dlilgliltiall

oregreNAING

sUscem
users manuadl

digital equipment corporation

3888888888888883

DEC-8E-COCASA-B-D

CASSETTE PROGRAMMING SYSTEM
USER*S MANUAL

For additional copies, order No. DEC-8E-QCASA-B-D from Scoftware
Distribution Center, Digital Equipment Corporation, Maynard,
Massachusetts 01754 '

First Printing, March, 1973
Revised September, 1973
Printed Tuly, 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation, Digital Equipment Corporaticn assumes no respensibility
for any errors that may appear in this manual.

The software described in this document is furnished tc the purchaser
under a license for use on 2 single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on eguipment that is not supplied by
DIGITAL.

Copyright: () 1973, 1974 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFCRMATION page, located at the back of
this document, explains the various services available to DIGITAL
scftware users.

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in
preparing future documentatien.

The following are trademarks of Digital Equipment Corporation:

CoP DIGITAL INDAC Ps/8
COMPUTER LAB DNC KAl0 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

bpT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 QS/8 RT-11
DECTAFE IDAC PDP SABR
DIBOL IDACS PHA TYPESET &8

UNIBUS

CONTENTS

CHAPTER 1 THE CASSETTE PROGRAMMING SYSTEM

CHAPTER

CHAPTER

1.5

INTRODUCTION TO A CASSETTE STORAGE SYSTEM
Rardware Components
Software Components
WHAT IS A CAPS-8 CASSETTE?
The Format of a Cassette
The Sentinel File
THE SYSTEM CASSETTE
MOUNTING AND DISMCUNTING CASSETTES

CONCERNING EXAMPLES

2 GETTING ON-LINE WITH THE CAPS~B8 SYSTEM

2.1

| S I S N

SR 3 O
W b

b3
(V%]

[S S
[ESN N N N
o B

» . 2 = % =
. . % 4 Ll

.

LS VI RO 0 U SO W G N
IV LN WUt i ennn Ln
L]

W] b N

| K]
2,1

2.7

S5YSTEM PROGRAMS

SYSTEM CONVENTIONS
File Formats _
Filenames and Extensions
Input/Qutput Devices

LOADING THE KEYBOARD MOMITOR

USING THE KEYBOARD MONITOR
Making Corrections
Special Characters
I/0 Designations and Specification Options

KEYBOARD MONITOR COMMANDS

Run Command

Load Command

DAate Command

DIrectory Command
DElete Command

Zero Command

REwind Command

Version Command

NOTES ON DEVICE HANDLERS

MONITOR ERROR MESSAGES

3 SYMBOLIC EDITOR

INTRCDUCT ION

CALLING AND USING THE EDITOR
EDITOR Options
Input and Output Specificaticns
Version Numbers

[N
[N
[WR

PAGE

[S |

B b B RO B B DO BRI B
|
H WO oo-d-)-1m 0

CHAPTER

CHAPTER

MODES OF OPERATION
Transition Between Modes

[PU VY]
- »

-
=

SPECIAL CHARACTERS AND FUNCTIONS
RETURN Key
Erase (CTRL/U)
RUBQUT Key
Form Feed (CTRL/FORM}
The Current Line Counter (.)
Slash (/}
LINE FEED Key
ALT MODE Key
Right Angle Bracket (>}
Left Angle Bracket (<}
Equal Sign (=)
Colon (1)
Tabulation (CTRL/TAB)

L

L A N A o . - - L W

L T R T L R R T

[FER TRV VU VIR PV LR IV TR PF VU SH P V)

HFEHEFHEWOWNWDM WD -

[NV o~

COMMAND STRUCTURE

COMMAND REPERTCIRE

1 Input Commands

-2 Output Commands

3 Editing Commands

-7 TEXT COLLECTION

CHARACTER SEARCHES
Single Character Search
Character String Search

3.9 EDITOR ERROR MESSAGES

3.10 EDITOR DEMONSTRATION RUN

4 SYSTEM COPY
INTRODUCTION
CALLING AND USING SYSTEM COPY
.1 System Copy Options
.2 Input and Output Specifications
» 3 System Copy Example

4.3 SYSTEM COPY ERROR MESSAGES

5 PALC ASSEMBLER
5.1 INTRODUCTION

CALLING AND USING PALC
PALC QOptionsg

L
b b
»
]

an
W

CHARACTER SET

STATEMENTS
Labels
Instructions
Operands
Comments

BRLELELRY]
1] - L] L]

[N SN S S N

SRR S

iv

1
oy

I

(VERYE R VLRV RVER P4 WY IR FU N VLI PR R PUIE PY N PN VY] Wk
11
RS RO RN RS U B B TN R BT

1
HHEwo @€
[S =

W Wi W
|

3
-
W

3-16
3-16
3-17
3-21

3-23

CHAPTER

il e oL
] =] wd]]]] e
"= &4 % & = @

00 ~] LNl b b=

L I T]
- -

R RE R R i in
- - a - - - - L]
WD AL WO WD
L[] - -
LV

L b

L]

" o+ v =

A0) U o o

h-~]

a s = a

= b e e e e e
STaTEmREmEmEmEwmE

. »

i uananin

L]
—
L~
—
=

FORMAT EFFECTORS
Form Feed
Tabulations
Statement Terminators

NUMBERS

SYMBOLS
Permanent Symbols
User-Defined Symbols
Current Location Counter
Symbol Table
Direct Assignment Statements
Symbelic Instructions
Symbolic Qperands
Internal Symbol Representation for PALC

EXPRESSIONS
Operators
Special Characters

INSTRUCTIONS
Memory Reference Instructions
Indirect Addressing
Microingstructions
Autoindexing

PSEUDO-OPERATORS
Indirect and Page Zero Addressing
Radix Control
Extended Memory
End~of-File
Resetting the Location Counter
Entering Text Strings
Suppressing the Listing
Reserving Memory
Conditional Assembly Pseudo-Operators
Controlling Binary Output
Controlling Page Format
Altering the Permanent Symbol Table

LINK GENERATION AND STORAGE
CODING PRACTICES

PROGRAM PREPARATION AND ASSEMBLER OUTPUT
Terminating Assembly

PALC ERROR CONDITIOQNS

6 CASSETTE BASIC

INTRODUCTION
CALLING BASIC
NUMBERS

VARIABLES

Lt
Wb

oY Ch h Ch

oy T Ty

oo h
(F N e

(=2
-]

P L T T T T T |
L T T T T T |

Lo o oyl e =) B o B ey B o B A W o Mo B u R p ¥

O 00 00 00 O3 00 0D OO 00 0o a0 00 OO

.

= W0 O3 -] O e L B
[]

WD WO WO D D WD

L}

I O M S h

(S I SR

ARITHMETIC OPERATIONS
Priority of Operations
Prentheses and Spaces
Relational Operators

IMMEDIATE MODE
PRINT Command
LET Command
Looping PRINT and LET Commands

EXAMPLE RUN

BASIC STATEMENTS
Statement Numbers
Commenting the Program
Terminating the Program
The Arithmetic Statement
Input/Cutput Statements
Creating Run-Time Input Files
Loops
Subscripted Variables
Transfer of Control Statements
Program Chaining
Subroutines
Functions

ITMPLEMENTING A USER-CODED FUNCTION
Coding Formats
Floating-Point Format
incorporating Subroutines with UUF
Writing the Program
Examples of User-Coded Functions

FLOATING-POINT PACKAGE
Instruction Set
Addressing

EDITING AND CONTRCOL COMMANDS
Erasing Characters and Lines
Listing a Program
Running a Program
Stopping a Run
Loading a User~Coded Function
Erasing a Program In Memory
Renaming a Program
Saving a Program

CASSETTE BASIC ERROR MESSAGES
CASSETTE BASIC SYMBOL TABLE
USING CAPS-8 CODT

FEATURES

USING CODT
Commands

ILLEGAL CHARACTERS

ADDITIONAL TECHNIQUES
TTY I/0-FLAG
Interrupt Program Debugging

vi

CHAFTER

CHAPTER

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Tabhle

[LRGEE I R YWY AN AR RWR N LR Y

Cctal Dump
Indirect References

ERRORS

OPERATION AND STORAGE
Storage Requirements - CAPS-8 System
Programming Notes Summary

COMMAND SUMMARY
CAPS-8 UTILITY PROGRAM

INTRGDUCTION

CALLING AND USING THE UTILITY PROGRAM
Utility Program Options
Input and Qutput Specifications

UTILITY PROGRAM ERROR MESSAGES

BOCT

OPERATING PROCEDURES

APPENDICES
ASCII Character Codes
Error Message and Command Summaries
PALC Permanent Symbel Table
CAPS-8 Demonstration Run
Monitor Services

Assembly Instructions
TABLES

CAPS-8 Extension Names
Directory Options

Keyboard Monitor Error Messages
EDITOR Options

Command Format

Input Commands

List Commands

Text Trangfer Commands
Editing Commands

Search Character Options
Terminating a String Search
EDITOR Error Codesg

System Copy Options

System Copy Error Messages
PALC Options

Use of Operators

PALC Error Codes

| T N R I I |
b L b W N

1

]
Wbl = N W@ R

vii

U B b WWWwWwbwwhhem
]
WHALHENNRHFHFROoR @

FPFomNHO

s LN

o

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Figure
Figure
Figure
Figure
Figure

Cassette BASIC Functions
Function Addresses

Fleoating-Point Accumulator
Floating-Point Instructiong
Relative Addresses

Cassette BASIC Error Messages
Cassette BASIC Symbol Table
Monitor Memory Map

Utility Subroutines and Locations
Header Record Structure

oy ooy O
I 11
W B U s G b

ILLUSTRATIONS

1-1 Cassette Programming System
1-2 CaPS-B Cassette

1-3 Mounting a Cassette

E-1 8witch Option Characters
E~2 Ring Buffers

6-38
6-45
6-46
6-50
6-51
6-57
6-60
E-1

E-1

E-11

CHAPTER 1
TIHE CASSETTE PROGRAMMING SYSTEM

1.1 INTRODUCTION TO A CASSETTE STORAGE SYSTEM

The PDP-8 Cassette Programming System (CAPS~8) is a small programming
gsystem for the PDP-8/E (8/M or 8/F) computer and is designed around
the use of cassettes for program storage, rather than DECtape, paper
tape or disk storage. CAPS5-8 replaces paper tape procedures
completely, The MI8-F Hardware Bootstrap initially loads the Cassette
Keyboard Monitor intoe memory; with the use of the Monitor all file
transfers and program loading and storage 1is done via cassette.
Cassettes are more convenient and reliable and much easier to use than
paper tape, and in addition, cut the time involved in loading and
storing programs ugsing paper tape by almost one half.

CAPS—-8 provides the user with a Keyboard Monitor, I/0 facilities at
the Monitor 1level, and a library of System Programs, including a
machine language assembler, an editor, and a higher-level programming
language.

Figure 1-1 Cassette Programming System

l.1.1 Hardware Components

The Cassette Programming System is built around a PDP=-8/E, 8/M, or 8/F
computer with a minimum of one TU60 dual cassette unit, a console
terminal (LA30 DECwriter, LT33 or LT35 Teletype, or VI05 DECterminal),
and 8K of memory, A line printer is optional.

1.1.2 Software Components

A brief description of the software package available with the
Cassette Programming System follows. Each program is discussed in
greater detail later in the manual.

1. MONITOR - The Keyboard Monitor provides communication
between the wuser and the Cassette System Executive
Routines by accepting commands from the conscle terminal
keyboard. The commands allow the user te run system and
user programs, save programs oh cassette, and obtain
directories of cassettes.

2, Symbolic EDITOR - The EDITOR allows the user to modify or
create source files for wuse as input to language
processing programs such as BASIC and PALC, The EDITOR
contains powerful text manipulation commands for gquick
and easy editing,

3. PALC Assembler (Program Assembly Language--Cassette) -
PALC accepts source files in the PAL machine language and
generates absolute binary files as output. These files
can then be loaded and executed using Monitor commands.

4. BASIC = BASIC provides a higher=level programming
language which is easy to learn and use, It includes
such language features as user-coded functions, data
files on cassette, and program chaining.

5. System Copy (8YSCOP) - SYSCOP allows the user to transfer
files from one cassette to another, giving him the
ability to make multiple copies of a cassette and "clean
up” full cassettes so that they may become available for
future use,

1.2 WHAT IS A CAPS-8B CASSETTE?

b CAPS-8 cassette is a magnetic tape device much like that used in a
cassette tape recorder. The tape itself and the reels it is wound on
are enclosed inside a rectangular plastic case (see PFiqure 1-2},
making handling, storage, and care of the cassette convenient for the
user,

On either end of one side of the cassette are two flexible plastic
tabs called write protect tabs (see A in Fiqgure 1-2). There is one
tab for each end of the tape; since data should only be written in one
direction on the tape, the user will need to be concerned with only
the tab which is specifically marked on the cassette label. Depending
upon the positien of this tab, the user is able to prctect his tape
against accidental writing and destruction of data. Wken the tab is
pulled in toward the middle of the cassette sc that the hole is
uncovered, the tape is write~locked; data cannot be written on it and
any attempt to do so will result in an error message. When the tab is
pushed toward the outside of the cassette so that the hole is covered,
the tape is write-enabled and data can be written onto it, Data can
be read from the cassette with the tab in either positior.

The bottom of the cassette (B in Figure 1-2) provides an opening where
the magnetic tape is exposed. The cassette is locked into position on
a TU60 cassette unit drive so that the tape comes in contact with the
read/write head through this opening.

Both ends of the magnetic tape in a cassette gonsist of clear plastic
leader/trailer tape; this section of the tape is not used for
information storage purposes, but as a safegquard in handling and
storing the cassette itself. Since cassette tape is susceptible to
dust and fingerprints, the leader/trailer tape should be the only part
of the tape exposed whenever the cassette is not on a drive.

UINCOVER HOLE TO PRCTECT DATR il
o

LES]
LE Y

=
:| i

THS SIDE N
gt wondprment cor perotion - maynali

B C

Figure 1-2 CAPS5-8 Cassette

1.2.1 The Format of a Cassette

A cassette is formatted so that it consists of a sequence of one or
more files. Each file is preceded and followed by a file gap. (A gap
in this sense is a set length of specially coded tape.) All cassettes
mist start with a file gap; any information preceding the initial file
gap is unreliable. A file consists of a sequence of one or more
records separated from each other by a record gap. The first record
of a file is called the file header record and contains information
concerning the name of the file, its type, length, and so on.
{Chapter 2 provides more information concerning header records.) A
record generally contains 128 (decimal} characters of information;
there are approximately 600 records per cassette tape.

Records consist of a sequence of one or more cassette bytes; a byte in
turn consists of eight bits each representing a binary zero or one.
Characters and numbers are stored in bytes using the standard ASCII
character codes (see Appendix A) and binary notation.

The number of records of information on a .cassette tape may be
estimated by the user, On the outside of the cassette case is a clear
plastic window (C in Figure 1-2). Along the bottom of this window is
a series of marks; each mark represents about 50 inches of magnetic
tape. Knowing that approximately 2 records fit on an inch of tape,
the wuser is able to make a reasonable guess as to the length of tape
and number of records available for use, By simply glancing at the
width of the tape reel showing in the window, the user can tell
quickly if he is very close to the end, Since he is given no advance
warning of a full tape condition, the user must visually keep track of
the length of tape he has available, Should the tape become full
before his file transfer has completed, another cassette must be
substituted, and the transfer or output operation must be restarted,

1.2.2 The Sentinel File

The last file on a cassette tape is called the sentinel file, This
file consists of only a file header record and represents the logical
end-of~tape. A zerced or blank cassette tape is one consisting of
only the sentinel file.

1.2 THE SYSTEM CASSETTE

The software discussed in Section 1.1 is provided to the user on a
single c¢assette called the System Cassette. This is the cassette on
which the entire CAPS-8 System resides, and it is wutilized for all
system functions, The System Cassette must always be mounted on drive
0: drive 0 serves as the default device when the user fails to specify
another.

NOTE

Each TU60 dual cassette unit has two
drives, The drive on the left is always
odd-numbered and the drive on the right
even-numbered; thus, drive 0 will be the
left drive, If the user has more than
one TU60 dual cassette unit, he should
probably label the drives in consecutive
order so that there will be no confusion
when he is using the system.

The write protect tab on the System Cassette should usually be in the
write-locked position so0o that data will not accidently be written on
it; it is suggested that the user make a copy of this cassette as
protection against loss or accidental destruction,

1.4 MOUNTING AND DISMOUNTING A CASSETTE

To mount a tape on a drive, hold the tape so that the open part of the
cassette is to the left and the full reel is at the top. Set the top
Wwrite protect tab to the desired position depending upon whether data
is to be written on the tape,

Open the locking bar on the cassette drive by pushing it to the right
away from the drive {see A in Figure 1-3), Next hold the tape up to
the cassette drive at approximately a 45-degree angle and insert the
tape into the drive by applying a leftward pressure while
simultaneously rotating the cassette over the drive sprockets. This
brings the tape into position against the read/write head. Push the
tape into the unit so that when the cassette is properly mounted, the
locking bar automatically closes over the cassette back edge., (Figure
1-3 illustrates this procedure.)

Press the rewind button on the cassette unit (see B in Figure 1-3;
there is a rewind button for each drive). This causes the cassette to
rewind to the beginning of its leader/trailer tape, {Pressing the
rewind button a second time causes the cassette to rewind to the end
of the leader/trailer tape and to the physical end~of=tape. The
cassette unit will click; this sound is almost inaudible and the user
may not hear it unless he is listening carefully. Normal usage
requires that the user press the rewind button only once whenever he
wishes to manually rewind a cassette). Even though tapes which are
neot actively being used on a drive should already be positioned at the
beginning, the nuser should develop the habit of automatically
rewinding a cassette. when the tape has finished winding, the
casgette will stop moving. The cassette is now in place and ready for
transfer operations.

Figure 1-3 Mounting a Cassette

Before removing a cassette from a drive, the tape should always be
rewound to its bheginning. This ¢an be done by pressing the rewind
button on the cassette unit or by issuing the REwind Monitor Command
as explained in Chapter 2, Rewinding a tape ensures that the clear
leader/trailer tape will be the only tape exposed at the open part of
the cassette. To remove a cassette from the cassette drive, open the
locking bar and the cassette will pop out, When cassettes are not
being actively used on a cassette drive, they can be stored in the
small plastic boxes provided for this purpose by the manufacturer.

NOTE

Before using a new cassette, or prior to
using a cassette that has just been
shipped or accidently dropped, mount the
cassette on a drive so that the Digital
label faces the inside of the unit and
perform a rewind operation, Remove the
cassette, turn 1t over, and perform
another rewind operation. This packs
the tape neatly in the cassette and
places the full tape reel at the proper
tension,

1.5 CONCERNING EXAMPLES

In the chapters that follow, care has been taken to include acutal
machine printout whenever possible. In cases in which there may be
some discrepancy as to whether a character was typed by the user or by
the system, that typed by the system will be underlined,

CHAPTER 2
GETTING ON-LINE WITH THE CAFPS-8 SYSTEM

2.1 SYSTEM PROGRAMS

The Cassette Programming System is distributed on a single cassette,
called the System Cassette, which contains all the programs necessary
for loading the Monitor into memory and creating and running system
and wuser programs, The directory of the System Cassette is as
follows:

C2BOOT.BIN @21/22/73 Vi
MONTOH.BIN @1/722773 V1
SYSCOPBIN @1/25/73 u2
EDIT .BIN Q1/02/73 VI

FALC +BIN @l1/82/73 Vi
BALIC «BIN @1s82773 VI

System files are in binary format {see Section 2.2,1}. The first two
files on any System Cassette must be C2BOOT.BIN and MOMTOR,BIN; these
two files comprise a bootstrap and the Keybcard Monitor, C2BOCT.BIN
loads the Monitor into memory from the System Cassette; the Keyboard
Monitor links the user and the CAPS-8 System by providing a means of
communication between the two., By accepting commands from the console
terminal keyboard, the Cassette Keyboard Monitor allows the user to
run system and user programs, save and recall files utilizing cassette
storage, and create, assemble, and lcoad programs.

2.2 SYSTEM CONVENTIONS

The following conventions concern file formats and file naming
procedures and are standard for the CAPS-8 System, as well as for many
other systems.

2.2.1 File Formats

The Cassette Programming System makes use of two types of file formats
== ASCII and Binary.

Files in ASCII format conform to the American National Standard Code
for Informatioen Interchange 1in which alphanumeric characters are
represented by a 3-digit code. A table containing ASCII character
codes in 7- and 8-~bit octal is provided in Appendix A,

Binary format files consist of 12-bit binary words representing PDP-38
machine language code, The standard DEC binary fermat is used with
the exception that no checksum is necessary. Binary files contain
field addresses and memory instructicns and are read directly into

memory for immediate execution., CAPS5-8§ System Programs are in binary
format, and programs which the user assembles with PALC are translated
into files in binary format.

2,2,2 Filenames and Extensions

System and user files are referenced symbolically by a name of as many
as six alphabetic characters (A~2) or digits (0-9), followed
aoptionally by an extension of from 1 t¢ 3 alphabetic characters or
digits; (the first character in a filename must be alphabetic). The
extension to a filename is generally used as an aid in remembering the
CAPS-8 format of a file. Table 2-1 lisits commonly accepted extensions
~= the user may or may not conform to this list as he chooses; it is
included here only as a guide:

Table 2-1 CAPS-8 Extension Names

Extension Meaning
PAL PALC source file (ASCIT)
BIN System or user binary format file
BAS BASIC source file (ASCII}
TXT Text file (ASCII}
DoC Documentation file (ASCII)
DAT Data file (ASCII or other)

Generally the user may call his files by any mnemonic filename and
extension he chooses. In some cases, if he aomits specifying an
extension, the System Program he is running may assume an extension,
For example, PALC assumes an extension of .PAL unless the user
indicates another, and the Run command assumes L,BIN unless anocother
extension is specified.

2.2.3 Input/Output Devices

There are three available categories of input/output devices in the
Cassette Programming System: console terminal keyboard (including
paper tape reader and punch if an LT33 Teletype containing these units
is used as the console terminal), cassette drives 0-7, and a line
printer. There are no permanent device names in the CAP5-8 System,
Command strings and I/0 designations are entered in such a way that
the user specifies the device by a drive number and the file by a
filename; option characters allow the user to direct listings to the
line printer or to otherwise change the normal operating procedure of
a program, The System Cassette -~ drive 0 -- is the default device if
no drive number is specified. For example:

171

(DI is a Monitor command instructing the computer to print a directory
listing of a cassette., 8Since no drive number is specified, drive 0 ==
the System Cassette ~-- is assumed. The option character L sends
output to the line printer instead of the consocole terminal, which is
the normal output device,}

2.3 LOADING THE KEYRBOARD MONITOR

The CAPS=8 hardware bootstrap and C2BCOOT.BIN on the System Cassette
are used to load the Cassette Keyboard Monitor into memory. (Both
bootstraps are described 4in Appendix E.} Loading the Monitor is
accomplished as follows:

1. Ensure that the computer and terminal are on=-line.

2. Press and raise the HALT key, Make sure that the SINGLE
STEP key is in a raised position.

3. Place the System Cassette (write~locked to protect data)
onto cassette unit drive 0;

4, Press and raise the SW key.

At this point the RUN lamp should be on and the System Cassette should
begin to move., The hardware bootstrap calls the first program on the
System Cassette (C2ROOT,BIN) which in turn loads the Keyboard Monitor
{MONTOR.BIN} into memory. If an error occurs during the loading
process (for example, an error may be caused by the cassette being
improperly mounted, by a missing file on the +tape, or by the
cccurrence of an I/0 error} no error message will inform the user
gsince the Monitor is not completely in memory., Instead, the System
Cassette may stop moving and the computer may loop or halt. If this
is the case, steps 2-4 above should be repeated.

Once the Monitor has been loaded, the System Cassette stops moving and
a dot is typed at the left margin of the console terminal page. This
instructs the user that the Monitor is now in memery and ready to
accept input commands.

2.4 USING THE KEYBOARD MONITOR

Each command to the Keyboard Monitor is typed at the console terminal
keyboard in response to the dot at the left margin. A command is
entered by pressing the RETURN key.

2.4.1 Making Corrections

Corrections may be made to the command line providing they are made
before the line is entered (that is, before a carriage return has been
typed}. The RUBOUT key is used to correct typing errors. Pressing the

RUBOUT key once causes an open bracket ([} to be typed followed by the
last character entered into memory. After this character is echoed on
the console terminal it is deleted from memory. Successive RUBOUTs
each cause one more character to be printed and deleted., The first
non-RUBQUT character typed (after the last RUBOUT in a sequence)
causes a closing bracket (]} to be printed, thus enclosing only the
deleted portion of text within brackets, For example:

The user types: .R BACIC{RUBOUT) (RUBOUT) (RUBOUT) SIC
The console terminal shows: :R RACICECICISIC
The string is entered to the Keyboard Monitor as: .R BASIC

2.4,2 Special Characters (CTRL/C, CTBL/0, and CTRL/U)

Control can be returned to the Keyboard Monitor while under any of the
System Programs by typing a CIRL/C (produced by holding down the CTRL
key and simultanecusly pressing the C key), If the Monitor is not
still in memory, a CTRL/C causes a complete rebootstrap by reading the
appropriate files from the System Cassette on drive 0. When it 1is
ready to accept input, the Keyboard Monitor types a dot at the left
margin of the teleprinter (i.e. c¢onsole terminal) page.

Teleprinter output can be suppressed by typing a CTRL/0 {produced by
holding down the CTRL key and simultaneously pressing the 0O key).
This allows execution of the program to continue, but stops all
console printout. Typing a second CTRL/O will resume output again.
Unless output is extremely lengthy, or unless the procgram is waiting
for input from the user, processing of a program after an 1initial
CTRL/0D will usually be completed before the user is able to type a
second CTRL/O. Printout will automatically resume when control is
returned to the Keyhoard Monitor {indicated by a dot at the left
margin) .

NOTE

CTRL/0 does not prevent certain
important error messages from printing
on the conscle terminal.

A command line may be deleted completely, before it is entered, by
typing a CTRL/U (produced by holding down the CTRL key and pressing
the U key). This causes the current command line to be ignored and
returns control to the Keyboard Monito:r., The Monitor prints a dot at
the left margin to indicate that it is ready to accept ancther
cormmand.,

2.4.3 I/0 Designations and Specification COptions

Whenever the user runs a System Program or performs any [/0 operation,
he must indicate the file(s} to be accessed, the cassette drive(s) on
which they are located, and any desired options associat:ed with the
operation., Procedures used in entering this information are explained
helow.

Monitor commands generally reguire only a single c¢ommand line which
specifies the unit drive number (in the range 0-7), filename{s), and
opticn{s) in the following format:

.COMMAND DRIVE #:FILENAME,EXT/OPTION {5}

COMMAND represents one of the eight Monitor commands discussed in
Section 2.5. The filename should be separated from tha drive number
by a colon. Options are alphabetic characters and are saparated from
the rest of the command line by the slash character (/). Successive
options follow one another without any separating character. The
command line is executed by typing a carriage return,

I1/0 specifications to System Programs follow a diffarent format.
First the System Program is called from the System Cassatte using the
Monitor Run command. The System Program then asks for the input
filename, drive number, and options, and then the outsut filename,
drive number, and coptions, This information is usually requested in
two separate command lines, but the actual format varies between
System Programs. Generally, the command strings appear as follows:

+R SYSTEM PROGRAM/OPTIONS
*INPUT-DRIVE #:FILENAME
*QUTPUT~-DRIVE #:FILENAME

The appropriate chapter should be referenced for the accurate format,

Options are available in most System Programg and Monitor commands
allowing the wuser to change the order or format of input and ocutput
operations from that which would normally be carried out by the
program, Again, interpretation of options varies; the user should
refer to the appropriate section or chapter to learn which options are
available and what actions will result from their use.

2.5 KEYBOARD MONITOR COMMANDS

There are eight Keyboard Monitor c¢ommands available to the user,
Commands are typed in response to the dot printed hy the Monitor and
are entered when the RETURN key is pressed, Each command consists of
one or more alphabetic characters, Ffollowed by a space {or any
non-alphabetic character). Any error made while wutilizing these
commands will result in a message informing the user ({see Section
2.8). After occurrence of an error, control returns to the Keyboard
Monitor and +the command must be retyped. (Since several of the
commands begin with the same letter, the user must be sure to note how
much of the command must be entered in order to distinguish it from
other commands. While it does not matter if too many characters are
entered, too few will cause errors.)

2.5.1 Run Command
The Run command is of the form:
.R Drive #:Filename/Option(s)

The Run command instructs the Monitor to lpad and execute the file
specified in the command line. ‘The file should be in self-starting
binary format {(that is, the last location in the source file must be
an origin setting which indicates the starting address of the file);
as the file is not in self-starting binary format, the program will be
loaded but execution will not begin; the user will have to proceed as
though he were using the Load command (see Section 2.5.2). The user
may omit specifying an extension as the Monitor assumes ,BIN, For
example:

+H CAHT.BIN

or

«2 CART

Regardless of which command string the user types, the Monitor assumes
.BIN, searches drive 0 for the file CART.BIN, and executes it.

Options allowed in the command line depend upon the program the user
is running. Availability of options and results of their use are
discussed in Chapters 3, 4, 5 and 6. No error occurs if the user
specifies an option not allowed by a program; the option is simply
ignored.

Multiple files may be executed using the Run command, Patches to
programs, BASIC user-coded functions, and programs the user may have
created using PALC can be executed as follows:

.R Drive #:PROGl,Drive #:PROG2,...PROGn/Option(s)

where n represents any number of programs as long as the total number
of characters on the input specification line does not exceed 64. The
user must enter programs in the command line in the order in which he
wants them executed and must be careful to include appropriate
gtarting, chaining, and return addresses (see Appendix E).

For example, assume the user has written a routine which will be used
for debugging purposes; each time a certain condition is met during
execution, this routine will be accessed, print a message and cause
execution to halt. The routine has been created using the CAPS-8
EDITOR, assembled with PALC, and is stored on cassette drive 1 as
DBG.BIN; it is loaded into memory with the user's program (TABLE.BIN
stored on cassette drive 0). The programs are loaded as follows:

:R TABLEBIN,1:DBL.BIN

Chapter 6, BASIC, contains an example of running multiple files in
conjunction with the BASIC user-coded function feature.

2.5.2 Load Command

The Load command is used to load a binary file into memory and takes
the form:

.L Drive #:Filename.ext/Option(s)

This command is similar to the Run command except that the computer
halts after loading the file, To start execution, the user sets the
correct starting address in the Switch Register, presses ADDR LOAD,
CLEAR and CONT (if the file is in self-starting binary format, the
user need only press CONT); appropriate addresses included in the
program (see Appendix E)} will return control to the Keyboard Monitor
after execution,

Multiple files may be loaded in the same manner as in the Run command
by simply specifying them in correct execution order on the command
line:

.L Drive #:PROGl,Drive #:PROGZ....PROGn/Option{s)

Again, n may reprasent any number of programs as long as the total
number of characters on the command line does not exceed 64,

2.5.3 DAte Command
The DAte command is of the form:
.DA mm/dd/yy

where mm, dd, and yy represent the current month, day and year as
entered by the user. (One or two-digit numbers in the range 0-99 are
allowed in the DAte command. The Keyboard Monitor does not check for
errors other than the entry of a number which is outsids this range.)
This date will then appear in directory listings (see Section 2.5.4},
and the date of creation of all new files will be included, If the
DAte command is not wused, directory 1listings will contain only
filenames, as illustrated in Section 2,1,

2.%.4 DIrectory Command
The DIrectory command is of the form:
.DI Drive #/Option{s)

and causes a directory listing of the cassette on the drive specified
to be output on the console terminal. No colon is necessary after the

drive number. There are two options available for use with the
DIrectory command:

Table 2-2 Directory Options

Option Meaning

/L Causes the listing to be ocutput
on the line printer rather than
the console terminal.

/F Causes a "fast" listing to be
produced {omitting creation
dates and version numbers).

In the following example a directory of cassette drive 2 is requested
and output (the version number in the directory listing reflects the
number of times the file has been accessed and changed wusing the
CAPS~8 EDITOR; see Chapter 3, Section 3.2.3):

1A/R9/70

FILE «RBIN A3/17712
ARCDEF « PAL

A ~A50C V1
B . Jar

This same directory using the F option will be reduced to:

1A/29/72
FILFE «RIN
ARCNEF . PA4L
=1 -

2.5.5 DElete Command
The DElete command is of the form:
.DE Drive #:Filename,ext
and causes the filename on the gpecified drive number to be deleted
from the directory. The filename is replaced by the name *EMPTY in

the directory listing and the file can no longer be referenced. Only
cne file may be specified in the DElete command string at a time,

For example, assume the user wishes to delete the filename MATH,DAT
from the directory of cassette drive 3. He types:

.DE 3:MATH.DAT

and then obtains a directory listing of drive 3, The directory will
appear as follows:

11717712

TAPE «RAS 11/p2/72
*EMPTY «

TOR «ASC 11/077272 v3

where *EMPTY represents the deleted filename MATH.DAT.

2,5.6 Zero Command
The Zero command is of the form:

+2 Drive #:Filename
and specifies that the sentinel file of the indicated cassette 1is to
be moved so that it immediately follows the file indicated in the
command line, (See Chapter 1 for a description of the sentinel file.}
All files following the sentinel file are deleted from the cassette
and that portion of the tape 1Is completely reusable.

For example, assume cassette drive 3 contains the following directory:

LOOK .ASC 1As23/772 VR

BASE «A8AS

FOITR «BIN 11717772
*EMPTY «

RACRKE K

and the user wishes to save only the first three files, He uses the
Zero command as follows:

27 3tFOUR.BIN

and the sentinel file is placed immediately after the file FOUR,BIN.
The directory now reads:

LOQK «ASC 1ds23772 yo
BASE-HAS
FOUIR-BRIN 11717772

When no filename is specifed in the command line, for example:

the cassette is said to be zeroed, or completely deleted of files; the
sentinel file 1is moved to the beginning of the cassette so that the
entire tape is available for use. This method is useful in “cleaning
up” cassettes which may contain several *EMPTY files in the directory
listing but have become full and therefore unavailable for further
use. First, any needed files are transfered to another cassette using
SYSCOP (see Chapter 4}, then the directory of the o0ld cassette is
zeroed, The sentinel file is written at the beginning of the tape
making the cassette completely reusable,

All new tapes must be zeroed before they are first used. This ensures

that a sentinel file is present on the tape and moved to the beginning
of the tape.

2.5.7 REwind Command
The REwind command is of the form:
.RE Drive #

and causes the cassette on the drive number specified to be rewound to
its beginning. (The user can also cause the tape to rewind by
pressing the rewind button on the cassette unit.) System Programs and
Monitor commands always rewind a cassette before accessing a file, but
if the user delevopes the hahit of rewinding the cassette himself he

performs a timesaving action, A cassette should always be rewound
before it is removed from a drive.

2.5.8 Version Command

The Version command is used to find out the wversion number of the
Monitor currently in use, Typing:

.v

instructs the Monitor to respond with the appropriate number. For
example:

W
Ml.2

indicates that versien 1.2 is currently in use.

2.6 NOTES ON DEVICE HANDLERS

Device handlers for the CAPS-8 System are described in Appendix E. A
few notes of interest concerning thelr use are included here.

The line printer performs a form feed operation before beginning an
output task. Characters are unpacked from the output bhuffer and
printed, A form feed is also produced following the completion of an
output task. The line printer handler is capable of handling only an
80 column printer.

If the console terminal is an LT33 Teletype containing reader and
punch units, these may be used as input/output devices in conjunction
with the Teletype keyboard., To punch a tape, simply place the punch
unit to ON; to read a tape, place the reader unit +to START.
Characters will be printed on the Teletype keyboard as they are read
or punched. Binary tapes may not be punched,

NOTE

The purpose of the Cassette Programming System is
the elimination of paper tape procedures.
Cassettes provide a more convenient, reliable and
faster means of program storage than paper tape.
Therefore, although paper tapes may be read and
punched wusing the LT33 paper tape units, there¢ is
no support for this type of I/0 and its use is not
encouraged.

If the user's program does not over-write certain areas of memory, the
parts of the Monitor which are in these locations are available for
use. This allows the user who takes advantage of writting his own
programs in the PAL machine language to access system handlers and to
restart or rebootstrap the Cassette Keyboard Monitor after program
execution, Information concerning Monitor Service Rwutines, I/0
routines, device handlers, and internal descriptions of the Keyboard
Monitor are provided in Appendix E.

2,7 KEYBOARD MONITOR ERROR MESSAGES

The following error messages may occur when the Keyboard Monitor

used incorrectly:

Table 2-3

Keyboard Monitor Error Messages

is

Message

Meaning

BAD COMMAND

FILE NOT FOUND

INPUT ERROR ON UNIT n
QUTPUT ERROR ON UNIT n

UNIT n ROT READY

UNLOCK UNIT n

The user has failed to follow the
correct syntax for Monitor commands.
This may be the result of mispelled
commands or toe many or improper
arguments in a command string,

The Monitor could not locate the file
{or f£files) specified, The user should
check to be sure that filenames are
spelled correctly and that the unit
drive number specified is correct.

An I/0 error has occurred on the cas-
sette drive specified. This may be
caused by an incorrectly formatted
cassette or may be due to a timing
error, The wuser should try the I/0
transfer using another cassette.

There 18 no cassette on the drive
specified, or no such drive exists.

The user tried to write data when the
write protect tab of the cassette on
the drive specified was write-locked.
To write data this tab must be
write-enabled,

CHAPTER 3
SYMBOLIC EDITOR

3.1 INTRODUCTION

The CAPS-8 Symbolic EDITOR is used to create and modify ASCII source
files so that these files may be wused as input to other System
Programs such as BASIC and PALC.

The EDITOR considers a file to be divided into logical units called
pages. A page of text is generally 50-60 lines long, and corresponds
approximately to a physical page of a program listing. {Note that
this 1is not the same as a memory page}. The EDITOR reads one page of
text at a time from the input file into its internal buffer where the
page becomes available for editing. The Editor contains commands for
creating, modifying, or deleting characters, lines, or complete
logical pages of text, All commands consist of a single letter or a
letter with arguments, and are executed by typing the RETURN key.

3.2 CALLING AND USING THE EDITOR
To call the EDITOR from the System Cassette, type:
.R EDIT/Options

in response to the dot (.) printed by the Keyboard Menitor.

3.2,1 EDITOR Options
There are two options available for use with the EDITOR; these are

described in Table 3-1. (Option usage has been previously discussed
in Chapter 2, Section 2.4.3).

Table 3-1 EDITOR Options

Option Meaning

/B Convert two or more spaces to a ‘TAB when
reading from input device.

/M More than one file will be used for input,
(when one of these commands--E, F, J, N, R,
or Y=~is issued and an end-of-file is
encountered, the EDITOR pauses and requests
that the user specify another inpat file,
thus allowing continuation of the command.
If the /M option has not been previously
specified in the input line, the end~of-file
condition remains in effect. See Section 3.9
for an example.)

3.2.2 Input and Output Specifications

After the EDITOR has been called from the System Cassette it asks for
the input specification as follows:

*IN2IT FILE~

The user responds with the input cassette drive number and the input
filename and extension, if any. For example:

«INP'JT FILE=-] :1A34.PAL

If only a filename (and no input cassette drive) is specified, the
default device--drive 0--is assumed: f+he EDITOR prints the user's
input specification line, only first it includes the assumed default
device before echoing the filename, as illustrated below:

#IN2J[FILE-t1aR

The user has typed the filename AB, but before this is printed, the
EDITOR inserts 0: and then goes on to echo AB, If the input file is
not found or if a syntax error occurs, the EDITOR prints a question
mark (?), types an asterisk (*) at the left margin, and waits for
another input designation. Any number of input files is permitted,

If no input specification is made, (that is, a carriage return only
has been typed in response to the INPUT request), a new file will be
created using the console terminal keyboard as the input device, The
EDITOR allows input £from the keyboard via the Append command (see
Example Using the EDITOR for an illustration o¢f +this method of
creating a program).

If more than one input file is to be entered, the /M option must be
specified when the EDITOR is called from the System Cassette. The
user responds to the INPUT FILE 1line with the drive number and
filename of the first input file. He enters output information as
daescribed next, and then edits his file. When the end-of=file is
reached during the editing procedure, the EDITOR again prints the
INPUT FILE request and the usger responds with the drive number and
filename of the second file, When the user finishes editing his final
file and no more input files are available, he responds to the
EDITOR's INPUT request by typing a carriage return; the EDITOR
continues and closes the output file, All input files are combined
under the one filename specified in the output line.

The EDITOR initially requests ocutput information by printing:

*0'1TPIT FILE-

The user responds with the output drive number and filename. For
example :

#)TT2 T FILE-21 0T EXT

Again, if no device is designated, drive 0 is assumed and echoed.

If the output file is to have the same name as the input file, the
user need only type the correct output drive number followed by a
carriage return; the EDITOR will echo the assumed name. For example:

#INPIT FILE=-]1:FILE.R4%
#0172 IT FILE=-2:FILE«BAS

The EDITOR allows only one output file and creates the header for this
file on the specified cassette, deleting any file already on that
cassette under the same name (and replacing it with *®EMPTY in the
directory 1listing) and leaving the cassette correctly postioned for
further output.

NOTE

If no output designation 1is specified
(that 1is, a vcarriage return only has
been typed in response to the OQUTPUT
FILE request), the only output
operations which may be performed are L
(list buffer on the console terminal) or
V (list buffer on the line printer}.

Only cassette files in ASCII mode are acceptable for use by the
EDITOR, No error message is given if non-ASCII files are input, but
the results of editing operations are garbled.

Once I/O file designations are entered, the Symbolic EDITOR is ready
to accept commands from the keyboard, It signifies this by printing a
number sign (#) at the left margin; this symbol occurs whenever the
EDITOR is waiting for a command.

3.2.3 Version Numbers

Each time a filename is indicated in response to the output file
specification 1line, the number 0 is assigned to it. This number
(called the version number) signifies that a new file has been created
and that it has not been previously edited or referenced under this
filename,

The user may call a file from a specified cassette, make corrections
to it and change it any number of times before he is finally satisfied
with it or ready to use it for some other operation, 1In this case, he
may reference the file in the output specificaticn line by specifying
only the output cassette drive number followed by a carriage return,
since the filename itself will not be changed. Each time he does

this, the wversion number of the file iz increased by 1. When the
version number of a file has been incremented in this manner so that
it is greater than 0, it appears in directory listings on the same
line as the filename (see Chapter 2).

NOTE

Version numbers associated with edited
files should not be confused with the V
Monitor command, which prints the
version of the Monitor currently in use.

3.3 MODES OF OPERATION

The EDITOR operates in one of two different modes: command mode or
text mode. In command mode all input typed on the keyboard is
interpreted as commands instructing the EDITOR to perform some
operation, In text mode, all typed input is interpreted as text to
replace, be inserted into, or be appended to the contents of the text
buffer,

3.3.1 Transition Between Modes

Immediately after being loaded into memory and started, the EDITOR is
in command mode. The special character # is printed at the left
margin of the teleprinter page indicating that the EDITOR 1is waiting
for a command. All commands are terminated by pressing the RETURN
key.

In text mode, the EDITOR performs I/0 operations on text stored within
the text buffer, Text is input to the EDITOR buffer until a form feed
is encountered, A line of text is terminated by a carriage return,
If no carriage return is present, the ‘text entered on the current line
is ignored. The buffer has room for approximately 5200 (decimal)
characters. When text has been input to the extent that there are
only 256 decimal locations available in the buffer, the console
terminal rings a warning bell, From this peint on, whenever a
carriage return is detected during text input, coentrol returns to the
EDITOR command mode and the bell is rung., This line-at~a~time input
may continue until the absoclute end-=of=-buffer is encountered. At this
point, no more text will be accomodated in the buffer; a "?" is
printed and control returns to command mode every time the user
attempts to input more text.

3.4 SPECIAL CHARACTERS AND FUNCTIONS

A number of the console terminal keys have special operating
functions, These keys and their associated functions are described
below,.

3.4.1 RETURN Key

In both command and text medes, typing the RETURN key causes a
carriage return and 1line feed operation and signals the EDITOR to
process the information just typed, In command mode, :1t allows the
EDITOR to execute the command just typed. A command will not be
executed until it is terminated by the RETURN key (with the exception
of =, explained later). In text mcde, RETURN causes the line of text
which it follows to be entered in the text buffer. A iyped line is
not actually part of the buffer until terminated by the RETURN key.

3.4.2 Erase (CTRL/U}

The erase character (CTRL/U combination) is used for error recoveries
in both command and text modes, It is generated by holding the CTRL
key while simultanecusly typing the U key. When ugsed in text mode,
CTRL/U cancels everything to its left back to the beginning of the
line; the EDITOR echoes 4 U and performs a carriage return/line feed
(CR/LF); the user then continues typing on the next l:ne. When used
in command mode, CTRL/U cancels the entire command; the EDITOR
performs a CR/LF and prints a #. The erase character cannot cancel
past a CR/LF in either command or text mode.

3.4.3 RUBCUT Key

Rubout is used in error recovery in both command and text modes, in
text mode typing the RUBQUT key echoes a backslash (\} and deletes the
last typed character. Repeated rubouts delete from right to left up
to, but not including, the CR/LF which separates the current line from
the previcous one. For example:

THE O RJICHNANNICK AROwWN FOX

will be entered in the buffer as:

THE N JTICK BRUWN FOX

When used in command mode, RUBOUT is equivalent to the CTRL/U feature
and cancels the entire command; the EDITOR prints a #, 'performs a
CR/LF, and waits for another command to be entered,

3.4.4 Form Feed (CTRL/FORM)

A form feed signals the EDITOR to return to command mode. A form feed
character is generated by typing the CTRL and FORM keys
simultaneously. This combination is +typed while in text mode to
indicate that the desired text has been entered and that the EDITOR
should now return to command mode. The EDITOR performs a CR/LF and

prints a # in response to a CTRL/FORM to indicate that it is back in
command mode, CTRL/G is usually equivalent to CTRL/FORM except in the
case of a SEARCH command, as explained in Section 3.8,1,

3.4.5 The Current Line Counter (.}

The EDITOR keeps track of the implicit decimal number of the line on
which it is currently operating. The det (produced by typing the
period key) stands for this number and may be used as an argument to a
command. For example, .L means list the current line; .-1,.+1lL means
list the line preceding the current line, the current 1line, and the
line following it, then update the dot {current line counter) to the
decimal number of the last line printed,

The fellowing commands affect the current line counter as indicated:

1. After a Read or Append command, the current line counter
is equal to the number of the last line in the buffer.

2, After an Insert or Change command, the current line
counter is equal to the number of the last line entered.

3., After a List or Search command, the current line counter
is eqgual to the number of the last line listed.

4. After a Delete command, the current line counter 1is
equal to the number of the line immediately after the
deletion.

5. After a Kill command, the current line counter is equal
to 0.

6. After a Get command, the current line counter is equal
to the number of the line printed by the GET.

7. After a Move command, the current line counter is not
updated and remains whatever it was before the command
was issued.

3.4.6 S8lash (/)

The glash symbol (/) has a value equal to the decimal number of the
highest numbered 1line in the buffer, It may also be used as an
argqument to a command., For example: 10,/L means list from line 10 +to
the end of the buffer.

3.4.7 LINE FEED Key

Typing the LINE FEED while in command mode is equivalent to typing .+1
and will cause the EDITOR to print the line following the current one
and to increment the value of the current line counter by one,

3.4.,8 ALT MODE Key

Typing the ALT MODE key while in command mode will cause the 1line
following the current line to be printed and the current line counter
to be incremented by one., If the current line is alse the last line
in the buffer, typing either ALT MODE or LINE FEED will gain a
response of ? from the EDITOR indicating that there is no next line.
Some console terminals provide an escape key (ESC) in place of the ALT
MODE. Their functions are identical.

3.4.9 Right Angle Bracket ({>)

Typing the right angle bracket (*) while in command mode is equivalent
to typing .+1lL and will cause the EDITOR to echo > and then print the
line following the current line. The value of the current line
counter 1is increased by one so that it refers to the last line
printed.

3.4.10 Left Angle Bracket {<)

Typing the left angle bracket (<) while in command mode is equivalent
to typing .~lL and will cause the EDITOR to echo < and then print the
line preceding the current line, The value of the current line
counter 1is decreased by one so that it refers to the last line
printed.

3.4.11 Equal Sign (=)

The equal sign is used in conjunction with the pointer's dot (.} or
slash (/). When typed in cormmand mode the equal sign causes the
EDITOR to print the decimal value of the argument preceding it. In
this way the user may determine the number of the current line (.= 1},
or the total number of lines in the buffer (/=)}, or the number of
some particular line (/=-8=) without counting lines from the beginning
of the buffer., No carriage return need be typed following the egqual
sign.

3.4,12 Colon (3)

Typing a colon produces the same result as the equal sign (=).

3.4.13 Tabulation (CTRL/TAB)

The EDITOR is written in such a way as to simulate tab stops at
8-space intervals across the teleprinter page. When the CTRL key is
held down and the TAB key is typed, the EDITOR produces a tabulation,
A tabulation consists of from one to eight spaces, depending on the
number needed to bring the carriage to the next tab stog. Thus, the

EDITOR may be used to produce neat columns on the teleprinter or line
printer page, The tab function is used in conjuction with the /B
option (for input and output) to allow the user to produce and control
tabulations in the text buffer during input operations. On input
(under a Read command), the EDITOR will replace a group of two or more
spaces with a tabulation if the user has specified the /B option.

3.5 COMMAND STRUCTURE

A command directs the EDITOR to perform a desired operation, Each
command consists of a single letter, preceded by zero, one, two or
three arguments. The command letter tells the EDITOR what operation
to perform; the arguments usually specify which numbered line or lines
of text are affected. Command format is illustrated in Table 3-2,
where E represents any command letter,

Table 3~2 Command Format

Type of Command Command Meaning
Format
No Argument: E Perform operation E
One argument: nE Perform operation E on the

referenced line.

Two Arguments: m,nE Perform operation E on 1lines m
through n, inclusive,

Three Arguments: m,nS$jE This combination is used by the
MOVE command only and is explained
in Section 3.6.3.

3.6 COMMAND REPERTOIRE
Commands to the EDITOR are grouped under three general headings:

Input Commands
Output Commands
Editing Commands

Explanation of the three types of commands is detailed in the
following sections. Each command description will state if the EDITOR
returns to command mode after completing the operation specified by
the command. All cormmands are entered when the RETURN key is typed.

The EDITOR prints an error message consisting of a question mark
whenever the user has requested nonexistent information or used
inconsistent or incorrect format in typing a command. For example, if
a command requires two arguments, and only one {or none} is provided,
the EDITOR will print ?, perform a carriage return/line feed, and
ignore the command as typed. Similarly, if a nonexistent command
character is typed, the error message ? will be printed, followed by a
carriage return/line feed; the command will be ignored. However, if

an argument is provided for a commmand that does not require one, the
argument will be ignored and the normal function of the commmand
performed. For example:

User Types: Result:
L The buffer is empty., The user is asking for
? nonexistent information.
7,5L The arguments are in the wrong order. The
? EDITOR cannot list backwards.
17510M This command requires two arguments before
? the $; only one was provided,
H The user types a nonexistent command letter.
2

3.6.1 Input Commands

Two commands are available for inputting text, and are described in
Table 3=3,

Table 3-3 Input Commands

Command Format Action and Explanation

A A Append the incoming text from the conscle
terminal keyboard te the information
already in the buffer (if there 1is no
input file the buffer will be empty
initially). The EDITOR will enter text
mode upon receiving this command and the
user may then type in any number of lines
of text,. The new text will be appended to
the information already in the buffer, if
any, until a form feed (C7RL/FORM key
combination) is typed; control then
returns to command mode.

By using the Append command with an empty
buffer, a symbolic program may effectively
be generated on=line by entering the
program via the keybeoard,

Any rubout encountered during execution of
an Append command will delete the last
typed character. Repeated rubouts will
delete from right to left up to but not
beyond the beginning of the current line.

Table 3=3 Input Commands (Cont'd)

Command Format Action and Explanation

R #R Read a page of text from the input file on
the specified unit drive, The EDITOR will
read information from the input file until
a form feed character (CTRL/FORM key
combination} 1is detected or until the
EDITOR senses a text buffer full
condition, All incoming text except the
form feed 1is appended to the contents of
the text buffer. Information already in
the buffer remains there.

NOTE

In both these commands, the
EDITOR 1ignores ASCII codes 340
through 376. These codes
include the codes for the lower
case alphabet (ASCII 341-372).
The EDITOR returns to command
mode only after the detection of
a form feed or when a buffer
full condition is reached.

3.6.2 Output Commands

Output commands are subdivided into list and text transfer commands.
List commands will cause the printout of all or any part of the
contents of the text buffer to permit examination of the text, Text
transfer commands provide for the output of form feeds, corrected
text, or for the duplication of pages of an input file. List or text
transfer commands do not affect the contents of the buffer,

List Commands

The commands in Table 3-4 cause part or all of the contents of the
text buffer to be listed on the console terminal or line printer.

Table 3-4 List Commands

Command Format Action and Explanation

L L LIST the entire page. This causes the
EDITOR to list the entire contents of the
text buffer on the console terminal.

L #nlL LIST line n., This line will be printed
followed by a carriage return and a line
feed.

Table 3-4 List Commands {Cont'd)

Command Format Action and Explanation
L #m, nL LIST lines m through n inclusive on the
console terminal,
v Ay List the entire text buffer on the line
printer (if one is available},
v #nv List line n of the buffer on the line
printer.
v #m,nv List line m through n inclusive on the

line printer.

The EDITOR remains in command mode after a list command, and the value
of the current line counter is updated so as to equal the number of

the last line printed,

Text Transfer Commands

The following commands
EDITOR is designed
meaningless characters
illegal (nonexistent)

control the cutput of text and form feeds,
to minimize the possibility of illegal
being written into a source file; therefore the

The
or

codes 340-376 and 140-177, and most illegal
control characters will not be output,

Table 3=-5 Text Transfer Commands

Action and Explanation

Cormmand Format
B $E

P #P

P #np

P #m,nP
N #N

Output the current buffer to the output
file and transfer all input to the output
file: clese the output file,

Transfer the entire contents of the text
buffer to the output buffer.

Transfer line n only to the output buffer.

Transfer 1lines m through n inclusive
{where m must be less than n) to the
output buffer, When the output buffer
becomes full, the text is output to the
indicated output file. The P cormand
automatically outputs a FORM character
{214) after the last line of output.

Transfer the contents of the text buffer
to the output buffer, delete the text
buffer and read in the next logical page
of text from the input file.

Table 3-5

Text Transfer Commands (Cont'd)

Command

Format

Action and Explanation

$nN

$Q

Execute the above sequence n times., If n
is greater than the number of pages of
input text, the command will proceed in
the specified sequence until it reads the
end of the input file, then it will return
to command mode.

The N command cannot be used with an empty
text buffer. A ? is printed if this is
attenpted,

Immediate end-of-file. The Q command
causes the entire text buffer to be
output. All text written into the output
buffer 1is then written into the output
file and the file closed, with control
returning to the Cassette Kevboard
Monitor.

3.6.3 Editing Commands

The following commands permit deletion, alteration, or expansion
text in the buffer.

Table 3-6 Editing Commands

of

Command

Format

Action and Explanation

B

4B

#nC

#m,nC

List the number of available memory
locations in the text buffer, The EDITOR
returns the number of locations on the
next line, To estimate the number of
characters that can be accomodated in this
area, maltiply the number of free
locations by L1L.7.

Change line n, Line n is deleted, and the
EDITOR enters text mode to accept input,
The user may now type in as many lines of
text as he desires in place of the deleted
line, If more than one line is inserted,
all subsequent lines will be automatically
renumbered and the 1line count will be
updated appropriately. A CTRL/FORM
terminates the command.

Change lines m through n inclusive (m must
be numbered less the n). Lines m through
n are deleted and the EDITOR enters text
mode allowing the user to type in any
number of 1lines 1in their place, All
subsequent lines will be automatically

Table 3-6 Editing Commands (Cont'*d)

Action and Explanation

Command Format
D ¥nD
D #m,nD
F #F
G G
G #inG

renumbered to account for the change and
the line count will be updated,

After any Change operation, a return to
command mode is accomplished by typing a
CTRL/FORM, After a Change, the wvalue of
the current 1line counter {.) is equal to
the number of the last line input., The C
command utilizes the Text Collector in
altering text (see Section 3.7).

Delete line n, Line n is removed from the
text buffer, The current line counter and
the numbers of all succeeding 1lines are
reduced by one.

Delete lines m through n inclusive. The
space used by the line to be deleted is
reclaimed as part of the Delete function
(refer to Section 3.7, Text Collection).

Used during a string search. Find the
next occurrence of the string currently
being searched for (see Section 3,8.2,
Inter-Buffer Character String Search).

Get and list the next 1line which has a
label associated with {it, (A label in
this context is any line of text which
does not begin with a space, slash, TAB,
or RETURN)., The EDITOR begins with the
line following the current line {line .+1)
and tests for a line with a 1label. This
will most often be a line beginning with a
tag; it might alsc be a line containing an
origin. For example:

TAD (This is the current
nea line)
STHIS IS a4 COMMENT
HFERF » a (This 1line would be
printed by the command
G)
TnD
157
*5A01 {(This line would also

be printed if another
G were typed)

Get and 1list the next 1line which begins
with a label; the EDITOR begins at line n
and tests it and each succeeding line as
described in the preceding example.

Table 3-6 Editing Commands (Cont'd)

Command

Format

Action and Explanation

fnI

#I

T

#K

Both G and nG update the current line
counter after ffinding the specified line,
However, if either wversion of the GET
command reaches the end of the buffer
before finding a line beginning with an
ASCII character other than a tab, slash,
or space, the current line counter retains
the wvalue it was assigned before the GET
was issued, and a ? is typed to indicate
that no tagged line was found, The EDITOR
remains 1in command mode after a GET
command.

Insert the typed text before line n until
a form feed (CTRL/FORM) is encountered.
The EDITCR enters text mode to accept
input. The first line typed becomes the
new line n. Rubouts are recognized. Both
the 1line count and the numbers of all
lines following the insertion are
increased by the number of lines inserted.
The value of the current line counter is
equal to the number of the last line
inserted. To reenter command mode, the
CTRL/FORM key combination must be typed
(terminating text mode). If this is not
done, all subseguent commands will be
interpreted erroneonusly as text and
entered in the program immediately after
the insertion.

Insert text before 1line 1 (when used
without an argument}.

Initiate an inter-buffer string search
(See Section 3.8.2, Inter-buffer Character
String Search).

Kill (delete) the entire page in the
buffer. The values of the special
characters (/) and (.,) are set +to zero.
The EDITOR remains in command mode.

NOTE

The EDITOR ignores the commands
nk or m,nK. This prevents the
buffer from accidently being
destroyed 1if the user intended
to type a List command (m,nL).

Table 3-6 Editing Commands (Cont'd)

Command Format Action and Explanation

M fm,n$jM Move lines m through n inclusive to before
line 3 (m must be numerically less than n
and j may not be in the range between m
and n). Lines m through n are deleted
from their current position and are
inserted before line j. The lines are
renumbered after the move 1is completed
although the wvalue of the current line
counter {,) is unchanged, as moving lines
does not use any additional buffer space,
{(The $ character is produced by typing a
SHIFT/4.)

A line or group of lines may be moved to
the end of the buffer by specifying j as
/+1., PFor example, 1,105/+1M, Since the
MOVE command requires three arguments, it
must have three arguments in order tc move
even one line, This is done by specifying
the same line number twice, For example,
5,3523M, This will move line 5 to before
line 23, The EDITOR remains in command
mode after a Move command.

5 #ns Search line n for the character specified
after typing the § and a carriage return.
Allow modification of the line when the
character is found, (See Section 3.8.1,
Single Character String Search.)

Y #nY Skip to a logical page in the input file,
without writing any output, For example,
#5Y. This command reads through 4

logical pages of input, deleting them
without producing output. The :=Zifth page
is read into the text buffer and control
automatically returns to command mode. If
there are no more pages of input, the
EDITOR issues a ? and returns fo conmmand

mode.
$ #STEXT" Perform a character string search for the
$STEXT® string TEXT (see Section 3.8.2, Intra-
" Buffer Character String Search}.
Following a string search, #" causes a
search for the next occurrence of the
string.

3.7 TEXT COLLECTION

The CAPS-8 EDITQOR contains an automatic text collector which reclaims
buffer space following the use of a D, S, or C command. If a full

buffer condition is reached, the user may output lines of text (using
the P command, for example), and then delete these lines from the
buffer--text collection is automatic and always occurs on the three
commands mentioned above,

NOTE
If extremely large amounts of text are deleted,
the text collection process could take sgeveral

seconds. For small amounts of text, no
appreciable time is lost,

3.8 CHARACTER SEARCHES

Two types of searches were mentioned in Table 3-6-=-the standard
character search and the character string search, Each is explained
in turn.

3.8.1 sSingle Character Search

The single character search may take one of the following forms:

#5
or

#ns
or

#m,ns

where m and n represent line numbers (m«n), and S initiates the search
command, This command searches the entire text buffer {or the line(s)
indicated) for the search character, The search character is typed by
the wuser after he types the RETURN key which enters the command, and
does not echo on the teleprinter. The EDITOR prints the contents of
the entire buffer or the indicated line(s) until the search character
is found. When the search character is found, printing stops and the
user types a response chosen from the following table:

Table 3-7 Search Character Options

Option Result

text Enter text at that point at which
the search character was found and
printing stopped.

CTRL/G ({(bell rings) Change the search character to the
next chiaracter typed; search
continues, If the character is not
contained in the line, the
remainder of the line will be typed
and control will be returned to
command mode. (For example, CTRL/G
CTRL/G would cause the remainder of
the line to be listed.)

Table 3~7 Search Character Options (Cont'd)

Option Result

CTRL/FORM Continue searching for the next
occurrence of the character.

RETURN key End line here, delel:ing all
subsequent text on that line.

LINE FEED key Make two lines out of the current
line, Typing a line feed actually
inserts a carriage return without
returning control to command mode,

RUBQUT key Delete characters from the line, A
rubout echoes a backslash (\) for
each character deleted. When all
characters have been deleted,
echoing of "\" stops.

3.8.2 Character String Search

The character string search can identify a given line in the buffer by
the contents of that line or any unique combination of characters.
This search returns the line number as a parameter that can be used to
further edit the text, There are two types of string search
available: intra-buffer search and inter-buffer search.

Intra-Buffer Character String Search

The intra-buffer search scans all text in the current buffer for a
gspecified character string. If the string 4is not found, a ? is
printed and control returns to command mode. If the string is found,
the number of the 1line which contains the string is put into the
current line counter and control waits for the wuser to issue a
command. Thus, searching for a character string in this manner
furnishes a line number which can then be used in conjunction with
other EDITOR commands. This provides a useful framework for editing,
as it eliminates the need to count lines or search for line numbers by
listing lines.

An intra-buffer search is signalled by typing the ALT MODE key (which
echoes as $) 1in response to the # printed by the EDITOR. The user
then types the string to be found (as many as 20 characters may be
gspecified--any additional characters typed are echoed but not included
in the search}. The search string cannot be broken across line
boundaries. Typing a single guote (') terminates the character
string; when the RETURN key is typed the search is performed beginning
at line 1 of the text buffer. Use of the double guote (") causes the
search to begin at the current line +1. (Use of ' and " as command
elements prohibits their wuwse in the search string. An incorrect
response resets the current line counter to the beginning of the

buffer.)

For example, assume the text buffer contains the following text:

ARC DEF GJO
1A28B3C4D5E6
STRINGABCD

The user wants to list the line that contains ABC; this could be done
by typing:

#EARC'L

The search begins with line 1 and continues until the string is found.
The current line counter is set equal to the line in which the string
ABC occurred, and the L command causes the 1line to bhe printed as
follows:

aRC DEF G J0

Control returns to command mode, awaiting further commands, If the
user wanted to find the next reference to ABC, he could type:

E.IL

In this case, " is a command which causes the last string searched for
to be used again, with the search beginning at the current line +1,
It is not necessary to enter the search string again. The command may
be wsed several times in succession, For example, if the user wanted
to find the fourth occurrence of a string containing the characters
FEWMET he could type:

#3 FEWMET*"""L

This command lists the line which contains the fourth occurrence of
that string, The L (List) command {or any other command code) can be
given following either ' or ", The L command causes the line to be
listed when and if it is found,

In order to clear the text string buffer, the user can type:

A
The system responds with a question mark and the text string buffer is
cleared,

The properties of the commands ' and " allow for easy and useful
editing, as the following example illustrates. In order to change CIF
20 to CIF 10, the user can issue the following commands:

FRDIM, "SCIF 2a"C
CIF 13 /NEW Fi=LD {CTRL/FORM}

The above set of instructions first causes the EDITOR to start at line
1 and search for a line beginning with DUM,, A search is then made
for CIF 20, starting from the line after the 1line containing the
string DUM, . When this string is found, the line number of the line
containing the string CIF 20 becomes the current line number. The C
command is given, and the user then changes the line to the correct
instruction, CIF 10 /NEW FIELD .

Since this search feature produces a line number as a result, any
operations which can be done by explicitly specifying a line number
can be done by specifying a string instead, For example:

AESTRING® +4L.

will list the fourth line after the first occurrence of the text
STRING in the text buffer.

:SLABEL! » "sLABELP"L

will list all lines between the two labels, inclusive.
fSPFLWﬁ'S

will do a character search on the line which contains PFLUG. {The
user types the search character after typing the RETURN key that
enters the line,)}

In cases where both strings and explicit numbers are used, strings
‘should be used first. For example, the following commands:

#1+3RAD! L

will not list the next line after the string BAD! occurs. The correct
syntax is:

ATBADY " +1L

Inter~-Buffer Character String Search

The inter-buffer search scans the current text buffer for a character
string. If the string is not found, the current buffer is written to
the output file, the buffer is cleared, and the next buffer is read
from the input device. The search then resumes at line 1 of the new
buffer. This process continues until either the string is found or no
more input is left., If input is exhausted, control returns to command
mode with all the text having been written to the outpu:t file. If the
string is found, control returns to command mode with the current line
equal to the number of the line containing the first occurrence of the
string. For example, a command to find the character string GONZO may

appear as follows:

£J

SGONZO!

#.20024
'h_

.

The J command initiates an inter-bufferr search; the § 1is printed
automatically by the EDITOR, and the user types in the character
string he wishes to search for, The search proceeds, and when the
string 1is found, control returns to cormmand mode. The user types the
.= construction to discover the number ¢of the Jline in the current
buffer on which the string is contained. To find further occurrences
of the string GONZO, the user can use the F command. The F command
uses the last character string entered to search the buffer starting
from the current line count +1,

The above example causes a search for the string GONZO starting at the
current 1line +1, If no output file is specified in the J or F
commands, the EDITOR reads the next input buffer without attempting to
produce any output., This provides an easy way of paging through text
for a particular string,

After the J or F commands have processed the entire input file, an E
or Q command must be executed to close the output file.

The following two commands may be used to abort the string search
command, once given:

Table 3-8 Terminating a String Search

Command Explanation

CTRL/U A CTRL/U will return control to the
EDITOR command mode if executed while
entering text in a string search
command; the string search command is
ignored, as in the following example:

#J
FWORD]

L

The inter-buffer search for the
characters WORD was aborted by the user
typing +U before terminating the string
with ' or ".

RUBQUT Executing the RUBOUT key while entering
text for use in a string search causes
the text so far entered to be ignored
and allows a new string to be inserted.
The EDITOR answers the command by typing

_Table 3-8 Terminating a String Search {Cont'd)

Command Explanation

§, as seen in the following example:

#3CHAR { RUBOUT)
3

An example of the use of the character string search is contained in
the EDITOR Demonstration Run found at the end of this chapter.

3.9 EDITOR ERROR MESSAGES

Errors made by the user while running the EDITOR may be of two types.
Minor errors (such as an EDITOR command string error, an attempt to

execute a read or wfipe command without assigning a device, or a
search for a nonexistent string} will cause a question mark to he

typed at the left margin of the teleprinter paper. The command may be
retyped.

Major errors force control to return to the Keyboard Monitor and may
be due to one of the causes listed in Table 3-9, These errors cause a

message to be typed in the form:

T C

where n is one of the error codes in Table 3-9 and 4C indicates that
control will pass to the Keyboard Monitor when a character is typed.

Tahle 3-9 EDITOR Error Codes

Error Code Meaning

0 The EDITOR failed in reading from a
device. An error occurred in the device
handler; most likely a hardware
malfunction.

1 The EDITOR failed in writing onto a
device; generally a hardware
malfunction.

2 A file close error occurred. The output
file c¢ould not be closed; either the
cassette reached an end-of-tape

condition, or a sentinel file needs to
be written before any new output files
can be created on the cassette,

A ? occurs any time the EDITOR encounters a syntax error. In
addition, the following error message may be printed by the EDITOR:

Message Meaning

UNIT HAS OPENED FILE Two files cannot be open on the same
device at the same time.

During the editing of a file, the output cassette specified in the
command string may become full before the editing process is
completed. If this is the case and further writing is attempted on
that cassette, an error occurs, The output file is closed and the
message:

FULL*OQUTPUT FILE-

is printed. The user must now indicate a new output cassette and file
which will contain the text that would not fit on the first cassette
and any further editing the user wishes to do. Since the contents of
the text buffer are retained through this procedure, no text will be
lost if this error occurs.

NOTE

If no output file is specified when this
condition occurs, the EDITOR again
requests an output f£ile; this continues
until the output designation is
correctly specified,

Assuming the new output device is valid, the EDITOR will continue the
operation which filled the old file, putting all output into the new
output file, After editing is completed, the output files should be
combined using the EDITOR, The entire process may then appear as
follows:

=R EDIT
*INPUT FILE-0O:IN
*QUTPUT FILE-1:0UT

#Y

#J

$STRING' UTENP

:UtL =QUTPUT FILE-2:0UTEM pevice 13 is full.

=° 2: is specified as the
RING new output device

#.D TAD STRI and editing continues.

*

LN

At this point the output "file" is 2 files=-1:0UT, 2:0UTEMP, When
output is split like this, the split may have occurred in the middle
of a line, Therefore, the output files should never be edited
separately as the split lines will then be lost. 1In a case such as
this, the files should be combined with the EDITOR as follows:

R EDIT/M

*INPUT _FILE=-1:0UT
*0UTPUT_FILE-3:0UT
[

*INPUT FILE-2:0UTEMP
*1NPUT FILE-

The new file, OUT, may then be edited,

3.10 EDITCOR DEMONSTRATION RUN

The following example illustrates both the use of the EDITOR to create
a new file and a few of the commands available for editing. Sections
of the printout are g¢oded by 1letters which correspond with the
explanations following the example.

<R EDIT
*INPUT FILE-
A *0UTPUT FILE-0:PROG,PAL
#A
CHRPUT, @ /ACCEPTS CHAR IN AC AND
SNA /PACKS 1T INTO OUTPUT BUFFER
B JMP 1 CHRPUT /1 GNORES NULL
CDF @
DCA SHELF
c { TAD WINKATI
SPC
JMP PUT# |
D SNA CLO
JMP PUT#2
CMa
DCA WHATI
*.-SS
€«
E SNA CLONA
#.L
SNA CLA
{:!P
F
#X
#A
TAD SHELF
AND (360
CLL RTL

* & ¥ &

#E

«R EDIT
*INPUT FILE-@:PROG.PAL
*QUTPUT _FILE-I:PROG.PAL

¢
£
J { #35PC’ L
(-
(

—

ln

SPCNA

Ie %
m

The user calls the EDITOR; the output
file will be called PROG.PAL and will be
stored on the default device--cagsette
drive 0. There is no input file since
cne will be c¢reated from the console
terminal keyboard. The Append command
is used to insert text into the empty
buffer.

Text is inserted.

The user makes a mistake and uses the
RUBOUT key to correct it

More text is added.

The user notices a typing mistake he has
made several lines back in the text, He
types a CTRL/FORM to finish the Append
command, searchs for the illegal
character, corrects it, and then lists
the line.

The P command writes the current buffer
into the output file placing a form feed
after the last line, The K command
deletes all text in the current buffer
in preparation for a new page of text,

The user inserts new text using the
Append command, When he is finished he
types a CTRL/FORM to end the command.

The user closes the file; control
returns to the Cassette Keyboard
Monitor.

In looking over the 1listing, the user
notices another mistake; he opens the
file, calling it by the same name in
both the input and output specification
lines.

The Intra-Buffer Character String Search
is used to locate the illegal
instruction and list it.

The Single Character Search is used to
find the letter to be corrected, and the
RUBQUT key deletes it.

The file is c¢losed and contrel again
returns to the Keyboard Monitor.

CHAPTER 4
SYSTEM COPY

4,1 INTRODUCTION

The CAPS-8 System Copy (SYSCOP) program allows the user to copy
individual files or all files from cne cassette to another, giving him
the ability to make multiple copies of a cassette, add files to a
cassette, and "clean up" full cassettes so that they may become
available for future use. System Copy transfers all non-empty files
on the specified input cassette to the specified output cassette;
space taken up by previously deleted files (*EMPTY files) is regained.
{Single file transfers of ASCII files can be performed using the
CAPS5~B8 EDITOR; see Chapter 3.)

4.2 CALLING AND USING SYSTEM COPY
To call SYSCOP from the System Cassette, the user types:
«R SYSCOP/Options

in response to the dot (.) printed by the Keyboard Monitor,

4.2.1 sSystem Copy Options
There are three options available for use with System Copy; these
options are discussed in Table 4-1. (Option usage is explained in
Chapter 2, Section 2.4,3.}

Table 4-1 System Copy Options

Option Meaning

/F This option allows the user to transfer
individual cassette files from one
cassette to another. To use the /F
option, the user responds to the request
for input gpecification with the
cagsette drive number and the name of
the file tc be copied. If the user
makes a typing error while entering the
input specification, he can type CTRL/U
to redo the entry.

/U If the /U option is specified, drive 1
is zeroed and then drive 0 is copied to
drive 1., (The /U option is especially
useful for making copies of the System
Cassette,) When the /U option is used,
no further /0 specifications are
necessary.

/2 This option causes the output drive
(indicated in the output specificat}on
line} to be zerced before any copylng
begins.

4.2.,2 Input and Output Specifications

Before indicating the input and output drives to be used for the copy
operation, the user must ensure that the proper cassettes are mounted,
The input cassette (the ane to be copied) should be write-locked to
protect the data. The output cassette (the one that will be the new
copy) should be write-enabled to receive the data. When the input and
output cassettes are mounted on the correct drives, the user is ready
to begin the copy operation.

After SYSCOP has been called from the System Cassette, it asks for the
input specification as follows:

IN=

The user responds with a single digit {0 through 7} specifying the
input cassette drive number., A carriage return is not necessary. If
the /F option was used, the user responds to the IN~ query with the
drive number and the name of the file to be copied; in this case, the
user must also type a carriage return. In the following example, a
file named ECHO is to be copied from drive 1.

IN-3ECHO

After the input specification has been entered, System Copy reguests
the output specification as follows:

QuT-

The user responds with a single digit (0 through 7) specifying the
output drive number, The output drive number cannot be the same as
the input drive number, If the user wishes to change the input/output
specifications at this point, he may type a carriage return instead of
the drive number after OUT- to return to the IN- message.

After both input and output drives have been indicated, the copy
operation starts, All non-empty files on the input cassette are
copled, in order, onto the output cassette. (If a file is to be
copied onto a cassette under the same filename and extension as one
already present on the cassette, it will still be copied; however,
future reference to the file will cause the first file under that name
to be accessed. To circumvent this condition, the user should first
delete any old files or zero the cutput cassette.) When all files have
been copied, control returns to the Keyboard Monitor.

Only two responses other than the digits 0 through 7 are accepted in
reply to the input/output specification messages: carriage return and
CTRL/C. Carriage return returns the user to the input sgpecification
message; CTRL/C returns the user to the Keyboard Monitor. Any other
response is considered illegal. Illegal responses are neither
accepted nor echoed by System Copy; System Copy simply waits for the
user to type a legal response,

4,2,3 BSystem Copy Example

In this example, the user wishes to make a copy of the System Cassette
which 1is mounted on drive 0, One purpose of the copy operation is to
regain wasted space being taken up by previously deleted files, A
directory listing shows that the System Cassette currently contains
the following filesg :

C2BOOT.BIN @1/22/73
MONTOR,BIN @1/22/73
SYSCOP ,BIN @1/25/73
*EMPTY ,
EDIT .BIN @Ql/02/73
FALC BIN B}/92/73
BASIC L,BIN @1/42/73
*EMPTY.,
*EMPTY .
*EMPTY .
=EMP TY .
ABC . prs22/73

The user mounts a write-enabled cassette on drive 2 and rewinds the
tape. He than calls System Copy as follows :

LR SYSCOP/Z

The /Z option will zero the cassette mounted on the cassette drive
specified in the OUT- message (drive 2), leaving only the sentinel
file on the cassette. System Copy then requests the input and output
drive numbers and the user responds as follows:

In-9
gutT-2

The copy operation starts. If System Copy detects any problems during
the copy operation, it prints one of the error messages explained in
Section 4.3. A successful copy operation returns contrel to the
Keyboard Monitor. The user can then issue a DPIrectory command to
ensure that all files were copied correctly, In this example, a
successful copy operation should produce the feollowing directory
listing:

C2BOOT,BIN @1/22/73
MONTOR ,BIN @1/22/73
SYSCOP JBIN d1/25/73
EDIT JBIN #1/42/73
PALC JBIN BL/82/73
BASIC BIN @21/62/73
ABC . agt/22s13%

4,3 SYSTEM COPY ERROR MESSAGES

Errors which occur during a System Copy operation may be of two types:
user errors and cassette errors, User errors may be corrected with
the appropriate action as detailed in Takle 4-2. Cassette errorsg
normally require the user to use another cassette {for either input or
output) to complete the copy operation. Control does not return to
the Keyboard Monitor when a System Copy error occurs. The user may
use CTRL/C to return to the Monitor if he cannot correct the indicated
error,

Table 4-2 System Copy Error Messages

Message Meaning

INPUT ERROR ON UNIT n An input error has occurred on the
cassette drive specified, The user
should try the copy operation using
another cassette.

UNIT n NOT READY There is either no cassette on the
cassette drive specified or no such
drive exists.

UNIT n WRITE LOCKED The user tried to write data when
the write protect tab of the
cassette on the drive specified was
write-locked,

OUTPUT ERRCR ON UNIT n An output error has occurred on the
cassette drive specified. The user
should try the copy operation using
another cassette.

CHAPTER 5
PALC

5.1 INTRODUCTION

PALC {an acronym for Program Assembly Language for Cassette) is an 8K
2-pass assembler (with an optional third pass) designed for the CAPS-8
System, A program written in PALC source langquage is translated by
the assembler into a binary file in two passes. Pass 1 reads the
input file and sets up the symbol table; pass 2 reads the input file
and uses the symbol table created in pass 1 to generate the hinary
{object) file., The binary file may then be lcoaded into memory using
the Cassette Keyboard Monitor,

PALC allows 1/0 using any CAPS=-8 device which handles ASCII text. It
is called from the 5ystem Cassette using the Keyboard Monitor Run
command, accepts input generated by the CAPS-8 EDITOR, and will
generate output acceptable for use with both the Monitcr Load and Run
commands .

5.2 CALLING AND USING PALC

The user calls PALC from the System Cassette by typing:
«R PALC/Options

PALC responds by printings:

=INPUT FILES

*
The user enters his input cassette drive number and filename in answer
to the asterisk printed by PALC; a total of three input specifications
are allowed, so that the input interaction may appear as follows:

-INPUT FILES
*1 STHAPAL
0 1THB .PAL
#13TRCWPAL

Usually input files will contain the extension .PAL (see Chapter 2,
Section 2.2,2), and PALC will assume this extension unless the user
explicitly designates another, Thus in the above example the user may
have responded by typing only l:TRA, 0:TRB, and 1l:TRC, in which case
PALC would automatically assume and echo the ,PAL extension.

If the filename contains an extension other than ,PAL, the user must
specify this extension when entering the input. For example:

ZINPUT FILES
*13FALL.1
*#2 ITABLE «ASC
2B tSHOR »

In the case of the third input file (SHOR.) an extension is not to be
indicated. If the user wants to prevent PALC from assuming .PAL, he
must be sure to include a period in the input 1line; otherwise PALC
will append .PAL and look for the filename with that extension,

If the user does not specify a drive number in his input line, the
default device--drive (0--is assumed. PALC will automatically insert
0: in the input line before echoing the filename as the user has
entered it, For example:

*B3FLOA PAL

The user actually typed only the characters FLOA; PALC assumed both
the drive number 0 and the .PAL extension and correctly inserted these
in the I/0 line before echoing the complete line.

A carriage return typed in response to any of the asterisks indicates
that there are no more input files,

After the input specifications have bheen entered, PALC requests the
binary output as follows:

-BINAXHY FILE
*

The user responds similarly here by indicating an output drive number
and filename. Only one binary file is allowed and it should have the
extension .BIN (since the Monitor Run and Load commands assume this
extension). If the wuser wants his binary file to be called by the
same name as the first input file he need only type the drive number,
a colon, and a carriage return. PALC will echo this, adding the
filename with a ,BIN extension. For example:

-INPUT _FILES
%1 tOFEN.PAL
*

-3 INARY FILE
*030PENSBIN

As in the input line, drive 0 and the extension (.,BIN) are assumed if
the user fails to specify them, and a response of only a carriage
return indicates that no binary file is to be preoduced.

Once the binary output line has been answered, PALC prints:

-LIST TO
*

The user has a choice of sending his output 1listing to either the
console terminal or the line printer. To send output to the console
terminal the user types the characters TTY in response to the asterisk
as follows:

-L1ST 10
*TY

To send output to the line printer, the user responds by typing LPT:

~L1ST_TO
ALPT

A response of a carriage return indicates that no 1listing dis to be
produced.

During a PALC assembly only one listing is produced and it may be sent
to only one device, either the line printer or console terminal. A
second listing must be produced by another assembly.

If more cassettes are to be involved in the assembly than the user has
TU60 unit drives, a certain procedure must be followed during the
assembly process. For example, assume the user has only one TU60 dual
cassette unit, and 3 input files are stored on individunal cassettes.
His I/0 specification is as follows:

~-1NPUT FILES
*1:F1.PAL
*0:F2.PAL
*0:F3.PAL
-BINARY FILE
*IsRESLT.BIN
SLIST IO
xLPT

PALC is a 3-pass assembler, therefore all three input files will be
referenced 3 times. Assume the user has mounted 1:Fl.PAL on drive 1,
and 0:F2,PAL on drive 0; assembly begins, First the file Fl1l is
processed, then F2. After assembly of F2 PALC looks for F3, but since
the file is on a third cassette which is not mounted, the assembly
pauses and PALC prints:

MOUNT F3.PAL?

This pause in the assembly allows the user to dismount a cassette and
replace it with the cassette containing the file F3,.PAL. The user
then responds to the above I/0 line with the drive numbe) on which he
has mounted the new cassette {(assume 0), as follows:

MOUNT F3.2AL70

If the response is valid, PALC responds by typing a CR/LF and
continues pass 1 of the assembly. (An invalid response causes PALC to
print a ?; the user may then type the correct response.)

When pass 1 is completed PALC automatically begins the second pass,
which creates the binary file., The binary output file specification
must now be made. Regardless of the output specification indicated in
the initial dialogue, PALC pauses and asks:

FOUNT nRESLT«BIN?

The user must mount the output cassette which is to contain the binary
file and respond with the drive number on which he has mounted it.
Assume he decides to mount the cassette on drive 0. He replaces the
cassette currently on that drive (containing F3.PAL) with the new
cassette and responds to the command line as follows:

MOJNT RESLT.BIN?G

PALC then opens the binary file on this cassette and prints:

BINARY FILE OPENED ON @

NOTE

The cassette used for binary output may
not contain any of the input files,
Under no circumstances should the
cassette containing +the binary file be
removed from the drive until pass 2 is
completely finished. PALC will indicate
completion of the pass by printing the
message, "BINARY FILE CLOSED".

After specification of the binary output file, PALC continues pass 2
of the assembly by processing the first input file, Fl,PAL, currently
on drive 1. After this file is processed, PALC pauses and asks:

MOUNT F2.PAL?

Since the binary file being created on drive 0 is only partially
complete at this point, the user must not remove the cassette from
that drive., He must instead remove the cassette from drive 1 and
replace it with the cassette containing F2,PAL., He then types 1 in
response to the I/0 1line and assembly continues until F3,PAL is
needed., PALC again pauses and asks:

MOUNT F3.PAL?

Again the user replaces the cassette on drive 1 with the appropriate
one, correctly answers the I/0 line, and assembly continues,

Once pass 2 is done, pass 3--the 1listing pass--must be processed.
Drive 0 may again be wused for input, and assembly of input files
continues in the same manner as during passes 1 and 2.

The procedure of mounting and dismounting cassettes may be repeated as
many times as necessary until all input files are processed and the
degired output produced, If an I/0 error occcurs during any of the
three passes or 1f an output cassette becomes full, the user must
restart the assembly beginning with pass 1.

NOTE

When the assembly is complete, PALC
prints tC (CTRL/C). The wuser then
mounts the system cassette and types
CTRL/C to return to the Monitor,

5.2,1 PALC Options

Table 5-1 lists the options available in PALC which may be
in the Monitor Run or Load specification line.

Table 5-1 PALC Options

indicated

Option

Meaning

/D

/H

/K

/5

/T

Generate a DDT-compatible symbol table
(applicable only if a listing file is
specified).

Generate non-paginated output, Header,
page numbers and page format are
suppressed {applicable only if a listing
file is specified),

Used in assembling very large programs;
causes system containing 12K or more of
memory to use fields 2 and up as symbol
table storage.

Generate the symbol table, but not the
listing (applicable only if a listing
file is specified; the /H option is
assumed) .

Omit the symbol table normally generated
with the 1listing (applicable only if a
listing file is specified}.

Ooutput a carriage return/line feed in
place of the form feed character(s) in
the program (applicable only if a
listing file is specified).

5.3 CHARACTER SET

The following characters are acceptable as input to PALC:

l‘
2.

3.

The alphabetic characters: A through 2

The numeric characters: 0 through 9

The characters described in following sections as
special characters and operators

4. Characters which are ignored during assembly such
as LINE FEED, FORM FEED, and RUBOUT

All other characters are illeqgal (except when used in a comment) and
cause the error message:

IC AT nnnn_

to be printed during pass 1l; nnnn representg the location at which the
illegal character occurred, {(As assembly proceeds, each instruction
is assigned a location determined by the current location counter {(see
Section 5.7.3). When an illegal character or any other error is
encountered during assembly, the value of the current location counter
is returned in the errxor message.) Illegal characters do not generally
cause assembly to halt. If an illegal character occurs in the middle
of a symbol, the symbol is terminated at that point.

5.4 STATEMENTS

PALC source programs are usually prepared on the console terminal
{using the CAPS-8 EDITOR) as a sequence of statements. Each statement
is written on a single line and is terminated by typing the RETURN
key.

There are four types of elements in a PALC statement which are
identified by the order of their appearance in the statement and by
the separating {or delimiting) character which follows or precedes the
element. These are:

label, instruction operand /comment

A statement must contain at least one of these elements and may
contain all four types, The assembler interprets and processes the
statements, generating one or more binary instructions or data words,
or performing an assembly process.

5.4.1 Labels

A label is the symbolic name created by the programmer to identify the
leocation of a statement in the program, If present, the label is
written first in a statement. It must begin with an alphabetic
character, contain only alphanumeric characters, and be terminated by
a comma; there must be no intervening spaces between any of the
characters and the comma,

5.4.2 Instructions

An instruction may be one or more of the mnemonic machine instructions
or a pseudo-operation which directs assembly processing. (Assembly
pseudo-ops are described later in this chapter; Appendix C summarizes
both the mnemonic machine instructions and pseudo-ops used by PALC,)
Instructions are terminated with one or more spaces (or tabs if an

operand follows) or with a semicolon, slash, or carriage return, as
described in Section 5.5.3.

5.4.3 Operands

Operands are the octal or symbolic addresses of an assembly language
instruction or the argument of a pseudo-operator, and can be any
expression. In each case, interpretation of an operand depends upon
the instruction or the pseudo-op. Operands are terminated by a
semicolon, slash, or carriage return.

5.4.4 Comments

The programmer may add notes or comments to a statement by separating
these from the remainder of the line with a slash, Such comments do
not affect assembly processing or program execution but are useful in
the program listing for later analysis or debugging. The assembler
ignores everything from the slash to the next carriage return, {For
an example see Section 5.5.3, Statement Terminators.)

It is possible to have only a carriage return on a line, resulting in
a blank line in the final listing. No error message is given.

5.5 FORMAT EFFECTORS
The following characters are useful in controlling the format of an

assembly listing. They allow a neat readable 1listing to be produced
by providing a means of spacing through the program.

5.5.1 Form Feed
The form feed code causes the assembler to output blank lines in order
to skip to a new page in the output listing during pass 3; this is

useful in creating a page-by-page listing. The form feed is generated
by typing a CTRL/L on the console terminal.

5.5.2 Tabulations

Tabulations are used in the body of a source prograr. to separate
fields into columns (for details refer to Chapter 3). For example, a
line written:

G0, TAD TOTAL/MAIN LOOP

is much easier to read if tabs are inserted to form:

GO, TAD TCTAL /MAIN LOOP

5.5.3 Statement Terminators

The RETURN key is used to terminate a statement and causes a 1line
feed/carriage return combination to occur in the listing, The
semicolon (3;) may also be used as a statement terminator and is
considered identical to a carriage return except that it will not
terminate a comment. For example:

TAD A /THIS 15 A COMMENT; TAD B

The entire expression between the slash (/) and the carriage return is
considered a comment., Thus in this case the assembler ignores the TAD
B,

I1f, for example, the user wishes to write a sequence of instructions
to rotate the contents of the accumulator and link six places to the
right, it might look like the following:

HTH

HTr

RTH
However, the programmer can alternatively place all three instructions
on a single 1line by separating them with the special character
semicolon (;) and terminating the entire line with a carriage return.
The above sequence of instructions can then be written:

ATR:RTRIRTR

These multi-statement lines are particularly useful when setting aside
a section of data storage for use during processing. For example, a
4-word cleared block could be reserved by specifying either of the
following:

LIST, @3 23 2; @
or
LIST. @
a
e
@
Either format may be used te input data words (data words may be in

the form of numbers, symbols, or expressions, explained next.} Each of
the following lines generates one storage word in the object program:

DATA, 7717
A+C-B

5
123+82

5.6 NUMBERS

Any sequence of digits delimited by either a SPACE, TAB, semicolon, or
carriage return forms a number, PALC initally interprets numbers in
octal (base 8), This base can be changed to decimal using a special
pseudo-operator (discussed in Section 5,10,.2)., Numbers are used in
conjunction with symbols to form expressions.

5,7 SYMBOLS

A symbol is a string of alphanumeric characters beginning with a
letter and delimited by a non~alphanumeric character, Although a
symbol may be any length only the first six characters are recognized;
since additional characters are ignored, symbols which are identical
in their first six characters are considered identical.

5.7.1 Permanent Symbols

The assembler contains a table (called its permanent symbol table)
which lists the symbols for all PDP-8 pseudo~op codes, memory
reference instructions, operate and I0T (Input/Output Transfer)
instructions, These instructions are symbols which are permanently
defined by PALC and need no further definition by the user; they are
summarized in Appendix C, For example:

HLT This is a symbolic instruction
assigned the value 7402 by the
assembler and stored in its permanent
symbol table.

5.7.2 User-Defined Symbols

All symbols not defined by the assembler (and represented in its
permanent symbol table) must be defined within the source program.

A symbol may be used as a statement label, in which case it is
assigned a value equal to the current location counter; it is called a
symbolic address and can be used as an cperand or as a reference to an
instruction. Permanent symbols (instructions, special characters, and
pseudo-ops} may not be used as symbolic addresses,

The following are examples of legal symbolic addresses:

ADDA »
TOTAL»
SUMs
Al

The following are illegal symbolic addresses:

AD>Ms {contains an illegal character)

FABC » (first character must be alphabetic)

LA BELs {must not contain imbedded spaces)

D+TAG» {contains a legal but non-alphanumeric character)
LABEL . (rust be terminated by a comma with no

intervening spaces)

5.7.3 Current Location Counter

As source statements are processed, PALC assigns consecutive memory
addresses to the instructions and data words of the object program.
The current location counter contains the address in which the next
word of object code will be assembled and is automatically incremented
each time a memory location is assigned. A statement which generates
a single object program storage word increments the location counter
by one. Another statement might generate six storage words,
incrementing the location counter by six.

The user sets or resets the location counter by typing an asterisk
followed by the octal absolute address value in which the next program
word is to be stored, If the origin is not set by the user, PALC
begins assigning addresses at location 200,

*3 00 /SET LOCATION COUNTER TO 320
TAG, CLA
JMP A
B, 9
A, DCA B

The symbol TAG {in the preceding example} is assigned a value of 0300,
the symbol B a value of 0302, and the symbol A a value of 0303, If a
symbol is defined more than ‘once in this manner, the assembler will
print the illegal definition diagnostic:

ID address

where address is the value of the location counter at the second
occurrence of the symbol definition. The symbol is not redefined.
(For an explanation of diagnostic messages refer to Section 5.14 PALC
Error Conditions.} For example:

* 300

START, TAD A

DCA COUNTER
CONTIN, JMS LEAVE

JMP START
A, =74
COUNTER, @
START, CLA CLL

-

The symbol START would have a value of 0300, the symbol CONTIN would
have a wvalue of 0302, the symbol A would have a value of 0304, the
symbol COUNTER (considered COUNTE by the assembler) would have a value
of 0305. When the assembler processed the next line it would print
(during pass 1):

IR COUNTE+B@BI

Since the first pass of PALC is wused to define all symbols, the
assembler will print a diagnostic during pass 2 if reference is made
to an undefined symbol. For example:

*7170
A, TaD C

CLA CHMA

HLT

JMP Al The dollar sign must terminate
c, g all PDP-8 assembly programs,
This would produce the undefined symbol diagnostic:

US A+0@R3

5.7.4 Symbol Table

Initially, the assembler's symbol table contains the mnemonic op-codes
of the machine instructions and the assembler pseudo-op codes as
listed in Appendix C; this is its permanent symbol table, As the
source program is processed, user-defined symbols along with their
binary values are added tc the symbol table, The symbol table is
listed in alphabetical order at the end of pass 3.

During pass 1, if PALC detects that the gymbol table is full (in other
words, there 1is no more memory space in which to store symbols and
their associated values), the symbol table exceeded diagnostic is
printed:

SE address

The assembler then prints +C and waits for a response from the user,
By typing +C the user can return control teo the Monitor. If the
system contains more than 8K of memory, the user may choose the /K
option with the Run command (see Section 5.2.1), or more address
arithmetic may be used to reduce the number of symbols, It is also
possible to segment a program and assemble the segments separately,
taking care to generate proper 1links between the segments, (See
Section 5.1l.) PALC's symbol capacity is 768 symbols, The permanent
symbol table contains 69 symbels, leaving space for 699 possible
user-defined symbols. Each additional 4K allows 768 new symbols.

Section 5.10.12 provides instructions concerning altering PALC's
permanent symbol table should the user wish to add instructions more
suited to his programming needs,

2.7.5 Direct Assignment Statements

The programmer may insert new symbols with their assigned wvalues
directly into the symbol table by using a direct assignment statement
of the form:

SYMBOL=VALUE

VALUE may be a number or expression. No spaces or tabs may appear
between the symbol +to the left of the equal sign and the equal sign
itself, The following are examples of direct assignment statements:

pAz6
EXIT=JMP 1 @
C=A+B

All symbols to the right of the equal sign must be already defined,
The symbol to the left of the equal sign is subject to the same
regtrictions as a symbolic address, and its associated value is stored
in the wuser's symbol table, The use of the equal sign does not
increment the location counter; it is, rather, an instruction to the
assembler itself,

A direct assignment statement may also equate a new symbol to the
value assigned to a previously defined symbol. In this case, the two
symbols share the same memory location,

BETA=Z1T
GAMMA:-BETA

The new symbol, GAMMA, is entered inte the user's symbeol table with
the value 17.

The value assigned to a symbcl may be changed as follows:

ALPHA=S
ALPHA=T

The second line of code shown changes the wvalue assigned to ALPHA from
5 to 7. {This is 1legal but will generate an RD erxor message,
explained below.)

Symbols defined by use of the equal sign may be used in any wvalid
exprassion, For example:

*200
Az100 /DOES NOT UPDATE CLC
B-apd /DOES NOT UPDATE CLC
A+B /THE VALUE 5@@ 1S ASSEMBLED AT LOC, 228
TAD A /THE VALUE 12@0 IS5 ASSEMBLED AT LOC. 261

If the symbol to the left of the equal sign has already been defined,
the redefinition diagnostic:

RD address

will be printed as a warning, where address is the value of the
location counter at the point of redefinition. The new value will be

stored in the symbol table; for example:

CLA=7600

will cause the diagnostic:

RD +@2820

Whenever CLA is used after this point, it will have the value 7600,

5.7.6 Symbolic Instructions

Symbols used as instructions must be predefined by the assembler or
the programmer, If a statement has no label, the instructions may
appear first in the statement and must be terminated by a space, tab,
semicolon, slash, or carriage return. The following are examples of
legal instructions:

TAD {a mnemonic machine instruction)
PAGE (an assembler pseudo-op)
ZIP {an instruction defined by the user)

5.7.7 Symbolic Operands

symbols used as operands normally have a value defined by the user,
The assembler allows symbolic references to instructions or data
defined elsewhere in the program, Operands may be numbers or
expressions. For example:

TOTAL, TAD ACI + TAG

The values of the two symbols ACl and TAG (already defined by the
user) are combined by a 2's complement add (see Section 5.8.1,
Operators). This value is then used as the address of the operand.

5.7.8 Internal Symbol Representation For PALC

Each permanent and user-defined symbol occupies four words in the
symbol table storage area. A PDP-£ instruction has an operation code
of three bits as well as an indirect bit, a page bit, and seven
address bits, The PALC assembler distinguishes between pseudo-ops,
memcry reference instructions, other permanent symbols, and
user~defined symbols in the symbol table,

5-13

5.8 EXPRESSIONS

Expressions are formed by the combination of symbols, numbers, and
certain characters called operators, which cause specific arithmetic
operations to be performed. An expression is terminated by either a
comma, c¢arriage return, or semicolon.

5.8.1 Operators
There are seven characters in PALC which act as operators:

Two's complement addition

Two's complement subtraction
Multiplication (unsigned, 12=-bit)
Divisien (ungigned, 12-bit)
Boolean inclusive CR

Boolean AND

SPACE Treated as a Boolean inclusive OR
except in a memory reference
instruction

2wl o+

Two's complement addition and subtraction are explained in detail in
Chapter 1 of INTRODUCTION TO PROGRAMMING; the user should refer to
that handbook if he wishes more information, Wo checks for overflow
are made during assembly, and any overflow bits are lost from the high
order end, For example:

7755424 will give a result of 1
The operators + and - may be used freely as prefix operators.

Multiplication is accomplished by repeated additicn, No checks for
sign or overflow are made, All 12 bits of each factor are considered
as magnitude, For example:

3000%2 will give a result of 6000

Division is accomplished by repeated subtraction. The number of
subtractions which are performed is the quotient. The remainder is
not saved and no checks are made for sign, Division by 0 will
arbitrarily yield a result of 0., For example:

7000%1000 will yield a result of 7
This could be written as:
~1000%1000

in this case the answer might be expected to be =1 (7777}, but all 12
bits are considered as magnitude and the result is still 7.

Use of the multiplication and division operators requires an attention
to sign on the part of the programmer beyond that which is required
for simple addition and subtraction. The following table of examples
is given for reference.

Table 5-2 Use of Operators

Expression Also written as: Result
1177+2 -1+2 +1
T776=3 ~2=3 7773 or =5
0t2 0
2to 0
100047 7000 or =1000
0%12 0
1230 0
777731 =151 7777 or -1
700081000 =-1000%1000 7
1%2 0

The ! operator causes a Boolean inclusive OR to be performed bit by
bit between the left«hand term and the right-hand term. (The
inclusive OR 1is explained in Chapter 1 of INTRODUCTION TOC
PROGRAMMING.) For example:

if A=1 and B=2
then A!B=0003

The & operator causes a Boolean AND to be performed bit by bit between
the left and right values. The operation 1is the same as that
indicated by the memory reference instruction AND,

SPACE has special significance depending on the context in which it is
used, When it is wused tao separate two permanent symbols or two
user-defined symbols, as in the following example:

SMA CLA

it causes an inclusive OR to be performed between them. 1In this case,
SMA=7500 and CLA=7600, The expression SMA CLA is assembled as 7700,
wWhen SPACE is used following pseudo-operators and memory reference
instructions, it merely delimits the symhbol.

User-defined symbols are +treated as operate instructions, For
example:
A=333
®200
B ClA

Possible expressions and their values using the symbols just defined
are shown below. Notice that the assembler reduces each expression to
one 4-digit (octal) word:

A 0333
B 0222
A+B 0555
A-B 0111
-A 7445
1-B 7557
B-1 0221
Al'B 0333 {an inclusive OR is performed)
-71 7707

If the information generated is to be loaded, the current location
counter is incremented. For example:

B-7i;A+43A-B

produces three words of information; the current location counter is
incremented after each expression. The statement:

HALT=HLT CLA

produces no information to be loaded (it produces an association in
the symbol table} and hence does not increment the current location
counter,

*472]
TEMP,
TEMZ, ')

The location counter is not incremented after the line TEMP,; the two
symbols TEMP and TEMZ are assigned the same value, in this case 4721,

Since a PDP-8 instruction has an operation code of three bits as well
as an indirect bit, a page bit, and seven address bits, the assembler
must combine memory reference ingtructions in a manner somewhat
differently from the way in which it combines operate or IQOT
instructions. The assembler differentiates between the symbols in its
permanent symbol table and user~defined symbols, The following
symbols are used as memory reference instructions:

AND 0000 Logical AND

TAD 1000 Two's complement addition

182 2000 Increment and skip if zero
DCA 3000 Deposit and clear accumulator

JMS 4000 Jump to subroutine
JMP 5000 Jump

When the assembler has processed one of these symbols, the space
following it acts as an address field delimiter,

*4) P00

JMP A
A, CLA

A has the wvalue 4101, JMP has the value 5000, and the space acts as a
field delimiter. These symbols are represented as follows:

a 100 001 000 001
JMP 101 000 Qo0 O0C

The seven address bits of A are taken, e.g.:
Q00 001 000 001

The remaining bits of the address are tested to see if they are zeros
{page zero reference); if they are not, the current page bit is set:

000 011 000 Q01
The operation code is then ORed into the JMP expression to form;
10l 011 000 001
or, written more concisely in octal:
5301

In addition to the above tests, the page bits of the address field are
compared with the page bits of the current location counter. If the
page bits of the address field are nonzero and do not equal the page
bits of the current Ilocation counter, an out-of-page reference is
being attempted and the assembler will take action as described in
Section 5,11, Link Generation and Storage.

5.8.2 Special Characters

In addition to the operators described in the previous section, PALC
recognizes several special characters which serve specific functions
in the assembly process. These characters are:

= eaqual siqgn
comma

asterisk

. dot

" double quote

{ } parentheses

[] sgquare brackets
/ slash

: semicolon

<> angle brackets
$ dollar sign

*w

The equal sign, comma, asterisk, slash, and semicolon have been
previocusly described, The remainder will be described next.

The special character dot (.) always has a value equal to the value of
the current location counter. It may be used as any integer or symbol
{except to the left of an equal sign}, and must be preceded by a space
when used as an operand. For example:

=200
JP 42

is equivalent to JMP 0202, Also,

*300
«+2428

will produce in location 0300 the quantity 2700. Consider:

*2200
CALL=JMS I
2027

17

o
1

The second line (CALL=JMS I,) does not increment the current location
counter, therefore, 0027 is placed in location 2200 and CALL is placed
in the user's symbol table with an associated value of 4600 (the octal
equivalent of JMS I).

If a single character is preceded by a double guote ("), the 8-bit
value of ASCII code for the character is used rather than interpreting
the character as a symbol (ASCII codes are listed in Appendix A}. For
example:;

CLA
TAL "A

The constant 0301 is placed in the accumulator.

The code:

.l.

will be assembled as (256, The character must not be a carriage
return or one of the characters which is ignored on input (discussed
at the end of this section).

Left and right parentheses {) enclose a current page literal {(closing
member is optional).

280
CLA
TAD 1NDEX

TAD (2)
DCA INDEX

L]

The left parenthesis is a signal to the assembler that the expression
following is to be evaluated and assigned a word in the constants
table of the current page. This 1is the same table in which the
indirect address Jlinkages are stored, In the above example, the
quantity 2 is stored in a word in the linkage and 1literals list
beginning at the top of the current memory page. The instruction in
which the literal appears is encoded with an address referring to the
address of the 1literal. A literal is assigned to storage the first
time it is encountered; subsequent reference to that literal from the
current page is made to the same register. The use of literals frees
symbol storage space for variables and makes programs much more
readable.

If the programmer wishes to assign literals to page zero rather than
to the current page, he may use square brackets, [andl , in place of
parentheses, This enables the programmer tec reference a single
literal from any page of memory. For example:

*200
TAD 123

*509
TAD 12

The closing member is optional. Literals may take the following
forms: constant term, variable term, instruction, expression, or
another literal.

NCTE
Literals can be nested, for example:

*200
TaD (TAD (3@

This type of nesting may be continued in
some cases to as many as 6 levels,
depending on the number of other
literals on the page and the complexity
of the expressions within the nest, if
the limits of the assembler are reached,
the error messages BE {too many levels
of nesting) or PE (too many literals)
will result,

Angle brackets are used as conditional delimiters., The code enclosed
in the angle brackets is to be assembled or ignored contingent upon
the definition of the symbol or value of the expression within the
angle brackets. {The IFDEF, IFNDEF, IFZERO, and IFNZRO
pseudo—~operators are used with angle brackets and are described in
Section 5.10.9,)

The dollar sign character ($) is mandatory at the end of a pregram and
is interpreted as an unconditional end-of-pass. It may however occur
in a text string, comment or " term, in which case it 1is interpreted
in the same manner as any other character,

The following characters are handled by the assembler for the pass 3
listing, but are otherwise ignored:

FORM FEED Used to skip to a new page

LINE FEED Used to create a line spacing without causing a
carriage return

RUBOUT Used by the EDITOR to allow corrections in the
input file,

Nonprinting characters includes
SPACE
TAB
RETURN

These characters are used for format control and have been previously
explained in Section 5.5.

5.9 INSTRUCTIONS

There are two bagic groups of instructions: memory reference and
microinstructions. Memory reference instructions require an operand,
micreoinstructions do not.

5.9.1 Memory Reference Instructions

In PDP-8 computers, some instructions require a reference to memory.
They are appropriately designated memory reference instructions, and
take the following format:

0 1 2 3 4 5 & 7 8 g 10 1
oot 7 ADDRESS
i 1 1 i i 1 i 1

INDIRECT ADDRESSING}
MEMORY PAGE

Memory Reference Bit Instructions

Bits 0 through 2 contain the operation code of the instruction to be
performed. Bit 3 +tells the computer if the instruction is indirect
(¢see Section 5.9.2). Bit 4 tells the computer if the instruction is
referencing the current page or page zero., This leaves bits 5 through
11 (7 bits) to specify an address. In these 7 bits, 200 octal (128
decimal) locations can be specified; the page bit increases accessible
locations to 400 octal or 256 decimal, For a 1list of the memory
reference instructions and their codes, see Appendix C.

In PALC a memory reference instruction must be followed by a space(s)
or tab(s), an optional I or Z designation, and any wvalid expression,
It may be defined with the FIXMRI instruction as explained in Section
5,10.12, Altering the Permanent Symbol Table. Permanent symbols may
be defined using the FIXTAB instruction and may be used in address
fields as shown below:

Az1234
FIXTAB
TAD A

5.9.2 Indirect Addressing

When the character I appears in a statement hetween a memory reference
instruction and an operand, the operand is interpreted as the address
{or location) containing the address of the operand to be used in the
current statement. Consider:

5-20

TAD 44

which is a direct address statement, where 40 is interpreted as the
location on page 2zero containing the quantity to be added to the
accumulator. References to locations on the current page and page
zero may be done directly. An alternate way to note the page zero
reference is with the letter Z, as follows:

TAD 7 49

This is an optional notation, not differing in effect from the
previous example. Thus, if location 40 contains 0432, then 0432 is
added to the accumulator. Now consider:

TAD T 482

which is an indirect address statement, where 40 is interpreted as the
address of +the location containing the guantity to be added to the
accumulator. Thus, if location 40 contains 0432, and location 432
contains 0456, then 456 is added to the accumulator.

NOTE

Because the letter I is used to indicate
indirect addressing, it is never used as
a variable. Likewise the letter 2,
which is sometimes used to indicate a
page zero reference, is never used as a
variable,

5.9.3 Microinstructions

Microinstructions are divided into two groups: operate and
Input/Cutput Transfer {TOT) microinstructions. Operate
microinstructions are further subdivided into Group 1, Group 2, and
Group 3 designations.

NOTE

If a programmer mistakenly specifies an
illegal combination of micro-—
instructions, the assembler will perform
an inclusive OR betwzen them; for

example:
CLL SKP is interpreted as SPA
(7100) (7410) {7510}

Operate Microinstructions

Within the operate group, there are three groups of microinstructions
which cannot be mixed, Group 1 micreinstructions perform clear,
complement, rotate and increment operations, and are designated by the
presence of a 0 in bit 3 of the machine instruction word.

1 1 t 0 JCLA| CLL | CMA([CML B5W [1AC
1 i
ROTATE AC AND L RIGHT + T
ROTATE AC AND L LEFT

ROTATE 1 POSITION 1IF A O, 2 POSITIONS IFA 1
{BSW IF BITS 8,9 ARE 0)

LOGICAL SEQUENCE: 1-CLA, CLL 2-CMA, CML
3-1AC 4 - RAR,RAL,RTR RTL,BSW

Group 1 Operate Microinstruction Bit Assignments

Group 2 microcinstructions check the contents of the accumulator and
link and, based on the check, continue to or skip the next
instruction, Group 2 microinstructions are identified by the presence
of al in bit 3 and a 0 in bit 11 of the machine instruction word,

0 1 2 3 4 5 6 7 8 i 10 Al
1 1 1 1 JCLA |SMA | SZA |SNL OSR |HLT | O

| 1

REVERSE SKIP SENSING OF BITS 5,6,7 IF SET ——*

LOGICAL SEQUENCE: 1{8IT 8 IS 0) - SMA OR SZA OR SNL
(BIT 8 15 1) - SPA AND SNA AND SZL
2-CLA
3- OSSR, HLT

Group 2 Operate Microinstruction Bit Assignments

Group 3 instructions reference the MO register. They are
differentiated from Group 2 instructions by the presence of a 1l in
bits 3 and 11. The other bits are part of a hardware arithmetic
option.

0 1 2 3 4 5 6 7 B 9 0 N
ERATION
%PODE 7 CLA | MQA MGIL
| 1 1 1
\ / - -~
L y
CONTAINS A1 TO Rt} CONTAINS A1 TO
KE8-E EXTENDED
SPECIFY GROUP 3 ARITHMEDC SPECIFY GROUP 3
ELEMENT

Group 3 Operate Microinstruction Bit Assignments

Group 1 and Group 2 microinstructions cannot be combined since bit 3
determines either one or the other,

Within Group 2, there are two groups of skip instructions. They can
be referred to as the OR group and the AND group.

OR Group AND Group
SMA SPA
SZA SNA
SNL SiL

The OR group is designated by a 0 in bit 8, and the AND group by a 1
in bit 8, OR and AND group instructions cannot be combined since bit
8 determines either one or the other.

If the programmer does combine legal skip instructions, it 1is
important to note the conditions under which a skip may occur,

l. OR Group--If these skips are combined in a statement,
the inclusive OR of the conditions determines the gkip.
For example:

SZA SHL

The next statement is skipped 1if the accumulator
contains 0000 or the link is a 1 or both.

2, AND Group-~If the skips are combined in a statement, the
logical AND of the conditions determines the skip, Por
example:

SNA SZL

The next statement is skipped only if the accumulator
differs from 0000 and the link is 0.

Input/Output Transfer Microinstructions

These microinstructions initiate operation of peripheral equipment and
effect an information transfer between the central processor and the
Input/Output device(s); i.e., cassettes, console terminal, and 1line
printer. The Permanent Symbol Table in Appendix C lists PALC's IOT's.

5.9.4 Autoindexing

Interpage references are often necessary for obtaining operands when
processing large amounts of data, The PDP-8 computers have facilities
to eagse the addressing of this data, When one of +the absolute
locations from 10 to 17 {octal) is indirectly addressed, the contents
of the location is incremented before it is used as an address and the
incremented number is left in the location. This allows the
programmer to address consecutive memory locations using a minimum of
statements,

It must be remembered that initially these locations (10 to 17 on page
d) must be set to one less than the first desired address. Because of
their characteristics, these locations are called autoindex registers.
No incrementation takes place when locations 10 to 17 are addressed
directly. For example, if the instruction to be executed next is in
location 300 and the data to be referenced is on the page starting at
location 5000, autoindex register 10 can be used to address the data
as follows:

pz76 1377 TAD CA4771 /=5808-1
@277 3e1e bca 1@ /SET UP AUTO INDEX
2300 lale TaD 1 12 JINCREMENT TO 50890

/BEFORE USE AS AN ADDRESS

L] * L]

- L] *

P37 4777 CaT77,47717
When the instruction in location 300 is executed, the contents of
location 10 will bhe incremented to 5000 and the contents of location
5000 will be added to the contents of the accumulator. When the
instruction TAD I 10 is executed again, the contents of location 5001
will be added to the accumulator, and so on.

5,10 PSEUDO-OPERATORS

The programmer uses pseudo-operatorgs to direct the assembler to
perform certain tasks or to interpret subsequent coding in a certain
manner, Some pseudo-ops generate storage words in the object program,
other pseudo-ops direct the assembler how to proceed with the
assembly, Pseudo-ops are maintained in the permanent symbol table,

The function of each PALC pseudo-op is described below.

5.10.1 Indirect and Page Zero Addressing
The pseudo-operators I and Z are used to specify the type of

addressing to be performed. These have been previously discussed in
Section 5,.%9.2,

5.10.2 Radix Control

Numbers used in a source program are initially considered to be octal
numbers. However, the programmer may change or alternate the radix
interpretation by the use of the pseudo-operators DECIMAL and OCTAL.

The DECIMAL pseudo-op interprets all following numbers as decimal
until the occurrence of the pseudo-op OCTAL.

The QCTAL pseudo-op resets the radix to its original octal base.

5.10,3 Extended Memory

The pseudo=-op FIELD instructs the assembler to output a field setting
so that it may recognize more than one memory field, This field
setting is output during pass 2 and is recognized by the Run {or Load)
command, which in turn causes all subseguent information to be loaded
into the field specified by the expression., The form is:

FIELD n

n is an integer, a previously defined symbol, or an expression within
the range (<=n<=7,

This field setting is output on the binary file during pass 2 followed
by an origin setting of 200, This word is read when the Run (or Load)
command is executed and begins loading information into the new field,

The field setting is never remembered by the assembler and nce initial
field setting is output, A binary file produced without field
settings will be loaded into field 0 when wusing the Run (or Load}
command.

NOTE

A symbeol in one field may be used to
reference the same location in any other
field., The field to which it refers is
determined by the use of the CDF and CIF
instructions. (The programmer who is
unfamiliar with the IOT's but wishes to
use them should refer +to the PDP/BE
SMALL COMPUTER HANDBOOK and experiment
with several short test programs to
gsatisfy himself as to their effect.)

CDF and CIF instructions must be used
pricr to any instruction referencing a
location outside the current field, as
shown in the following example:

%200
TAD P31
CDF 8@
CIF 10
JMS PRINT
CIF 10
JMP NEXT
P3B1, 381
FIELD |
*200
NEXT, TAD P302
CDF 18
JMS PRINT
HLT
P332, 382
PRINT, ©
TLS
TSF

JMP -1

CLA

RDF

TAD Pe2@3

DCA ,+]

ang

JMP 1 PRINT
P62v3, &eo3

When FIELD is used, the assembler follows the new FPIELD setting with
an origin at location 200. For this reason, if the programmer wants
to assemble code at location 400 in field 1 he must write:

FIELD 1 /CORRECT EXAMPLE
* 400

The following is incerrect and will not generate the desired code:

*4 7 /INGORRECT
FIELD |

Co

5.10.4 End-of-File

PAUSE signals the assembler to stop processing the file being read.
The current pass is not terminated, and processing continues with the
next file,

The PAUSE pseudo-op should be used only at the physical end of a file
and with two or more segments of one program, When a PAUSE statement
is reached the remainder of the file is ignored and processing
continues with the next input file., PAUSE must be present or a PH
error will occur,

5.10.5 Resetting the Locatioh Counter

The PAGE n pseudo-op resets the lcocation counter to the first address
of page n, where n is an integer, a previcusly defined symbol, or a
symbolic expression, all whose terms have been defined previously and
whose wvalue is from 0 to 37 inclusive, If n is not specified, the
location counter is reset to the next logical page of wemory. For
example:

PAGE 2 sets the location counter to 00400
PAGE 6 sets the location counter to 01400

If the PAGE pseudo-op is used without an argument and the current
location counter is at the first location of a page, it will not be
moved. In the following example, the code TAD B is assembled into
location 00400:

*377
JMP L -3

PAGE
TaD B

If several consecutive PAGE pseudo~ops are given, the first will cause
the current location counter to be reset as specified. The rest of
the PAGE pseudo-ops will be ignored,

5.10.6 Entering Text Strings

The TEXT pseudo=-op allows a string of text characters to be entered as
data and stored in 6-bit ASCII by using the pseude-op TEXT followed by
a space or spaces, a delimiting character (must be a printing
character), the string of text, and the same delimiting character.
Following the last character, a 6-bit zero is inserted as a stop code,.
For example:

TAG, TEXT/i23%/

The string would be stored as:

6162
6352
eena

5.10.7 Suppressing the Listing

Those portions of the source program enclosed by XLIST pseudo-ops will
not appear in the listing file; the code will be assembled, however.

Two XLIST pseudo-ops may be used to enclose the code to be suppressed
in which case the first XLIST with no argument will suppress the
listing, and the second will allow it again, ZXLIST may alsc be used
with an expression as an argument; a listing will be inhibited if the
expression is equal to zero, or allowed if the expression is not equal
to zero.

5.10.8 Reserving Memory

ZBLOCK instructs the assembler to reserve n words of memory containing
zeros, starting at the word indicated by the current location counter,
It is of the form:

ZBLOCK n

For example:

ZBLOCK 48

causes the assembler to reserve 40 {octal) words., The n may be an
expression., If n=0, no lorations are reserved.

5.10,9 Conditicnal Axsenbly Pseado-Op=rcators

The IFDEF pseudo-op takes the form:
IFDEF sviabol “soucce coder

If the symbol indicated is previously dafined, the code contained in
the angle brackets is assembled; if the symbol is undefined, this code
is ignored. Any aumber of statements or lines of code may be
contained in the angle brackets. The format of the IFDEF statement
requires a single sgpace before and after the symbol.

The IFNDEF pseudo-op is similar in form to IFDEF and is expressed:
IFNDEF symbol <source c¢ode:
1f the symbol indicated has not been previously defined, the source

code in angle brackets is assembled. If the symbol is defined, the
code in the angle brackets is ignored.

The IFZERO pseudo-op is of the form:
I¥ZERO expiesson <source coder

If the evaluated {(arithmetic or logical) expression is equal to zero,
the code within the angle brackets is assembled; if the expression is
non-zero, the code is ignored. Any number of statewments or lines of
code may be contained in the angle brackets. The expression may not
contain any imbedded spaces and must have a single space preceding and
following it.

IFNZRO is similar in form to the IFZERD pseudo--op and is expressed:
IFNZRO expression <source code>
If the evaluated (arithmetic or lagical) expression is not equal to
zero, the source code within the angle brackets is assembled; if the
expregssion is equal to zero, this code is ignored,
Pseudo~ops can be nested, for example:
IFDEF SYM <IFNZIRO K2 <,,.>>

The evaluation and subsequent inclusion or Jdeletion of statements is
done by evaluating the outermust pseudo-op first,

5.10.10 Contrelling Binary Output

NOPUNCH causes the assembler to cease Pkinary output but continue
assembling code, Xt is ignored except during pass 2.

ENPUNCH causes the assembler to resume binary output after NOPUNCH,
and is ignored except during pass 2, For example, these two
pseudeo-ops might be used where several programs share the same data on
page zero. When these programs are to be loaded and executed
together, only one page zero need be output.

ur
}

na

pey]

5.10.11 Controlling Page Format

The EJECT pseudo-~op causes the listing to jump to the top of the next
page. A page eject 1is done automatically every 55 lines; EJECT is
useful if the user requires more frequent paging. If this pseudo-op
is followed by a string of characters, the first 40 (octal) characters
of that string will be used as a new header line.

5,10,12 Altering the Permanent Symbol Table

PALC contains a table of symbol definitions for the PDP-8 and CAPS~-8
peripheral devices, These are symbols such as TAD, DCA, and CLA,
which are used in most PDP-8 programs. This table is considered to be
the permanent symbol table for PALC: all of the symbols it contains
are listed in Appendix C.

If the user purchases one or more optional devices whose instruction
set is not defined among the permanent symbols (for example EAE or an
A/D converter), he would want to add the necessary symbol definitions
to the permanent symbol table in every program he assembles,
Conversely, the user who needs meore space for user-defined symbols
would probably want to delete all definitions except the ones used in
his program. For such purposes, PALC has three pseudo-ops that can be
used tc alter the permanent symbol table, These pseudo—-ops are
recognized by the assembler only during pass 1. During either pass 2
or pass 3 they are ignored and have no effect,

EXPUNGE deletes the entire permanent syrbol table, except pseudo-ops.
FIXTAB appends all presently defined syrbols to the permanent symhol
table. Atl symbols defined before the occcurrence of FIXTAB are made

part of the permanent symbol table until the assembler is reloaded,

To append the following instructions to the symbol table, the user
genarates an ASCIT file called SYMS,.PaT. containing:

MUY =745 AMULTIPLY

DVL=T74@7 /DIVIDE

CLSK=6131 /SKIP ON CLOCX INTERRUPT
FIXTAB /80 THAT THESE WON'T BE

/PRINTED I THE SYMROL TABLE

The ASCII file is then entered in PALC's input designation, The user
may also place the definitions at the beginning of the source file.
This eliminates the need to load an extra file.

Each time the agsembler is loaded, PALC's permanent symbel table is
restored to contain only the permanent symbols shown in Appendix C,

The third pseudo-op used to alter the permanent symbol table in PALC
is FIXMRT. FIXMRI is mnsaed to define a memory reference instructiocon
and is of the form:

FI¥MRT name:-value

The letters FIXMRI must be followed by one space, the symbol for the
instruction to be defined, an equal sign, and the value of the symbol.
The symbol will be defined and stored in the symbol takle as a memory
reference instruction, The pseudo-op must be repeated for each memory
reference instruction to be defined. For example:

EXPUNGE

FIXMRI TAD=1@ac
FIXMRI DCAzipagd
CLA=T2Q0

FIXTAR

When the preceding program segment is read inte the assembler during
pass 1, all symbol definitions are deleted and the three symbols
listed are added to the permanent symbcl table, Notice that CLA is
not a memory reference instruction, This process can be performed to
alter the assembler's symbol table so that it contains only those
symbols used at a given installation or by a given prcgram. This may
increase the assembler's capacity for user-defined symbols in the
program.

A summary of the PALC pseudo-ops is provided in Appendix C,

5.11 LINK GENERATION AND STORAGE

In addition to handling symholic addressing on the current page of
memory, PALC automatically generates links for off-page references.
If reference is made to an address not on the page where an
instruction is 1located, the assembler sets the indirect bit (bit 2)
and an indirect address linkage will Dbe generated an the current

memory page., If the off-page reference is already an indirect one,
the error diagnostic II {illegal indirect) will be generated. For
example:
*2 117
By CLA
*2 6P
JMP A

In the example above, the assembler will recognize that the registex
labelled A is not on the current page (in this case 2600 to 2777) and
will generate a link to it as follows:

1. In location 2600 the assembler will place the word 5777
which is egquivalent to JMP I 2777,

2. In address 2777 (the last available location on the
current page) the assembler will place the word 2117 (the
actual address of A).

During pass 3, the octal code for the instruction will be followed by
an apostrophe {') to indicate that a link was generated.

Although the assembler will recognize and generate an indirect address
linkage when necessary, the programmer may indicate an explicit

indirect address by the pseudo«op I, The assembler cannot generate a
link for an instruction that is already specified as being as indirect
reference, In this case, the assembler will print the error message
IT1 {illegal indirect)., For example:

*2117
Ay cLA
*2 600

JMP 1 A
The above coding will not work because 2 is not defined on the page
where JMP I A is attempted, and the indirect bit is already set.

Literals and links are stored on each page starting at page address
177 (relative) and extending toward page address 0 (relative).
Whenever the origin is then set to another page, the 1literal buffer
for the current page is output., This dces not affect later execution.
There is room for 160 {octal) literals and links on page zeroc and 100
{octal) literals on each other page of memory.

Literals and links are stored only as far down as the highest
instruction on the page. Further attempts to define literals will
result in a PE (page exceeded) or ZE (page zero exceeded) error
message.

5.12 CODING PRACTICES

A neat printout (or program listing, as it is usually called}) makes
subsequent editing, debugging, and interpretation much easier than if
the coding were laid out in a haphazard fashion. The coding practices
listed bhelow are in general use, and will result in a readable,
orderly listing.

1. A title comment begins with a slash at the left margin,

2, Pseudo-ops may begin at the left margin; often, however,
they are indented ocne tab stop to line up with the
executahble instructions.

3. Address labels begin at the Jleft margin. They are
separated from succeeding fields by a tabulation.

4, Instructions, whether or not they are preceded by a
label field, are indented one tab stop.

5. A comment is separated from the preceding field by one
or two tabs (as required) and a slash; if the comment
occupies the whole line itusually begins with a slash at
the left margin.

5,13 PROGRAM PREPARATION AND ASSEMBLER QUTPUT

The following program was generated using +the TAB function of the
CAPS~-8 EDITOR and was assembled with PALC,

*2 04
FEXAMPLE OF INPUT TO THE FORMAT
/GENERATOR PROGRAM

BEGIN, ¢ /START OF PROGRAM
KCC
KSF /WAIT FOR FLAG
JMP -] /FLAG NOT SET YET
KRB /READ IN CHARACTER
DCA CHAR
TAD CHAR
TAD MSPAGE /IS IT & SPACE?
SNA CLA
HLT /YES
JMP BEGIN+2 /NO:INPUT AGAIN
CHAR, (5] /TEMPORARY STORAGE

MSPACE, -224@
/END OF EXAMPLE
$

The program consists of statements and pseudo-ops and is terminated by
the dollar sign ($), If the program is large, it can be segmented by
placing it into several files; this often facilitates the editing of
the source program since each section will be physically smaller,

The agsembler initially sets the current location counter to 0200,
This counter is reset whenever the asterisk (*) is processed,

The assembler reads the scurce file for pass 1 and defines all symbols
used.

During pass 2, the assembler reads the source file and generates the
binary code using the symbol table equivalences definec during pass 1.
The binary file that is output may be loaded by the Load c¢ommand.
This binary file consists of an origin setting and date words.,

During pass 3, the assembler reads the source file and generates the
code from the source statements, The assembly listing is output in
ASCII code. It consists of the current locatior counter, the
generated code in octal, and the source statement, The 5-digit first
column is the field number and 4-digit octal address (c¢urrent location
counter); the 4-digit second column is the assembled okject code. The
symbol table is printed at the end of the pass. The pass 3 cutput is:

*200 PALC=¥] B3/Q08/73 PAGE 1
2208 «290

/EXAMPLE OF INPUT TCO THE FORMAT
/GENERATOR PROGRAM

2202 00P® BEGIN, @ /8TART OF PROGRAM
29201 6832 KCC

70202 6031 KSF /WATT FOR FlAG
@203 S202 IMP =1 /FLAG NOT SET YET
e@2R4 6R36 KRB /READ IN CHARACTER
PE2eS 3213 DCA CHAR

P26 1213 TAD CHAR

po287 1214 TAD MSPACE /15 IT A SPALE?
PP210 7650 SNA CLA

ep211 T4@2 HLT /YES
epel2 S202 JMP BEGINZ /NOIINPUT AGAIN
@e213 0POP@ CHAR, a /TEMPORARY STORAGE
@Re14 TS540 MSPALE, =240

/END OF EXAMPLE

L)
x200 PALC~Y)! @3/P8/73 PAGE te1
BEGIN 022020
CHAR 213

MSPACE 0214

5.13.1 Terminating Assembly
PALC will a} terminate assembly, b) print a #C, and ¢) wait for the
user to mount the System Cassette on drive 0 and type 1C, under any of
the following conditions:
1. Normal exit--The § at the end of the source program was
eXxecuted on pass 2 (or pass 3 if a listing is being
generated),

2. Fatal error--One of the following error conditions was
found and flagged (see the next section):

BE DE DF PH SE

3. 1Cc--If typed by the user, control turns to the Monitor.

5.14 PALC ERROR CONDITIONS

PALC will detect and flag error conditions and generate error messages
on the console terminal. The format of the error message is:

CODE ADDRESS

where CODE is a 2=-letter code which specifies the type of error, and
ADDRESS 1is either the absolute octal address where the error occurred
or the address of the error relative to the last symbolic tag (if
there was one) on the current page. For example, the following code:

BEG, TAD LBL
ZTAD LBL

would produce the error message:

{C BEGHIPD)
since % is an illegal character.

If at any time PALC prints +C, the user should make certain that the
System Cassette is mounted on drive 0 and then type %2 to return to
the Monitor, He should examine each error indication to determine
whether correction is required.

On the pass 1 listing, error messages are output as 2-=character
messages on the 1line dJust prior to the 1line in which the error
occurred, The following table lists the PALC error codes. Those
labeled Fatal Error are followed immediately by an effective 4+C,

Table 5=3 PALC Error Codes

Error Code Explanation

BE Two PAL-C internal tables have overlapped. Patal
error-—-assembly cannot continue.

DE bevice error. An error was detected when trying
to read or write a device, Fatal error--assembly
cannot continue,

DF Device full. Fatal error--assembly cannot
continue,

IC Illegal character. The character is ignored and
the assembly continued.

in Illegal redefinition of a symbol. An attempt was
made ta glve a previously defined symbol a new
value by means other than the equal sign. The
symbol is not redefined.

IE Illegal equals--an equal sign was wused in the
wrong context. Considered a warning and may not
indicate an error but rather an undefined symbol
at that point.

II Illegal indirect--an off-page reference was made.

IP Illegal pseudo-op-~a pseudo-op was used in the
wrong context or with incorrect syntax,

1z Illegal page zero reference--the pseudo-op 2 was
found in an instruction which did not refer to
page zero. The Z is ignored.

PE Current non-zero page exceeded--an attempt was
made to:

5-34

Table 5-3 PALC Error Codes {Cont'd)

Error Code Explanation

PH

SE

Uo

us

2E

1, Override a literal with an instruction
2. Override an instruction with a literal

3. Use more literals than the assembler allows on
that page.

This can be corrected by decreasing either the
number of literals on the page or the number of
instructions on the page,

Phase error—--either no § appeared at the end of
the program, or < and > in conditional pseudo-ops
did not match. Fatal error=--—assembly cannot
continue,

Redefinition-—-a permanent symbol has been defined

with =, The new and old definitions do not match,
The redefinition is allowed,

Symbol table exceeded--too many symbols have been
defined for the amount of memory available, Fatal
error-~assembly cannot continue,

Undefined origin--an undefined symbol has occurred
in an origin statement,

Undefined symbol--a symbol has been processed
during pass 2 that was not defined before the end
of pass 1.

Page 0 exceeded--gsame as PE except with reference
to page 0,

CHAPTER 6
CASSETTE BASIC

6.1 INTRODUCTION

Cassette BASIC 1s an interactive programming language derived from
Dartmouth BASIC and designed to run under the Cassette Keyboard
Monitor., The BASIC language is aimed at facilitating communication
between the wuser and the computer, The user types his program as a
series of numbered statements, making use of common English words and
familiar mathematical notations. Because the BASIC language involves
learning only a small number of commands, it is a wvery easy language
to use. As the user gains familiarity with BASIC, he can add the
advanced techniques available to perform more intricate manipulations
or express a problem more efficiently and concisely.

Cassette BASIC provides approximately 1.7 to 2K of memory for program
storage. Important features include 1- and 2-dimensional
subscripting, user~coded functions, program chaining, use of cassettes
for program storage, and use of line printer, if available, for
output.,

Beginning programmers may find a more fundamental approach to BASIC
language programming in Chapter 1 of THE EDUSYSTEM HANDBOOK,

6.2 CALLING BASIC {.,R BASIC)

Using the Cassette Keyboard Monitor, BASIC is called from the System
Cassette by typing:

.R BASIC

When it is first loaded into memory, BASIC asks the user if he will
use run—-time file input and output as follows:

USING RUN-TIME FILE I/02C(Y OR_NJ

The user responds with Y or N followed by a carriage return. Choosing
the run-time I/0 feature leaves the user approximately 1,7K of memory
for program storage, whereas a response of N frees the space used by
the run-time I/0 routines and provides an additional .3K of memory
{enough for approximately 20-25 statements or 75 variables).
Statements associated with the run-time I/0 feature are:

OPEN..,.FOR INPUT
OPEN. .. FFOR QUTPUT
CLOSE

IF END#

PRINT#

INPUT#

COMMAS

NO COMMAS

If any of these statements are used without the run-time I/0 option
having been chosen during BASIC's initial dialogue, BASIC will print a
NO FILES ERROR message at run-~time.

BASIC then asks:

NEW OR OLD-

The user responds NEW if he intends +to create a program at the
keyboard, and must respond with the name of the new program when BASIC
requests:

NEW PROGHANM NAME-

The program name is typed as a standard system filename {6 characters
or less) and an optional extension {1 to 3 characters); a program name
is entered even if the user does not intend to save the program for
future use, (A response of only a carriage return causes BASIC to
repeat the NEW PROGRAM NAME request. If the user types an ALT MODE in
response to this request, the name NONAME,BAS is assigned by BASIC.)
When the new program name has been entered, BASIC indicates that it ig
ready to accept input by issuing a carriage return/line feed
combination,

If the user responds OLD to BASIC's initial dialogue, BASIC assumes
that the program has been previously saved on a cassette and will ask:

QLD PROGRAM NAME-
UNITRC(D-7)32

The user must respond with the correct program name and file extension
{(if any), and then must specify which cassette unit drive the file is
stored on, (An incorrect response will return an error message,} When
this interaction is complete, BASIC will type:

READY «»

and the user may edit or run his program,

6,3 NUMBERS

Cassette BASIC treats all nunbers (in both integer and real formats)
as real, or floating point, numbers, That is, BASIC accepts as input
any number containing a decimal point and assumes a decimal peoint
after any integer number entered.

In addition to integer and real formats, a third format is recognized
and accepted by BASIC in order to express numbers ouvtside the range
.01l<=x<1000000. This format is called exponential or E-type notation,
In this format, a number is expressed as a decimal number times some
power of 10, as follows:

6-2

where FE represents "times 10 to the power of". A number in
exponential notation is then read "xx times 10 to the power of n"; for
example:

23,4E2 = 23.4*(10 to the power of 2} = 2340

Data may be input in any one or all three of these forms. Internal
computations are carried out in floating point {real) format. Results
of computations within the range .0l<=x<1000000 are output as either
real or integer decimal numbers {whichever is the correct but more
concise format); results outside this range are ogutput in exponential
format, BASIC handles seven significant digits in normal operation
and input/output, as illustrated below:

Same Value

Value Typed In Output By BASIC
.01 .01
.0099 9.%00000E-3
9999499 999999
loooo000 1.000000E+6

BASIC automatically suppresses the printing of leading and trailing
zeros in integer and decimal numbers and, as shown above, prints all
exponential numbers in the form:

(sign} x.xxxxxx E (+ or =} n
where x represents the number carried to six decimal places, E stands
for "times 10 +to the power of", and n represents the exponent. For

example:

=3.470218E+8 ,is equal to =347021800
7.260000E~4 is equal to .000726

6.4 VARIABLES

A variable in BASIC is a symbol which represents a npumber and is
formed by a single letter or a letter followed by a digit. For
example:

Acceptable Variables Unacceptable Variables
I 2C - A digit cannot begin
a variable
B3 AB - Two or more letters

cannct form a variable

The user may assign values to variables either by computing the wvalues
in a LET statement or by inputting the wvalues as data; these
operations are discussed later.

6,5 ARITHMETIC OPERATIONS

BASIC performs addition, subtraction, multiplication, division and
exponentiation, as well as more complicated operations explained in
detail later in the chapter, The five operators used in writing most
formulas are:

Symbol Meaning Example

Addition
Subtraction
Multiplication
Division
Exponentiation
(Raise A to the
Bth power)

N+
o
Ea S N
o mwo

6.5.1 Priority of Operations

In any given mathematical formula, BASIC performs arithmetic
operations in the following order of evaluation:

1. Parentheses receive top priority., Any expression within
parentheses is evaluated before an unparenthesized
expression.

2. In absence of parentheses, the order of priority is:

a, Exponentiation
b. Multiplication and Division (of equal priority)
¢. Addition and Subtraction (of equal priority)

3. If either 1 or 2 above does not clearly designate the
order of priority, then the evaluation of expressions

proceeds from left to right,

The expression A4B4C is evaluated from left to right as follows:

1. AtB step 1

2. (result of step 1i)1tC answer

The expression A/B*C is also evaluated from left to right since
multiplication and division are of equal priority:

i1, AaA/B step 1

answer

2. (result of step 1)*C

6.5.2 Parentheses and Spaces

Paretheses may be used by the programmer to change the order of
priority (as 1listed in rule 2 of the previous section). Since
expressions within parentheses are always evaluated first, the
programmer can control the order of evaluation by enclosing
expressjons appropriately. Parentheses may be nested, or enclosed by
a second set {or more) of parentheses. In this case, the expression
within the innermost parentheses is evaluated firsi, and then the next
innermost, and so on, until all have been evaluated.

Consider the following example:

A=TR{{(BTI2+43/X)

The order of priority is:

1. Bt2 = step 1
2, {result of step 1l)+4 = gtep 2
3. (result of step 2) /% = step 3
4, {result of step 3)*7 = A

Parentheses alsc prevent any confusion or doubt as to how the
expression is evaluated. For example:

A%BI2/7+BSCHN2

(CA*B12)/7)+((B/CY+D12)

Both of these formulas will be executed in the same way. However,
most users will find that the second is easier to understand,

Spaces may be used in a similar manner, Since the BASIC compiler
ignores spaces, the two statements:

LET B = Dt2 + 1
LETB=D12+1

are identical, but spaces in the first statement provide ease in
reading,

6.5.3 Relational Operators

A program may require that two values be compared at scme point to
discover their relation to one ancther. To accomplish this, BASIC

makes use of the following relational operators:

= equal to > greater than
< less than >= greater than or
<= less than or egual to
equal to <> not equal to

Depending upon the result of the comparison, flow of program execution
may be directed to another part of the program, or the wvalidity of the
relationship may cause a value of ¢ (indicating a FALEE condition) or
1 (indicating a TRUE condition) to be assigned to a variable. For
example:

13 ¥=Y=<7

This statement assigns the value 1 to X if Y 1is greater than Z.
Relational operators are used primarily in conjunction with IF and LET
statements, both ¢of which are later discussed in detail,

The meaning of the equal sign (=) should be clarified. In algebraic
notation, the formula X=X+1 is meaningless. However, in BASIC {(and
most computer languages), the equal sign designates replacement rather
than equality, Thus, the formula X=%+1 is actually translated: "add
ona to the current value of X and store the new result back in the
same variable X"; whatever wvalue has previously been assigned to X
will be combined with the wvalue 1. An expression such as 2A=B+C
instructs the computer to add the values of B anc C and store the
result in a third variable A; the variable A is not being evaluated in
terms of any previously assigned wvalue, but only in terms of B and C.
Therefore, if A has been assigned any value prior to its use in this
statement, the old value is lost; it is instead replaced by the wvalue
of B+C, Finally, the equal sign may be used in relaticnal testing as
illustrated in the previous example,

6,6 IMMEDIATE MODE

Commands are available which allow Cassette BASIC to act as a
calculator--that is, the user types an algebraic expression which is
to be calculated and BASIC types back the result, This 1is called
Immediate Mode since the user is not required to write a detailed
program to calculate expressions and eguations, but can use BASIC to
produce results immediately. The commands used in Immediate Mode are
PRINT, LET and occasionally the FOR-NEXT combination, These are
explained in the following paragraphs.

6.6.1 PRINT Command
The PRINT command is of the form:
PRINT expression

BASIC is instructed to compute the value of the expression and print
the result on the console terminal. The expression is a normal

arithmetic expression which may include numbers, variables, arithmetic
operators, and functions (discussed in Section 6.8.12). A string of
text may also be printed (see Section 6.8.5--PRINT}. For example:

PRINT 1/B1H
5.962464E-38

6.6.2 LET Command

Values may be assigned to variables by use of the LET command as
follows:

LET variable=expression

The computer does not type anything in response to this command, but
computes the expression and assigns the value to the variable. The
variable may then be used in another computation or may be output
using the PRINT command, For example:

LET Pl=3.14159

PRINT Pl®412
5326544

6.6.3 Looping PRINT and LET Commands

It is possible to include PRINT and LET commands in a loop 50 that
variables and results may be stored or printed in a series. Looping
is accomplished by means of FOR-NEXT statements in which the FOR
statement sets the limits of the loop and the NEXT statement
increments the count by 1. The only restriction in Immediate Mode
looping is that the command and the looping statements must appear on
one line, This is accomplished by using the backslash (\)} character
to separate multiple statements on a line, (The backslash is produced
on an LT33 or 35 Teletype by pressing the SHIFT and L keys
simultaneously. Other types of terminals provide a separate key.) For
example;

LET P1=3.14159
FOR 1=1 TO 3\PRINT PLtINNEXT I

This combination will print the results of 3,14139 to the 1st, 2nd,
and 3rd powers respectively.

More information on looping in general is provided in Section 6,8,7.

6.7 EXABMPLE RUN

The following Example Run is included at this point as an illustration
of Cassette BASIC's initial dialogue, the format of a BASIC program,
the ease in editing and running it, and the type of output that may be
produced, The wuser calls in the program AVER from cassette drive 1
and attempts to run it. Execution is halted by a SYHNTAX ERROR at line
30. The user lists the program, finds the mistake in line 30, and
alsoc notices a mistake in line 85, He corrects these errors by
retyping the lines, and then reruns the program. After execution he
saves the corrected program con drive 1 under the original name.

Following sections cover the statements and commands used in BASIC
programming.

«H BASIC
HSING RUN-TIME FILE I/07¢Y QR NIN

NEW O OLD-0LD

DL.D PROGRAM NAME-AVER
UNTT#{2=-7¥z1

HEADY «

HITN
HOW MANY STHDENTS, HOW MANY GRADES IPER STUDENT 25,4
S5YNTAX ERROR AT LINE 30

LIST

13 REM - PHOGRAM T0O TAKE AVERAGE OF
15 REM = STUDENT GRADEFS AND CLASS GHADES
22 PRINT "HOW MANY STUDENTS. HOW MANY GRADES PER STUDENT ";
38 INPUT a,13

4 LET 1I=1

53 FOR J=1 TD A

55 LET V=0

6% PRINT "STUDENT WUMHER ="3iJ

75 PRINT "FNTER GRADES™

76 LET D=J

#O FOIU K=D TQ B+(3-1)

1 INPUT G

H2 LET V=V+G

#5 NEXT L

9# LET J=Us/12

95 PRINT "AVEHAGE GRADE ="V

26 PRINT

39 LET R=0+Y

13 NEXT J

131 PRINT

132 PHRHINT

133 PRINT "CLASS AVERAGR ="iG/a

134 STOP

14% FNR

68

READY »

32 INPUT A.B

B85 NEXT K

RUN

HOW MANY STUDENTS. HOW MANY GRADES PER STUDENT
STUDENT NUMBER = 1
ENTER GRADES

78

186

788

274

AVERAGFE GRADE = El.5

STUDENT NUMBER = 2
ENTER GRADES

759

786

174

787

AVERAGE GRADE = 75.5

STUDENT NUMBER = 3
ENTER GRADES

2?58

264

7275

TES

AVFRAGE GRADE = 6%.25

STUDENT WNUMBER = 4
ENTER GRADES

7H8

192

785

9

AVERAGE GRADE = £6

STUDENT NUMRFR = 5
ENTER GRADES

760

778

185

THO

AVERAGE GRADE = 75.75

T7s6

1

CLASS AVERAGE

READY «

SAVE

ONITACO-73121

READY »

75,4

6.8 BASIC STATEMENTS

The statements described in this section are used in creating BASIC
programs, These statements make wup the body of tle program; they
perform arithmetic calculations and input and output cperations, and
control the order of program execution,

6.8.1 5Statement Numbers

An integer number is placed at the beginning of each line in a BASIC
program. BASIC executes the statements in a program in numerically
consecutive order regardless of the order 1in which they have been
typed. A recommended practice is to number lines by fives or tens, so
that additional lines may be inserted in a program without the
necessity of renumbering lines already present, (BASIC programs may
be created using either the BASIC Editor as described here, or the
CAPS=-8 EDITOR., If the CAPS-8 EDITOR is used, the programmer must make
certain to type his program in numerically consecutive order, as BASIC
will not sort it in this case.)

Multiple statements may be placed on a single line by separating each
statement from the preceding statement with a backslash (SHIFT/L).
This feature is particularly useful since statement numbers reguire
space in the symbol table; if wunnecessary statement numbers are
eliminated by use of the backslash, there will be more room for
program storage. For example:

18 A=5\B=,2\C=3\PRINT "ENTER DATA"

All of the statements in 1line 10 will be executed before BASIC
continues to the next line. Only one statement number at the
beginning of the entire line is necessary. However, it should be
noted that program control cannot be transferred to a statement within
a line, but only to the first statement of the line in which it is
contained (see Section 6.8.9, Transfer of Control Statements).

6.,8.2 Commenting the Program (REM)

The REM or REMARK statement allows the programmer to insert comments
or remarks into a program without these comments affecting execution,
The BASIC compiler ignores everything on a line beginning with REM.
The form is:

(line number) REM {message)

In the Example Run program, lines 10 and 15 are REMARK statements
describing what the program does. It is often useful to put the name
of the program and information relating to its use at the beginning
where it is available for future reference. Remarks throughout the
body of a long program will help later debugging by 2xplaining the
purpose of each section of code within the program.

6.8.3 Terminating the Program (END and STOP)

The END statement (line 140 in the Example Run program), if present,
must be the last statement of the entire program. The form is:

{line number)} END

Use of the END statement is optional. If executed, it signals the end
of the program and BASIC prints:

READY »

Variables and arrays are left in an undefined state, thereby losing
any values they have been assigned during execution,

The STOP statement is used synonymously with the END statement to
terminate execution, but while END occurs only once at the end of a
program, STOP may occur any number of times. The format of the STOP
statement is:

{line number} STOP

This statement signals that execution is to be terminated at that
peint in the program where it is encountered leaving variables in a
defined state. (Variables will contain the values assigned when the
statement is encountered.)

6.8.4 The Arithmetic Statement (LET}

The Arithmetic (LET} statement is probably the most commonly used
BASIC statement. It causes a value to be assigned to a variable and
is of the form:

(line number) {(LET) x = expression

where x represents a variable, and the expression is either a number,
another variable, or an arithmetic expression. The word 'LET' is
optional; thus the following statements are treated the same:

LET A=AtB+10 LET C=F/G
aAs=A1B+10 C=F/G

As mentioned earlier, relatjonal operators may be used in a LET
statement to assign a value to a variable depending upon the wvalidity
of a relationship. If the statement is FALSE, the value (¢ is assigned
to the variable; if TRUE, the value 1 is assigned. For example:

143 A=)

135 B=2

112 C=A=B

128 D=4a>B

1300 E=A<>8

1480 PRINT CrDsE
153 END

Translated, this actually means "let C=l if A=B (0 otherwise); let D=1
if A>B (0 otherwise)"™ and so on. Thus, the values of C, D, and E are
printed as follows:

RIJN
a a 1

READY »

There is no limit to the number of relationships that may be tested in
the statement,

6.8.5 Input/Output Statements

Input/Output statements allow the user to bring data into a program
and output results or data at any time during executiocn. The conscle
terminal keyboard, (LT33 Teletype reader and punch units, if present),
cassettes, and line printer are all available as I/0 devices in
Cassette BASIC., Statements which contrcl their use are described
next.

READ and DATA
READ and DATA statements are used to input data into a program. One
statement is never used without the other. The form of the READ
statement is:

(line number) READ x1l,x2,.,.xn
where x1 through xn represent variable names. For example:

18 READ A»B.C

A,B, and C are variables to which values will be assigned, Variables
in a READ statement must be separated by commas. READ statements are
generally placed at the beginning of a program, but must at least
legically occur before that point in the program where the value is
required for some computation.

Values which will be assigned to the variables in a READ statement are
supplied in a DATA statement of the form:

{line number) DATA x1,x2,...%XnO
where x1 through xn represent values, The values must be separated by
commas and must occur in the same order as the variables which are
listed in +the corresponding READ statement. A DATA statement
appropriate for the preceding READ statement is:
T3 0ATA 1,23

Thus, after executing the READ statement, A=1, B=2, and C=3.

The DATA statement isg usually placed at the end of a program (before
the END statement) where it is easily accessible to the programmer
should he wish to change the values.

A READ statement may have more or fewer variables than there are
values in any one DATA statement. The READ statment causes BASIC to
search all available DATA statements in consecutive line number order
until wvalues are found for each variable in the READ, A second READ
statement will begin reading values where the first stopped. If at
some point in the program an attempt is made to read data which is not
present or if the data is not separated by commas, BASIC will stop and
print the following message on the conscole terminal:

DATA ERROR AT LINE XXXX

where XXXX indicates the line number of the READ statement which
caused the error.

RESTORE

If it should become necessary to use the same data more than once in a
program, the RESTORE statement will make it possible to recycle
through the DATA statements beginning with the lowest numbered DATA
statement, The RESTORE statement is of the form:

{line number} RESTORE
An example of its use follows:

15 READ B.C.D

-

55 RESTORE
60 READ E»F.G

B2 DATA 6,3:4,7:9.2

133 END

In this example, the READ statements in lines 15 and 60 will both read
the first +three data values provided in line 80. If the RESTORE
statement had not been inserted before line 60, then the second READ
would pick up data in line 80 starting with the fourth wvalue.

In recycling through data with a RESTORE statement, the programmer may
use the same variable names the second time through the data, or not,
as he chooses, since the values are being read as though for the first
time. In order to skip unwanted values, the programmer may insert
replacement (or dummy) variables, Consider:

1 REM - PROGRAM TQ ILLUSTRATE USE OF RESTQORE
29 READ N

2% PRINT ""VALUES OF X ARE:"™

32 FOR I=1 TO N

43 READ X

5@ PRINT X

60 NEXT I

79 RESTORE

185 PRINT

199 PRINT "SECOND LIST QF X vaLUES™

299 PRINT '""FOLLOWING RESTORE STATEMENT:"
218 FOR I=l TO N

223 READ X

230 PRINT X»

240 NEXT 1

250 DATA 4.1.2

251 DATA 3.4

382 END

RUN
VALUES OF X ARE:

1 2 3 4
SECOND LIST OF X VALUES

FOLLOWING RESTORE STATEMENT:

4 1 2 3
READY »

The second time the data values are read, the wvariable X (line 220)
picks up the wvalue originally assigned to N in line 20, and as a
result, BASIC prints:

To circumvent this, the programmer could insert a dummy variable (for
example, 205 READ Z), which would pick up and store the first value,
but would not be represented in the PRINT statement. In this case the
output would be the gsame each time through the list,

INPUT

The INPUT statement is used when data is to be supplied by the user
from the console terminal keyboard while a program is executing, and
is of the form:

(line number} INPUT x1,x2,...xn
where x1 through xn represent variable names. For example:
25 INPUT 4»B.C

This statement will cause the program to pause during execution, print
a question mark on the console terminal, and wait for the user to type
three numerical values, The user must separate the values by commas;
they are entered into the computer by pressing the RETURN key at the
end of the list.

If the user does not insert enough values to satisfy the INPUT
statement, BASIC prints another question mark and waits for more
values to be input, When the c¢orrect number has been entered,
execution continues. If too many values are input, BASIC ignores
those in excess of the required number. The values are entered only
when the user types the RETURN key.

OPEN

Input and output files may be stored on cassette, and may be accessed
during run-time {providing the user has chosen the run-time I/O option
during BASIC's initial loading dialogue). Before an I/0 file is
accessed however, the user must first open it via one of the following
commands $

{line number} OPEN "n:xxxx™ FOR INPUT
or
{line number) OPEN "n:xxxx" FOR QUTPUT

where n represents the cassette drive number (0-7), and xxxx is any
legal filename (6 characters or 1less, and optional extension of 3
characters or less)., Input files are created either by using BASIC or
the CAP5-8 EDITOR (see Section 6,.8.6), and must have been previously
stored on cassette before being accessed. For example, the statement:

215 OPEN "1:TEST.DAT' FOR INPUT
opens an input file named TEST.DAT on cassette drive 1.

only one input and one output file may be open at any time, and only
one file--either input or output--may be open on a given cassette
drive at one time,

CLOSE

The CLOSE statement is used to close a currently open output file, and
is of the form:

(1ine number} CLOSE

Suceeding OPEN FOR INPUT statements will perform an automatic close on
a previously open input file; however, the user should take note of
the following cases:

1. If the user attempts to open an input file on a cassette
which is currently open for output, BASIC will return an
T O ERROR, as the same cassette drive cannot be open for
both input and output at the same time.

2. If the user has an input file open on a cassette, and is
at its end-of~file (that is, a CTRL/Z has been
detected) , BASIC will allow him to open an output file

on the same cassette, since the input file is
theoretically "closed". However, if the uwser has an
input file open on a cassette and is not at its
end~of-file, an I O ERROR will occur if he then tries to
cpen an output file on the same cassette. iSee Section
6.8,.9, IF END#, for more information on BASIC's method
of detecting an end-~of-file.)

3. 1f the user tries to open an output file and an output
file is already open on any cassette, BASIC will return
a "FILE QPEN ERROR"; before opening a new output file,
the current output file must be closed.

A cleose is automatically performed on both open input and open output
files by STOF, END and CHAIN statements, as well as by all errors
detected at run-time.

INPUT#

Once an input file has been opened using the open statement, data can
be called into a program using the INPUT# statement, The form of this
statement is:

{line number) INPUT# xl1,x2,...XD

where § signifies that the file is stored on cassette under the
filename and drive number specified in the last "“CPEN,..FOR INPUT"
statement; %1 through xn represent variable names.

When the BASIC program reaches the INPUT# statement during execution,
the data is automatically called into the program from cassette and
execution continues, INPUT# statements and INPUT statements may be
interspersed throughout a program. The input file need only be opened
once before it is referenced.

PRINT

The PRINT statement is wused to output results of computations,
comments, values of variables, or plcot points cof a graph on the
console terminal., The format is:

(line number) PRINT expression

When no expression is indicated in the statement line, a blank line is
output. For example:

2035 PRINT
#2173 PRINT

Two blank lines will be output on the conscle terminal, By using
certain kinds of expressions and the c¢ontrol characters colon and
semicolon, the user can create fairly sophisticated formats.

In order to print out the results of a computation and the value of a
variable, the user types the 1line number, PRINT, and the variable
name(s) separated by a format control character (in this case, commas)
as follows:

5 A=16\B=5\C=4
12 PRINT A-C+B»SQR(AY

In BASIC, an output line is formatted into five columns {called print
zones) of 14 spaces each. The control character comma causes a value
to be typed beginning at the next available print zcone. In the above
example, the value of A, the sum of A+B, and the square root of A are
printed in the first three print zones as follows:

RUN
16 9 4

A statement such as in line number 10 in this next example:

5 A=2.3\B=21\C=156.75\D=1.134\E=23.4
13 PRINT A,BsCsDsE

causes the values of the variables to be printed in the same format
using all five zones:

RUN
2.3 21 15675 1.134 23.4

When more than five wvariables are listed in the PRINT statement, the
sixth value begins a new line of output.

The PRINT statement may also be used to output a message or line of

text. The desired message is simply placed in quotation marks in the
PRINT statement as follows:

i@ PRINT "THIS 15 & TEST"

when line 10 1is encountered during execution, the following is
printed:

THIS I$ A TEST

A message may be combined with the result of a calculation or a
variable as follows:

80 PRINT "AMOUNT PER PAYMENT =".R

Assuming R=344.96, when line 80 is encountered during execution, the
results are output as:

AMOUNT PER PAYMENT = 344.96

If a number following a printed message is too long to be printed on a
single line, the number is automatically moved to the beginning of the
next line.

It is not necessary to use the standard 5-zone format for output. The
control character semicolon (;) causes the text or data te bhe output

immediately after the last character printed (separated from that
character by a space and followed by another space). If neither a
comma nor a semicolon is used, BASIC assumes a semicolon. Thus both
of the following:

83 PRINT "AMOUNT PER PAYMENT ="R
8@ PRINT "AMOUNT PER PAYMENT ="

result in:
AMOUNT PEH PAYMENT = 344.96

The PRINT statement can also cause a constant to be printed on the
console terminal, {This 4is similar tco the PRINT command used in
Immediate Mode,} For example:

18 PRINT 1.234,%QR¢12011)
causes the following to be output at execution time:

1.234 1823.07

Any algebraic expression in a PRINT statement is evaluated using the
current value of the variables, Numbers are printed according to the
format discussed in Section 6.3,

The following example program illustrates the use of the control
characters comma and semicolon in PRINT statements, The user may also
wish to refer to Section 6.8.12 for information pertaining to three
functions available for additional character control--TAB, PUT, and
GET:

1@ READ AsR.C

20 PRINT AsB,CLAt2,B12,C12
38 PRINT

4@ PRINT A3Bi:C3At2;B12;5Cr2
58 DATA 4,5.6

60 END

RUN

4 5 6 16 a5
36

4 5 6 16 25 36

READY .

Another use of the PRINT statement is to combine it with an INPUT
statement so as to identify the data expected to be entered. As an
example, consider the following program:

19 REM - PROGRAM T0 COMPUTE INTEREST PAYMENTS
2@ PRINT "INTEREST IN PERCENT";

25 INPUT J

26 LET J=J/1@@

3@ PRINT "aMOUNT OF LOAN":

35 INPUT A

4% PRINT "NUMBER OF YEARS";

45 INPUT N

50 PRINT "NUMBER OF PAYMENTS PER YEAR";
55 INPUT ™

60 LET N=N*M

65 LET I=J/M

78 LET B=1+1

75 LET R=A*I/Z¢1-1/BtN)

78 PRINT

8@ PRINT "“AMOUNT PER PAYMENT ="iR

85 PRINT "TOTAL INTFEREST =" ;R*xN-A

88 PRINT

9@ LET B=A

95 PRINT " INTEREST APP TO PRIN BALANCE"

1@ LET L=Bx]

119 LET P=R-L

120 LET B=B-pP

130 PRINT L.PsB

146 IF B>=RG60 TO 100

1583 PRINT Bx[,R-Bx*I

168 PRINT "LAST PAYMENT ="B*x1+3
290 END

HUN

INTEREST IN PERCENT?Y

AMOUNT OF LOAN?2580

NUMBER OF YEARS?2

NUMBER OF PAYMENTS PER YEAR?4

AMDUNT PER PAYMENT = 344.9617

TOTAL INTEREST = 253%.6932
INTEREST APP TO PRIN BALANCE
56.25 2BB.T117 2211 .2€8
49475399 295.2077 1916.081
43+11182 301.8498 1614.231
36.32019 J08.6415 1385.589
29.37576 3155859 993.0Q035
22,.,27528 322.6866 867317
15.801463 329.947 A37.3699
7590824 337.3708

LAST PAYMENT = 344.9608

READY »

As can be noticed in this example, the gquestion mark is grammatically
useful when several values are to be input by allowing the programmer
to formulate a verbal question which the input values will answer.

PRINT#

The PRINT# statement is similar to the PRINT statement with the
exception that data and messages are sent to the current output file
on cassette rather than to the consecle terminal. The form of the
statement is:

(line number} PRINT# x1,x2,...%n

where # signifies that the output will be sgent to the cassette drive
number and filename of the currently open output file, and x1 through
xn represent data variables, (The current open file is determined by
the OPEN FOR OUTPUT statement, as detailed earlier in this section,)

If the user attempts to save data on a full cassette, BASIC prints an
error message and returns contrel to its editing phase. The data
already output is lost, and the user will have to rerun his program
using a different output cassette.

COMMAS and NO COMMAS

Data stored in an output file on cassette is o©often called later as
input by ancther or the same program. (This is in fact the only
methed of passing data between segments of a c¢hained program.) In
order to be used as input, this data must be in the same format as it
would appear if written in a DATA statement. Cassette BASIC provides
two statements for formatting this output--COMMAS and MO COMMAS.

In order to be used as data, individual values must be separated by
commas; the COMMAS statement inserts a comma after each item of data;
{(unless the COMMAS statement is inserted in the program prior to
PRINT¢ statement, data will be output in the format illustrated
earlier under the PRINT statement.) The form is:

(line number) COMMAS

A NO COMMAS statement will set the format back to its original state.
The COMMAS and NO COMMAS statements do not affect cutput on either the
console terminal or line printer,

The following example writes out four wvalues in a file called
"OUT.DAT", reads the values back into memory and prints them on the
console terminal,

13 OPEN "1:0JT«DATY™ FOR OUTPUT
15 COMMAS

2% PRINT# 1:2:334

37 CLOSE

4% 0PFEN "1:0UT.DAT" FOR INPUT
5 INPUTY 1.JsKsl,

60 PRINT IsJsKsL

T3 END

Output appears as follows:

RUN
1 2 3 a

READY »

The COMMAS statement is not necessary if the user is only sending one

value per line, The preceding example could have be
follows, with the same results: en coded as

18 OPEN 1:00T.DAT* FOR OUTRUT
280 FOR I=1 TO 4

39 PRINT# I

43 NEXT I

53 CLOSE

6@ OPEN "1:0UT.DAT" FOR INPUT
78 INPUT# I,-JsKsL

88 PRINT IsdJsKsL

93 END

In this case the file OUT,DAT would appear:

L (D [0 e

whereas in the first case it would appear as follows:
122,3.4

The user must take care when inputting data from cassette files, For
example, if the file OUT.DAT is in the form:

1:25354

and the user attempts to input these values wusing the following
statement:

592 INPUT# I.,JsK

the proper values for I, J, and K will be read, but the rest of the
line will be lost as far as satisfying any future variables--just as
it would be lost if these wvalues were input from the console terminal.
{({Refer to the information concerning the INPUT statement in this
section,}

LPT

The LPT statement is used to generate output on the line printer (if
one is available} and is of the form:

{line number) LPT

By inserting this statement anywhere in a program, all subsequent
output, with the exception of error messages, will be printed on the
line printer. The LPT statement is particularly advantageous for
outputting large amounts of calculated data, as can be seen from this

and following examples:

140 LPT
1i® FOR F=33 TO 69 STEP 3
120 PRINT F.F12

1380 NEXT F

143 END

HJN

12 E141"
33 _ 1089
36 1296
39 1521
42 1764
48 enas
Y.] 2304
51 2601
54 291é
57 3249
& 3600

When the END statement is encountered in the program, the output
device is reset tc the console terminal.

TTY CUT

The console terminal may be placed under program control so that
during execution of a program output may be sent alternately between
the console terminal and the line printer (if one is available on the
system) ,

Control is originally set with the console terminal. By issuing the
LPT statement discussed previcusly, all subsegquent output can be sent
to the line printer. To return control to the consecle terminal from
within the program, the statement:

{line number} TTY OUT

is inserted. (Cassette I/0 always returns control to the last device
indicated, so that the TTY OUT statement need only be used when the
line printer is involved.)

The following program makes use of almost all the available 1I1/0
devices, The console terminal and line printer output is included,

5 "AEM PROGRAM TO DEMONSTRATE ALL I/0 DEVICES

1% REM AVATLABLE IN CASSETTE BASIC

15 REM

20 PRINT "PROGRAM TO CALCJLATE SAITARES AND SAJARE ROOTS*®
25 PRINT

27 RWEM GET LOOP LIMITS FROM {JSER

3t PRINT "“INPYT LOWER LIMIT'

35 INPIIT L

40 PRINT "INPUIT UJJPPER LIMIT

45 TINPUT @}

530 PRINT "INPIT STEP'™

55 INPUT S

57 REM CREATE A CASSETTE FILE OF SQUARES OF NJMBERS
68 OPEN "1:STMIARE.DAT"FOR OITPHT

6=22

a5 LPT

&6 HEM PRINT A FOrM FRED ON LINEPRINTER
70 T=PJIT(LI2)

7% PRINT "TABLE 0OF NIMBERS AND THEIR SOJARES™
w3 PBRINT

71 PRINT

22 PRINT ' X"," Yta?

g1 PRINT

gg FOR Y=L, TO '} 5TRP §

g PRINT X.X12

95 REM ALSO SEND SOIARKS TO CASSETTRE FILK
133 PHINT# K12

193 NEXT ¥

126 CLOSE

118 T=PIT(12)

111 TTY 09T

112 PRINT "TARLE OF SNiJARES COMDLETE"™
113 LPT

11% PRINT "TARLE OF NJMBERS AND THEIR SAJARE RUUTS"
12m OPEN 1 ¢SNHTARE.DATY"FOR INPUT

125 PRINT

ins BPHINT

127 PRINT ** X",™ 52RO

128 PRINT

13 FOR X=L TO ‘I STEP §

135 INPIT# 3

136 PRINT J:50RCJ)

148 NIXT X

159 T=PIT(12)

155 TTY OIT

163 PRINT "PROGRAM COMPLETEDM

165 END

HUN
PROGRAM TO CALCIILATE SNUJARES AND S0JARE ROOTS

[NPIIT LOWER LIMIT

71

INPIT JPPER LIMIT

759

INPUT STREP

71

TARLE OF SAJARES COMPLETE

623

TaBLE OF NUMBERS AWNUY THEIR SQUARES

X e
i 1

I 4

3 L

th 164

) 24

- k1)

! 49

) Y]

g K1
1 124
49 2dd
5 2931

TAWLE OF wUMHERS ANJ THETR SGUGhE KGOTS

X R@r (X))
i 1
4 F
G 3
1k &
25 s
ik o]
ud 7
53 o
51 9
1A {2
»

PAPY 49
28min LY

NOTE

If an LT33 Teletype is used as the
console terminal and it includes a
reader and punch, these devices may be
used for I/0 operations at any time; no
special statement is required. To read
in data from the reader, position the
tape over the sprocket wheel; when input
is required, set the reader to START and
the tape will begin reading in. To
punch a tape, set the punch to ON and
all Teletype cutput will be punched on
the punch. Using the paper tape 1/0
devices is, in effect, the same as using
the Teletype keyboard. Characters will
be typed on the Teletype keyboard as
tapes are bheing read or punched.

6.8.6 Creating Run-Time Input Files

Data files stored on cassette and used for input during execution can
be created either by use of BASIC itself or by use of the CAPS-8
EDITOR.

Using BASIC, the programmer creates a program which accepts wvalues
from the console terminal Keyboard and then writes these onto the
cassette as an output file. Data files consist of consecutive ASCII
characters. If the useful data in a file is to end before the actual
end=of-file, the last useful character must be followed by a CTRL/Z.
(This character is inserted by BASIC when the user closes an cutput
file. When later detected during input, BASIC sets an end-of-file
flag; the user can test an end-of-~file condition by using the IF-END#
statement.} The COMMAS statement is used to produce the correct format
for a data file when more than one value is on a single line.

The following program illustrates one nethod of doing this:

5 REM - PROGRAM TO ACCEPT DATA FROM THE CONSQLE
13 REM ~ TERMINAL AND CREATE A RUNTIME INPUT FILE
28 OPEN "™O:RTIN.DAT" FOR OQUTPUT

25 PRINT "INPUT A.BsC,D";

3@ INPUT A»BsCsD

35 COMMAS

40 PRINT# A»BsC»D

45 PRINT "INPUT FC(IY FOR I=1 TO 14%

53 DIM FO18)

52 REM - COMMAS NOT NEEDED SINCE ARRAY WILL
53 REM ~ BE OUTPUT ONE ELEMENT PER LINE

55 NO COMMAS

66 FOR I=l TO 1¢&

T8 PRINT "F(M"IY™)»";

75 INPUT FCI)

83 PRINT# F{I)

85 NEXT 1

g9 PRINT "INPUT V1,V2,2"

g5 INPUT Vi.V2,2

97 REM = COMMAS ARE NEEDED SINCE Vl. V2 4ND Z
9% REM = WILL BE QUTPHT ON THE S5AME LINE

1pg cOmMMAS
135 PRINT# U1.VURB,7Z
118 CLOSE
115 END
AUl

SAVE

UNIT#(O~-7) 2

READY »

The CAPS-8 EDITOR can also be used to create an input file. The
EDITOR first asks for input and ocutput devices and filenames; then the
user types the file using EDITOR commands and making sure the format
is correct for BASIC. The same data file in the above example can be
created using the EDITOR as follows:

+R EDIT
*INPOT FILE-
*¥OUirJy FILE-OATINJDAT

#A

1 v37:8-346:“13!267j =1 .56
23

3.56

l.436

38

93926

23.067

79

54

12.467

-1
123,34567,789

£L
14372243465 ~13.267,-1.056
23

3456

1.436

38

9.026

23.067

59

54

12,467

-1

123,34567, 789

£E

L

6-26

6.8,7 Loops (FOR, WEXT and STEP)

A loop is a set of instructions which are repeated over and over
again, each time being modified in some way until a terminal condition
is reached. FOR and NEXT statements define the beginning and end of a
loop; STEP specifies an incremental walue. The FOR statement is of
the form:

{line number) FOR v=x1 TO x2 STEP x3

where v represents a variable name, and xl1, x2, and x3 all represent
formulas (a formula in this case means a numerical value, variakle
name, or mathematical expression). v is termed the index, x1 the
initial wvalue, %2 the terminal value, and x3 the incremental value.
For example:

15 FOR K=2 TO 20 STEP 2

This loop will be repeated as long as K is less than or equal to 20,
Each time through the loop, K is incremented by 2, so the loop will be
executed a total of 10 times.

A variable used as an index in a FOR statement must not be
subscripted, although a common use of loops is to deal with
subscripted variables using the value of the index as the subscript of
a previously defined variable (this is illustrated in Section 6.8.8,
Subscripted Variables}).

The NEXT statement is of the form:

{line number) NEXT v

where v is the index of the FOR loop and signals the end of the loop.
When execution of the loop reaches the NEXT statement, the computer
adds the STEP value to the index and checks to see if the index is
less than or equal to the .terminal waluwe, If so, the loop is executed
again. If the value of the index exceeds the terminal wvalue, control
falls through the loop to the following statement, with the value of
the index equaling the value it was assigned the final time through
the loop. (Note that this method of handling loops varies among other
versions of the BASIC language.)

If the STEP value is omitted, a wvalue of +1 is assumed. (Since +1 is
the wusual STEP value, that portion of the statement is frequently
omitted.) The STEP value may also be a negative number.

The following example illustrates the use of loops. This loop is
executed 10 times: the value of I is 10 when control leaves the loop.
+1 is the assumed STEP value,

1d FOR I=1 TO 19
20 NEXT 1

3@ PRINT I

46 END

RUN
19

READY «

6-27

If line 10 had been:

18 FOR I=18 TO 1 STEP -1
the wvalue printed by the computer would be 1,

As indicated earlier, the numbers wused in the FOR statement are
formulas:; these formulas are evaluated upon first encountering the
loop. While the index, initial, terminal and STEP values may be
changed within the loop, the value assigned to the initial formula
remains as originally defined until the terminal condition is reached.
To illustrate this point, consider the previous example. The value of
I {in line 10) can be successfully changed as follows:

134 FOR I=1 TO 19
15 LET I=10
2@ NEXT 1

The loop will only be executed once since the value 10 has been
reached by the wvariable I and the terminal condition is satisfied.

If the value of the counter variable is originally set equal to the
terminal wvalue, the loop will execute once, regardless of the STEP
value. If the gtarting value is beyvond the terminal value, the loop
will also execute only once.

It is possible to exit from a FOR-NEXT loop without the index reaching
the terminal wvalue. This is known as a conditional transfer and ig
explained in Section 6.8.9, Control may only transfer into a loop
which has been left earlier without being completed, ensuring that the
terminal and STEP values are assigned,

Nesting Loops

It is often useful to have one or more loops within a 1loop. This
technique 1is called nesting, and is allowed as long as the field of
one loop (the numbered Jlines from the FOR statemant to the
corresponding NEXT statement, inclusive)} does not cross the field of
another loop. A diagram is the best way to illustrate acceptable
nesting procedures:

ACCEPTABLE NESTING UNACCEPTABLE NESTING
TECHNIQUES TECHNIQUES

Two Level Nesting

FOR FOR
FOR FOR
EXT —NEXT
FOR NEXT
“~NEXT
NEXT

Three Level Nesting

—PFOR —FOR
—FOR FOR
FOR FOR
EXT NEXT

FOR FOR
EXT ‘NEXT
NEXT ‘NEXT
——NEXT ——NEXT

A maximum of eight (8) levels of nesting is permitted. Exceeding that
limit will result in the error message:

FOR ERROR AT LINE XXZXX

where XXXX is the number of the line in which the error sccurred.,

6.8.8 Subscripted Variables

In addition to single variable names, BASIC accepts another class of
variables called subscripted variables. Subscripted variables provide
the programmer with additonal computing capabilities for handling
lists, tables, matrices, or any set of related variables, Variables
are allowed one or two subscripts, A single letter forms the name of
the wvariable, followed by cne or two integers in parentheses,
separated by a comma, indicating the place of that variable in the
list. Up to 26 arrays are possible in any program {corresponding to
the letters of the alphabet), subject only to the amount of memory
space available for data storage. For example, a list might be
described as A(l) where I goes from 1 to 5, as follows:

A{l) ,A(2),A(3),A(4) ,A(5)

This allows the programmer to reference each of the five elements in
the 1list A, A two dimensional matrix A(I,J) can be defined in a
similar manner, but the subscriped variable A can only be used once
{i.e., A(I) and A(I,J) cannot be used in the same program), It is
possible however, to use the same variable name as both a subscripted
and an unsubscripted variable, That is, both A and A(I) are valid
variable names for use in the same program.

Subscripted variables allow data to be input quickly and easily, as
illustrated in the following program (the index of the FOR statement
in lines 20, 42 and 44 is used as the subscript):

1A REM - PROGRAM DEMUNSTRATING READIVG
11 REM - QF SRSCRIPTED VARIARBLES

15 DIM ACS),B(2,3)

18 PRINT “A{I) WHERE a=] TO 5;"

am FOR I=1 TO 5§

o5 READ ACI)

3 PRINT a¢1);

35 NEXT 1
38 PRINT
19 PRINT
43 PRINT "RB({I,J) WHERE I=1 TOQ 2:"
41 PRINT AND J=1 TO as*

42 FOR I=1 TG 2

43 PRINT

44 FOR J=1 TO 3
4% READ B{I,J}

5@ PRINT B(I,J3;

55 NEXT J

56 NEXT 1

6 DATA 13223,4:52627,8
a1 DATA BrT+62524534251
69 END

RIIN

ACL Y WHERE A=

1 TO 5
1 2 3 4 5

e

B3¢ IsJ) WHERE 1=1 TO 2
AND J=1 TO 31

6 7 &8
g8 7 6
READY »

DIM

From the preceding example, it can be seen that the use of subscripts
requires a dimension (DIM) statement to define the maximum number of
elements in the array. The DIM statement is of the form:

{line number) DIM wvl{nl}, v2{(n2,m2}

where v indicates an array variable name and n and m are integer
numbers indicating the largest subscript value required during the
program, For example:

15 DIM 46,10

The first element of every array is automatically assumed +to have a
subscript of zero. Dimensioning A{6,10) sets up room for an array
with 7 rows and 1l columns. This matrix can be thought of as existing
in the following form:

A0,0 AD,1 ... A0,10
Al,o Al,l LR Al,lo
A2,0 A2, ... A2,10
A6,0 AB,1 ... 26,10

and is illustrated in the following program:

13 REM - MATEIX CHECK PROGRAM
15 DIM AC6. 10D
22 FOR 1= TO 6
228 LET A(l.,0)=I
25 FOR J=0 TO 10
28 LET A(@O,J}=J
30 PRINT Al(IsJd);
35 NEXT J

44 PRINT

45 NEXT I

53 END

o SR I JE AV RNV I o B
v i R v o I
o R B IR e I 10
S QR RO W
DA ea b
DRSO
S EERE R M
o QI Q5 S O
[SR o I N]
DRI DE P
HEDEREEE -

READY -

Notice that a variable assumes a value of zero until another wvalue has
been assigned, If the wuser wishes to conserve memory space by not
making use of the extra variables set up within the array, he should
set his DIM statement to one less than necessary, i.e. DIM A{5,9).
This results in a & by 10 array which may then be referenced beginning
with the A (0,0) element.

More than one array can be defined in a single DIM statement:

12 DIM A(20), B(4+7)
This dimensions both the list A and the matrix B,

A number must be used to define the maximum size of +the array. A
variable inside the parentheses is not acceptable and will result in
an error message by BASIC at run-time. The amount of memory not
filled by the program will determine the amount of data the computer
can accept as input to the program at any one time, In some programs
a TOO-BIG ERROR may occur, indicating that memory will not hold an
array of the size reguested. In that event, the user should change
his program to process part of the data in one run and then chain to
another section to process the rest (see Section 6.8.10).

6.8.9 Transfer of Control Statements

Certain control statements cause the execution of a program to jump to
a different 1line either unconditionally or as a result of some
condition within the program. Looping is one method of jumping to a
designated point until a condition is met. The following statements
give the programmer added capabilities in this area.

Unconditional Transfer ({(GOTO)

The GOTO (or GO TO) statement is an unconditional statement used to
direct program control either forward or back in a program. The form
of the GOTO statement is:

{line number) GOTO n

where n represents a statement number. When the logic of the program
reaches the GOTO statement, the statement(s) immediately following
will not be executed; instead execution is transferred to the
statement beginning with the indicated line number.

The following program never ends; it does a READ, prints something,
and jumps back to the READ via a GOTO statement. It atempts to do
this over and over until it runs out of data, which is an acceptable,
though not advisable, way to end a program.

18 REM - PROGRAM ENDING WITH ERROR
11 .REM - MESSAGE WHEN OUT OF DATA
on HEAD X

25 PRINT X=X, "X12="X12

33 G0 TO 29

35 DATA 1:5,18,15,20,25

40 END

1IN
= 1 Xxte= 1
= 5 Xth= 85
= 14 Xta= 127
= 15 Xt2= 225
= 27 Xt12= 477
= 35 X12= 625

paATA ERROR AT LINE 2@

s LADTY.

Conditional Transfer (IF THEN and IF GOTO)

A program sometimes requires that twe values be compared at some
peint; control of program execution may be directed to different
procedures depending upon the result of the comparison. In computing,
values are logically tested +to see whether they are equal, greater
than, less than another value, or possibly a combination of the three,
This 4is accomplished by use of the relatiocnal operatorrs discussed in
Section 6.5.3.

IF THEN and IF GOTQ statements allow the programmer to test the
relationship between two formulas (variables, numbers, or
expressions) . Providing the relationship described in the IF
statement is true at the point it is tested, control will be
transfered to the line number specified, or the indicated operation
will be performed. The statements are of the form:

{line number} IF vl <relation> v2 GOTQ [or THEN] x

where vl and v2 represent wvariable names or expressions, and x
represents a line number or an operation to be performed, The use of
either THEN or GOTO is acceptable,

The following two examples are equivalent (the value of the variable a
is changed or remains the same depending upon A's relation to B):

186 IF A>B THEN 124
118 A=A1B-1
128 C=A/D

L]

188 IF A<=B THEN A=AtB-~1
119 C=A/D

IF END#

The IF END# statement is used to verify an end-cf-file condition
during run~time input., The form of this statement 1is:

{line number) IF END# THEN n

IF END# instructs BASIC to perform a check on the validity of the last
INPUTE statement referencing the currently open input file; n
represents a line number or operation to be performed. If an
end=of=file (CTRL/Z) was detected during the last INPUT# statement,
BASIC transfers control to the specified line number or performs the
indicated operation. If an end=-of-file was not detected, then no
operation cccurs. For example:

158 OPEN "1:VALUE™ FOR INPUT

200 INPUT# A,B.C
210 1F ENDF THEN S30
215 LET X=5GN(A}

L]

538 PRINT “INPUT FILE--NOT ENOUGH DATA"™
535 STOP

In this example the programmer provides his own error message if there
is an insufficient number of values for his variables. If there are
two valid numbers remaining in the input file when statement 200 is
reached, then the wvariables A and B will receive wvalid input. When
the program attempts to input a value for €, BASIC will detect an
end-of-file and return a value of zero for C. As it executes the IF
END¢ statement, BASIC will note that it has just reached the
end-of-file, and will transfer control to statement number 530, as the
user intended,

However, assume that as line 200 is executed there is only cne valid
data wvalue left in the input file. An end-of-file is detected this
time when BASIC tries to read a value for B; B is set to zero. When
BASIC attempts to continue reading a value for C, an EOF ERROR will be
returned (see Section 6.12) and program execution will terminate since
the wuser has tried to read past the end-of-file. A good way of
circumventing this condition is to include both the INFUT# and the IF
END# statements in a lcoop and input one value at a time. Using this
method allows the programmer's own error message to be printed before
BASIC is allowed to read past the end-of-file.

6.8.10 Program Chaining (CHAIN)

Since Cassette BASIC allows at most only 2K words of memory for
program storage, it is possible that a program may be too large to fit
in memory at one time. However, Cassette BASIC compensates for this
by allowing different segments of a program to be stored on cassette
and called as needed. Although each program segment is restricted to
2K of memory, total program length is effectively unlimited. The form
of the CHAIN statement is:

{line number) CHAIN "n:XXXX"

where n is the cassette drive number, and XXXX is the name of the file
tc be chained to. The CHAIN statement should be the last statement in
the user's program. When BASIC transfers to the program specified in
the statement, it removes the o0ld program from memory. Data is not
passed in memory during the chain, so the user should be careful to
save any data he will need in an output filse, (See Section
6.8.5--PRINT#.) The chain automatically closes any open output file,
transfers control to the lowest statement number in the new program,
and continues execution.

For example, the following section of a program stores some data
values on an output cassette and chains to a file called PART2:

L]

452 0OPEN “1:DATA™ FOR QUTPUT
455 COMMAS

4683 PRINT# BasCorDsGsHaZ

463 NO COMMAS

474 FOR I=l TO 19

475 PRINTF A(I)

HHD NEXT |

485 CLOSE

49 CHAIN "1:PART2"

The values stored by this section of the program in the cassette file
DATA can be read in by the second section of the program—--PART2~-and
can continue to be used. PART2 might appear as follows:

1 DIM AaC1™®)

5 OPEN "1:DATA"™ FOR INPUT
12 INPUT# B,C,DsGrHsZ

15 FOR I=1 TOQ 104

29 INPUT# ACI)

25 NEXT I

-
*

6.8.11 Subroutines (GOSUB and RETURN)

A subroutine is a section of code performing some operation that is
required at more than one point in the program. Often a complicated
/0 operation for a volume of data, a mathematical evaluation which is
too complex for a user-defined function, or any number of other
processes may bhest be performed in a subroutine,

Subroutines are generally placed physically at the end of a program,
usually before DATA statements, if any, and always before the END
statement, Two statements are used exclusively in BASIC to handle
subroutines; these are the GOSUB and RETURN statements.

A program begins execution and continues until it encounters a GOSUB
statement of the form:

{line number} GOSUB x

where x represents the first line number of the subroutine. Control
then transfers to that line. For example:

56 GOSUB 292

When program execution reaches line 50, contreol transfers to line 200,
and the subroutine is processed until execution encounters a RETURN
statement of the form:

{line number) RETURN

The RETURN statement causes control to return to the statement
following the GOSUB statement. Before transferring to the subroutine,
BASIC internally records the next statement to be processed after the
GOSUB statement; thus the RETURN statement is a signal to transfer
control to this statement, In this way, no matter how many different
subroutines are called, or how many times they are used, BASIC always
knows where to go next.

The following program demonstrates a simple subroutine:

1 REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
13 DEF FNACX)=ABSC(INT(X))

20 INPUT A.B.C

30 GOSUB 190

46 LET A=FNAC(A)

53 LET B=FNA(B)

69 LET C=FNA(C)

70 PRINT

88 GOSUB 100

99 STOP

1869 REM - THIS SUBROUTINE PRINTS CUT THE SOLUTIONS
119 REM - OF THE ERQUATION: ACXt2) + B(X) + C = @
129 PRINT "THE EQUATION IS “avaxt2 * *B'%X + ¥YC
130 LET D=B*B-4%A%(C

140 IF D<=l THEN 179

150 PRINT "ONLY ONE SOLUTION.«.. X ="=-B/{2+4)

160 RETURN

17@ IF D<@ THEN 2908

188 PRINT "TWO SOLUTIONS+.. X =";

185 PRINT (-B+SQR(DXIZ(2+AXYAND X ="(-B=-SQR{(DIX}/(2*A)
192 RETURN

228 PRINT "IMAGINARY SOLUTIONSe«es X = ("3

205 PRINT ~B/A(2*A)","S50R(~D)/7(2%4A3") AND ("]

207 PRINT ~B/(2xAY","=58R(-D)/{(2+a)2")"

213 RETURN

@33 END

RUN

?ls>eDs-a5

THE EQUATION IS I oxXt2 + «5 *X + =.5
TWO SOLUTIONS««¢« X = 5 AND X ==1

THE EQUATION IS5 1 &Xt2 + @ *X + 1
IMAGINARY SOLUTIONS.»e X = (@ » 1) AND ¢ @ »-1

RFADY »

Line 100 begins the subroutine. There are several places in which
control may return %o the main program, depending upon the flow of
control through the various IF statements. The subroutine is called
from line 30 and again from line 80. When control returns to line 850,
the program encounters the STOP statement and execution is terminated.
It is important to remember that subroutines should generally be kept
distinet from the main program, The last statemen:: in the main
program should be a STOP or GOTO statement, and subroutines are
normally placed following this statement. A useful practice is to
assign distinctive line numbers to subroutines. For example, if the
main program is numbered with line numbers up to 199, then 200 and 30¢
could be used as the first numbers of two subroutines,

Nesting Subroutines

Nesting of subroutines occurs when one subroutine calls another
subroutine. If a RETURN statement is encountered during execution of
a subroutine, control returns to the statement following the GOSUB

which called it. From this point, it is possible to transfer to the
beginning or any part of a subroutine, even back to the calling
subroutine, Multiple entry points and RETURN statements make
subroutines more versatile.

The maximum level of GOSUB nesting is about ten (decimal) levels,
which should prove more than adequate for all normal uses. Exceeding
this limit will result in the message:

GOSUB ERROR AT LINE XXXX

where XXXX represents the line number where the error occurred, An
example of GOSUR nesting follows, Execution has been stopped by
typing a CTRL/SHIFT/F combination {see Section 6.11.4, Stopping a
Run) , as the program would otherwise continue in an infinite loop.

1@ HEM - FACTORIAL PHOGRAM USING GOSUB TO
15 REM = RECURSIVELY COMPUTE THE FACTORS
4@ INPUT N

5¢ IF N>20 THEN 120

60 X=1

78 K=1

8@ GOSUB 2900

9@ PRINT "FACTORIAL "N"™ =X

119 GO TO 40

128 PRINT *MUST BE 12 OR LESS"

130 GO TO 4@

200 X=X*K

213 K=K+1

220 IF K<=N THEN GOSUB 200

239 RETURN

249 END

RUN

12

FACTORIAL 2 = 2
74

FACTORIAL 4 = 24
75

FACTCRIAL 5
?

3

tes

STOP.
READY «

6.8.12 Functions

BASIC defines several mathematical calculations for the programmer,
eliminating the need for tables of trig functions, square roots, and
logarithms. These functions have a 3-letter call name, followed by an
argument, x, which can be a number, variable, expression, or another
function, Table 6~1 lists the functions available in Cassette BASIC.
Most are self-explanatory; those that are not and are described in
greater detail are marked with an asterisk.

Table 6=1 Cassette BASIC Functions

Punction Meaning
SIN(x}) Sine of x (x is expressed in radians)
COS {x) Cosine of x (x is expressed in radians)
TAN (%) Tangent of x {x is expressed in radians)
ATN (x) Arctangent of x (result is expressed
in radians)
EXP (x) e to the xth power (e=2.71£282)
LOG (x) Natural log of x (loggsx)}
*SGN (x) Sign of x--assign a value of +1 if x is

positive, 0 if x is zero, or -1 if x
is negative

*INT (x) Integer value of x

ABS (x) Absolute value of x (|x})

SQR(x) Square root of x (vX)

*RND (x) Random number

*TAB (x) Print next character at space x

*GET (x) Get a character from input device

*PUT{x) Put a character on output device

*FNA {x) User-defined function

*UUF (x) User-coded function (machine language
code)

Sign Function (SGN(x))

The sign function returns the value +1 if x is a positive value, 0 if
x is zero, and -1 1if x is negative. For example, SGN(3.42)=1,
SGN(~42)=-1, and SGN{23-23)})=0, The following example illustrates the
use of this function:

12 BEM = SGY¥ FUNCTION EXaMPLE

£9 READ A»B

25 PRINT "a="A,"R="1

30 PRINT "SGN(AX="SGN(AYs"SGNI(B)="SGN(B)
4% PRINT "SGNCINTC(A)) ="SGN(INTCA))

5*3 DATA _71323 .l.l.Ll

63 END

Integer Function (INT(x})}

The integer function returns the value of the nearest integer not
greater than x. For example, INT{34.67)=34. By specifying INT({x+.5)
the INT function can be used to round numbers tc the nearest integer;
thus, INT{34.67+.5)=35, INT can also be used to round numbers to any
given decimal place by specifying:

INT (X*10 tD+.5) /101D

where D is the number of decimal places desired, The following
program illustrates this function; execution has been stopped by
typing a CTRL/SHIFT/P:

10 REM - INT FUNCTION EXAMPLE

2% PRINT "NUMBER TO BF ROUNDED™:
38 INPUT A

43 PRINT "NO. OF DECEMAL PLACESY:
58 INPUT D

60 LET B=INT{(A¥I2tD+.5)/1p31D

79 PRINT "A ROUNDED = ''B

g0 60 TO 20

20 END

RUN

NUMBER TQ BE ROUNDED?55.65342
NO. OF DECIMAL PLACES?2

A ROUNDED = 55.65

NUMBER TO BE ROUNDED?78.375
NC. OF DECIMAL PLACES?-2

A ROUNDED = 104

NUMBER TO BE ROUNDED?67.89
NO+ OF DECIMAL PLACES?-1

A ROUNDED = 73
NUMBER TO BE ROUNDED?
STOF«

READY «

If the argument is a negative number, the wvalue returned 1is the
largest negative integer (rounded to the higher wvalue) contained in
the number, For example, INT{-23)}=-23 but INT(-14,39)=-15,

Random Number Function (RND(x))

The random number function produces a random number n which is in the
range O<n<l. The numbers are not reproducible, a fact the programmer
should keep in mind when debugging or checking his program, The
argument x in the RND(x) function call can be any number, as that
value is ignored. The following program illustrates the use of this
function to generate a table of random numbers,

12 REM -~ RANDOM NUNMBER EXAMPLE
2% PRINT "HANDOM NUMBERS"

30 FOR I=1 TO 3@

43 PRINT RND(@)»

53 NEXT 1

6d END

RUN

RANDOM NUMBERS
«TT59228 BEALIBDY +5008833 «2796171 +1661529
«4857633 «A1920338 «1433537 «BBT2BTEY +2335427
«6156673 «5921191 «D1172888 =7411813 +341738
+3796163 20823254 « 7974258 «9635864 s 6043865
9547609 2890875 1416765 «2482717 2145417
«D5280478 « 3359534 «BABATTA » 5692836 «3514054

READY »

It is possible to generate random numbers over any range by using the
following formula:

{B=2A) *END{0) +A
This produces a random number (n) in the range A<n<B, For example, in
order to obtain random digits in the range 0<n<9, line 40 in the
previocus example is changed to read:
48 PRINT 9*RND(3>.
To obtain random integer digits, the INT function dis used in

conjunction with the RND function (using the same values for A and B
above) as follows:

42 PRINT INT{(9*RND(BI).,

When the program is run, the results will look as follows:

‘RUN

RANDOM NUMBERS
4 5 B 1 8
1 2 7 8 S
B 3 @ 8 8
2 4 7 7 4
8 7 1 8 2
5] T 2 7 5

READY «

Notice that the range has changed to 0<=n<9., This is hecause the INT
function returns the wvalune of the nearest integer not greater than n.

Tab Punction (TAB(n))

The TAB function allows the user to position the printing of
characters anywhere on the teleprinter (or line printer) line. Print
positions can be thought of as being numbered from 1 to 72 across the
console terminal line (1 to 80 across the line printer line) from left
to right. The form of this function is:

TAB{n)
where the argument n represents the position (from 1 to the total
number of spaces available) in which the next character will be typed.
For example, TAB{3) causes the character to be printed at position 3,
Each time the TAB function is used, positions are counted from the

beginning of the line, not from the current position of the printing
head, For example, the following statement:

19 BRINT "X ="3TAB(3)3"/";3.14159

will print the slash on top of the equal sign, as shown below:

RUN
X # 3.14159

The following is an example of the sort of graph that c¢an be drawn
with BASIC using the TAB function:

30 FOR X=0 TO 15 STEP .5
43 PRINT TAB(32+]15#SINCXI®EXP(~.1#%X)};"*"
58 NEXT X

RUN

PUT and GET Functions (PUT(x), GET(x)})

Cassette BASIC provides two additional functions, PUT and GET, ¢to
increase input/ocutput flexibility on the console terminal or line
printer. Using these statements, the programmer can "PUT" an ASCII
character on the current output device, or "GET" a character from the
current input device, (ASCII character codes are listed in Appendix
A.,) GET is of the form:

GET (x)
where the arqument x is a dummy variable which may be any value.

GET(x}) will be assigned the decimal value of the ASCII code of the
next character input on the current input device.

For example, if the following statement appears in a program:

1@ LET L=GET(@}

and the next character input is an M, the variable L will he assigned
the wvalue 77 (decimal).

PUT is of the form:
PUT(x)

where the argument x represents either the decimal value of the ASCII
code of the character to be output, or the character itself, For
example, the statement:

15 L=PUT(GET(V})

will wait for a character to be read from the current irput device and
then print it on the current output device. A statement such as:

38 PRINT PUT(Q)}

will print the character typed as well as the decimal value of the
ASCII code for that character, {Since both the character and the
decimal wvalue are typed, PUT and GET statements should not be used
with cassette files.)

NOTE

If the user is inputting characters from
paper tape via the paper tape reader on
an LT33 Teletype, he should be careful
to position the tape on the first
character to be input, Otherwise blank
tape may be entered, which is
interpreted as a "BREAK" and stops a
running program.

The PUT function can also be used to format output. For example, to
print a trig table on the line printer with a heading and 50 data
lines per page, the form feed character (12 decimal) can be "PUT" to
the printer as follows:

183 LPT

113 GOSUR 1802

12¢ GDSUB Seéa

125 REM = SET UP TRIG TABLE

138 FOR J=0 TO 360 STEP .5

1498 LET L=L+l

158 LET B=aJs18d%3.14

168 PRINT Js5IN(BI:COS5(RY-TANCE}ATNIE]
165 REM = PRINT 5@ ENTRIES IN TABLE

178 IF L=5@ THEN GOSUEB 528

182 NEXT J

i9@ GOSUB 1000

208 GOSUB Q0@

21@ STOP

5@ REM - PRINT HEADER

505 GOSUB 125&

519 PRINT

528 PRINT

530 PRINT "TANGLE™."SINE","COSINE","TANGENT" »""ARCTANGENT™
548 PRINT

55@¢ RETURN

13@@ REM - PRINT FORM FEEDS TO ADVANCE PAPER
1825 X=PUT(12)

1218 L=@

1928 RETURN

1838 END

The beginning of the line printer output from +this program follows.,
The first page of the table continues through an angle of 24.5
degrees: then the header and the next 50 entries are printed on the
next page, and so on until the values have been output (in steps of
.3} for all angles through 360 degrees.

ANGLE SINE COSINE TANGENT ARCTANGENT
2 & 1 @ @

3 84722112E~D3 ,9999&2 8,722444E~03 A,7220@)1E=23
1 +B174435e 99498479 21744621 01744268
1.5 02616368 «999E&577 102617264 0261607
e ~33483181 « 3993915 f03490385 s 23487474
2.5 24359729 » 9932492 +Q4363878 «B435835
3 05230945 9986309 (83238116 05228564
3,5 06101763 23981307 06113194 26097986
] 26972117 3975865 6989125 y 26986486
4,5 ~RATBU194 « 9969225 1BT8bB164 +@7833935
5 B8711167 « 3961988 JB8Tud4@8 0870204
545 «D9I5T9T3Y 9954229 209623993 «89565166
& 1044757 + 9945274 «1050506 124289
6,58 1131488 «3335784 » 1138774 1129067
T 01218079 « 3925537 1227217 « 1215095
7.5 » 13046048 «9914535 «1315A8 + 1320944
L] v139183 9902779 214044687 « 13806
8,5 L147735 «989027 1893741 1472852

*

L]

24,5 814496 91pesy12 «4554645 4238923

FNA' Function (DEF FNA(x))

In some programs it may be necessary to execute the same mathematical
formula in several different places., Cassette BASIC allows the
programmer to define his own function in the BASIC language and then
call this function in the same manner as the sguare root or a trig
function is called. Only one such user-defined function may be
included per program, The function is defined once at the beginning
of the program before its first use, and consists of a DEF statement
in combination with a 3-letter function name, the first two letters of
which must be FN. The format of the DEF FNA statement is as follows:

{line number) DEF FNA(x)=formula {x)
The A in the FNA portion of the statement may be any letter. The
argument (x) has no significance; it is strictly a dummy variable but
must be the same on each side of the equal sign. The function itself

can be defined in terms of numbers, several wvariables, other
functions, or mathematical expressions, For example:

12 DEF FNA(K)=X12+3%X+4

or

22 DEF FNC(X)»=SQR{(X+4)+]

The function:

18 DEF FNL(S)=5t2

will cause the later statement:

20 LET R=FNA(4)+1
to be evaluated as R=17,

The user-defined function can be a function of only one wvariable.

User=Coded Function (UUF)

The user-coded function is explained in detail in the next section.

6.9 IMPLEMENTING A USER~-CODED FUNCTION (UUF)

A special user~coded function is available in Cassette BASIC for the
programmer who is familiar with the PDP-8 instruction set and 27-bit
mantissa floating-point format. BASIC's internal format is 27-bit,
sign-magnitude mantissa floating-point; thus, all user-generated
values must be in that format and all coding must be compatible with
it, The user codes the function in the PDP-8 series machine language
instructions, assembles it with the PALC Assembler, and loads the
resulting binary file as an overlay to one of the existing functions
(ATAN, LOG, etc.) Thus, while BASIC is running, this special function
can be requested and used in a fashion analogous to the built-in BASIC
functions, The user-coded function, if present, is specified in the
BASIC program ass

UUF {n)

where n can be any BASIC expression,

6.9.1 Coding Formats

Due to memory restrictions, the user-coded function must replace one
or more of the existing Cassette BASIC functions, Table 6-2 lists the
functions which may be overlaid and the areas of memory they occupy.
Alsc 1listed is the transfer table address through whizh BASIC calls
the given extended function.

Table 6-2 Function Addresses

Function Locations Occupied Transfer Takle Aildress
FNA 5453-5546 1131
ATN 6200-6271 1134
SQR 5412-5452 1137
RND 5350=-5406 1143
TAB 5547=5572 1147

The functions SIN, C0S, and TAN are interdependent, but all three may
be deleted as follows:

SIN 5600~-5674 1132
Cos 1133
TAN 1144

Almost a full page is freed by deleting the following:

FNA 5412-5572 1131
SOR 1137
TAB 1147

For each function replaced by the UUF, the user must set the
corresponding transfer table location toc point to an error routine so
that accidental calls to that function will generate an error
condition rather than a spurious call tc the UUF, The user does this
by inserting a statement such as the feollowing in his UUF:

*1 143 /TABLE ADDRESS FUOR RND
f44l APIINTER TO SYNTAX ERROR HUOJTINE

To include a user-coded function, all conventions required for the
PALC Assembler must be observed. The coding language is PDP-8 machine
language c¢ode, but can include instructions in the modified
floating-point package, which 1is described later in this chapter in
Section 6.10.

When floating-point statements are to be included in the program, it
is necessary only to indicate the start of floating=~point notation by
including the following operator:

FENTER

immediately before the first floating-point statement. Similarly
floating=-point coding is terminated by the operator:

FEXIT

immediately after the last floating-point statement. There can be as
many sections of floating-point code as necessary in the program, but
each must be delimited in this manner,

6.9.2 Floating=Paint Format

The floating=-point format used by Cassette BASIC allocates three
storage words in sign magnitude convention as follows ({(in sign
magnitude convention the sign bit rather than the mantissa, expresses
the sign of the entire number):

WORD 1 WORD 2 WORC 3

itJIIIHTﬂTI [T OO

Five memory locations are used to represent the floating-point
accumulator, as follows:

Table 6-3 Floating=Point Accumulator

Location Name Value Contents
ACS 0024 Sign
ACE 0025 Exponent (200 octal biased;

i,e., the constant 200 is added
to the exponent to make the
range 0-377)

ACl 0020 High order word
AC2 0017 Mid order word
AC3 0016 Low crder word

2ll of BASIC's mathematical operations are in floating-point format;
therefore, if any temporary storage locations are requ:i.red by the UUF
subroutine, they must specify three words. For example:

UTEMP,@:0:0

6.%9.3 Incorporating Subroutines with UUF

When adding a user function, it becomes necessary to reference some of
Cassette BASIC's subroutines at specific times in the coding., Most of
these calls are needed in order to preserve a compatible format
throughout the system, The BASIC subroutines which may be referenced
are described below. (The complete BASIC symbel table is included as
Table 6=-7 at the end of this chapter.)

6-46

BEGFIX

If a value is to be returned to the accumulator as a result of the
user function, that value must be in normalized flecating-point format.
If floating-point arithmetic is used throughout the user function,
then the wvalue in the FAC (floating=-point accumilator) is in
normalized floating-point format and need not be converted. I1f
fixed-point arithmetic is used anywhere in the function, then the
subroutine BEGFIX must be referenced before the value (:Iloating-point)
is saved in order that the storage locations are properly initialized
to accept a floating-point value. Using this procedure, the five FAC
locations are prepared accordingly. However, because {the value to be
stored only requires 12 bits, a subsequent DCA AC3 statement is
sufficient. BEGFIX is located at 3760 and is called wvia a JMS
instruction.

ANORM

If a fixed-point value is added to the FAC, ANORM normalizes the FAC
in order that it be in a format suitable for Cassette BASIC. The
routine supplies the acceptable values for the locations ACE, ACS, ACl
and AC2, ANORM is assigned the location 4600,

FIX

To convert a value in the FAC to an integer, as when printing a
character, the subroutine FIX is called; it is located at 4744,

6.9.4 Writing the Program

A user-coded function must resegt one of Cassette BASIC's tables to
recognize the function, otherwise, UUF 1is considered to be an
undefined function, The pointer is at location 1150; a statement such
as the following is required:

*1150
UUF

Procedures for loading a user-coded function are contained in Section
6.11.5., Examples of user-coded functions follow.

6.9.5 Examples of User—Coded Functions

Example l--This program calculates squares and square recots for a
series of values. The BASIC program is as follows:

123 FOR A=33.1 TO 33.9 STEP .l
113 PRINT ALI'JF(AY,SARAY

1200 NEXT A

139 END

The user-coded function is:

21134

71150

G200
AR2AL
AeaAR
n62a3
As274
06205
as2M6
ABZAT
A6RLH

/

FENTER
FEXIT
FMP
FST
FWD
5XERR
TIF

X

4435
2009
3200
&£A30
?a0a
6441
1134
6441

1150
6200

6220
ARG
4435
2204
6233
ARAA
56406
161915
ABAA
Bage
515100
3200

4413%
AAAR
£0A07
2003
A202
6da441
257
6236

PALC-VI1 l2rs27/772 PAGE 1}

/
/SISER-CODED FUNCTION TO CALC!LATE
/SRJARES OF N/JMBERS
7/
/THE FIINCTION 1.0ADS INTO FIELD @
ZINTO THE AREA OCCHPIED RY THE 'ATN'
/FIINCTION
FENTER=4435
FST=2000
FWD=20a
FMP=6007
FEXIT=8400
SXERR=6441
*¥1134
SXERR /50 REFERENCES TO ATN WILL
AYTELD AN ERROR

®l150
JUE /DEFINE (JIJF IN F'INCTION TABLE
*6200
iTHIF » 3
FENTER /ZINTO FLT.PT«PKG.~A IS IN FAC
FST+FWR+X=» /SAVE A
FMP+FWD+X=» FOXA
FEXIT
JMP T ‘TIF /ALEL, DONE
X B:3;0
FIELD 1
*3903 /TO START BASIC WHEN LOADED
%

PALC-V1 12727772 PAGE 1-1

The output after execution is:

RN
3.1
33.2
33.3
334
335
3.6
33.7
33.8
33.9

AEADY

1395.61 5+75326

11092.24 5761944
1198.89 5779615
LI15 456 5779273
1122.25 S5«71HTOLH
112R«95h 53.79A551
1135.69 583517

114804 5«R13777
1149.2]) 5.822371

Example 2--The following program tests a student's ability to

the

cctal wvalue

in

130 determines if the correct answer was typed:

102
113
129
130
14p
159
204
ana

PRINT

"WHAT DECIMAL VALJE

ITNPIT N

LET P=HJF(2)

IF P=N THEN 200

PRINT
G0 TO 100
PRINT
END

“"TRY AGAIN"

*CORRECT"

The user-coded function is:

A1143

LIRE1

a53an
53451

25352
A5353

As354
As3ss
A5356
5357

[o]
ANORM
aEGFIX
FAD
FENTFER
FEXIT
FsT
FWD
SHERR
JANORM
FJAEGF T
E

AA3A
“443%
Anaa
430
2004
AZAR
3760
4HAR
Anlée
6441

1143
ha4al

1150
5350

5357
e e ekt]
4756

TaR4
I A

4757
5750
3767
44080
AAA]
3203

AALE
4609
376n
4000
4435
ANGA
2Aa4a
RAANA
Badl

23497
5354
h3sA

)

SUSER-COODER FUNCTION TO READ THE CUNSULRE
/S4ITCHES AND CUNVERT TO FLOATING

PALC-VI

12,248712

I
/THE F'INCTION LOADS INTO FIELD ZERO
ZINTO THE ARFA PREVIONSLY OCCUPIND WY

/THE *RND®
ZUFNFRATUR
rd

FIELD @
FENTER=4435%
FEXIT=AnAM
FaD=4AAR
FST=2078
Fuh=2a0
REGFIX=3740
ANOAM= 4607
AC3I=L&
SXERR=644]

*1143
SXERR

=154
IF

*53539
TIFs =
JMs 1

LAS
DCA

JMs 1
JMP
UBEGFIXsREGFIA
IANORM, ANORM
FIELD 1
=303
%

FUNCTTON=THE

AANTIOM Y IMRFR

/50 REFERENCES T 2ND
/WILL YIELD AY FRitHOR

/LEFINE

JAEGWF 1K

AC3

JANDRM
FIF

PALC-V1

TOF

/PREPARE FOUR
ZINTEGER WALJE
/LET CONTENTS
FOF SWe HEG.
/SAVE TN Luw
/UHDER FaC
SNURMALTE
£HAET - JRN

/TO START ‘IP BASIC #HEN LOADRED

125272772

POINT

PALE

[N FIINCTION TARLE

PALGE

1

setting,

DO THE SWITCHES ENvIaLz?*

convert

the conscle switches to its decimal equivalent.
Line 120 will set P equal to the decimal wvalue of the

Line

An example of a run in which 200(octal) was set :in the console
switches follows:

RN

WHAT DECIMAL VALJE DO THE SWITCHES ERJAL?
7128

TRY AGAIN

WHAT DECIMAL VAL'JE DO THE SwITCHES EQJAL?
7128
CORRECT

READY «

6.10 FLOATING=-POINT PACKAGE

Information concerning the PDP=-8 modified Fleoating~Point Package which
the programmer will find useful in coding a function follows.

6.10.1 Instruction Set

The legal instructions in the modified Floating-Point Package used by
Cassette BASIC are explained in Table 6-4:

Table 6-4 Floating-Point Instructions

Instruction Value Meaning

FST 2000 Store the contents of the floating accum=
ulator (FAC). The contents of the
FAC are not changed.

FLD 3000 Load FAC with contents of relative
address.

FAD 4000 Add contents of relative address to FAC.

FSB 5000 Subtract contents of relative address
from FAC.

FMP 6000 Multiply the contents of the FAZ by the
contents of the relative address.

FDV 7000 bivide FAC by contents of relative address.

FJMP 1000 Fleoating-point jump to relative address,

FENTER 4435 Start floating-point code.

FEXIT 0000 Exit fleoating-point code. Return to PDP-8
code.,

FWD 0200 Access a relative location in the forward
direction,

BKWD 0600 Access a relatiwve location in the backward
direction,

FSNE 0040 Skip if FAC <> 0

FSEQ 0050 skip if FAC = 0

FSGE 0100 Skip if FAC => 0

FSLT 0110 Skip if FAC <0

FSGT 0140 Skip if FAC >0

FSLE 0150 Skip if FAC <= 0

The following instructions require indirect (and relative) addressing
and therefore only address field 1. Their operation is the same as
the corresponding direct instruction.

Table 6-5 Relative Addresses

Instruction Value Operation
FSTI 2400 Store
FLDI 34400 Load
FADI 4400 Add
FSBI 5400 Subtract
FMPI 6400 Multiply
FDVI 7400 Divide
FIMPT 1400 Jump

6.10.2 Addressing

The Floating-Point Package uses relative addressing. Thus, all
statements that address a location must include one of the operators
FWD or BKWD plus a reference to the current location. Such a
reference is generally in the form:

op code instruction + FWD (BKWD) + LTEMP-,

The operator FWD is used when the address of the 1location +o be
referenced 1is numerically greater than the current address; BKWD is
used when the address of the location to be referenced is numerically
less than the current address, LTEMP-, in conjunction with the FWD
or BKWD operator defines the relative address of the 1loacation to be
operated on (LTEMP) with respect to the current location., This
relative displacement is then used by the Floating-Point Interpreter
to access the contents of the three words at LTEMP. This can best be
seen in an example:

4713 FAD+FYUD+LTEMP~-.

*

4763 LTEMP,332;0

The contents of that location which is (4063-4010)} locations forward
from the current address, (i.e. the contents of LTEMP), are added to
the FAC. Similarly:

146 ALOC,03330

152 FMP+BHKWD+.-ALOC

At line 152 the contents of FAC are multiplied by the contents of the
location that is (152-146) locations backward from the current
address.

6.11 EDITING AND CONTROL COMMANDS

Errors made while typing at the console keyboard are easily corrected.
BASIC provides gpecial commands to facilitate the editing procedure,

6.11.1 Erasing Characters and Lines
(SHIFT/0, RUBOUTS, NO RUBQUTS, ALTMODE)

There are two methods available for erasing a character or series of
characters one at a time, Typing a SHIFT/O causes the deletion of the
last character typed and echoes as a back arrow (+) on the LT33 (or
35) Teletype, or as an underscore {—) on most other console
terminals. One character is deleted each time the key is typed.

The RUBOUT key (or DELETE key onh some terminals) may also be used for
deletion of characters one at a time providing the command:

RUBOUTS

has been typed on the keyboard before the editing is done. This
command enables the RUBOUT key to be used and must be typed each time
a new program is in memory. If the user has neglected to type this
command, he may not use the RUBOUT key. A later command ofs

NO RUBOUTS
disables the key for use,

For example:

13 LEB«T A=10*B

The user types a B instead of T and immediately notices the mistake.
He may type SHIPT/O (or RUBOUT key, if enabled) once to delete the B,
(and as many times more as characters, including spaces, are to bhe
deleted). After the correction is made, he may continue typing the
line. The typed line enters the computer only when the RETURN key is
pressed. Before that time any number of corrections can be made to
the line.

2@ DEN Fe+«+F FNA(X,Y)=2X12+3%Y

When the RETURN key is typed, the line is input as:

23 DEF FNA{(X,Y)Y=X12+3*Y
Notice that spaces, as well as printing characters, may be erased,
The user may erase an entire line (provided the RETURN key has not

been typed) by typing the ALTMODE key (ESCAPE key on 3ome keyboards).
BASIC echos back:

DELETED

at the end of the line to indicate that the 1line has Dbeen removed,
The user continues as though it were a new line, If the RETURN key
has already been typed, the user may still correct the line by simply
typing the line number and retyping the line correctly. He may delete
the line by typing the RETURN key immediately after the line number,
thus removing both the line number and line from his program.

If the line number of a line not needing correction is accidentlally

typed, the SHIFT/0C or RUBOUT key may be used to delete the number(s);
the user may than type in the correct numbers, Assume the line:

12 IF A>5 GOTO 239

is correct, The programmer intends to insert a line 15, but instead
types:
18 LET

He notices the mistake and makes the correction as follows:

13 LET+~+~+~+=5 LET X=2-3
Line 10 remains unchanged, and line 15 is enterxed,
Following an attempt to run a program, error messages may be output on
the console terminal indicating illegal characters or formats, or
other user errors in the program, Most errors can be corrected by
typing the line number(s) and correction(s) and then rerunning the

program. As many changes or corrections as desired may be made before
runs,

6.11.2 Listing a Program (LIST, LIST and LPT)
An indirect program or data can be listed on the active output device
by typing the command:

LIST

followed by the RETURN kev. The entire program {or clata} will be
listed.

A part of a program may be listed by typing LIST followed by a line
numbher. This causes that line and all following lines in the program
to be listed. PFor example:

LIST 1o

will list line 100 and all remaining lines in the program,.

The LIST command may be used in conjunction with the LPT command as
follows:

LPT
LIST

This will list the current program on the line printer. Control is
reset to the console terminal after the listing is completed,

6,11.3 Running a Program {(RUN, RUN and LPT)

After a BASIC program has been typed and is in memory, it is ready to
be run, This is accomplished by simply typing the command:

RUN

followed by the RETURN key. The program will begin execution. If
errors are encountered, appropriate error messages will be typed on
the keyboard; otherwise, the program will run to completion, printing
whatever output was requested, When the END statement is reached,
BASIC stops execution and prints:

READY «

The line printer, if available, can be used in conjunction with the
RUN command, as follows:

LPT
RUN

After this command is issued, all output during program execution is
diverted from the console terminal to the line printer, eliminating
the need of inserting the LPT statement within the program. The
output device is reset to the console terminal after exzacution,

6.11.4 Stopping a Run {CTRL/C, CTRL/C, CTRL/SHIFT/P, BREAK)

To stop a program during execution or to return to the Keyboard
Monitor at any time, type a CTRL/C (by pressing the CTRL key and the C
key simultaneously). This causes the current operation tc be aborted
immediately and the Cassette Keyboard Monitor to be re-bootstrapped
from the System Cassette.

The command CTRL/0 (produced by typing the CTRL and 0 keys
simultaneocusly) is wused to stop teleprinter output temporarily. The
program will continue to execute but ocutput will not ke printed unless
an error occurs or unless BASIC is waiting for a command or for data
from an input statement. In the latter case, the console terminal is
the expected input device., This feature is particularly useful for
programs that print lengthy introductions and then request a
user~specified parameter. Typing CTRL/0 after the program is started
will cause BASIC to bypass printing the introduction and wait until

the parameter is specified, thereby saving the time required to print
the message. A second CTRL/0 will resume output.

NOTE

For most programs that do not wait for
input from the terminal, processing of
the program after an initial CTRL/0O will
be completed before a second CTRL/0 can
be typed., Thus, it is very possible for
no output to be printed rather than the
anticipated partial output.

Certain terminals (such as Teletype models LT33 and 35) are equipped
with a BREAK key which may be used in Cassette BASIZ to interrupt
program execution, Pressing the BREAK key causes a halt in execution
and a return to the BASIC Editor for more commands. For those systems
containing terminals not equipped with the BREAK feature, the same
result can be produced by pressing the CTRL, SHIFT, and P keys
simultaneously.

6.11.5 Loading a User-Coded Function

A user-coded function is created wusing the CAPS-8 EDITOR; it is
assembled using PALC., The resulting binary file is loaded with BASIC
using the Monitor Run or Load commands as follows:

.R BASIC, drive #:filename
or
.IL BASIC, drive #:filename

Assume a user~coded function called UUF,BIN is stored on cassette
drive 3, Agssume also that the file UDUF.BIN has been coded so as to
include the correct starting address for BASIC, The user runs BASIC
loading the function as follows:

R BASIC,UUF

The starting address for BASIC is included in the program and coded as
follows:

FIELD 1

*319d

h

The new function may now be used in any files the user wishes to edit
and run.

6.11.6 Erasing a Program in Memory (SCRATCH)

The command:

SCRATCH

or

sCa

is provided to allow the programmer to clear his storage area,
deleting any commands or a program which may have been previously
entered, and leaving a clean area in which to work. If the storage
area is not cleared before entering a new program, lines from previous
programs may be executed along with the new program, causing errors or
misinformation. The SCRATCH command eliminates all old statements and
numbers and should be used before any new programs are read into
memory or created at the keyboard.

Note that the SCR command does not clear the program name, If the

user wishes to create a new program with a new name, he should use the
NEW command which also performs a SCRATCH.

6.11.7 Renaming a Program {(NAME}
The user may change the name of the program in memory by issuing the
command :

NAME

BASIC responds by asking:

NEW PROGRAM NAME-

The user specifies a new filename (and extension, if desired). This
changes the name of the program without affecting its image in memory,
All subsequent references to the program must use this new name.

6.11.8 Saving a Program (SAVE)

Once the user has created or edited a program, he may want to save the
new version on a cassette for later use. He does this by typing:

S5aVE

BASIC asks:

UNIT #{0=-72¢2

to which the user responds with the number of the cassette drive on
which he wishes the program to be stored. The program is saved under
its current name-=-that is, the name used in BASIC's initial dialogue,
or 1its new name if the NAME command has been used to change it. (If
the filename is the same as one already present on the cassette, the
0ld file 1is replaced by *EMPTY in the directory and the new file is

written onto the cassette.)} After the program has been saved, it is
8till in memory and may be RUN or edited further,

Attempting to save a program on a full cassette causes BASIC to return
to the editing phase; the user must save the program on another
cassette.

If the user dves not specify a name for his program in the initial
dialogue {by responding with an " MODE to the NEW PROGRAM NAME
request}, the program will be saved under the assigned name
NONAME .BAS.

If the user SCRATCHes a program, creates another program without
assigning a name to it by use of the NEW or NAME commands, and then
attempts to save it, it will be saved under the name of the last
program which was in memory, possibly deleting that program if saved
on the same drive,

6.12 CASSETTE BASIC ERROR MESSAGES
BASIC checks all commands before executing them. If for some reason
it cannot execute a command, BASIC indicates this by typing one of the
following error messages and the number of the line in which the error
occured. The form is:

ERROR MESSAGE AT LINE XXXX

Table 6~-6 lists the errors BASIC chacks for and reports bhefore
execution.

Table 6-6 Cassette BASIC Error Messages

Message Meaning

ARGUMENT ERROR A function has bheen given an illegal
argument; for example: SQR(=1)

CHAIN ERROR A cassette error occurred while doing
program chaining; the user should not
attempt +to run the program in memory

again,
DATA ERROR There were no more items in the data list,
EQF ERROR An attempt was made to read past the
end-of-file during run=-time input,

Program execution terminates and control
returns to the Keyboard Monitor.

EXPRESSION ERROR One of BASIC's internal 1lists overflowed
while attempting to evaluate an
expression.

FILE NAME ERROR A mistake or illegal character was found

in the user's specification of a cassette
drive # or file name in either a CHAIN or
an OPEN statement.

Table 6-6 Cassette BASIC Error Messages (Cont'd)

Message

Meaning

FILE OPEN ERROR

FOR ERROR

FUNCTION ERROR

GOSUB ERROR

I O ERROR

IN ERROR

LINE TOO LONG

LINE # ERROR

LOOKUP ERROR

NEXT ERROR

NO FILES ERROR

OUT ERROR

RETURN ERROR

SUBSCRIPT ERRCR

The user attempted +to¢ open a run~time
output file when one was already open, or
a hardware error occurred.

FOR loops were nested too deeply.

The user attempted to call a Ffunction
which had not been defined.

Subroutines were nested tooc deeply.

The user attempted to do run-—-time input
and output to the same cassette at the
same time.

A cassette error occurred while attempting
to carry out an OLD command or while doing
run=time input.

A line of more than 80 characters was
entered; BASIC ignores the whole line and
waits for the user to enter a new line,

A GOTQ, GQOSUB, or Ir referenced a
nonexistent line.

BASIC could not find a run-time input file
on the drive specified.

FOR and NEXT statements were not properly
paired.

The user attempted to do run-time file I/0
without first specifying so during BASIC's
initial dialogue.

An error (probably end-of-tape) occurred
while doing cassette output either during
a SAVE or during run-time output. If the
error occurred during a SAVE, the user
should retry the SAVE to & different
cassette. If the error occurred during
run-time output, he should re-run his
program using a different cassette for
output.

A RETURN statement was issued when not
under control of a GOSUB.

A subscript has been used which is outside
the bounds defined in the DIM statement.

6-58

Table 6-6 Cassette BASIC Error Messages (Cont'd)

Message Meaning

SYNTAX ERROR A command did not correspond to the
language syntax, Common examples of
syntax errors are misspelled commands,
unmatched parentheses, and other

typographical errors. Reference to an
undef ined UUY will also produce this
diagnostic,

TOO BIG, LINE IGNORED The combination of program size and number
of wvariables exceeds the capacity of the
computer, Reducing one or the other may

help. Otherwise, the user must break his
program into parts and chain them
together, A large number of DATA

statements might be put into a run-time
input file.

The following programming errors are not reported by Cassette
BASIC, but instead are used in the computation as specified. They
are included here for the programmer's reference,

l, Attempting to use a number in a computation which is too
large for BASIC to handle will produce a result which is
meaningless,

2, Attempting to use a number in a computation which is too
small for BASIC to handle will result in the value zero
being used instead.

3. Attempting to divide by zero will produce a result which
is meaningless.

6.13 CASSETTE BASIC SYMBOL TABLE

Table 6-7 lists the Cassette BASIC symbols and their wvalues.
This information is useful when writing user-coded functions.

Table 6-7 Cassette BASIC Symbol Table

/PDPw8/E CASSETTE BASIC PAL B=-v8 12/27/72 PAGE
ARCLEF 1763 CLUSE mahi DYLOOP Se45 FEXPF
ApS hdeS LLOSED 11706 DwRIT 6734 FEXP]
ACE yeres LMSucH A1le ECHU 723 FEXPU
ACH 4417 ChnAMST naso EDIT gily FrAER
ACE Al ey CHLLx ©®1481 ENI} 2ueR FILALT
AT Lgd LMNLRP 4501 EnNDLIN STh2 FILNAM
ACR 17 LMNTENDY P06 E&NNM 7332 FILNR
ACT al A LuILD TGy ERDNUM 3321 FILY
ADRRES LTI Ll »134 EANDFPOL 5T43 FINOIT
ALGMLP ddnh LNTOD 1391 FNTER 644 FINODLUD
ALLOC tdbi LOVELD pppy EDFAD 4526 FIUER
ALLS Irad LCOLUMN #1301 FLFRTN bASH Fix
ALTMOD 2hA1 LnrMck 22T 7 EFTH bnep FIxEX]
AL dhhg LUMMAS &175 EFRHOR 4136 FIXITU
EMLTCH B%¢h LOMMEDN 3377 Eval 160 FIXLIN
AN MM AR LOMDN 1123 EvALGD (@84 FIXLUP
ARGERR Tod7 CONET 1367 EXECLY #7213 FIxupP
ARRPILOC 9?2 % LONEIN Ma2i Ex]T cadp7 FJMP
Ak 4agp Lps et h ExP bEGRA FIMPI
ASKAGN 1139 LnaT T1a3 ExXPGORO S242 FJump’
ATLINE ®ED) LRIMIY KT ExPLON 5764 FLD
AT beni LRLF ~53) ExXPOK %265 FLOI
ATMHIG BEARS LELFD 5297 ExTLOC ¥ocd FLOGCY
BTN OW &°721 LRLFRPE 3736 Fan 4960 FLOGL?
ATALDT &287 CTRILL KRy Fanext 1314 FLOGE3
RalURN Tleu LTRILCJ Te94 Fapiy dupi FLOGC4
HakwOw #TRha LTRLZI hBSE FalT LY FMP
HEKKDS a5ap LTw7CK @113 FLETHNAXY B2TR FMPT
REGFTX 4709 LTRZHP WS FATNEG &H33%7 FMTENF
kb T Lyl Lyl sple FATNCH &34p FMTL
RRE aK 527 LAY ARN tTeTP FATACY AT4dY FMT2
FENIP 2735 UFLFYP BRds FATNC)] B3@4 FMT3
Faw free VELFR& 4343 Farncz e3n7 FN
AGFENL RPN UECFEW #8343 FAaTNCE 03172 FNERR
mUF ST pARR wEF 1975 FATNCY B315 FNEXTIT
ram Téerl LELETE o911l FaTnCS &30P FOR
CAFRET 2kRed LEVYLOM TRy FATNES 6323 FORCT
CASIN hbld il 12el FATNET 68326 FORDON
CasSuul of2i HTuINl 32722 FATNCHY 6331 FORERR
CENTR (habk UTLTIT 8178 FATNCY &334 FORLIM
CGeT hhb vitl P AhYS7T FATNSX h2{P FORLIS
CHALN T340 I hdT¢ FaTaT 627k FORSTE
CHARNE #P%] GIHEL A Ak34g FATNTT B34 FORVAR
Lrabiih ghdl LIviP 4199 Fulill 3335 FOUND
TrelKe 2844 GIvyTE 334y Flw Tnen FrRann
THabRTY &mup LOLTal 1247 Fluw] Tdyi@ FPAaNPR
ChMERR 34R& UNEN DAY FENTER @4d43% FPOTv
CrNls e s UNSw ABGY FLar T4k FPUDIT
Cunity $36 4 JORTRT 3pdg FEXIY @0op FPFLAG
ChHEEET pdif Ul l7ER &5 7h FExPCl 8872 FRGATO
CrnorAK m3dyu UFFLnis $34¢ FExpPCe aF7hH FRJimp
CRLTRS wiiu VELHTX 31k FEXPCY 616N FRJUNe
FLEARY fdbu TUNTE Mhas FEuxHFC4 613 FPLAC
CLEY s tiw (1 hgat FraPCy 6106 FRLOOP
CLOs piil Ak CRIICK TARX} FeurCe A111L FRMUL

51

hRe?
6061
4064
5117
Nia7
R&PB
1358
606
nsep
A%k6
7135
4744
arvrs
5200
2135
475p
5143
102
Ldry
1139
g
3400
b17e
65153
6156
6161
6P
400
5121
5123
S@51
5126
5453
517¢
1201
Balb
AAHS
2663
@ae3
2721
5744
nras
Aasy
AnTe
4456
4304
d&6 7
4237
A154
42713
4317
4274
43%]
4202
4534

Table 6-7 Cassette BASIC Symbol Table (Cont'd)

/POP=B/E LASSETTE BASIC

FENQAD
FFUFER
FPPGZ
FFSK1P
FRETO
FPSuB
FPT
FPTeme
FRTR
FRZDIV
FRINP
FRINPL
FRMDX
FROUT
FRSTNE
Fsg
FSBT
F&F N
FAGE
FSGT
FS5INCY
FRINCE
FEINCY
FSINCS
FSINCB
FSINECT
FElnMg
FSI~NDOK
FSINI
FSTNZZ
FRIMIO
FSLE
F5LY
FSNE
FslimX
FsT
FSTI
FYANTY
FTant2
FUNTABR
FUPRCL
Fuwlt
FYxpPF¥
GALT
AUTHe
GET
GETADD
GETBLK
GFTCH
GETCHR
GETLR
GETTY
GETJ
GETLIN
GETL®RE

4
4395
da2a7y
4x14
4322
4453
4epn
45764
vhel
4rsé
1243
1261
S804
13pe
2ib1!
SUaLw
S54p@
diasa
B1an
e lal
5713
ST16
H57¢1
S5toa
S5Te?
573%¢
5735
5657
STuS
5T10
S5hal
W1sH
@11
CRue
Sap7?
SRR
cdER
Sht?
Steg
1151
S7ee
el n
bl X
T2up
1557
Pt 1
1408
176D
tee
M2
ar)e
ePTs
1765
gRne
fhi?

GETQPR
wETUNI
cETYAR
LE TWh
LLUOP
GNEXT
B0BOTH
LOLIST
LNSUR
LOTFMP
LOTIT
LwTITY
Golo
GOiNPH
01585
GOTSTE
EOUT
GPITR
URB
LRUELA
LSHEEND
LSBPTHK
LE51
GSse
LToKLP
LTEMP
wTJuMp
BTa4MP]
WTPFTR
raF
AsLF
HIGHWD
HL OOP
AalLlr1
H| ¥
MM
PPIR
JAMLES
LANDG
1A
LCASER
LrognT
LEn®
1ExT.C
lF

IFi
[GNMNRE
IMMED
ILMMEQ A
Lh
INCHRN
INUDFE
iNUF X
iMuEX2
LMLCTM

1812
AgdR
A3N3
rLT7
F7tl
A6@7
“w534
5764
ST
PESS
Tee?
T2
“h21
1292
171
“b3u
Tedu
Wbe
722%
Te2y
ST77
B3
155%
1556
§7ee
Tere
Pa4ae
Hagok
fe36
Ayx7
n4s]
“533
PRTT
f131
4163
hRAPR
Hoks
eivs
ATHY
1257
a157
LB
beahs
Be35
n3vTe
Ham3
2137
1165
115%
a3y
TaR3
7131
[ATAR T
nels
4077

PalLb=v8

INLOOP
INLUPF
INPLUP
INPPTR
INPSET
INPTN
INPUT
INPUTN
INSERT
INSKTS
INT
InWDTM
ION&M
TOUNTT
IPNOPE
ISDEFe
IsSLIG
I5DIM
ISIT
ISITODF
ISITFU
ISITLI
Is1T1
ISLIT
ISSOME
ISumIn
ITSGEF
ITSpP
1T5¢L
I1180GP
ITSP
TunIT
JePENT
JISDIG
JMATOUH
JPUTCH
JusT®
JUSTERF
JusToP
JusTi
JusTe
Kol IN
KB INP
MEUFEYN
Kok 8T
KEPTR
KEYh
KIGNOR
K2R
KMd Ay
KS5gup
Kee)
LASERK
LBEGIN
LERR

127274712

BES73
2434
4p34
iB76
2553
were
apa?
7316
2e27
2ars
6434
4136
vae7
1391
qeed
3511
6532
14712
4564
€551
1125
4190
dgpe
4127
1643
1310
1513
1217
3243
122@
27e
L1114
37T
3344
g7
fiTR3
3t42
3152
3155%
1137
3ty
dael
FR-T-1
67h2
bT37
a7
veldl
1616
caie
£17@
elet
Ta@ps
shl?
SbeP
33545

PAGE

LET
LETDO
LETTER
LFXLUP
LHALF
LIMIT
LINBUF
LINEND
LINFIX
LIST
LISTAL
LISTLU
LISTSO
LIST2
LIST3
LISTA
LISTS
LITRAL
LJIMS
LKER
LKERR
LLSOuUTY
LNOEND
LOADED
LOCCTR
LtOCTEM
LCCTHMPR
LCG
LCGACE
LCGFWD
LCGOKW
LCOK
LCOKER
LOOKUP
LCwWLOC
LFTOUT
LUKERR
LUNTIT
LUP
LUPF
LaLupP
MLYZER
MHRE AK
MENDL I
MENDPD
MGOLIS
MGSREN
MINUS
MLBEGT
MLEND
MILINBL
MHSONE
MONTTR
MOREDT
MOREIN

S1=1

B3gy
@z2as
3448
2334
3aby
1602
5551
2as54
2326
3s0e
LY. 3%
ist 2
3l
3636
3655
3661
3676
3123
7255
i31g
0330
Tuag
3626
4123
BPA4sS
HeT]
1677
6114
61A5
6164
h167
A39e
1310
Tone
2166
T547
@326
A332
T4v4
Bu3g
k113
4s12
ToRs
audy
23ib])
ar2e
8527
1318
B171
a17e
vode
@73
A180
6aTy
Lone

Table 6-7 Cassette BASIC Symbol Tahle

(Cont'd)

/PUF=8/6 LAGSETTE

MUORERD
MOV E
MOVILUP
MERTHT
MRY

ME YL UP
MMIA
Mk
MSTEE L
MTXx1T
MULCLR
ML EXF
MULXTE
MLL X1
MUSTRE
b &t
NAMEHK
NAME
NAMER
NaMQC
NCTRLZ
NE W
NE Al HA
Nt ','-'[.IU
NEWLTN
NI‘ '.‘::.‘AE.S
NEXT
MEXTER
NEXTG
NEXTVA
Mk MES
METPEN
N
NDROMP
MOICKENG
MOC M
NGO GMM
NOC K
NTIMBL N
MOKZER
NP ARE
NOPCR
~OPE
MDRILFT
NORMED
NORMIY
NORDLEQ
MGEST
ND&SZ2
NOT
NOTEAD
NOTHRIG
MOTECR
NOTEM
NOTFUL

kel
e
glce
e X
5321
ahh P
1561
Tap!
HL 53
5173
47y
1307
S50
3311
Ghhe
wige
Besl
19257
pRie
delh
BT25
1ru7t
fhed
1152
eh{h
11Ee
P A
“b73
cih?
Nh3T
T
68365
1143
4633
04
&1VA
327
4256
3104
SB314
1a3e
221
1314
Hi23
Sgci
5287
5574
1457
1452
Tugdb
2153
4p20
g3
11X
eT12

HASIC

N THER
N T wl
MOTEOwW
LUl 8GN
NOITxT
NOTV AR
MOTx1e
MO YeE T
NEYMTA
WTLHAN
TEMD
nLTM
NUHHF
NP PR
Ny UL MS
JdLn
UCASEN
(VI
UCLUNT
UEMR
UrTE
UjumMpy
L
uLib i
UL LKL
UL JMES
UL une
HLuesd
JNE
UnNEDPIM
UNe S5
Grinyl
un?eno
UGi 736
UFUOME
UFE
UPEN
UPEN]
UPERAN
DRNERM
JPUTAR
UrRs
wPUTL
Upl
ape
npP3
UTEMP
UTEMP1
UTHEHR
UUNTT
UUPSET
QUYDEV
dutng
LU TNUM
UuTOK

dul?
IR
1716
2Ty
~236
11##
Sedh
w741
AUS3
12k
115¢
12@ak
9335
ek
31724
dain
SRTd
520%
LY R
hTS?
1447
1?6
1uS?
Llke
A3
1111
PUTH
118k
147
1€n1
1273
3312
LT
2324
1283
PL3e
I575
=l
navTs
1354
Tale
Heeh
Tiua?
ness
rpze
Rl
1271
T™ale
3100
&THD
1426
L33
n13g
Spa0
1332

PALbE=VS

ov
1
oiare
ni1
011
uié
O1e2
013
14
niLaga
Jl4dy
niy
Y tay
n1vy
nyTig
ne
Og@
Qfvy
NeNndya
Oellés
Oele
0215
Ned
De %3
Oedap
0253
ngss
NeSéa
02956R
Dbl
nev
0395
iz
036
087344
Nni?376
Ds755
%77
04
Dup
N4l 4
042
04200
cuets
0S4Qd
06203
07
07Q
Qiavaa
Q7008
07ra7r?
nisead
07545
0Is7TR
014a¥7

le/s27/72 PAGE

pn13
2171
547
BaKe
2357
veet
etttz
15672
35964
cle2
2145
D144
33%2
we?
3253
Fited
1154
¥1n3
2350
5344
vwi7rs
w174
J366
3t
KBS
514%
S14b
5153
6975
gn1e2
3344
S1u7
5115
Tt
1152
176
1273
uRI3
156
2117
1153
It63
Ita2
1154
5347
fR46
oty
1272
£S89
3473
1279
5150
4117
6456
4sT7

oreve
76023
07610
QTedpA
D7e4{a
Ufets
ovy
ar7aa
UTTO8A
arvescC
01715
077254
07T725H
Q11137
orr4an
oFvradl
ur?43
ur745
n7rIss
oriag
QF7e3A
077638
OTTh4A
DT ThA4UR
D7764C
Ntrtee
OrTTQ
nrrT1
orrre
orvrs
DTT74
07776
PACN
PAD
PAQDON
PAKB{JF
PAL1
PANORM
PAKGER
PAR]
PASSCR
PBARRD
PBEGFI
PCCUNT
PCHKFT
PCLOS
PCOMMA
PCOWT
FOL
POLISY
PEDIT
PENDN
PENDNM
PERMSY
PERROR

Sle¢

dsds
2774
9345
B754d
2765
3308
2lap
ehip
6544
3472
2715
Q75
1548
3l1le
auass
1743
4743
d160
3121
2125%
J7T61
376
1274
IaTT
135¢
53151
AUS7?
S19¢
5154
5346
15961
4547
4rag
Bs47
aT4
763
Rlo6
B144
2a47
2145
BaTy
2773
1773
A744
@161
@143
@a73i
2137
236
STAZ
vige
AT
@365
S111
alel

Table 6-7 Cassette BASIC Symbol Table

(Cont'd)

/PPF=8/F CASSETTE

PEFREW
FEvaL
FEAELDU
PEXF
FFIn¥]
Firlx
PEFNERH
PEFLIU
PLETAR
PGETHL
PLETCH
PLETL I
P(}ETLK
PGLETOP
PLETVA
P18
PLGTOR
FRLP
PylIR
FIMT
PISTTL
FiLrenl
FLETOND
FLETTE
PLI®IT
FLTRRY
FLINFI
FLIST
PLITRA
PLUD
PLUS
PMAKE &
PHMFY
PLHF B
PiEwl]
Frim B
PNOTNO
PHLIMBL
FLADD
PCIP
POP
POGFERA
PUF 3
POLIYND
PFASSC
FROLIS
FRERKMS
PRELON
PrFORL
PEINT
pPPDOP
PPRINT
PPRINLU
FruUSH
PPUTLH

Drav
Divs
19
5776
Bkl
Hite
55uUm
aS 71y
oled
ity
Lol
Alch
inge
1476
G11S
AT
il
AT
[T A
LY ES
Y1Ts
bl I
R
J1ew
£9hh
737
nyy?
gt
335
STTY
1312
dlsa
5155
515h
11717
dldd
2574
AiAdd
2195
GR35
G1hh
3121
qaid
g121
a2
Gle?
£sre
4Tat
1764
6067
bie7?
D1i6
B1es
Bilvk
Q233

HASIC

PPXAED
PRENT
PRESET
PR LNEL
HHIMECD
PRINEX
PR InpA
KRN
HFRLINBE
PRINT
FRINTC
FRIMTLE
LN T
FRLIMTH
FiriMTx
FREMT 2
PR MM
FRLMNY .
FRLOGOP
FH P
FELGNA
FRLUWRE
Pk1EMP
PRI e&E
HEAVE
&t
FRATR]
PELOUP
FSFACE
FSTICK
rsing
rsrnvﬂ
FEAERR
FOYHTA
PTAWDE
FTABFI,
FTarLE
FTEN
FTexXT
FTURIG
FllakkKF
Fllax
FUTCOF
FUTTH
FUTER
FUT]
FUMFRE
PRk ORL
PXLIND
FYXCrL
Fxx€0F
PYxEx]
PYXiLIT
Y XTHE
FZERDO

1162
A315
"13n
X 173}
R d-
fe1h
Adbl
222l
PRk
P1TEé
2207
e ik]
fcPd
Tipg
YIe
P174
3745
ihS1
i)
Acd3
1114
3787
Wit ¢
Iree
Pdb3
5675
161k
e
156¢
A123
3776
114
iRz
Aiihe
57
5571
2iTe
A5
N1ee
Il
5545
1T
T4
aT41
Ty
L5
Ned7
GR57
3744
3117
r4571
J12¢
312¢e
2567
5485

PalLB~vA

FIhdi
NERK(R
MK
RpSaCH
HLHRW
HEAD
WEADIT
ME ADLO
READY
RELATE
HEMEAC
KEOFER
RESET]
HESTOK
ReTNER
RETURN
HRA&LF
RIGHT
RIP
RMLEFT
Rivi)
EhDJMP
WTHFND
FTHUF
HTIOME
RKLBRO
RiN
KUNC
RUNIN
FUNLUP
HUNNOT
KLNgIN
RuUNZLU
RLN2ND
SAVE
5avVEl
SLHMUR
SCRATL
SCRaTi
SEARCH
SETINC
SETSGN
SGN
SIMPLV
SIN
SJUMP
SKIPIT
SKPSYM
SLASH
SLO0OP
SLSHTM
SNUMF L
SFACER
SPLEFT
SQEXIT

12721/72

vlee
1971
HrTTY
@135
6763
1627
ba&U
ERue
6525
134P
143
6Ta0
are
3771
713
el
e
Q433
6hb1
had13
5353
5358
1620
14pw
LR
5573
48T
c45b
esiu
24dTe
-1
25950
2921
544
1200
bl
1586
2445
P332
1657
Ve
451¢
2726
2465
SH24
peay
vaT1
eTs2
1332
eh15
1337
(6133
1163
Glae
S45@

PAGE

SNLOOP
50R
SSERR
S3FIX
SS50ONE
S5TwW0
ST
STAR
STARTH
STICKT
STOBUF
STYP
S"ORCH
STOVAR
S5uP
SHER
SHERR
Tid
TaBLES
Taslo
TABFLG
TaBL
TUuBTHR
TN
THEGFI
TEMP
TEMPS
TEN
THESK]
TLS0OUT
THP
TOALON
THRINT
THALUP
THANSF
THYART
THYAL
TRYALT
TRYOQLR
THYSTE
TTY0
TrYQur
TU81G
TUIDTH
TWOLF
TwDS5
TYTPaAK
TYQUES
UOOPER
UGHL
W.HS
UMOPER
UMDERF
UMIT
UPARRQ

51=3

3435
S41¢
156%
471719
@336
Q337
1905
1327
pep
LYY
BTu7
2401
ning
@333
1521
8551
6441
5547
6375
6350
2343
3652
2560
L1151
S57¢
Queal
Iipg
a900
1453
T40p
anzl
3162
63576
2131
2126
5131
deT@
@271
2aTs5
A6k
To24
7350
1173
2355
2557
1874
Ipus
1145
1363
3581
Q2B
1321
4645
gl
6457

rable 6-7 Cagcgette BASIC Symbol Table (Cont'd)

/PDP~8/E CASSETTE BASIC PALB=vB 12/27/72 PAGE S51ey
LUP3RRXY S5T49 KXL0SH 9321 XXTAN 5204
LIPAKRZ 43%65 AXLOTOD S390 LATEXT SS44
NSERFN 1617 X¥GT S5t47 XATHEN 5305
UTEM pa1l AX1F 5312 XxT0 5165
UYEMY] BRel XAINPT 5332 XaTTvD S437
ULJIMP Aurn ¥ NPy S3RET AniINAR 5542
Uitms payl KX INT 531 XXUPAR S122
vulldmMs 24a1s XYLHRA 5163 XiUyF Se53
Vaw @335 AXLE 5124 ¥id on1a
VARTEM $H54 XXLET S274 ICNTLD 7147
VECHIN 35273 AXLIS S98¢ ZERDON 5147
VELHLL X474 AXLIST R476 ZeRO 2isp
VSCHND 3517 AYLITE S54% IFEIxEX 47ey
walT PR X0 S21¢e

wATTR BHEA AYLPT Sida

WOTEMP 1C72 XxLT 5145

WORD LASE LYMINU 5114

LTEM bh13 AXNAM 9534

YEXECQCU Uald AYNAME 553

YGISIT rits ANNCOM Sag?

YOMET], MS453 X¥YNF 513¢

YLMUSY 9 LXNEW 5%29%

¥I8iT Tiga rYXnExT S326

YI&ITY GR2™ sXNKHyH Su4kT

AMLST d2r? AXLDY RS

XMUSTY @ha xaling dya

SREGE f¥ll AaxUny app?

xHLOC afLn KXuLy 59507

KXWl T it AYUPEN S161

¥X&nS HPcl AXURN Rgle

XXATN S2p¢t AXUNTF Sugy

YyeSLS Sepd AXFLUS S11¢

YXCrRAN SupT KAXFRIMN Seht

¥xLL0S 5155 KXPRNT Spghe

XxCLSE S41# AXPUT Sedd

¥ACOMA S45% LXRPBRA 5157

yromm H159 AXHEAND R3Vb

¥¥CO8 9201 LYHEM H3h6

X¥CELF H2aé XXRETH H3dd

YYPaTA Sudip A¥Rtiy 5234

XWhEF S 532 AXRETL B3R1

XXDIM 5345 AXRUFE Hakg

X E(5135 X¥RrUN BhUS

Kxkl S1ue A5 AYy RH17

x¥END Hula Y¥sAvk G913

¥YF NN 406 A¥alr MLl

YxFOF 9541 XYSEMI B15H3

YrF 51438 ANBGN BHPP6

¥2rExTT Shud AABTIN 5237

yyFxF 21 AL0L AL H1AY

YuiF TNI 9543 ARSUR hgde

AXF RN 547k LX3TaP 5116

¥¥FOR 5%15 yx5TEP 5171

X xi:F Ste7? X¥HTuP 5391

AxGET BeaR ixlap RgSe

CHAPTER 7
USING CAPS=-8 CODT

Using CODT, the programmer can run his binary program oa the computer,
control its execution, and make alterations to his program by typing
at the Teletype keyboard.

CODT occupies any four pages of core, in the same field, that the user
desires, The user may change the location of these four pages of core
by reassembling the source., If the user program resides in the first
few pages of memory, then CODT should be loaded in the upper pages of
memory, and vice versa. The user program cannot occupy (overlay} any
location used by CODT, including the breakpoint locations (locations
4, 5, and 6 on page zerol,

7.1 FEATURES

CopT features include location examination and modification; octal
core dumps to the Teletype using the word search mechanism; and
instruction breakpoints to return control to CODT (breakpoints), The
user's program can run with interrupts on, CODT may reside in any
field, not necessarily the same as the user's field.

The breakpoint is one of CODT's most useful features, When debugging
a program, it is often desirable to allow the program to run normally
up to a predetermined point, at which the programmer may examine and
possibly modify the contents of the accumulater (AC) , the link (L),
or various instruction or storage locations within his program,
depending on the results he finds., To accomplish this, CODT acts as a
monitor to the user program,

The user decides how far he wishes the program to run and CODT inserts
an instruction in the user's program which, when encountered, causes
control to transfer back to CODT, CODT immediately preserves in
designated storage locations the contents of the LINK and AC at the
break, It then prints out the location at which the break occurred,
as well as the contents of the LINK and AC at that point. CODT will
then allow examination and modification of any location of the user's
program {or those locations containinhg the AC and L). The user may
also move the breakpoint and request that CODT continue running his
program, This will cause CODT to resztore the AC and L, execute the
trapped instruction and continue in the user's program until the
breakpoint is again encountered or the program is terminated normally.

7.2 USING CODT

When the programmer is ready to start debugging a new program at the
computer, he should have at the console:

l. A binary copy of the new program on a cassette,
2. A complete octal/symbolic program listing,

3. A binary copy of the CODT program (previously assembled so¢ as
not to interfere with the user's program).

RUN PROG, CODT

The binary of CODT must be the 1last file to be run. Execution
automatically begins in CODT,

7.2.1 Commands

SLASH (/) -=-OPEN PRECEDING LOCATION

The location examination character (/) causes the location addressed
by the octal number preceding the slash to be opened and its contents
printed in octal, The open location camn then be modified by typing
the desired octal number and closing the location., Any octal number
from 1 to 4 digits in length is a legal input, Typing a fifth digit
is an error and will cause the entire modification to be ignored and a
question mark to be printed by CODT, Typing / with no preceding
argument causes the latest named location to be opened (again).
Typing 0/ is interpreted as / with no argument. For example:

400/6046
400/6046 24687
400/6046 123457
/6046

The memory field referenced is that field specified by the location in
CODT symbolically referenced by F, For example, if the contents of F
were 20, then the command

423/

would examine location 423 in memory field 2.

RETURN--CLOSE LOCATION

If the user has typed a valid octal number, after the content of a
location is printed by CODT, typing the RETURN key causes the binary
value of that number to replace the original contents of the opened
location and the location to be c¢losed, If nothing has been typed by
the user, the location is closed but the content of the location is
not changed. For example:

400/6046 location 400 is unchanged
400/6046 2345 location 400 is changed to contain 2345,
/2345 6046 replace 6046 in location 400.

Typing another command will also close an opened register, For
example:

400/6046 401/6031 2346 location 400 is closed and unchanged and
400/6046 40172346 401 is opened and changed to 2346,

LINE FEED--CLOSE LOCATION, OPEN NEXT LOCATION

The LINE FEED key has the same effect as the RETURN KEY, but, in
addition, the next sequential location is opened and its contents
printed, For example;

400/6046 location 400 is closed unchanged and 401

0401/6031 1234 is opened. User types change, 401 is

0402/5201 closed ceontaining 1234 and 402 is
opened.

SEMICOLON--CLOSE LOCATION, AND UNOBTRUSIVELY OFEN NEXT LOCATION

The SEMICOLON key has the same, effect as the LINEFEED key except that
the location and contents of the next sequential location are not
printed. Therefore,

400/6046 3211; 4162; 5000
has the same effect as

400/6046 3211
401/6031 4162
402/5201 5000

This makes it convenient for the user to change several sequential
locations.

+ (SHIFT/N}--CLOSE LOCATION, TAKE CONTENTS AS MEMORY REFERENCE AND
OPEN SAME

The up arrow {circumflex) will close an open location just as will the
RETURN key. Further, it will interpret the contents of the locatien
as a memory reference instruction, open the location referenced and
print its contents, For example:

404 /32704 3270 symbolically is "DCA, this page,
0470/0212 0000 relative location 70," so0 CODT opens
location 470.

+ (SBEIFT/0)} CLOSE LOCATION, OPEN INDIRECTLY

The Back arrow (or underscore) will close the currently open location
and then interpret its contents as the address of the location whose
contents it is to print and open for modification., For example:

365/5760¢
0360/0426+«
0426/5201

nnnnG--TRANSFER CONTROL TO USER AT LOCATION nnnn

Clear the AC then go to the location specified before the G (in the
field specified by F), Al)l indicators and registers will be
initialized and the breakpeoint, if any, will be inserted. Typing G
alone will cause a jump to location @.

nnnnB-~SET BREAKPOINT AT USER LOCATION nnnn

Instructs CODT to establish a breakpoint at the location specified
before the B (in the field specified by F). If B is typed alone, CODT
removes any previously established Dbreakpoint and restores the
original ceontents of the break location. A breakpoint may be changed
to another location, whenever CODT is in control, by simply typing
nnnnB where nnnn is the new location. Only one breakpoint may be in
effect at one time; therefore, reguesting a new breakpoint removes any
previously existing one,

A restriction in this regard is that a breakpoint may not be set on
any of the floating=point instructions which appear as arguments of a
JMS, For example:

TAD

bCA Breakpoint legal here,
JMS

FADD Breakpoint illegal here.

A breakpoint may not be set on a CIF instruction, nor on an
instruction which 1is meant to be executed between a CIF and its
corresponding JMP or JMS instruction.

A breakpoint may not be set on a memory reference instruction which
references an auto=index register.

A breakpoint may not be set on a two-word EAE instruction, nor may it
be set on any of the following instructions:

SKON
ION
ior

The breakpoint (B} command does not make the actual exchange of CODT
instruction for user instruction, it only sets up the mechanism for
doing so, The actual exchange does not occur until a "“go to" or a
"proceed from breakpoint" command is executed.

When, during execution, the user's program encounters the location
containing the breakpoint, control passes immediately to CODT (via
location 4, 5, and 6). The C(AC) and C(L} at the point of
interruption are saved in special locations accessible to CODT. The
user's data field is stored in location D and his instruction field is
stored in location F as well as internally by CODT, The user
instruction that the breakpoint was replacing is restoreé¢ before the
address of the trap and the content of the LINK and AC are printed.
The restored instruction has not been executed at this time. It will
not be executed until the “proceed from breakpoint" command is given.
Any user location, including those containing the stored AC and Link,
can now be modified in the usual manner. The breakpoint can also be
moved or removed at this time.

An example of breakpoint usage follows the section "CONTINUE AND
ITERATE LOOP,..".

A==0OPEN C(AC)

When the breakpoint is encountered the C(AC} and C(L) are saved for
later restoration, Typing A after having encountered a breakpoint
opens for modification the location in which the AC was saved and
prints its contents, This location may now be modified in the normal
manner (see Slash) and the modification will be restored to the AC
when the "proceed from breakpoint™ command is given.

Similarly, other key locations in CODT may be examined and modified as
follows:

L-=0PEN CONTENTS OF LOCATION L (LINK)

F-=-0PEN CONTENTS OF LOCATION F

D=-~OPEN CONTENTS OF LOCATION D (USER'S DATA FIELD)

NOTE

Whenever any of the locations A, L, F,
D, M are referenced, CODT automatically
sets the value of F to be the field of
CODT.

C--PROCEED (CONTINUE} FROM A BREAKPOINT

Typing C, after having encountered a breakpoint, causes CODT to insert
the latest specified breakpoint (if any); restore the contents of the
AC and Link; execute the instruction trapped by the previous
breakpoint; and transfer control back to the user program at the
appropriate location. The user program then runs until the hreakpoint
is again encountered.

Regardless of the value of F, the C command resumes program execution
at the precise spot where it had been previously stopped. The user's
data field is first set to that specified by location D.

NOTE

If a trap set by CODT is not encountered
while CoDT is running the object
{user's) program, the instruction which
causes the break to occur will not be
removed from the user's program.

nnnhC--CONTINUE AND ITERATE LOOP nnnn TIMES BEFORE BREAK

The programmer may wish to establish the breakpoint at some location
within a Jloop of his program. Since loops often run to many
iterations, some means must be available to prevent a break from
occurring each time the break location is encountered. This is the
function of nnnnC (where nnnn is an octal number). After having
encountered the breakpoint for the first time, this command gpecifies
how many additional times the loop is to be iterated before another
break is to occur. The break operations have been described
previously in the section on the B command.

Given the following program, which increases the value of the AC by
increments of 1, the use of the breakpoint command may be illustrated,

0200 7300 CLA CLL
0201 1206 A, TAD ONE
0202 2207 B, 1ISZ CNT

0203 5202 JMP B
0204 5201 JMP A
0205 7402 HLT

0206 0001 ONE,1
0207 0000 CNT,O

A 0201
B 0202
CNT 0207
ONE 0206
0201B
200G

0201 (0;0000
C
0201 (0;0001L

c
0201 (0;0002
4C
0201 {0;0007

CODT has heen loaded and startead, A breakpoint is inserted at
location 0201 and execution stops here showing the AC in:itially set to
0000 and the link 0. The use of the Proceed command (C) executes the
program until the breakpoint is again encountered (afte:r one complete
loop) and shows the AC to contain a wvalue of 0001, Again execution
continues, incrementing the AC to 0002, At this point, he command 4C
is used, allowing execution of the loop to continue 4 more times
{following the initial encounter} before stopping at the breakpoint.
The contents of the AC have now been incremented to 0007.

M=--0PEN SEARCH MASK

Typing M causes CODT to open for modification the location containing
the current value of the search mask and print its contents,
Initially the mask is set to 7777. It may be changed by opening the
mask location and typing the desired value after the value printed by
CoDT then closing the location.

LINE FEED--OPEN LOWER SEARCH LIMIT

The word immediately following the mask storage location contains the
location at which the search is to begin. Typing the LINE FEED will
open for modification the first location after the mask, and its con-
tents will be printed, Initially, the lower search limit is set to
0001. It may be changed by typing the desired lower lirit after that
printed by CODT, then closing the location,

LINE FEED--OPEN UPPER SEARCH LIMIT

The next sequential word contains the location with which +the search
is to terminate, Typing the LINE FEED key to close the lower search
limit causes the upper search limit to be opened for modification and
its contents printed. Initially, the upper search limit is the
beginning of CODT itself, 7000 (1000 for low version}. It may also he
changed by typing the desired upper search limit after the one printed
by CObLT, then closing the location with the RETURN key.

nnnnW--WORD SEARCH

The command nnnnW (where nnnn is an octal number) will cause CODT to
conduct a search of a defined section of core, using the mask and the
lower and upper limits which the user has specified, as indicated
above, The searching operations are used to determine if a given
quantity is present in any of the locations of a particular section of
memnory.

The search is conducted as follows: CODT masks the expression nnnn
which the user types preceding the W and saves the result as the
quantity for which it is searching. CODT then masks each location
within the user's gpecified limits with C(M) and compares the result
te the quantity for which it is searching., If the two quantities are
identical, the address and the actual unmasked contents of the
matching location are printed and the search continues until the upper
limit is reached. The search occurs in the memory field specified by
F.

A search never alters the contents of any location. For example:
Search location 3000 to 4000 for all ISZ instructions regardless of
what location they refer to (i.e. search for all locations beginning
with an octal 2).

FOO010 20 Set the field to 2

M7777 7000 Change the mask to 7000, open lower
search limit.

7453/0001 3000 Change the lower 1limit +to 3000, open
upper limit.

7454 /7000 4000 Change the upper limit to 4000, close
location.

2000w Initiate the search for 152
instructions.

0200/2467

3057/2501 These are 4 I§2 instructions in

3124 /2032 this section of core.

7.3 ILLEGAL CHARACTERS

Any character that is neither a valid control character nor an octal
digit, or is the fifth octal digit in a seguence, causes the current
line to be ignored and a question mark printed. For example:

4:2 CODT opens no location,

4U7%
0406 /4671 67K CODT ignores modification and closes
/4671 location 406.

7.4 ADDITIONAL TECHNIQUES

7.4.1 TTY I/0-FLAG

CODT automatically notes the status of the TTY flag after encountering
a breakpoint and restores it after performing a CONTINUE.

7.4,2 Interrupt Program Debugging

CODT executes an IOF when a breakpoint is encountered. (It does not
do this when more iterations remain in an nnnnC command.) This is done
8o that an interrupt will not occur when CODT prints +the breakpoint
information. CODT thus protects itself against spurious interrupts
and may be used safely in debugging programs that turn on the
interrupt mode, CODT restores the interrupt faecility to its former
state when it resumes execution.

7.4.3 Octal Dump

By setting the search mask to zero and typing W, all 1locations (in
field F) between the search limits will be printed on the Teletype.

7.4.4 Indirect References

When an indirect memory reference instruction is encountered, the
actual address may be opened by typing + and <« (SHIFT/W and SHIFT/O,
respectively).

7.5 ERRORS

The only legal inputs are control characters and octal digits. Any
other character will cause the character or line toc be ignored and a
question mark to be printed by CODT, Typing G alone is an error, It
must be preceded by an address to which control will be transferred
This will elicit no question mark also if not preceded by an address,
but will cause contreol be transferred to location 0.

7.6 COPERATION AND STORAGE
7.6.1 Storage Requirements - CAPS-8 System

CODT can be run in a standard CAPS-8 system and requires 1000 {octal)
core locations and three locations (4,5,6) on page zero of every field
which uses a breakpoint. CODT is page-~relocatahble,

The source tape can be re—origined to the start of any memory page
except page zero and assembled to reside in the four pages following
that location, assuming they are all in the same memory bank.

7.6.2 Programming Notes Summary

CODT must begin at the start of a memory page (other than page zero)
and must be completely contained in one memory field,

The user's program must not wuse or reference any core locations
occupied or used by CODT and vice versa.

Breakpoints are fully invisible to "open location™ commands; however,
breakpoints may not be placed in locations which the user program will
modify in the course of execution or the breakpoint will be destroyed.

If a trap set by CODT is not encountered by the user's program, the
breakpoint instruction will not be removed,

The user may type CTRL/C at any time to return to the CAPS-8 Monitor
{assuming his pregram did not destroy CAP5-8).

7.7 COMMAND SUMMARY

nnnn/

/
RETURN key

LINE FEED key

-y

+ (SHIFT/N)

«~ {SHIFT/0)

Illegal character

nnnnG
nnnnB
B

A

nnnnC

M
LINE FEED key
LINE FEED key

nnnnW

Open location designated by the octal number
nnnn.

Reopen latest opened location.
Close previously cpened location.

Close location and open the next sequential
one for modification.

Close location and allow
modification of the next location,

immediate
Close 1location, take conteni:g of that
location as a memory reference and open it.
Close location, open indirectly,

Current line typed by user is ignored, CODT
types:s ?{(CR/LF},

Transfer program control to location nnnn.
Establish a breakpoint at location nnnn,
Remove the breakpoint,

Open for modification the location in which
the contents of the AC were stored when the
breakpoint was encountered.

Open the location storing the link,

Proceed from a breakpoint.

Continue from a breakpoint and iterate past
the breakpoint nnnn times before interrupting
the user's program at the breakpoint
location.

Open the search mask.

Open lower search limit,

Open upper search limit,

Search the portion of core as defined by the
upper and lower limits for the octal wvalue
nnnn.

Open location F.

Open location D.

7-11

CHAPTER 8
CAP5-8 UTILITY PROGRAM

8.1 INTRODUCTION
The CAPS-8 Utility Program {(UTIL) allows the user to take files stored
on paper tape and transfer them to cassette, using either the

high-speed or low-speed reader. The Utility Program will transfer
both ASCII and BINARY files.

8.2 CALLING AND USING THE UTILITY PROGEAM
To call the Utility Program from the system cassette, the user types:
+R UTIL/OPTIONS

in response to the dot (.) printed by the Keyboard Moni:or.

8.2.1 Utility Program Options

There are two options available for use with the Utility Program;
these options are discussed in Table 8-1, (Optionsz usage iz explained
in Chapter 2, Section 2,4.3,)

Table 8-1
Utility Program Cptions
Option Meaning
/H The /H option is used to designate the

high~speed reader as the inpul: device., Note
that the high-speed reader is the default
input device, That 1is, if no option is
specified the program assumes that the
high~speed reader is the input device.

/L The /L option is used to designate the
low-speed reader as the input device,

8.2.2 Input and Qutput Specifications

Before indicating the input and output devices to be used in the file
transfer, the user must ensure that the proper reader is ready and
that the cassette the file is to be copied onto is write-enabled,
When this has been done, the user is ready to begin the file transfer.

After UTIL has been called from the system cassette, it asks the
following:

MODE-

The user responds with a single character (A or B) to indicate whether
the file being put on the cassette is ASCII or BINARY,

OUT=-

The user responds by typing the drive number the output cassette is
mounted on and the name of the output file to be put onto it, i.e.,
3:F00. In B mode, .BIN is the default extension.

After these two queries have been answered UTIL prints the following:

+

The user responds by typing any character; this response starts the
file transfer. {If /L had been typed, the user merely turns on the
low=-speed reader.)

8.3 UTILITY PROGRAM ERROR MESSAGES

Errors which occur during the Utility Program gperation may he of two
types: User errors and cassette errors., User errors may be corrected
with the appropriate action as detailed in Table 8-2, Cassette errors
normally require the user to use another cassette to complete the copy
operation, Control does not return to the Keyboard Monitor when a
Utility Program error occurs, The user may use CTRL/C to return to
the Monitor if he cannot correct the indicated error.

Table 8~2
Utility Program Error Messages
Message Meaning
UNIT n NOT READY There is either no cassette on the cassette

drive specified or no such drive exists.

OUTPUT ERROR ON UNIT n An output error has occurred on the cassette
drive specified, The user should try the
transfer operation using another cassette.
Or perhaps, the user tried to write data when
the write protect tab of the cassette on the
drive specified was write~locked.

ENTER ERROR ON UNIT n

UNIT n FULL
CLOSE ERROR CON UNIT n

INPUT ERROR

CHECKSUM ERROR

An error occurred while trying to open a new
cassette file,

There was not encough room on the cassette.
An error occurred during a close operation.
In binary mode, the paper tape reader stopped
or ran out of tape before a checksum was

encountered,

In binary mode, the checksum did not agree;
probably a hardware read error. Try again.

Whenever an error occurs, the program writes a new sentinel on the
open cassette if possible,

CHAPTER 9

BOOT

BOOT is used to make it convenient to hootstrap from one system to
another, or from one device to another by typing commands on the

keyhoard.

BOOT can run conveniently from CAPS-8 and other monitor systems,
i.e,, 05/8 and C0S-300.

9.1 OPERATING PROCEDURES
To run BOOT from CAPS-8 the user types:
.R BOOT

the system will respond by typing a slash, at which time the user
responds with the device mnemonic.

If an illegal mnemonic is typed, the system types "NO" and prints a
slash to allow the user to try again. In this case, the user can
type RUBOUT to erase a line and try again,

If a legal mnemconic was given, but the system configuration does not
include the correspeonding device (or the device is not ready), the

beeotstrap may hang.

The fellowing is a list of legal mnemonics:

Mnemonic Device Svstem or Comments
CA TABE cassette CAPS-8
DK Any disk (RFO08, 03/8, C05=300
DF32, RK8E, RKS)
DL LINCtape DIAL-V2, DIAL-MS
DM RF08 or DF32 Disk Mcnitor
DT Any tape (TCO08, 05/8, C05-300
TD8E, LINCtape)
LT LINCtape 0s5/8, C0OS5-300
PT PT8E Papertape Loads BINLDR into field 0O

Mnemonic

&

&

&

ZE

Device

RK8E disk
RF08, DF32 disks
RK8 disk

TDBE DECtape

TC08 DECtape unit 4

TC08 DECtape

System or Comments

0s/8, C0s-300
0s/8, C0S-300
0s/8, C05-300
08/8, COS-300

Typeset Bootstrap
types BOOT's version number

0s8/8, C0OS-300, Disk monitor,
DEC library system, and cthers

Zeroes core (field 0)

1f the device mnemonic is followed by a periocd, the program will load

the correct bootstrap into core and then halt. Hitting continue

branches to the bootstrap.

Example:

LR BOOT

/DT

The preceding bootstraps conte a DECtape system {on DECtape unit f#).

The underlined characters were typed by the computer.

APPENDIX A
ASCIT CHARACTER SET

B=Bit 7=Bit 8--Bit 7-Bit
Character Octal Octal Character Octal Octal

A 301 101 ! 241 241
B 302 102 " 242 242
C 303 103 # 243 243
D 304 104 S 244 244
E 305 105) 245 245
F 306 106 & 246 246
G 307 107 ' 247 247
H 310 110 { 250 250
I 311 111) 251 251
J 312 112 * 252 252
K 313 113 + 253 253
L 314 114 . 254 254
M 315 115 - 255 255
N 316 116 . 256 256
O 317 117 / 257 257
P 320 1240 : 272 272
o] 321 121 : 273 273
R 322 122 < 274 274
s 323 123 = 275 275
T 324 124 > 276 276
U 325 125 ? 2717 277
v 326 126 @ 300
W 327 127 { 333 133
X 330 130 \ 334 134
Y 331 131 | 335 135
pA 332 132 * 336 136
0 260 260 < 337 137
1 261 261 Leader/Trailer 200
2 262 262 BELL 207
3 263 263 TAB 211
4 264 264 LINE FEED 212
5 265 265 FORM 214
6 266 266 CAREIAGE RETURN 215
7 267 267 CTRL/Z 232
8 270 270 SPACE 240 240
9 271 271 RUROUT 377

BLANK Qo0

APPENDIX B
ERROR MESSAGE AND COMMAND SUMMARIES

The following summaries are provided for the user's convenience; they
are grouped in alphabetical order according to the System Program to
which they pertain. As these are only summaries the user is referred
to the appropriate chapters for details.

KEYBOARD MONITOR {Chapter 2)

Error Messages
Message Meaning

BAD COMMAND The user has failed to follow the
correct syntax for Monitor commands,

FILE NOT FOUND The Monitor could not locate the file
for files) specified.

IO ERROR ON UNIT n An I/0 error has occurred on the
cassette unit drive gspecified., The
user should ¢try the I,/0 transfer
specifying another cassette.

UNIT n NOT READY There is no cassette on the unit
drive specified, or no such drive
exists.

UNIT n WRITE LOCKED The user tried to write data when the

write protect tab of the cassette on
the drive specified was write-locked,

Commands

Command Explanation

DATE Allows the user to enter the month,
day, and vyear, This date is then
represented in directory listings.

DELETE Causes the file named in the command
line +to be deleted from the cassette
drive specified,

DIRECTORY Causes a directory 1listing of the
cassette specified in the command
line.

KEYBOARD MONITOR (Con't)

Command

LOAD

REWIND

RUN

VERSION

ZERO

EDITOR {Chapter 3)

Error Messages

Explanation

Instructs the Monitor to 1lcad the
file(s) specified in the command
line., (The correct starting address
is then set in the switch register
and execution is started by pressing
CONTinue.)

Causes the cassette on the drive
specified to be rewound to its
beginning.

Instructs the Monitor to 1lcoad and
execute the file({s) specified in the
command line,

Causes the wversion number of the
Monitor currently in use to be
printed on the console terminal,

Causes deletion of all files
following the filename specified in
the command line. If no filename is
indicated, all files are deleted and
the sentinel file is moved to the
beginning of the cassette,

Error codes are printed im the form ?ntC where n represents one

of the following:
Code
0

Meaning

The EDITOR failed in reading from a
device. An error occurred in the
device handler; most likely a
hardware malfunction.

The EDITOF failed in writing onto a
device; generally a hardware
malfunction,

A file close error occurred. The
output file could not be closed.

A question mark (?) may appear any time the EDITOR encounters a

syntax error,

B-2

In addition, the EDITOR contains the following error message:

Message

UNIT HAS OPENED FILE

Cormmands

Command

Meaning

Two files cannot be open on the same
cassette at the same time,

Meaning

Append text from the keyboard to
whatever is present in the text
buffer.

List the number of available memory
locations in the text buffer.

Change the text of a specified line
or lines.

Delete the specified line(s) from the
buffer,

Output the current buffer and
transfer all input to the output
file; close the output file,

Find the next occurrence of the
string currently being searched for,

Get and list the next line which has
a label associated with =t.

Insert text before a specified 1line
in the text buffer.

Initiate an inter-buffer search for a
character string.

Kill the buffer; rese: the text
buffer pointers so that there is no
text in the buffer,

List entire contents (or specified
lines) of the text buffar on consocle
terminal.

Move specified lines from one place
in the text to another, deleting the
old occurrence of the text.

Write the current buffer to the
indicated output £ila, kill the
buffer and read the next logical page
from the input file.

EDITOR (Con't)

Command

P

.= or -:

/= or /:

LINE FEED
Key

SYSCOP (Chapter 4)
Error Messages
Message

INPUT ERROR ON UNIT n

UNIT n NOT READY

Meaning
Write the entire text buffer (or
specified lines) to the output
buffer.

Immediate end-of-file., () causes the
text buffer to be output to the
output file and the file closed,

Read from the specified input device
and append the new text to the
current contents of the buffer.

Search for the character specified.

List the entire text buffer (or only
specific lines)} on the line printer,

Skip to a logical page in the input
file, without writing any output.

Perform a search for a specified
string of characters.

List the current line number (.,=) or
list the last line number in the text
buffer (/=).

List the next line in the text buffer
on the console terminal.

List the previous line in the text
buffer on the console terminal,

List the next line in the text buffer
on the conzole terminal.

Meaning

An input error has occurred on the
cassette unit specified. The user
should try the copy operation using
another cassette,

There is no cassette on the unit
drive specified, or no such drive
exists.

SYSCOP (Con't)
Message

UNIT n WRITE LOCKED

OUTPUT ERROR ON UNIT n

PALC (Chapter 5)
Error Messages
Exrror Ceode

BE

DE

DF

ic

ID

1E

II

Ip

1z

PE

Meaning

The user tried to write data when the
write protect tab of the cassette on
the drive specified was write~locked.

An output error has occurred on the
cassette unit specified. The user
should try the copy operation using
another cassette,

Explanation

Two PALC Internal tables have
overlapped, Fatal erxrror.

An error was detected when trying to
read or write a device.

Device full.

Illegal character, The character is
ignored and assembly continues.

Illegal redefinition of a symbol.
The symbol retains its old
definition,

Illegal equals. An equal sign was
used in the wrong context.

Illegal indirect. An off-page
reference was made.

Illegal pseudo~op. A pseuvdo-op was
used in the wrong context or with
incorrect syntax.

Illegal page 2zero reference, The
pseudo=-ap Z was found in an
instruction which did nct refer to
page zero. The 2Z is igncred,

Current non-zerc page exceeded, An
attempt was made to:

1. oOverride a literal with an
instruction

PALC (Con't)

Error Code

PH

SE

uo

us

Z2E

BASIC (Chapter &)
Error Messages
Message

ARGUMENT ERROR

CHAIN ERROR

DATA ERROR

EOF ERROR

EXPRESSION ERROR

Meaning

2. Override an instruction with a
literal

3, Use more literals than the
assembler allows on that page

Phase error. Either no § appeared at
the end of the program, or < and > in
conditional pseudo=-ops did not match.

Redefinition. A permanent symbol has
been defined with =. The new and old
definitions do not match. The
redefinition is allowed.

Symbol table exceeded. Tco many
symbols have been defined for the
amount of memory available,

Undefined origin., An undefined
symbol has occurred in an origin
statement,

Undefined symbols., A symbol has been
processed during pass 2 that was not
defined before the end of pass 1.

Page 0 exceeded, Same as PE except
with reference to page 0.

Meaning

A function was given an illegal
argument; for example: SQR(-1).

A cassette error occurred while doing
program chaining,

There were no more items in the data
list.

The user attempted to read past the
end-of-file during run-time input,

One of BASIC's internal lists
overflowed while attempting to
evaluate an expression.

BASIC (Con't)

Messzage

FILE NAME ERROR

FILE OPEN ERROR

FOR ERROR

FUNCTION ERROR

GOSUB ERROR

I C ERRCR

IN ERROR

LINE TOQ LONG

LINE 4 ERROR

LOOKUP ERROR

NEXT ERROR

NO FILES ERROR

OUT ERROR

RETURN ERROR

Meaning

A mistake was found in the user's
specification of a cassette drive §
or filename in either a CHAIN or an
OPEN statement.

The user attempted to open a run~time
output £file when one was already
open, or a hardware error occurred,

FOR lecops were nested too deeply.

The user attempted to call a function
which had not been definedl.

Subroutines were nested taso deeply.

The user attempted +to do run-time
input and output to the same cassette
at the same time.

A cassette error occurred while
attempting to carry out an OLD
command or while doing run-time
input.

A line greater than 80 characters in
length was typed; BASIC ignores the
line and waits for a new one to be
entered,

A GOTO, GOSUB, or IF statement
referenced a nonexistent line,

BASTIC could not find a run-time input
file on the drive specified.

FOR and HNEXT statements were not
properly paired.

The user attempted to do run~time
file 1I/0 without first specifying so
during BASIC's initial dialogue.

An error {(probably end-of-tape)
occurred while doing cassette output
either during a SAVE or during
run-time output.

A RETURN statement was issued when
not under contreol of a GOSUB.

BASIC (Con't)

Message

SUBSCRIPT ERROR

SYNTAX ERROR

TO0 BIG, LINE IGNORED

Statements

Statement
CHAIN
CLOSE

COMMAS

DATA
DEF
DIM
END

FOR=TQO=STEP

GOSUB

GOTO

IF=END#=THEN

IF-GOTO
IF-THEN

Meaning

A subscript was used which was
outside the bounds defined in the DIM
statement.

A command did not correspond to the
language syntax, or an undefined UUF
was referenced,

The comhination of program size and

number of wvariables exceeded the
capacity of the computer.

Meaning
Link to next user program,
Close open output file.

Output data wvalues toc a cassette
inserting a comma between each value,

Set wvalues for a READ,

Define a function,

Dimension subscripted variables.
Signals the end of program execution,
Set up a program loop; increment the
counter by a value specified using
STEP.

Transfer control to a subroutine,

Transfer contrel to the 1line number
specified in the command line.

Transfer control ({or perform an
operation) depending upon the
validity of the last INPUT#
statement,.

Transfer control (or perform an
operation) depending upon the
relationship between variables

gpecified in the command line.

Statement

INPUT

INPUT#
LET

LIST

LIST#

LeT
NAME
NEW

NEXT

NO COMMAS
NO RUBOUT

OLD

OPEN FOR INPUT/OUTPUT

PRINT

PRINT#
READ

REM

RESTORE

RETURN

RUBOUTS

SAVE

Meaning

Input values from the console
terminal,

Input values from a data file.
Assign a value to a varialble,

List program {or specific 1lines) on
console terminal,

List program {or specific 1lines) on
line printer,

Send output to the line printer,
Rename the program in memcry.
Specify a new program name.

Continue a program loop until a
terminating wvalue is reached.

Terminate ocutputting of commas.
Disable the RUBOUT command.

Call saved program from cassette into
memory.

Open a file on cassette for input or
output,

Print values or specified text on the
console terminal.

Output values to a data file.
Read values from a data list.

Insert remarks or comments in the
program,

Reset DATA value to its original
value.

Return from a subroutine to the main
body of the program.

Allow the use of the RUBCUT key to
delete characters,

Save the program in memcry on the
cassette to be specified.

BASIC (Con't}

Statement
SCR

STOP

TTY QUT

Functions
Function

SIN(x)
COS (x)
TAN (x)
ATN (x)
EXP (x}
LOG({x)
SGN({x)
INT (%)
ABS (x)
SQR(x}
RND(x)
TAB (x)
GET {x)
PUT (x}
FNA(x)
UUF { %)

Meaning
Delete the current program in memory.

Transfer control to the END
statement.

Return output to the console terminal
{after using LPT).

Meaning

Sine of x

Cosign of x

Tangent of x

Arctangent. of x

Exponential wvalue of x
Natural log of x

Sign of x

Integer value of x

Absolute wvalue of x

Square root of x

Generate a random number
Print character at space x
Get character from input device
Put character on output device
User-defined function
User-coded function

APPENDIX C
PALC PERMANENT SYMBOL TABLE

The following are the most commonly used elements of the PDP-8
instruction set and are found in the permanent symbol table within the
PALC assembler, For additional information on these instructions and
for a description of the symbols used when programming other,
optional, I/0 devices, see THE SMALL COMPUTER HANDBOOK, available from
the DEC Software Distribution Centexr. (All times are in microseconds
and respresentative of the PDP-8/E.}

Mnemonic Code Operation Time

Memory Reference Instructions

AND 0000 Logical AND

2.6

TAD 1000 Two's complement add 2,6

152 2000 Increment and skip if zero 2.6

DCA 3000 Deposit and clear AC 2.6

JMS 4000 Jump to subroutine 2.6

JMP 5000 Jump 1.2
Mnemonic Code Operation Segquence

Group 1 Operate Microinstructions (1 cycle = 1.2 microseconds)

NOP 7000 No operation -
IAC 7001 Increment AC

RAL 7004 Rotate AC and link lefi one

RTL 7006 Rotate AC and link left two

RAR 7010 Rotate AC and link right cne

RTR 7012 Rotate AC and link right two

CML 7020 Complement link
CMA 7040 Complement AC
CLL 71400 Clear link

CLA 7200 Clear AC

BSW 7002 Swap Bytes in AC

B DN B

Mnemonic Code Operation
Group 2 Operate Microinstructions (1l cycle)

HLT 7402 Halts the computer

OSR 7404 Inclusive OR SR with AC
SKP 7410 Skip unconditionally
SNL 7420 Skip on nonzero link
SZL 7430 Skip on zero link

SZa 7440 Skip on zero AC

SNA 7450 Skip on nonzero AC
SMA 1500 Skip on minug AC
SPA 7510 Skip on positive AC (zero is positive)

Combined Operate Microinstructions

CI1Aa 7041 Complement and increment AC

STL 7120 Set 1link to 1

GLK 7204 Get link {put link in AC, bit 11)
STA 7240 Set AC to -1

LAS 7604 Load AC with SR

MQ Microinstructions

MQL 7421 Load MQ from AC, then clear AC
MQA 7501 Inclusive OR the MQ with AC
CAM 7621 Clear AC and MQ

SWP 7521 Swap AC and MQ

ACL 7701 Load MO into AC

Internal IOT Microinstructions

SKON 6000 Skip if interrupt ON, and turn OFF
ION 6001 Turn interrupt processor on

I0OF 6002 Disable interrupt processor

SRQ 6003 Skip on interrupt request

GTF 6004 Get interrupt flags

RTF 6005 Restore interrupt flags

SGT 6006 Skip on greater than flag

CAF 6007 Clear all flags

Sequence

b b e e b L L

Mnemonic Code Operation
Keyboard/Reader (1 cycle)

KSF 6031 Skip on keyhoard/reader flag

KCC 6032 Clear keyboard/reader flag and AC:
set reader run

KRS 6034 Read keyvhoard/reader buffer (static)

KRB 6036 Clear AC, read kevhoard buffer

(dynamic), clear keyboard flags

KCF 6030 Clear keyhoard/reader

KIE 6035 AC 11 to keyboard/reader interrupt
enable F.F,

Teleprinter/Punch (1 cycle)}

TSF 6041 Skip on teleprinter/punch flag
TCF 6042 Clear teleprinter/punch flag

TPC 6044 Load teleprinter/punch and print

TLS 6046 Load teleprinter/punch, print, and clear
teleprinter/punch flag

TFL 6040 Set teleprinter/punch flag

TSK 6045 Skip on printer or keyboard flag

Line Printer (1 cycle)

LSF 6661 Skip on character flag
LCF 6662 Clear character flag

LSE 6663 Skip on error

LPC 6664 Load printer buffer; print on full buffer or
control character

LIE 6665 Set program interrupt flag

LLS 6666 Clear line printer flag, load character
and print

LIF 6667 Clear program interrupt flag

Cassette (1 cycle}

KCLR 6700 Clear all
KSDR 6701 Skip on data flag

KSEN 6702 Skip on error

KSBF 6703 Skip on ready flag

KLSA 6704 Load status A from AC 4-11, clear
AC, load 8-bit complement of
status A

KSAF 6705 Skip on any flag or error

KGOA 6706 Assert the contents of status A,

transfer data if read or write
XRSB €707 Read status B into AC 4-11

Mnemonic Code Operation

Memory Extension Control, Type MCB/E (1 cycle)

CDF 62N1 Change to data field N

CIF 62N2 Change to instruction field N

RDF 6214 Read data field

RIF 6224 Read instruction field

RIB 6234 Read interrupt buffer

RMF 6244 Restore memory field

CDI 62N3 Change to data field and instruction field N

PSEUDO-OFPERATORS

The following is a summary of the PALC assembler pseudo-operators and
a brief description of their functions. Detailed information
concerning these pseudo=-ops is contained in Chapter 5.

DECIMAL = Causes all following numbers to be interpreted as

decimal,

QCTAL - Causes all following numbers to be interpreted as
octal,

FIELD - Causes a field setting.

I ~ Represents indirect addressing.

Z - Denotes a page zero reference,

EXPUNGE - Deletes the entire permanent symbol table,

FIXTAB = Appends presently defined symbols to the permanent
symbol table,

PAGE - Resets the location counter to the next page.

XLIST - Suppresses listing while continuing assembly; a
second XLIST continues listing.

IFDEF - 1If the symbol is defined, the code within brackets
is assembled.

IFNDEF - If the gsymbol is not defined, the c¢ode within
brackets is not assembled.

IFZERO - If the expression is zero, the code within brackets
is assembled.

IFNZRO - If the expression is not zero, the code within

brackets 1is not assembled,
FIXMRI ~ Defines a memory reference instruction.

ENPUNCH = Resumes binary output after NOPUNCH,.

NOPUNCH - Continues assembling code but stops binrary output.

ZBLOCK - Reserves words of memory.

EJECT - Causes the listing to jump to the top of the next
page.

TEXT « Allows a string of text characters to be entered.

APPENDIX D
SYSTEM DEMONSTRATION RUN

The following example run, in which the user creates a binary and
listing file from an ASCII source file, illustrates a typical use of
the CAPS-8 System. The machine output is coded by letters in the left
margin which correspond to the textual explanations found following
the run,

© <DA Qls@4s7 3

P!
A < 31784773
FILE BIN
MATH »DAT 12717772 V2

w oeZ 1

s PALC

-InNePdl FILES
*21TEST.rAL

*

B < -BINAKY FILE

*

=LIsi TO

*Lrj

Js STAHRT

. MS L26d +ipd 1l

r KCLR#6700 PALC=Y1 D1/04/TS PAGE 1

6700 KCLR®&7Q@
6701 KSDRseTR1
6702 KEBENNRETR2
6T03 KSBF=R7R3
6TRY KLSAIETRY
6705 KSBaFse7gS
6706 KGODA®ETDS
6TET KRSB®&TQY
Tee2 BSWsTpd2

3602 LOC=3e62

4qg@ »d490¢

c us 5
P4REE 1POP START, TAD nﬁg/
@aPe1 1206 CRCCHK, TAD L2690

Bu2p2 67¢4 KLSA
g4@@3 HT06 KGDA
e4Qpd 673 KSBF

#4@05 S2@e4 RDCOD, JMP =i
paeeR 7264 L2610, CML STA RAL

O

U B 0O0

D

{

Ug

QuRa? QYoo
BdR1d Ta10Q
gap1y 3211
pap1e 3ele
RaE13 12e5
p4dia RTD4
241> bT06
fuppis &TVI1
paatT S216
Bpaaed TR0e
?4BR1 7430
pugee L1elds
pape3d Tiee
Bap2d 3636
rapas T420
papes 223k
Paprl? 2235
PQud3@ 5K2tS
Pupiy T34n
pupleé TG
RUEZ3I 32385
RUR3G S2pl
PaP3s 77T
Q4uih 3557
PUg3IT TT30
KCLREHTEY
CRUCHE 4@l
KhT U445
LGG kL2
LuopP 47 s
L2&R 4306
M5 P 437
PTR 405k
RLEGD 4005
STawT 40p0
10

C

= EDEI

LOGP,

KNT,
FTKR,
M5,

s
N
SKP CLa
Dca

0Ca I PTR
TAD RDLOD

KLSA
KGDA
KSDR

/AOAD INTO 3TA. REG, A

JMP ,=19]/WAIT FOR DATA FLAG

BSw
SIL

TAD I PTR

CHM. BS5k

DCA I PTR

SNL
ISZ PTh
ISZ KNT

JMP L OOP

$TA4 LLL RTL

BSw
DCA KNT

JMP CRCCHK

1137
LOL=23
=5

%

*INPJT FILE-2 :TEST+PAL

#QJTEUT FILE=-1:TEST <AL

PaLLwy1

wl/Bas?3

PAGE 1=

({
[

{;. "
{ .

STARTs TAD Fidd

«5
TARTs TAD MHA53

KDNSEN

!i:‘ &‘ nﬂ

KL&A ZLOAD INTO 5TA. REG. A

JMP e =1 /WALIT FOR DATA FLAG

#51"L
Jvr »=1 /WAIT FOR DATA FLAG

2E

st PALC/N

-INPUT FILES
*1 1 [EST«PAL
X

-BINAnY FILE
FRITESTBIN
~LISI 1D
AiTY

BINAAY FILE ON JNIT 2

HEINARY FILE CLOSED
CRUCCHK 464l
KNT 4A35
LoG 3042
LooP 415
L2 64 4996
Mo 437
PTR ade
RPCOD 4@G5
START 49#i

20
1C
2DEL 23TEST.rAL

The Keyboard Monitor is loaded and the DAte command is used to
indicate the current date. The user regquests a directory
listing of cassette drive 1l; he decides to zero the directory,
therebhy deleting all files present on the cassette,

PALC is called from the System Cassette. The input file,
TEST.PAL, is stored on cassette drive 2. The user decides to
specify as output only a listing on the line printer, Two
errors are flagged by the agsembler and printed on the console
terminal during its second pass.

The listing is printed on the line printer. The user then
marks this listing with appropriate corrections and insertions,

PALC prints a 4+C; the user makes sure that the System Cassette
is still mounted on drive 0 and then types a +C to cause
control to return to the Monitor.

The Editor is next called from the System Cassette so that the
errors in the file TEST.PAL may be corrected. The input is
again drive 2, and the output file will be sent +to the
previpusly zeroed cassette on drive 1,

The R command brings in the first page of text and the
intra-buffer search 1is used to find the first error. This
misspelling is corrected wusing the single character search
command and the rubout character.

The next mistake occurs 7 lines further in the 1listing; the
incorrect character is found and corrected. The line is also
listed to make sure the correction was made properly.

The user inserts a comment in the 5th line forward from this
line by skipping ahead 5 lines, searching for the A, and then
adding the comment to the line.

The intra-buffer search is used to locate the next correction;
a tab is inserted between the 1 and the tab already present.

The file is closed.

The user calls PALC again, specifying the edited file on drive
1l as the input. The /N option is used to obtain only a listing
of the symbol table; the binary file is ocutput to drive 2, and
the symbol table is listed on the console terminal.

After assembly, PALC prints 1C and waits while the user makes
sure the System Cassette is mounted on drive 0. He then types
+C and control returns to the Monitor. The user deletes the
first input £ile (the uncorrected TEST.PAL} from the cassette
on drive 2 to complete his session,

D-4

APPENDIX E
MONITOR SERVICES

Included in this Appendix is information the user needs if he intends
to create files using the PAL machine lanquage or reference gystem
device handlers,

E.l MONITOR MEMORY MAP

The CAPS=-8 Keyboard Moniter occupies the following memory locations;
if the wuser's program does not overwrite these areas of memory, the
routines they contain will be available for wuse from within his
program and the Monitor may be restarted after execution. (Section
E.2 provides more information concerning these routines.)

Table E-1 Monitor Memory Map

Address Contents
FIELD O
7400 LPT and Conscle Terminal Handlers
7600 Bootstrap, KBD Handler, Interrupt Routine
FIELD 1
5200-6200 Keyboard Monitor and Commands
6200 WAIT and part of Cassette HANDLER
6400 CLOSE and ENTER
6600 Cassette HANDLER
7000 LOOKUP
7200 UTIL and part of Cassette HANDLER
7400 Binary Loader
7600 Buffer

E.2 MONITOR SERVICE UTILITY SUBROUTINES
The user may direct his program to one of the following utility

subroutines providing the routine has not been c¢verwritten or
otherwise destroyed.

Table E-2 Utility Subroutines and Locatiors

Address Name Location Service

LPOCHR 07400 This routine is wused to print a
character on the line printer, The
calling sequence is:

Table E=~2 Utility Subroutines and Locations {Cont'd)

Address Name

Location

Service

TTOCHR

LPPUTP

LPGETP

LPCHCT

ECHO

TTSIZ

TTPUTP

TTGETP

07402

07404

07405

07406

07407

07410

07411

07412

CDF (current field)
CIF 0O

TAD character

JMS I (LPOCHR

The character in bits 5=11 of the &aC
is added to the line printer ring
buffer to be printed,

This routine is used to print a
character on the console terminal.
The calling sequence is:

CDF ({(current field)
CIF O

TAD character

JMS I (TTOCHR

The character in bits 5-11 of the AC
is added to the teleprinter ring
buffer to be printed. (The character
will not print if ECHO is off at the
time, but can be designated as a
"must print" character by turning AC
bit 3 on. This causes the character
to force ECHO on.)

This address contains the next free
location in the line printer buffer.

LPGETF contains the previous location
which was output in 1line printer
buffer (never a pointer}.

This location contains the number of
line printer interrupts vyet to be
expected.

If this address contains =1, ECHO is
off (no ECHO); if it is set to 0,
ECHO is on.

This address contains the length of
the teleprinter ring buffer (number
of characters it can hold).

TTPUTP contains the next free
location in the teleprinter output
buffer,.

This address contains the last
location which was output in the
teleprinter buffer {(never a pointer},

Table E-2 Utility Subroutines and Locations {Cont'd)

Address Name

Location

Service

TTCHCT

LPSYZ

MONRES

KBDFLG

KBDIN

BREAK

CTRLCJ

07413

07414

07415

07600

07601

07602

07603

07604

TTCHCT contains the nunber of
teleprinter interrupts yet to be
expected,

This location contains one less than
the 1length of the line printer ring
buffer (number of charactsrs it can
hold <1}.

MONRES is the 1location in field 0
which can be branched to in order to
restart the Keyboard Monitor in
memory (assuming the Keyboard Monitor
has not been destroyed). Control
jumps from this location to the
routine MON,

Branching to this location causes a
complete rebootstrap of the Keyboard
Monitor from the System Cassette on
drive O. If an I/0 error occurs or
if the cassette on drive 0 does not
contain the file MONTOR.BIN, the
system waits for the user to mount a
good System Cassette; typing a CTRL/C
will then rebootstrap.

If this location contains a non-zero
number, it signifies that a character
(other than CTRL/O or BREAK) was
typed on the keyboard and has not yet
been read., It is lost 1if a second
character gets typed before the
previous one is read.

This location contains the last
character typaed on the keyboard,
(Here BREAK and CTRL/0 do count.,)

This location contains a 1 if a BREAK
has not been used; 0 if it has.

If this location is 0, then whenever
CTRL/C is typed, the Monitor will
branch to 07600 and bootstrap {after
the current cassette operation
finishes). If not 0, them when the
current cassette operation finishes,
control is transferred (with
interrupts on) to this location in
field 0, BSet this to point to MONRES
if the Keyboard Monitor has not bheen
destroyed,

Table E-2

Utility subroutines and Locations (Cont'd)

Address Name

Location

Service

KBDCHR

DISMIS

INTRPT

LPBUFR

TTBUFR

MONSTART

MON

WAIT

07605

07626

07645

07657

07731

07734

15200

15201

15400

16200

Same as 07600,

This youtine reads a character from
the keyboard. It waits for KBDFLG to
be non=zerc, then zerces it and
returns the contents of KBDIN in the
AC., The calling sequence is:

CDF (current)
CIF O
JMS I (KBDCHR

The system branches to this location
to dismiss an interrupt,

The interrupt routine begins at this
address,

LPBUFR is the start of the default
line printer ring buffer {(initially
of length 2).

TTBUFR is the start of the default
teleprinter ring buffer (initially of
length 3D}).

Branching to this location starts the
Monitor, assuming that the entire
Monitor is still in memory. The
routine waits for TTY and LPT then
resets buffers to defaults and
empties them. Sets CTRLCT to point
to MONRES., Sets ECHO on and sets
BREAK to 1. HNotes cassettes as not
being in use.

This routine restarts the Monitor but
does not do any of above,

Starting at this location also
restarts the Monitor and reasets
locations that may be in a temporary
state if the Monitor has been stopped
(e.q., by hitting STOP) prematurely.

This routine waits for the last
cassette operation {if there was cne}
to complete. The calling sequence
iss

Table E-2 Utility Subroutines and Locations (Cont'd)

Address Name

Location

Service

CINRUSE

BSTATE

CLOSE

BACK

ENTER

16273

16274

16400

16402

16404

CDF (current}
CIF 10

JMS I (WAIT
<error returns:
<normal return:>

If an error return is taken, bit @0
may be on and bits 4-11 will contain
the contents of status register B at
the time of error, This routine
should be called sometime after every
call to HANDLER.

If this location contains a 0,
cassettes are ready; 1 means
cassettes are in use; -1 means
cassettes had an error in a previous
operation.

This locatien contains the status of
register B at termination of cassette
operation.

Calling this subroutine terminates an
output file and writes a new sentinel

file at the end of the cassette. The
calling sequence is:

TAD (UNIT
CDF (current field)
CIF 10

JMS I {CLOSE
<aerror return:>
<normal return>

The error return is taken only if an
end-of-tape is encountered before the
sentinel file is successfully
written.

This routine positions the cassette
so that the header record of the
current file may be written over.
The calling sequence (field 1 only)
is:

JMs I {BACK
<arror returns
<normal return>

Calling this subroutine opens a new
file on a cassette. The calling
sequence is:

Table E~2 Utility Subroutines and Locations (Cont'd)

Address Name Location Service
TAD (UNIT
CDF (current field)
CIF 10
JMS I {ENTER
<error return>
<normal return>
where UNIT is the cassette unit drive
number, Before making this c¢all, the
user must set up the new filename in
an in~core header record Kknown as the
SINCH. ENTER automatically puts the
date and record size into the SINCH
for the user., (The SINCH format is
described in Section E.4). The
INCH is destroyed,
HANDLER 16600 This routine calls the system

cagsette handler which is resident
and will be used by all system
programs. The handler routine is
also available to any user who does
not load over it, Before calling
this handler, the wuser must ensure
that the cassette is correctly po-
sitioned, See also LOOKUP, ENTER,
and CLOSE, fThe calling sequence is:

CDF {current field)

CIF 10

TAD (UNIT

JMS I {HANDLER

ARGl (function control word)
ARG2 (buffer address}

<error returns>

<normal return>

The unit number is left in the AC,
Only bits 8-1) are used {units 0-17
octal}. However, to specify unit 0,
at least one other bit (of bits 0-7)
must be on., It is more convenient,
therefore, to leave the unit number
as a character in the AC (0-9 would
be 60~71}. A real 12<bit 0 in the AC
means use the previous unit. (The
initial unit is 0.)

The function control word has the
following form:

Bit Q: 0 means read

1 means write
Bits 6-8: field of buffer
Other Lits are ignecred.

Table E~2 Utility Subroutines and Lcoations (Cont'd)

Address Name

Location

Service

BSIZE

LOOKUP

17000

17002

The length of the record (in 8-bit
bytes) mast have been previously
stored in location BSIZE. The
specified record size must be between
1 and 377. LOQKUP and ENTER return
with BISZE set to 200 (octal), the
usual record size.

If an error return is madz, the AC
bits 4-11 specify the contents of
status register B when the error

occurred. These bits are summarized
below:

bit 4: CRC/block error

bit 5: timing error

bit 6: EOQOT/BOT

bit 7: EOF

bit 8: drive empty

bit 9: rewind

bit 10: write lock ocun:
bit 11t ready

Bit ¢ of the AC will be a 1 if the
error occurred on the previous
handler call as opposed to the
current handler call. This is
because the handler will wait (by
calling WAIT) if it is called while
it is already in use. The user can
manually wait for the cassette
operation to be completed by calling
WAIT. If an error occurs, bit 0 of
the AC will always be on in this
case,

The user may check to see if the
handler 1is in use without waiting by
interrogating the location CINUSE.
Non~zero means that the handler is in
use. Two successive calls to HANDLER
should not be made without an
intervening call to WAIT.

This location contains the current
record size,

Calling this subroutine positions a
cassette at a specified file to be
read. The calling sequence is:

Table E-2 Utility Subroutines and Locations (Cont'd)

Address Name Location Service

TAD (UNIT

CDF FROMFLD

CIF 10

JMS I (LOOKUP

CDF (filenamefld)
ptr to filename
<Brror return:>
<not found return:
<found return:

UNIT represents the cassette unit
drive number, The header is put in
the INCH. The filename consists of
11 consecutive ASCII characters.

UTIL 17200 This routine allows the user to
specify that a utility operation be
performed. The user must be famil-
iar with the hardware specifications
as described in the TU60 CASSETTE
TAPE TRANSPORT MAINTENANCE MANUAL
{DEC-00-TU60-DA) to understand what
these operations do and what
conditions cause errors. The calling
sequence is:

CDF n

CIF 10

TAD (UNIT

JMS I {(UTIL
utility code
<arror return:>
<normal return>

The following are legal utility
codes; all other codes are illegal,

10 rewind

30 backspace file gap
40 write file gap

50 backspace block gap
70 skip to file gap

OPT1 17440 Switch option characters (e.q., /3A)
OPT2 17401 gstored as 36 bits for A-Z, 0-9 as
OPT3 17402 shown in diagram in Figure E-~1,

Table E-2 Utility Subroutines and Locations (Cont'd)

Address Name Location Service

ot |als|clolel|ele|nlt]s x|l

OPTZ IMIN[O|P|QIR}SIT|U|V WX

OPE3 | Y [Z o |1 |2|3|4|5]6|7|8]|¢9

Figure E=-1 Switch Option Characters

SINCH 17403 See ENTER.
DATE 17531~ These locations contain 8 characters
17540 representing the date (e.q.,

01/22/73).

INCH 17600 See LOOKUP,

E.3 RING BUFFERS

Ring buffers must be located in upper core (4000-7777) of £field O.
They consist of one or more buffer segments, each one of which
consists of two or more consecutive locations (the last one pointing
to the next segment). The last segment points to the first one, Ring
buffers can be changed by System Programs.

- [P — e m—

. y I

Figure E~2 Ring Buffers

E-9

E.3.1 Modifying the Ring Buffers

The initial ring buffer supplied@ by the Monitor consists of one buffer
segment of length LPSIZE (TTSIZE)} not counting the pointer. The first
location is called LPBUFR {TTBUFR} and the last 1location is called
LPBFND (TTBFND). The wvalue LPSIZE-1 (TTSIZE} is stored in the
location LPSIZ (TTSIZ). The buffer is initially empty. The next
location free in the buffer is pointed to by LPPUTP (TTPUTP) and the
previous location which has already been output 1is known as LPGETP
(TTGETP). Both these locations point only to positive words, never to
negative pointers, LPCHCT (TTCHCT) is the ones complement of the
number of characters left in the buffer to be output if I/0 is still
in progress. (Specifically, it is the number of flags which have yet
to come up.) LPCHCT (TTCHCT) is zero (0) if there is no output in
progress,

To enlarge the ring buffer, wait until LPCHCT (TTCHCT) is zero. Then
gset LPBFND (TTBFND) to point to the start of the buffer and have the
end of the buffer point to LPBUFR (TTBUFR). Change LPSIZ (TTSIZ) to
be the length of the buffer {length =1 in case of LPSIZ) not counting
pointer words, Interrupts may be on while this is done providing no
LPT (TTY} I/0 is initiated.

E.4 HEADER RECORD FILE STRUCTURE
All files the user creates must begin with a header record (40 octal
bytes 1long), followed by 200 octal byte long records. The structure
of a header record is as follows:

Table E-3 Header Record Structure

Bytes {octal) Description

1-6 Filename; may consist of any alphabetic character
or digit and is padded with spaces on the right.

7-11 Filename extension; see Table 2«1 for recommended
extension names.

12 File type: maintained by the system for its
convenience and for standard compatibility., File
types are:

1 ASCII file
2 Standard DEC Binary File
12 Bad file (Specified for all

deleted files)

Refer to Section 2.2,1 for an explanation of
these file types.

1314 File record length; always has the value 0,200
{i.e., 200) for compatability with standards.

15 File sequence number (not used).

Table E-3 Header Record Structure (Cont'd)

Bytes (octal)

Description

16
17-24

25

26-40

Header continuation byte; always 0.

ASCII date stored as dd mm vy, or 6 cpaces if no
date was specified when the file was saved. This
is the creation date of the file.

File version number. New files are wversion 0 and
are automatically incremented by the CAPS-8
EDITOR.

Not used,

E.5 CAPS=-8 BOOTSTRAPS

The CAPS-8 Hardware Bootstrap is used to load the Cassette Keyboard
Monitor into memory. This bootstrap is stored in the computer in
read-only=-memory so that it is always available for use. Pressing the
SW switch on the computer console causes this bootstrap to be
executed; it calls the program C2BOOT.BIN intc memory from the System
Cassette. The CAPS=-8 Hardware Bootstrap is comprised of the following
instructions, included here for the user's information:

PLASBETTE SYSTEM oOUTITRAY Fapl=v1 @1/04/73 PAGE)
FCANDFTTE SYSTEM RGOTSTRAP
/ COPYRIGBHMY 1072
/ LlulTan enUIFMENT CORPURKATION
/ MAYNAWL, MASS, ©®1754
/ Bh,
FSTAUTANG LOCATION (NORMALLY)S YL
FSTARTING LDCATION #0OR D3/8: 117
el KCLR=RT A
=71 KSusspTint
olTid REpMERIHL
eful LEHF=hTIG3
eteu ALSAZ6TY
ATwS nSaAFsRTNS
aTun KG0DAZR B
b7y T KHSR=RIM]
Tlufd oSasTié /PIP=B/F, =8/F, AND =8/M DNLY
Tk LOC=Shee JLOCATION WHERE SECQONDARY
/BUOOTSTRAP KREALLY GETS LOADED
IFDEF 058 <a3737:0LL>
disy) rd 3P JINITIALIZE PULSE CLEARS THE LINK
FaRe@d 1P37 START, TAD Mup /CHANGE REAL CRC CODE () TO
IREWINLD <> [(BIN]
paEny 1eds CRLOCRK, TAD 260 /L0DA0 READ) CRC CODE INTD STATUS
/HEGISTER A [JMP T START)
Mg [R nl54 JFIRST TIME THROUGH, (INK MUST
/ukE 1 RERE
Paret BTk KGUA AINITIATE ThHE DPERATION (READ
JCRC UR REWIND UR FRwWD FILE GAP)
kN w753 KSBF JREADY?T
PAPES [SPve RDOCOU, JMP =} SN, WATT
CdTPe TAe4 Pk, CML STa RAL JSFT L=1 ANV ACs A HALT (7776}
eurnaT LEToe KSEN JANY ERRORS?
2aviig FeR1KW Sk (CLa #M0
agntl iz pDCa /HALT DN ANY ERRQR EXCEPT FOR
JREWIND OR FRwD FILE GAP
paAte 4636 WCA 1 FTw FCAN'T ALLOW "TAD I PTR® LATER
/TD AFFECT LINK
Palild 1feh TaD WODCOD /GET CODE FUOR READ (@)
paat e 67aa kL&A JLOAD INTD STATUS REGISTER A

PAB1D aThhA LOOP, KGOA /FIRST TIME STORES 173 INTO MEMODRY
/(B=81T COMPLIMENT DF ROCOD)
/OTHER TIMES KREADS ONE 6=BIT
/BYTE OF PAIR

Aagle bTHI KSOR SNEw DATA WORD KEADY?

G417 S€1- JHMP =1 /NG, WALT

daven 122 HSwW /MOVE b=BLIT BYTE T3 H,0. AC

Aulped 74358 874 /WHICH 6=B1T BYTE JF THME PAIR?

nauP2 1h36 Talb 1 PTR /éND, S50 ADD IN 1ST BYTE

purey Joze CML BSw FSWAP BACK AGAIN, SET LINK TO

FCASSETIE SYSTEM BNUTSTRAP PalLC=Vi bl1s04/73 PAGE 1~}
AINDICATE NEXT HYTE

nLh g d ir3e6 uCa I KTk /STORE BACK INTO MEMORY

Mugesy Fapn SNL FARE wE DONE LOADING BOTH &#«B1T
/BYTEST?

ICFTRLI] eAAR 182 PTR /YES, 50 POINT TO NEXT MEMORY WURD

fazel 2P3% I8¢ ANT /HUMP COUNTER

AUPEP S0 1S JMP LOQUF /REITERATE

musdl f3ae sTa CLL RTL

N TP B~ R - HSw /RET AC=TSTT

BLrds $P28% uha mKT JBET COUNT TO ALLOw WEADING A
/200 BYTE RELQRD

PaPta Hee JMP CRCCHR /Y CHECK ThmE CRC

AYNES 7Ts¢ T, 1787 /0NES COMPLIMENT OF NUMBEKR OF
/BYTES TO LODAQD

JAdd R 3557 PTwR, LAC=¢3 FMEMORY (QCATION TO BEGIN LOAD AT

PaPrdt T13 MY, wRp FCLA SPA SIL

FTHTD SUUTINE BAMARY LUAUS HBINARY FILES INTO MEMURY,
AIT tpuINS BY LDa0ING & KECORKD OF SIZE 43,

ATrmEr CANT IMUES YO LOAL BUCCESSIVE ReECOWDE EACH OF 512
/e,

JTnls PPULESS COMTINGES UNTIL IT DESTROYS ITSELF,
SILOGEATTANS gt AND 4131 ARE REPLACED RY JMP I(BTN)Y
FRy HE SELONARY BOCTSTRAP,

FTwF FlpsT MEMORY LOCATION BEFDRE 4 NEw CALSSETTE RECORD
IS8 mean In I8 LUAGED wlTH A RANODOM VALUE ([173).

£ LLESS L VE WORDS akce LQADED WITH THE 12=-51T QUANTITY,
Jlvasn, wHFRE & aAND 4 ARE SUCLCESSIVE b~8]1T 9Y¥TES FROM
JTrE CASSETTE wELDIRD,

M ADTNGLESS WORDS GET LUADEL JF ThHE CASSETTE CONTAINS
FE=LT BYTES AS (CaN [AMD DUES) HAPPEN wWHEN *LOADRINGT
AYHE REATEwy AND whkn “LOARINGT THE ORIGIM AT THE
JREGINNISNG UOF THE wECOWD,

b

FCASSETTE SYSTEM BOUTSTRAFP #all=vl @1/04/73 PAGE -2

CRCCHK 4@l
KNT 4m3s
LoC Iepe
LGDP 4%15
Lebd 49%6
Mo @ amzy
PTR 4P3n
RDCOD 45
START 4du

C2BOOT,.BIN is the bootstrap which loads
memory. it

/oA CUNJARY RLUNFSTHRAP

Ahnng
FAR03
ARy
thi5N9
MELYNY

AR AT
A8514
Asm1t
Himfi2
ndm1 3
ERY.B I
Aia15
Mikh] kA
AxaiT
iy
LT |
MEADA
M4mp3
Aingy
fin2s
ALY
Ak T
AR LA
BELE B
L= T
Nim33
R R T
3635
A Sk Bh
Ak 47
ASALR
Handl
Nianag
N394l
Ashay
AikaS
A3hahk

the Keyboard Monitor into

is stored on the System Cassette and is comprised of the
following instructions:

Fiding
LX)
&T 1]
ate3
67 Au
alich
nfal

L LI

frud
54917
1453
2501
3385

FAuu
407
4z4%
flde
fl1.¢
fa4y
9235
is1A
2iaT
IAPS0]
T30 0w
Tiasd
$3usp
4ty s
130k
23n7
S5k
fdnnr
3745
23uh
ARl
a7
T8¢y
Siu2
7140m
ween
Tane
hwend
AT
2317
3214
1311

/
/
/
/

HI"'J[
ITsFLD,
LT&DHG,

BTMLUR,

FUuaL

NP,

FLD,

CHEY,

HPEC

GETRYT,

SELONDARY

Q0TS M AR

Ha| Cmvl PAGE

COPYRIumI 1%9%/¢
GINTITAL rRUIPMENT CORPURATION
MAFMNARG, MaSh, klfS4

:“‘.Ht
LRI R
SDLELY IS
rAFERIC]
MEHFeERTIMA
wLNASRh]AY
KiiJAshyo
Kb ndzh fi]
HAPLUNCH
xibite
EHdpiiNGH

Sia

LA GRENT
TAL LPF®
BCa PFLL
LA LR

5Ta

NCa NMRGSw
JMS LETHYT
dSw

CLL KTRW
S4L

JMP SPEC
S5PA
182
NOP
WAL
CLL kAL

NBCa TEM

JME GETAYT
Taf &M

ISZ ORESw
JMP 1Ts0kKG
ML T

GCa I ORG
182 CRG

CUF @

JMP BINL UK
GMA-

JMP MON
KT

AND NTRAR
LY

JMP ITSFLD
4

-
a
L

FASSLMES OHTGIN ALwWAYS APPEARS
FAFTER FIELD SETTING

AB1T dst
A1t dzp (Tw0 wORD CUOMMAND)
F18 ORIGIN

FCOMBINE

FORTGIN

182 GRANT
JME ROBYTE
TaD *260

E-15

FoReCLigdny WOl hapy Pal,Layt HAGE 1=

TInut ~i AlL v A

N TN S wGia

S gmm WPy [X5k

ram A BpNg J P =1
ranhy 7T SRR

TR Ju FISTE xtrra
R A | S7a Ll w

SRy fae HL T

thenl e hal s FImB1
B Y UL RETTS WTERT
Chme 144 g™y mELET
(R 14 Iay xe i
L - ST

SAnmd Rk Jrp 1 Kl e
Chmmy 142 IR ST, 1AL xTwiny
Tamambk &% nCa LA
Pamaf 141 1ap xep
DRI 1 o f i LS A

RO NN | nifih LTIOE]

R LTV

Cami s a2lS J v =1
Agmig F N Foant R, w14

favit w7 - Sk

camla hAFN Jup -1
FamTi mauh Jhp LETEY T
AT AT B LALTICA 3Tt =, ALOCATION 37P)1 5 SKIPPED HY

JPRIMARY LGADER

IR N

BT ot Vi
T S
A2 LR S0, e LIe 1
waAIUA R JieE] «*1
mala Bl 204
VAT ST Uk, P
AAT Tra, I
AW IaN DRGS0, N
CATEY Leea re 29
PRI1L 0 L x2el, 2hit
N B LA AT, 2
RN irsr xitrii, 1737
#sT1d aih xanT, PR
AZTLIS wlsn AP, e gn

DR M ang? wdad, aupg
NA5T17T Wil Grmt, i, ¥
ARTAn 1T rd x¥ITa, 1i74a
372 1777 Flvsi, =1
BNy fim ;A ATata, Team

#3724 vraa wESERET, 4 /85c¢T P PRIMARY BOOTSTRAP
/FOR HEUSE

AZTza 1313 Tat 1754

w3T AN 4 nea 1 XunT

/ SECONUARY BUNTSTRAP

Hi7en
w3TrP?
#3730
13734
3732
PRT3S
#alrg
AR
mand

3715
1552
47454
S5f2%
5211
411
Aitid
Ihc2
A

x3211,
X481l

nCa I

LHRTH

Tap x%°1t
PCa 1 »4411
JMP I ARESED

1211
a4l11)
2B OCK
Bln
JmE 1

a

O AECONDANY BUDYSIixAP

IS
pItEDK
CurF
FIRST
FLo

F oL
LelpyYd
Gt
ITSFLG
TTSOIwis
[X33
AL

M lEaT
PPt
R
Mwiss
ArYTE
e T
SeEi
TE
LR
vp] -
it
Nop b
xQ
5411
¥yrsg
Yull
[AW
vftat
X7

St
Sbuf
3553
371
3ni
a1
LR
§F17
SRy
Ya.im
At
stve
innb
Stveis
L]
LYV
4k ta
$723
L]
5Tais
571
LR
iria
$f1%
s5fie
3732
LA
5754
LR
5714
slen

awag-,

1

PaLC=v]

/A "DCA

PAGE (=2

FOR LOCATION 4911

/MUST END LN QCTAL 00

Pall=v1

PAGLE 1=3

APPENDIX F
ASSEMBLY INSTRUCTIONS

CAPS-8 source programs are supplied on DECtape. These sources are
assenbled with PAL2 and copied to cassette with PIPC, To build the
CAPS5-8 system cassette with PIPC, the user must load the 05/8 cassette
handlers as described in USING AND LOADING YOUR NEW 05/8 CASSETTE
HANDLERS (DEC-358-UCASA-A-D). The following instructiors may be used
to assemble the sources, print source listings, and create the CAPS-§
system cassette on drive 0.

«ri PALB

*C2BOOT »TEMP<C2BOOT
oH CREF

*TE M-

eH PALS
*#NMONTOR » TEMP <CASMON
«i CREF

*[EMmr

«H PALE
*5YSCOP»TENF «SYSCOP
o CHEF

*TEMy

R FALE
*EDITC+TEMF<EDLIIC
ot CREF

*TENMP

« PALY

*FPALC»TEMP <PALC

«fi CHREF

* BNy

2 PALS
*CBASIC,TEMP <CBASIC/K
*LPTt<TEMP «L5

«R PIPC

*C5Ade«<s/L

*C5AR :C2BO0OT<C2BO0T /B
*CSAY tMONTOR<MONTOHR /B
*CSAD :SYSCOP<SYSCOP /B
*C5AP tEDITC<EDITC/B
*C5AP0 sFALC<PALC/B
*CSAB ICBASIC<CBASIC/B
*TTy:=<C5AQ1/L

INDEX

Addressing, BASIC, 6-51 Cassette
Alteration of text, 3-12 directory listing, 2-1
ALTMODE Key, file, 1-4
in BASIC, 6&-52 format, 1-4
in Editor, 3-7 hanéler, E-6
AND, Boolean, 5-15 mnemonic code, PALC, (=3
Angle brackets, left/right (<>} mounting/dismounting, 1-4, 1-5
Editor, 3-7 Cassette, BASIC, 6-1
PALC, 5-19 CHAIN statement, BASIZ, 6-33
ANORM subroutine, BASIC, 6=-47 Changing text, Editor, 3-12
Append g¢ommand, Editor, 3-9 Characters,
Arithmetic operators, BASIC, 6-4 ASCII, A-1
Arithmetic statement, BASIC, 6-11 CTRL, 2-4
Arrays, BASIC, 6-29 Editor special, 13-4
maximum number, 6-28 Monitor switch option, E-10
maximum size, 6-30 PALC, 5-5
ASCII character set, &A-1 PALC special, 5-17
ASCII format files, 2-1 Character searches, Editor, 3-16
Assembler output, PALC, 5-32 Character string search, Editor,
Assembly instructions, CAPS-8, F-1 3-15, 3-17, 3-19
Autoindexing, PALC, 5-23 CLOSE statement, BASIC, 6-15
Coding formats, BASIC, 6-44
BASIC language, 1-2, 6-1 Coding practices, PBL{Z, 5-32
arithmetic statements, 6&-1 conr, 7-1
calling, 6-2 additional technigues, 7-9
editing and control commands, 6-52 commands, 7-2 to 7-8
error messages, 6-57 command summary, 7-11
arror message summary, B-6 ERRORS, 7-9
example run, 6-8 features, 7-1
floating point package, 6-50 illegal characters, 7-8
functions summary, B-10 indirect references, 7-9
immediate mode, 6-6 interrupt program debugging, 7-9%
numbers, 6-2 octal dump, 7-9
statements, 6-10 operation and storage, 7-9
statement summary, B-8 programming dates, 7-10
symbol table, 6-59 storage requirements, 7-10
variables, 6-3 TTY I/0-FLAG, 7-9
BEGFIX subroutine, BASIC, 6-47 using, 7-2
Binary format files, 2-1 Colon (:), 3-7
Binary output, controlling PALC, Command format, Editor, 3-8
5-28 Command mode, Editor, 3-4
BEWD statement, BASIC, 6-51 Commands
Boolean AND, 5-15 BASIC, 6-6
Boolean inclusive OR, 5~15 Editor summary, B-3
Bootstraps, E-13 keyboard monitor summary, B-1
BOOT PROGRAM, 9-1 COMMAS statement, BASIC, 6-20
BOOT, 9-1 Comma used as format control
Legal Mnemonics, 9=-2 character, 6-17
Brackets, Commenting the program, BASIC, 6-10
angle {<>»}, 5-19 Comments, PALC, 5-7
square {[]), 2-4 Conditional assembly pseudo-operators,
BREAK command, BASIC, FALC, 5-28
Conditional delimiters, PALC, G5-19
Calling Conditional transfer, BASIC, 6-28,
BASIC, ©6-1 6-32
BEditor, 4-1 Console terminal outoHut, PALC, 5-2
PALC, 5-1 Ccontrel characters, BASIC, 6-17
System Copy, 4-1 Control commands, BASIC, 6-52
CAPS-8 Cassette, see cassette Controlling PALC binary ocutput, 5-28
Carriage return, 4-3 Conventions of systemn, 2-1

Corrections, Keyboard Monitor,
Creating run-time input files,
BASIC, 6&-25
CTRL/C
Editor, 4-3
BASIC command,
CTRL characters, 2-4
CTRL keys, Editor, 3-5,
CTRL/Q command, BASIC,
Current line counter, Editor,
Current location counter, PALC,

6-54
3=-7

3-%
5-10
DATA statement, BASIC, &—-12

Date command, 2-7

DECIMAL pseudo—-op, PALC, 5-24
Default device, PALC, 5-2

DEF statement, BASIC, 6-43

DElete command, Xeyboard Monitor,2-8
Deletion of page, Editor, 3-14
Deletion of text, 3-12, 3-13
Delimiters, PALC conditional, 5-11
Delimiting character, PALC, 5-6
Device, default, PALC, 5-2

Device handlers, 2-11

Devices, I/0, 2-2

DIM statement, BASIC, 6&-230

Direct assignment statement, PALC,

5-12
DIrectory command, 2-7
optiong, 2-8

Directory of system cassette, 2-1
Dismounting a cassette, 1-5

Editing and control commands, BASIC,

6- 52

Editor
calling, 3-1
character searches, 3-16
commands, 3-8, 3-12
command summary, B-3
demonstration run, 3-23
error messages, 3—-21, 3-22
error message summary, B-2

operating modes, 3-4

text collection, 3-15
EJECT pseudc-op, PALC, 5-30
End of file, PALC, 5-26
End of pass, PALC, 5-19
END statement, BASIC, 6-11
ENPUNCH pseudo-op, PALC, 5-28
Entering text strings, PALC, 5-27
Equal sign (=)}

BASIC, 6-6

Editor, 3-7
Erase {CTRL/U), Editor, 3-5
Erasing a program in memory, BASIC,

6-55

Errors, Keyboard Monitor leoading,2-3
Errors in Programming, BASIC, 6-59
Error recovery, Editor, 3-5
Error Messages,

BASIC, 6-57

summary, B-©

Editor, 3-21, 3-22
summary, B-2
Keyboard Monitor, 2-12
summary, B-1
PALC, 5-34
summary, B-~5
System copy, 4-3
summary, B-4
E-type notation, 6-2
Example programs, BASIC, 6-8
Expansion of text, Editor, 3-12
Exponential format, 6-2
Expressions, PALC, 5-14
EXPUNGE pseudo-cop, PALC, 5-29
Extended memory, PALC, 5-27
Extensions of filenames, 2-2

FAC function, BASIC, 6-47
FENTER statement, BASIC, 6-45
FEXT statement, BASIC, 6-45
FIELD pseudo-op, PALC, 5-25
Field of nesting loops, 6-28
File formats, 2-1

File gap, 1-4

File header record, 1-4
Filenames, 2-2

Files, multiple input, Editor,
Files, transferring individual,

3~-2

System Copy, 4-1
File types, E-11
FIX subroutine, BASIC, 6-47
FIXMRI pseudo—op, PALC, 5-29

FIXTAB pseudo—-op, PALC, 5-29
Floating=-Point format, 6-46
normalized, 6-47
Fleoating-peint package, 6-45,
FNA function, BASIC, 6-43
Form Feed
Editor, 3-5
PALC, 5-7
format control characters,
6=-17
Formats for BASIC numbers,
Formats of files, 2-1
FOR-NEXT loop, BASIC,
exiting from, 6-28
FOR statement, BASIC, 6-27
Function addresses, BASIC,
Function control word, E-6
Functions.

6-50

BASIC,
6-2

6-27

6—-45

BASIC, 6-37
summary, 8-10
Editor, 3-4
user coded BASIC, 6-44
FWD statement, BASIC, 6-51

GET functicn, BASIC, 6-41

Getting on-line, 2-1

GOSUB nesting, maximum level, 6-37
GOSUB statement, BASIC, &-35

GOTC statement, BASIC, 6-32

Hardware bootstrap (MI8-E), 1-1
Hardware components, 1-2.

IFDEF pseudo-op, PALC, 5-28

IF END# statement, BASIC, 6-34

IF GOTO statement, BASIC, 6-32

IFNDEF pseudo—op, PALC, 5-28

IFNZRO pseudo-op, PALC, 5-28

IF THEN statement, BASIC, 6-32

IFZERO pseudo-op, PALC, 5-28

Illegal symbolic addresses, PALC,
5-10

Immediate mode, BASIC, 6—6

Implementing a user—-coded function,
BASIC, 6-44

Incorporating subroutines with UUF,
BASIC, 6-46

Incremental value, BASIC, 6-27

Index in FOR statement, BASIC,6-27

Indirect addressing, PALC, 5-20,
5-24

Initial wvalue in FOR statement,
BASIC, 6-27

Input commands, Editor, 3-9

Input file extensicns, PALC, 5-1

Input files, creation of, BASIC,
6-25

Input specifications,
Editor, 3-2
PALC, 5-1
System Copy, 4-2
INPUT statement, BASIC, 6-14
INPUT# statement, BASIC, 6-16
Input/output devices, 2-2
Input/output statements, 6-12
Input/output transfer micro-
" instructions, PALC, 5-23
Insert command, Editor, 3-14
Instructions, PALC, 5-6, 5-30
Instruction set, BASIC, 6-50
Interactive programming language,
BASIC, 6-1

Integer number format, BASIC, 6-2

Inter-buffer character string
search, Editor, 3-19

Internal format, BASIC, 6-44

Internal symbol representation
for PALC, 5-13

Intra-buffer character string
search, Editor, 3-17

INT function, BASIC, 6-38

INT (x), integer function, BASIC,
6~38

I/0 designations, 2-5

10T microinstructions, PALC, C-2

Keyboard monitor, 1-1, 1-2
commands, 2-5
command summary, B-1
error messages, 2-12, B-1
locading and using, 2-3
memory map, E-1
services, E-1

Keyboard reader mnemonic ceode,

PALC, C-3
Keys, special Editor, 3-5, 3-6,
3~7

Labels, PALC, 5-6

Language, interactive programming,
{BASIC), 6-1

Leader—trailer tape, 1-3

Left angle bracket (<), Editor, 3-7

LET command, BASIC, 6-7

LET statement, BASIC, 6-11

Levels of nesting, maximum, 6-29

LINE FEED key, Editor, 3-6

Line printer listing, Editor, 3-11

Line Printer mnemonic code, PALC,
c-3

Line printer output, PALC, 5-3

Link generation and storage, PALC,
5-30

LIST and LPT command, BASIC, 6-54

LIST command, BASIC, 6-53

List commands, Editor, 3-1C

Listing a program, 3ASIC, 6-53

List of arrays, BASIC, 6-28

Literals, assigning PALC, 5-18

Load command, 2-7

Loading kevboard monitor, 2-=3

Local symbolic addrasses, PALC, 5-9

Loops, 6-27

LPT and RUN commands, BASIC, 6-54

LPT statement, BASIZ, 6~-21

Matrices, BASIC, 6-29

Maximum level of GOSUB nesting,
BAEIC, 6-37

Memcry extension control, PALC, C-4

Memory map, Monitor, E-1

Memory reference instructions, PALC,
5-20, C-1

Microinstructions, PALC, 5-21, C-1,
c-2

MIB-E hardware bootstrap, 1-1

Monitor, see Keyboard Monitor

Mounting a cassette, 1-5

Move text, Editor, 3-15

MQ microinstructicons, C-2

Multiple files, 2-6, 2-7

Editor input, 3-2

Multiple input cassettes, PALC, 5-3

Multiple statements, BASIC, 6-10

Multistatement lines, PALC 5-8

NAME command, BASIC, 6-56

Nested parentneses, BASIC &-5

Nesting, level of GOSUB, BASIC,
6-37

Nesting, Levels of, 6-28,

Nesting loops, 6-2F

Nesting procedures, 6-28

Nesting subroutines, 6-36

NEW statement, BASIC, 6-2

NEXT statement, BASIC, 6-27

NG COMMAS statement, BASIC, 6-20

NOPUNCE pseudo-op, PALC, 5-28
Normalized Floating-Point format,
BASIC, 6-47

NO RUBQUTS command, BASIC, 6-52
Numbers

in BASIC, 6-2

in PALC, 5-9

of statements, BASIC, 6-10
Numbers, version, 3-3

Octal pseudo—-op, PALC, 5-24
OLD statement, BASIC, 6-2
OPEN statement, BASIC, 6-15
Operands, PALC, 5-7
Operate microinstructions, PALC,
5-21, 5-22, Cc-1, C-2
Operating modes, Editor, 3-4
Operators,
BASIC arithmetic, 6-4
PALC, 5-14, 5-15
relational, 6-11
Options, PALC, 5-5
OR, Boolean inclusive, 5-15

Order of execution of BASIC state-

ments, &-10

OQutput commands, Editor, 3-10
Output file extensions, PALC, 5-2
Qutput file, Editor, 3-=3
Output specifications

Editor, 3-2

PALC, 5-2

System Copy, 4-2

Page deletion, 3-14

Page format, PALC, 5-29

PAGE n pseudo-op, PALC, 5-26
Page zerc addressing, PALC, 5-24

PALC (Program Assembly Language for

Cassette), 1-2
assembler output, 5-32
calling, 5-1
coding practices, 5-31
character set, 5-5
delimiting character, 5-6&

error codes and conditions, 5-33,

5-34
error message sSummary, B-5
format effectors, 5-7
instructions, 5-20

link generation and storage, 5-30

numbers, 5-9
options, 5-5
permanent symbel table, C-1
program preparation, 5-32
pseudc-operaters, 5-24
statements. 5-6
symbols, 5-9
Parentheses in BASIC, 6-5
Pass 1, PALC, 5-1, 5-3
Pass 2, PALC, 5-1, 5-3
Pass 3, PALC, 5-4

PAUSE pseudo—-op, PALC, 5-26

Permanent symbols, PALC, 5-9

Permanent symbol table, altering
PALC, 5-29

PRINT command, BASIC, 6-6

Print positions, BASIC, 6-40

PRINT statement, BASIC, 6-1l6

PRINT# statement, BASIC, 6-20

Print zones, 6-17

Priority of operations, BASIC
arithmetic, €-4

Programming errors, BASIC, 6-59

Program Assembly Language for
Cassette, see PALC

Program chaining, BASIC, 6-34

Program preparation, PALC, 5-32

Program storage, BASIC, 6-1

Pseudo operators, PALC, 5-24

summary, C-4
PUT function, BASIC, 6-42

Radix control, PALC, 5-24

Read command, Bditor, 3-10

Reader record file structure, E-11

READ statement, BASIC, 6-12

Real format, BASIC, 6-2

Record, file header, 1l-4

Relational operators, BASIC, 6-11

Relative addressing, BASIC, 6-51

REMARK statement, BASIC, 6-10

Renaming a program, BASIC, 6-56

RETURN key, Editor, 3=5

RETURN statement, BASIC, 6-35

Return to command mode, Editor, 3-5

Reserving memory, PALC, 5-27

Resetting location counter, PALC,
5-24¢

RESTORE statement, BASIC, 6-13

Rewind butten, 1-6

REwind command, 2-10

Right angle bracket (>), Editor, 3-~7

Ring buffers, E-10

RND({x) function, BASIC, §-=39

RUBOUT command, BASIC, 6-52

Rubout key, 2-3, 3-5

Run command, 2-6

RUN command, BASIC, 6-54

Running a BASIC preogram, 6-54

Run-time input file creation, BASIC,
6-25

Run-time output files, BASIC, 6-15

SAVE command, BASIC, 6-56

Saving a program, BASIC, &-=56

SCRATCH command, BASIC, 6-55

Search for character, Editor, 3-16

Search for character string, Editer,
2-13, 3-15, 3-17, 3-19

Semicolon used as BASIC format control
character, 6-17

Sentinel file, 1-4 TAB function, BASIC, 6-40

Service utility subroutines, Tabulation (CTRL/TAB), Editor, 3-7
Monitor, E-1 Tabulations, PALC, 5-7

SGN({x) function, BASIC, 6-38 Teleprinter/Punch mnemonic code,
SHIFT/O command, BASIC, €-52 PALC, C-3
Single character search, Editor,3-16 Terminal value in BASIC loop, 6-27
Sign bit, BASIC, 6-46 Terminating assembly, PALC, 5-34
Skip command, Editor, 3-15 Terminating string search, Editor,
Slash (/) symbol, Editor, 3-6 3-20
Software components, 1-2 Terminating the BASIC program, 6-11
Spaces, BASIC, 6-5 Text collection, Editor, 3-15
Special characters, PALC, 5-17 Text mode, Editor, 3-4
Specification options, 2-5 TEXT pseudo-op, PALC, 5-27
Square brackets ({}), 2-4 Text transfer commands, Editcr, 3-11
Statement numbers, BASIC, 6-10 Transfer of control statements, BASIC
Statement summary, BASIC, E-8 6=-31
Statements, PALC, 5-6 Transferring individual files,

direct assignment, 5-12 System Copy, 4-1
Statement terminators, PALC, 5-7 Transition between modes, Editor, 3-4
STEP value, BASIC, 6-27 TTY OUT statement, BASIC, 6-22
Stopping a run, BASIC, 6-54 TU60 dual cassette unit, 1-5

STOP statement, BASIC, 6-11
String search termination, Editor, Unconditional transfer, BASIC, 6-32

3=20 Underlining in examples, l-6
Subroutines, Monitor service User-coded functions, examples of
utility, E-1 BASIC, 6-47
Subroutines, BASIC, 6-35 User—-defined symbols, PALC, 5-9
Subscripted variables, BASIC, 6-29 Using cassette, BASIC, 6-1
Subscripts, BASIC, 6-30 Ugtility codes, E-9
Suppress listing, PALC, 5-27 UTILITY PROGRAM, 8-l
Switch option characters, E-10 error messages, 8-2, 8-3
Symbolic addresses illegal in options, 8-1
PALC, 5-10 UTIL, 8-1

Symbolic Editor, 1-2, 3-1
S¥mbolic instructions, PALC, 5-13 Variables, BASIC, 6~3

Symbelic operands, PALC, 5-13 subscripted, 6-29
Symbols, PALC, 5-9 Version command, 2-10
Symbol table, VYersion numbers, Editor, 3-3
BASIC, 6-59
PALC, 5-11 . Write protect tabs, 1-3
Syntax error, Editor, 3-22 Writing the program, BASIC, 6-47
System cassette, 1-4
directory, 2-1 XLIST pseudo-op, PALC, 5-27

System conventions, 2-1
System Copy {(SYSCOP)}, 1-2
calling, 4-2
error messages, 4-4
error message summary, B-4
example, 4-3
options, 4-2
System demonstration run, D-1
System pregrams, 2-1

Zero command, Keyboard Meonitor, 2-9
Zeroing output file, 4-2

Cassette Programming System Users Manual
DEC-BE-OCASA-B-D

READER'S COMMENTS
NOTE: This form is for document comments only. Problems
with software should be reported on a Software

Prol:lem Repcrt (5PR}) form {see the HOW TO OBTAIN
SOFTWARE INFORMATION page).

Did you find errors in this manual? If sc, specify by page,

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on asscciated system programs
reguired for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembhly language programmer
Higher-level language programmer
Cccasional programmer {experienced)
User with little programming experience

Student programmer

O00000

Non-programmer interested in computer concepts and capabilities

Name Date
Crganization
Street
City State Zip Cocde
or
Country

If you do not reguire a written reply, please check here. []

Fold Here

- Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NG POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
F, O, Box F
Maynard, Massachusetts 01754

HEOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Scftware Communications Group, located at corporate hz2adquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and sclutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi-
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P, O. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital'’s software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy

Paris, France Solna, Sweden

The Hague, Holland Geneva, Switzerland
Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Egquipment Corpeoration bigital Equipment Corporation
Software Distribution Center Software Distribution Center

146 Main Street 1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outgide of the United States, orders should be directed to the nearest
Digital Field Sales 0ffice or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex-

change center for user-written programs and technical application in=-

formation. A catalog of existing programs is available. The soclety

publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the

society and membership application forms, write to:

DECUS DECUS

Digital Egquipment Corporation Digital Equipment, S.A.
146 Main Street 81 Route de 1l'Aire
Maynard, Massachusetts 01754 1211 Geneva 26

Switzerland

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	9-01
	9-02
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	F-01
	F-02
	X-01
	X-02
	X-03
	X-04
	X-05
	_01
	_02
	_03

