK 0 La 243.0 UP 351.377 -set up mask & limits

W UNE 0 -search the file

17-27

FUTIL

?ee AT
[Note:

08 FATAL READ ERROR -here is the problem
Pee" may change with version, so is left out.]

-find out where it is SH ABS
ABS.LOC=0271.00000

WR

DU OS (B+L/400)

0271.00000: ..•. ~P

W UN FR 272.0 0

~C

-attempt to clear error

-it worked, now dump it

-change your mind

-check the rest of the file

-ok, now go fix the source

This sequence can also be carried out using the SCAN command as
follows:

.R FUTIL
Fl SOURCE.PA - use CCL to call & lookup

SOURCE.PA 0243-0351 0107 (0071) 2.005 30-AUG-74
SCAN 243-351 - scan the area

0271 BAD BLOCK - here is the problem!

271.0/ ?ee AT 07 FATAL READ ERROR - get block with trouble

WR

DU OS (B+L/400)

0271.00000: ~P

~C

- attempt to clear error

- it worked, now dump it

- change your mind

- ok, now go fix the source

If the error had been of some type other than a clearable error, the
WR command might also have failed.

Example 4:

After using BUILD to change your system, find out the device number
for DTAl:

.R FUTIL

SE DEV DTAI
SHOW DEV
DEVICE = DTAI (06)

Example 5:

- fetch the device handler

- number is decimal

By accident you zero a DECtape directory which contains the only copy
of a file you need. You have the PIP /E listing of the directory but
only want to re-build it enough to get the wanted file. The name of
the file is LOST.FI:

.R FUTIL

SE DEV DTAI
EV ~D5+14+11+10+16+13+8+5
= 00000122 (0000082)
EV ~D730- ~K61- ~D82-25

= 00001076 (0000574)

- it was here
- lengths of all preceding
- files
- rest of DEC tape room

17-28

1.01 7777 (-3)
41 7777
0001.00005\ 0000 'DU
0001.00006\ 7556 'MM
0001.00007\ 1752 'Y@
0001.00010\ 3451 0
0001. 00011\ 6234 (D)
0001.00012\ 4235 (-~D82)
0001.00013\ 5761 'LO
0001.00014\ 3341 'ST
0001.0015\ 2371 0
0001.00016\ 1107 'FI
0001.00017\ 1366 (D)
0001.00020\ 3015 (-~D25)
0001.00021\ 3415 0
0001.00022\ 2713 (~D574)

WRITE
~C

FUTIL

- now 3 files
- 1 extra word per entry
- set up a "DUMMY" file
- over the old <EMPTY>

- a null extension
- put in today's date
- length
- the desired file

- the extension

- its length
- an <EMPTY> to end it
- the rest of the tape

- now write it out
- & exit to use it

The LINE-FEED key was used to advance through the words.

The above example is exactly the same as hand calculating the required
length of the DUMMY file and then doing the following sequence using
PIP:

.R PIP
*DTAl:DUMMY</I=122
*DTAl:LOST.FI</I=31
*~C

- enter the DUMMY file
- enter the LOST.FI

Note that the lengths of the files are specified for PIP in octal.

Example 6:

Search for the end of each page of text in the file WRITE. UP. Since
the file is an OS/8 ASCII file, which has two characters packed in the
low 8 bits of two words and a third character packed in the high 4
bits of both of the two words, the form-feed character (~L) may be
packed as the third character in some cases. So it is necessary to
search both through the low 8 bits of each word and through the high 4
bits of each pair of words. Do it as follows:

.R FUTIL

FI WRITE.UP
WRITE.UP 0301-0437 S~P
SE MA 377
SE'LO 301.0 UP 437.377

••••.•• typeout occurs here

SMASK 7400,7400

ST M A ("~L*20), ("~L*400)

•••.... more typeout here

- typeout stopped

- char mask & limits set

- search for form-feed

- set up string mask

- search for 3rd char f-f

- only even addresses are real
- parts of form-feed pair!

In the string search, both the string and the data searched are masked
by the string mask.

17-29

FUTIL

Example 7:

You just assembled and saved PROG.SV but forgot to use the IP switch
to ABSLDR. Fix the CCB (core control block) as follows:

.R FUTIL
FI PROG.SV
PROG.SV 0341-+P
341.11 6203
0341.00002\ 6400
0341.00003\ 0000 400

WR

SHOW CCB
CCB:

SA 06400,JSW = 0400
CORE ~P

Example 8:

- stop output
- the "CDF CIF" part &
- the address
- change the JSW

- write the new CCB

- check it this way

- ok, output stopped

The CREF listing file for your source file is about 732 blocks long
(just over one full DECtape). If you do want to CREF the file onto a
DECtape, you must do it either with the IX (do not process literals)
switch or else you could use FUTIL to set up the directory with 735
blocks (by starting at block 2) as follows:

~R pip
*dtal:</z
*~C

.R FUTIL

- zero the directory

SE DEV DTAI
1.11 0007 2
61 6446 (C-5)
WR

- ** see WARNING below **
- change first block number
- 5 more blocks
- write it out

~C - now CREF it •.••

WARNING

Do not copy files onto a device that has
been fixed this way with FOTP (COpy
command) because it writes out a
directory of six blocks after the
transfers are finished and this will zap
blocks 2 through 6 (the first 5 blocks
of the first file) after the copy is
done. PIP and other processors do not
monkey around with the directory and
will handle this correctly.

17-30

FUTIL'

Example 9:

Something is wrong in your system and you have been losing your
directory repeatedly. After fixing it up with both PIP and FUTIL, you
just want to back it up while you generate your output files onto
another device. Since your system device has a total of 6260 (octal)
blocks (an RK8E) you back up the directory as follows:

.R FUTIL
1.0/ 7714 WR 6251
2.0/ 7740 WR 6252
3.0/ 7770 WR 6253
4.0/ 0000 3.2/ 0000
~C

- transfer blocks up by
- 6250 blocks

- block 3 was last, so
- all done

Shortly after this, everything crashes totally, i.e., directory
smashed, system gone from disk. Rebooting from DECtape you use PIP to
restore the system area and then use FUTIL to restore the directory:

.R FUTIL
SET DEV RKAO
6251.0/ 7714 WR 1
6252.0/ 7740 WR 2
6253.0/ 7770 WR 3

SCAN 0-6250

Example 10:

- load non-system device
- transfer by 6250 blocks
- the other way
- the last one

- do a SCAN for good luck

During a SCAN of a device a bad block is found in an important data
file and you would like to know just how far the read of that block
really succeeded (e.g., on a DECtape, the type of error will determine
whether the read will abort immediately or wait until the end of the
physical block). The following commands assume that the block number
is "bbbb" and set the input/output buffer in FUTIL to zeros before
doing the read:

bbbb.O/ ?ee AT 07 FATAL READ ERROR - do read to set up

MOD NUM 0-377
bbbb.OOOOO: 0 - set whole buffer to 0

SET DEV same - set to device now in use

/ ?ee AT 01 FATAL READ ERROR force the read again

DUMP OC bbbb - dump & examine the block

This example makes use of the fact that changing the DEVICE resets the
status of the buffer without changing its contents. This status
includes the block number known and the <something-changed) flag.
Therefore the next access to the block causes the block to be re-read
without attempting to write it out. Following the second error, as
much of the block as possible will have been read into memory and can
now be examined for non-zero values (assuming that the data itself was
not all zeros). If the read terminated before the end of the block,
there should be an obvious separation between the zero and non-zero
values.

17-31

FUTIL

Example 11:

Your system has a line printer that can output 132 characters per line
and 6S lines per page and you would like to change PALS and CREF to
make use of this to use less paper. Allowing two lines at the bottom
of the page, the lines per page should be set to 66 (call this nl).
Three changes need to be made to PALS to change the global numberr of
lines per page (nl), the number of items per column of the symbol
table (-nl+l) and the number of symbols per page (3*[nl-l]). One
change needs to be made to CREF to change the number of lines per page
(nl) and three changes need to be made to change the number of items
per line of cross references. Since CREF uses 10 characters for the
symbol name and six characters per line number, 19 references can
comfortably fit on one line (19*6+10= 124). The following changes to
these two programs will increase the number of lines per page and the
numbers of items per line in the cross-reference outputs and then
update the dates of the two programs in the directory:

.R FUTIL FILE PALS.SV

PALS.SV 0200-0217 0020 (0016)
SET MODE SAVE
1104/ 0070 ~D66

1256/ 7711 (-~D65)

1273/ 0245 (3*~D65)

FILE CREF
CREF.SV 0220-0234 0015 (0013)

2564/ 7704 (-~D66)

2017/ 1102 1366> TAD 2166

2132/ 1102 1366> TAD 2166

2166/ 0077 (-~D19)

SET MODE NORM

1. (57+4)/ 2036 (D)

(65+4)/ 0624 (D)

WRITE

Location 2166 was not used previous
first reference to the word in CREF
modified in PALS to be written out.
the directory will cause the last
be written out.

1.057 03-APR-76

- global lines per page

symbol table column size

- symbols per page

- ** SEE NOTE BELOW **
1.065 lS-JAN-74

- lines per page as above

- change instructions here

- and here to get new

- references per line

- reset access mode

- change dates of PALS

- and CREF.

- output the last changes

to this patch. Note that the
will cause the last block that was
Similarly, the first reference to

block that was modified in CREF to

NOTE

These patches were empirically
determined and applied to PALS V9H and
CREF V3C. They have been applied to
some other versions of both programs but
have not been tested with OS/S V3D. USE
THESE WITH CAUTION!

17-32

FUTIL

17.5 PROGRAM EXECUTION AND MEMORY ALLOCATION

The start address is 06400. When the program is started here, it
resets the internal CCB buffer, resets the start address to 00200,
tests the scope mode status (changing the action of RUBOUT if it is
set), performs initialization for the extended date format, attempts
to write out the error messages (resetting the ERROR mode control if
unsuccessful) , tests the BATCH-in-progress status (changing all
console I/O to BATCH I/O if it is set) and jumps to 00200. If you
want to manually re-start the program after it has been loaded,
re-start it at 00200.

The error messages are swapped with the USR, but not in the normal
manner, allowing write-locked startup with the loss of the message
text. When the program starts execution, it writes the messages onto
the system device in the same area used by the USR in swapping. Once
this has been done, the USR or error messages need only be read into
memory, as needed. In the case where it is not possible to write on
the system device, that is, it is write-locked, the messages are
discarded, SHORT mode is set permanently, and execution continues
without a hitch. Similarly, if an error occurs when reading the
messages, SHORT mode is set permanently, and an error is given to warn
that this has happened (with no message) •

The program uses almost all of the available memory in an 8K PDP-8.
It is allocated as follows:

00000-06237
06240-06577
06400-06777
06600-07177
07277-07577
10000-11777
12000-12577
12600-15700
15700-16377
16400-16577
16600-17177
17200-17577

program proper
buffer for arguments
- once only code for chaining
dump device handler area, 2 pages
device handler area, 2 pages
USR area & error messages (swapped)
CCB/header input and test, file output
text strings, lists
string mask, command buffer stack
CCB buffer, 1 page
"dump" device buffer, 2 pages
I/O buffer, 2 pages

The buffer for arguments in field 0 is defined long enough to store 45
numeric string items. The string mask buffer, in field 1, is 66 words
long, and the command buffer, also in field 1, is 140 characters long.
These lengths were chosen in anticipation of input from console
devices with up to 132 characters per line. No checking of any kind
is done to protect against overflow of any of these buffers under the
assumption that these buffers are large enough for any reasonable
input to this program~ however, the arrangement of the buffers is set
up in such a way that the most valuable data is the farthest distance
from a variable buffer.

The expression evaluation stack buffer uses the area in field 1 from
the end of the command buffer (approximately location 16130) to the
beginning of the CCB buffer (location 16377). This should provide
ample room for any expression to fit on one line. Again, no checking
to prevent overflow is done.

17-33

FUTIL

17.6 COMMAND SUMMARY

SINGLE-CHARACTER commands: ([<n>] = optional <item»

[<1>]/ <1>+ <1>-
[<n>] wi th t $: % & < = > ? @ [\]
$ (ESCAPE) RETURN; LINE FEED ! A

WORD-TYPE commands: (And modifiers, many of which are optional)

ASCII
DIR

DUMP
LIST
MODIFY

ASCII

WORD

STRING

SMASK

SET

SHOW

FILE
WRITE
SCAN
REWIND

OPEN
CLOSE

IF
END
COMMENT
EXIT

EVAL

PACKED OS XS240 UNSIGNED SIGNED BCD BYTE OCTAL PDP FPP

[<format>] <block string>
[<format>] <location string>
[<format>] <location string>

PACKED OS XS240 NUMERIC

<option(s» <n>

([<format>]s above)
([<format>]s above)
([<format>]s below)

UNEQUAL ABSOLUTE MEMREF FROM <1> TO <1>
<option(s»<number string>
MASKED ABSOLUTE FROM <1> TO <1>
<number string> e.g., 1,34,0,7700,0, (-1) ,377

<option>
OUTPUT
ERROR
FORMAT
OFFSET
LOWER
UPPER
DEVICE
DDEV
MODE
DMODE
MASK
FILLER
TEMP
<option(s»

<setting>
OCTAL PDP FPP
LONG SHORT
<format>
<1>
<1>
<1>
<device name[:]>
<device name[:]>
NORMAL SAVE LOAD
NONE PART ALL
<n>
<n>
<n>

OFFSET

BLOCK CCB ABSOLUTE RELATIVE ODT LOWER UPPER
MASK SMASK OFFSET MODE DEVICE OUTPUT FORMAT
HEADER FILLER VERSION ERRORS DDEV
<file name (s) >
[<block>]
<block string>

<file name>

<expression>

[<comment 1 ine>]

<expression> e.g., (l! (S+A DI7»*AKIS +)C&7600)
! & + - * / () C L B F T S R D

Numeric Input:

AD AK <digits> "<1 character> '<2 characters>
(.•• all eval options •••)

Control Characters:

17-34

FUTIL

17.7 SINGLE-CHARACTER COMMAND OUTPUT FORMAT SUMMARY

([<n>] = optional numberic item)

Output in octal or octal & symbolic (PDP or FPP):

<1>/
<1>+

/
<1>-

[<n>]LINE-FEED [<n>]! [<n>]A [<n>]

Output in a specified format:

[<n>]'
[<n>]$
[< n>] :
[<n>]%
[<n>] &
[<n>]<
[<n>]=
[<n>]>
[<n>]?
[<n>]@
[<n>] [
[<n>]\
[< n>]]
[<n>]$

No output: [<n>];

BCD
OS/8 ASCII
SIGNED decimal
BYTE octal
XS240 format packed ASCII
OCTAL
UNSIGNED decimal
PDP symbolic
DIRECTORY
DATE format (extended, in alpha)
ASCII
FPP symbolic
PACKED ASCII
(ESCAPE) As SET by last SET FORMAT x

17-35

	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35

