processor
handbook

h

dlilglitall

DAGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard, Massa-
chusetts 01754, Telephone: (617)897-5111 —SALES AND SERVICE OFFICES: UNITED
STATES —ALABAMA, Huntsville = ARIZONA, Phoenix and Tucson « CALIFORMIA,
El Segundo, Los Angeles, Oakland, Ridgecrest, San Diego, San Francisco (Mountain
View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland Hills « COLORADO,
Englewood « CONNECTICUT, Fairfield and Meriden « DISTRICT OF COLUMBIA,
Washingten (Lanham, MD) = FLORIDA, Ft. Lauderdale and Orlando » GEORGIA,
Atlanta » HAWAIL Honolulu * ILLINOIS, Chicago (Rolling Meadows) - INDIANA,
Indianapolis = IOWA, Bettendorf » KENTUCKY, Louisville + LOUISIANA, New Or-
leans {Metairie) + MARYLAND, Odenton = MASSACHUSETTS, Marlborough, Wal-
tham and Westfield + MICHIGAN, Detroit (Farmington Hills) = MINNESOTA, Min-
neapolis = MI{SSOURI, Kansas City (Independence) and St. Louis = NEW HAMP-
SHIRE, Manchester * NEW JERSEY, Cherry Hill, Fairfield, Metuchen and Princeton
NEW MEXICO, Albuquerque + NEW YORK, Albany, Buffato {Cheektowaga), Long
Island {Huntington Station), Manhattan, Rochester and Syracuse * NORTH CARO-
LINA, Durham/Chapel Hill » OHIO, Cleveland {Euclid), Columbus and Dayton +
OKLAHOMA, Tulsa + OREGON, Eugene and Portland « PEMNSYLVANIA, Allentown,
Philadelphia {Bluebell) and Pittsburgh » SOUTH CAROLINA, Columbia « TENMNES-

SEE, Knoxville and Nashville « TEXAS, Austin, Dallas and Houston « UTAH, Salt

Lake City « VIRGINIA, Richmond + WASHINGTORN, Bellevue + WISCONSIN, Milwau-
kee {Brookfield) « INTERNATIONAL —ARGENTINA, Buenos Aires = AUSTRALIA,
Adelaide, Brisbane, Canberra, Melbourne, Perth and Sydney + AUSTRIA, Vienna «
BELGIUM, Brussels + BOLIVIA, La Paz = BRAZIL, Rio de Janeire and Sao Paulo =
CANADA, Calgary, Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver
and Winnipeg + CHILE, Santiage + DENMARK, Copenhagen * FINLAND, Helsinki

+ FRANCE, Lyon, Grenoble and Paris * GERMAN FEDERAL REPUBLIC, Cologne,
Frankfurt, Hamburg, Hannover, Munich, Nuremburg, Stuttgart and West Berlin «

HONG KONG « INDIA, Bombay « INDONESIA, Djakarta +« IRELAND, Dublin = ITALY,
[TALY, Milan, Rome and Turin = IRAN, Tehran » JAPAN,Osaka and Tokyo = MALAY-
SIA, Kuala Lumpur » MEXICO, Mexico City + NETHERLANDS, Utrecht « NEW ZEA-
LAND, Auckland and Christchurch » NORWAY, Oslo = PUERTO RICQO, Santurce o
SINGAPORE » SPAIN, Madrid « SWEDEN, Gothenburg and Stockholm « SWITZERLAND,
Geneva and Zurich « UNITED KINGDOM, Birmingham, Bristol, Epsom, Edinburgh,
Leeds, Leicester, London, Manchester and Reading « VENEZUELA, Caracas «

pCp1y70

processor
handbook

digital equipment corporation

Copyright © 1976 by Digital Equipment Corporation

DEC, PDP, UNIBUS are registered trademarks
of Digital Equipment Corporation.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1-1
1.1 PDP-11/70 ... SOOI 1-1
1.2 FEATURES ..o, B 11
1.3 SYSTEM ARCHITECTURE 14
1.4 CENTRAL PROCESSOR 1-2
1.5 MEMORY oo e 1-6
1.6 MEMORY SYSTEM 1.7
1.7 OTHER CPU EQUIPMENT TR 1-8
1.8 UNIBUS ... e e 19
1.9 SYSTEM INTERACTION 110
1.10 THE PDP-11 FAMILY B 1-14
1.11 PERIPHERALS/OPTIONS 1-14
CHAPTER 2 SPECIFICATIONS 21
2.1 PACKAGING e 2.1
2.2 COMPONENT PARTS e 21
2.3 OTHER SPECIFICATIONS L. 22
CHAPTER 3 ADDRESSING MODES 31
3.1 SINGLE OPERAND ADDRESSING 32
3.2 DOUBLE OPERAND ADDRESSING 32
3.3 DIRECT ADDRESSING ... 33
3.4 DEFERRED ADDRESSINGo . 38
35 USE OF PC .. oo o 3-11
3.6 USE OF STACK POINTER
CHAPTER 4 INSTRUCTION SET
4.1 INTRODUCTION
4.2 INSTRUCTION FORMATS
4.3 BYTE INSTRUCTIONS R
4.4 SINGLE OPERAND INSTRUCTIONS
4.5 DOUBLE OPERAND INSTRUCTIONS
4.6 PROGRAM CONTROL INSTRUCTIONS ... 4-37
4.7 MISCELLANEOUS INSTRUCTIONS 478
4.8 CONDITION CODE OPERATORS ... 4-86
CHAPTER 5 PROCESSOR CONTROL 5-1
5.1 GENERALcoooooiiiieerirseeereeeeneeeeseeees e 541
5.2 REGISTERS ..o . R . 51
5.3 PROCESSOR TRAPS 52
§.4 STACK LIMIT 5.4
5.5 PROGRAM INTERRUPT REQUESTS 5.5
CHAPTER 6 ADDRESSING 61
6.1 GENERAL ... e e, 61
6.2 ADDRESS SPACE ... 61
6.3 CPU MAPPINGooiii viioiies e oo e . 62
6.4 COMPATIBILITY oo 62

6.5 MEMORY MANAGEMENT ..
6.6 UNIBUS MAP

6.7 NON-EXISTENT MEMORY ERRORS

CHAPTER 7 MEMORY SYSTEM

7.1 GENERAL .
7.2 CACHE MEMORY
7.3 PARITY

CHAPTER 8 FLOATING POINT PROCESSOR

8.1 INTRODUCTICN
8.2 OPERATION ...
8.3 ARCHITECTURE

84 FLOATING POINT DATA FORMATS

8.5 FPP STATUS REGISTER

8.6 FEC REGISTER
8,7 FPP INSTRUCTION ADDRE
8.8 FPP INSTRUCTIONS .

SSING .

CHAPTER 9 PROGRAMMING TECHNIQUES

2.1 THE STACK

6.2 SUBROUTINE LINKAGE

9.3 INTERRUPTS ...
9.4 REENTRANCY

$.5 POSITION INDEPENDENT CODE ...

9.6 CO-ROUTINES ...

CHAPTER 10 HIGH-SPEED |/O CONTROLLERS

10.1 SYSTEM PERFORMANCE

10.2 HIGH-SPEED, MASS STORAGE PERIPHERALS

10.3 HIGH-SPEED CONTROLLER
10.4 REGISTERS
10.5 CONTROLLER REGISTERS

CHAPTER 11 CONSOLE OPERATION

11.1 INTRODUCTION
11.2 GENERAL ...
11.3 STARTING AND STOPPING
11.4 REFERENCING MEMORY
11.5 STEP GPERATIONS
11.6 GENERAL REGISTERS

11.7 SINGLE INSTRUCTION/SINGLE BUS CYCLE

11.8 FUNCTIONS OF SWITCHES
Appendix A Memory Map
Appendix B Summary of Registers
Appendix € Instruction Timing .

& INDICATORS

CHAPTER |

INTRODUCTION

1.1 PDP-11/70

The PDP-11/70 is the most powerful computer in the PDP-11 family. It
is designed to operate in large, sophisticated, high-performance systems.
It can be used as a powerful computational tool for high-speed, real-time
applications and for large multi-user, multi-task tirme-shared applications
requiring large amounts of addressable memory space. It is the systems
level PDP-11 that applies the power of 32-bit hardware architecture to
dermanding, multi-function computing requirements.

1.2 FEATURES
The PDP-11/70 contains as an integral part of the central processor unit,
the following hardware features and expansion capabilities:

» Cache memory organization to provide very fast program execution
speed and high system throughput

+ Memory management for relocation and protection in mutti-user, multi-
task environments

Ability to access up to 2 million bytes of main memory (1 byte = 8
bits)

« Optional high-speed, mass storage controllers as an integral part of
the CPU, to provide dedicated paths to high performance storage
devices

QOptional Floating Point processor with advanced features and operation
with 32-bit and 64-bit numbers

1.3 SYSTEM ARCHITECTURE

The PDP-11/70 is a medium scale general purpose computer using an
enhanced, upwards-compatible version of the basic architecture of the
PDP-11. A block diagram of the computer is shown in Figure 1-1.

The Central Processor performs ali arithmetic and logical operations re-
quired in the system. Memory Management is standard with the basic
computer, allowing expanded memory addressing, relocation, and pro-
tection. Also standard is a UNIBUS Map which translates UNIBUS ad-
dresses to physical memory addresses. The Cache contains 2,048 bytes
of fast, bipolar memory that buffers the data from main (core) memory.

11

Also within the CPU assembly are pre-wired areas for a Floating Point
Processor, and up to 4 High-Speed 1/0 Controllers.

,_ O
e _{
| PROCESSOR [b e NS _'_>
sebertibe [] T
b — _| . _'J_ !

4 b d -
raust | 41-3PEED HI-SPEEQ H1-SPEED]
wiF || conTecy CoNTROL [| EonTRO T

MEMORY 9
PPAAMASENENT HSPEED

—

1
| COMTROL [|
[_FoRvTO Ry S e
Lo pre) 0] L]
]Pus BuS BUR L)
s kg i STORAGE
PERIPHERAL

— DICATES 32 -81T DATA BLFS
*: OFTICHAL

Figure 1-1 PDP-11/70 Block Diagram

The PDP-11/70 System has an expanded internal implementation of the
PDP-11 architecture for greatly improved systems thruput. All the mem-
ory is on its own high data rate bus. The internal high-speed 1/0 con-
trollers for mass storage devices have direct connections through the
cache to memory for transferring data (using the cache only for timing
purposes). The processor has a direct connection to the cache memory
system for very high-speed memeory access.

The UNIBUS remains the primary control path in the 11/70 system. It
is conceptually identical with previous POP-11 systems; the memory in
the system still appears to be on the UNIBUS to all UNIBUS devices.
Control and status infermation to and from the high speed /O con-
trollers is transferred over the UNIBUS. This expanded internal imple-
mentation of the PDP-11 architecture has absolutely no effect on pro-
gramming the PDP-11/70.

1.4 CENTRAL PROCESSOR

The PDP-11/70 performs all arithmetic and logical operations required
in the system, It also acts as the arbitration unit for UNIBUS control by
regulating bus requests and transferring control of the bus to the re-
questing device with the highest pricrity,

The central processor contains arithmetic and control logic for a wide
range of operations, These include high-speed fixed point arithmetic with
hardware muitiply and divide, extensive test and branch operations, and
other contro! operations. It also provides room for the addition of the
high-speed Floating Point Processor, and High-Speed Controllers.

1.2

The machine operates in three modes: Kernel, Supervisor, and User.
When the machine is in Kernel made a program has complete controt of
the machine; when the machine is in any other mode the processor is
inhibited from executing certain instructions and can be denied direct
access to the perpiherals on the system. This hardware feature can be
used to provide complete executive protection in a multi-programming
environment,

The centrai processor contains 16 general registers which can be used
as accumulators, index registers, or as stack pointers. Stacks are ex-
tremely useful for nesting programs, creating re-entrant coding, and as
temporary storage where a Last-in First-Out structure is desirable. One
of the peneral registers is used as the PDP-11/70's program counter.
I'ree others are used as Processor Stack Pointers, one for each opera-
tionai mode.

The CPU performs all of the computer's computation and logic opera-
tions in a parallel binary mode through step by step execution of indi-
vidual instructions.

1.4.1 General Registers

The general registers can be used for a variety of purposes; the uses
varying with requirements. The general registers can be used as accumu-
latars, index registers, autoincrement registers, autcdecrement registers,
or as stack pointers for temporary storage of data. Chapter 3 on Ad-
dressing describes these uses of the general registers in more detail.
Arithmetic operations can be from one general register to another, from
one memory or device register to another, or between memory or a
device register and a general register.

GEMERAL GERERAL
PEGISTER Re RO REBISTER
SET T Iy SET @
Rz RZ
R3 R3
R4 R4
RE RS
KERMEL SUPERYISOR USER
STACK POHNTER STACK PCINTER STACH POINTER

PROGRAM
COUNTER
Figure 1-2 The General Registers

R7 is used as the machine's program counter {PC} and contains the ad-
dress of the next instruction to be executed. It is a general register
normally used only for addressing purposes and not as an accumulator
for arithmetic oparations.

The R6 register is normally used as the Processor Stack Pointer indicat-
1-3

ing the last entry in the appropriate stack {a common temporary storage
area with “Last-In First-Out’” characteristics). {For information on the
programming uses of stacks, please refer to Chapter 9). The three stacks
are called the Kernel Stack, the Supervisor Stack, and the User Stack.
When the Central Processor is operating in Kernel mode it uses the
Kernel Stack, in Supervisor mode, the Supervisor Stack, and in User
mode, the User Stack. When an interrupt or trap occurs, the PDP-11/70
automatically saves its current status on the Processor Stack selected
hy the service routine. This stack-based architecture facilitates reentrant
proegramming.

The remaining 12 registers are divided into two sets of unrestricied reg-
isters, RO-R5. The current register set in operation is determined by the
Processor Status Word.

The two sets of registers can be used to increase the speed of real-time
data handling or facilitate multi-programming. The six registers in Gen-
eral Register Set O could each be used as an accumulator and/or index
register for a real-time task or device, or as general registers for a Kerpel
or Supervisor mode program. General Register Set 1 could he used by
the remaining programs or User mode programs. The Supervisor can
therefore protect its general registers and stack from Lliser programs, or
other parts of the Supervisor.

1.4.2 Processor Status Word

| | I |NOTUSED LPRIOHITYIT|N|Z|V|C|
15 14,1 12 11 8 7 5 4 3 2 1 40

CURRENT MODE:J J
PREVIOUS MODE*—-- —
GENERAL REGISTER
SET 10,10
*MODE ; @& 1 KERMEL

21 = SUPERVISOR

11=USER

Figure 1-3 Processor Status Word

The Processor Status Word, located at location 17777776, contains in-
formation on the current status cof the PDP-11/70. This infermation in-
cludes the register set currently in use; current processor priority; cur-
rent and previous operational modes; the condition codes describing the
results of the last instruction; and an indicator for detecting the execu-
tion of an instruction to be trapped during program debugging.

Modes

Mode information inciudes the present mode, either User, Supervisor, or
Kernel (bits 15, 14); the mode the machine was in prior to the last in-
terrupt or trap (bits 13, 12); and which register set (General Register
Set 0 or 1) is currently being used {bit 11}.

The three modes permit a fully protected environment for a multi-pro-
gramming system by providing the user with three distinct sets of Proc-
essor Stacks and Memory Management Registers for memory mapping.

1-4

In all modes except Kernel a program is inhibited from executing a
“HALT" instruction and the processor will trap through location 4 if an
attempt is made to execute this instruction. Furthermore, the processsor
will ignore the "RESET” and “SPL" (Set Priority level) instructions. In
Kernel mode, the processor will execute all instructions.

A program operating in Kernel mode can map users' programs anywhere
in core and thus explicitly protect key areas {including the devices regis-
ters and the Processor Status Word) from the User operating environ-
ment.

Processor Priority

The Central Processor operates at any of eight levels of priority, O-7.
When the CPU is operating at level 7 an external device cannot interrupt
it with a request for service. The Central Processer must be operating at
a lower priority than the priority of the external device’s request in order
for the interruption to take effect. The current priority is maintained in
the processor status word (bits 5-7). The 8 processor levels provide an
effective interrupt mask, which can be dynamically altered through use
of the Set Priority Level {SPL) instruction which is described in Chapter
4 and which can only be used by the Kernel. This instruction allows a
Kernet mode program to alter the Central Processor's priority without
affecting the rest of the Processor Status Word,

Condition Codes

The condition codes contain information on the result of the last CPU
operation. They include: a carry bit {C), which is set by the previous
aperation if the operation caused a carry out of its most significant bit;
a negative bit {(N) set if the result of the previous operation was nega-
tive; a zerc bit (2), set if the result of the previous operation was zero;
and an overflow bit (V), set if the result of the previous operation re-
sulted in an arithmetic overflow.

Trap

The trap bit (T) can be set or c¢leared under program control. When set,
a processor trap will occur through location 14 on cempletion of instrue-
tion execution and a new Processor Status Word will be loaded. This bit
is especially useful for debugging programs as it provides an efficient
method of installing breakpoints.

Interrupts and trap instructions both automatically cause the previous
Processor Status Word and Program Counter to he saved and replaced
by the new values corresponding to those required by the routine serv-
icing the interrupt or trap. The user can, thus, cause the central proces-
sor to automatically switch modes (context switching), register sets, alter
the CPU's priority, or disable the Trap Bit whenever & trap or interrupt
occurs.,

1.4.3 Stack Limit Register

All PDP-1%'s have a Stack Overflow Boundary at location 400. The Kernel
Stack Boundary, in the PDP-11/70 is a variable boundary set through
the Stack Limit Register found in location 17777774,

Once the Kernel stack exceeds its boundary, the Processor will complete
the current instruction and then trap to location 4 (Yellow or Warning
Stack Violation)}, If, for some reason, the program persists heyond the

1-5

16-word limit, the processor will abort the offending instruction, set the
stack pointer (R6) to 4 and trap to location 4 {Red or Fatal Stack Viola-
tion). A description of these traps is contained in Appendix A.

1.5 MEMORY

Memory Organization

A memory can be viewed as a series of locations, with a number {ad-
dress) assignad to each location. Thus a 16,384-byte PDP-11 memaoary
could be shown as in Figure 25,

L ATIONS

000000

Qo000

[elr]eliekd

Q0003

000004

OCTAL
ADDRESSES

LB I I L

037774
Q37773

Q377

037777

-

Figure 1-4 Memory Addresses

Because PDP-11 memories are designed to gccommodate both 16-bit
words and 8-bit bytes, the total number of addresses does not corre-
spond to the number of words. An 8K-word memory can contain 18K
bytes and consist of 037777 octal locations. Words always start at even-
numbered locations.

A PDP-11 word is divided into a high byte and a low byte as shown in
Figure 1-5,

15 B 7]
HIGH BYTE LOW BYTE
1 n 1) 1 " 1 i 1 : —_ 1

Figure 1-5 High & Low Byte

Low bytes are stored at even-numbered memory locations and high bytes
at odd-numbered memory locations. Thus it is convenient to view the
PDP-11 memory as shown in Figure 1-6.

Certain memory locations have been reserved by the system for inter-
rupt and trap handling, processor stacks, general registers, and periph-

1-6

eral device registers. Addresses from 0 to 370. are always reserved and
those to 777. are reserved on large system configurations for traps and
interrupt handling.

l&-BIT WORD B-gIT BYTE
¢ BYTE BYTE N
000001 HIGH oW 000000 W DO
WORD
Q000¢ 3 HIGH LOW 000002 HIGH 000001
Q0000s HIGH LW O0D004 Low 000002
WoAD
HIGH 030003
{ LOW o00oo04
" __,./"'__"'-__-.—.
___A——___./‘ oF -’_______'_,,._—--*
037773 HIGH LOW 037772 { HIGH 037775
Q37778 HIGH LOow 037774 LOW s b
37777 HIGH Lo Q37778 HIGH ik Fark
WORD DRGANIZATION BYTE CRGAMIZATION

Figure 1-6 Word and Byte Addresses

Parit

Parit{; is used extensively in the PDP-11/70 to ensure the integrity of in-
formation. Al memory has byte parity. Parity for both data and ad-
dresses is generated on transfers to memory and is checked con all trans-
fers from memory. Registers are provided within the CPU to provide in-
formation on the location of parity errors, types of errors, and other rele-
vant information so that software can respond to the situation, fake cor-
rective action, and log the occurrence of errors.

1.6 MEMORY SYSTEM

1.6.1 Address Space
The PDP-11/70 uses 22 bits for addressing physical memory. This repre-
sents a total of 2¥ (over 4 million) byte locations,

Of the over 4 million byte locations possible with the 22-bit address, the
top 256K are used to reference the UNIBUS rarther than physical mem-
ory. Maximum main memory is therefore 2* — 2", or a total of
3,932,160 bytes, although only 2 million bytes are allowed due to hus
length limitations.

Three separate address spaces are used with the PDP-11/70. Main
memory uses 22 bits, the UNIBUS uses an 18-bit address, and the com-
puter program uses a 16-bit virtual address. The information is sum-
marized below:

Bytes
16 bits program virtual space 2" = 64K
18 bits UNIBUS space 2% — 256K
22 hits physical memory space 4 million

1.7

1.6.2 Memory Management

The Memory Management hardware is standard with the PDP-11/70
computer. 1t is & hardware relocation and protection facility that can con-
vert the 16-bit program virtual addresses to 22-bit addresses. The unit
may be enabled or disabled under program control. There is no increase
in access time when the Memory Management unit is enabled.

1.6.3 UNIBUS Map

The UNIBUS Map responds like memory on the UNIBUS. It is the hard-
ware relocation facility for converting the 18-bit UNIBUS addresses to
22-bit addresses. The relocation mapping may be enabled or disabled
under program control.

1.6.4 Cache

The cache memory is a very high-speed memaory that buffers words be-
tween the processor and main memory. The cache is completely trans-
parent to all programs; programs are treated as if there were oneg con-
tinuous bank of memory.

Whenever a request is made to fetch data frem memory, the cache cir-
cuitry checks to see if that data is already in the cache. If it is, it is
fetched from there and no main memory read is required. If the data is
not already in cache memory, 4 hyites are fetched from main memaory
and stored in the cache, with the requested word or byte being passed
directly to the CPU.

When a request is made to write data into memary, it is written both to
the cache and to main memory, assuring that main memory is always
updated immediately.

The key to the effectiveness of PDP-11/70’s cache memory is its size.
Because it holds 2,048 bytes at any given point in time, and because
programs tend to use localized sections of code and data, the PDP-11/70
cache already contains the next needed data word a very high percentage
of the time.

A detailed description of cache memory and the other parts of memory
are cantained in Chapter 7.

1.7 OTHER CPU EQUIPMENT

1.7.1 Floating Point Processor

The PDP-11/70 Floating Point Processor fits integrally into the Central
Pracessor. |t provides a supplemental instruction set for performing sin-
gle and double precision floating point arithmetic operations and
floating-integer conversion in parallel with the CPU. The floating peint
processor provides both speed and accuracy in arithmetic computations.
It provides 7 decimal digit accuracy in single word calculations and 17
decimal digit accuracy in double calculations.

Floating point calculations take place in the FPF's six 64-bit accumula-
tors. The 4& floating peoint instructions include hardware conversion from
single or double precision floating point to singie or double precision
integers. There is a detailed description in Chapter 7.

1.7.2 High Speed Mass Storage
The PDP-11/70 bussing structure is optimized for high-speed device
transfers. Up to four such devices can be plugged directiy into the proc-

1-8

essor with a dedicated 32-bit bus feeding through to the core memory,
Present DIGITAL devices that utilize this bus structure are the RPO4,
RS04, RS03, and TU16. The RPO4 is a moving head disk pack drive with
capacity for 88 million bytes and a transfer rate of 1.25 microseconds
per byte. The RS04 is a fixed head disk with a capacity of 1,024K bytes
and a transfer rate of 1 microseconds per byte (1.2 microseconds at 50
Hz}. The RSO3 is a fixed head disk, 512K bytes, 2 psec per byte. The
TULG is an industry standard 1,600 hpi tape unit.

1.8 UNIBUS

Most of the computer system components and peripherals connect to
and communicate with each other on 2 bus known as the UNIBUS,
Addresses, data, and contral information are sent alang the 56 lines of
the bus.

T T T

CPL J| I/Q l 1o \ Lo ‘ [

Figure 1-7 PDP-11 System Simplified Block Diagram

The form of communication is the same for every device on the UNIBUS.
Periphera!l devices use the same set of signals when communicating with
the processor, memory or other peripheral devices, Each device, includ-
ing memory locations, processor registers, and peripheral device registers,
is assigned an address. Peripheral device registers may be manipu-
lated as flexibly as core memory by the central processor. All the instruc-
tions that can be applied to data in core memory can be applied equally
well to data in peripheral device registers. This is an especially powerful
feature, considering the special capability of PDP-11 instructions to pro-
cess data in any memory location as though it were an accumulator.

1.8.1 Bidirectional Lines

with bidirectional and asynchronous communications on the UNIBUS,
devices can send, receive, and exchange data independenily without
processor intervention. For example, a cathode ray tube (CRT} display
can refresh itself from a disk file while the central processor unit {CPU)
attends to other tasks. Because it is asynchronaus, the UNIBUS is com-
patible with devices operating over a wide range of speeds.

1.8.2 Master-Slave Relation

Communication between two devices on the bus is in the form of a
master-slave relationship. At any point in time, there is one device that
has control of the bus. This confrolling device is termed the “bus mas-
ter.” The master device controls the bus when communicating with
another device on the bus, termed the “slave. A typical example of
this relationship is the processor, as master, fetching an instruction from
memory {which is always a slave). Another example is the disk, as
master, transferring data to memory, as slave. Master-slave relation-
ships are dynamic. The processor, for example, may pass bus control

1.9

to a disk. The disk, as master, could then communicate with a slave
memory bank.

Since the UNIBUS is used by the processor and ail |/0 devices, there is
a priority structure to determine which device gets control of the bus.
Every device on the UNIBUS which is capable of becoming bus master
is assigned a priority. When two devices, which are capable of becoming
a bus master, request use of the bus simultaneously, the device with
the higher priority will receive cantrol.

1.8.3 Interlocked Communication

Communication on the UNIBUS is interlocked so that for each contro!
signal issued by the master device, there must be a response from the
slave in order to complete the transfer. Therefore, communication is
independent of the physical bus length (as far as timing is concerned)
and the response time of the master and slave devices. The asynchro-
nous operation precludes the need for synchronizing with, and waiting
for, clock pulses. Thus, each device is allowed to operate at its maximum
possible speed.

Interfaces to the UNIBUS are not time-dependent; there are no pulse-
width or rise-time restrictions to worry about.

Input/output devices transferring directly to or from memory are given
highest priority and may request bus mastership and steal bus and mem-
ory cycles during instruction operations. The processor resumes opera-
tion immediately after the memory transfer. Multiple devices can operate
simultaneously at maximum direct memory access (DMA) rates by
“stealing” bus cycles.

Full 16-bit words or 8-bit bytes of information can be transferred on the
bus between a master and a slave. The information can be instructions,
addresses, or data. This type of operation occurs when the processor, as
master, is fetching instructions, cperands, and data from memory, and
storing the results intc memory after execution of instructions. Direct
data transfers occur between a peripheral device control and memory.

1.9 SYSTEM INTERACTION

High-speed NPR devices use separate dedicated busses to the individual
high-speed 1/0 controllers. From the controllers there is a single 4-byte
wide bus that interfaces to the cache. The order of priorities in the
system are:

1) UNIBUS (via UNIBUS Map)
2} High-speed 1/0 controllers {A through D)
3) CPU

Control information and lower speed data transfers are carried out
through the UNIBUS.

A device will request the UNIBUS for one of two purposes:

To make a non-processor {NPR) transfer of data. (Direct Data
Transfers such as DMA), or

To interrupt program execulion and force the processor to branch
ta a service routine.

There are two sources cof interrupts, hardware and software.
1-10

1.9.1 Hardware Interrupt Requests
A hardware interrupt occurs when a device wishes to indicate to the
program, or Central Pracessor, that a condition has occurred (such as
transfer completed, end of tape, etc.). The interrupt can occur on any
one of the four Bus Request levels and the processor responds to the
interrupt through a service routine,

1.9.2 Program Interrupt Requests

Hardware interrupt servicing is often a two-level process. The first level
is directly associated with the device's hardware interrupt and consists
of retrieving the data. The second, is a software task that manipulates
the raw information. The second process can be run at a lower priority
than the first, because the PDP-11/70 provides the user with the means
of scheduling his software servicing through seven levels of Program
Interrupt Requests. The Program Interrupt Request Register is located
at address 17777772, An interrupt is generated by the programmer set-
ting a bit in the high order byte of this register.

1.9.3 Priority Structure on the UNIBUS

When a device capable of becoming bus master requests use of the bus,
handling of the request depends on the hierarchical position of that
device in the priority structure.

The retative priority of the request is determined hy the Processor's
priority and the level at which the request is made.

The processor's priority is set under program control to one of eight
levels using bits 7-5 in the processor Status Word, Bus requests are
inhibited on the same or lower levels.

Bus requests from external devices can be made on any one of the
five request lines. A non-processor request (NPR) has the highest
priority, and its request is granted between bus cycles of an in-
struction execution. But Request 7 (BR 7) is the next highest
priority and Bus Request 4 (BR 4) is the lowest. The four lower
priority level requests {BR 7-BR 4) are granted by the processor
between instructions providing that they occur on higher levels
than the processor's. Therefore an interrupt may only occur on a
Bus Request Level and not on a Nen Processor Request leval.

Any number of devices can bhe connected to a specific BR or NPR
line.

If two devices with the same priority request the bus, the device
physically closest to the processor on the UNIBUS has the higher
priority.

Program Interrupt Requests can be made on any one of 7 levels
{PIR 7-PIR 1}. Requests are granted by the processor between
instructions providing that they occur aon higher levels than the
processor’s.

Program Interrupt Requests take precedence over equivalent level
Bus Requests.

1.9.4 Non-Processor Data Transfers
Direct memory or direct data transfers can be accomplished hetween

1-11

any two peripherals without processor supervision. These Non-Processor
transfers, called NPR level data transfers, are usuaily made for Direct
Memory Access (memmory to/from mass storage} or direct device trans-
fers (disk refreshing a CRT display).

PROCESSOR STATUS WORD

PROCESSOR STATUS WORD
FRIORITY

T &

CPU REQUEST
PRIORITY LEVEL

i T NPR ANY NUMBER
PIRT OF HARDWARE
i DEVICES/LEVEL
—
ONE PROGRAM,
FiRg I__L’ PIR LEVEL
BRE
5
B Iil I__Ll
BR 5 - o
4
i PIR4
BR4
.
FIR2
2
~—— - FIRZ

FIR1

INCREASING FRIGRITY

DECREASING PRIORITY
Figure 1-8 UNIBUS Priority Structure

An NPR device pravides extremely fast access to the UNIBUS and can
transfer data at high rates once it gains control of the bus, The state of
the processor is not affected by this type of transfer, and, therefore, the
processor can relinguish bus control while an instruction is still in prog-
ress. The bus can be released at the end of any bus cycle, except during
a read-modify-write cycle sequence. (This occurs for example in de-
structive read-out devices such as core memory for certain instructions.)
In the PDP-11/70 an MPR device can gain bus control in 3.5 micro-
seconds or less {(depending on the number of devices on the UNIBUS),
and can transfer 16-bit words to memory at the same speed as the ef-
fective cycle time of the memory being addressed.

1.9.5 Using the interrupts

Devices that gain bus control with one of the Bus Request Lines (BR 7-
BR 4), can take full advantage of the Central Processor by requesting an
interrupt. In this way, the entire instruction set is availabie for manipu-
lating data and status registers.

1-12

When a service routine is to be run, the current task being performed by
the central processor is interrupted, and the device service routine is
initiated. Once the request has been satisfied, the Processor returns to
its former task., Interrupts may also be used to schedule program exe-
cution by using the Program Interrupt Request.

1.9.6 Interrupt Procedure

Interrupt handling is autornatic in the PDP-11/70. No device polling is
required to determine which service routine to execute, The operations
required to service an interrupt are as foliows:

1. Processor relinquishes control of the bus, priarities permitting.

2. when a master gains controi, it sends the processor an inferrupt
command and a unique memery address which contains the address
of the device's service routine in Kernel virtual address space, called
the interrupt vector address. Immediately fellowing this pointer ad-
dress is a word (located at vector address 42) which is to be used
as a new Processor Status Word.

3. The processor stores the current Processor Status Word (PS) and the
current Program Counter (PC) into CPU temporary registers.

4. The new PC and PS (the interrupt vector) are taken from the speci-
fied address. The old PS and PC are then pushed onto the current
stack as indicated by bits 15,14 of the new PS and the previous
maode in effect is stored in bits 13,12 of the new PS. The service
routine is then initfated.

These operations are performed in approximately 2.5 usec from the
time the control processor receives the interrupt comrnand until the time
it starts executing the first instruction of the service routine. This time
interval assurmes no NPR transfer occurred during this time interval.

5. The device service routine can cause the processor to resume the
interrupted process by executing the Return from Interrupt (RTI or
RTT) instruction, described in Chapter 4, which pops the two tap
wards from the current processor stack and uses them to load the
PC and PS registers.

This instruction requires approximately 1.5 usec providing there is no
NPR reguest.

A device routine can be interrupted by a higher priority bus request any
tirne after the new PC and PS have been loaded. If such an interrupt
accurs, the PC and the PS of the service routine are automatically stored
in the temporary registers and then pushed onto the new current stack,
and the new device routine is initiated.

1.9.7 Interrupt Servicing

Every hardware device capable of interrupting the processor has a
unique pair of locations reserved for its interrupt vector. The first word
contains the {ocation of the device's service routine, and the secand,
the Processor Status Word that is to be used by the service routine.
Through proper use of the PS, the programmer can switch the opera-
fional mode of the processor, alter the Genera! Register Set in use (con-

1.13

text switching), and modify the Processor's Priority level to mask out
lower level interrupts.

There is one interrupt vector for the Program Interrupt Request, It will
generally be necessary in a multi-processing environment to determine
which program generated the PIR and where it is located in memory.

1.9.8 Processor Traps

There are a series of errors and programming conditions which will
cause the Ceniral Processor to trap to a set of of fixed locations. These
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout
Errors, Non-Existent Memory Errors, Memory Parity Errors, Memory
Management Violations, Floating Point Processor Exception Traps, Use
of Reserved Instructions, Use of the T bit in the Processor Status Word,
and use of the 10T, EMT, and TRAP instructions.

1.10 THE PDP-11 FAMILY

The PDP-11 family includes several processors, a large number of
peripheral devices and options, and extensive software, PDP-11 com-
puters are architecturally similar and hardware and software upwards
compatible, although each machine has some of its own characteristics.
New PDP-11 systems will be compatible with existing family members.
The user can choose the system which is most suitable to his applica-
tion, hut as needs change or grow he can easily add or change hardware.

1.11 PERIPHERAL OPTIONS

Digital Equipment Corporation designs and manufactures many of the
peripheral devices offered with PDP-11s. As a designer and manufacturer
of peripherals, DIGITAL can offer extremely reliable equipment, lower
prices, more choices, and quantity discounts,

Many processor, input/output, memory, bus, and storage options are
available. These devices are explained in detail in the PDP-11 Peripherals
Handbook.

1.11.1 Input/Qutput Devices

The LA36 DECwriter, a totally DIGITAL designed and built teleprinter, is
the standard PDP-11 system terminal. 1t has several advantages over
standard electromechanical typewriter terminals, including higher speed,
fewer mechanical parts and very quiet operation. 1/0 capabilities can be
increased with high-speed paper tape readers—punches, line printers,
card readers or alphanumeric display terminals.

PDP-11 1/C devices include:
DECwriter teleprinter, LA36
DECterminal alphanumeric display, ¥T05, VT50
Teletypes, LT33
High-speed line printers, LP11, L511, LV11
Cassette, TAll
High-speed paper tape reader punch, PC11
Card readers, CR11, CD11
Synchronous and asynchronous communication interfaces
1-14

1.11.2 Storage Devices

Storage devices range from convenient, small-reel magnetic tape units to
mass storage magnetic tapes and disk memories. A large number of
storage devices, in any combination, may be connected to a PDP-11
systerm. TUS6 DECtapes, highly reliable tape units with small tape reels,
designed and built by DIGITAL, are ideal for applications with modest
storage requirements. Each DECtape provides storage for 144K 16 hit
words. For applications which reguire handling of large volumes of data,
DIGITAL offers the industry compatible TU16 Magtape.

Disk storage devices include fixed head disk units and moving-head re-
movable cartridge and disk pack units. PDP-11 storage devices include:

DECtape, TUSE

Magtape, TU16

512K byte fixed head disk, RS03

1,024K byte fixed head disk, RS04

2.4M byte moving head cartridge disk, RKO5
88M byte moving head disk pack, RP04

2.1 PACKAGING

CHAPTER 2

SPECIFICATIONS

A basic PDP-11/70 consists of two cabinets (see Figure 2-1):
1) A CPU cabinet which contains the processor, CPL) related equipment

and interface equipment, and

2y A Memory Cabinet which contains the first 128K bytes of parity core
memory {with expansion capability to 1,024K bytes within the cabi-
net. Another memory cabinet located next to it can house an addi-

tional 1,024K bytes of memary).

An LAS3 DECwriter Il console terminal is included with the system.
There are prewired areas within the mounting assemblies for expansion

with optional equiprment.

CRU CaB. JDRE PAEMORY AR,

EXPANSION
SPACE

1170 CPU

Isi 128K BYTES

L Wed2™

e

.
|

Figure 2-1 Equipment in 11/70 System

2.2 COMPONENT PARTS
The basic PDP-11/70 system has:

included Equipment
11/70 CPU

Memory Management
Bootstrap loader

Clock (KWL11-L)
DECwriter {LA36)
Terminal interface (DL11-A)
2K byte cache memaory
128K byte parity core
CPU cabinet

Memory cabinet

2-1

Prewired Expansion Space for Optional Equipment

Fleating Point Processor

4 High-speed |/C controllers

4 SPC slots for peripherals

128K byte parity core (within 1st memory expansion frame)

2.3 OTHER SPECIFICATIONS

AC Power
1157208 VAC = 109;, 47 to 63Hz, 3 phase power
230/416 VAC £ 10%, 47 to 63Hz, 3 phase power

115 VAC 230 VAC
Basic CPU cabinet (current on each of
2 phases): 15A 7.5A
Memory, each 256K bytes (current on
1 phase): 12A BA
Size
Each cabinet is 72" high x 21" wide x 30" deep.
Weight
CPU cabinet: 500 Ibs.

Memory cabinet: 250 lbs. (including 1st 256K bytes)
Memory expansion frame: 150 lbs (each additional 256K bytes)

Operating Environment
Temperature: 10°C to 40°C (50°F to 104°F)

Humidity: 109, to 909% with max wet bulb 28°C {B2°F) and minimum
dew point 2°C (36°F)

Altitude: to 2.4 km. (8000 ft.)

Non-Operating Environment

Temperature: —40°C to 66°C {—40°F to 151"F)
Humidity: to 959

Altitude: to 9.1 km {30,000 ft)

22

CHAPTER 3

ADDRESSING MODES

Data stored in memory must be accessed, and manipulated. Data han-
dling is specified by a PDP-11 instruction (MOV, ADD etc.) which usually
indicates:

the function {(operation code};

a general purpose register o be used when locating the source
operand andfor a general purpose register to be used when locating
the destination operand;

an addressing mode (to specify how the selected register(s) is/are
to be used.

Since a large portion of the data handiead by a computer is usually
structured {in character strings, in arrays, in lists etc.), the PDP-11 has
been designed to handle structured data efficiently and flexibly. The
general registers may be used with an instruction in any of the follow-
ing ways:

as accumulators. The data to be manipulated resides within the
register,

as peinters. The contents of the register are the address of the
operand, rather than the operand itself.

as pointers which automaticaily step threugh core locations, Auto-
matically stepping forward through consecutive core locations is
known as autoincrement addressing; automatically stepping back-
wards is known as autodecrement addressing. These modes are
particularly useful for processing tabular data.

as index registers. In this instance the contents of the register, and
the word following the instruction are summed to produce the ad-
dress of the operand. This allows easy access to variable entries
in a list.

PDP-11's also have Iinstruction addressing mode combinations which
facilitate temporary data storage structures for cenvenient handling of
data which must be frequently accessed. This is known as the “'stack.”
{see Chapter 9)

In the PDP-11 any register can be used as a ‘'stack pointer’” under pro-
gram control; however, certain instructions associated with subroutine
linkage and interrupt service automatically use Register 6 as a "hard-
ware stack pointer.”” For this reason R6 is frequently referred to as
the *'SP.”

3-1

R7 is used by the processor as its program counter (PC). It is recom-
mended that R7 not be used as a stack pointer.

An important PDP-11/70 feature, which must be considered in conjunc-
tion with the addressing modes, is the register arrangement;

Two sets of general purpose registers (RC-R5)
three hardware stack pointers (R6)
a Program Counter (PC) register (R7).

Register R7 is used as a common program counter (PC). At any point
in time only cone register set is active. Thus a programmer need only
concern himself with the existence of multiple register sets for those
special supervisory tasks which involve Kernel, Supervisor, User com-
munications (e.g. MTPX, MFPX); otherwise he need never worry about
which R3 or R6 an instruction will reference, the choice is automatic
and transparent to his program.

Instruction mnemonics and address mode symbols are sufficient for
writing machine language programs. The programmer need not he con-
cerned about conversion to binary digits; this is accomplished auto-
matically by the PDP-11/70 assembter.

3.1 SINGLE OFERAND ADDRESSING
The instruction format for all single operand instructions such as clear,
increment, test) is:

E.2.3 * E2.3.3
r I MODE | An
8 6,5 4 3 2 o
orcooe— ¥ _’
DESTINATION ADDRESS

#eSPECIFIES ORECT OR INDIRECT ADDRESS
-3 =SPECIFIES HOW REGISTER wILL BE USED
¥4 % TSPECIFIES ONE OF B GENERAL FURPQSE REGISTERS

Bits 15 through 6 specify the operation code that defines the type of
ifstruction to be executed.

Bits 5 through O form a six-bit field called the destination address field.
This consists of two subfields:

a) Bits O through 2 specify which of the eight general purpose registers
is to be referenced by this instruction word.

b} Bits 4 and 5 specify how the selected register will be used (address
mode). Bit 3 is set to indicate deferred (indirect) addressing.

3.2 DOUBLE OPERAND ADDRESSING
Operations which imply two operands (such as add, subtract, move and
compare) are handled by instructions that specify fwo addresses. The

3.2

first operand is called the source operand, the second the destination
operand. Bit assignments in the source and destination address fields
may specify different modes and different registers. The Instruction
format for the double operand instruction is:

Lt » M batad * e
0P CODE l MODE | R MOOE | #n
5 T oW s 8 8 5. a4 3 @ o,
$OURCE apoRESS ————F T
DESTINATION ADDRESS

#={HRECT/DEFERRED BIT FOR SOURCE AND DESTIMATION ADDRESS
#®eSPECIFIES HOW SELECTED REGISTERS ARE T BE USED
W aSPECIFIES A GENERAL REGISTER

The source address field is used to select the source operand, the first
operand. The destination is used similarly, and locates the second
aperand and the result. For example, the instruction ADD A,B adds the
contents (source operand) of location A to the contents (destination
operand) of location B. After execution B will confain the result of the
addition and the contents of A will be unchanged.

Examples in this section and further in this chapter use the following
sample PDP-11 instructions:

Mnemonic Description Octal Code

CLR clear (zero the specified destination) 0050nn

CLRB clear byte (zero the byte in the specified 1050nn
destination)

INC increment (add 1 to contents of destination) 0052nn

INCB increment byte {(add 1 to the contents of 1052nn

destination byte)

COM complement (replace the contents of the Q051nn
destination by their logical complement;
each O bitis set and each 1 bit is cleared)

COMB cormplement byte (replace the contents of the 1051nn
destination byte by their logical complement;
each O bit is set and each 1 bit is cleared).

ADD add {add source operand to destination 0Bmmnn
operand and store the result at destination
address)

3.3 DIRECT ADDRESSING
The following table summarizes the four basic modes used with direct
addressing.

3-3

DIRECT MODES

Mode Name Assembler Function
Syntax
Register Rn Register contains operand
Autoincrement (Rn)+ Register is used as a pointer
to seguential data then in-
cremented.
4 Autodecrement —{Rn) Register is decremented and
then used as a pointer.
6 Index X(Rn) Value X is added fo (Rn) to

produce address of operand.
Neither X nor (Rn) are modi-
fied,

3.3.1 Register Mode
OPR Rn

With register mode any of the general registers may be used as simple
accumulators and the operand is contained in the selected register.
Since they are hardware registers, within the processor, the general reg-
isters operate at high speeds and provide speed advantages when used
for operating on frequently-accessed variables. The PDP-11 assembler
interprets and assembles instructions of the formm OPR Rn as register
mode operations. Rn represents a general register name or number and
OPR is used to represent a general instruction mnemonic. Assembler
syntax requires that a general register be defined as follows:

RO = 9,0 (% s=ign indicates register definition)
R1 == 91
R2 = 942, efc.
Registers are typically referred to by name as RO, R1, R2, R3, R4, R5,

R6 and R7. However R6 and R7 are also referred to as SP and PC,
respectively,

Register Mode Examples
{all numbers in actal)

Symbalic Octal Code Instruction Name
1. INC R3 005203 Increment
Operation: Add one to the contents of general register 3
A2
Rl
L3 » R2
| 5 SELECT
© 0 0 0 1 o 1 0° 1 olc a:o[o_i ‘lﬁé&s‘r‘m" ES
NG £,,5 4 3 2 o, R4
QP CODE IINC[(}O."}Z}J——r T il
DESTINATION FIELD RE [SP}
% =QIRECT ADDRESS RT {PC)

M 'REGISTER MODE
34

2. ADD R2,R4 060204 Add

Operation: Add the contents of R2 to the contents of R4.
BEFORE AFTER
Ra r nonooz | re | oocooz |
ra [oooooa | wef o0oaoe |
3. COMB R4 105104 Complement Byte
Operation: One's complement bits 0-7 (byte) in R4.

(When general registers are used, byte in-
structions only operate on bits 0-7; i.e. hyte
O of the register)

BEFORE AFTER
aa [ogzzez | Ae| 022158

3.3.2 Autoincrement Mode
OPR (Rn)+

This mode provides for automatic stepping of a pointer through sequen-
tial elements of a table of operands. it assumes the contents of the
selected general register to be the address of the operand. Contents of
registers are stepped (by one for bytes, by two for words, always by two
for R6 and R7) to address the next sequential location. The autoincre-
ment mode is especially useful for array processing and stacks. It will
access an element of a table and then step the pointer to address the
next operand in the table. Although maost useful for table handling, this
mode is completely general and may be used for a variety of purposes.

Autoincremient Mede Examples

Symbolic Octal Code Instruction Name
1. CLR (R5)-+ 005025 Clear
Operation: Use contents of R5 as the address of the

operand. Clear selected operand and then
increment the contents of RS by two.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 [oosozs | 030000 {20000 | oosoes | Rs | 630002
/"’d—'__“__""'mh___,/
2. CLRB {R5)4- 105025 Clear Byte
Operation: Use contents of RS as the address of the

operand. Clear selected byte operand and
then increment the contents of R5 by one.

3-5

BEFORE AFTER

ACORESS SPAGE REGISTER ADDRESS SPACE REGISTER
FO000 I_ 105025 —] RS | 030000 | 20000 | 105025] ms | Q30001 I
. /
angon | 111 1 116 g 20000 w1 coo
2002 ! 10002 !
3. ADD (R2y+, R4 062204 Add
QOperation: The contents of R2 are used as the address

of the operand which is added to the con-
tents of R4. R2 is then incremented by two.

BEFORE AFTER
ADDRESS SPACE REGISTERS ADERESS SPACES REGISTERS
weoo | OB2204 1 Rz | 100002 | w000 [ee2zos | A locopa |
—
moa’g 100002

3.3.3 Autodecrement Mode
OPR-—(Rn)

This mode is wseful for processing data in a list in reverse direction.
The contents of the selected general register are decremented (by twe
for word instructions, by one for hyte instructions) and then used as
the address of the operand. The choice of postincrement, predecrement
features for the PDP-11 were not arbitrary decisions, but were intended
te facilitate hardware/software stack operations.

Autodecrement Mode Examples

Symbolic QOctal Code Instruction Name
1. INC—(RO) Q05240 Increment
Operation: The contents of RO are decremented by two

and used as the address of the operand.
The operand is increased by one,

EEFORE LFTER
ADDRESS SPATE REGISTERS A00RESS SPACE REGISTER
woe [ovszae | re| C1?7776 | wool oomeas] me[awira
P
2. INCE—{RO) 105240 Increment Byte
Operation: The contents of RO are decremented by one

then used as the address of the operand.
The operand byte is increased by one,

3-6

BEFORE

AFTER

ADURESS $PACE FEGISTER ADDRESS SPACE REGISTER
won [losz4n | me[i | weo [wsase] re[wrres]
, /'___“——______ _—
+rtrd cOo L oo 17774 aom) ooco
1TTTE I7TTG 1
3. ADD—{R3},RO 064300 Add
Operation: The contents of R3 are decremented by 2
then used as a pointer to an operand
{source} which is added to the contents of
RO (destination operand).
BEFORE AFTER
AOCAESS SPACE REGISTER ARLRESS SFLCE REGISTER
10420 osazon | me onoozo | toozo [oeesnn | e[oaccomo |
/’ T g
TTITA [a]=leTulile] rTTTa D
PTG TTEME
3.3.4 Index Mode
OFR X(Rn)

The contents of the selected general register, and an index word follow-
ing the instruction word, are summed to form the address of the op-
erand, The contents of the selected register may be used as & base for
calculating a series of addresses, thus allowing random access to ele-
ments of data structures. The selected register can then be modified
by program to access data in the table. index addressing instructions
are of the form OPR X(Rn) where X is the indexed word and is located
in the memory location following the instruction word and Rn is the
selected general register.

Index Mode Examples

Symbolic Octal Code Instruction Name
1. CLR 200(R4) 005064 Clear
000200
Operation: The address of the operand is determined by
adding 200 to the contents of R4, The loca-
tion is then cleared.
BEFORE AFTER
ADDRESS SPAcCE REGISTER ADDRESS SPACE REMETER
1020 el oE R4 Q0 oD J 10zn COSOR4 R4 [aled L 4]
10232 SQ0azact 1022 [slunllele]
1024 106e 10249
o —____ 220
TTTe—r2nn
1200 177777 1200 QOCC00
1202

3-7

2. COMB 200{R1) 1051861 Complement Byte
Q00200

Operation: The contents of a location which is deter-
mined by adding 200 to the contents of R1
are one's complemented (i.e. logically com-

plemented).
BEFORE aF TER
ADPORESS SPACE REGISTER ADORESS SPACE REGISTER
1020 105161 R1 | MTTTT] 1020 105181 Ri1 FFFT
a2 QUREZLG wee CRR2no

oIFTTT

’/-— —_— + 200

S+

R S —) S T

3. ADD 30(R2), 20(R5)066265 Add
000030
000020

Operation: The contents of a location which is deter-
mined by adding 30 to the contents of R2 are
added to the contents of a location which is
determined by adding 20 to the contents of
R5. The result is stored at the destination
address, i.e. 20{R5)

BEFURE 2FTER
ADDFESS SPACE REGIS TER ADDORESS SRACE AEGISTER
1020 056265 rz [ootma | e) re [oomoo |
1022 000030 ok 300030

1024 ononee RS 002000 102¢ 200020 RS oozona

o o

2020 0O00B! 2020
Hod 200
+30 +20
Tizp 2020

3.4 DEFERRED (INDIRECT) ADDRESSING

The four basic modes may also be used with deferred addressing.
Whereas in the register mode the operand is the contents of the selected
register, in the register deferred mode the contents of the selected
register is the address of the operand.

In the three other deferred modes, the contents of the register seiects
the address of the operand rather than the operand itself. These modes
are therefore used when a table consists of addresses rather than op-
erands, Assembler syntax for indicating deferred addressing is (@™ or
{). The following table summarizes the deferred versions of the basic
modes:

3-8

Assermnbler
Mode Name Syntax Function

{@Rn or (Rn) Register contains the ad-

1 Register Def d
egister Leterre dress of the operand

3 Autoincrement Deferred @(Rn)+ Register is first used as
a pointer to & word con-
taining the address of
the operand, then incre-
mented (always by 2;
even for byte instruc-
tions)

5 Autodecrement Deferred @ —(Rn) Register is decremented
(always by two; even for
byte instructions) and
then used as a pointer
to a word containing the
address of the operand

7 Index Deferred @X{Rn) Value X {stored tn a word
following the instruction)
and {(Rn) are added and
the sum is used as a
pointer to¢ a word con-
taining the address of the
operand. Neither X nor
{Rn} are modified,

Since each deferred mode is similar to its basic mode counterpart, sep-
arate descriptions of each deferred mode are not necessary. However,
the following examples illustrate the deferred modes.

Register Deferred Mode Example

Symbalic Octal Cade Instruction Name
CLR @RS 005015 Clear
Operation: The contents of location specified in RS are
cleared.
BEFORE AFTER
AOCRESS SPACE REGISTER ADDRESS S5PACE REGISTER
w877 RS 001700 1877 Re | oo17on
1To0 frlelolnle] 1700 [alslsalnr]

Autoincrement Deferred Mode Example

Symbolic Octal Code Instruction Name
INC @{R2}4- Q0s232 Increment
Operation; The contents of R2 are used as the address

of the address of the operand.
Operand is increased by one, Contents of
R2 is incremented by 2.

39

BEFOAE

AFTER

ADDRESS SPAGE FEGISTER ADORESS SPAGE REGISTER
Rz | miose | Rz GID30E
1o 000025 / 1010 00CDZE
L F] _‘__,/ o
=3
wion 1 00 10300 201010

Autodecrement Deferred Mode Example

Syrnbolic Octal Code Complement
COM @—(R0O) 005150
Operation; The contents of RO are decremented by two
and then used as the address of the address
of the operand. Operand is one's comple-
mented. (i.e. logically complemented)
BEFOAE AFTER
ADCAESS SPACE REGISTER GDDRESS SPACE REGSTER
[yuhlale] Q12345 R C1O7TE I 10100 165432 R@I MmorTa I
10102 10102 T
f_________ﬂf
/
W07 DALHGO W 010100
107TE 10776

Index Deferred Mode Example

Symbolic Octal Code Instruction Name
ADD @1000(R2),R1 067201 Add
001000
Operation: 1000 and contents of R2 are summed to
produce the address of the address of the
source operand the contents of which are
added to contents of R1; the result is stored
in R1,
HEFQORE AFTER
ADDRESS SPOCE REGISTER AODRES S SPACE REGISTER
1220 CETEM A1 | O E34 100 DETEH 1] I QMEAE I
g4 104
1 0\50 CRAcH2 10E0 Q0002
N
1100 O 050 0G0 noo ale] 1ele]
N i1

3.5 USE OF THE PC AS A GENERAL REGISTER

Although Register 7 is a general purpose register, it doubles in function
as the Program Counter for the PDP-11. Whenever the processor uses
the program counter to acquire a word from memory, the program
counter is automatically incremented by two to contain the address of
the next word of the instruction being executed or the address of the
next instruction to be executed, (When the program uses the PC to
locate byte data, the PC is still incremented by two.)

The PC responds to all the standard PDP-11 addressing modes. However,
there are four of these modes with which the PC can provide advantages
for handling position independent code (PIC—see Chapter 9) and un-
structured data. When regarding the PC these modes are termed imme-
diate, absclute (or immediate deferred), relative and relative deferred,
and are summarized below:;

Mode Name Assembler Function
Syntax
Immediate H#n Operand foliows instruction.
Absalute @ A Absoclute Address follows in-
struction.

6 Relative A Address of A, relative to the
instruction, follows the in-
struction.

7 Relative Deferred @A Address of location contain-

ing address of A, relative to
the instruction fallows the
instruction.

The reader should remember that the special effect modes are the
same as modes described in 3.3 and 3.4, but the general register
selecied is R7, the program counter.

When a standard program is available for different users, it often is
helpful to be able to lead it into different areas of core and run it there.
PDP-11's can accomglish the relocation of a program very efficiently
through the use of position independent code (PIC} which is written by
using the PC addressing modes. If an instruction and its objects are
moved in such a way that the relative distance between them is not
altered, the same offset relative to the PC can be used in all positicns in
memory. Thus, PIC usually references locations relative to the current
location,

The PC aiso greatly facilitates the handling of unstructured data. This
is particularly true of the immediate and relative modes.

3.5.1 Immediate Mode
OPR #n,DD

Immediate mode is equivalent to using the autoincrement mode with the
PC. It provides time improvements for accessing constant operands by

3-11

including the constant in the memory location immediately following the
instruction word,

Immediate Mode Example

Symbolic Octal Code Instruction Name
ADD # 10,RO 062700 Add
000010
Operation: The value 10 is located in the second word

of the instruction and is added to the con-
tents of RO. Just before this instruction is
fetched and executed, the PC points to the
first word of the instruction. The processor
fetches the first word and increments the
PC by two. The source operand mode is 27
{autoincrement the PC). Thus, the PC is used
as a pointer to fetch the operand (the second
word of the instruction) before being incre-
mented by two to point to the next in-
struction,

BEEORE AFTER
HDDRESS SPACE RESISTER ALORESS SPACE REGISTER

1020 052700 .\ma L oooogo | ez cearot ra [cooozo |
102z [aduluyubla) e 10ze falulalal) /PC
w24 1024

3.5.2 Absolute Addressing
OPR @ % A

This mode is the equivalent of immediate deferred or autoincrement
deferred using the PC. The contents of the location following the instruc-
tion are taken as the address of the operand, Immadiate data is inter-
preted as an absclute address (i.e., an address that remains constant
no matfer where in memory the assembled instruction is executed).

Absolute Mode Examples

Symbolic Octal Code Instruction Name
1. CLR @ #1100 005037 Clear
001100
Operation: Clear the contents of location 1100,
BEFORE AFTER
ADDRESS SPACE AODRESS 3PACE .
2O [slera 20 GUSOET
az 100 \PC az fulei [ale] / PC
../ 24
nog TTRIT ARLus) a0J0C0
oz 1108

2. ADD @ # 2000, R3 063703

002000 °
Operation: Add contents of location 2000 to R3.
BEFORE AFTEAR
ADORESS SPALE REGISTER ALORESS SPALE REGISTER
e 063703 sl oopson | 20 053703 | oowoe |
2z QOTHID \PC 22 [duslelaled Pe
L 2a -/
fielelel Q09300 2000 QOO0
3.5.3 Relative Addressing
GOPR A or

OPR X(PCy , where X is the location of A relative to the instruction.

This mode is assembled as index mode using R7. The base of the ad-
dress calculation, which is stored in the second or third word of the
instruction, is not the address of the operand, but the number which,
when added to the (PC), becormes the address of the operand, This mode
is useful for writing position independent code (see Chapter 5} since
the location referenced is always fixed relative to the PC. When instruc-
tions are to be relocated, the operand is moved by the same amount,

Relative Addressing Example

Symbalic Octal Code Instruction Name
INC A 005267 Increment
000054
Operation: To increment location A, contents of memaory

location immediately following instruction
word are added to (PC) to produce address
A. Contents of A are increased by one.

BEFORE AFTER

4DDRESS SFACE ADDRESS SPACE
1020 0L2ET 1020 COOB2ET
[Py Q00054 \ 1028 000054
1024 o 102e —r
1028 1028

+ hg
o0 000000 - T100 oo 000001
\ e

3.5.4 Relative Deferred Addressing
OPR@ or

OPR@X(PC), where x is location containing address of A, relative to the
instruction.

This mode is similar to the relative mode, except that the second word
of the instruction, when added to the PC, contains the address of the
address of the operand, rather than the address of the operand.

3-13

Relative Deferred Mode Example

Symbolic Octal Code Instruction Name
CLR @A 005077 Clear
Q00020
Operation: Add second word of instruction to PC to pro-
duce address of address of operand. Clear
operand.,
BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
1020 QosOTT? 1020 ST
1022 300020 \Pc 1022 26000 _pe
1024 1024 Eal
o\ N
e G
o[owoor]
o oo omeen]

3.6 USE OF STACK POINTER AS GENERAL REGISTER

The processor stack peointer (SP, Register &) is in most cases the gen-
eral register used for the stack operations related to program nesting.
Autodecrement with Register 6 “pushes” data on to the stack and auto-
increment with Register 6 “pops’™ data off the stack. Index mode with
the SP permits random access of items on the stack. Since the SP is
used by the processor for interrupt handling, it has a special attribute:
autoincrements and autodecrements are always done in steps of two.
Byte operations using the 3P in this way simply leave odd addresses
unmadified,

On the PDP-11/70 there are three R6& registers selected by the PS; but
at any given time there js only one in operation.

The following table is a concise summary of the various PDP-11 address-
ing modes
DIRECT MCDES

Mode Name Assembler Function

Syntax
0 Register Rn Register contains operand.
2 Autoincrement (Rn) + Register contains address

of operand. Register con-
tents incremented after
reference.

4 Autodecrement —(Rn) Register contents decre-
mented before reference
register contains address
of operand.

6 index X(Rn) Value X (stored in a word
following the instruction) is
added to (Rn) to produce
address of operand. Nei-
ther X nor (Rn) are modi-
fied.

DEFERRED MODES

Mode Name Assembler Function
Syntax
1 Register Deferred @Rn or (Rn) Register contains the ad-

dress of the operand

3 Autoincrement Deferred @ (Rn) + Register is first used as
a pointer to A word con-
taining the address of
the operand, then incre-
mented (always by 2;
even for byte instruc-
tions)

5 Autodecrement Deferred @ —{Rn) Register is decremented
{always by two; even for
byte instructions) and
then used as a pointer
to a word containing the
address of the operand

7 Index Deferred @X(Rn) Value X (stored in a word
following the instruction)
and {Rn) are added and
the sum is used as a
pointer to a word con-
taining the address of
the operand. Neither X
nor (Rn) are modified

PC ADDRESSING

2 Immediate #n Operand follows instruc-
tion

3 Absolute @A Absolute address follows
instruction

6 Relative A Address of A, relative to

the instruction, follows
the instruction.

7 Relative Defeyred @A Address of location con-
taining address of A, rela-
tive to the instruction fol-
lows the instruction.

CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION
This chapter describes the PDP-11/70 instructions in the following
order:

Single Operand (4.4)
General, Shifts, Multiple Precision, Rotates

Double Operand (4.5)
Arithmetic Instructions, General Register Destination, Logical In-
structions

Program Control Instructions {4.6)
Branches, Subroutines, Traps

Miscellansous (4.7)

Condition Code Operators {4.8)

The specification for each instruction includes the mnemonic, octal code,
binary code, a diagram showing the format of the instruction, a symbolic
notation describing its execution and the effect on the condition codes,
timing information, a description, special comments, and examples.

MNEMONIC: This is indicated at the top corner of each page. When the
word instruction has a byte equivalent, the byte mnemonic is also shown.

INSTRUCTION FORMAT: A diagram accompanying each instruction shows
the octal op code, the binary op code, and bit assignments. (Note that
in byte instructions the most significant bit (bit 15) is always a 1.}

OPERATION: The aperation of each instruction is described with a single
notation. The following symbols are used:

{) = contents of

sr¢c = source address
dst = destination address

loc = location

« = becomes

t = "is popped from stack"
1 = “is pushed onto stack’'
A = boolean AND

v — boolean OR

4.1

-+ — exclusive OR
~ = boolean not
Reg or R — register
B — Byte

4.2 INSTRUCTION FORMATS
The major instruction formats are:

Single Operand Group

I OF Code T I dst
l L 1 I 1

15 8 & o]

Double Operand Group

| OF Code Sre T dst
| 1

1 1 1 1 1 1 L I_ | I T
15 2 N € 5 o]

Condition Code Qperators

Co o0y eyt eE e

Register-Source or Destination

[] T reg —I Sro/dst |
' | 1 [1 1 | 1 l 1 L | |

Subroutine Return

IO o a e Q l reg I
I |- | 1

Branch

[OP Code —[offsel I
1 . L | ! L | 1 1 L 1 | | 1

4.2

4.3 BYTE INSTRUCTIONS

The PDP-11 processor includes a full complement of instructions that
manipulate byte operands. Since all PDP-11 addressing is byte-oriented,
byte manipulation addressing is straightforward. Byte instructions with
autecincrement or autodecrermnent direct addressing cause the specified
register to be modified by one to point to the next byte of data. Byte
operations in register mode access the low-order byte of the specified
register. These provisions enable the PDP-11 to perform as either a word
or byte processor. The numbering scheme for word and byte addresses
in core memaory is:

HIGH BYTE WORD OR BYTE
ALDRESS ADDRESS
jredeall BYTE 1 BYTE G S103eTelv]
2003 BYTE 3 BYTE 2 o200z

The most significant bit {Bit 15) of the instruction word is set to indicate
a byte instruction.

Example:

Symbolic Octal

CLR 0050DD clear word
CLRB 1050DD clear byte

4.3

4-4

4.4 SINGLE OPERAND INSTRUCTIONS
4.4.1 Single Operand Arithmetic Instructions

General: CLR DEC INC NEG TST COM
CLRB DECB INCB NEGB TSTB COMB
Shifts: ASR ASL ASH ASHC
ASRB ASLB
Multiple Precigsion: ADC SBC SXT
ADCB SBCB
Rotates: ROL ROR SWAB
ROLB ROCRB

45

CLR

CLRB
Clear destination noscDD
[O!IOOO1010'OOddddde
J. 1 L I L i l 1 L | 1 l 1 L
15 6 & 0
Operation: {dst} <0
Condition Codes; N: cleared
Z: set
V: cleared
C: cleared
Description: Word: Contents of specified destination are re-
placed with zeroes.
Byte: Same
Example: CLR R1
Before After
(R1) = 177777 {R1) = Q0OQO00
NZVC NZVC

1111 0100

46

DECB
Decrement destination n0&%30D
Em O o 0 1 0 1 ovi l’d d d d 4 d l
l e 1 I L L I 1 L 1] I L 1
15 6 5 0

Operation:
Condition Codes:

Description:

Example:

(dst} «(dst)—1

N: set if result is <0; cleared otherwise

Z: set if result is O; cleared otherwise

V: set if (dst) was 100000; cleared otherwise
C: not affected

Word: Subtract 1 from the contents of the destina-
tion

Byte: Same
DEC RS
Before After
{R5) = 000001 (R5) = 000000
NZVC NZVC
1000 o100

4.7

INC

INCB
Increment destination n0520D
|0!10001010'10dddddd]
| 1 I I | I 1 i 1 i J. —l 1
15 6 5 0
Operation: (dst) «{dst) + 1
Condition Codes: N: set if result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: set if {dst) held 077777, cleared otherwise
C: not affected
Description: Word: Add one to contents of destination
‘ Byte: Same
Example: INC R2
Before After
(R2) = D00333 (R2) — 000334
NZVC NZVC
Q000 0000

4-8

NEGB

NEG
Negate destination n00540D
6l 0 © + 0 1 t'o 0]¢ d d d d d
l 1 i 1 1 I 1 1 1 1 I 1 1
15 & 5 [+
Operation: (dst) « —(dst)

Condition Codes:

Description:

Example:

N: set if the result is <0; cleared otherwise

Z: set if result is O; cleared otherwise

¥: set if the result is 100000; cleared otherwise
C: cleared if the result is O; set otherwise

word: Replaces the contents of the destination ad-
dress by its two's complement. Note that 100000 is
replaced by itself {in two's complement notation the
most negative number has no positive counterpart).
Byte: Same

NEG RO
Before After
(RO} = 000010 (RO) = 177770
NZVC NZVC
0000 1001

4.9

TST

TSTB
Test destination nd57DD
o1 0 © o 1 o t 11 i|ld d& d da d 4
[[l 1 I 1 L [1 L L 1 l L 1
15 € 5 [
Operation; (dst) «(dst)

Condition Codes: N: sat if the result is <O cleared otherwise
Z: set if result is O; cleared otherwise

V; cleared
C: cleared
Description: Word: Sets the condition codes N and Z according
to the contents of the destination address
Byte: Same
Example: TST R1
Before After
{R1} = 012340 (R1) = 012340
NZVC NZVC
0011 Co0o0

COM

comMB
Complement destination n0510D
I t o 1 07O 1]d 4 o9 d d d"l
I i i L I l 1 I 1 1] l - |
15 6 5 0
Operation: {dst) «— {dst)

Condition Codes:

Description:

Example:

N: set if most significant bit of result is set; cleared
otherwise

Z: set if result is O; ¢leared otherwise

¥: cleared

C: set

Replaces the contents of the destination address
by their logical complement {each bit equal to O
is set and each bit equal to } is cleared)

Byte: Same

COM RO
Before After
{RO) = 013333 (R0O) = 164444
NZVC NZVC
0110 10C1

4.4.2 Shifts
Scaling data by factors of two is accomplished by the shift instructions:

ASR—Arithmetic shift right ASC—Multipie shift one word
ASL—Arithmetic shift left ASC—Multiple shift one word

The sign bit (bit 15) of the operand is replicated in shifts to the right.
The low order bit is filled with Q in shifts to the left. Bits shifted out
of the C bit, as shown in the following examples, are lost.

412

Arithmetic Shift Right destination

ASR
ASRB

n0620D

[(m a 0 o0
l L i l

15

Operation:

Condition Codes:

Description:

(dst) «(dst) shifted one place to the right

N: set if the high-order bit of the result is set (re-
sult < 0); cleared otherwise

Z: set if the resuit = 0, cleared otherwise

V: loaded from the Exclusive OR of the N-bit and
C-bit (as set by the completion of the shift op-
eration)

C: loaded from low-order hit of the destination

Word: Shifts all bits of the destination right one
place. Bit 15 is replicated. The C-bit is loaded from
bit 0 of the destination. ASR performs signed divi-
sion of the destination by two,

Word:
E ! [+
I 1 '_-l I 1 1 l 1 A l Fl Fl l |] [_-. -
1 Q
Byte:
I_ 1 - _'. L i I , 1 I i L I | L |
L} D00 ADDRESS B ! t f EVEN ADLRESS o]

4-13

ASL

ASLB
Arithmetic Shift Left destination n063DD
lfm o 0o o t 1 0 ©0'1 1{d 4 d4d d d d
| 1 L | i 1 I 1 I 1 1 f | 1
15 € & 4]
Operation; (dst)«(dst) shifted cne place to the ieft

Condition Codes:

Description:

N: set if high-order bit of the result is set (result
< (); cleared otherwise '

Z; set if the result = 0; cleared otherwise

V: loaded with the exclusive OR of the N-bit and
C-bit {as set by the completion of the shift opera-
tion)

C: loaded with the high-order hit of the destination

Word: Shifts all bits of the destination left one
place. Bit O is loaded with an 0. The C-bit of the
status word is loaded from the most significant bit
of the destination. ASL performs a signed multi-
plication of the destination by 2 with overflow in-
dication.

Word:

C o)

-_L | L | L ' | L L | L L | . . [
15 o
Byte:
1L el e
1 N | I
DDD NIIDRESS T EVEN ADDﬁESS L

414

ASH

Shift Arithmetically 072RSS
T
© l : 1 1 1 ' | ° 1 ! 1 ° ' 1 ' 1 ' ¥ 1 ¢ 1 ° | s 1 ° | ® |
15 [& 5 <)
Operation: R« R Shifted arithmetically NN places to right
or left

Where NN = (src)

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = O; cleared otherwise
V: set if sign of register changed during shift;
cleared otherwise
C: lcaded from last hit shifted out of register

Description: The contents of the register are shifted right or left
the number of times specified by the source op-
erand. The shift count is taken as the low order 6
bits of the source operand. This number ranges
from —32 to -+31. Negative is a right shift and
positive is a left shift.

— —y L
|_L | I. 1 AL | 1 - I._L _l_, 1 L |
C
A oR
o -—I »— |-1—— @
] L I 1 1 L] 1 1 1 I 4 | I I
=] o

ASHC

Arithmetic Shift Combined 073RSS

1
1 1 g 1 1 §]] I
F)|11 ;J 1 1 r|r1r 5191 1 IJ_s
o]

15

Operation:

Condition Codes:

Description:

9 8 & 5

R, Rvl «R, Rvl The double word is shifted NN
piaces to the right or left, where NN = (src)

N: set if result <0; cleared otherwise

Z: set if result =0; cleared otherwise

V: set if sign bit changes during the shift; cleared
otherwise

C: loaded with high order bit when left shift; loaded
with low order bit when right shift (loaded with the
last bit shifted out of the 32-bit operand)

The contents of the register and the register ORed
with one are treated as one 32 bhit word, R 4+ 1
{bits 0-15) and R (bits 16-31) are shifted right or left
the number of times specified by the shift count.
The shiff count is taken as the low order 6 bits of
the source operand. This number ranges from —32
to +31. Negative is a right shift and positive is
a left shift.

When the register chosen is an odd number the reg-
ister and the register OR'ed with one are the same.
In this.case the right shift becomes a rotate. The
18 bhit word is rotated right the number of bhits
specified by the shift count.

I"_l_p_l . P B SN B
|1 I®
L M e |—"E|
OR
RE‘_[| - |] 1 | |I M | " 1 | JJ
= . i
—— =

o

4.4.3 Muitiple Precision

It is sometimes necessary to do arithmetic on operands considered as
multiple words or bytes. The PDP-11 makes special provision for such
operations with the instructions ADC (Add Carry) and SBC (Subtract
Carry} and their byte equivalents,

For example two 16-bit words may be combined into a 32-bit double
precision word and added or subtracted as shown below:

32 BIT WORD
["
QPERAND I A1 I I A]
a 1] 15 4]
~ A
DPERAND L 3] J [B@ I
3 [15 Q

resur | 1 [[
1€ =

k)

Example:

The addition of —1 and —1 could be performed as follows:
—1=37777777777
(R1) = 177777 (R2) = 177777 {(R3) = 177777 (R4) = 177777

ADD R1, RZ
ADC R3
ADD R4,R3

1. After (R1) and {R2) are added, 1 is lcaded into the C hit
2. ADC instruction adds C hit to (R3): (R3) =0

3. (R3) and (R4) are added

4. Resultis 37777777776 or —-2

417

ADC

ADCB
Add Carry destination 550D
lon o 0 0 1 0 1 +Vg 1[4 a4 d4d d 4d d]
J ke Il) | I A Je 1 1 I 1 1
15 8 5 %}
Operation: {dst) «(dst) 4 (C)

Condition Codes;

Description:

Example:

N: set if result <Z0; cleared otherwise

Z: set if result =0; ¢leared otherwise

V: set if (dst) was 077777 and (C) was 1: ¢leared
otherwise

C: set if (dst} was 177777 and {C) was 1; cleared
otherwise

Adds the contents of the C-bit into the destination.
This permits the carry from the addition of the low-
arder words to he carried into the high-order result.
Byte: Same

Double precision addition may he done with the
following instruction sequence:

ADD AD,BO ; add low-order parts
ADC Bl ; add carry into high-order
ADD Al,BI ; add high order parts

4-18

SBC
SBCB

Subtract Carry destination nd560DD
a0 " o 1 14 o0|ldg d 4 d d d l
I i 1 1 1 I 1 1 | 1 I 1 1
15 5 5 o
Operation: {dst) «(dst)}—{(C)

Caondition Codes:

Description:

Example:

N: set if result <70; cleared otherwise

Z: set if result O; cleared otherwise

V: set ii{dst)wvas 100000; cleared otherwise

C: set if {dst) was 0 and C was 1; cleared otherwise

Word: Subtracts the contents of the C-bit from the
destination. This permits the carry from the sub-
traction of two low-order words to be subtracted
from the high order part of the result.

Byte: Same

Doukle precision subtraction is done by:

SUB AQ,BO
SBC Bl
SUB Al,Bl

SXT

Sign Extend destination 0067DD
Lo 0 0 0 1 1 o, .14 {4 4 d d d d
_l L 1 I 1 1 ’ 1 1 i 1 l 1 L
15 & 5 o

Operation:

Condition Codes:

Description:

Example:

(dst) « @ if N bit is ¢lear
{dst} <« —I N bit is set

N: unaffected

Z: set if N bit clear
V. cleared

C: unaffected

if the condition code bit N is set then a —1 is
placed in the destination operand: if N hit is clear,
then a O is placed in the destination operand, This
instruction is particularly useful in multiple preci-
sion arithmetic because it permits the sign to be
extended through multiple words.

SXT A
Before After
(Ay = 012345 (A) = 177777
NZvC NZVC
1000 1000

4.20

4.4.4 Rotates

The rotate instructions operate on the destiration word and the C bit as
though they formed a 17-hit “*circular buffer.” These instructions facili-
tate sequential bit testing and detailed bit manipulation.

4-21

ROL
ROLB

Rotate Left destination n061DD

E10001100'01ddddddl
JI.IIIII L

15

Condition Codes:

Destription:

Example:

Word:

3 5 0

N: set if the high-order bit of the result word is set
(result <0}: cleared otherwise

Z: set if all bits of the result word — 0; cleared
otherwise

V. loaded with the Exclusive OR of the N-hit and
C-bit (as set by the completion of the rotate op-
eration)

C: loaded with the high-order bit of the destipation

Word: Rotate all bits of the destination left one
place. Bit 15 is |oaded into the C-bit of the status
word and the previous contents of the C-bit are
loaded into Bit O of the destination.

Byte: Same

r
3 Q—]

| I R P TN SR AR RO S N
| 5

Bytes:

Coo | [EVEN
PR ST |]
7

1I|.|||I
|5_~——]a

4-22

ROR
RORB

Rotate Right destination n0s80DD

¥
1y & 0 Q t 1 o] a0 0|d d d d d d[
I 1 1 | i] l 1] 1 1 |] 1
15 8 & o]

Condition Codes: N: set if the high-order bit of the result is set
(result < 0); ¢leared otherwise
Z: set if all bits of result = &; cleared otherwise
V: loaded with the Exciusive OR of the N.-bit and
C-bit (as set by the completion of the rotate
operation}
C: loaded with the low-order bit of the destination

Description: Rotates all bits of the destination right one place.
Bit O is loaded into the C-bit and the previous
contents of the C-bit are loaded into hit 15 of the

destination.
Byte: Same
Example:
Word:
T
_.L I i L I L 1 | L | | 1 | | 1 1
1 15 0
Byte:
T o
H =] T g
L |

4-23

SWAB

Swap Bytes destination 0003DD
T
| 4 I ° 1 0 1 © I ° 1 ° 1 ° I 0 1 ! 1 ! d 1 9 1 i I d 1 ¢ 1 d—l
15 & 6 3]
Operatlon: Byte 1/Byte O «Byte O/Byte 1

Condition Codes: N: set if high-order bit of low-order byte {bit 7) of
result is set; cleared otherwise
Z: set if low-order byte of resuit —= O; cleared

otherwise
V: cleared
C: cleared
Description: Exchanges high-order byte and low-order byte of
the destination word (destination must be a word
address).
Example: SWAB R1
Before After
(R1) = 077777 (R1) = 177577
NZVC NZVC
1111 00090

4-24

4.5 DOUBLE OPERAND INSTRUCTIONS

Double operand instructions provide an instruction (and time) saving
facility since they eliminate the need for “load” and “'save’ sequences
such as those used in accumulator-oriented machines.

General: MOV ADD sUB CMP
MOVB CMPB

Register Destination: MUL DIv XOR

Logical: BIS BIT BIC

BISB BITB BICB
4.5.1 Double Operand General Instructions

4-25

MOV

MOVB
Move source to destination nlSSDD
o1 0 O t|s s s s 's s |d d& d 4 d d
L | 1 I 1 1] L I 1] 1 1] —|
15 2 1 & 5 0
Operation: {dst) <{src}

Condition Codes:

Description:

Example:

N: set if {sr¢} <0; cleared otherwise
Z: set if (sr¢) = 0; cleared otherwise
V: cleared

C: not affected

word: Moves the source operand to the destination
location. The previous contents of the destination
are lost. The contents of the source address are
not affected.

Byte: Same as MOV. The MOVB to a register
(unique among byte instructions) extends the most
significant bit of the low order byte (sign exten-
sion}. Otherwise MOVB operates on bytes exactly
as MOV operates on words,

MOV XXX,R1 ; loads Register 1 with
the contents of memory location; XXX répresents
a programmer-defined mnemonic used to represent
a memory location

MOV #20,R0 ; loads the pumber 20
into Register Q; "' #°' indicates that the value 20 is
the operand

MOV @ # 20,—(R6) ; pushes the operand
contained in Jocation 20 onto the stack

MOV (REY+, @ # 177566 ; pops the operand off
a stack and moves it inte memory locaticn 177566
(termina! print buffer)

MOV R1,R3 ; performs an in-
terregister transfer

MOVB @ #177562,@ # 177566 ; moves a charac-
ter from terminal keyboard buffer to terminal
buffer

4-26

ADD

Add source to destination 06S50D
Lo’ 1 1 ols s s s 's s|d d d d 4 4]
| 1 1 | I I 1 1 1 |] L i
5 12 6 5 o
Operation: (dst) «(srcy + (dst)

Condition Codes:

Description:

Examples:

N: set if result <J0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: set if there was arithmetic overflow as a result
of the operation; that is both operands were of the
same sign and the result was of the opposite sign;
cleared otherwise

C: set if there was a carry from the most significant
bit of the result; cleared otherwise

Adds the source operand to the destination operand
and stores the result at the destination address.
The original contents of the destination are lost.
The contents of the source are not affected. Two's
complement addition is performed.

Add to register: ADD 20,RO

Add to memary: ADD RI1,XXX

Add register to register: ADD R1,R2

Add memory to memory: ADD @ # 17750,XXX

XXX is a programmer-defined mnemonic for a mem-
ory lacation.

4-27

SUB

Subtract source from destination 168S0D
IT 1 1 ©]s s s s's s]d d d d 4 4
| | L | N | L L | | | i i
15 121N & 5 2}
Operation: {dst) «(dst)—(src)
Condition Codes: N: set if result < 0; cleared otherwise

Z: set if result =0; cleared otherwise

V: set if there was arithmetic overflow as a result
of the operation, that is if operands were of oppo-
site signs and the sign of the source was the same
as the sign of the resuit; cleared otherwise

C: cleared if there was a carry from the most sig-
nificant bit of the resuit; set otherwise

Description: Subtracts the source operand from the destination
aoperand and leaves the result at the destination
address, The criginal contents of the destination
are lost. The contents of the source are not af-
fected, In double-precision arithmetic the C-bit,
when set, indicates a “‘borrow"’

Example: SUB R1, R2
Before After
{R1) = 011111 {(R1) = 011111
(R2) = 012345 (R2) = 001234
NZVC NZVC
1111 0000

4-28

Compare source to destination n2ssoD

15

Operation:
Condition Codes:

Description:

Lon o 1 OJ s s s 5 8 % ‘ d d d d 4 d
o L 1 L L L [L
2 1"

& 5 o]

{src)—{(dst) [in detail, (src} 4+~ — {dst) + 1]

N: set if result < 0; cleared otherwise

Z: set if result =0; cleared otherwise

V: set if there was arithmetic overflow; that is, op-
erands were of opposite signs and the sign of the
destination was the same as the sign of the resuilt;
cleared otherwise

C: cleared if there was a carry from the most sig-
nificant bit of the result; set ctherwise

Campares the source and destination operands and
sets the condition codes, which may then be used
for arithmetic and logical conditional branches.
Both operands are unaffected. The only action is
to set the condition codes. The compare is cus-
tomarily followed by a conditional branch instruc-
tion,

Note that unlike the subtract instruction the order
of operation is (src)}—(dst), not (dst)—{src).

4.29

MUL

Multiply Q70RSS
I a1 1 1 ¢ o o r r 4 5 5 [s s 5]
L 1 1 1 1 | 1 1 1 L 1 1 1
15 g B & 5 o]
QOperation: R, Rvl« R x(src}

Conditon Codes:

Description:

Example:

N: set if product is < 0; cleared otherwise

Z: set if product is 0; cleared otherwise

V: cleared

£: set if the result is less than —2 or greater
than or equal to 2'%—1.

The contents of the destination register and source
taken as two's complement integers are multiplied
and stored in the destination register and the suc-
ceeding register (if R is even). If R is odd only the
low order product is stored. Assembler syntax is:
MUL S,R.

{Note that the actuai destination is R,Rvl which
reduces to just R when R is odd.)

16-bit product {R is odd)

CLC ;Clear carry condition code
MOV #400,R1

MUL #10,R1

BCS ERROR ;Carry will be set if

;oroduct is less than

;—2'% or greater than or equal
tg 21

;no significance lost

Befaore After
(R1) = 000400 {(R1) = 004000

4-30

DIV

Divide 071RSS
o
| 1 | 1) 1 i o] . 4] . i r . r . T 5 . 3 , % I 4 \ 3 , % |
15 8 8 & 5 0
Operation: R, Rvl <R, Rvl {(src}

Condition Codes: N: set if quotient <0; cleared otherwise
Z: set if quotient =0; cleared otherwise
V. set if source =0 or if the absolute value of the
register is larger than the absalute value of the
seurce, (In this case the instruction is aborted be-
cause the guotient would exceed 15 bits.)
C: set if divide 0 attempted; cleared otherwise

Description: The 32-bit two's complement integer in R and
Rvl is divided by the source operand. The quotient
is left in R; the remainder in Rvl, Division will be
performed so that the remainder is of the same
sign as the dividend. R must be even.

Example: CLR RO
MOV #20001,R1
DIV #2,R0

Before After
(RO) = 00Q000 (RO) = 010000 Quotient
{R1) = 020001 {(R1) = 000001 Remainder

4-31

XOR

Exclusive Or 074RDD
I Q 1 1 1 o 0O T ¥ 4 d d d d d d]
| !] 1 1 1 1 1] | 1]
15 B] 5 O
Operation: {dst) «Rv(dst)

Condition Codes:

Description:

Exampie:

N: set if the result < 0; cleared otherwise
Z: set if result =0; cleared otherwise

V: cleared

C: unaffected

The exclusive OR of the register and destination
operand is stored in the destination address. Con-
tents of register are unaffected. Assembler format
is: XOR R,D

XOR RO,R2

After
(RO) = 001234
(R2) = 000325

Before
(RO) = 001234
(R2) = 001111

4-32

4.5.2 Logical Instructions
These instructions have the same format as the double operand arith-
metic group. They permit operations on data at the bit level.

4-33

BIS

BISB
Bit Set n58SDD
| oA 1 o 1 d d d d d d
] 1 1 lslslslslslsl 1 1 I 1 I—l
15 12 1t B 5]
Operation: {dst) «{src} v (dst}
Condition Codes: N: set if high-order bit of result set, cleared other-
wise
Z: set if result = zero; cleared otherwise
V: cleared
C: not affected
Description: Performs “Inclusive OR" operation between the
source and destination operands and leaves the re-
sult at the destination address; that is, correspond-
ing bits set in the source are set in the destination.
The content of the destination are lost.
Example: BIS RO,R1
Before After
(RO} = 001234 (RO) = 001234
(R1) = 001111 (R1) = 001335
NZVC NZVC
0000 QO0o0

4-34

BIT

BITB
Bit Test n3ss0bD
[onloltl1 suslsls|5|sldldj_dl_d|d| I
15 [T & 5 [+)
Operation: (dst)A(src)

Condition Codes:

Description:

Example;

N: set if high-order bit of result set; cleared other
wise

Z: set if result =0; cleared otherwise

V: cleared

C: not affected

Performs logical “‘and™ comparison of the source
and destination operands and modifies condition
codes accordingly. Neither the source nor destina-
tion operands are affected. The BIT instruction may
be used to test whether any of the corresponding
bits that are set in the destination are also set in
the source or whether all corresponding bits set in
the destination are clear in the scurce.

BIT #30,R3 ; test bits 3 and 4 of R3
i to see if both are off

4.35

BIC

BICB
Bit Clear n4S5DD
I (e TR | 0 1] S] 8 g 5 s | d d ¢ d d d
| ! l 1 s 1 ' L 1 1 1 1 1
t5 121 -] = ¢]
Cperatiom: {dst) «— (src)A(dst)

Conditicn Codes:

Description:

Example:

N: set if high order bit of result set; cleared other-
wise

Z: set if result =0; cleared otherwise

V: cleared

C: not affected

Clears each bit in the destination that corresponds
to a set bit in the source. The original contents of
the destination are lost. The contents of the source
are unaffected.

BIC R3,R4
Befare After
(R3) = 001234 (R3) = 001234
(R4) = 001111 (R4) = 000101
NZVC NZVC
1111 0001

4-36

4.6 PROGRAM CONTROL INSTRUCTIONS

4.6.1 Branches

The instruction causes a branch to a location defined by the sum of
the offset (multiplied by 2} and the current contents of the Program
Counter if:

a) the branch instruction is unconditional

b) it is conditional and the conditions are met after testing the
condition codes {status word).

The offset is the number of words from the current contents of the PC.
MNote that the current contents of the PC point to the word following
the branch instruction.

Although the PC expresses a byte address, the offset is expressed in
words. The offset is automatically multiplied by two to express bytes
before it is added to the PC. Bit 7 is the sign of the offset. If it is set,
the offset is negative and the branch is done in the backward direction.
Similarly if it is not set, the offset is positive and the branch is done
in the forward direction.

The 8&-bit offset allows branching in the backward direction by 200,
words {400, bytes) from the current PC, and in the forward direction
by 177, words (376, bytes) from the current PC.

The PDP-11 assembler handles address arithmetic for the user and
computes and assembles the proper offset field for branch instructions
in the form:

Bxx loc

Wwhere “Bxx’ is the branch instruction and “loc’ is the address to
which the branch is to be made. The assembler gives an error indica-
tion in the instruction if the permissible branch range is exceeded.
Branch instructions have no effect on condition codes.

4.37

BR

Branch (unconditional) 004 loc
2 0 0o 0o & 0 0o 1 OFFSET J
i] L 1 ! s 1 l | 1 s 1 ! L
15 8 T Q
Operation: PC « PC + (2 x ofiset)
Description: Provides a way of transferring program control

within a range of —128 to +127 words with a one
word instruction.

4-38

Simple Conditional Branches
BEQ
BNE
aml
BPL
BCS
BCC
BVS
BVC

4-39

BEQ

Branch on Equal {zero) 0014 offset
ro o o o 0 1 1 OFFSET]
. | L 1 1 a1 1 B N TR T | L1
15 8 7 5}
Operation: PC «PC + (2 x offset) if Z=1

Condition Codes:

Description:

Example;

Unaffected

Tests the state of the Z-bit and causes a branch if
Z is set. As an example, it is used to test equality
following a CMP operation, to test that no bits set
in the destination were also set in the source fol-
lowing a BIT operation, and generally, to test that
the result of the previous operation was zero.

CMP AB ; compare A and B

BEQ C ; branch if they are egual
will branchto CifA =8B {A-B=0)

and the sequence

ADD AB ;add Ato B

BEQ C ; branch if the result = 0

will breachto CifA 4 B =0.

4-40

BNE

Branch Not Equal {Zero) 0010 offset
lo © 0 0 0 0 1 0 OFFSET J
1 1 1 1 1 L 1 1 1 L 1 i I T
15 8 1 <]
Operation: PC «PC 4+ (2xoffset}if Z=0
Condition Codes: Unaifected
Description: Tests the state of the Z-bit and causes a branch if

the Z-bit is clear. BNE is the compleentary opera-
tion to BEQ. K is used to test inequality following a
CMP, to test that some bits set in the destination
were also in the source, following a BIT, and gen-
erally, to test that the result of the previous opera-
tion was not zero,

Example: CMP AB ; compare A and B
BNE C ; branch if they are not equal

will branch to Cif A £ B
and the sequence

ADD AB ;add Ato B
BNE C ; branch if the result is not equal
to O

will branchta Cif A + B 7& 0

4-41

BMI

Branch on Minus 1004 offset
rl o 0 0 6 0 O 1 OFFSET
| 1] 1]] 1 1 1) 1 1
15 8 7)
Operation: PC « PC + (2 x offset) if N =1

Condition Codes: Unaffected

Description: Tests the state of the N-bit and causes a branch if
N is set. It is used to test the sign (most significant
bit) of the result of the previous cperation, branch-
ing if negative.

442

Branch on Plus

BPL

1300 offset

Operation: PC « PC 4 (2 x offset) if N =0

Description:

Tests the state of the M-bit and causes a branch

if N is clear. BPL is the complementary operation

of BMI.

4-43

BCS

Branch on Carry Set 1034 offset
1t o 0o 0 0o t 1) OFFSET
I L ' I L L l L L 1 L L
15 5 7 i)
Operation: PC «PC + (2xoffset) ifC =1

Tests the state of the C-bit and causes a branch if
C is set. It is used to test for a carry in the result

ot a previous operation.

Description:

4-44

BCC

Branch on Carry Clear 1030 offset
t 0 0 0 0 1 4. 0 OFFSET |
1 L 1 1 L 1 1 1 | i 1 1 L L
15 7 o
Operation: PC « PC + (2 xoffset}) ifC =0
Description; Tests the state of the C-bit and causes a branch
if C is clear. BCC is the complementary operation
to BCS

4-45

BVS

Branch on Overflow Set 1024 offset
l i 0 06 0 0 1 0 i OFFSET J
I L L I_ L il l L ' L L L il
15 8 7 0
Operation: PC «PC + {2x offset)if ¥ =1
Description: Tests the state of V bit (overflow) and causes a
branch if the ¥V bit is set. BVS is used to detect

arithmetic overflow in the previous operation.

4-46

BVC

Branch on QOverflow Clear 1020 offset
i, 0 0 0,0 1 0, 0 OFFSET I
I 1 11 I 1 1 I 1 l L 1 L L
15 a 7 o
Operation: PC « PC + (2 x offset) if ¥ == O
Description; Tests the state of the V bit and causes a branch if
the V bit is clear. BVC is complementary operation
to BYS.

4.47

Signed Conditional Branches

Particular combinations of the condition code bits are tested with the
signed conditional branches. These instructions are used to test the
results of instructions in which the operands were considered as a
signed (two’s complement) values.

Note that the sense of signed comparisons differs from that of unsigned
compariscons in that in signed 16-bit, two's complement arithmetic the
sequence of values is as follows:

largest Q77777
077776
positive
000001
000000
177777
177776
negative
100001
smallest 100600

whereas in unsigned 16-bit arithmetic the sequence is considered to he
highest 177777

000002
000001
fowest Q00000
The signed conditional branch instructions are:
BLT BGE
BLE BGT

4.48

BLT

Branch on Less Than (Zero) 0024 offset
o, 0 ¢ 1 0,1 OFFSET |
| L 1 l 1 1 L 1 1 L 1
15 a 7 o
Operation: PC «-PC + (2xoffset) fNvV =1
Description: Causes a branch if the “Exclusive Or" of the N and

V bits are 1. Thus BLT will always branch following
an operation that added two negative numbers,
even if overflow occurred.

In particular, BLT will always cause a branch if it
follows a CMP instruction operating on a negative
source and a positive destination {(esen if overflow
occurred). Further, BLT will never cause a branch
when it follows a CMP instruction operating on 2
positive source and negative destination. BLT will
not cause a branch if the result of the previous
operation was zero (without overflow).

4-49

BGE

Branch on Greater than or Egual (zero) 0020 offset
o, 0 OFFSET
I I i @ 1 ° I ° 1 l 1 ° ! 0 1 | 1 J] i 1]
15 8 7 0
Operation: PC « PC + (2 xoffset) f N vy =0

Description:

Causes a branch if N and V are either both clear or
both set, BGE is the complementary operation to
BLT. Thus BGE will always cause a branch when
it follows an operation that caused addition of two
positive numbers, BGE will also cause a branch on
a zero result.

4-5¢

BLE

Branch gn Less than or Equal {zero} 0034 offset
| OFFSET
[OIO_LD_lolon_i_L‘!i[I | L . 1 1 |—I
15 B 7 o

PC « PC + (2 x offset} if Z v{NawV) = 1

Description: Operation is similar to BLT but in addition will
cause a branch if the result of the previcus op-

eration was zero.

Operation:

4.51

BGT

Branch on Greater Than (zero) Q030 offset
6,0 0 OFFSET
l l 1 1 ° I © | ! 1 1 I ° 1 l | 1 1 |
15 8 7 o]
Operation PC « PC + (2 x offset} if Z v(N+V) =0
Description: Cperation of BGT is similar to BGE, except BGT

will not cause a branch on a zero result.

4-52

Unsigned Conditional Branches

The Unsigned Conditional Branches provide a means for testing the
result of comparison operations in which the operands are considered as
unsigned values.

BHI
BLOS
BHIS
BLO

4.53

BHI

Branch on Higher 1010 offset
I 1,0 ¢ 0,0 0O 1,0 OFFSET
l i 1 I 1 1 I i 1 ! 1 | 1 1
15 6 7 o
Operation: PC « PC 4+ (2xoffse}ifC=0andZ =0
Description: Causes a hranch if the previous operation caused

neither a carry nar a zero result. This will happen
in comparisoen (CMP) operations as long as the
source has a higher unsigned value than the
destination.

4-54

BLOS

Branch on Lower or Same 1314 offset
1,0 o 0t 1 OFFSET I
I 1 1 1 [L L 1 . | ! 1
15 8 7 o
Operation: PC «PC I+ (2 xoffsef) ifCvZ=1

Description:

Causes a branch if the previous operation caused
either a carry or a zero result. BLOS is the com-
plernentary cperation to BHI. The branch will occur
in comparison operations as long as the source is
equal to, or has a lower unsigned value than the
destination.

4-55

BLO

Branch on Lower 1034 offset
1 0 ¢ o o 1t A OFFSET
I L Il ’ L ' l L l ' 1 I L L
15 8 7 [}
Operation: PC «PC L (2xoffset)ifC =1
Description: BLO is same instruction as BCS. This mnemonic is

inciuded only for convenience,

4-56

BHIS

Branch an Higher or Same 1030 offset
1 1t OFFSET
I l ° 1 ° 1 ° l ° i | I © I | 1 1 1 | 1 1
15 8 7 >}
Cperation: PC «PC +(2xoffset) fC =0
Description: BHIS is the same instruction as BCC. This mne-

monic is included only for convenience.

4-57

4.6.2 Subroutine Instructions

The subroutine call in the PDP-11 provides for automatic nesting of
subroutines, reentrancy, and multiple entry points. Subroutines may cail
other subroutines {or indeed themselves) to any level of nesting without
making special provisian for storage or return addresses at each level
of subroutine call. The subroutine calling mechanism dces nat modify
any fixed location in memory, thus providing for reentrancy. This allows
one copy of a subroutine to be shared among severaf interrupting pro-
cesses, For more detailed description of subroutine programming see
Chapter 5,

4-58

JSR

Jump to Sub Routine Q04 reg. dst

6 ¢ 6 o .t 0 O ' 4 d d ,d d d I
L | PG N L R B

15 8 6 5 0

Operation:

Description:

(tmp) <(dst) (tmp is an internal processor register)

L(SPY«reg (push reg contents onto processor
stack)

reg «<PC (PC holds location foliowing JSR; this ad-
dress now put in reg)

PC<(tmp) (PC now points to subroutine address)

In execution of the JSR, the old contents of the
specified register {the "“LINKAGE POINTER") are
automatically pushed conto the processor stack and
new linkage information placed in the register.
Thus subroutines nested within subroutines to any
depth may all be called with the same linkage reg-
ister. There is no need either to plan the maximum
depth at which any particular subroutine will be
called or to include instruzctions in each routine to
save and restore the linkage pointer. Further, since
all linkages are saved in a reentrant manner on the
processor stack, execution of a subroutine may be
interrupted, the same subroutine reentered and
executed by an interrupt service routine. Execution
of the initial subroutine can then be resumed
when other requests are satisfied, This process
{called nesting} can proceed to any level.

In both ISR and JMP instructions the destination
address is used to load the program counter, R7.
Thus for example a JSR in destination mode 1 for
general register R1 {where {R1) = 100}, will ac-
cess a subroutine at location 100. This is effectively
cne level less of deferral than operate instructions
such as ADD.

A subroutine called with a JSR reg,dst instruction
can access the arguments following the call with
etther autoincrement addressing, {reg) 4, (if argu-
ments are accessed sequentially) or by indexed

4-59

addressing, X(reg), (if accessed in random order).
These addressing modes may also be deferred,
@{reg) + and @X{reg) if the parameters are op-
erand addresses rather than the operand them-
selves,

JSR PC, dst is a special case of the PDP-11 sub-
routine cail suitabie for subroutine calls that trans-
mit pararneters through the general registers. The
SP and the PC are the only registers that may be
maodified by this call.

Another special case of the JSR instruction is JSR
PC, @{SP) + which exchanges the top element of
the processor stack and the contents of the pro-
gram counter. Use of this instruction allows two
routines to swap program control and resume op-
eration when recalled where they teft off. Such rou-
tines are called “co-routines.”’

Return from a subroutine is done by the RTS in-
struction. RTS reg loads the contents of reg into
the PC and pops the top element of the processor
stack into the specified register.

4-860

Mark 0064nn

[O 1 ©) ° ! ! ! ! ! ° 1 1 1 ° 1 1 " 1 " 1 " 1 " 3 " ! " I
15 5 5}
Operation; SP«-PC 4+ 2xnn nn = number of parameters

Condition Codes:

Description:

Example:

PC<R5
RS «(SP)t

unaffected

Used as part of the standard PDP-11 subroutine
return convention. MARK facilitates the stack clean
up procedures involved in subroutine exist. Assem-
bler format is: MARK N

MOV
MOV
Moy

MOV
MOV
MoV
JSR

;place old R5 on stack
;place N parameters
;on the stack to be
;used there by the
;subroutine

=MARKN,—(5P) ;places the instruction

RS,—(5P)
P1,—{SP)
P2,—(SP)
PN,—(SP)
SP ,R5
PC,SUB

‘MARK N on the stack
;set up address at Mark N
instruction

jump to subroutine

At this point the stack is as follows:

OLD RS

Pi

PN

MARK N

OLD PC

And the program is at the address SUB which is
the beginning of the subroutine.

suB:

RTS R3
4-61

;execution of the subroutine it-
self

ithe return begins: this causes

the caontents of R5 to be placed in the PC which
then resuits in the execution of the instruction
MARK N. The contents of the old PC are placed in
R5.

MARK N causes: (1) the stack pointer to be ad-
justed to point to the old RS value; (2) the value
now in RS (the old PC) to be placed in the PC; and
(3) contents of the old R5 to he popped intc
RS thus completing the return from subroutine.

Note: If Memory Management is in use a stack
must be in | and D spaces (Chapter &) to execute
the MARK instruction.

4-62

RTS

Return from Subroutine 00020 Reg
© 0 0.0 0 0,0 1 0,86 0 O —I
0,0 00,00 0,01 0400 0jc r
15 3 2 o]
Operation: PC +reg
reg —(SP)1
Description: Loads contents of reg into PC and pops the top

element of the processor stack into the specified
register.

Return from a non-reentrant subroutine is typically
made through the same register that was used in
its call. Thus, a subroutine calted with a JSR PC,
dst exits with a RTS PC and a subroutine called
with a JSR Rb, dst, may pick up parameters with
addressing modes (R5¥4+, X(R5). or @X(R9) and
finally exits, with an RTS RS,

4-63

4.6.3 Program Control Instructions
SPL
JMP
SoB

464

SPL

Set Priarity Level Q0023N
o o o 6 0 0 0 1 0 O 1 1 _a n on J
1 1 1 1 ! i 1] 1 1 1 1 1 1
15 32 [+
Operation: PS (bits 7-5)«Priority

Condition Codes:

Description

not affected

The least significant three bits of the instruction
are loaded into the Program Status Ward (PS) bits
7.5 thus causing a changed priority. The old priority
is fost.

Assembler syntax is: SPL N

Note: This instruction is a no op in User and
Supervisor modes.

4-65

Jump Q001DD
[o .0 0 ¢ 6 0,0 ©¢ 1|4 d d 4 d d
’ i L L I L L 1 1 l L 1
15 6 5 0
Operation: PC «(dst)

Condition Codes:

Description:

not affected

JMP provides more flexible program branching
than provided with the branch instructions. Control
may be transferred to any location in memory {no
range limitation) and can be accomplished with
the full fiexibility of the addressing modes, with
the exception of register mode Q. Execution of a
jump with mode O will cause an “illegal” instruc-
tion" condition. {Program control cannot be trans-
ferred to a register.) Register deferred mode is
legal and will cause program control to be trans-
ferred to the address held in the specified register.
MNote that instructions are word data and must
therefore be fetched from an even-numbered ad-
dress, A "boundary error’” trap condition will result
when the processor attempts to fetch an instruc-
tion from an odd address.

Deferred index mode JMP instructions permit trans-
fer of contro! to the address contained in a select-
able element of a table of dispatch vectors.

4-66

SOB

Subtract One and Branch 077R offset

1 1 1 r ! r r QFFSET I
1 L 1

Operation:

Condition Codes:

Description:

9 8 6 5 o

R« R —1I if this result # 0O then PC « PC —(2x
offset)

unaffected

The register is decremented. If it is not equal to 0,
twice the offset is subtracted from the PC (now
pointing to the following word). The offset is inter-
preted as a six bit positive number. This instruction
provides a fast, efficient method of loop control.
Assembler syntax is;

S50B R,A

Where A is the address to which transfer is to be
made if the decremented R is not equal to 0. Note
that the SOB instruction can not be used to trans-
fer control in the forward direction.

4-67

4.6.4 Traps

Trap instructions provide for calls to emulators, 1O monitors, debugging
packages, and user-defined interpreters. A trap is effectively an interrupt
generated by software. When & trap occurs the contents of the current
Program Counter (PC) and Program Status Word (PS) are pushed onto
the processor stack and replaced by the contents of a two-word trap
vector containing a new PC and new PS. The return sequence from a
trap involves executing an RTI or RTT instruction which restores the old
PC and old PS by popping them from the stack. Trap vectors are focated
permanently assigned fixed address.

TRAP
EMT
BPT
10T
RT!
RTT

4-68

EMT

Emulator Traps 104000-104377
1 I 0 L O L O I 1 'l 0 2 O ’_ 0 [L l. L 'y J L b J
15 g8 7 +]
Operation: L(SP}«PS
L(SP)«PC
PC«(30)
PS «(32)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: Inaded from trap vector
C: loaded from trap vector

Description: All operation codes from 104000 to 104377 are
EMT instructions and may be used to transmit in-
farmation to the emulating routine (e.g., function
to be performed). The trap vector for EMT is at
address 30. The new PC is taken from the word at
address 30; the new central processor status (PS)
is taken from the word at address 32.

Caution: EMT is used frequently by DIGITAL systern
software and is therefore not recommended for gen-
eral use.

4-69

Trap 104400 to 104777
I 1] 0 L O " 1 L O i O I 1 l L | L 'l I L ul.]
15 8 7 o
Operation: 1(SP) «PS
L(SP)«<PC
PC «(34)
PS «-(36)

Condition Codes:

Description:

N: Icaded from trap vector
Z: loaded from trap vector
V! loaded from trap vector
C: loaded from trap vector

Cperation codes from 104400 to 104777 are TRAP
instructions. TRAPs and EMTs are identical in op-
eration, except that the trap vector for TRAP is at
address 34.

Note: Since DEC software makes frequent use of
EMT, the TRAP instruction is recommended for
general use,

4-70

BPT

Breakpoint Trap Q00003
T
LoLoLololoLo‘oloLo‘olo.ololoJ1111
15 0
Operation: L(5P) <P5S
L{(SPY<«PC
PC«(14)
PC «(16)

Condition Codes:

Description:

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Performs a trap sequence with a trap vector ad-
dress of 14. Used to call debugging aids. The user
is cautioned against employing code 000003 in pro-
grams run under these debugging aids.

(no information is transmitted in the low byte.)

4-71

10T

{0 Trap Q00004
o .0 0 6 0 0. 0'0 0.0 0 O
! A i I_ i -y J_ A L 1 1 1 l‘ 'l 0 L O[
5 0
Operation: WSP) «<PS
{(SP) «PC
PC<(20)
PS—(22)

Condition Codes:

Description:

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Perfarms a trap sequence with a trap vector ad-
dress of 20, Used to call the 1/0O Executive routine
1ICX in the paper tape software system, and for
error reporting in the Disk Operating System.

{no information is transmitted in the low byte)

4-72

RTI

Return from Interrupt Q00002
o ¢ 0 0 0 © 0. 0 © 0 0 O © O 1 0
'l 1 I L L i ' 1 I A 'l l L L
15 0
Operation: PC (8Pt
PS5 «<(5P)1
Condition Codes: N: loaded from processor stack

Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processar stack

Description: Used o exit from an interrupt or TRAP service rou-
tine. The PC and PS are restored (popped} from the
processor stack.

4-73

RTT

Return from Trap 000006
o o 0 6 0 0,6 0 0,0 0 O 1 1 o]
[1 1 1 1 I i 1 I i L l i P —
15 o
Operation: PC «(SP)1
PS <(5P)}

Condition Codes:

Description:

N: lcaded from processor stack
Z: loaded from processor stack
¥ lnaded from processor stack
C: loaded from processor stack

This is the same as the RTI instruction except that
it inhibits a trace trap, while RTI permits a trace
trap. If a trace trap is pending, the first instruction
after the RTT will bhe executed prior to the next
“T" trap. In the case of the RTI instruction the
“T'" trap will occur immediately after the RTI,

4.74

Reserved Instruction Traps—These are caused by attempts to execute
instruction codes reserved for future processor expansion (reserved in-
structions} or instructions with illegal addressing modes (illegal instruc-
tions). Order codes not corresponding to any of the instructions de-
scribed are considered to be reserved instructions. JMP and JSR with
register mode destinations are iliega! instructions. Reserved and illegal
instruction traps occur as described under EMT, but trap through vectors
at addresses 10 and 4 respectively.

Stack Overflow Trap
Bus Error Traps—Bus Error Traps are;

1. Boundary Errors—attempts to reference instructions or word
operands at odd addresses,

2. Time-Qut Errors—attempts to reference addresses on the bus
that made no response within 5 ps in the PDP-11/70. In general,
these are caused by attempts to reference non-existent memory,
and attempts to reference non-existent peripheral devices.

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap—Trace Trap enables bit 4 of the PS and causes processor
traps at the end of instruction executions. The instruction that is ex-
ecuted after the instruction that set the T-bit will proceed to completion
and then cause a processor trap through the trap vector at address 14.
Note that the trace trap is a system debugging aid and is transparent
to the general programmer.

The following are special cases and are detailed in subseguent para-
graphs.

. The traced instruction cleared the T-bit.
. The traced instruction set the T-bit.
. The traced instruction caused an instruction trap.

1

2

3

4, The traced instruction caused a bus error trap.

5. The traced instruction caused a stack overflow trap.
&

. The process was interrupted between the time the T-bit was set
and the fetching of the instruction that was to be traced.

. The traced instruction was a WAIT,

~l

8. The traced instruction was a HALT.
9. The traced instruction was a Return from Trap.

Note: The traced instruction is the instruction after the one that sets
the T-bit.

An instruction that cleared the T-bhit—Upon fetching the traced instruc-
tion an internal flag, the trace flag, was set. The trap will still occur at the
end of execution of this instruction. The stacked status word, howewver,
will have a clear T-bit.

4-75

An instruction that set the T-bit—Since the T-bit was already set, satting
it again has no effect. The trap will occur.

An instruction that caused an Instruction Trap—The instruction trap is
sprung and the entire routine for the service trap is executed. If the
service routine exits with an RTI or in any other way restores the
stacked status word, the T-bit is set again, the instruction following the
traced instruction is executed and, unless it is one of the special cases
noted above, a trace trap occurs.

An instruction that caused a Bus Error Trap—This is treated as an In-
struction Trap. The only difference is that the error service is not as
likely to exit with an RTI, so that the trace trap may not ccecur.

An instruction that caused a stack overflow—The instruction completes
execution as usual—the Stack Overflow does not cause a trap. The
Trace Trap Vector is loaded into the PC and PS, and the old PC and
PS are pushed onto the stack. Stack Overflow occurs again, and this
time the trap is made.

An interrupt between setting of the T-hit and fetch of the traced instruc-
tion—The entire interrupt service routine is executed and then the T-bit
is set again by the exiting RTI. The traced instruction is executed (if
there have been no other interrupts} and, unless it is a special case
noted above, causes a trace trap.

Mote that interrupts may be acknowledged immediately after the loading
of the new PC and PS at the trap vector location. To lock out all inter-
rupts, the PS at the trap vector should raise the processor priority to
level 7.

A WAIT—The trap cccurs immediately.

A HALT—The precessor halts. When the continue key on the console
is pressed, the instruction following the HALT is fetched and executed.
Lnless it is one of the exceptions noted above, the trap occurs imme-
diately following execution.

A Return from Trap—The return from trap instruction either clears or
sets the T-bit. It inhibits the trace trap. If the T-bit was set and RTT
is the traced instruction the trap is delayed until completion of the next
instruction.

Power Failure Trap—is a standard PDP-11 feature, Trap occurs when-
ever the AC power drops helow 95 volts or outside 47 to 63 Hertz. Two
mitliseconds are then allowed for power down processing. Trap vector
far power failure is at locations 24 and 26.

Trap priorities—in case multiple processor trap conditions occur simul-
taneously the following order of priorities is cbserved (from high to low):

476

Parity error

Memory Management violation
Stack Limit Yellow

Power Failure

Floating Point

Program Interrupt Request
Bus Request

Trace Trap

OO P W=

The details on the trace trap process have been described in the trace
trap operational description which includes cases in which an instruction
heing traced causes a bus error, instruction trap, or a stack overflow
trap.

If a bus error is caused by the trap process handling instruction traps,
trace traps, stack overflow traps, or a previocus bus error, the processor
is halted.

tf a stack overflow is caused by the trap process in handling bus errors,

instruction traps, ar trace traps, the process is completed and then the
stack overfiow trap is sprung.

4-77

4.7 MISCELLANEOUS
HALT
WAIT
RESET
MTPD
MTPI
MFPD
MFPI

478

HALT

Halt 000000

o 0 0 o 9 0 0 ' o o 0 0 0o 0 0 O I
| L s L 1 | 1 i 1 | L I L I

15 0

Condition Codes:
Description:

not affected

Causes the processor operation to cease, The con-
sole is given control of the bus. The conscle data
lights display the contents of RO; the conscie ad-
dress lights display the address after the halt in-
struction. Transfers on the UNIBUS are terminated
immediately. The PC points to the next instruction
to be executed. Pressing the continue key on the
console causes processor operation to resume, No
INIT signal is given.

Note: A halt issued in Supervisor or User Mode
will generate a trap.

479

WAIT

Wait for Interrupt Q00001

o 0 0 0o o .0 © 0 © O 0O 0 0§ 1J
l 1 1 1 1 [L i [i, ke I 1 1

15 0

Condition Codes:

Description:

not affected

Provides a way for the processor to relinguish use
of the bus while it waits for an interrupt. Having
heen given a WAIT command, the processor will
not compete for bus use by fetching instructions or
operands fram memory. This permits higher trans-
fer rates hetween a device and memory, since no
processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all in-
structions, the PC points to the next instruction
following the WAIT operation. Thus when the ser-
vice routine executes an RTI instruction, at the
end of the routine, the program will resume at the
instruction following the WAIT. Note also that
Floating Point, Power Fail, and Parity Traps wiil
cause the processor to fail through the WAIT locp.

4-80

RESET

Reset External Bus aoad0s5
[o 0 0 0. 0 © 0 00 0.0 0 0,1 0O 1
l b, 1 I. L A l 1 1 I n 1 l L L
15 ¢
Condition Codes: not affected
Description: Sends INIT on the UNIBUS for 10 ms. All devices

an the UNIBUS are reset to their state at power up.

4-81

MTPI

Move to Previous Instruction Space Q066DD
1
|ololololil1lol1l1 old 4 dld]dlil
15 6 5 5]
Operation: {temp)}<(SP)t
(dst) «(temp}

Condition Codes: N: set if the source < 0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

Description: The address of the destination operand is deter-
mined in the current address space. MTP! then
pops a word off the current stack and stores that
word in the destination address in the previous

mode’s [space (bits 13, 12 of PS).

4-82

MTPD

Move to Previous Data Space 1066DD
L1 0 0 0,1 1 0 ' 1 ¢6]d o9 d;d d4 d
’ 1 1 I i 1 I i 1 | 1 I i 1
15 6 5 o
Operation: (temp} «(SP)t
{dst) «(temp)

Condition Codes:

Description:

N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared

C: unaffected

The address of the destination operand is deter-
mined in the current address space as in MTPL
MTPD then pops a word off the current stack and
stores that word in the destination address in the
previous mode’s D space.

4-83

MFPI

Move from Previous Instruction Space 006555
I
o
lIO 0101111|O[11011slslslslsisj
15 6 5 0
Operation: {temp} < (src)
LSP)Y «(temp)
Condition Codes: N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared

C: unaffected

Description: This instruction is provided in order to allow inter-
address space communication when the PDP11/45
is using the Memory Management unit. The address
of the source operand is determined in the current
address space. That is, the address is determined
using the SP and memory pages determined by
PS< 15:14>. The address itself is then used in the
previous | space (as determined by PS5« 13:12>
to get the source operand. This operand is then
pushed onto the current R& stack.

4-84

MFPD

Maove from Previous Data Space 106558
1
1|OJOrOIIIIIOI1IOI1 slslslslslsl
15 I [§)
Operation: {temp) <(src)

Condition Codes:

Description:

HSP) «{termp)

N: set if the sgurce < 0; otherwise cleared
Z: set if the source =0; otherwise cleared
W: cleared

C: unaffected

This instruction is provided in order to allow inter-
address space cormmunication when the PDP-11/45
is using the Memory Management unit. The address
of the source operand is determined in the current
address space. That is, the address is determined
using the SP and memory pages determined by
PS<715:14 . The address itself is then used in the
previous D space (as determined by PS<13:12>
to get the source operand. This operand is then
pushed on to the current R6 stack.

4.85

4.8 Condition Code Operators

CLN SEN
CLZ SEZ
CLV SEV
CLC SEC
CCC SCC
Condition Code Operators DOOZ2XX
[olo.olololo‘olo:1 .o|1‘ Inlzlvlcl
15 5 4 3 2 1 0

Description:

Mnemonic

Operation

CLC ClearC

CLY Clear V¥

CcLZ Clear Z

CLN Clear N

SEC Set

SEV Set V

SEZ SetZ

SEN Set N

SCC SetallCC's

CCC Ctear all CC's
Clear Vand C

No Operation

Set and clear condition code bits. Selectable com-
hinations of these bits may be cleared or set to-
gether. Condition code bits corresponding to bits
in the condition code operator (Bits 0-3) are modi-
fied according to the sense of bit 4, the set/clear
bit of the operator. i.e. set the bit specified by bit
0,1, 2 or 3, if bit 4is a 1. Clear corresponding
bits if bit 4 = Q.

OP Code
000241
000242
000244
000250
000261
000262
000264
000270
000277
000257

000243
000240

Combinations of the above set or clear operations may be ORed together
to form combined instructions.

4-86

CHAPTER 5

PROCESSOR CONTROL

5.1 GENERAL
This chapter provides detailed information on:

a) CPU registers: CPU Error
Systemn Size
System ldentification
Microprogram Break
Processor Status

b) Processor Traps

¢) Stack Limit

d) Program interrupt Request

5.2 REGISTERS
The following 5 CPU registers are not accessible from the UNIBUS. They
are accessed by program or console control.

CPU Error Register 17 777 766

15 B ? -3 5 4 3 2 \ o

ez |V 2
e e, i
E._'J—) e // “

LLEGAL HALTY - L] l ,

QD0 ADDRESS ERROR

MOMERISTERT MEMORY [CACHE] —_——

LIMIBLIS TIME -CalT

FELLOW 2ONE STACKE LT —_—

RED ZOME STACK LINIT

This register identifies the source of the abort or trap that used the
vector at tocation 4,

BIT HNAME FUNCTION

7 lllegal Set when trying to execute a HALT instruction
Halt when the CPU is in User or Supervisor mode

{not Kernel).

6 Odd Address Set when a program attempts to do a word
Errar reference fo an odd address.

5 Non-existent Set when the CPU attempts to read a word
Memory from a location higher than indicated by the

System Size register. This does not include
UNIBUS addresses.

4 UNIBUS Set when there is no response on the UNIBUS
Timeout within approx, 10 gsec,

5-1

BIT NAME FUNCTION

32 Yellow Zone Set when a yellow zone trap occurs,
Stack Limit

2 Red Zone Set when a red zone trap occurs.
Stack Limit

Lower Size Register 17 777 760

This read only register specifies the memory size of the system. It is
defined to indicate the last addressable block of 32 words in memaory
(bit O is equivalent to bit & of the Physical Address).

Upper Size Register 17 777 762
This register is an extension of the system size, which is reserved for fu-
ture use. It is read only and its contents are always read as zero.

System 1/D Register 17 777 764
This read only register contains information uniquely identifying each
system.

Microprogram Break Register 17 777 770

This register is used for maintenance purposes only. It is used with
maintenance equipment to provide timing synchronization and testing
facilities.

Processor Status Ward 17 777 776

(1 14 13 12 1k 0 B 7 5 4 3 2 | o
- — T
F NGT USED [FRICIRITY [T N z ¥ C
\ \ \ s " .
CURRENT MODE ®
FREVIOUS MODE ™
GEMERAL REGISTER
SETHCLT)
* MOILIE: D4 SKERMEL
D1 =5UPERVISOR

11 :USER

The Processor Status Word contains informaticn on the current status of
the CPU. This information includes the register set currently in use; cur-
rent processor priority, current and previous operational modes; the con-
dition codes describing the results of the last instruction; and an indi-
cator for detecting the execution of an instruction to be trapped during
program debugging.

5.3 PROCESSOR TRAPS

There are a series of errors and programming conditions which wili cause
the Central Processor to trap to a set of fixed locations. These include
Power Failure, Odd Addressing Errors, Stack Errors, Timeout Errors, Non-
Existent Memory References, Memory Parity Errors, Memory Manage-
ment Violations, Floating Point Processor Exception Traps, use of Re-
served Instructions, use of the T bit in the Processor Status Word, and
use of the 10T, EMT, and TRAP instructions.

Power Failure
Whenever AC power drops below 85 volts for 110v power (190 volts for
220v) or outside a limit of 47 to 63 Hz, as measured by DC power, the

5-2

power fail sequence is initiated. The Central Processor automatically
traps to location 24 and the power fail program has 2 msec, to save all
volatile information (data in registers), and to condition peripherals for
power fail.

When power is restored the processor traps to location 24 and executes
the power up routine to restore the machine to its state prior to power
failure.

0dd Addressing Errors

This error occurs whenever a program attemnpts to execute a word in-
struction on an odd address (in the middle of a word boundary). The
instruction is aborted and the CPU traps through location 4.

Time-out Error

This error occurs when a Master Synchronization pulse is placed on the
UNIBUS and there is no slave pulse within 10 usec. This error usually
occurs in attempts to address non-existent memory or peripherals,

The offending instruction is aborted and the processor traps through
location 4.

Non-Existent Memory Errors

This error occurs when a program attempts to reference a memory ad-
dress that is larger than indicated by the system size register. The cycle
is aborted and the processor traps through vector 4.

Reserved Instructions
There is a set of illegal and reserved instruction which cause the proces-
sor to trap through Location 10. The set is fully described in Appendix A.

Trap Handling

Appendix A includes a list of the reserved Trap Vector locations, and
System Error Definitions which cause processor traps. When a trap oc-
curs, the processor follows the same procedure for traps as it does for
interrupts {saving the PC and PS on the new Processor Stack etc....).

In cases where traps and interrupts occur concurrently, the processor
will service the conditions according to the priority sequence illustrated
following.

Trap Priorities

Parity error

Memory Management violation

Stack Limit Yellow

Power Failure {power down)

Floating Point exception trap

Program Interrupt Request (PIR) levei 7

Bus Request (BR) level 7

PIR 6

BR &

PIR 5

BR S

5-3

PIR 4
ER 4
PIR 3
PIR 2
PIR 1
Trace trap

5.4 STACK LIMIT

The Stack Limit allows program control of the lower limit for permissible
stack addresses. This limit may be varied in increments of (400). bytes
or {200). words, up to a maximum address of 177 400 (almost the top
of a 32K memory).

The normal boundary for stack addresses is 400. The Stack Limit option
allows this lower limit to be raised, providing more address space for
interrupt vectors or other data that should not be destroyed by the pro-
gram.

There is a Stack Limit Register, with the following format:

.B[&////,' OA

The Stack Limit Register can be addressed as a word at location 17
777774, or as a byte at location 17 777775, The register is accessible to
the processor and console, but not to any bus device.

The 8 bits, 15 through 8, contain the stack fimit information. These bits
are cleared by System Reset, Console Start, or the RESET instruction.
The lower 8 bits are not used. Bit 8 correspands to a value of (400).
ar (256).

Stack Limit Violations

When instructions cause a stack address to exceeqd (go lower than) a
limit set by the programmabile Stack Limit Register, a Stack Violation
occurs. There is a Yellow Zone (grace area)} of 16 words below the Stack
Limit which provides a warning to the program so that corrective steps
can be taken. Operations that cause a Yellow Zone Vielation are com-
pleted, then a bus error trap is effected. The error trap, which itself uses
the stack, executes without causing an additional violation, unless the
stack has entered the Red Zone.

A Red Zone Violation is a Fatal Stack Error. {Odd stack or non-existent
stack are the other Fatat Stack Errors.) When detected, the operation
causing the error is aborted, the stack is repositioned to address 4, and
a bus error occurs. The old PC and PS8 are pushed intc location O and 2,
and the new PC and PS are taken from locations 4 and 6.

Stack Limit Addresses
The contents of the Stack Limit Register (SL) are compared to the stack
address to determine if a violation has occurred. The least significant

5-4

bit of the register {bit 8) has a value of {400).. The determination of the
violation zones is as follows:

Yellow Zone = (SL) 4+ (240 through 377). execute, then trap

Red Zone < (SL) 4 {337). abort, then trap to lo-
cation 4

If the Stack Limit Register contents were zerc:

Yellow Zone = 340 through 377
Red Zone = 000 through 337

5.5 PROGRAM INTERRUPT REQUESTS i

A request is booked by setting one of the bits 15 through 8 (for PIR 7—
PIR 1) in the Program Interrupt Register at location 17 777772, The
hardware sets bits 7—5 and 3—1 to the encoded value of the highest
PIR bit set. This Program Interrupt Active (PlA) should be used to set
the Processor Level and also index through a table of interrupt vectors
for the seven software priority levels. The Figure shows the layout of the
PIR Register.

is i] 7 5 4 k) 1 &
FiR 7 FIR T [- P I A 4 I A
A T

Program Interrupt Request Register

When the PIR is granted, the Processar will Trap to location 240 and
pick up PC in 240 and the PSW in 242, K is the interrupt service rou-
tine's responsibility to queue requests within a priority level and to clear
the PIR bit before the interrupt is dismissed.

The actual interrupt dispatch proegram should look like:

MOVB PIR,PS ; places Bits 5—7 in PSW Priority Level
; Bits

MOV R5,—{SF) ; save RS on the stack

MOV PIR,RS

BIC #177761,R5 ; Gets Bits 1—3

JMP @DISPAT(RS) ; use to index through table

; which requires 15 core locations.

55

CHAPTER 6

ADDRESSING

6.1. GENERAL
This chapter provides detailed information on:

a) Address space

b) Memory management

c) UNIBUS Map

d) Non-existent memaory errors

6.2 ADDRESS SPACE
There are 3 separate address spaces used:

a} 16 hits, program virtual space
b) 18 bits, UNIBUS space
c} 22 bits, physical space

A 22-bit physical address references a unique core memory location (or
register). The UNIBUS Map performs the conversion of 18-bit UNIBUS
addresses to 22-hit physical addresses. Within the CPU, the Memory
Management unit converts 16-bit program virtual addresses to 22-bit
physical addresses. Registers within these twoc memory extension units
are used in conjunction with the virtual or UNIBUS address to produce
the physical address. See Figure 6-1,

CPU Addresses

Of the over 2 million word locations possible with the 22-bit physical
address, the top 128K are used to reference the UNIBUS rather than
physical memory. Maximum physical memory is therefore 2?2 — 2'F bytes,
or a total of 1,966,080 words (1 word — 2 bytes). If the CPU address is
hetween 00 000 000 and 16 777 777, an attempt is made to reference
physical memory. If the address is in the top 128K, 17 000 000 to
17 777 777, the lower 18 bits of the address are placed on the UNIBUS.
See Figure 6-2.

[N)

5 LI IBLIS
MEM T | 1B ADDRESS BITS

1B ADGRESS
1T

22
LHYIBUS

ADDRESS

8iITs Map

23 ADDRESS BITS
2

ADDRESS

BITS

MAIN
MAEMORY

Figure 6-1 Address Paths in the PDP-11/70
&-1

|FPTFTTT

PERIPHERAL
17760000 | _ e o o — |PAGE{AKY

LNIBLS
REFEREMCE
123K}

17000000

100 00K

WA A IMLIM AVAILAHLE MEMORY
MEMORY

-
} MNON-EXISTANT

SYSTEM SIZE
BOUMOARY

MEMOIRY
REFEREMCE

CO00000

Figure 6-2 Physical Address Space

6.3 CPU MAPPING
Mapping of processor addresses is performed in 1 of 3 possible ways.

16-Bit Mapping

There is fixed relocation mapping from virtual to physicai addresses.
The lowest 28K virtual addresses are treated as corresponding to the
same physical addresses. The top 4K addresses cause UNIBUS cycles to
addresses 17 760 000 to 17 777 777. Refer to Figure 6-3. 16-bit map-
ping operation occurs after Power Up, Console Start, or the RESET
instruction.

18-Bit Mapping

32K virtual addresses for each of the 3 modes (Kerne!, Supervisor, User)
are mapped into 128K of physical address space. The lowest 124K ad-
dresses reference physical memory. The top 4K addresses cause
UNIBUS cycies to addresses 17 760 000 to 17 777 777. Refer to
Figure &-4.

22-Bit Mapping

This mode produces full 22-bit addresses for accessing all of PDP-11/70
physical memory. The top 128K addresses cause UNIBUS cycles to
addresses 17 000 000 to 17 777 777. Refer to Figure 6-5.

6.4 COMPATIBILITY

Operation with 16-bit and 18-bit mapping can be used such that the com-
puter is compatible with other PDP-11 computers, such as the PDP-
11/20 and the PDP-11/45, Qperating in this manner means that soft-
ware written for another PDP-11 can be run on the PDP-11/70 without
maodification.

UNIBUS

Map
Mapping Mem Mgt Relocation Compatible With
16 Bit Off Off PDP-11/05, 11/10, 11/15, 11/20
18 Bit On Oft POP-11/35, 11/40, 11/45, 11/50
22 Bit On Offt or On POP-11/70

6-2

FLOW -

[FEFEFFF [EEEEREE
[FE) PERIPHERAL PAGE
17740000 1760000
T7isTI77
UMIBUS
14 BITS) 174K}
L] . [17e0000g i W
6777777 r
1920
PHYSICAL
MEMGRY
51T
T IS EE 06157777
it BITS! (za] |28K)
LAk, 0, L .J _______ C_ L |Bo000d00 . Litileivieel S . S
INCEIMIMG PHYSICAL ADDRESS
&DORESS ADDRESS SPALE LEVE AT
(22 mITS |MAR, AAILABLE
MEMORY KFIK)
= =RELOCATION
————— — =N ADDRESS
RELOCATIEN
Figure 6-3 16 Bit Mapping
N i~ | R
Freier | T T T T T T T4 [EREEEEE] -ttt 0 - \777TITT
[F14] FERIPHER AL PAGE
17780080 17400000
[EELTEEH
UMIELS .
(1B BITS) .
1124%) i3 ey
A s
000060 _ i7oooang . \‘\.
- unaLs WIXFEr?
8 i
5, i
5, .
", "
5 .
ON7a77i7 \ oO7STIE? 930K
5
— . PHYSICAL i
(7777 124K} \ MEMORY |
! *, I12ak] ;
: \ :
e B L i
| 68T)
|
e logognong _ e _Nnooopoooo_ |y
IMNCCIMING PHYSIC 4 ADLCRESS
ALRESS ADDREST. 3PACE LOCATINS
(32 BITEY {MAX AVAILABLE
MERCRY 1074K)

——-a= SRELOCATICH
= e MO ALGRESS
RELD ATHIN

Figure 6-4 18-Bit Mapping
&3

.......... e
EEEEEH] MFeeseer | T T~ [EEFEEFF R
[aK) PERIPHERAL PAGE
1776000 o |mspooos
17757777 .
UNIBUS N\ “‘x\
I : ..
{18 BITS) [12aK] Y S
b .\‘\
000000 popoeos | Ay
6777777 TR 16777777
"ap
n
k’
\\
\\ 5
: *
{1920 ™, \ PHYSICAL
\, . EMORT
*, . {I1928K]
TrrET - MR \\ %
/ MGNT .
AN
\ 11z4K|
Ay
000000 00000000 o _ __ Mooooooco
INCOMING PHYSICAL ADDRESS
ADDRESS ADDRESS SPACE LOCATIONS
122 BITS) [MAX AVAILABLE
MEMORY 1624K]
=RELDC ATION
————— =P ADORESS
RELOCATIGN

Figure 6-5 22 Bit Mapping

6.5 MEMORY MANAGEMENT

6.5.1 General

The PDP-11/70 Memory Management Unit provides the hardware facili-
ties necessary for complete memory management and protection, It is
designed to be a memory management facility for accessing all of physi-
cal memory and for multi-user, multi-programming systems where mem-
ory protection and relocation facilities are necessary,

In order to most effectively utilize the power and efficiency of the
PDP-11/70 in medium and large scale systems it is necessary to run
several programs simultaneously. In such multi-programming environ-
ments several user programs would be resident in memory at any given
time, The task of the supervisory program would be: control the execu-
tion of the various user programs, manage the allocation of memory
and peripheral device resources, and safeguard the integrity of the sys-
tern as a whole by careful control of each user program.

In a muiti-programming system, the Memory Management Unit provides
the means for assigning memory pages to a user program and prevent-
ing that user from making any unauthorized access to these pages out-
side his assigned area. Thus, a user can effectively be prevented from
accidental or willful destruction of any other user program or the system
executive program.

The basic characteristics of the PDP-11/70 Memory Management Unit
are:

« 16 User mode memory pages
+ 16 Supervisor mode memory pages

6-4

16 Kernel mode memary pages

8 pages in each mode for instructions

8 pages in each mode for data

page lengths from 32 to 4096 words

each page provided with fult protection and relocation
transparent operation

6 modes of memary access control

memory access to 2 million words (4 million bytes)

6.5.2 Virtual Addressing

When the PDP-11/70 Memory Management Unit is operating, the normal
16 bit direct byte address is no longer interpreted as a direct Physical
Address (PA) but as a Virtual Address (VA) containing information to be
used in constructing a new 22-bit physical address. The infarmiation
contained in the Virtual Addess (VA} is combined with relocation infor-
mation contained in the Page Address Register (PAR) to yield a 22-hit
Physical Address (PA). Using the Memory Management Unit, memory
can be dynamically allocated in pages each composed of from 1 to 128
integral blocks of 32 words.

FHYSICAL
ADDRESS SPACE
VIRTLUAL
INSTRUCTIGN [ATA PAGE 5
ADDRESS SPACE
I —————————— EE
.] [
—_— Pak PAGE &
——— PaR £
e PAK 4 POSE ¥
PaR 3
PAR 7
PaGE 4
PAR 1
FAR D
4] e ——— Pl — 1
WIRTUAL ADORESS PACE ADDRESS RECASTERS PHYSICAL ALDRESS
115 BITS| |22 BITS)

PAR = Page Address Register
Figure 6-6 Virtual Address Mapping into Physical Address

The starting physical address for each page is an integral multiple of 32
words, and each page has a maximum size of 4096 words. Pages may be
located anywhere within the Physical Address space. The determination
of which set of 16 pages registers is used to form a Physical Address is
made by the current mode of operation of the CPU, i.e., Kernel, Super-
visor or User maode.

6.5.3 Interrupt Conditions under Memory Management Control

The Memory Management Unit relocates all addresses. Thus, when it is
enabled, ail trap, abort, and interrupt vectors are considered to be in
Kernel mode Virtual Address Space. When a vectored transfer occurs,
control is transferred according to a new Program Counter (PC) and
Processor Status Word (PS) contained in a two-word vector relocated
through the Kernel Page Address Register Set. Relocation of trap ad-
dresses means that the hardware is capable of recovering from a failure
in the first physical bank of memory.

65

When a trap, abort, or interrupt occurs the ‘push™ of the old PC, old
PS is to the User/Supervisor/Kernel R&6 stack specified by CPU moede
bits 15,14 of the new PS in the vector (bits 15,14: 00 = Kernel, 01 =
Supervisor, 11 = User). The CPU mode bits also determine the new PAR
set. In this manner it is possible for a Kernel mode program to have
complete control over service assignments for all interrupt conditions,
since the interrupt vector is located in Kernel space. The Kernel program
may assign the service of saome of these conditions to a Supervisor or
User mode program by simply setting the CPU mode bits of the new
PS in the vector to return control to the appropriate mode.

6.5.4 Construction of a Physical Address

All addresses with memory relocation enabled either reference informa-
tion in instruction {1} Space or Data (D) Space. 1 Space is used for all
instruction fetches, index words, absolute addresses and immediate
operands, D Space is used for all other references, | Space and D Space
each have 8 PAR's in each mode of CPU operation, Kernel, Supervisor,
and User. Using Memory Management Register # 3, the operating sys-
tem may salect to disable D space and map all references {Instructions
and Data) through | space, or to use both | and D space.

The basic infermation needed for the construction of a Physical Address
{PA) comes from the Virtual Address (VA), which is ilustrated in Figure
6-7, and the appropriate PAR set.

L APE ‘ ot

L N L L L L
&TTIVE PAGE DESPLACEMENT FIELD
FIELD

Figure 6-7 Interpretation of a Virtual Address

The Virtual Address (YA} consists of:

1. The Active Page Field (APF). This 3-bit field determines which of
eight Page Address Registers (PARQO-PAR7) will be used to form the
Physical Address (PA).

2. The Displacement Field (DF). This 13-bit field contains an address
relative to the beginning of a page. This permits page lengths up to
4K words (2" = 8K hytes), The DF is further subdivided into two
fields as shown in Figure 6-8.

12 B 1]

L B 1 ole
L " L

BLOCK NUMBER CASPLACEMENT M BLOCK

Figure 6-8 Displacement Field of Virtual Address

The Displacement Field (DF) consists of:

1. The Block Number (BN). This 7-bit field is interpreted as the block
number within the current page.

6-6

2. The Displacement in Block (DIB). This 6-bit field contains the dis-
placement within the block referred to by the Block Number (BN).

The remainder of the information needed to construct the Physical Ad-
dress comes from the 16&-bit Page Address Field (PAF) (the
Page Address Register (PAR)}) that specifies the starting address of the
memory page which that PAR describes, The PAF is actually a biock
number in the physical memory, e.g. PAF = 3 indicates a starting ad-
dress of 96 (3 x 32) words in physical memory.

The formation of the Physical Address (PA) is illustrated in Figure 6-9.

The logical sequence involved in constructing a Physical Address (PA)
is as follows:

1. Select a set of Page Address Registers depending on the space
being referenced.

2. The Active Page Field (APF) of the Virtual Address is used to select
a Page Address Register (PARO-PAR7).

3. The Page Address Field {PAF) of the selected Page Address Register
{PAR} contains the starting address of the currently active page as a
block number in physical memory.

4. The Block Number (BN) from the Virtual Address (VA) is added
to the Page Address Field (PAF) to yield the number of the block in
physical memory (PBN-Physical Block Number) which will contain
the Physical Address (PA) being constructed.

5. The Displacement in Block (DIB} from the Displacement Field (DF)
of the Virtual Address (VA) is joined to the Physical Block Number
(PBN) to yield a true 22-bit PDP-11/70 Physical Address (PA).

wIRTUAL ACDRESS [
.
SELECT PAR]
CFFSET INTO PAGE {va) |
& e—
eat + i

L
i
'ln’

FHYSICAL SRORESS |

Figure 6-9 Construction of a Physical Address

6.5.5 Management Registers

The PDP-11/70 Memary Management Unit implements three sets of 32
sixteen bit registers, One set of registers is used in Kernel mode, another
in Supervisor, and the other in User mode. The choice of which set is to
ke used is determined hy the current CPU mode contained in the Proces-

6-7

sor Status word. Each set is subdivided into two groups of 16 registers.
Ine group is used for references to Instruction (1) Space, and one to
Data (D) Space. The | Space group is used for aill instruction fetches,
index words, absolute addresses and immediate operands, The D Space
group is used for all other references, providing it has not been disabled
by Memary Managements Register # 3, Each group is further subdivided
into two parts of 8 registers. One part is the Page Address Register (PAR)
whose function has been described in previous paragraphs. The other
part is the Page Descriptor Register (PDR). PARs and PDRs are always
selected in pairs by the top three bits of the virtual address. A PAR/PDR
pair contain all the information needed to describe and locate a currently
active memory page.

The various Memory Management Registers are located in the upper-
most 4K of PDP-11 physical address space along with the UNIBUS 1/0
device registers.

][:_ PREMCESS STATUS WORD ¢
- e —— —
F | |
¥] T T 3
RERMEL (00} SUPERVISOR (1] LSER 111
PAR FOR | PAR FDR PAR PDR
g S— —t
| i __1 1 SPACE
4 [i
1
|
| e —
1 l i
PAR PLR PAR FDR PAR FDR
]
: | D SRACE
T
|
}
: |
| .

Figure 6-10 Active Page Registers

Page Address Registers {(PAR)

The Page Address Register (PAR) contains the Page Address Field (PAF),
16-bit field, which specifies the starting address of the page as a block
number in physical memaory.

6-8

Figure &-11 Page Address Register

The Page Address Register (PAR) which contains the Page Address
Field {(PAF) may be alternatively thought of as a relocation register con-
taining a relocation constant, or as a base register containing a base
address. Either interpretation indicates the basic importance of the Page
Address Register {(PAR) as a relocation tocl

Page Descriptor Register
The Page Descriptor Register {PDR) contains information relative to page
expansion, page length, and access control.

Figure 6-12 Page Description Register

Access Control Field (ACF)

This three-bit field, occupying bits 2-0 of the Page Descriptor Register
(PDR) contains the access rights to this particular page. The access
cedes or '“keys' specify the manner in which a page may be accessed
and whether or not a given access should resu't in a trap or an abort
of the current operation. A memory reference which causes an abort is
not completed while a reference causing a trap is completed. In fact,
when a memory reference causes a trap to occur, the trap does not
occur until the entire instruction has been completed. Aborts are used
to catch “missing page faults,’” prevent illegal access, etc,; traps are
used as an aid in gathering memory management information,

In the context of access control the term “write” is used to indicate
the action of any instruction which maodifies the contents of any ad-
dressable word. “Write™ is synonymous with what is usually called a
“stare’ or “modify” in many computer systems.

The modes of access control are as follows:

000 non-resident abort all accesses

Q01 read-only abort on write attempt, memory man-
agement trap on read

010 read-only abort on write attempt

011 unysed abort all accesses—reserved for future
use

100 read fwrite memory management trap upon com-
pletion of a read or write

101 read /write memory management trap upon com-

pletion of a write
6-9

110 read/write no system trap/abort action

Ii1 unused abort all accesses—-reserved far future
use

It should be noted that the use of | Space provides the user with a
further form of protection, execute only.

Access Information Bits

A Bit (bit 7)—This bit is used by software to determine whether or not
any accesses to this page met the trap condition specified by the
Access Control Field (ACF} (A =1 is Affirmative) The A Bit is used in
the process of gathering memory management statistics.

W Bit (bit 6)—This bit indicates whether or not this page has been
modified (i.e. written into) since either the PAR or PDR was loaded.
(W =1 is Affirmative). The W Bit is useful in applications which involve
disk swapping and memory overlays. It is used to determine which pages
have been modified and hence must be saved in their new form and
which pages have not been modified and can he simply overlaid.

Note that A and W bits are “'reset” to Q" whenever either PAR or PDR
is modified {written into).

Expansion Direction (ED)

Bit 03 of the Page Description Register (PDR) specifies in which direc-
tion the page expands. If ED = 0 the page expands upwards from Block
Number O to include blocks with higher addresses; if ED = 1, the page
expands downwards from Block Number 127 to include blocks with lower
addresses. Upward expansion is usually used for program space while
downward expansicn is used for stack space.

Page Length Field {PLF)

This seven-bit field, occupying bits 14-8 of the Page Descriptor Register
(PDR), specifies the hlock number, which defines the boundary of that
page. The block number of the Virtual Address is compared against the
Page Length Field to detect Length Errors. An error occurs when expand-
ing upwards if the block number is greater than the Page Length Field,
and when expanding downwards if the block number is less than the
Page Length Field.

Reserved Bits
Bits 15, 5, and 4 are spare and are always read as 0, and should never
he written. They are unused and reserved for possible future expansion.

6.5.6 Fault Recovery Registers

Aborts and traps generated by the Memory Management hardware are
vectored through Kernel virtual location 250, Memory Management Re-
gisters #0, #£1, #2 and #3 are used in order to differentiate an abort
from a trap, determine why the abort or trap occurred, and allow for
easy program restarting. Note that an abort or trap to a location which
is itself an invalid address will cause another abort or trap. Thus the
Kernel program must insure that Kernel Virtual Address 250 is mapped
into a valid address, otherwise a loop will occur which will require con-
sole intervention.

Memory Management Register #0 (MMRO) (status and error indicators)
MMRO contains error flags, the page number whose reference caused the

6-10

abort, and various other status flags. The register is organized as shown
in Figure 6-13,

Setting bit O of this register enables address relocation and error detec-
tion. This means that the bits in MMRO become meaningful.

Bits 15-12 are the error flags. They may be considered to be in a **priority
queve” in that “flags to the right'’ are less significant and should be
ignored. That is, a "'non-resident” fauit-service routine would ignore
iength, access control, and memory management flags. A “page length”™
service routine would ignore access control and memory management
faults, ete.

Bits 15-13 when set (error conditions} cause Memory Management to
freeze the contents of bits 1-7 and Memory Management Registers #1
and #2. This has been done to facilitate error recovery.

These bits may aiso be written under program control. No abort will oc-
cur, but the contents of the Memory Management registers will be locked
up as fn an abort.

15 14 1?.\ 12 1I IO 2] 7T B 5 4 3 2 1 O

IHHHI

e § ——
ABORT-NON HESIDENT
ABQRT— PAGE
LENGTH ERROR
ABORT- READ ONLY
&CCESS \.I'IOLATION
TRAP-MEMORY MANAGEMENT

NGT USED
NOT USED
ENABLE MEMORY MANAGEMENT TRAP
MAINTEMANCE MODE
INSTRUCTION COMPLETED
PAGE MODE
PasE ADDRESS SPACE /D
FAGE NUMBER
EMABLE RELOCATION

Figure 6-13 Format of Memory Management Register #0 (MMRO)

Abart—Non-Resident, Bit 15

Bit 15 is the "Abort—Non-Resident” bit. It is set by attempting to
access a page with an Access Control Field (ACF) key equal to 0, 3, or 7.
It is also set by attempting to use Memory Relocation with a processor
mode of 2.

Abort—Page Length, Bit 14

Bit 14 is the "Abort Page Length" bit. It is set by attempting to access
a location in a page with a block number {Virtual Address bits, 12-6)
that is outside the area authorized by the Page Length Field {FLF) of the
Page Descriptor Register (PDR) for that page. Bits 14 and 15 may be
set simultaneously by the same access attempt. Bit 14 is alsc set by
attempting to use Memory Relocation with a processor mode of 2.

6-11

Abort——Read Only, Bit 13
Bit 13 is the ‘‘Abort—Read Only" bit. It is set by attempting to write in
a “Read-Only" page. "Read-Only’" pages have access keys of 1 or 2.

Trap-—Memory Management, Bit 12

Bit 12 is the "“Trap—Memory Management" hit. It is set whenever a
Memory Management trap condition occurs; that is, a read operation
which references a page with an Access Conirol Field (ACF) of 1 or 4,
or a write operaticn to a page with an ACF key of 4 or 5.

Bits 11, 10
Bits 11 and 10 are spare and are always read as 0, and should never be
written. They are unused and reserved for possible future expansion,

Enable Memory Management Traps, Bit 9

Bit 9 is the “Enable Memory Management Traps™ bit, It is set or cleared
by doing a direct write inte MMRO. If bit 9 is 0, no Memory Management
traps will occur. The A and W bits will, however, continue to log Memory
Management Trap conditions. When hit 9 is set to 1, the next Memory
Management trap condition will cause a trap, vectered through Kernel
Virtual Address 250.

Note that if an instruction which sets bit 9 to 0 (disable Memory Man-
agement Trap) causes a Memory Management trap conditicn in any of
its memary references prior to and including the one actually changing
MMRQO, then the trap will occur at the end of the instruction anyway.

MaintenancefDestination Mode, Bit 8

Bit 8 specifies that only destination mode references will be relocated
using Memory Management. This mode is only used for maintenance
purposes.

Instruction Completed, Bit 7]

Bit 7 indicates that the current instruction has been completed. It will
be set to O during T bit, Parity, Odd Address, and Time Qut traps and
interrupts. This provides error handling routines with a way of determin-
ing whether the last instruction will have to be repeated in the course of
an error recovery atternpt. Bit 7 is Read-Only (it cannot be written). It is
initialized to a 1. Note that EMT, TRAP, BPT, and 10T do not set hit 7.

Pracessor Made, Bits 5 & 6

Bits 5 and & indicate the CPU MODE (Kernel/Supervisor/User) associ-
ated with the page causing the abort (Kernel = Q0, Supervisor =01,
User = 11, lllegal Mode = 10). i an illegal mode is specified, bits 15
and 14 will be set.

Page Address Space, Bit 4

Bit 4 indicates the type of address space (I or D} the Unit was in when
a fault occurred (0 — | Space, 1 = D Space). It is used in conjunction
with bits 3-1, Page Number,

Page Number, Bits 3 to 1

Bits 3-1 contain the page nhumber of a reference causing a Memory
Management fault. Note that pages, like blocks, are numbered from
0 upwards,

6-12

Enable Relocation, Bit 0

Bit O is the "Enable Relocation™ bit. When it is set to 1, all addresses
are relocated by the unit. When bit O is set to 0 the Memory Management
Unit is inoperative and addresses are not relocated or protected.

Memory Management Register #1 (MMR1)

MMR1 records any autoincrement/decrement of the general purpose reg-
isters, including explicit references through the PC, MMRI1 is cleared at
the beginning of each instruction fetch, Whenever a general purpose reg-
ister is either autoincremented or autodecremented the register number
and the amount (in 2s complement notation) by which the register was
medified, is written into MMR1.

The information contained in MMR1 is necessary to accomplish an effec-
tive recovery from an error resulting in an abort, The low arder byte is
written first and it is not possible for a PDP-11 instruction to autoincre-
ment/decrement more than two general purpose registers per instruction
before an ‘‘abort-causing’™ reference. Register numbers are recorded
“MOD 8'; thus it is up to the software to determine which set of regis-
ters (User/Supervisor/Kernel—General Set 0/General Set 1) was modi-
fied, by determining the CPU and Register modes as contained in the
PS at the time of the abort. The 6-bit displacement en R6(SP) that can
be caused by the MARK instruction cannot occur if the instruction is
aborted.

15 n__ig B 7 3 2 2]
AMOUNT CHANGED ' REGISTER AMOUMT CHANGED REGISTER
(25 COMPLEMENT} NUMBER (2'S COMPLEMENT}) NUMBER

Figure 6-14 Format of Memory Management Register #1 (MMR1)

Memory Management Register #2

MMR2 is loaded with the 16-bit Virtua! Address (VA) at the beginning of
each instruction fetch, or with the address Trap Vector at the beginning
of an interrupt, “T" Bit trap, Parity, Odd Address, and Timeout aborts
and parity traps. Note that MMRZ2 does not get the Trap Vector on EMT,
TRAP, BPT and 10T instructions. MMR2 is Read-Only; it can not be writ-
ten. MMR2 is the Virtual Address Program Counter.

Memory Management Register #3

The Memory Management Register #3 (MMR3) enables or disables the
use of the D space PAR's and PDR's and 22-bit mapping and UNIBUS
mapping. When D space is disabled, all references use the | space regis-
ters; when D space is enabled, both the | space and D space registers
are used. Bit O refers to the User's Registers, Bit 1 to the Supervisor's,
and Bit 2 to the Kernel's. When the appropriate hits are set D space is
enabled; when clear, it is disabled. Bit 03 is read as zero and never writ-
ten. It is reserved for future use. Bit 04 enables 22-bit mapping. If Mem-
ory Management is not enabled, bit 04 is ignored and 16-bit mapping is

used,

If bit 4 is clear and Memory Management is enabled {bit 0 of MMRO is
set), the computer uses 18-bit mapping. If bit 4 is set and Memory Man-

6-13

agement is enabled, the computer uses 22-bit mapping. Bit 5 is set to
enable relocation in the UNIBUS map; the bit is cleared to disable reloca-
tion. Bits 6 to 15 are unused. On initialization this register is set to O
and only | space is in use.

15 6 5 4 3 2 1 @
A o e //4 ' L '1 MODE .MMRS
1//,,/{,//:_ SRS ___4/_,//' : [EFEFEATY
EMABLE DMNIBUS MAP — ‘ T

ENABLE 22+BIT MAPPING

KERMEL

SUPERVISOR .
I5ER

Figure 6-15 Format of Memory Management Register #3 (MMR3)

Bit State Operation

5 0 UNIBUS Map relocation disabled
1 UNIBUS Map relocation enabled

4 0 Enable 18-bit mapping I;f bJMORO
1 Enable 22-hit mapping is set

2 1 Enable Kernel D Space

1 1 Enable Supervisor D Space

0 1 Enable User D Space

Instruction Back-Up/Restart Recovery
The process of ‘backing-up'’ and restarting a pastially completed instruc-
tion involves:

1. Perferming the appropriate memory management tasks to alleviate
the cause of the abort (e.g., loading a missing page, etc.)

2. Restoring the general purpose registers indicated in MMR1 to their
original contents at the start of the instruction by subtracting the
“modify value” specified in MMR1.

3. Restoring the PC to the “abort-time' PC by loading R7 with the con-
tents of MMR2, which contains the value of the Yirtual PC at the time
the “abort-generating” instruction was fetched.

MNote that this back-up/restart procedure assumes that the general pur-
pose register used in the program segment will not be used by the abort
recovery routine. This is autornatically the case if the recovery program
uses a different general register set,

Clearing Status Registers Following Trap/Abort

At the end of a fault service routine bits 15-12 of MMRO must be cleared
{set to 0) to resume error checking. On the next memory reference fol-
lowing the clearing of these hits, the various Registers will resume moni-
toring the status of the addressing operations. MMRZ2 will be loaded
with the next instruction address, MMR1 will store register change infor-
mation and MMRO will log Memory Management Status information,

Multiple Faults
Once an abort has occurred, any subsequent errors that occur will not
affect the state of the machine. The information saved in MMRO thru

6-14

MMR2 will always refer to the first abort that it detected. However, when
multiple traps occcur, the information saved will refer to the most recent
trap that occurred.

In the case that an abort occurs after a trap, but in the same instruction,
only one stack operation will occur; and the PC and PS at the time of
the abort will be saved.

6.5.7 Examples

Normal Usage

The Memory Management Unit provides a very general purpose mem-
ory management tool. It can be used in a manner as simple or complete
as desired. It can be anything from a simple memory expansion device to
a very complete memory management facility.

The variety of possible and meaningful ways to utilize the facilities of-
fered by the Memory Management Unit means that both single-user and
multi-programming systems have complete freedom to make whatever
memory management decisions best suit their individual needs, Al-
though a knowledge of what most types of computer systems seek to
achieve may indicate that certain methods of utilizing the Memory Man-
agement Unit will be more commaon than others, there is no limit to the
ways to use these facilities.

In most normal applications, it is assumed that the control over the
actual memory page assignments and their protection resides in a super-
visory type program which would operate at the nucleus of a CPU's
executive (Kernel) mode. It is further assumed that this Kernel mode
program would set access keys in such a way as to protect itsed from
willful or accidental destruction by other Supervisor mode or User mode
programs. The facilities are also provided such that the nucleus can
dynamically assign memory pages of varying sizes in response to sys-
termn needs.

Typical Mermory Page

When the Memory Management Unit is enabled, the Kernel mode- pro-
gram, a Supervisor mode program and a User mode program each have
eight active pages described by the appropriate Page Address Registers
and Page Descriptor Registers for data, and eight, for instructions. Each
segment is made up of from 1 to 128 blocks and is pointed to by the
Page Address Field (PAF) of the corresponding Page Address Register
(PAR) as illustrated in Figure 6-16.

The memory segment illustrated in Figure 6-16 has the following attri-
butes:

1. Page Length: 40 blocks.

Virtual Address Range: 140000—144777.

Physical Address Range: 312000—316777.

No trapped access has been made to this page.

Nothing has been modified {i.e. written} in this page.

Read-Only Protection.

Upward Expansion.

NO oW

A 157777 4331777
(7777 TMETK rg 12 <077

< BLDCK eg (Mbyg) .

s AR i e
aN 7

e L

i T o

Ay
o A
v aar YL PA 16777

BLOCK 47y (39y)

T Bloek 1

BLOCK O

P 3120040

PAR& | 320 |
PAF

WA 140000 ¥

7 ZEna0zZon

ED alF

fFigure 6-16 Typical Memory Page

‘These attributes were determined according to the following scheme:
1.

Page Address Register (PARG) and Page Descriptor Register (PDR6)
were selected by the Active Page Field (APF) of the Virtual Address
(VA). (Bits 15-13 of the VA = 6..)

The initial address of the page was determined from the Page Ad-
dress Fietd (PAF) of PARG (312000 = 3120. blocks x 40. (32.) words
per block x 2 bytes per word).

Note that the PAR which contains the PAF constitutes what is often
referred to as a base register containing a base address or a reloca-
tion register containing relocation constant.

The page length (47. 4 1 = 40, blocks) was determined from the
Page Length Field (PLF) contained in Page Descriptor Register PDR6.
Any attermpts to reference beyond these 40., blocks in this page
will cause a ''Page Length Error,” which will result in an abort, vec-
tored through Kernel Virtual Address 250.

The Physical Addresses were constructed according to the scheme
iliustrated in Figure 6-9.

The Access bit (A-bit) of PDR6E indicates that no trapped access has
heen made to this page (A hit = 0). When an illegal or trapped refer-
ence, (i.e. a violation of the Frotection Mode specified by the Access
Control Field {ACF) for this page}, or a trapped reference {i.e. Read
in this case), cccurs, the A-bit will be set to a 1.

6-16

6. The Written bit (W-hit) indicates that no locations in this page have
heen modified (i.e. written). If an attempt is made to modify any
location in this particular page, an Access Control Violation Abort
will occur. [f this page were involved in a disk swapping or memory
overlay scheme, the W-bit would be used to determine whether it
had been modified and thus required saving before overlay.

7. This page is Read-Only protected; i.e. no locations in this page may
he moedified. In addition, a memory management trap will cccur upon
completion of a read access. The mode of protection was specified
by the Access Control Field (ACF) of PDR&.

8. The direction of expansion is upward (ED = 0}. If more blocks are
required in this segment, they will be added by assigning blocks
with higher relative addresses.

Note that the wvarious attributes which describe this page can all he
determined under software control. The parameters describing the page
are ail loaded into the appropriate Page Address Register (PAR) and Page
Descriptor Register (PDR) under program control. In a normal applica-
tion it is assumed that the particular page which itself contains these
registers would be assigned to the control of a supervisory type program
operating in Kernel mode.

Non-Consecutive Memory Pages

it should be noted at this point that although the correspondence be-
tween Virtual Addresses {VA) and PAR/PDR pairs is such that higher
VAs have higher PAR/PDR's, this does not mean that higher Virtual
Addresses {VA) necessarily correspond to higher Physical Addresses
(PA). lit is guite simple to set up the Page Address Fields (PAF) of the
PAR's in such a way that higher Virtual Address blocks may be located
in lower Physical Address blocks as illustrated in Fig. 6-17.

Note that although a single memory page must consist of a block of
contiguous [ocations, memory pages as macro units do not have to be
located in consecutive Physical Address (PA) locations. It also should
ke realized that the assignment of memory pages is not limited to con-
secutive non-overlapping Physical Address {PA) locations.

Stack Memory Pages

When constructing PDP-11/70 programs it is often desirable to isolate
all program variables from ““pure code” (i.e. program instructions) by
placing them on a register indexed stack. These variables can then be
“pushed” or “popped” from the stack area as needed (see Chapter 3.
Addressing Modes). Since all PDP-11 Family stacks expand by adding
locations with lower addresses, when a memory page which contains
“stacked'' wvariables needs more room it must “expand down,’ i.e. add
blocks with lower relative addresses to the current page, This mode of
expansion is specified by setting the Expansion Direction (ED) hit of
the appropriate Page Descriptor Register (PDR) to a 1. Figure &-18
illustrates a typical ‘‘stack’” memory page. This page will have the fol-
lowing parameters:

PARG: PAF = 3120
PDR&: PLF = 175, or 125, {128.-3)
ED=1

6-17

WA DIFTFR | PA 4TIV

PAR 7

enE VA uziqo/@—---- e e el P AG0000
T
/ WA ONTTTT PA 480777
e ————
pak | FAF Lo |
FaR O F&F e A D000, Fa 541000

Figure 6-17 Non-Consecutive Memory Pages

A=0orl
W= Corl
ACF = nnn (to be determined by programmer as the need dictates).

note: the A, W bits will normally be set by hardware.

In this case the stack hegins 128 blocks above the relative origin of
this memory page and extends downward for a length of three blocks.
A "“PAGE LENGTH ERROR'" abort vectored through Kernel Virtual Ad-
dress (VA) 250 will be generated by the hardware when an attempt is
made to reference any location below the assigned area, i.e. when the
Biock Number (BN) from the Virtual Address (VA) is less than the Page
Length Fiteld (PLF) of the appropriate Page Descriptor Register (PDR).

6.5.8 Transparency

It should be clear at this point that in a multiprogramming application
it is possible for memory pages to be ailocated in such a way that a
particular program seems to have a complete 32K basic PDP-11/70
memory configuration. Using Relocation, a Kernel Mode supervisory-type
program can easily perform all memory management tasks in a manner
entirely transparent to a Supervisor or User mode program, In effect, a
PDP-11/70 System can utilize its resources to provide maximum through-
put and response to a variety of users each of which seems to have a
powerful system ‘‘all to himself.”

6-18

WA I577IT 331777

BLOCK 1775 (127
BLOCK Wog (1284
BLOCK 1734 (K25y0)

PAIINS00

Wa 157500

s RDEK 0

WA 1 ADGGL P& 312000

A ar TA|W%ED|AG

Figure 6-18 Typical Stack Memory Page

Fisk &

FCR &

6.5.9 Memory Management Unit—Register Map
REGISTER

Memory Mgt Register #O0(MMRO)

Memory Mgt Register
Memory Mgt Register
Memory Mgt Repister

#1{MMR1)
#2(MMR2)
#3(MMR3)

User | Space Descriptor Register (UISDRO)

i.lser | Space Descriptor Register (UIDR7)
User D Space Descriptor Register (UDSDRO)

i.lser D Space Descriptor Register (UDSDR7)
User | Space Address Register (UISARO)

iJser I Space Address Register (UISAR7)
User D Space Address Register (UDSARQ)

iJser D Space Address Register (UDSARY)
Supervisor | Space Descriptor Register (SISDRD)

-Super\risor | Space Descriptor Register (SISDR7)
6:19

ADDRESS

17 777572
17 777574
17 777576
17 772516

17 777600

17 777616
17 777620

17 777636
17 777640

17 777656
17 777660

17 777676
17 772200

17772216

REGISTER
Supervisor D Space Descriptor Register (SDDRO)

Supervisor D Space Descriptor Register (SDSDR7)
Supervisor | Space Address Register (SISARQ)

Supervisor | Space Address Register (SISAR7)
Supervisor D Space Address Register (SDSAROQ)

-Supervisor D Space Address Register (SDSDR7)

Kernel 1 Space Descriptor Register (KISDRO)

Kernel | Space Descriptor Register (KIDSR7)
Kernel D Space Descriptor Register (KDSDRO)

i(ernel D Space Descriptor Register (KDSDR7)
Kernel | Space Address Register (KISARO)

Kernel | Space Address Register (KISAR7)
Kernel D Space Address Register (KDSARD)

i(ernel D Space Address Register (KDSAR7)
6.6 UNIBUS MAP

ADDRESS
17 772226

17 772236
17 772240

17 772256
17 772260

17 772276
17 772300

17 772316
17 772320

17 772336
17 772340

17 772356
17 772360

17 772376

The UNIBUS Map performs the conversion that allows devices on the
UNIBUS to communicate with physical memory by means of Non-Proces-
sor Requests {(NPR's). UNIBUS addresses of 18 bits are converted to

22-bit physical addresses using relocation hardware.

enabled {or disabled) under program control.

This relocation is

The top 4K word addresses of the 128K UNIBUS addresses are reserved
for CPU and /0 registers and is called the Peripherals Page; see Figure
6-19. The lower 124K addresses are used by the UNIBUS Map to refer-

ence physical memory.
6-20

FRRTR
PERIPHERAL
PAGE

(4K WORDS] 20 000
757 777
124K

1TO) UMIBUS MAF)

Qgooon

Figure 6-19 UNIBUS Address Space

The UNIBUS Map is the interface to memory from the UNIBUS. The
operation is transparent to the user, if it is disabled.

Relocation Disabled

If the UNIBUS Map relocation is not enabled, an incoming 18-bit
UNIBUS address has 4 leading zeros added for referencing a 22-bit phys-
ical address, The lower 18 bits are the same. No relocation is performed.

Relocation Enabled

There are a total of 31 mapping registers for address relocation., Each
register is composed of a double 16-bit PDP-11 word (in consecutive
locations) that holds the 22-bit base address; see Figure 6-20. These
registers have UNJBUS addresses in the range 770 200 to 770 372.

If UNIBUS Map relocation is enabled, the 5 high order bits of the
UNIBUS address are used to select one of the 31 mapping registers.
The low order 13 hits of the incoming address are used as an offset
from the base address contained in the 22-bit mapping register; see
Figure 6-21. To form the physical address, the 13 low order bits of the
UMNIBUS address are added to 22 hits of the selected mapping register to
produce the 22-bit physical address. Refer to Figure 622, The lowest
order bit of all mapping registers is always a zero, since relocation is
always on word boundaries.

ADDRESS = AR ADCRESS = A&
15 b5 0 s . ()
e |
t_/ e //,;/ e jo HIGH CRDER sns_l I 16 LW QRDER BITS ‘ ¢ |
hS A
DOUBLE WORTH

?é:"a“J
Figure 6-20 Single Mapping Register (1 of 31)

6.7 NON-EXISTENT MEMORY ERRORS

After a 22-bit physical address is generated, the CPU looks at the 4 high
order hits, bits 18 to 21, to see if they are all ONES. If this is true (range
17 000 D00 to 17 17 777 777), the lower 18 hits are used for a
UNIBUS address. If after 10 to 20 gsec, there is no response, the CPU
does a UNIBUS Timeout abort, and bit 4 in the CPL) error Register is set.

6-21

17 o2 [4]
] EIE [13 BITS UNIBUS

ALLRESS
i\ " iy
OFFSET
SELECT 1 OF 31
MAFPPING REGS
{IF RELCHCATION
15 BMABLED)

Figure 6-21 18-bit UNIBUS Address

UWIBLIS AQDRESS ‘

SELECT mMaP RECISIER

ORFSET AMTZ PAGEUNIBUS ADDRESS| 1
[

N _ o
COMTENTS GF " [_ H l
mAP REGISTER

2

- it
CALE ADORESS . 1_..._.__.\.,___.___ e
(FHYSICAL| ‘\ §|

Figure 6-22 Construction of a Physical Address

If the 4 high order bits are not all CNES, the address is compared against
the System Size register, If the physical address is higher than the
amount of implemented physical memory, the CPU does an immediate
non-existent memeory abort, and bit 5 in the CPU Error Register is set.
Mote that it is not necessary to do a time-out, since the maximum phys-
ical memory on the system is indicated in the System Size register.

When memory is accessed from the UNIBUS via the UNIBUS Map, a
memary cycle is requested. If the memory location is not in physical
memary, the memory bus times cut. Since there is no response on the
UNIBUS, the UNIBUS master also times-out.

5-22

CHAPTER 7

MEMORY SYSTEM

7.1 GENERAL
This chapter provides detailed information on:

a} Memory system
b) Cache memory
c) Main memaory
d) Parity

An overall block diagram of the PDP-11/70 is shown in Figure 7-1, From
a functional standpoint, main memory and the cache can be treated as
a single unit of memory.

MEM
U & MEM] UNIBUS >

r
|
| | |
| '
MAP
| |
l HIGH- SPEED ‘.4‘>
CACHE 140 10 RS
| CONTROL _|___._~..

L _ __ _CPU ASSEMBLY o
[———maIN
MEMORY
MAIN BUS
MEMORY

Figure 7-1 Block Diagram of PDP-11/70

7.2 CACHE MEMORY

7.2.1 Introduction

A cache memory is a small, high-speed memory that maintains a copy
of automatically selected portions of main memory for faster access to
instructions and data. A computer system, using a cache memory, ap-
pears the same as a conventional system with core memory, except that
the execution of programs is noticeahiy faster. The only difference is in
system timing; there are no changes in programming! The operation is
transparent to the user.

Figure 7-2 shows the block diagram for a system with cache memory.
Main memory is replaced by a combination of cache memory plus main
memory. The cache system simulates a system having a large amount
of fast memory. The cache itself uses a small amount of very fast semi-

7-1

conductor memory; the main memory uses slower core memory, The
key to the effectiveness of a cache is the algorithm which auvtomatically
and dynamically allocates (transfers) the data most needed to the fast
memory.

PERIPHERALS

|' - - - - - - - — — — 1

r I

cru i CACHE DRy |
|

UMEMORYSYSTEM__ i

Figure 7-2 Memory System

The statistics of program behavior make a cache system work. All of the
data is stored in main memory; a copy of some of the data is stored in
the cache. If most of the time the needed data is in the fast memory, the
program will execute quickly, slowing down only whenp accesses must be
made ta main memory. Other semiconductor-core systems attempt to
achieve this goal by having the programmer guess ahead of time which
sections of the program should go in which memory, The cache system
achieves the same goal by automatically, dynamically shuffling data
between the two memory types in a way which gives a high probability
that useful data will be in the fast memory,

A cache memory predicts which words a program will most prabably re-
quire soon. The principle of program locality states that programs have
a tendency to make most accesses in the neighborhood of locations ac-
cessed in the recent past. Programs typically execute instructions in
straight lines or small loops, with the next few accesses likely to be
within a few words ahead or behind of the current location. Stacks grow
and shrink from one end, with the next few accesses near the current
top. Data elements are often scanned through sequentially. The cache
makes use of this type of program behavior by bringing in extra words
on each access to main memory {look ahead) and keeping copies of
recently used words {look behind).

From a cost effectiveness stnadpoint, a cache system offers faster system
speed for the cost of only a small quantity of fast memory plus asso-
ciated logic. How much faster depends on the size and organization of
the cache not on the size of main memory. The user receives a very sub-
stantial speed improvement for a modest cost, and there are nc pro-
gramming changes. Although the exact speed improvernent depends on
the particular program, a judicious choice of architecture and aigorithm
will produce good resulis for usefu programs.

The fundamental concern is execution speed. This is affected by the
speeds of fast and slow memory and by the percentage of times memory
references will find the data within the cache and therefore atlow faster
execution. When the needed data is found in the cache, a hit is said to
cccur, A miss occurs when the data is not in the cache.

7-2

7.2.2 The PDP-11/70 Cache

The architecture of the cache chosen for the POP-11/70 is described in
this section. It represents a carefully theught out approach, backed by
extensive program simulations to determine hit statistics. Figure 7-1
shows the basic block diagram of the PDP-11/70 memory system. The
size of the cache memary is 1,024 words (2,048 bytes), organized as a
two-way associative cache with two-word blocks, This means there are
two groups in the cache; each group contains 256 blocks of data, and
each block contains two PDP-11 words (see Figures 7-3 & 7-4). Each
hlock alsc has a tag field, which contains information to construct the
address in main memory where the original copy of this data block re-
sides. The data from main memory can be stored within the cache in
one index position determined by its physical address, Refer to Figure
7-5 for the organization of the 22-bit physical address. The 8-bit index
field (bits 2 to 9 determine which element of the array will contain the
data (but it can be in either Group O or Group 1).

'
SROUF -‘Jl- GROUP 1 o
. DATA MEMORY
[l i v o
WORD 2

TAG WORD 1 WWORD 2 TAG WORD 1
I I
I

I

|

I

|

| 256 INDEX
| ROSITIONS
|

|

|

|

|

|
r ’

1
|
1
1
1
|
|
1
|
!
|

R R '}

w
N
|

BYTE | BYTE BYTE b oRrTE BLOCE OF DATA 1
— [—) |
L]
ADDRESS WEMORY
Figure 7-3 Cache Memory (1024 words)
s |'""‘? BiTs —e{ g m751 18 BITS o+ 18 BTS +
‘ Tad FIELD D WORD 1 WORD 2
.\'-\RIT e
\HIGH ADGRESS) BE |F | WTE [P e [P] BUE | ¢
TAGS e} ot | |
Figure 7-4 Block of Data plus Tags
& 22 BITS '
21 e
—— S
l T l INDEX TT —[
1 ————— —_——
e BLOCK AUDRESS -——-—-u—-—ialj
wDRD 1M BLHCK:

Figure 7-5 Physical Address
7-3

The elements of the cache must store not only the data, but also the
address identification. Since the index position itself implies part of the
address, only the high address field {(called tag field) must be storad.
The combination of the tag plus index gives the address of the two-word
block in main memeory. The lowest two bits in the physical address select
the particular word in the block, and the byte (if needed).

There are two places in the cache where any block of data can go, a par-
ticular index position in either Group 0 or Group 1. Random selection
determines into which group the information is placed, overwriting the
previcus data. Another bit is needed within the cache to determine if
the block has been loaded with data. When power is first applied, the
cache data is invalid, and the valid bit for each data block is cleared.
When a particular block location is updated, the associated valid bit is set
to indicate good data,

Figure 7-4 shows the organization for a single block of data within a
set, Note that data has byte parity, and that the non-data part called
tags contains a 12-bit high order address field plus a valid bit and two
parity bits,

7.2.3 General Operation

The system always looks for data in the fast cache memory first. If it is
there (a hit), execution proceeds at the fastest rate. If the information is
not there (a miss), and the operation was a read, a two-word block of
data is transferred from main memory to the cache. If there is a miss
while trying to write, main memory is updated, but there are no changes
to the cache. Main memory and the cache are hoth updated on write
hits.

The operation of what happens on hits or misses is summarized in
Table 7-1.

Table 7-1 Qperation on Hit or Miss

What Happens In
CACHE MAIN MEMORY

READ

hit no change no change

miss updated no change
WRITE

hit updated updated

miss no change updated

When power is first applied (Power-Up), all of the valid bits are cleared.
If power is suddenly lost, cache data may become invalid, but main
memory, with non-volatile core, will have a correct copy of all the data.

With a typical program, writes occur only 109%, of the time as compared
to 90%; of the time for reads. Read hits will average 80 to 959, of all
cycles with a typical program.

74

7.3 PARITY

System Reliability

Parity is used extensively in the PDP-11/70 to ensure the integrity of
data storage and transfer, and to enhance the reliability of system opera-
tion. All of memory {cache and core} has byte parity. Parity is generated
and checked on all transfers between core and cache, again between
cache and the CPU, between high-speed mass sterage devices and their
controllers, and again between the controllers and core memory. A soft-
ware routine can be used to log the cccurrence of parity errors, to han-
dle recovery from errors, and to provide information on system reliability
and performance.

Parity in the System

Main memory stores 1 parity bit for each 8-bit byte, refer to Figure 7-6.
The cache also stores byte parity for data, and in addition it stores 2
parity bits for the address and conirol information (tag storage) asso-
ciated with each 2-word block of data.

CPU UNIBUS >

appREsst 1G0T appress
ATALP] Map
ADDRESSIP) DATAIPY] | paTA (P) H'G";;OSPEED HIGH- SPEED
TR 1/0 BUS
CACHE CONTROL _J para & CONTROWR
AD DS?ESS DATALP)

CONTROL{PY

MAIN CONTROL

Figure 7-6 Parity {P) in the PDP-11/70 System

The bus between main memory and the cache contains parity on the
data and address and control lines. The high-speed 1/0 controllers check
and generate parity for data transfers to main memory, and they have
the capability of handling address errors that are flagged by the control
in the cache memaory.

System Handling of Parity Errors

Extensive capabilities have been designed into the PDP-11/70 to allow
recovery from parity errors, and t{o allow operation in 2 degraded mode
if a section of the memory system is not operating properly. This type
of operation is possible under program contrcl by using the built-in con-
trol registers,

7-5

If part or all of the cache memory is malfunctioning, it is possible to
bypass half or all of the cache. Misses ¢an be forced within the cache,
such that all read data is brought from main memory, Operation will be
siower, but the system will yield correct results. if part of main memory
is not working, the Memory Management unit can be used to map
around it. If data found in the cache does not have correct parity, the
memory system automatically tries the copy in main memory, to allow
program execuiion to proceed.

Details of how to perform this programming is explained in the next sec-
tion on the CPU and memory control registers.

Aboris and Traps

Two actions can take place after detection of a parity error. The cycle
can be aborted. Then the computer transfers control through the vector
at lacation 114 to an error handling routine. The other action is that the
instruction is completed, but then the computer traps (also through loca-
tion 114). In the first case, it was not possible to complete the cycle;
whereas, in the second case it was. This second type of parity error usu-
ally {but not always) causes the trap before the next instruction is
fetched. Refer to Table 7-2,

TABLE 7-2 Response to Parity Errors

PARITY ERROR CONDITION FOR CONDITION FOR
DETECTED ABORT TRAP

CPU cycle, Error in requested Error in the other
data error, word. word,

read from main memory

UNIBUS cycle, * Error in either word.
data error,

read from main memory

CPU cycle, All reads and writes.
address error,
reference to main mem

UNIBUS cycie, All reads and writes.
address error,
reference to main mem

CPU or UNIBUS cycle, All reads.
data or address error,
reference to cache

High-speed 1/0 cycle, {no CPU aborts or traps occur; high-speed
data or address error, t/O controliers handle their parity errors}.
ref to main memory

* NOTE: When a parity error is detected on data going to the UNIBUS,
the parity errar signal is asserted,

76

System Response to Parity Errors

Data is read from main memory to the cache in 2-word blocks, If the
read cycle was caused by the CPU, and a parity error is detected in the
requested word, an abort occurs. If it was in the other word, a trap ac-
curs. On UNIBUS cycles, a trap is caused if there is a read error in either
word.

When an address parity erraor is detected on any read or write to main
memory, an abort is caused for both CPU and UNIBUS cycles.

When any fast data memory or address memory parity error is detected
on any read from the cache, a trap occurs. On a fast data memory parity
error, the CPU will try to get the data from main memory, and also over-
write the same cache location with the new (correct) word just fetched.
On an address mermory parity error, the CPU will go 1o main memory,
for the data, and will correct {overwrite)} the tag storage in the cache.

Data transfers for the high-speed mass storage devices take place with
main memory. No data is stored in the cache. Parity errors are handled
by the device controllers; noc CPU aborts or traps occur, and no cache
status registers are affected.

Table 7-2 summarizes the system response.

7.4 REGISTERS

The registers described in this section provide information about parity
errors, memory status, and CPU status. These hardware registers have
program addresses in the top 4K words of physical address space (Peri-
pheral Page).

Register Address
Low Error Address 17 777 740
High Error Address 17 777 742
Memory Systermn Error 17 777 744
Control 17 777 746
Maintenance 17 777 750
Hit/Miss 17 777 752

Some bit positions of the registers are not used (not implemented with
hardware) and are indicated by cross-hatching, These bits are always
read as ZEROS by the program. Most of the bits can be read or written
under program control.

Low Ervor Address Register 17 777 740

15 | o
L0 ADDRESS {14 BITS) ‘ L5B ‘

T S V—

This register contzins the lowest 16 bits of the 22-bit address of the
first errer, The least significant bit is bit G. The high order bits are con-
tained in the High Error Address Register.

All the bits are read only. The bits are undetermined after a Power Up.
They are not affected by a Console Start or RESET instruction.

-7

High Error Address Register

15 14 12

17 777 742

’VC\‘CLE [;5 o
L vl

5 / /4/ //GA 5 . HIGH ADORESS

BIT NAME
15-14 Cycle Type
50 Address

FUNCTION

These bits are used to encode the type of memory
cycie which was being requested when the parity
error occurred,

Bit 15 Bit 14 Cycle Type

Data In (read)
Data In Pause
Data Qut

Data Out Byte

These bits contain the highest 6 bits of the 22-bit
address of the first error. The most significant bit
is bit 5.

OO
— O D

All the bits are read only. The bits are undetermined after a Power Up.
They are not affected by a Console Start or RESET instruction.

Memory System Error Register

17 777 744

& i L] 3 2 1 1]

15 4 13 12 1 10 L & 7
cry apoRr—— 1 _T
CF) ABDRT AFTER ERROR
LRJIBLS PARITY ERROIR -

UIBUS MULTIFLE PARITY ERRCR
CFU ERROR

C:ATA ERRORS

T

UNIBUS ERRCR

CPU UMNIBLUS ABORT
ERROR 1IN MAINTEMANCE

DATA MEMORY GROUP 1

DATA MEMORY GROUP O
ADDRESS MEMORY GROAIP 1

ADCRESS MEMORY GROUP D

MAIN MEMORY QD0 wWRD

MAIR MEMORY EYEN WORD

MAIN MEMORY ADDRESS PARITY ERROR

MAIN MEMGRY TIMECUT

BIT NAME
15 CPU Abort

14 CPU Abort
After Error

13 UNIBUS
Parity
Error

12 " UNIBUS
Multipie
Parity
Error

FUNCTION

Set if an error occurs which caused the cache
to abort a processor cycle.

Set if an ahort occurs with the Error Address
Register locked by a previous error.

Set if an error occurs which resulted in the
UNIBUS Map asserting the parity error signal
on the UNIBUS.

Set if an error cecurs which caused the parity
error to be asserted on the UNIBUS with the
Error Address Register locked by a previous
arror.

78

BIT
11

10

76

5-4

3-2

NAME
CPU Error

UNIBUS Error

CPU UNIBUS
Abort

Error in
Maintenance

Data Memory

Address
Memory

Main Memory

Main Memory
Address
Parity Error

Main Memory
Timeout

FUNCTION

Set if any memory error occurs during a
cache CPU cycle.

Set if any memory errors occurs during a
cache cycle from the UNIBUS.

Set if the processar traps to vector 114 be-
cause of UNIBUS parity error on a DATI or
DATIP memory cycle,

Set if an error occurs when any bit in the
Maintenance Register is set. The Mainte-
nance Register will then be cleared.

These bits are set if a parity error is detected
in the fast data memory in the cache. Bit 7
is set if there is an error in Group 1; bit 6
for Group 0.

These bits are set if a parity error is detected
in the address memory in the cache. Bit 5 is
set if there is an error in Group 1; bit 4 for
Group 0.

These hits are set if a parity error is detected
on data from main memory. Bit 3 is set if
there is an error in either byte of the odd
word, bit 2 for the even ward. {Main memaory
always transfers two words at a time.} An
abort occurs if the error is in the word
needed by a CPU reference. A trap occurs if
the error is in the other word, or if it is a
UNIBUS reference.

Set if there is a parity error detected on the
address and control lines on the main mem-
ary bus.

Set if there is no response from main mem-
ory. For CPU cycles, this error causes an
abort. When a UNIBUS device requests a
non-existent location, this bit will set, cause
a time-out on the UNIBUS, and then cause
the CPU to trap to wvector 114.

The bits are cleared on Power Up or by Conscle Start. They are unaf-
fected by a RESET instructian.

When writing to the Memory System Error Register, a bit is unchanged
if a 0 is written to that bit, and it is cleared if a 1 is written to that bit.
Thus, the register is cleared by writing the same data back to the regis-
ter. This guarantees that if additional error hits were set between the
read and the write, they will not be inadvertantly cleared.

7-9

Control/ Register 17 777 746

15 :] 3 4 3 2 1 a
V000] I I
FORCE REPLACEMENT GROUP) ——— — o .} T T N I
FORCE REFLACEMENT GROVP O
FORCE MISS GROUP 1
FOREE MISS GROIUP O
DISABLE UNMIBUS TRAF
DISABLE TRAPS
BIT NAME FUNCTION
5-4 Force Setting these hits forces data replacement
Replacement within a Group in the cache by main memory

data on a read miss. Bit 5 selects Group 1
for replacement; bit 4 selects Group 0.

3-2 Force Miss Setting these bits forces misses on reads to
the cache. Bit 3 forces misses on Group 1;
hit 2 forces misses on Group 0. Setting both
bits forces all cycles to main memory.

1 Disable Set to disable traps to vector 114 when the
UNIBUS Trap parity errar signa! is placed on the UNIBUS.

)] Disable Set to disable traps from non-fatal errors.
Traps

Bits 5 through O are read/write. The bits are cleared on Power Up or
by Console Start.

The PDP-11/70 has the capability of running in a degraded mode if
problems are detected in the cache. If Group O of the cache is malfunc-
tioning, it is possible to force all operations through Group 1. If hits 2
and 5 of the Control Register are set, and bits 3 and 4 are clear, the
CPU will not be able to read data from Group 0, and all main memary
data replacements will occur within Group 1. In this manner, half the
cache will be cperating, But system throughout will not decrease by
509%,, since the statistics of read hit probability will still provide reason-
ably fast operation.

If Group 1 is malfunctioning, hits 3 and 4 should be set, and hits 2 and
5 cleared; such that only Group O is operating. If all of the cache is mal-
functioning, bits 2 and 3 should be set. The cache will be bypassed, and
all references will be to main memory,

Bits 1 and O can be set to disable trapping; more memary cycles will he
performed, but overall system operation will produce correct results.

Maintenance Register 17 777 750

15 il g 7 4 3 g

- ,\ - m—— ——
AN MEMIRY F‘ARITY—* r I [

FAST ADDRESS PARITY:
FA5TDATA PARITY
MEMDRYT MARGING

BIT NAME
15-12 Main
Memory
Parity
Bit Set
15
14
13
12
11-8 Fast
Address
Parity
Group Q.
74 Fast
Data Parity be 1's.
Bit Set
7
&
5
4
31 Memory
Margins

FUNCTION

Setting these bits causes the 4 parity bits to
bhe 1's. There is 1 bit per byte; there are 4
bytes in the data block.

Byte

odd word, high byte
odd word, low byte

even word, high byte
even word, low byte

Setting these bits causes the 4 parity bits for
fast address memory to be wrong. Bits 11
and 10 affect Group 1; bits & and 8 affect

Setting these bits causes the 4 parity bits to

Byte

Group 1, high byte
Group 1, low byte
Group 0, high byte
Group O, low hyte

These bits are encoded to do maintenance
checks on main memory.

Bit 3 Bit 2 Bit 1

OO oo

1
1

0
0

[R I PR

1
1

0 Marmal operation
1 Check wrong
address parity
Early strobe margin
Late strobe margin
Low current margin
High current
margin

Cl) } (reserved)

—_HORO

All of main memory is margined simultane-

ously.

Hit/Miss Register 17 777 752

77

& 3
/% - FLOW

This register indicates whether the 6 most recent references by the CPU
were hits or misses. A ONE (1) indicates a read hit; a ZERDO (0) indicates
a read miss or a write. The lower numbered bits are for the more recent

cycles.

All the bits are read only. The bits are undetermined after a Power Up.
They are nct affected by a Conscle Start or a RESET instruction.

7-1

7-12

CHAPTER 8

FLOATING POINT PROCESSOR

8.1 INTRODUCTION

The PDP-11 Floating Point Processor is an optional arithmetic processor
which fits into the PDP-11/70 Central Processor, It performs all floating
peint arithmetic operations and converts data between integer and float-
ing point formats.

The hardware provides a time and money-saving zlternative to the use of
software floating point routines. Its use can result in many orders of mag-
nitude improvement in the execution of arithmetic operations.

The features of the unit are:

+ Qverlapped operation with central processor

High speed

» Single and double precision (32 or 62 bit) floating point modes

* Flexible addressing modes

-

+ Six 64-bit floating point accumulators
* Error recovery aids

8.2 OPERATION

The Floating Point Processor is an integral part of the Central Processor.
It operates using simifar address modes, and the same memory man-
agement facilities provided by the Memory Management Option, as the
Centrai Processor. Floating Point Processor instructions can reference the
floating point accumulators, the Central Processor's general registers, or
any location in memory.

When, in the course of a program, an FPP Instruction is fetched from
memory, the FPP will execute that instruction in parallel with the CPU
continuing with its instruction sequence. The CPU is delayed a very short
period of time during the FPP Instruction's Fetch operation, and then is
free to proceed independently of the FPP. The interaction between the
two processors is automatic, and a program can take full advantage of
the parallel operation of the two processors by intermixing Floating Point
Processor and Central Processor instructions.

Interaction between Floating Point Processor and Central Processor in-
structions is automatically taken care of by the hardware. When an FPP
Instruction is encountered in a program, the machine first initiates Float-
ing Point handshaking and calculates the address of the operand. it
then checks the status of the Floating Point Processor. If the FPP is
“busy’’, the CPU will wait until it is “done’” before continuing execution
of the program. As an example, consider the foltowing sequence of
instructions;

LDD{R3)4,AC3 Pick up constant operand and place it
in AC3
ADDLP: LDD{R3)-+,ACO ;Load ACO with next value in table
MUL AC3,ACO ;and multiply by constant in AC3

81

ADDD ACO,ACL ;and add the result into AC1

S0B R5,ADDLP icheck to see whether done
STCDI AC1@R4 ;done, convert double to integer and
store

In the above example, the Floating Point Processor will execute the first
three instructions. After the “ADDD" is fetched into the FPP, the CPU
will execute the “SOB', calculate the effective address of the STCDI
instruction, and then wait for the FPP to be ““done’ with the "ADDD"
before continuing past the STCDI instruction.

As can be seen from this example, autoincrement and autodecrement
addressing automatically adds or subiracts the correct amount to the
contents of the register, depending on the modes represented by the
instruction.

8.3 ARCHITECTURE

The Floating Point Processor contains scratch registers, a Floating Ex-
ception Address pointer (FEA), a Program Counter, a set of Status and
Error Registers, and six general purpose accumulators (ACO-ACH).

Each accumulator is interpreted to be 32 ar 64 bits long depending on
the instruction and the status of the Floating Point Processar. For 32-bit
instruction only the left-most 32 bits are used, while the remaining 32
bits remain unaffected,

r &4 81T !
| ACCUMULATOR !
| 32 BIT |
TFF
| ACCUMULATOR EXCEPTION [of f |
——m— e RE RESISTER UNIBUS
| ace |
| ac 1
CPy
acz
| ac rosrng pomr || [gewtaa o nocesson
| At ARITHMETIC]
THE ARITHNETIC
| aca ! CONVERSION N i CFU
| NIt | UNIT GEMNERAL
| : REGISTER
| SCRATCH | i
PROGRAM POINTER

} TO LAST I MEMORY
| INSTRUCTICN i
| CAUSING ERROR

{
| rioammo powr processor |

Figure 8.1: Floating Point Processor

The six Floating Point Accumulators are used in numeric calculations
and interaccumulator data transfers; the first four (ACO-AC3) are also
used for all data transfers between the FPP and the General Registers or
Memory,

8.2

8.4 FLOATING POINT DATA FORMATS

Mathematically, a floating point number may be defined as having the
farm (2%*K)*f, where K is an integer and f is a fraction. For a non-
vanishing number, K and f are uniquely determined by imposing the
condition 14 < f < 1. The fractional part, f, of the number is then
said to be normalized. For the number zerc, f must be assigned the
value 0, and the value of K is indeterminate,

The FPP floating point data formats are derived from this mathematicat
representation for fleating point numbers. Two types of floating point
data are provided. In single precision, or Floating Mode, the word is 32
bits long. In double grecision, or Double Mode, the word is 64 bits long.
Sign magnitude notation is used.

8.4.1. Non-vanishing Floating Point Numbers

The fractional part f is assumed normalized, so that its most significant
bit must be 1. This 1 is the “hidden’ bit: it is not stored in the data
word, but of course the hardware restores it before carrying out arith-
metic operations. The Floating and Double modes reserve 23 and 65
bits, respectively, for f, which with the hidden bit, imply effective word
lengths of 24 hits and 5& bits for arithmetic operations.

Eight hits are reserved for the storage of the exponent K in excess 128
(200 octal) notation (i.e. as K 4+ 200 octal). Thus exponents from —128
to +127 could be represented by O to 377 (octal), or 0 to 255 {deci-
mal). For reascons given below, a biased EXP of O (true exponent of
—200 octal), is reserved for floating point zero. Thus exponents are
restricted to the range —127 to +127 inclusive (—177 to 177 octal} or,
in excess 200 (octal) notation, 1 to 377 (octal).

The remaining bit of the floating point word is the sign bit,

8.4.2. Floating Point Zero

Because of the hidden bit, the fractional part is not available to dis-
tinguish between zero and non-vanishing numbers whose fractional part
is exactly 1/2. Therefore the FP11 reserves a biased exponent of O for
this purpose. And any floating point number with biased exponent of 0
either traps or is treated as if it were an exact Q in arithmetic operations.
An exact zerp is represented by a word, whose bits are all 0's. An arith-
metic operation for which the resulting true exponemt exceeds 177
{octal} is regarded as producing a floating overflow; if the true expo-
nent is less than — 177 (octal) the operation is regarded as producing a
floating underflow. A biased exponent of O can thus arise from arith-
metic operations as a special case of overflow {true exponent = 400
octal), or as a special case of underflow (true exponent = 0). (Recall
that only eight bits are reserved for the biased exponent.) The fractional
part of results ohtained from such overflows and underflows is correct.

8.4.3. The Undefined Variable

The undefined variable is defined to be any hit pattern with a sign hit of
one and a biased exponent of zero. The term "undefined variable” is
used, for historical reasons, to indicate that these hit patterns are not
assigned a corresponding floating point arithmetic value. Note that the
undefined variable is frequently referred to as “—0" elsewhere in this
chapter,

83

A design obective of the FP11C was to assure that the undefined vari-
able would not be stored as the result of any floating point operation in
a program run with the overflow and underflow interrupts disabled.
This is achieved by storing an exact zerc on overflow or underflow, if
the corresponding interrupt is disabled. This feature together with an
ability to detect a reference to the undefined variable (implemented by
the FIUV bit discussed in the next section) is intended to provide the
usar with a debugging aid: if the presence —0 occurs, it did not result
from a previous floating point arithmetic instruction.

8.4.4. Floating Point Data
Floating point data is stored in words of memory as illustrated below.

F Format, single precision

5 EXpP FRA —"'l
N . n L
1514 . TG 15 +]

D Format, double precision

EOUCAD FAGIN 1 SUUUURCION

T 7 &

N . BS = |
L L J L L el el L i L PR T T 1 AR NN AUV W N S
o]

S = Sign of Fraction

EXP = Exponent in excess 200 notation, restricted to 1 to 377 octal for
non-vanishing numbers.

FRACTION = 23 hits in F Format, 55 bits in D Format, 4- cne hidden bit
(nermalization). The binary radix point is to the left.

The FPP provides for conversion of Floating Point to Integer Format and
vice-versa. The processor recognizes single precision integer {I) and
double precision integer long (L) numbers, which are stored in stan-
dard two's complement form:

| Format:

|_S| NUMBER

o b o]

L Format:

Pl T e

84

S = Bign of Number
NUMBER = 15 bits in | Format, 21 bits in L Format.

8.5 FLOATING POINT UNIT STATUS REGISTER (FPS register)

This register provides {1) mode and interrupt control for the floating
point unit, and (2) conditions resulting from the execution of the pre-
vious instruction.

Four bits of the FPS register control the modes of operation:

Single/Double: Floating point numbers ¢an be either single or
double precision.

Long/Short: Integer numbers can be 16 bits or 32 bits.

Chop/Round: The result of a floating point operation can be either
chopped or rounded. The term “chop’ is used instead of “trun-
cate” in order to avoid confusion with truncation of series used
in approximations for function subroutines.

Nermal/Maintenance: a special maintenance mode is available,
The FPS register contains an error flag and four condition codes (5 bits):

Carry, overflow, zero, and negative, which are equivalent to the CPU
condition codes.

The floating point processor (FPP} recognizes seven “floating point
exceptions’";

detection of the presence of the undefined variable in memaory
floating overflow

floating underflow

failure of floating to integer conversion

maintenance trap

attermnpt to divide by zero

illegal floating OP code

For the first five of these exceptions, bits in the FFS register are
available to individually enable or disable interrupts. An interrupt
on the occurrence of either of the last two exceptions can be dis-
abled only by setting a bit which disables interrupts on all seven of
the exceptions, as a group.

Of the fourteen bits described above, five are set by the FFP as part
of the output of a floating point instruction: the error flag and condi-
tion codes. Any of the mode and interrupt control bits (except the
FM bit) may be set by the user; the LDFS instruction is available
for this purpose. These fourteen bits are stored in the FPS register
as follows:

|FERIFID UNUSED lFILN‘FIU]FI\I‘ IFIC‘ FD ‘ FL—I FT—{FMMI FNl FZ [F¥ [FC
15 14 13 1”2 910 E] g 7) 5 4 3 2 1 o]

85

BIT
15

14

13
12
1

NAME
Floating Error {(FER)

Interrupt Disable (FID)

DESCRIPTION

The FER bit is set by the FPP if

1, division by zero occurs

2. illegal OP code occurs

3. any one of the remaining
accurs and the correspond-
ing interrupt is enabled.

Note that the above ‘action is in-
dependent of whether the FID
bit {next item) is set or clear.

Note also that the FPP never re-
sets the FER bit. Once the FER
hit is set by the FPP, it can be
cleared only by an LDFPS in-
struction (or by the RESET in-
struction described in Section
4.7). This means that the FER
bit is up to date only i the maost
recent floating point instruction
produced a floating point excep-
ception.

If the FID bit is set, all floating
point interrupts are disabled.
Note that if an individual inter-
rupt is simultanecusly enabled,
only the interrupt is inhibited; all
other actions associated with the
individual interrupt enabied take
place.

NOTES

1. The FID bit is primarily a maintenance fea-
ture. it should normally be clear, In particu-
lar, it must be clear if one wishes to assure
that storage of -0 by the FP11C is always
accompanied by an interrupt.

2. Through the rest of this chapter, it is as-
sumed that the FID bit is clear in all discus-
sions involving overfiow, underflow, occur-
rence of —0, and integer conversion errors.

Not Used
Not used

Interrupt an Undefined
Variable (FIUV)

8-6

An interrupt occurs if FIUV is
set and a —0 is obtained from
memory as an operand of ADD,
SUB, MUL, DIlv, CMP, MOD,
NEG, ABS, TST or any LOAD in-
struction. The interrupt occurs
before execution on the FPLLB.
It also occurs before execution

BIT

10

9

8

NAME

Interrupt on Underflow (FI1U)

Interrupt on Overflow {FIV)

Interrupt on Integer
Conversian Error (FIC)

8.7

DESCRIPTION

on the FP11C except on NEG
and ABS for which it occurs after
execution. When FIUV is reset,
—0 can be loaded and used in
any FPP operation. Note that the
interrupt is not activated by the
rresence of —0 in an AC oper-
and of an arithmetic instruc-
tion: in particular, trap on —0
never occurs in Mode Q.

The FPLIC will not store a resalt
of —0 without the simultaneous
occurrence of an interrupt (See
Section 8.4).

When the FIU bit is set, Floating
Underflow will cause an interrupt.
The fracticnal part of the result
of the operation causing the in-
terrupt will be correct. The biased
exponent will be too farge by 400
(octal), except for the special
case of 0, which is correct, An
exception is discussed in the de-
tailed description of the LDEXF
instruction.

If the FIU bit is reset and if un-
derflow occurs, no interrupt oc-
curs and the result is set to
exact 0.

When the FIV bit is set, Floating
QOverflow will cause an interrupt.
The fracticnal part of the result
of the operation causing the
overflow will be correct. The bi-
ased exponent will be toco small
by 400 (octal}.

If the FI¥ bit is reset, and over-
flow occurs, there is no inter-
rupt. The FP11C returns exact O;
the FP11E returns the resuft of
the operation, just as for FIV
set.

Special cases of overflow are
discussed in the detailed des-
criptions of the MOD and LDEXP
instructions.

When the FIC bit is set, and a
conversion to integer instruction
fails, an interrupt will occur. If

BIT NAME

7 Floating Double Precision
Mode (FD}

o Floating Long Integer
Mode (FL)

5 Floating Chop Mode (FT)

4 Floating Maintenance Mode
{FMM)

3 Floating Negative (FN)

2 Floating Zero (FZ)

1 Floating Cverflow (FV)

88

DESCRIPTION

the interrupt oceurs, the destina-
tion is set to 0, and all other
registers are left untouched,

If the FIC hit is reset, the result
of the operation will be the same
as detailed above, but no inter-
rupt will occurr.,

The conversion instruction fails
if it generates an integer with
more bits than can fit in the
short or long integer word speci-
fied by the FL bit (see & below).

Determines the precision that is
used for floating peoint calcula-
tions. When set, double precision
is assumed; when reset, single
precision is used,

Active in conversion between in-
teger and floating point format.
When set, the integer format as-
sumed is double precision two's
complement {i.e. 32 bits). When
reset, the integer format is as-
sumed to be single precision
two’'s complement (i.e. 16 bits).

When bit FT is set, the result
of any arithmetic operation is
chopped {or truncated}.

When reset, the result is rounded.

See Section 8.8 for a discussion
of the chopping and rounding
operations.

This code is a maintenance fea-
ture. Refer to the Maintenance
Manual for the details of its oper-
ation. The FMM bit can be set
only in Kernel Mode.

FN is set if the result of the last
operation was negative, otherwise
it is reset.

FZ is set if the result of the last
operation was zero; otherwise it
s reset,

FV is set if the last operation re-
sulted in an exponent overflow;
otherwise it is reset.

BIT NAME DESCRIPTION

0 Floating Carry (FC) FC is set if the last operation
resuited in a carry of the most
significant bit. This can only oc-
cur in floating or double o inte-
ger conversions,

8.6 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS

One interrupt vector is assigned to take care of all floating point excep-
tions {location 244). The seven possible errors are coded in the four bit
FEC {Floating Exception Code) register as follows:

2 Floating OP code error
4 Floating divide by zero
G Floating {or double) to integer conversion error
8 Fioating overflow
10 Floating underflow
12 Floating undefined variable
14 Maintenance trap

The address of the instruction producing the exception is stored in the
FEA (Floating Exception Address) register,

The FEC and FEA repisters are updated only when one of the foliowing
QCCurs:

1. divide by zero
2. itlegal OP code
3. any of the other five exceptions with the corresponding interrupt
is enabled,
NOTE

1. If one of the last five exceptions occurs with
the corresponding interrupt disabled, the FEC
and FEA are not updated.

2. Inhibition of interrupts by the FID kit does not
inhibit updating of the FEC and FEA, if an
exception occurs.

3. The FEC and FEA do not get updated if ne
exception occurs. This means that the STST
{store status) instruction will return current
information only if the most recent floating
point instruction produced an exception.

4. Unlike the FPS register, no instructions are
provided for storage into the FEC and FEA
registers.

8.7 FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING
Floating Point Processor instructions use the same type of addressing as
the Central Processor instructions. A source or destination operand is
specified by designating one of eight addressing modes and one of
eight central processor general registers to be used in the specified
mode, The modes of addressing are the same as those of the central
processor except for mode 0. In mode O the cperand is located in the
designated Floating Point Processor Accumnulator, rather than in a Cen-
tral processor general register. The modes of addressing:

89

G = Direct Accumulator

1 = Deferred

2 = Auto-increment

3 = Auto-increment deferred
4 = Auto-decrement

5 = Auto-decrement deferred
6 = Indexed

7 = Indexed deferred

Autoincrement and autodecrement operate on increments and decre-
ments of 4 for F Format and 10, for D Format.

In mode 0, the user can make use of all six FPP accumulators (ACO—-
ACS) as his source or destination. In all other modes, which involve
transfer of data from memory or the general register, the user is re-
stricted to the first four FPP accumulators (ACO—AC3).

In immediate addressing (Mode 2, R7) only 16 bits are loaded or stored.

8.8 ACCURACY

General comments on the accuracy of the FPP are presented here. The
descriptions of the individual instructions include the accuracy at which
they operate. An instruction or operation is regarded as “exact” if the
result is identical to an infinite precision calculation involving the same
operands. The a priori accuracy of the operands is thus ignored. All
arithmetic instructions treat an operand whose biased exponent is O as
an exact O (unless FIUY is enabled and the operand is —0, in which case
an interrupt occurs). For all arithmetic operations, except DIV, a zero
operand implies that the instruction is exact. The same statement holds
for DIV if the zero operand is the dividend. But if it is the divisor, division
is undefined and an interrupt occurs.

For non-vanishing fioating point operands, the fractional part is binary
normalized, It contains 24 bits or 56 bits for Floating Mode and Double
Mode, respectively. The internal hardware registers contain 60 bits for
processing the fractional parts of the operands, of which the high order
hit is reserved for arithmetic overflow. Therefore there are, internally, 35
guard bits for Floating Mode and 3 guard bits for Double Mode arithmetic
operations. For ADD, 5UB, MUL, and DIV, two guard bits are necessary
and sufficient to guarantee return of a chopped or rounded result iden-
tical to the corresponding infinite precision operation chopped or rounded
to the specified word length. Thus, with two guard bits, a chopped result
has an error bound of one least significant bit (LSB); a rounded result
has an error bound of 1/2 LSB. (For a radix other than 2, replace “bit"”
with “‘digit” in the two preceding sentences to get the corresponding
statements on accuracy.} These error bounds are realized by both the
FP11B and FP11C for most instructions, For the addition of operands of
opposite sign or for the subtraction of aperands of the same sign in
rounded double precision, the error bound is 9/16 LSB, which is slightly
larger than the 1/2 LSB error bound for all other rounded cperations.

In the rest of this chapter an arithmetic result is called exact if no non-
vanishing bits would be {ost by chopping. The first bit lost in chopping

8-10

is referred to as the “rounding’'bit. The value of a rounded result is
related to the chopped result as follows:

1. if the rounding bit is one, the rounded result is the chopped result
incremented by an LSB {least significant bit).

2. if the rounding bit is zero, the rounded and chopped resulis are
identical.

It follows that

1. If the result is exact
rounded value = chopped value — exact value

2. If the rasult is not exact, its magnitude
{(a) is always decreased by chopping
(b} is decreased by rounding if the rounding bit is zero
(c) is increased by rounding if the rounding bit is one.

Qccurrence of floating point overflow and underflow is an error condition:
the result of the caleulation cannot be correctly stored because the expo-
nent is too big to fit into the 8 bits reserved for it. However, the internal
hardware has produced the correct answer. For the case of underflow
replacement of the correct answer by zero is a reasonable resolution of
the problem for many applications. This is done on bath the FP11B and
FP11C if the underflow interrupt is disabled. The error incurred by this
action is an absolute rather than a relative errer; it is bounded (in abso-
lute value) by 2%%{—128). There is no such simple resolution for the case
of overflow. The action taken, if the overflow interrupt is disabled, is
described under FIV (bit 9) of Section B.5.

The Ft¥ and FIU bits {(of the floating point status word) provide the user
with an opportunity to implement his own fix up of an overflow or
underflow condition. If such a condition cecurs and the corresponding
interrupt is enabled, the hardware stores the fractional part and the low
eight bits of the biased exponent. The interrupt will take place and the
user can identify the cause by examination of the FV {floating overflow}
hit or the FEC (floating exception) register. The reader can readily verify
that (for the standard arithmetic operations ADD, SUB, MUL, and DIV}
the biased exponent returned by the hardware bears the following
relation to the correct exponent generated by the hardware:

1. on overflow: it is too small by 400 octal
2. on underflow: if the biased exponent is O it is correct. If it is not O,
it is too targe by 400 octal,

Thus, with the interrupt enabled, enough information is available to
determine the correct answer. The user may, for example, rescale his
variables (via STEXP and LDEXP) to continue his calculation. Note that
the accuracy of the fractional part is unaffected by the occurrence of
underflow or overflow.

8.9 FLOATING POINT INSTRUCTIONS

Each instruction that references a floating point number can operate on
either floating or double precision numbers depending on the state of
the FD mode bit. Similarly, there is a mode bit FL that determines
whether a 32-bit integer (FL = 1) or a 16-bit integer (Fi. = O}is used in
conversion between integer and floating point representation. FSRC and
FDST use floating point addressing modes; SRC and DST use CPU
addressing Modes.

811

In the detailed descriptions of the floating point instructions, the opera-
tions of the FP11B and FP11C are identical, except where explicitly
stated to the contrary.

Fioating Point Instruction Format
Double Operand Adressing

I oc FOC aC FSRC,FDST, SRC, DST
l 'l A l L

1 i L L

I oc [FOC | FSRC, FDST, SRC, DST j
L i l L 1 L 1 1 1
15 2 11 G 5 Q

OC = Op Code = 17

FOC = Floating Op Code

AC = Accumulator

FSRC, FDST use FPP Address Modes
SRC, D5T use CPU Address Modes

General Definitions:

XL = largest fraction that can be represented:
1—-2%*({—58}, FD = 1); double precision

XLL = smallest number that is not identically zero — 2%%(—128) -.2%*
(—127))*(1/2)

XUL = largest number that can be represented = 2**{127)*%L

JL = largest integer that can be represented:
2%%(19)—1if FL=0 2##(31)—1 ifFL=1

ABS (address) = absolute value of (address)

EXP (address) — biased exponent of {address)

.LT. = "less than""

.LE. = “less than or equal”’
.GT. = “greater thar'

.GE. == "greater than or equal’’
LSB = least significant bit

LDF

Operation:

LDD
Load Floating/Double 172(AC + 4}FSRC
11t 1] o] c Fg
N R N
15 1201 g8 7 6 8 0
AC < (FSR(C)
Condition Codes: FC «0
FVY « 0

Description:

Interrupts:

Accuracy:
Special Comment:

FZ <1 if (AC) = O, else FZ < 0.

FN « 1 if (AC) <2 0, else FN « 0.

Load Single or Double Precision Number into
Accumulator.

If FIUV is enabled, trap on —0 occurs before AC
is loaded. Meither overflow nor underflow can
accur.

These instructions are exact.

These instructicns permit use of —0 in a subse-
quent floating point instruction if FIUV is not
enabled and (FSRC) = —0.

8-13

STF

STD
Store Floating/Double 174ACFDST
11 1 11 0 o of ac FDST
KR DR N
i5 12 n ? 6 & 0

Operation: FDST « (AC)

Condition Codes: FC « FC
FV « F¥
FZ « FZ
FN < FN

Description: Store Single or Double Precision Number from
Accumulator.

Interrupts: These instructions do not interrupt if FIUV en-
abled, because the —0, if present, is in AC, not
in memory, Neither overflow nor underflow can
Qccur.

Accuracy: These instructions are exact.

Special Comment:

These instructions permit storage of a —0 in
memaory from AC. Note, however, that the FP11C
pracessor can store a —0 in an AC only if it
occurs in conjunction with overflow or underflow,
and if the corresponding interrupt is enabled.
Thus, the user has an opportunity to clear the
—0, if he wishes.

8-14

ADDF
ADDD

Add Floating/Double 172ACFSRC

15

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

11 1 1]e 1 o ol AC l FSRC J
I L e, L — I3 _l_ n -l e, i - S
PRI,

8 76 <] o]

Let SUM = (AC) 4 (FSRC):

If underflow occurs and FIU is not enabied,
AC <« exact 0.

If overflow occurs and FIV is not enabled,
AC <« exact Q on FR11C.

For all other cases, AC « SUM.

FC « 0O,

FV « 1 If overflow occurs, else FVY « 0.
FZ « 1 If (AC) =0, else FZ « (.

FN « 1 If (AC) < 0, else FN « Q.

Add the contents of FSRC to the contents of AC.
The addition is carried out in single or double
precision and is rounded or chopped in accor-
dance with the values of the FD and FT bhits in
the FPS register. The result is stored in AC
except for:

Overflow with interrupt disabled on the FP11C.
Underflow with interrupt disabled.

For these exceptional cases, an exact O is
stored in AC.

If FIUY is enabled, trap on —0 in FSRC occurs
before execution.

If overflow or underflow occurs and if the cor-
responding interrupt is enabied, the trap occurs
with the faulty result in AC, The fractional parts
are correctly stored. The exponent part is too
large by 400 octal for underflow, except for the
special case of O, which is correct.

Errors due to overflow and underflow are de-
scribed above. If neither occurs, then: For
oppositely signed operands with exponent dif-
ferences of O or 1, the answer returned is exact
if a loss of significance of one or more bits
gccurs. Note that these are the only cases for
which loss of significance of more than one bit
can occur, For all other cases the resuilt is
inexact with error bounds of

Special Comment:

1 LSB in chopping mode with either single or
double precision.

1/2 LSB in rounding mode with single precision.
9/16 LSB in rounding mode with double pre-
cision.

The undefined variable —Q can occur only in ¢on-
junction with overflow or underflow. It will be
stored in AC only if the corresponding inter-
rupt is enabled or, for the FP11B, on overflow
even if the overflow interrupt is not enabled.

8-16

SUBF

SUBD
Subtract Floating/Double 173ACFSRC
IEEE o'1l1|o|n.u:l | fsRe .J
15 EREET] 8 7 8 5 o
Operation: let DIFF = {(AC) — (FSRC):

Condition Codes:

Description:

Interrupts:

Accuracy:

If underflow occurs and FIU is not enabled,
AC « exact O.

if overflow occurs and FIV is not enabled,
AC « exact 0 on the FP11C,

For all other cases, AC <« DIFF.

FC < 0.

FV¥ < 1 If overflow occurs, else FY « Q.
FZ « 1 If {AC) =0, else FZ « 0.

FN « 1 If (AC) <C O, else FN < Q.

Subtract the contents of FSRC from the contents
of AC. The subtraction is carried out in single or
double precistan and is rounded or chopped in
accordance with the values of the FD and FT
hits in the FPS register. The result is stored in
AC except for:

Cverflow with interrupt disabled on the FP11C.
Underflow with interrupt disabled.

For these exceptional cases, an exact O is stored
in AC.

If FIUY is enabled, trap on —0 in FSRC occurs
before execution.

It overflow or underflow occurs and if the cor-
responding interrupt is enabled, the trap occurs
with the faulty results in AC. The fractional parts
are correctly stored. The exponent part is teo
smatl by 400 octal for overflow. It is too large
by 400 octal for underflow, except for the special
case of 0, which is correct.

Errors due to overflow and underflow are de-
scribed above. If neither occurs, then: For like-
signed operands with exponent difference of O
or 1, the answer returned is exact if a loss of
significance of more thanone bit can occur.Note
that these are the only cases for which loss of
significance of more than one bit can occur. For
all other cases the result is inexact with error
tounds of

8-17

Special Comment:

1 LSB in chopping mode with either single or
double precision,

1/2 LSB in rounding mode with single precision.
9/16 LSB in rounding mode with double pre-
cision,

The undefined variable —0 can occur only in
conjunction with overflow or underflow. It will
be stored in the AC only if the corresponding
interrupt is enabled or, for the ¥P11B, on over-
flow even if the overflow interrupt is not enabled.

818

NEGF
NEGD

MNegate Floating/Double 1707FDST

r0f1100011| FOST —I
I-- JlIII IIIII

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

-] S 4]

FDST « —{FDST} if EXP(FDST) = 0, else FDST «
exact 0.

FC « 0.

FV « 0.

FZ « 1 If EXP(FDST) = Q, else FZ « 0.

FN < 1 \f (FDST) <Z 0, else FN « 0.

MNegate single or double Precision number, store
result in same location, (FDST)}

If FIUY is enabled
FPL1C: Trap on —0 occurs after execution.
FP11B: Trap en —0 cccurs before execution,

Neither overflow nor underflow can occur,
These instructions are exact.

8-19

MULF
MULD

Multiply Floating/Double 171ACFSRC

to1 0 1o 0 ol AL I FSRC J
L L e e sl L I T _L — 1 1 IR . L
15 8 7 8 5

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

o]

Let PROD = (AC)*(FSRC)

If underflow occurs and FIU is not enabled,
AC <« exact Q.

If overflow occurs and FIV is not enabled,
AC « exact 0 on FP11C.

For all other cases AC «PRCD

FC < 0.

FV < 1 if overflow occurs, else FV « Q.
FZ « 1if (AC) =0, else FZ « 0.

FN « 1 if (AC) < O, else FN < 0.

If the biased exponent of either operand is zero,
{AC) < exact 0. For all other cases PROD is
generated to 48 hits for Flecating Mode and 59
bits for Double Mode, The product is rounded or
chopped for FT = 0 and 1, respectively, and is
stored in AC except for

Overflow with interrupt disabled on the FP11C.
Underflow with interrupt disabled.

For these exceptional cases, an exact O is stored
in accumulator,

If FIUV is enabled, trap on —0 occurs before
execution,

If overflow or underflow occurs and if the cor-
responding interrupt is enabled, the trap occurs
with the faulty results in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400 octal for overflow. It is too large by
400 ctcal for underflow, except for the special
case of 0, which is correct.

Errors due to overflow and underflow are de-
scribed above. I neither occurs, the error
incurred is bounded by 1 LSB in chopping mode
and 1/2 LSB in rounding mode.

The undefined variable —Q can occur anty in
conjunction with overflow or underflow, It will be
stored in AC only if corresponding interrupt is
enabled or, for the FP11B, on overflow even if
the overflow intesrupt is not enabled.

8-20

Divide Floating/Double

DIVF
DIVD

174(AC + 4)FSRC

[||1|1.|1l0loltlnc X'I FSfC .J

Operation:

Condition Codes:

Description:

Interrupts:

8 ? 8 5 o]

If EXP(FSRC} =0, AC < (AC). instruction is
aborted.

If EXP(AC) = 0, AC « exact Q.
For all other cases, !et QUOT = (AC)/{FSRC):

If underflow occurs and FIU is not enabled
AC <« exact 0.

If overflow occurs and FIV is not enabled, AC «
exact O on the FP11C,

For all remaining cases AC « QUOT.

FC « 0,

FY « 1 if overflow accurs, else FV « 0,
FZ « 1 if EXP(AC) =0, else FZ « 0,
FN « 1 if (AC) < 0, else FN « 0.

If either operand has a biased exponent of O, it
is treated as an exact O, For FSRC this would
imply division by zero; in this case the instruc-
tion is aborted, the FEC register is set to 4 and
an interrupt occurs. Ctherwise the quotient is
developed to single or double precision with
enough guard bits for correct rounding. The
quotient is rounded or chopped in accordance
with the values of the FD and FT hits in the FPS
register. The result is stored in AC except for:

Overflow with interrupt disabled on the FP11C.
Underflow with interrupt disabled.

For these exceptional cases an exact O is stored
in accumulator.

If FIUV is enabled, trap on —0 in FSRC occurs
before execution.

If EXP{FSRC) == O interrupt traps on attempt to
divide by Q.

If overflow or underflow occurs and if the cor-
responding interrupt is enabled, the trap occurs
with the faulty results in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400 octal for aoverflow. 1t is too large by
400 octal for underflow, except for the special
case of 0, which is correct.

821

Accuracy:

Special Comment:

Errors due to overflow, underflow and division
by O are described above. If none of these
occurs, the error in the quotient will be bounded
by 1 LSB in chopping mode and by 1/2 LSB in
rounding mode.

The vundefined variable —0Q can occur only in con-
junction with owerflow or underflow. It will be
stored in AC only if the corresponding interrupt is
enabled or, for the FP11B, on overfiow even if
the overflow interrupt is not enabled.

8-22

CMPF

CMPD
Compare Floating/Double 173 (AC + 4) FSRC
FSRG
! ’ 1 1 ! ! ° 1 ! 1 ! I ! (A|c | 1 L I 1 | —I
15 B 7 6 5 3}

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

(FSRC) — {AC)

FC « 0.

FV <O

FZ « 1 If (FSRC) — (AC) = 0, else FZ « 0.
FN « 1 If (FSRC) — {AC) < 0, else FN « 0,

Compare the contents of FSRC with the accu-
mulator. Set the appropriate floating point con-
dition codes. FSRC and the accumulator are left
unchanged.

If FIUY is enabled, trap on —0 occurs before
execution.

These instructions are exact.

8-23

MODF
MODD

Multiply and Integerize Floating/Double 17 1{AC + 4)FSRC

FSRC
I ! l ! i 1 L ! O 1 O i ! l ! [AIc I L L l L A

15 [ERRT] B 7T & 5 0
Description This instruction generates the product of its
and Operation two floating peint operands, separates the prod-

uct into integer and fractional parts and then
stores one or both parts as floating point num-
bers,

Let PROD = (AC)*(FSRC} so that in:
Floating point: ABS(PROD) = (2% %K) *f
where 1/2.LEf.LT.1 and
EXP{PROD} = (200 + K} octal
Fixed Point binary: PROD = N + g, with
N = INT(PROD) = the integer
part of PROD
and
g — PROD — INT(PROD} = the fractional
part of PRCD with O.LE.g.LT.1

Both N and g have the same sign as PRCD.
They are returned as follows:

If AC is an even-numbered accumulator (0 or
2), N is stored in AC4+ I (1 or 3), and g is
stored in AC.

If AC is an odd-numbered accumulator, N is
not stored, and g is stored in AC.

The two statements above can be combined as
follows: N is returned to ACvl and g is returned
to AC, where v means .OR.

Five specia! cases occur, as indicated in the
following formal description with L = 24 for
Floating Mode and L = 56 for Double Mode:

1. If PROD overflows and FIV enabled;
ACvl « N, chopped to L bits, AC < exact 0

Note that EXP{N) is too small by 400 (octal),
and that <0 can get stored in ACv].

If FIV is not enabled. action is same as above
for FP11B, For FP11C, ACvl <« exact O, AC «
exact 0, and —0 will never be stored.

2. If 2**L.LE.ABS{PROD) and no overflow
ACvl <« N, chopped to L bits, AC <« exact O

8-24

Condition Codes:

Interrupts:

Accuracy:
Applications:

The sign and EXP of N are correct, but low
orgder bit information, such as parity, is lost.

3. If 1.LE.ABS(PROD}.LT.2%%L
ACvl « N, AC «g

The integer part N is exact. The fractional part
g s normalized, and chopped or rounded in
accordance with FT. Rounding may cause a re-
turn of 2unity for the fractional part. For L
= 24, the error in g is bounded by 1 LSB in
chopping mode and by 1/2 LSB in rounding
mode. For L = 56, the error in g increases from
the above limits as ABS(N) increases above 3
because only 59 bhits of PROD are generated:

the low order p — 2 bits of g may be in error.
4. If ABS (PRCD). LT.1 and no underflow:
ACvl < exact 0 AC «g

There is no error in the integer part. The error in
the fractional part is bounded by 1 LSB in chop-
ping mode and 1/2 LSB in rounding maode.
Rounding may cause a return of +unity for Lthe
fractional part.

5. If PROD underflows and FIU enabled:
ACvl < exact 0 AC «g

Errors are as in case 4, except that EXP(AC) will
be too large by 400 octal (except if EXP =0, it
is correct}. Interrupt will occur and —0 can be
stored in AC.

IF FIU is not enabled, ACvl <« exact O and AC
«exact O, For this case the error in the frac-
tional part is less than 2%*(—128).

FC « Q.

F¥Y < 1 if PROD overflows on FP11C, else
FV Q.

FZ « 1 (AC) =0, else FZ < Q.

FN « if {AC) < 0, else FN « 0.

if FIUV is enabled, trap on —0 in FSRC will cc-
cur before execution.

Cverflow and Underflow are discussed above.
Discussed above.

1. Binary to decimal conwversion of a proper
fraction: the following algorithm, using MOD, will
generate decimal digits D{1}, D{2) ... from left
to right:

Initialize: | «0Q
X « number to be converted;
ABS(X) < 1

8-25

While X = 0 do
Begin PROD <« X*10;
l 1+ 1;
D(Ey « INT{PROD);
X « PROD — INT{PROD);
END;

This algorithm is exact; it is case 3 in the de-
scription: the number of non-vanishing bits in
the fractional part of PROD never exceeds L,
and hence neither chopping nor rounding can
introduce error.

2. To reduce the argument of a trigonometric
function.

ARG*2/PI = N 4+ g, The low two bits of N
identify the quadrant, and g is the argument
reduced to the first quadrant. The accuracy of
N +g is limited to L bits because of the factor
2/PlL The accuracy of the reduced argument
thus depends on the size of N.

3. To evaluate the exponential function e¥%x,
obtain

x*{log e bhase 2) =N+ g

Then e**x = (2**N)*(e**(g*1n 2))
The reduced argument is g*1n2 <1 and the
factor 2%*N is an exact power of 2, which may
be scaled in at the end via STEXP, ADD N to
EXP and LDEXP, The accuracy of N 4 g is lim-
ited to L bits because of the factor {log e base
2). The accuracy of the reduced argument thus
depends on the size of N.

8-26

LDCDF
LDCFD

Load and convert from Double to Float- 177(AC + 4)FSRC
ing or from Floating to Double

1I.Il l‘ I1 [Alc [L A FSIRC_I_ 1 J

Cperation:

Condition Codes:

Description:

Interrupts:

Accuracy:

8 7 & 5 Q

f EXP(FSRC) = 0, AC « exact 0.

If F =1, FT = 0, FI¥ = 0 and rounding
causes averflow, AC « exact ¢ an the FP11C.

In all other cases AC < C., (FSRC}), where C,,
specifies conversion from floating mode x to
floating vy,

FC « Q.

FV « 1 if conversion produces overflow, else
Fv < Q.

FZ « 1if (AC) =0, else FZ « 0,

FN « 1 if (AC) < O, else FN « O.

If the current mode is Floating Mode (FD = 0)
the source is assumed to be a double-precision
number and is converted to single precision. If
the Floating Chop bit (FT) is set, the number
is chopped, octherwise the number is rounded.

If the current mode is Double Mode (FD = 1},
the source is assumed to be a single-precision
number, and is loaded left justified in the AC.
The lower haif of the AC is cleared,

if FIUV is enabled, trap on —0 occurs before
execution.

Qverflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding
with LDCDF causes overflow; AC <« overflowed
result of conversion. This result must be 40 or
—Q.

Underflow cannot occur,

LDCFD is an exact instruction. Except for over-
flow, described above, LDCDF incurs an error
bounded by one LSB in chopping mode, and by
1/2 LSB in rounding mode.

8-27

STCFD
STCDF

Store and convert from Floating to 176ACFDST
Double or from Double to Floating
(N T T T A Y TR o B AC FDST J
[I L L 1 Il L I | L [L i f L e,
15 12 1 28 7 & 5 Q
Qperation: If EXP{AC) = 0, FDST «exact O

Condition Codes:

Description:

Interrupts:

Accuracy:

IfFD =1, FT= 0, FI¥ = 0 and rounding causes
overflow, FDST « exact 0 on FP11C.

In all other cases, FDST « C. (AC), where
C.; specifies conversion from floating mode x
to floating mode v;
x=Fandy=Dif FOD =0,
x=Dandy=Fif FD=1.

FC « 0.

FV¥ « 1 W conversion produces overflow else

FV <0,

FZ « 1 If {ACYy = 0, else FZ « 0.

FN « 1 If (AC} <2 0, else FN « 0.

if the current mode is single precision, the Ac-
cumulator is stored left justified in FDST and
the lower half is cleared, If the current mode
is double precision,-the contents of the accumu-
lator are converted to single precision, chopped
or rounded depending on the state of FT, and
stored in FDST,

Trap on —0 will not occur even if FIUVY is en-
abled because FSRC is an accumulator.
Underflow cannot occur.

Overflow cannot occur for STCFD.

A trap occurs if FIV is enabled, and if rounding
with STCDF causes overfiow; FDST <« overflowed
result of conversion. This result must he +0
or =0,

STCFD is an exact instruction. Except for over-
flow, described above, STCDF incurs an error
bounded by 1 LSB in chopping mode and 1/2
LSB in rounding mode,

8-28

LDCIF

LDCID
LDCLF
LDCLD
Load and Convert integer or Long Integer o 177ACSRC
Floating or Double Precision
I11111|1olnc‘ SRG I
1 L L 1 1 | L 1 1 | i
15 [T 8 7 6 5 [+
Operation: AC « C;. (SRC), where

Condition Codes:

Description:

Interrupts:

Accuracy:

C;. specifies conversion from integer mode
i to floating mode x;
j=I1ifFL=0,j=LifFL=1,
x=FifFB=0,x=Dif FD = 1.

FC « 0.

FV « 0.

FZ <« 11f (AC) =0, else FZ <0,

FN « 1 If (AC) < 0, else FN <0,

Conversion is performed on the contents of SRC
from a 2's complement integer with precision j
to 2 floating point number of precision x. Note
that j and x are determined by the state of the
mode bits FLand FD; J =1lor L, and X = F or D,

If a 32-bit Integer is specified (L mode) and
(SRC) has an addressing mode of 0, or immedi-
ate addressing mode is specified, the 16 bits of
the scurce register are left justified and the
remaining 16 bits loaded with zeraes before
cConversion,

In the case of LDCLF the fractional part of the
floating point representation is chopped or
rounded to 24 bits for FT=1 and O respec-
tively.

None; SRC is not floating point, so trap on —0
cannot occur.

Overflow and underflow cannot occur.

LDCIF, LDCID, LDCLD are exact instructions.
The error incurred by LDCLF is hounded by one
LEB in chopping mode, and by 1/2 LSB in
rounding mode.

8-29

STCFI

STCFL
STCDI
STCDL

Z2tore and Convert from Floating or 175(AC 4- H)DST

Double to Integer or Long lnteger

I { TN TR TR Y [TR s T N | | AC l DsT
| 1 ! !] 1) 1 ! L 1

15 12 N 8 7 & 5 0

Operation: DTS « C, (AC) if — JL — 1 <Z C,; (AC) < JL + 1,

else DST « 0, where C. specifies con-
version from floating mode x to integer
mode §;
=l FL=0,j=Lif FL=1,
x=FfFD=0 x=Dif FD = 1.
JL is the largest integer:
2%%15 —~ 1 for FL =0
2¥%31 —1 for FL=1
Condition Codes: Ce«FC=0if —JL—-1<C, (ACY << JL4 1,
else FC « 1.
V<« FV¥ « 0.
Z«—FZ «1if (DST) =20, else FZ « 0.
N « FN « 1 if (DST) < 0, else FN « 0,
Description: Conversion is performed from a floating point
representation of the data in the accumulator to
an integer representation.
If the conversion is to a 32-bit word (L mode)
and an address mode of 0, or immediate adress-
ing mode, is specified, only the most significant
16 hits are stored in the destination register,
If the cperation is out of the integer range se-
lected by FL, FC is set to 1 and the contents
of the DST are set to 0,
Numbers to be converted are always chopped
(rather than rounded) before conversion, This
is true even when the Chop Mode bit, FT is
cleared in the Floating Point Status Register.

Interrupts: These instructions do not interrupt if FIUY is
enabled, because the —0, if present, is in AC,
not in memaory.

If FIC enabled, trap on conversion failure will
occur.

Accuracy: These instructions store the integer part of the
floating point operand, which may not be the
integer most closely approximating the operand.
They are exact if the integer part is within the
range implied by FL,

8-30

Load Exponent

LDEXP

176(AC + 4)SRC

Operation:

Condition Codes:

Description:

Interrupts:

NOTE: 177 and 200, appearing below, are octal
numbers,

If —200 < SRC < 200, EXP(AC) <{SRC) + 200
and the rest of AC is unchanged on both
FP11C and FP11B.

If SRC = 177 and FIV is enabled,
EXP{AC}) « (SRC} < 6:0 > on FP11C,
EXP(AC} « {SRC) < 7.0 = on FP11B.

If SRC = 177 and FIV is disabled
AC < exact O on FP11C,
EXP{AC) « {SRC 4 200) « 7:0 > on
FP11B.
if SRC <7 —177 and FiU is disabled,
AC <« exact 0 on both FP11C and FP11B.

If SRC < —177 and FIU is enabled,
EXP(AC) « (SRC) < 6:0 > on FP11C,
EXP(ACY « (SRC) + 200) < 7:0 > on
FP1iB.
FC « 0.
FV « 1 if (SRC) = 177, else FV < (.
FZ « 1 if EXP(AC) = 0, else FZ < 0.
FN « 1if (AC) < 0, else FN « Q.
Change AC so that its unbiased exponent =
(SRC). That is, convert (SRC) from 2's comple-
ment to excess 200 notation, and insert in the
EXP field of AC. This is a meaningful operation
only if ABS(SRC).LE.177.
If SRC = 177, result is treated as overflow. If
SRC <. —177, result is treated as underflow.
Note that the FP11C and FP11B do not treat
these abnormal conditions in exactly the same
way.
Mo trap on -0 in AC occurs, even if FIUV en-
abled,

If SRC == 177 and FIV enabled, trap on owver-
flow will occur,

If SRC <¢ —177 and FIU enabled, trap on under-
flow will oceur,

The answers returned by the FP11C and FP11B
differ for overflow and underflow conditions.

8-31

Accuracy:

Errors due to overflow and underflow are de-
scribed above. If EXP(AC) = 0 and SRC < —200,
{AC) changes from a floating point number
treated as O by all floating arithmetic operations
to a non-zero number, This is because the inser-
tion of the “hidden' bit in the hardware imple-
mentation of arithmetic instructions is triggered
by a non-vanishing value of EXP.

For all other cases, LDEXP implements exactly
the transformation of a floating point number

(f).LT.1.

a-32

Store Exponent

STEXP

175ACDST

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

DST « EXP{AC)—200 octal

C «FC «0.
V<« FVY «0.
Z «FZ «1if (DST) =0, else FZ « 0.
N «- FN « 1 if {DST) < 0, else FN « 0.

Convert accumulator's exponent from excess
200 octal notation to 2's complement, and store
result in DST.

This instruction will not trap on —0.
Overflow and underflow cannot accur,
This instruction is always exact.

8-32

CLRF

CLRD
Clear Floating/Double 1704FDST
|11111000100 FDST
| 1) J " 1 n . 1 1 1 s 1
15 12 1 5 [¥]
Operation: FDST « exact Q.
Condition Codes: FC « 0.
Fv <0,
FZ «1
FN « 0.
Description: Set FDST to 0. Set FZ condition code and clear
other condition code bits.
Interrupts: No interrupts will occur, Neither overflow nor
underflow can accur.
Accuracy: These instructions are exact.

8-34

ABSF

ABSD
Make Absolute Floating/Double 1706FDST
! 1 ! 1 ' 1 ! ° © 1 ° 1 ! 1 ! n ° L 1 FDIST 1 1]
15 12N 5 [+
QOperation: if (FDST) < 0, FDST « —{(FDST).

Condition Codes:

Description:
Interrupts:

Accuracy:

If EXP(FDST) = 0, FDST « exact 0.
For all other cases, FDST « (FDST).

FC « 0.
FV « 0.
FZ < 1 if EXP(FDST) = 0, else FZ < 0.
FN « 0O

Set the contents of FDST to its absolute value.
If FtUY is set;

FPL1C: Trap on —0Q cccurs after execution
FFP11B: Trap on —0 occurs before execution
Overflow and underflow cannot occur.

These instructions are exact.

8-35

TSTF

TSTD
Test Floating/Double 1705FDST
FOST
I1'|]|10I0‘0|1IOI1 1 |D|S| IJ
15 12 1 6§ 5 0
Operation: FDST « (FDST}
Condition Codes: FC « 0,
F¥ « 0.
FZ « 1 if EXP{FDST) = 0, else FZ « 0.
FN « 1 if (FDST) < 0, else FN < Q.
Description: Set the Floating Point Processor's Condition
Codes according to the contents of FDST,
Interrupts: If FIUV is set, trap on —0 occurs after execution
Overflow and underflow cannot occur.,
Accuracy: These instructions are exact,

836

SETF

Set Floating Mode 170001
' l ! L 1 1 ! 1 0 1 0 'l O I O 1 0 L 0 l O 1 0 IO l D_I 0 A !J
15 o)
Operation: FO <0
Description: Set the FPP in Singie Precision Mode.
SETD
Sat Floating Double Mode 170011
I ! | : 1 1 1 ! v 1 © 1 ° | ° 1 o A_O_LO i 0_1 ! J_O_L ° 1 ! J
15 o
Operation: FD «1
Description: Set the FPP in Bouble Precision Mode.

8-37

SETI

Set Integer Mode 170002
| 1 1y 1f0 0 © 0 © 0 0 0 0 _ 0 |1 o]
1 1 i i 1 I L 1 | 1 L 1 1 L
15 0
Operation: FL «<0Q
Description: Set the FPP for integer Data.
SETL
Set Long Integer Mode 170012
I 1t 1 1 1o ¢ 0 © © © © 0 1 © 1 0
' L L 1 i I L 1 l L Il I i 1
15 1z n)
Operation: FL <1
Description: Set the FPP for Long Integer Data.

8-38

LDFPS

Load FPPs Program Status 17018RC
SRC
] ! i ! i 1 1 ! ° 1 ° 1 0 l ° 1 o 1 ! 1 1 | " I J
5 1z # 6 5 a
Operation: FPS « (SRC)
Description: Load FPP's Status from SRC.
STFPS
Store FPPs Program Status 1702DST
[R R ST [
L L 'l i L L 'l 'l 'l L
15 [EREX 5 7]
Qperation: DST < (FPS)
Description: Store FPP's Status in DST.

8-39

STST

Store FPPs Status 1703D8T
I 1T 1 1 10 0 0,0 1 1 057
i 1 1 1 1 1 i 1 1 1] i I
15 21 & 5 [+
Operation: DST « (FEC)
DST 4 2 «(FEA)
Description: Store the FEC and then the FPP's Exception

Address Pointer in DST and DST 4 2.

NOTES: 1. If destination mode specifies a
general register or immediate ad-
dressing, only the FEC is saved.

2. The information in these registers
is current only if the most recently
executed floating point instruction
(refer to Section B.6)caused a float-
point exception.

CFCC
Copy Floating Condition Codes 170000
1111000000000000]
1 I ! 1 ! | 1 ! I ! 1 | |]
15 12 1N & 5 o
Operation: C < FC
V «— FV
Z «FZ
N < FN
Description: Copy FPP Condition Codes into the CPU's Con-
dition Codes.

8-40

CHAPTER 9

PROGRAMMING TECHNIQUES

In order to produce programs which fully utilize the power and flexibility
of the PDP-11, the reader should become familiar with the various pro-
gramming technigues which are part of the basic design philesophy of
the PDP-11. Although it is possible to program the PDP-11 along tradi-
tional lines such as “accumulator orientation” this approach does not
fully exploit the architecture and instruction set of the PDP-11.

8.1 THE STACK

A “stack,” as used on the PDP-11, is an area of memory set aside by
the programmer for temporary storage or subroutinefinterrupt service
linkage. The instructions which facilitate “'stack’ handling are useful
features not normally found in low-cost computers. They aillow a program
to dynarnically establish, modify, or delete a stack and items on it
The stack uses the “last-in, first-out” concept; that is, various items may
be added to a stack in sequential order and retriesed or deleted from
the stack in reverse order. On the PDP-11, a stack starts at the highest
location reserved for it and expands linearly downward to the lowest
address as Hems are added to the stack.

HIGH ADCGRESSES

LOW ADDRESSES

Figure 9-1: Stack Addresses

To keep track of the last item added to the stack (or “wbere we are” in
the stack) a General Register always contains the memory address
where the last item is stored in the stack. In the PDP-11 any register
except Register 7 {the Program Counter-PC} may be used as a “‘stack
pointer’” under program control; however, instructions associated with
subroutine linkage and interrupt service automatically use Register §
(R6) as a hardware '‘Stack Pointer." For this reason R6& is frequently
referred to as the system 'SP,

Stacksin the PDP-11 may be maintained in either full word or byte
units. This is true for a stack pointed t¢ by any register except R§,
which must be organized in full word units only.

91

WORD STACK

007100 ITEM #1

007076 ITEM #2

oOTOT4 ITEM #3

Q07072 ITEM # 4 ~—sp [oorerz |
007070

{07066

QOTOEG

NOTEBYTES ARE
BYTE STACK ARE ARRANGED IN
WORDS AS FOLLOWING:

oOTI00 TEM #1
007077 ITEM #2
ooTOTe ITEM #3
no7OTS TEM #4 —sr | 007074 |

Figure $-2; Word and Byte Stacks

ttems are added to a stack using the autodecrement addressing mode
with the appropriate pointer register. (See Chapter 3 for description of
the autoincrement/decrement modes).

This aperation is accomplished as follows:

MOV Source,—(SP) ;:MOV Source Word onto the stack
or
MOVE Source, —{5SP) :MOVE Source Byte onto the stack

This is called a “'push” because data is “'pushed onto the stack.”

To remove an item froma stack the autcincrement addressing mode with
the appropriate SP is employed. This is accomplished in the following
manner:

MOV{SP) 4, Destination :MOV Destination Word off the stack
or
MOVB({5P)+,Destination :MOVB Destination Byte off the stack

Removing an item from a stack is called a “pop’ for “popping from the
stack."” After an item has heen ““popped,” its stack location is considered
free and available for other use. The stack pointer peints to the last-
used location implying that the next {lower} location is free. Thus a stack
may represent a pool of shareable temporary storage locations.

8.2

HIGH MEMOFY
s
+ £a -—3a ED
ReR i € s
LOW MEMORY
1 AN EMBETY STack 2 FUSHING A DATUM 3 PUSHING ANOTHER
AREA ONTD THE STACK DATUM ONTE THE
STACKS
EQ [T JE2 £9
£ 3 sr E1
) €2 [~ 5F ' £3 - P
4 ANOTHER PUSH 5 FOP & PUSH

E3

£o /

E1 = 5P

T PP
Figure 9-3: lllustration of Push and Pop Operations

As an example of stack usage consider this situation: a subroutine
(SUBR) wants to use registers 1 and 2, but these registers must be
returned to the calling program with their contents unchanged. The
subroutine could be written as follows:

Address Cctal Code Assembler Syntax

076322 010167 SUBR: MOV E1,TEMPI ; save R1
076324 000074 #

076326 010267 MOV R2, TEMPZ2 ;save R2
076330 000072

076410 016701 MOV TEMP1,R1 ;Restore R1
076412 000006 #

076414 016702 MOV TEMPZ2,R2 ; Restore R2
076416 000004 *

076420 000207 RTS PC

076422 000000 TEMP1: O

076424 000000 TEMP2: 0

#*Index Constants

Figure 9-4: Register Saving Without the Stack
9-3

OR: Using the Stack

Address Octal Code Assembler Syntax
010020 010143 SUBR: MOV RI, —(R3) ;push R1
010022 010243 MOV R2, —(R3) ;push R2
010130 012301 MOV (R3)+,R2 ;pop R2
010132 012302 MOV (R3)+,R1 ;pop Rl
010134 000207 RTS PC

Mote: In this case R3 was used as a Stack Pointer
Figure 9-5: Register Saving using the Stack

The second routine uses four less words of instruction code and two
words of temporary ‘stack™ storage. Another routine could use the same
stack space at some later point. Thus, the ability to share temporary
storage in the form of a stack is a very economical way to save on
memaory usage.

As a further example of stack usage, consider the task of managing an
input buffer from a terminal. As characters come in, the terminal user
may wish to delete characters from his line; this is accomplished very
easily by maintaining a byte stack containing the input characters. When-
ever a backspace is received a character is “popped” off the stack and
eliminated from consideration. In this example, a programmer bas the
choice of “‘popping' characters to be eliminated by using either the
MOVB (MOVE BYTE) or INC (INCREMENT) instructions.

oo1on
2010
CHOCT
DO1a06
ale) Lole]
[slo] o3
oM0a3
ooIoca
[eln Jule]]

MO (R3Y+, dast
oR
INC 3P

M| (| =Afw]lc| &

-—R3 ofHQoe

Mlo|m|z(alA|lw]|c]e

«hs [oooor |

Figure 9-6: Byte Stack used as a Character Buffer

NOTE that in this case using the increment instruction (INC) is prefer-
able to MOVB since it would accomplish the task of eliminating the un-
wanted character from the stack by readjusting the stack pointer without
the need for a destination location. Also, the stack pointer {SP) used in
this example cannot be the system stack pointer (RE) because RE& may
only point to word (even) locations.

9-4

9.2 SUBROUTINE LINKAGE

9.2.1 Subroutine Calls

Subroutines provide a facility for maintaining a single copy of a given
routine which can be used in a repetitive manner by other programs
located anywhere else in memory. In order to provide this facility, gen-
eralized linkage methods must be established for the purpose of control
transfer and information exchange between subroutines and calling
pregrams. The PDP-11 instruction set contains several useful instruc-
tions for this purpose.

PDP-11 subroutines are called by using the JSR instruction which has
the following format.

a general register (R} for linkage————
JSR R,SUBR
an entry location (SUBR) for the subroutine

When a JSR is executed, the contents of the linkage register are saved
on the system R6 stack as if a MOV reg,—{SP) had been performed.
Then the same register is loaded with the memory address following the
JSR instruction (the contents of the current PC} and a jump is made
to the entry location specified.

Address Assembler Syntax Octal Code
001000 JSRRS5, SUBR 004567
001002 index constant for SUBR 000060
001004

Q01064 SUBR: MOV AR Olrnrmm

Figure 9-7: JSR using RS

SEFCRE AFTER
RS Q122 (A3 Q01004
[RE}- COATTE [AG)= 00T 7
WP [R7 = DOIC00 IFCiRT I DOIDES
022C0 anAonnn ooenon LELENT
DOV TE PR -—GF QTG AT PE nrmmm
DOITTS QC1TTA Q00132 - ZP I_ 001774 j
Lale) Frcd [0} Farg]

Figure 9-8: JSR

Note that the instruction JSR R6,SUBR is not normaily considered to be
a meaningful combination.

9.2.2 Argument Transmission

The memory location peinted to by the linkage register of the JSR in-
struction may contain arguments or addresses of arguments. These argu-
ments may be accessed from the subroutine in several ways. Using
Register 5 as the linkage register, the first argument could be obtained
by using the addressing modes indicated by (R5),(R5)+,X(R5) for actuat
data, or @(R5)4, etc. for the address of data. If the autcincrement

95

mode is used, the linkage register is automatically updated to point to
the next argument,

Figures 9-9 and 9-10 illustrate two possible methods of argument trans-
mission.

Address Instructions and Data

010400 JSR R5, SUBR
010402 Index constant for SUBR SUBROUTINE CALL
010404 arg #1 ARGUMENTS

010406 arg #2

020306 SUBR: MOV (RS)4 Rl :get arg #1
020310 MOV (R5)4,R2 ;get arg # 2 Retrieve Arguments
from SUB

Figure 9-9: Argument Transmission-Register Autoincrement Mode

Address Instructions and Data

010400 JSR R5, SUBR
010402 Index constant for SUBR SUBROUTINE CALL

010404 077722 Address of arg #1
010406 077724 Address of arg #2

010410 Q77726 Address of arg #3

077722 arg #1
077724 arg {2 . arguiments
Q77726 arg #3

020306 SUBR: MOV @(R5)+.R1 get arg £1
020301 MOV @ (RB)+.R2 iget arg #2

Figure 9-10: Argument Transmission-Register Autoincrement
Deferred Mode

Ancther method of transmitting arguments is to transmit only the ad-
dress of the first item by placing this address in a general purpose
register. It is not necessary to have the actual argument list in the same
general area as the subroutine call, Thus a subroutine can be called to
work on data located anywhere in memory. In fact, in many cases, the
operations performed by the subroutine can be applied directly to the
data located on or pointed to by a stack without the need to ever actually
move this data into the subroutine area.

96

Calling Program: MOV POINTER, R1
JSR PC,SUBR

SUBROUTINE ADD (R1} + ,(R1} ;Add item #1 toitem #2, place
resuit in iterm #2, R1 points
to item #2 now
etc,
or

ADD {R1),2(R1) :Same effect as above except
that R1 still points to item #1
etc.

ITEM w1 -—F1 [

ITEM w32

Figure 9-11: Transmitting Stacks as Arguments

Because the PDP-11 hardware already uses general purpose register R6 to
point to a stack for saving and restoring PC and PS (processor status
word) information, it is guite convenient to use this same stack to save
and restore intermediate results and to transmit arguments to and from
subroutines. Using R6 in this manner permits extreme flexibility in nest-
ing subroutines and interrupt service routines.

Since arguments may be obtained from the stack by using some form
of register indexed addrassing, it is sometimes useful to save a temporary
copy of RE in scme other register which has already been saved at the
heginning of a subroutine. In the previous example RS may be used to
index the arguments while R6 is free to be incremented and decremented
in the course of being used as & stack pointer. If R6 had been used
directly as the base for indexing and not “copied,” it might be difficult
to keep track of the position in the argument list since the base of the
stack would change with every autoincrement/decrement which occurs.

bt when ancthes ilem
org #1 TO iz pushed org w1
arg #2 arg w2
i d arg #3 org 3
5p —= TQ
arQ# 2 is @ source arg # 2 iz of seurce
—2(28] -4i5R)

Figure 9-12: Shifting Indexed Base

However, if the contents of RE (SP} are saved in R5 hefore any arguments
are pushed onto the stack, the position reflative to R5 would remain
constant.

9-7

arg #1 =~—R5 drg #1 -—R5

5P arg #2 arg #2
P arg #3
arg®? iz ol T {R5} arg #2 s shil ol 21RS}

Figure 9-13: Constant Index Base Using ''R6 Copy'

9.2.3 Subroutine Return

In order to provide for a return from a subroutine to the calling program
an RTS instruction is executed by the subroutine. This instruction should
specify the same register as the JSR used in the subroutine call. When
executed, it causes the register specified to be moved to the PC and the
top of the stack to be then placed in the register specified. Note that if
an RTS PC is executed, it has the effect of returning to the address
specified on the top of the stack.

Note that the JSR and the JMP Instructions differ in that a linkage reg-
ister is always used with a JSR; there is no linkage register with a JMP
and no way to return to the calling program.

When a subroutine finishes, it is necessary to “clean-up' the stack by
eliminating or skipping over the subroutine arguments, One way this can
be done is by insisting that the subroutine keep the number of argu-
ments as its first stack item. Returns from subroutines would then in-
volve calculating the amount by which to reset the stack pointer,
resetting the stack pointer, then restoring the original contents of the
register which was used as the copy of the stack pointer. The PDP-11,
however, has a much faster and simpler method of performing these
tasks. The MARK instruction which is stored on a stack in place of
“number of argument’” information may be used to automatically per-
farm these ‘‘clean-up’ chores. (For more information on the MARK
instruction refer to Chapter 4.}

9.2.4 PDP-11 Subroutine Advantages
There are several advantages to the PDP-11 subroutine caliing procedure.

a. arguments can be quickly passed between the calling program and
the subroutine.

b. if the user has no arguments or the arguments are in a general reg-
ister or on the stack the JSR PC,DST mode can be used so that none
of the general purpose registers are taken up for linkage.

c. many JSR's can be executed without the need to provide any saving
procedure for the linkage information since all linkage information is
automatically pushed onio the stack in sequential order. Returns can
simply be made by automatically popping this information from the
stack inthe opposite order of the JSR’s.

Such linkage address bookkeeping is called automatic “nesting” of sub-
routine calls. This feature enables the programmer fo construct fast,

9-8

efficient linkages in a simple, flexible manner, it even permits a routine
to call itself in those cases where this is meaningful. Other ramifications
will appear after we examine the PDP-11 interrupt procedures.

9.3 INTERRUPTS

9.3.1 General Principles

Interrupts are in many respects very similar to subroutine calls. How-
ever, they are forced, rather than controlled, transfers of program
execution occurring because of some external and program-independent
event (such as a stroke on the teleprinter keyboard). Like subroutines,
interrupts have linkage information such that a return to the interrupted
program can be made. More information is actually necessary for an
interrupt transfer than a subroutine transfer because of the random
nature of interrupts. The complete machine state of the program im-
mediately prior to the occurrence of the interrupt rmust be preserved in
order to return to the program without any noticeable effects. (i.e. was
the previous operation zero or negative, etc.} This information is stored
in the Processor Status Word (PS). Upon interrupt, the contents of the
Program Counter (PC) (address of next instruction) and the PS are auto-
matically pushed onto the R6 system stack. The effect is the same as i:

MOV PS5 ,—(SP) ;Push PS
MOV R7,—(SP) ;Push PC

had been executed.

The new contents of the PC and PS are loaded from two preassigned
consecutive memory locations which are called an “interrupt vector.”
The actual locations are chosen by the device interface designer and are
located in low memory addresses of Kernel virtual space (see interrupt
vector list, Appendix A)., The first word contains the interrupt service
routine address (the address of the new program sequence) and the
second word contains the new PS which will determine the machine
status including the operational mode and register set to be used by the
interrupt service routine, The contents of the interrupt service vector
are set under program control.

After the interrupt service routine has been completed, an RTI (return
from interrupt) is performed. The two top words of the stack are auto-
matically “popped’” and placed in the PC and PS respectively, thus re-
suming the interrupted program.

9.3.2 Nesting

Interrupts can be nested in much the same manner that subroutines
are nested. In fact, it is possible to nest any arbitrary mixture of sub-
routines and interrupts without any confusion, By using the RTI and
RTS instructions, respectively, the proper returns are automatic.

1. Process (0 is running; SP—=FO
SP is pointing to loca-
tion PO. °

$-9

2. Interrupt stops process O
with PC = PCO, and
status = PS0; starts process 1.

3. Process 1 uses stack for
termporaty storage (TEQ, TED).

4. Process 1 interrupted with PC = PC1
and status = P31; process 2 is started

B. Process 2 is running and does a
JSR R7,A to Subroutine A with
PC = PC2.

6. Subroutine A is running
and uses stack for
temporary storage,

FQ

PSG

5P —=

PO

P

PSQ

FLa

TED

PO

P50

fgvii]

TEA

P51

SF—=

PCA

FQ

SR —e

PO

5F.—w

Po

FCO

TED

TEN

P31

PCA

FL2

[3:1a]

TEQ

TEA

P51

PG

PL2

TAY

Tag

P

7. Subroutine A releases the temporary '
storage holding TAL and TA2. e

PO
TED
TE
F31

PC1

P rel

8. Subroutine A returns control to process Fo
2 with an RTS R7,PC is reset to PC2,

F3D

FL O

TE
PEd

5P —= PC1

o

9. Process 2 completes with an RT) Fo
instruction {dismisses interrupt) PC :i‘;
is reset to PCland status is reset to —
PS51; process 1 resumes. $F—m I

o

10. Process 1 releases the temporary #o
storage holding TEQ and TE1. - :g

O

11. Process 1 completes its operation SP=FD

with an RTI is reset to PCO and status
is reset to PSO.

Figure 9-14: Nested Interrupt Service Routines and Subroutines

Note that the area of interrupt service programming is intimately in-
volved with the concept of CPU and device priority levels.

9.4 REENTRANCY

Further advantages of stack organization becomes apparent in complex
situations which can arise in program systems that are engaged in the
concurrent handling of several tasks. Such multi-task program environ-

9.11

ments may range from relatively simple single-user applications which
must manage an intermix of /O interrupt service and background com-
putation to large complex multi-programming systems which manage a
very intricate mixture of executive and multi-user programming situa-
tions. In all these applications there is a need for flexibitity and time/
memory economy. The use of the stack provides this economy and
flexibility by providing a methed for allowing many tasks to use a single
copy of the same routine and a simple, unambiguous method for keep-
ing track of complex program linkages.

The ability to share a single copy of a given program among users or
tasks is calfed reentrancy. Reentrant program routines differ from ordi-
nary subroutines in that it is unnecessary for reentrant routines to finish
processing a given task before they can be used by another task. Mul-
tiple tasks can be in various stages of completion in the same routine
at any time. Thus the following situation may occur:

MEMORT

FROGRAM 1
PROGRAM 2 | SUBROUTIRE &

FROGRAM 3
PDP-11 Approach Conventional Approach
Programs 1, 2, and 3 can A separate copy of Subroutine A
share Subroutine A. must be provided for each program.

Figure 9-15: Reentrant Routines

The chief programming distinction between a non-shareable routine and
a reentrant routine is that the reentrant routine is composed solely of
“pure code,” i.e., it contains only instructions and constants. Thus, a
section of program code is reentrant (shareable) if and only if it is
“non self-modifying,” that is it contains no information within it that is
subject to modification.

Using reentrant routines, control of a given routine may be shared as
illustrated in Figure 9-16.

|T£\5K ,\!I IT&SKBl

REEMTRANT
ROUTINE
v}

Figure 9-16: Reentrant Routine Sharing

9-12

1. Task A has requested processing by Reentrant Routine Q.

2. Task A temporarily relinquishes control (is interrupted) of Reentrant
Routine Q before it finishes processing.

Task B starts processing in the same copy of Reentrant Routine Q.

4. Task B relinquishes control of Reentrant Routine ¢ at some point in
its processing.

5. Task A regains control of Reentrant Routine Q and resumes process-
ing fram where it stopped.

The use of reentrant programming allows many tasks to share frequently
used routines such as device interrupt service routines, ASCII-Binary
conversion routines, etc. In fact, in a multi-user system it is possible, for
instance, to construct a reentrant FORTRAN compiler which can be used
as a single copy by many user programs.

As an application of reentrant (shareable} code, consider a data process-
ing program which is interrupted while executing a ASCIl-to-Binary sub-
routine which has been written as a reentrant routine. The same
conversion routine is used by the device service routine. When the device
servicing is finished, a return from interrupt (RTI) is executed and
execution for the processing program is then resumed where it left off
inside the same ASCl-to-Binary subroutine.

Shareable routines generally result in great memaory saving. [t is the
hardware implemented stack facility of the PDP-11 that makes shareable
or regntrant routines reasonable.

A subroutine may be reentered by a new task hefore its completion
by the previous task as long as the new execution does not destroy any
linkage information or intermediate results which belong to the previous
programs. This usually amounts to saving the contents of any general
purpose registers, to be used and restoring them upon exit. The choice
of whether to save and restore this information in the calling program or
the subroutine is quite arbitrary and depends on the particular applica-
tion. For example in controlled transfer situations {i.e. JSR’s) a main
program which calls a code-conversion utility might save the contents of
registers which it needs and restore them after it has regained control,
or the code conversion routine might save the contents of registers
which it uses and restore them upon its completion. In the case of
interrupt service routines this save/restore process must be carried cut
by the service routine itself since the interrupted program has no warn-
ing of an impending interrupt. The advantage of using the stack to save
and restore (i.e. “push’ and “pop') this information is that it permits
a program to isolate its instructions and data and thus maintain its
reentrancy,

In the case of a reentrant program which is used in a multi-program-
ming environment it is usually necessary to maintain a separate R&
stack for each user although each such stack would be shared by all the
tasks of a given user. For example, if a reentrant FORTRAN compiler
is to be shared between many users, each time the user is changed,

9-13

R6 would be set to point to a new user's stack area as illustrated in
Figure 9-17.

¥ USER & 5TACK

H USER B 5TaCK

T
USER [STACK

Figure 9-17: Multiple R& Stack

9.5 POSITION INDEPENDENT CODE—PIC

Most programs are written with some direct references to specific ad-
dresses, if only as an offset from an absoclute address origin. When it is
desired to relocate these programs in memory, it is necessary to change
the address references and/or the arigin assignments, Such programs
are constrained to a specific set of locations. However, the PDP-11
architecture permits programs to be constructed such that they are not
constrained to specific locations, These Position Independent programs
do not directly reference any absolute locations in memory. Instead all
references are "PC-relative” i.e. locations are referenced in terms of
offsets from the current tocation (offsets from the current value of the
Program Counter (PC)). When such a program has been translated to
machine code it will form a program module which can be loaded any-
where in memory as required.

Position [ndependent Code is exceedingly valuakle for those utility rou-
tines which may be disk-resident and are subject to loading in a dy-
namically changing program environment. The supervisory program may
load them anywhere it determines without the need for any relocation
parameters since all items remain in the same positions relative to each
other {and thus alsc to the PC).

Linkages tc program routines which have heen written in position inde-
pendent code (PIC) must still be absolute in some manner. Since these
routines can be located anywhere in memory there must be some fixed
or readily locatable linkage addresses to facilitate access to these rou-
tines. This linkage address may be a simple pointer located at a fixed
address or it may be a complex vector composed of numerous linkage
information items.

9.6 CO-ROUTINES

In some situations it happens that two program routines are highly
interactive. Using a specia! case of the JSR instruction i.e., JSR PC,
@ (RB}+ which exchanges the top elerment of the Register 6 processor
stack and the contents of the Program Counter (PC), two routines may
be permitted to swap program control and resume operation where they
stopped, when recalled. Such routines are calied “co-routines.’”” This
control swapping is illustrated in Figure 9-18.

Routine #1 is operating, it then executes:
MOV #PC2,—(R6)

JSR PC,@(R6)+
with the following results:

1) PC2is popped from the stack — Lz
and the SP autoincremented
2) SPis autodecremented and the 1 rez
old PC {i.e. PC1) is pushed Sh—
PCZ
3) control is transferred to the
location PC2 (i.e, routine #2) ;
Routine %2 is operating, it then executes: .
SP—= [
JSR PC, @{R6)+-

with the result the PC2 is exchanged
for PC1 on the stack and control is
transferred back to routine #1.

Figure 9-18-—Co-Routine Interaction

CHAPTER 10

HIGH SPEED 1/O CONTROLLERS

10.1 SYSTEM PERFORMANCE

To support the speed, power, and data reliability features of the PDP-
11/70 central processor and memaoary system, DIGITAL offers a wide
range of high-performance, mass-storage peripheral options. These sec-
andary storage disk and magnetic tape systems interface to the central
processor through optimized high-speed controllers and dedicated data
paths to provide high system throughput. Since the control and inter-
facing of these high-performance peripherals is an integral part of the
FDP-11/70 architecture, increased input/output capabilities are achieved.
These peripherals become a vital part of the PDP-11/70 system,

10.2 HIGH-SPEED, MASS STORAGE PERIPHERALS

TFhere are, currently, 3 high-performance peripherzls that can take ad-
vantage of interfacing to the PDP-11/70 through its high-speed control-
lers and high data rate bus.

a) RS04 (and RSO3} Fixed Head Disk
by RP0O4 Disk Pack
¢) TU16 Magnetic Tape Unit

10.2.1 Fixed Head Disk

The RS03 and RS04 fixed-head disks have been designed for applica-
tions requiring fast, reliable, on-line storage. With an average access time
of 8.5 millisecoands and a transfer rate of 2 microseconds per word (4
gsec for RS03), the disks increase throughput substantially for timeshar-
ing applications which involve significant amounts of program swapping,
Phase lock loep reading techniques and CRC error detection make these
disk systems ideal for real-time data acquisition and control systems re-
quiring a high leve! of reliability.

The RS803 fixed-head disk drive has a storage capacity of 256K words,
and the RS04 has a storage capacity of 512K words, The disks are ex-
pandable by adding either RS03 or R304 drives, up to a total of eight
drives per controller.

SPECIFICATIONS

RS032 RS04 {when different)

Storage medium Fixed-head disk
Capacity /disk 262,144 words {2568K) 512K words
Data transfer speed 4 psec/word 2 psec/word
Average access

time (1/2 rev) 8.5 msec
Minimum access

tire 6.4 usec

10-1

Disk rotation 3600 RPM (3000 RPM
speed at 50 Hz}

Disks/control,
maximum 8

10.2.2 Disk Pack

The RP0O4 is a mass storage system offering 'ow cost per bit and high
performance. Each disk pack has a capacity of 44 million 16-bit words
expandable to 8 disk pack drives in a system. The removakble disk pack
offers the flexibility of unlimited off-line storage capacity.

On multi-drive systems, positioning operations can be overlapped for effi-
ciency. While one drive is reading or writing, one or more drives can be
positioning to a new cylinder for the next transfer.

The RP(Q4 operates at a transfer rate of 400,000 words per sacond (2.5
microsecands per word).

The disk drive is a high-performance device, featuring direct access and
single head per surface. It enables the data processing system to store
or retrieve information at any location on a rotating disk pack.

SPECIFICATIONS

Storage medium: Disk pack
Capacity/pack: 43,980,288 words
Data transfer speed: 2.5 usec/word
Time for 1/2 revolution: 8.2 msec

Disk rotation speed: 3600 RPM
Drives/control, maximum: 3

One cylinder seek: 7 msec

Average seek: 28 msec
Maxirmum seek: 50 msec

10.2.3 Magnetic Tape

The TU16 is a fully integrated, high-performance magnetic tape storage
systern that uses standard recording formats, with densities of 1600
and 800 hits per inch, selectakle under program control. Reading and
wtiting are performed at 45 inches/second. Since the industry standard
format is used, data may be easily transferred between computers.

Reading can be performed while tape is moving in the forward or reverse
direction, but writing occurs only in forward. The control unit can move
the tape to new positions in forward or reverse.

Tape motion is controlled by vacuum columns and a servo-controlled
single capstan. Long tape life is possible because the only contact with
the oxide surface is at the magnetic head and at a rolling contact on one
low-friction, low-inertia bearing.

Main Specifications

Storage medium: 15-inch wide magnetic tape {industry std)
Capacity/tape reel: 32 million characters (at 1600 bpi)

Data transfer speed: 72,000 characters/sec., max.

Drives /control: 8, max.

10-2

Data Organization

Number of tracks: 9
Recording density: 800 or 1800 hits/inch, program selectable
Interrecord gap: 0.50 inches, min

Recording method: NRZI for 800 bpi, phase encoded for 1600 bpi

Tape Motion

Read/write speed: 45 inches/sec.
Rewind speed: 150 inches/sec.
Rewind time: 3 minutes, typical

Tape Characteristics

Length: 2,400 feet, max.

Type: Mylar base, iron oxide coated

Reel diameter: 1014 inches, max,

Handling: direct-drive reel motors, servo-controlled single

capstan, vacuum tape buffer changers with con-
stant tape tension

10.3 HIGH-SPEED CONTROLLERS

Mounting Space

The PDP-11/70 CPU assembtly provides dedicated, pre-wired space for
up to 4 high-speed {/0O contrcllers. Refer to Figure 10-1, DC power for
the controllers is derived from the cabinet power supply.

Interfacing

Each group of mass storage peripherals communicates with its high-
speed contreller through a separate high-speed 1/0 bus. This 1/0 bus
consists of a set of 56 signals for data, control, status, and parity. High
transfer rate is achieved by using synchronous bBlock transfer of data
simuitaneously with asynchronous control information. The controller
contains an 8-word data buffer.

Data is transferred in a Direct Memory Access (DMA)} mode. An internal
32-bit wide data bus transfers 4 bytes in parallel between memory and
the high-speed cantrollers. The Priority Arbitration logic within the cache
memory controls the timing of data transfers; but the cache itself is not
used for data storage. Data transfers are between main (core) memory
and the mass storage peripheral. The cache is not affected, except that
an a write hit from the |/ O Bus to memory, the valid bit is cleared for that
particular 2-word hlock within the cache. In this way, the affected areas
of the cache are flagged as having incorrect data, but main memory
always contains the correct, updated information.

The UNIBUS plays a subordinate role with respect to the high-speed
controllers, The UNIBUS is used:

a) to supply control and status information
b} to penerate an interrupt request {by the controller)

10-3

et [|
| FROCES 50K CEMTRAL (b T >
- PROCgSSDR l l |
| MERCRY |
HANAGEMENT U HI-SPEED rn speen’ m seEen | | Hi- Svisnl LB
| H CORITEC, CON‘"RD CONmm CONERQL | PtRIPHEﬁnL
|] | |
L ﬁ'ﬁ’u__f______
MIERCRY
5 \
e} [Fe] 143 10
|Bus But BLE BUS TAASE T
0 .. e STORAGE
PEEIPHER.\!LJ

Figure 10-1 PDP-11/70 Biock Diagram

The UNIBUS is not used for data transfer.

The registers within the controller {which can he read and written di-
rectly) are addressed from the UNIBUS. In a typical DMA transfer, the
registers would first be loaded with the following data:

a) number of words to be transferred
b} starting address in memory for data transfers
c) control information specifying the device and type of cperation.

Then the GO command would be issued (to the register), and data trans-
fer would proceed without CPU intervention.

fncreased Data Transfer Rate

The architecture of the PDP-11/70 allows overlapping of some opera-
tions, thereby providing faster program execution speed. CPU and
UNIBUS read hits with the cache memory are overlapped with mass stor-
age device reads from main memory. It is possible to overlap the read
cycles of several mass storage devices.

Parity

Parity is generated and checked in the system for both data, and address
and control information, to ensure the integrity of the information trans-
ferred. The RHCS3 register in the controller is used to indicate the oc-
currence of parity errors during memory transfers.

10.4 REGISTERS
The controller contains & local registers, plus part of 1 more which is
shared with the mass-storage device. Other registers needed by the

10-4

particular mass storage system and device are contained in the device
itself. Appendix B contains information about the mass storage device
registers,

Controller Registers

RHCS] Control and Status 1 (partial)

RHWC Word Count

RHBA Bus Address (Main Memory Bus)

RHBAE Bus Address Extension (Main Memory Bus)
RHCS2 Control and Status 2

RHCS3 Control and Status 3

RHDB Data Buffer (Maintenance)

10.5 CONTROLLER REGISTERS

Control and Status 1 Register (RHCS1)

This register is utilized by both the controller and the mass storage
device to store the device commands and hold operaticnal status. Reg:
ister bits O thru 5, 11, and 12 are dedicated for use by the drive and are
physically located in each drive attached to the controller. When read-
ing or writing this register, the selected drive {indicated by bits 2 thru
0 in the RHCS2 register) will respond in those bit positions.

When the program reads, writes a word, or writes the low byte of this
register, a register cycle will be inftiated 1o the selected drive over the
high-speed /0 bus. If the unit selected does not exist or respond, an
NED {non-existing drive) error will result. The program may, however,
write the upper byte of this register without regard to the unit selected
and without affecting any drive.

Register bits O thru 5 indicate the command to be performed and are
actually stored in the selected drive. The controller will always interrogate
the command code being passed to the drive by the program and will
prepare for the appropriate memory cycle required by data transfer op-
erations. Data transfer command codes are designated by S51. thru 77.
{always odd since the GO bit must be asserted to execute the function)
and will cause the controller to become busy (RDY negated) umtil the
completion of the aperation. When the controller is busy, no further data
transfer commands may be issued {see PGE bit 10 in RHCS2), Non-data
transfer commands, however, may be issued at any time and to any
drive which is not busy,

While a data transfer is in progress, unit select bits U(02:00) in RHCS2
may be changed by the program in order to issue a non data transfer
cammand to another drive. This will not affect the data transfer.

When a non-data transfer command code is written into RHCS] while a
data transfer is taking place, only the even (low) byte of RHCS1 should
be written. This will prevent the program from unintentionally changing
the ALG6 and Al7 status bits if the transfer is completed just before the
register is written. (While the RDY bit is negated, the controller prevents
program modification of these control bits even when the write is done
to the odd byte.)

10-5

15

14

13

12

15 14 13 12 11 10 ki B 7] 5 4 3 i] 43
l SCJ TRE MCPE‘ - |D\M| @ ‘ A7 | Ali \ RDYl e ‘ f4 ‘ £3 | F i F1 | F ‘ GOl
[— — s i

LOCATED M ; j
CONTROLLER
LOCATED I SELECTED

DRIVE [READ OMLY]
LD ATED IN CONTRCHLER
LK ATEDR 1IN SELECTED DRIVE

Control and Status 1 Bit Usage

BIT SET BY/CLEARED BY REMARKS
sC Set by TRE or Attention 8C = TRE 4 ATTN
Special or MCPE. Cleared by 4 MCPE.
Condition Unibus INIT, controller Attention occurs when
Read Only clear, or by removing any drive has a) an er-
the Attention condition. ror condition, b) a
change in status or c¢)
completed a f{function
requiring action by the
program {other than
data transfer.
TRE Set by DLT or WCE or TRE = DLT 4+ WCE
TRansfer PE or NED or NEM or -+ PE 4+ NED 4+ NEM
Error PGE or MXF or MDPE 4 PGE + MXF +
Read/Write or a drive error during MDPE 4 (EXCP+EBL)
a data transfer. Cleared
by Unibus INIT, con-
troller clear, error clear
{the action of writing a
1 in the TRE hit), or by
loading a data transfer
command with GO set,
MCPE Set by a parity error on Parity errors which oc-
Mass 1/0 the confrol section of c¢ur on the control bus
Bus Control the 1/0 bus when read- when writing a drive
Parity Error ing a remote register register are detacted by
Read Only (located in the drive). the drive. Parity check-
Cleared by Unibus INIT, ing occurs at the com-
controller clear, error pletion of the register
clear, or by loading a cycle {an MCPE when
data transfer command reading the RHCSI reg-
with GO set. ister would not be indi-
cated on the same cy-
cle.
Reserved for Always read as O if not

use by the implermnented by the se-
Drive lected drive,
Read Only

10-6

11

14

9
8

50

BIT

DVA

Drive
Available
Read Only

Not used

Al17

Al6

Bus Address
Extension
Bits

Read /Write

RDY
Ready
Read only

1E

Interrupt
Enable
Read/Write

F4-FO and
GO
Read/Write

SET BY/CLEARED BY

Implemented by the
drive. Set when the se-
lacted drive is available
to the controller.

Always read as 0.

Upper address exten-
sion bits of the BA reg-
ister, Cleared by Unibus
INIT, controller clear, or
by writing Q's in these
bit positions,

Indicates controller sta-
tus. when set the con-
troller will accept
any command. When
cleared the <controller
is performing a data
transfer command and
will allow only non-data
transfer commands fto
be executed.

Control bt which can
he set under program
control, When IE=1,
an interrupt may occur
due to RDY or Atiention
or MCPE being as-
serted. Cleared by Uni-
bus INIT, controller
clear, or automatically
cleared when an inter-

rupt is recognized by
the CPU.
F4-FO are function

{command) code con-
trol bits which deter-
mine the action to be
perforrned by the con-
troller and/or drive. The
GO bit must be set in
order to execute the
command, The GO bit

10-7

REMARKS

Used in dual-port drive
applications. Always a
1 in single port drives.

These bits cannot be
modified by writing to
the RHCS1 register
while the controller is
busy (RDY negated). In-
cremented by a carry
from the RHBA register
during data transfers
to/from memory. These
bits can also be set/
cleared thru the RHBAE
register.

The assertion of RDY
{transfer complete or
TRE} will cause an in-
terrupt if IE = 1.

A program-controlled
interrupt may occur by
writing 1's into IE and
RDY at the same time.
This bit can be set/
cleared thru the RHCS3
register.

The function code bits
are stored in the se-
lected drive. Only data
transfer commands (de-
fined as F4+(F3 4- F2)+
GO will cause the
controller to hecome
busy (RDY negated). All
other command codes

BIT

tion.

Function Code Table

F4 F3 F2
) Q 0
thru
1 0 Q
1 W] 1
1 0 1
1 0 1
1 0 1
1 1 O
1 1 0
1 1 0
1 1 0
1 1 1
1 1 i
1 1.1
1 1 1

Word Count Register (RHWC)
This register is loaded by the program with the two's complement of the
number of words to be transferred. During a data transfer, it is incre-
mented by 1 each time a word is transmitted to or from memory.

13

F1
o

1

= N]

=00

[l]

FO

Q
1

fo

- —— — e —

[

SET BY/CLEARED BY

is reset by the drive at
the end of the opera-

—_

REMARKS

are ignored by the con-
troller,

Rteserved for drive related
commands. No controller
action taken.

Write Check commands.
Memory data compared
with drive data in control-
ler. Memory address incre-
ments.

Write Check command.
Memery address decre-
ments

Write commands, Memory

data written into drive.
Memory address incre-
ments,

Write command. Memory
address decrements,

Read commands. Drive
data written inte Memory.
Memory address incre-
ments.

Read command. Memory
address decrements.

15 %]
'W(]S ’\N(M‘WC 13

2 1 0 L L] ?] 5 4 iz ! 1
2 ’wt 1n [\MZ 1 ;1WCO°‘WC %‘MO?[\WO&iMﬁS‘MU‘{\WO}*WG‘{M@ \\\Cq

Word Count Register Bit Usage

10-8

BIT SET BY/CLEARED BY REMARKS

WC{15:00} Set by the program to specify Incremented for each
the number of words to be word transferred to/
Word Count transferred (Two's complement from memaory.
Read /Write form.} This register is cleared
only by writing 0's into it.

Bus Address Register (RHEBA)

This register is loaded by the program to specify the lower 16 bits of
the starting memory address to which data transfers will take place. The
RHBA and RHBAE registers combine to form the complete 22 bit mem-
ary address.

During a data transfer this register is incremented (decremented for spe-
cific function codes) by 2 each time a word is transmitted to or from
memory. tf the BAl {(Bus Address Increment Inhibit) bit (bit 03 of
RHCS2Z) is set, the incrementing (or decrementing) of the RHBA regis-
ter is inhibited and ali transfers take place to or from the starting mem-
ory address.

15 14 i 12 11 1o i A ? 4 5 4 3 2 1 [1]
AlE ‘A\M AI3‘A]? ‘AH ‘A]D‘AO?‘AD&‘AD?'ADél&Oﬁ |AN‘&OJ]AMJAO1‘ 4] |
Bus Address Register Bit Usage
BIT SET BY/CLEARED BY REMARKS
15:01 A (15:01) Loaded by the program The RHBA register is
Bus Address to specify the starting incremented (or dec-
Read /Write memory address of a remented) by 2 when-
data transfer operation. ever a word is trans-
Cleared by Unibus INIT mitted to or from
or controlier clear memory.
on Not Used Always read as a O

Bus Address Extension Register (RHBAE)

The RHBAE register contains the upper 6 bits of the memory address
and combine with the lower 16 bits located in RHBA to form the com-
plete 22 bit address. This register should be loaded by the program in
conjunction with the RHBA register to specify the starting mernory ad-
dress of a data transfer operation. The six bit field is incremented (dec-
remented for specific function codes) each time a carry (borrow) occurs
from the RHBA register during memaory transfers.

Address bits Al& and Al7 can aiso be set or cleared thru the RHCS1
register. If an address extension field is written into RHBAE, the pro-
gram should ensure that Al6 and Al7 are not altered when a command
is loaded into RHCS1. This can be accomplished by either loading the
command with a write low byte instruction to RHCS1 or by ensuring the
praper value appears in the A16 and Al7 bit positions of RHCS1.

10-9

15 L] kx|

1 0 L4] 7 & 5

L] 3 2 1 r]

lololoia‘olo‘u\n‘o\o‘m\‘am‘nwlma[m?

Alt

Bus Address Extension Register Bit Usage

BIT
15:06 Not Used

05:00 A{21:16)
Bus Address
Read/Write

SET BY/CLEARED BY
Always read as a3 0

Loaded by the program
to specify the starting
memory address of a
data transfer operation.
Cleared by Unibus INIT

or controller clear.

Control and Status 2 Register (RHCS2)
This register indicates the status of the controller and contains the drive
unit number U(2:0). The unit number specified in bits 2 thru O of this
register indicates which drive is responding when registers are addressed
which are located in a drive.

15 14 13

oo ¢ &8 7 &

REMARKS

The RHBAE register is
incremented (or de-
cremented) each time
a carry out (borrow
out) of RHBA occurs.
AlS and Al7 can aiso
he set or cleared thru
the RHCS1 repister.

L] 3 2 | Q

T oo o [[P o [0 [

Contrel and Status 2 Register Bit Usage

BIT

15 DLT
Data LaTe
Read only

14 WCE
Write Check
Error
Read only

SET BY/CLEARED BY

Set when the controller
is unable to supply a
data word during a
write operation or ac-
cept a data word during
a Read or Write-check
operation at the time
the drive demands a

transfer. Cleared by
Unibus INIT, controller
clear, error clear, or

loading a data transfer
command with GO set.

Set when the controller
is performing a write-
check operation and a
word on the drive does

10-10

REMARKS

DLT causes TRE. Buf-
fering is 8 words deep
in the controller and
a DLT error indicates
a severely overloaded
system.

WCE causes TRE. If a
mismatch is detected
during a Write-check
command execution

13

12

11

10

BIT

PE
Parity Error
Read anly

NED
MNon-Existent
Drive

Read only

NEM
MNan-Existent
Mernory
Read aonly

PGE
Program Error
Read only

SET BY/CLEARED BY

not match the corre-
sponding word in mem-
ory. Cleared by Unibus
INIT, controller clear,
error clear, or loading a
data transfer command
with GO set.

Set if a parity error oc-
curred between mem-
ory and the controller
during a memory trans-
fer. Cleared by Unibus
INIT controiler clear, er-
ror clear, or loading a
data transfer command
with GO =et.

Set when the program
reads or writes a regis-
ter in a drive (selected
by U{02:00) which does
not exist or is powered
down. (The drive fails
to assert TRA within
1.5 us after assertion of
DEM. Cleared by Uni-
bus INIT, controller
clear, error clear, or
loading a data transfer
command with GO set.

Set when the controller
is performing a DMA
transfer and the mem-
ory address specified in
RHBA is non-existent.
Cleared by Unibus INIT,
controller clear, error
clear, or loading a data
transfer command with
GO set.

Set when the program
attempts to initiate a
data transfer operation
while the controller is
currently performing
one. Cleared by Unibus
INIT, contreller clear,
error clear, or loading a
data transfer command
with GO set.

10-11

REMARKS

the transfer termi-
nates and the WCE
hit is set. The mis-
matched data word
from the drive is dis-
played in the data
buffer {RHDB).

PE — APE 4 DPEOW
+ DPEEW

NED causes TRE.

NEM causes TRE to
set.

PGE causes TRE to
set, The data transfer
command code is in-
hibited from being
written into the drive.

09

o8

07

c6

05

04

BIT

MXF

Missed Trans-
fer

Read only

MDPE

Mass |/0 Bus
Data Parity
Error

Read only

OR
Output Ready
Read only

IR
Input Ready
Read only

CLR
Controller
Clear
Write only

PAT
Parity Test
Read/Write

SET BY/CLEARED BY

Set if the drive does not
respond to a data trans-
fer command within
500 usec, Cleared by
Unibus INIT, controller
clear, error clear, or
loading a data transfer
command with GO set.

Set when a parity error
occurs on the data sec-
tion of the /0O bus
while doing a read or
write-check operation.
Cleared by Unibus INIT,
controller clear, error
clear, or loading a data
transfer command with
GO set.

Set when a word is
present in RHDB and
can be read by the pro-
gram, cleared by Uni-
bus INIT, controller
clear, or by reading DB.

Set when a word may
be written in the RHDB
register by the pro-
gram. Cleared when the
data buffer is full {con-
tains 8 words).

When a | is written into
this &it, the controller
ang all drives are ini-
tialized.

While PAT is set, the
controller generates
even parity an both the
Control and Data sec-
tions of the 1/0 bus.
When clear, odd parity
is generated. Cleared by
Unibus INIT or control-
ler clear.

10-12

REMARKS

MXF causes TRE to
set. This error occurs
if a data transfer com-
mand is loaded into a
drive which has ERR
set, or if the drive
falls to initiate the
command for any rea-
son {such as parity
error or illegal funec-
tion.)

MDPE <causes TRE.
Parity errors on the
data bus during write
operations are de-
tected by the drive.

Serves as a status in-
dicator for diagnostic
check of the data buf-
fer.

Serves as a status in-
dicator for diagnostic
check of the data buf-
fer.

Unibus INIT also
causes Controller
Clear to occur.

While PAT is set, the
controller checks for
even parity received
on the Data Bus but
not on the Control
Bus.

BIT SET BY/CLEARED BY REMARKS
03 BaAl When BAl is set, the when set during a
Unibus contreller wili not in- data transfer, all data
Address crermment the BA register words are read from
Increment during a data transfer. or written inte the
Inhibit This bit cannot be madi- same memory loca-
Read /Write fied while the controller tion.
is doing a data transfer
{RDY negated}. Cleared
by Unibus INIT or con-
troller clear.
02-00 U{2:0 These bits are written The unit select bits
Unit Select by the program to se- can be changed by
{2:0) lect a drive. Cleared by the program during
Read/Write Unibus INIT or control- data transfer opera-

ler clear,

tions without interfer-

ing with the transfer.

Control and Status 3 Register (RHCS3)

The RHCS2 register contains parity error information associated with the
memaory bus. Bit position 13 of the RHCS2, PE, indicates that a parity
error occurred during the memory transfer., Bits 15 thru 13 of RHCS3
further localize the error for diagnostic maintenance. In addition, bits 3
thru O provide the diagnostic program the ability to invert the sense of
parity check and thereby verify correct operation of the parity circuits,

An Interrupt Enable bit in the RHCS3 register allows the program to en-
able interrupts without writing intc a drive register as previously de-
scribed. This bit also appears in the RHCS1 register for program com-
patibility and can be set or cleared by writing into either register.

15 T 14 13_[_I‘2 n L] ?] 7 & 5 4 3 2 1 . i}
wTeslerfeeglon] [[o T o [o 5 Po
Controt and Status 3 Bit Usage
BIT SET BY/CLEARED BY REMARKS
15 APE Set if the address parity APE causes PE, bit 13
Address Parity error line indicates that of RHCS2. When an
Error the memory defected a APE error occurs the
Read Only parity error on address RHBA and RHBAE reg-

and contrgl information
doring a memory trans-
fer. Cleared by Unibus
Init, controller clear, er-
ror clear, or loading a

10-13

isters contain the ad-
dress 44 of the dou-
ble word address at
which the error occ-
curred during a dou-

14,

12,

10

[+]

BIT

13 DPE, OW,
EW

Data Parity

Error

Cdd Word,

Even Word

Read Cnly

11 WCE
ow, Ew
Write Check

Error

Odd word,
Even word,
Read only

DBL
DouBle word
Read Only

Not Used

IE
Interrupt
Enable
Read fWrite

SET BY/CLEARED BY

data transfer command
with GO set,

Set if a parity error is
detected on data from
memory when the con-
trol is performing a
Write or Write Check
command. Cleared by
Unibus Init, controller
¢lear, error clear, or
loading a data transfer
command with GO set.

Set when data fails to
compare between mem-
ory and the drive,
Cleared by Unibus Init,
controller clear, error
clear, or loading a data
transfer command with
the GO bit set.

Set if the last memnory
transfer was a double
word operation. Cleared
by Unibus Init, control-
ler clear or loading a
data transfer command
with GO set.

Always read as a O

[E is a control bit which
can be set under pro-
gram control. When IE
=1, an interrupt may
occur due to RDY or SC
being asserted. Cleared
by Unibus Init, control-
ler clear, or automati-
cally cleared when an
interrupt is recognized
by the CPU, When a O
is written into IE by the

program, any pending
interrupts are can-
celled.

10-14

REMARKS

ble word operation or
the address -2 dur-
ing a single word oper-
ation.

DPE causes PE, bit 13
of RHCS2. When a
DPE error occurs, the
RHBA and RHBAE reg-
isters contain the ad-
dress 44 of the dou-
ble word address at
which the error oc-
curred during a dou-
hle word operation or
the address 12 dur-
ing a single word oper-
ation.

Causes WCE, bit 14 of
RHCS2. The word
read from the drive
which did not com-
pare is locked in the
data huffer and can
be examined by read-
ing the RHDB register,

This bit can also be
set or cleared by writ-
ing into RHCS1 regis-
ter, I written thru
RHCS3 register write
operation is not per-
formed into a drive
register simultaneous-
ly.

BIT

SET BY/CLEARED BY

REMARKS

5-4 Not Used Always read as a O
3-0 IPCK {3:0) These bits are written Parity control is pro-
lnvert Parity hy the program to con- vided for each byte in
Check (3:0) trol the data parity de- double word ad-
Read/Write tection logic. When set dresses.
inverse parity £ i.e.
checked with data dur- IPCK 0—Even Word,
ing memory transfers of Even Byte
Write and Write Check IPCK 1-—Even Waord,
operations. Odd Byte
IPCK 2—0dd Word;
Even Byte
IPCK 3—0dd Word,
Odd Byte

Data Buffer Register (RHDB)

This register provides a maintenance tool to check the data huffer in the
controlier. A total of 8 words is accepted before the data buffer becomes
full. Successive reads fromm DB read out words in the same order in
which they were entered into the data buffer.

The IR (input ready) and OR (output ready) status indicators in the
RHCS2 register are provided 'so that the programmer can determine
when words can be read from or written intc the RHDB. IR should be
asserted before attempting a write into DB; OR should be asserted
before attempting a read from DB,

The RHDB register can be read and written only as an entire word. Any
attempt to write a byte will cause an entire word to be writien, Reading
the DB register is a “destructive read-out’™ operation: the top data word
in the data buffer is removed by the action of reading DB, and a new
data word {if present) replaces it a short tirme later. Conversely, the ac-
tion of writing the DB register does not destroy the '“contents” of DB;
it merely causes one more data word to be inserted into the data buffer
(if it was not full).

[14 13 12 11] o+] 7 & 5 4 3 2 1]
flﬁawbld LDB 1:{J—DB ﬂDSﬂDB IDJf)BOﬂ & 140 DSOiDBD& mﬂfa{u OBO3| DEOE | DBO1 (CAD0D
Data Buffer Bit Usage

DATA BUFFER BIT

BIT ASSIGNMENTS REMARKS
15-00 When read, the con- Used by the program
DB(15:00) tents of OBUF (internal for diagnostic pur-
Data Buffer register) are delivered. poses. When the reg-
{15:00) Upon completion of the ister is written into, IR
Read/Write read the next sequen- is cleared until the DB

tial word in the huffer

10-15

is ready to accept a

BIT

DATA BUFFER BIT

ASSIGNMENTS
will be clocked
OBUF.

NOTE

into

REMARKS

new word. When the
register is read, it will
cause OR to be
cleared wuntil a new
word is ready. During
a Write Check Error
condition the data
word read from the
disk which did not
compare with the cor-
responding word in
memory is frozen in
RHDB for examination
by the pragram.

Appendix B contains register diagrams for each
High Speed |/0O subsystem. Detailed descrip-
tiens of bit assignments for each 1/ 0 device reg-
ister may be found in the PDP-11 Peripherals

Handbook, 1975 edition.

15-16

10-17

FARITY

CHAPTER 11

CONSOLE OPERATION

11.1 INTRODUCTION

The PDP-11/70 cansole allows direct control of the computer system. It
containsg a power switch for the CPYU, which is alsc usually used as the
Master Switch for the system. The console is used for starting, stopping,
resetting, and debugging. Lights and switches provide the facilities for
menitoring operation, systern control, and maintenance. Debugging and
detailed tracing of operations can be accomplished by having the com-
puter execute single instructions or single cycles. Contents of all loca-
tions can be examined, and data can be entered manually from the
console switches,

11.2 GENERAL
The PDP-11/70 Operator’'s Consocie provides the following facilities:

a) Power Switch (with a key lock)
b} ADDRESS Register display (22 bits)

c} DATA Register display (16 bits), pius Parity Bit Low Byte, & Parity
Bit High Byte

d) Switch Register (22 switches)

e) Error Lights
ADRS ERR {Address Error)
PAR ERR (Parity Error)

f} Processor State Lights (7 indicators)
RUN
PAUSE
MASTER
USER
SUPERVISOR
KERNEL
DATA
g) Mapping Lights
16 BIT
18 BIT
22 BIT
h) ADDRESS Display Select Switch (8 positions)
USER |
USER D
gggg; :D (Virtual)
KERNEL |
KERNEL D
PROG PHY {Program Physical)
CONS PHY (Console Physical)

11-1

i} DATA Display Select Switch (4 positions)
DATA PATHS
BUS REGISTER
ADRS FPP/CPU
DISPLAY REGISTER

j} LAMP TEST SWITCH

k) Control Switches
LOAD ADRS
EXAM (Examine)
DEP (Deposit)
CONT (Continue}
ENABLE/HALT
S INST/S BUS CYCLE (Single Instruction/Single Bus Cycle)
START

11.3 STARTING AND STOPPING

Starting

Once power is on, execution can be started by placing the ENABLE/
HALT Switch in the ENABLE position, putting the starting address in
the Switch Register, and depressing the LOAD ADRS Switch. Verify in the
Address Display Lights that the address was entered correctly, then
depress the START Switch. The computer system will be cleared and will
then start running. Once execution has begun, depressing the START
Switch again has no effect.

If the systern needs to be initialized but execution is not wanted, the
START Switch should be depressed while the HALT/ENABLE Switch is
in the HALT position.

Stopping

Set the ENABLE/HALT Switch to the HALT position. The computer will
stop execution, but the contents of all memory locations will be retained.
The switch can then be set to the ENABLE position with no effect on
the system.

NOTE
NPR's are still serviced after a halt frem the
console if S BUS CYCLE is disabled.

Continuing

After the computer has been stopped, execution can be resumed
from the point at which it was halted by using the CONT (Continue)
Switch. The function of the CONT Switch depends on the position of the
ENABLE/HALT Switch;

ENABLE (up) CPU resumes normal execution.

HALT {down} The mode is used for debugging purposes and
forces execution of only a single instruction or
a singie bus cycle. This is discussed in Section
11.7.

11.4 REFERENCING MEMORY

Unmapped References
When performing unmapped memery references from the conscle, the

11-2

Address Select Switch must be set to CONS PHY. This means that the
22-bit address entered in the Switch Register should be the physical
address desired., To examine a memory location, depress the LOAD
ADRS Switch and then the EXAM Switch. The address referenced will
appear in the Address Display Lights. The Data Select Switch should be
selecting DATA PATHS, and the contents of that location are displayed
in the Data Display Lights. To deposit information into a memory loca-
tion, depress the LOAD ADRS Switch, then enter the desired data in the
Switch Register and raise the DEP Switch. The DATA Select Switch
should be in the DATA PATHS position, and the deposited information
will appear in the Data Display Lights.

Mapped References

Sometimes when software is running with Memory Management enabled
the physical addresses generated are not known. This makes examining
and depositing memory locations more difficult. For this reason, the 6
positions KERNEL | through USER D of the Address Select Switch are
provided. When doing a memory reference the low crder 16 bits of the
Switch Register are considered to be a Virtual Address and are relocated
by Memory Management using the set of PAR/PDR's indicated by the
Address Select Switch.

Ta examine a memory location, depress the LOAD ADRS Switch and the
EXAM Switch. The data Select Switch should be selecting DATA PATHS,
and the contents of that location are dispiayed in the DATA Dispiay
Lights. To deposit information ino a memory location, depress the LOAD
ADRS Switch, then enter the desired data in the Switch Register and
raise the DEP Switch. The Data Select Switch should be in the DATA
PATHS position, and the deposited information will appear in the DATA
DISPLAY Lights.

The PROG PHY (Program Physical) position of the Address Select Switch
is used as a debugging tool. After an examine or deposit has been per-
formed on a virtual address, changing the Address Select Switch to
select PROG PHY will display the Physical Address generated by Memory
Management in the Address Dispiay Lights. Using the PROG PHY posi-
tion in any other way will produce meaningless resuits.

NOTE
An EXAM or DEP operation which causes an
addressing error {(ADRS ERR or PAR ERR) will
he aborted and must be corrected by perform-
g a new LOAD ADRS operation with a valid
address.

11.5 STEP OPERATIONS

Performing more than one EXAM operation in a row or more than one
DEP operation in a row results in a STEP-operation. Depressing the
EXAM Switch after a previous examine of a location displays the con-
tents of the next [ocation in memaory. Raising the DEP Switch after a
previous deposit info a memory location causes the current contents of
the Switch Register to be deposited into the next location in memory.

In each case, the Address Display is updated by 2 to hold the value of
the now current address. This allows consecutive EXAM operations and

11-3

censecutive DEP operations without the use of the LOAD ADRS Switch.
An EXAM-STEP or DEP-STEP operation will not cross a 32K word

memory block boundary.

NOTE

The EXAM and DEP Switches are coupled to en-
able an EXAM—DEFP—EXAM sequence to be
carried out on a lpcation without having to do
extra LOAD ADRS operations. The following ex-
ample deposits values into consecutive memory

locations.

Operation
{Activate Switch)

LOAD ADRS
EXAM
DEP

EXAM

EXAM (result is
EXAM—STEP)

DEP
EXAM

11.6 GENERAL REGISTERS

Location shown in
ADDRESS Display

X
X
X
X
X4+2
X 42
X+ 2

The General Registers can be examined and deposited using the EXAM
and DEP Switches provided the previous LOAD ADRS operation loaded
the Address Display with a '‘register address."’

Address

17 777 700

17
17
17
17

17
17
17

i

1

|

|
777
777
777
777

777
777
777

705
706
707
710

715
716
717

Register
Register O (Set 0}
|

'
Register 5 (Set 0)
Register 6, Kernel Mode
Program Counter
Register O (Set 1)

1

|
i

1
Register 5, (Set 1}
Register &, Supervisor Mode
Register &, User Mode

Examining and depositing into General Register Addresses is indepen-
dent of the Address Select Switch. It is not possible to be mapped to a
General Register,

EXAM-STEP and DEP-STEP operations can be performed on the General
Registers, similar to that for memory locations, except that:

a) ADDRESS Display is incremented by 1 {instead of 2)
b} The STEP after address 17 777 717 is 17 777 700, such that

the addresses are lcoped.

11-4

¢} It is not pos

sihle to STEP up to the first General Register {17

777 700} from 17 777 €76

11.7 SINGLE INSTRUCTION/SINGLE BUS CYCLE

Gnce the machine is halted, a useful debugging tocl is being able to
execute code, a smali segment at a time. The § INST/ 8§ BUS CYCLE
(Single Instruction/Single Bus Cycle) Switch provides that capability.
The ENABLE/HALT Switch must be in the HALT position. To start execu-
tion of a segment depress the CONT Switch. How much is executed is a
function of the S INST/S BUS CYCLE Switch.

Position
S INST

$ BUS CYCLE

Depressing the CONT Switch will result in the exe-
cution of one instruction. This means that the
machine state can be determined after each in-
struction. Examining and depositing into memory
locations is a2 method of accormplishing this. The
contents of the DATA DISPLAY LIGHTS are not nec-
essarily meaningful.

For this mode to have any meaning, the Data Se-
lect Switch should be selecting the BUS REG (Bus
Register). Depressing the CONT Switch will execute
untii the end of the next bus cycle. The Address
Display Lights will then contain the address of the
location that the bus cycle was performed at. (Vir-
tual or Physical, depending on the position of the
Address Select Switch). The DATA Display Lights,
on a read operation, will contain the data that was
read (this could be an instruction or data). During
a write operation, the lights will contain the data
just written (except during a stack operation or
Floating Point instruction).

Examine and deposit operations are not able to be
used in this mode. Depressing the LOAD ARS,
EXAM, or DEP Switch will not cause anything to-
happen. If an examine or deposi operation is de-
sired, the S INST/ § BUS CYCLE Switch should be
changed to select 5 INST and the CONT Switch
should be depressed once. (This will cause execu-
tion urtil the end of the current instruction). The
system will then be ready to perform an examine
or deposit.

11.8 FUNCTIONS OF SWITCHES & INDICATORS

11.8.1 Power Switch
OFF
POWER

LOCK

Power to the processor is OFF,

Power to the processor is ON, and all conscle
switches function normally.

Power to the processor is ON, but the 7 con-
trol switches LOAD ADRS through START are
disabled. All other switches are functional.

11-5

11.8.2 Control Switches

LOAD ADRS (Load Address)

when the LOAD ADRS Switch is depressed, the contents of the Switch
Register are loaded into the Address Display. The address displayed in
the Address Display Lights is a function of the position of the Address
Select Switch.

EXAM (Examine)

Depressing the EXAM Switch causes the contents of the current location
specified in the Address Display to be displayed in the DATA Display
Register when the Data Select Switch is in the DATA PATHS position,
The address in the Address Display will be mapped or unmapped de-
pending on the position of the Address Select Switch. The location dis-
played in the Address Display Lights is also a function of that switch.

DEP {Deposit)

Raising the DEP Switch causes the current contents of the Switch Regis-
ter to be deposited intc the address specified by the current contents
of the Address Display.

The address in the Address Display will be mapped or unmapped de-
pending on the position of the Address Seject Switch. The location dis-
played in the Address Display Lights is also a function of that switch.

CONT (Continue)
Depressing the CONT Switch causes the CPU to resume execution.
The CONT Switch has no effect when the CPU is in RUN state.

ENABLE/HALT
The ENABLE/HALT Switch is a two position switch used to stop machine
execution and to enable the system to run.

S/INST—S/BUS CYCLE (Single Instruction/Single Bus Cycle)

The S/INST—S/BUS CYCLE Switch affects only the operation of the
CONTINUE Switch. It controls whether the machine stops after instruc-
tions or bus cycles. This switch has no effect on any switches when the
ENABLE/HALT Switch is set to ENABLE.

START)
The functions of the START Switch depend upon the setiing of the
ENABLE/HALT Switch as follows:

ENABLE Starts execution
HALT Clears the computer system

11.8.3 Switch Register

The switches are used to manually load data or an address into the pro-
cessor, as determined by the control switches and the Address Select
Switch.

Note that bits O to 15 of the current setting of the Switch Register may
be read under program control from a read only register at address
17 777 570.

11.8.4 Lamp Test
The Lamp Test Switch (which is not labeled) is located between the
Switch Register and the LOAD ADRS Switch. It is used for maintenance

11-6

purposes. When the Lamp Test Switch is raised, all console indicator
lights should go on. An indicator which does not light is defective and
should be replacad.

11.8.5 Address Select Switch

VIRTUAL Uses a 16-bit Virtuai Address where bits 16

{6 positions for to 21 are always OFF.

User, Supervisor,

& Kernel)

CONS PHY Uses a 22-bit Physical Address to perform

(Console Physical) console operations {e.g. LOAD ADRS, EXAM,
& DEP),

PROG PHY Displays the 22-hit Physical Address of the

{Program Physical) current bus cycle that was generated by the
Memory Management Unit,

11.8.6 Address Display

The ADDRESS Display lights are used to show the address of data being
examined or just deposited. The address is interpreted as a Virtual or
Physical Address as determined by the Address Select Switch.

11.8.7 Data Select Switch

DATA PATHS The normal display mode, shows examined
or deposited data.

BUS REG The internal CPU register used for bus cy-
cles.

«ADRS FPP/CPU The RCM address, FPP control micro-pro-
gram (bits 15 to 8) and the CPU control
micro-program (bits 7 to O).

DISPLAY REGISTER The contents of the Display Register. This
has an address of 17 777 570.

11.8.8 Data Display

The Data Display lights are used to show the 16-bit word data just exam-
ined or deposited or other data within the CPU. The PARITY HIGH &
LOW lights indicate the parity bit for the respective bytes on read op-
erations; on write operations the bits are off. The interpretation of the
data is determined by the Data Select Switch.

11.8.9 Status Indicator Lights

Error Indicators

PAR ERR Lights to indicate a parity error during a ref-
erence to memory.
ADRS ERR Lights to indicate any of the following ad-

dressing errors:

a) HReference of non-existent memory
b) Access control violation

¢) Reference of unassigned memory pages

11-7

Processor State
RUN

PAUSE

MASTER

Mode
USER

SUPER
{Supervisor)
KERNEL

DATA

Address
16 hit

18 hit

22 bhit

The CPU is executing program instructions.
If the instruction being executed is a WAIT
instruction, the RUN light will be cn. The
CPU will proceed from the WAIT on receipt of
an external interrupt, or on console interven-
tion.

The CPU is inactive because the current in-
struction execution has been completed as
far as possible without more data from the
UNIBUS or memory or the CPU is waiting
to regain control of the UNIBUS (UNIBUS
mastership).

The CPU is in control of the UNIBUS
(UNIBUS Master only when it needs the
UNIBUS}). The CPU relinquishes control of
the UNIBUS during DMA and NPR data
transfers

The CPU is executing program instructions in
USER mode.

The CPU is executing program instructions in
SUPERVISOR mcode,

The CPU is executing program instructions in
KERNEL mode.

If on, the last memory reference was to D
address space in the current CPU mode. If
off, the last memory reference was to | ad-
dress space in the current CPU mode.

Lights when the CPU is using 16-bit map-
ping.
Lights when the CPU is using 18-bit map-
ping.
Lights when the CPU is using 22-bit map-
ping,

11.9 M9301-YC BOOTSTRAP LOADER

FEATURES
» Contains bootstrap routines for a wide range of storage media
* Allows bootstrapping of any drive unit on a particular controller

+ Runs diagnostic programs to test the basic CPU, Cache, and Main
Memary

* Allows booting to selected physical memory segments in 32K in-
crement

+ Switch selectable default loading device

DESCRIPTION

The M9301-YC is a dedicated diagnostic bootstrap loader for use with
the PDP-11/70. K contains a ROM organized as 512 16-bit words which
are separated into hardware verification programs and bootstrap routines,
It is a double height extended module which accupies rows E and F of
slot one in the PDP-11/70 CPU.

DIAGNOSTICS

The diagnostic portion of the M9301-YC wili test the basic CPU to in-
clude addressing modes, and most of the instructions available in the
PDP-11/70. The ROM will then test memory from virtuali addresses
100, to 157776.. It does this first with the cache disabled to verify
main memory, and then verifies the cache by retesting memory and
enabling first one cache group, the other, and finally both cache groups
simultaneousiy. Any errors detected will cause the program to halt. If
any of the cache tests fail, the systern can still be booted by pressing the
conscle continue switch, The program will set the cache to force misses
in bath groups and proceed to boot,

The M9301-YC can be selected via the console switches <15:12> to
test and load physical sections of memory other than the lowest 32K,
The memory management and UNIBUS map can be set 1o use physical
memory from 0 thru 512K Bytes, See Table 11-1.

TABLE 11.1 Bootstrap Option Selection (switch register settings)
The device codes are as follows:

Switch Register </03:06>- Device Booted

TM11/TU1Q MAGNETIC TAPE, TM11

TC11/TUS6 DECTAPE, TC11-G

RK11/RKOS DECPACK DISK CARTRIDGE, RK11-D
RP11/RP03 DISK PACK, RF11-C

RESERVED FOR FUTURE DEVICE

RH70/TU16 MAGNETIC TAPE SYSTEM, TWU16

7. RH70/RP04 DISK PACK, RWO0O4

10, RH70/RS04 FIXED HEAD DISK, RW04 (OR RWS03)
11. RX11/RX01 DISKETTE

The memory blocks are as follows:

SO b e

Switch Register <08:11>

0. PHYSICAL MEMORY 00 000 000 — 00077 776
1. PHYSICAL MEMORY 00 100 000 -00 177 776

119

2. PHYSICAL MEMORY 00 200 000 - 00 277 776
3. PHYSICAL MEMORY 00 300000 - 00 377 776
4. PHYSICAL MEMORY 00 400000 —00 477 776
5, PHYSICAL MEMORY 00 500 000 - 00 577 776
6. PHYSICAL MEMORY 00 600 000 — 00 &77 776
7. PHYSICAL MEMORY 00 700 000 - 00 777 776
10, PHYSICAL MEMORY 01 000 000 — Q1 077 776
11. PHYSICAL MEMORY 01 100 000 —01 177 776
12, PHYSICAL MEMORY Q1 200 000 -01 277 776
13. PHYSICAL MEMORY 01 30000001 377 776
14. PHYSICAL MEMORY 01 400 000 — 01 477 776
15. PHYSICAL MEMORY Q1 500 Q00 - 01 577 776
16. PHYSICAL MEMORY (1 600 000 - 01 677 776
17. PHYSICAL MEMORY QF 700 000 -01 777 776

11/70 Bootstrap

The bootstrap portion of the program looks at the lower byte of the
switch register to determine which one of 9 devices and which drive
nurmber to attempt the “BOOT" from, switches <02 :00>> select the
drive number (0 — 7}, and switches <06 : 03> select the device code
(1 — 11). if the lower byte of the switch register is zero, the program will
read the set of switches on the M9301-YC to determine the device and
drive number. These switches can be set by field service to select a
“DEFAULT BOOT" device,

If the bootstrap cperation fails as a result of a hardware error in the
peripherat device the program will do a “RESET"” instruction and jump
back to the test that sets up and turns on memeory management and
tests memory. Then the program will attempt to “BOOT" again.

STARTING PROCEDURE

To start operation of the M9301-YC, first set the console switch register
to 17765000 and press Load Address. Then set the console switches for
the desired memory section storage medium, and unit number (Table
11-1). with HALT switch in the ENABLE position, depress the START
switch. This will cause the ROM diagnostic to run followed with a boot
operation from the selected device. Failure of the diagnostic portion will
he signified by a halt. Table 11-2 identifies the meaning of each error
halt, If it is desired not to run the diagnostic poriion of this sequence
and to simply boot from the default device, the following procedure is
used. First set the console switches to 17773000 and press Load Ad-
dress, Place Q's in the switch register and with the HALT switch in the
ENABLE position, press START. This will then cause the M3301.¥C to
read lthe switch setting located on the module to determine the device
and unit number te boot from.

If it is desired only to boot from a device that is not the defauit device,
a similar procedure is foliowed. First set the console switches to
17773000 and press Load Address. Then set the switch register to the
desired memory section, storage medium, and unit number (Table 11-1)
and with the HALT switch in the ENABLE position, press the START
switch, This will cause the M2301-YC to boot the selected device.

Starting of the boot procedure can also be done under machine control.
Execution of a jump instruction with the destination address of either

11-10

17765000 or 17773000, will cause the M9301-YC to sample the console
switches and function as described above,

Table 11-2 Errors
tist of error halts indexed by the address displayed

ADDRESS DISPLAYED TEST NUMBER AND SUBSYSTEM UNDER TEST

17765004 TEST 1 BRANCH TEST

17765020 TEST 2 BRANCH TEST

17765036 TEST 3 BRANCH TEST

17765052 TEST 4 BRANCH TEST

17765066 TEST 5 BRANCH TEST

17765076 TEST 6 BRANCH TEST

17765134 TEST 7 REGISTER DATA PATH TEST

17765146 TEST 10 BRANCH TEST

17765166 TEST 11 CPU INSTRUCTION TEST

17765204 TEST 12 CPU INSTRUCTION TEST

17765214 TEST 13 CPU INSTRUCTION TEST

17765222 TEST 14 “COM™ INSTRUCTION TEST

17765236 TEST 14 CPU INSTRUCTION TEST

17765260 TEST 15 CPU INSTRUCTION TEST

17765270 TEST 16 BRANCH TEST

17765312 TEST 16 CPU INSTRUCTION TEST

17765346 TEST 17 CPU INSTRUCTION TEST

17765360 TEST 20 CPU INSTRUCTION TEST

17765374 TEST 20 CPU INSTRUCTION TEST

17765450 TEST 21 KERNEL PAR TEST

17765474 TEST 22 KERNEL PDR TEST

17765510 TEST 23 JSR TEST

17765520 TEST 23 JSR TEST

17765530 TEST 23 RTS TEST

17765542 TEST 23 RTI TEST

17765550 TEST 23 JMP TEST

17765760 TEST 25 MAIN MEMORY DATA COMPARE
ERROR

17766000 TEST 25 MAIN MEMORY PARITY ERROR
(NG RECOVERY POSSIBLE FROM THIS
ERROR)

17773644 TEST 26 CACHE MEMORY DATA COMPARE
ERROR

17773654 TEST 26 CACHE MEMORY NO HIT

PRESSING CONTINUE HERE WILL CAUSE
BOOT ATTEMPT FORCING MISSES

17773736 TEST 27 CACHE MEMORY DATA COMPARE
ERROR
17773746 TEST 27 CACHE MEMORY NO HIT

PRESSING CONTINUE HERE WILL CAUSE

) BOOT ATTEMPT FORCING MISSES
17773764 TEST 25 OR 36 CACHE MEMORY PARITY

ERROR

PRESSING CONTINUE HERE WILL CAUSE

BOOT ATTEMPT FORCING MISSES

1111

ERROR RECOVERY

If the processor halts in one of the two Cache tests the error is re-
coverable. By pressing CONTINUE the program will either attempt to
finish the test (if at either 17 773 644 or 17 773 736) or force MISSES
in both groups of the Cache and attempt te boot the system monitor
with the Cache fully disabled (if at either 17 773 654, 17 773 746,
17 773 764), The run time for this program is approximately 3 seconds.

11-12

APPENDIX A

UNIBUS ADDRESSES

A.l INTERRUPT & TRAP VECTORS

000
004
010
014
020
024
030
034

040
044
050
054

080
064
070
074
160
104
110
114
120
124
130
134
140
144
150
154
160
164

170
174

200
204
210
214
220
224
230
234
240

{reserved)

CPU errors

Ilegal & reserved instructions
BPT, breakpoint trap

10T, input/output trap

Power Fail

EMT, emulator trap

TRAP instruction

Systern software
System software
System software
System software

Console Terminal, keyboard/reader
Console Terminail, printer/punch
PC11, paper tape reader

PC11, paper tape punch

KW11-L, line clock

KW11-P, programmable clock

Memory system errors

XY Plotter

DR11-B DMA interface; {DA11-B)
ADOI, A/D subsystem

AFC11, analog subsystem

AAll, display

AAll, light pen

User reserved
User reserved

LP11/LS11, line printer

RS04 /RF11, fixed head disk

RC11, disk

TC11, DECtape

RKI1, disk

TU16/TM11, magnetic tape
CD11/CMI11/CR11, card reader

UDC11, digital control subsystem

PIRQ, Program Interrupt Request (11/45)

A-1

244 Floating Point Error
250 Memory Management
254 RP04/RP11 disk pack
260 TAll, cassette

264
270 User reserved
274 User reserved

300 (start of floating vectors)

A.2 FLOATING VECTORS

There is a floating vector convention used for communications {(and
other) devices that interface with the PDP-11. These vector addresses
are assigned in order starting at 300 and proceeding upwards to 777.
The following Table shows the assigned seguence. It can be seen that
the first vector address, 300, is assigned to the first DC11 in the system.
If another DC11 is used, it would then be assigned vector address 310,
etc. When the vector addresses have been assigned for all the DC11l's
{up to a maximum of 32), addresses are then assigned consecutively
fo each unit of the next highest-ranked device (KL11 or DP11 or DMI11,
etc.}, then to the other devices in accordance with the priority ranking.

Priority Ranking for Floating Vectors

(starting at 300 and proceeding upwards)

Rank Device Vector Size Max No.
{in octal)

1 Dell (10} 32
2 KLY1, DL11-A, DL11-B 10 16
3 DP11 10 32
4 DM11-A 10 i6
5 DN11 4 16
6 DM11-BB 4 16
7 DR11-A 10* 32
8 PR11-C 10%* 32
9 PAG11 Reader 4 16
1¢ PAB11 Punch 4% 16
11 DTl 10* 8
12 pX11 10% 4
13 DL11-C, DL11-D, DL11-E 10 31
14 DJi1 10 16
15 DH11 10 16
16 GT40 10 1
17 LPS11 30% 1
18 DQ11 10 16
19 KwW11l-W 10 1
20 DUL1 10 16

*—The first vector for the first device of this type must always be on a (10},
boundary.

A-2

A.3 FLOATING ADDRESSES

There is a floating address convention used for communications {(and
other) devices interfacing with the PDP-11. These addresses are as-
signed in order starting at 760 010 and proceeding upwards to 763 776.

Floating addresses are assigned in the following sequence:

Rank Device First Address
(if only floating address device in the system)
1 DJ11 760 010
2 DH11 760 020
3 DQ111 760 030
4 DUll 760 040

A.4 DEVICE ADDRESSES

777776 Processor Status word (PS)
777774 Stack Limit {SL}

777772 Program Interrupt Request (PIR)
777770 Microprogram Break

777 766 CPU Error

777 764 System |/D

777762 Upper Size .
777 760 Lower Size }System Size

777 756

777 754

777 752 Hit/ Miss
777 750 Maintenance

777 746 Cantrol

777 744 Memory System Error
777742 High Error Address
777 740 Low Error Address

777717 User R& (SP)
777 716 Supervisor RE {SP)
777715) RS
777 714 R4
777713 General registers, R3
777712 [Set 1 R2
777711 Rt
777710 RD
777 707 R7 (PC)
777 706 Kernet R6& (SP)
777705 7 RS
777704 R4
777 703 General registers, R3
777702 [Set O R2
777 701 Rl
777 700 RO

A-3

777 676

777 660
777 656

777 640
777 636

777 620
777 616

777 600

777 576
777 574
777 572

777570

777 566
777 564
777 562
777 580

777 556
777 554
777 562
777 550

777 546

777 516
777 514
777 512
777 510

777 5086
777 504
777 502
777 500

777 476
777 474
777 472
777 470
777 466
777 464
777 462
777 460

777 456
777 454
777 452
777 450
777 446
777 444
777 442
777 440

User Data PAR ,reg O-7
User Instruction PAR, reg O-7
User Data PDR, reg O-7

}User Instruction PDR, reg O-7
{MMR2)

Memory Mgt regs, {MMRI1)
(MMRO)

Console Switch & Display Register

printer/punch data
Console Terminal, printer/punch status

keyboard/reader data

keyboard/reader status

punch data (PPB)
PC11/PR11, punch status (PPS})

reader data (PRB)

reader status (PRS)

KW11-L, clock status (LKS)

printer data
LP11/LS11/LV11, printer status

TAll, cassetie data (TADB)
cassette status (TACS)

look ahead (ADS)
maintenance (MA}
disk data (DBR}

RF11, adrs ext error (DAE)
disk address (DAR)
current mem adrs (CMA)
word count (WC)
disk status (DCS)

disk data (RCDB)
maintenance (RCMN}
current address (RCCA}
RC11, word count {RCWC)
disk status (RCCS)
error status (RCER)
disk address (RCDA)
look ahead {RCLA)

A4

777 436
777 434
777 432
777 430
777 426
777424
FI7 422
777 420

777 416
777 414
777 412
777 410
777 406
777 404
777 402
777 400

777 356
777 354
777 352
777 350
777 346
777 344
777 342
777 340

777 336

777 320

777 316
777 314
777 312
777 310
777 306
777 304
777 302
777 300

777 166
777 164
777 162
777 160

776 776
776774
716772
776 770

776 766
776 764
776762
776 760
776 756
776754

DT11, bus switch #5

RK11,

TC11,

disk data (RKDB)
maintenance

disk address {RKDA)
bus address (RKBA)
word count (RKWC)
disk status (RKCS)
aerrort (RKER)

drive status (RKDS)

DECtape data (TCDT)
bus address (TCBA)
word count (TCWC)
command {TCCM}
DECtape status (TCST)

} KE!1-A, EAE #2

arithmetic shift
logical shift
normalize

KE11-A, EAE #1, step count/status register

CR11/
CM11,

ADO1,

multiply
multiptier guotient
accumuiator

divide
| data (CDDB)
data (CRB2) comp | cur adrs {CDBA)
data (CRB1) | €D11, col count {CDCC)
status (CRS) | status (CDST)

A/D data (ADDB)
A/D status (ADCS)

register 4 {DAC4)
register 3 (DAC3)
ragister 2 (DAC2)

AALL #1, register 1 (DACI)

D/A status (CSR)

A-b

776 752
776 750
776 746
776 744
776 742
776 740
776 736
776734
776732
776 730
776726
776724
776722
776 720
776 716
776 714
776 712
776 710
776 706
776704
776 702
776 700
776 676
776 500
776476
776 400
776 376
776 200
776 176
775 610
775 576
775 400
775 376
775 200
775176

775 000

e e e e Y e e

RPO4,

cont & status #3

{RPCS3)

bus adrs ext (RPBAE)
ECC pattern (RPEC2)
ECC position (RPEC1)
error #3 (RPER3)
error #2 (RPER2)
cur cylinder (RPCC)
desired cyl (RPDC)

offset (RPOF)

serial number (RPSN}
drive type (RPDT)
maintenance (RPMR)
data buffer (RFDB)
look ahead (RPLA)
attn summary (RPAS)
error #1 (RPER1)
drive status (RPDS)
cont & status #2

(RPCS2)
sector/track adrs
{RPDA)
UNIBUS address
{RFBA)

word count {RPWC)
cont & status #1

{RPCS1)
#16
DL11-A, -B,
#1
#5
AAL1,
#2
DX11
#31
DL11-C, -D, -E,
#1
#4
DS11,
#1
#16
DN11,
#1
#16
DpM11,
#1

A-G

RP11,

silo memory {SILO)
cyl adrs (SUCA)
maint 3 (RPM3)
maint 2 (RPM2)
maint 1 (RPM1)
disk adrs (RPDA)
cyl adrs {(RPCA)
bus adrs (RPBA)
word count (RPWC)
disk status (RPCS}
error {RPER)

disk status (RPDS)

774776

774 400
774 376

774 000
773 766

773 000
772776

772 700
772-676

772600

772 576
772574
772572
772570

772 556

772 550

772546
772 544
772542
772 540

772 536
772534
772532
772530
772526
772524
772522
772500

772516

772476
772474
772472
772 470
772 466
772464
772 462
772 460
772 456
772 454
772 452
772 450

#1
DP11,
#32

#3z
DCI1,
#1

PDP-11/70 diagnostic bootstrap (half of it}

PAG11 typeset punch

PAB11 typeset reader

e e e e i g

maintenance {AFMR)
AFC11l, MX channel/gain (AFCG)

flying cap data (AFBR)

flying cap status (AFCS)

} XY11l plotter

counter
KW11-P, count set
clock status

read lines {MTRD)
tape data {MTD)

TMI1, memory address (MTCMA)
byte record counter (MTBRC)
command (MTC)
tape status (MTS)

Memory Mgt reg (MMR3)

cont & status #3 (MTCS3)

bus adrs ext (MTBAE)

tape controf (MTTC)

serial number {MT3N)

drive type (MTDT)

maintenance (MTMR)

data buffer (MTDB)

check character (MTCK)
TU16, attention summary (MTAS)

error {(MTER)

drive status (MTDS)

cont & status #2 (MTCS2)

A7

772446
772 444
772442
772 440

772436

772 430

772416
772414
772412
772410

772 376

772 360
772 356

772 340
772 336

772 320
772 316

772 300
772 276

772260
772 256

772 240
772 236

772220
772 216

772 200
772136

772110

772072
772070
772 066
772064
772 062
772060
772 056
772054

}

R e D R S R

frame count (MTFC)
UNIBUS address (MTBA)
word count (MTWC)

cont & status #1 (MTCS1)

DR11-B #2

data (DRDB)
DR11-B #1, status (DRST)

bus address (DRBA)

word count (DRWC)

Kernel Data PAR, reg 0-7

Kernel Instruction PAR, reg Q-7

Kernel Data PDR, reg 0-7

Kernel Instruction PDR, reg 0-7

Supervisor Data PAR, reg 0-7

Supervisor Instruction PAR, reg 0-7

Supervisor Data Descriptor PDR. reg O-7

Supervisor Instruction Descriptor PDR, reg 0-7

UNIBUS Memaory Parity

cont & status #3 (RSCS3)

bus adrs ext {RSBAE)

drive type (RSDT)

maintenance (RSMR)

data buffer (RSDB)

look ahead (RSLA)

attention summary {RSAS)
RS04, error {(RSER}

A8

772062 drive status (RSDS)

772050 control & status #2 (RSCS2)
772046 RS04, desired disk adrs {RSDA)
772044 UNIBUS address (RSBA}
772042 word count (RSWC)
772040 control & status #1 (RSCS51)
772016
} GT40 #2
772010
772 006 Y axis
772004 X axis
772 002 GT40 #1 status
772 000 program counter
771776 status (UDCS)
771 774 UDC1l, scan (UDSR)
771772
771770
771776
} UDC functicnal /0 modules
771000
770776 #8
} KG11,
770 700 #1
770 676 #16
} DM11-BB,
770 500 #1
770436 DMA
770 434
770432
770430
770426
770424
770422 ext DAC
770420 D/A YR
770416 D/A XR
770414 D/A SR
770412 LPS11, D 1/0 output
770410 D 1/0C input
770 406 CKBR
770 404 CKSR
770402 ADBR
770400 ADSR
770 366
} UNIBUS Map
770 200
767 776
} GT4Q bootstrap
766 000

A-9

PDP-11/70 diagnhostic bootstrap

765 776
} (half of it)

765 000
763 776 (top of floating addresses)

760 010 {start of flpating addresses)

NOTE
For the PDP-11/70, aill addresses in Appendix A
hetween 777 777 and 776 000 should be pre-
fixed with 17. The address range is then 17 777
777 to 17 760 000. i

A-10

APPENDIX B

CPU & MASS STORAGE DEVICE REGISTERS

Processor Status Word (PS) 17 777 776

15] 13 12 1] 1] A 7 5 4 3 2] 4]
‘ [] ‘ NOT USED PRICRITY ‘ T |N‘ Ilv‘ c‘
. .

CLIRRENT Jv«()l‘.t(-’——J |
PREVICHIS MODE ™
GEMERAL REGISTER
SET(0,1)
* MODE: {0 =KERNEL

&1 =SUPERVISOR

| ¥ =USER

Program Interrupt Request (PIR) 17 777 772

15 ¥] 7 5 4 E] ! Q

CPU Error Register 17 777 766

15 5 7 & 5 4 3 2 1 o
L '/././
[e e L A e /
I RN AN '//M l l i ‘ ‘ p 77 4
HLEGAL HALT 4] f
Obb ADORESS ERROR i
NON-EXISTENT MEMORY |CACHE
LINIBUS TIME -CHIT

YELLOW ZOME STACK LisuT
RED I0ME STACK LiMIT

Hit/Miss Register 17 777 752

Maintenance Register 17 777 750

15 12 0 &8 7 4 % 1 0

L L i L -+ + " i
AN MERCRY PAR”“'—* T

FAST ADDRESS PARITY

FAST DATA PARITY

MEMOIRY PAARGING

Caontrol Register 17 777 746

% A L1 L1

FORCE REPLACEMENT GROUF | ’ T
FORCE REPLACEMEMNT GROUR O

FOHRCE MISS GROUP 1
FORCE MBS GROUP O
DISABLE UMIELS TRAP —.
DISABLE TRAPS

Memory System Error Register 17 777 744

15 1 13 rd 1 1] 3 4 7 & 3 4 3 2 | 4]

(LT T LT[[T oweme ||

Py ABORT ot B J [f

CP ABORT AFTER ERROR
UNIBUS PARLTY ERROR

UMIBUS MULTIFLE PARITY ERROR

CPLY ERROR
UMIBLS ERROR

CPU UIBUS ABOGRT
ERROR [N MAINTEMANCE
DATA MEMORY GROUP 1
DATA MEMORY GROUF O
ADDRESS MEMORY GROUP §
ADDRESS MEMORY GRIUMD
MAIN MEMORY OGO WRD
MAIN MEMOIRY EYEM WORD
Motk MEMORY ADDRESS PARITY ERROR
MAIN MEMORY TiMECUT — o

High Error Address Register 17 777 742

15 14 13 o

(= U 77770 o]

Low Error Address Register 17 777 740
15 [
LW ADDRESS (14 BITS) ‘ L;‘

RPO4 Registers

oo

[l

03y

o4

a5

o6

ar

[+:]

29

]

14

]

IE

ROY

a1k

|

PEEL | alr?

T
fva, I]

-3
L

=13 r

I TRE

3

ITTETGH

RAFCSY

Wi
W

we
"

W@

wE

we
12

149

Wi

wi
4

APWE (TTETOR

[

B4
"5

l

IFTETOS|

RPEL

Ta
%

ul'tJ ucﬂuiu

PIE

4

RPOY (TPETOGI

uz

ju

cor | opa

wxf | M[}DELOH L:m
L

I
Fuk | OFR
L

BE

WEE

oLt

FTPeIrol

RFCEZ

e

higd

LET

whL

MECL

EAH

ata

17 PE7EY

RFQY

=

5

a

z

&

7

¥

H

o L

[La

n L

w <

5 Zn
—l £ L

2 e

] 2w

i =

" a

o T

T]

H

g =

2

w

k= =

a

" .

w

= =

k2

w

® =

a

[™

=3

w

< LS

5

=

] &

B

i

= I

= B

¥ e

[=

& -

IS

w H

o

H =

APLA ITTETEO)

rDB
13
REMEP (THETZG1 Lﬂ Lﬁ J \BJ 4

Lil:}
1.

oB
]

RPDB {TTETRZ)

MCLe, nch

rawe | wAD |M5{._n| MIND

foce !

I
uEn i

B0 | oL

@

T
i
!
L

@

RPDT (7TTEIZEI LNBnLuFJMnHJ o ! uAn
|

E
Kl

it
2

s5M
3a

SN
k1.3

APSN TFER 301

HII |

LELcl

Pt |
2z

a

RPOF {TTaT22: ’5601

T
|

L)

L

RPEL (FTETYa]

T
APCL ATPE7 381 rm l [

2

at
UNg

[

I TTETA0)

APERZ

FRE

neo

AL

azrL |. kL
|

RPEHY (TTET421

BLC
178

BLC
ThE

BLD
LY

ELC
Wiz

BLC
Znap

BLE
4090

\

HPECL (TPET44)

arr
L

BT |

[

{TTETAG |

APELE

PRoE
[

| Rk | P
-2 | 1
1

IFCK
3

w

]

|

ITTETED)
(TPE7S2Y

APEAE
RPCET

B-3

RS04/RS03 Registers

RECSN=TTREO4D
15 14 AE]

1

26 o5 [l

" }
I sC | TRE ucpc] o | ow |pseL| w7 | a6 | ROV | EZE | P II F3|f2 | | Fe oo
i]
RSW{ - TT2002
T T T
we | owo [owe D owo | owe [owe | we | owe [we |we bowe | owe [we | owe | we jowe
FES T S S BT T i low | oe | o7 | 0e i on ma o3| o |0 { oo
3 1
R3BA-TTZ0A4
T T
e ! es homa | ma | @ | 82 ; gz | Ba | Ba | B | Ba | Ba [BA | B | g4 ! a
[IR BTN Wwoy ook ooe |7 |G | oS | o4 |03 || o)
J 1
ASCH - 772046
T
se lse [se [se | ta|m @l m:m | o | ot losa | s | sa | s | ona | osa
03 {0z | @ | dc | o5 | o4 ! o3 1oz |0 fao |05 | oe | G| az | 0! Qe
ASCSA- 772050
Toce T | [
ouT wWiE | UPE NEQ MEM PGE MAF |MOPE el IR L£LA EAT BATI WE | LY L B []
L H 1
REUS-TT2O5Z
T | ¥ T T
ATS | ERR [PIP | WOL | WAL ; LBT | 0 TER | BRY D 3 e o loa @ u
i] H ! .
REER - 772054
| . —| T 1 K T
Dok | uNs | OFT | GTE | wLE ; TaE | sa |l oo @ a ' o 'esn |l RMR | IR | ILF
| L | | il L
REGE - 772056
[!
. ata | s7a v ata | ae | ara | are | ara | ara
Lj E I LD ‘ R - T oy | a2 | e | oo
.
RELA- TTZ060
T b T
o P] o | ous | s [o3 | o5 jo¢s | o3| 3 | s [a Jar [¢ - sor
[| as [aa | a3 | o o1 | oap g o0a [2a J_°3 c2 | oo
1 | il "
REQE-TTACES
T ™ T -
ca | oa | os | be [ce | ep! oe | De D | D& |08 | oE Do | DR :oDB | DA
15 1w [13 |z [0 e 03 | o8 | o | 0f [A% | 94 03 | Dz L@ | DD
REMR- TT2064
T T |
Ru‘MiMon RO | Mw DB B] LAR | L1 @ WRT O MREDOT | SALHC | WK MHDE; C oMz
i 1 H |
REDT - 772086
T '|' T [| i |
= . - . oo | ot oot boor | oar [er or ot boer
MIA | TAR [Mow | TOH [DAQ | sRR L e A7 1 fe | as B4 J|_03 a2 a1, B
1 1 1 -
REBAE- 712070
T
! | 13 Ba a3 G | Ba (g2
a “ a a E 1 “ a ’V a -‘ Ty] | (] T

RECEM-TT2O72

T
ore | opE | wee
l:“i | o (:w—l o

WEE
Ete TDBL—I o [Q

— T T
0 ! i |
J €l o :(P3cx ek | ek arc i

TU1é Registers

MTCS1 772440

MTWC 772442

MTBA 772444

MTFC 272446

MTCS2 772450

MTDS 772452

MTER 772454

MTAS 772456

MTCK 772460

MTOB 772482

MIME 772484

MTDT 772486

MTSN 772470

MTTE 772472

MTBAE T72474

MTCS3 772476

15 14 13 12 9 t0 9 B8 7 6 5 4 3 2 1 O
s¢ TREMCPEI o |ovalpseilar7 |ats|rov| 1€ | F4| F3| F2| F1 [Fo |60
WG | WG | WC | WC | WC | WC | WC | WG | WC |WG |WC | WG | WG | WE | WC | WE
15 (14 [12 [12 |19 |10 {08 io8 |07 o6 |05 |04 |03 (o2 |01 | 00
BA |Ba |BA |BA |BA |BA | BA |84 | B4 | BA |Ba |Ba |64 |64 |BA |BA
15 {14 |13 |12 |1 [10 09 |os |07 |06 |05 |04 |03 |02 (o1 |0
Fc Fc|Fe | Fe|Fe|Fe | Fo | Fe |Fe |Fc [Fe lre [Fe [Fe [Fe | Fe
15 lralia|1z1nf10joe o o7 |oslos|oaloajoz|o |ee
oLt | wee| uPe | NED | new| poE [mxe or | 1r |cLr|Patisar| vz |ut |ue
a7 |era| e |moL|wrc|eoT] 0 |opr|orY|sse PES]H:MN 108 | TM |BOT|SLaA
CORN yns ot |oTe |Mer{®S |re {nse |PEF ("NE/Iopan| FMTicRAR) RMR| ILR| ILF
CRE ITH LRC | VPE
ATAATA | ATA] ATA] ATA | ATA | ATA |ATA
ereje e @10 |8 @ |47 05|05 a0z |0z |0 |00
CRCAGRGTIGRC CRCI[CRCE|CRCTTG
@ @ 2 .} 3 @ a2 I I ri /s ri ri 7/ £ r
oTp|077|oTeloTs [oT4 [oTaloT2 0T DT
o |oe |08 |oB |08 | 0B | DB |D8 D8 | OB |06 | DB | DB | 0B | 0B | D&
15 {13 13 {12 [\ |10 |09 |08 |07 |06 {08 |04 Loz Joz [0t |00
MOF | MOF | MOF | MDF | MDF |MDF |MDF | MOF |MDF gg? i |MOP[MOPIMOP (MOP|
oa | o7 | o6 | 05 [0a |03 |02 |01 |00 |cik o3| ez |00
Nsa| TP |MoH| 7en| orelspr | @ | BT | ©T | BT |BT | BT DT | OT | OT | DT
B8 | A7 [@6 (@5 | @4 |03 (@2 | D o
SN [SN | SN SN |SN [SN SN |SN | SN | SN | SN | SN | 5N | 5N | SN] SN
15 114 |13 |12 {11 |10 (oo |os o7 [os |05 |0alos |0z |0t |ae
o rowl rs |E29] o DENTCENJDENTETTFRTIFRTIFMTT €V 55 |55 | 55
L [SEL | S5EL |SEL
DTE 22 |0t |00 |35 SEL|SELSEL lear| 2 | 1 | o
Bal oalsa{maleafms
0050000000021203131716
ore| ore | oPe | DPE 1Pek| 1 1PoK|IPeK
apg| REIAEI0TE | DFE lom | 0 | o | 0 [1E [0 | o [PEKIEFRIRRHIS

B-5

B-6

APPENDIX C

INSTRUCTION TIMING

C.1 INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of a
Source Address Time, and an Execute, Fetch Time.

Instr Time = SRC Time 4 DST Time 4 EF Time

Some of the instructions require only some of these times, and are so
noted. Times are typical, processor timing, with core memaory, may vary
+15%;, to —109%.

C.1.1 BASIC INSTRUCTION SET TIMING
Coukle Operand

all instructions,
except MOV: Instr Time = SRC Time 4 DST Time

(but including MOVB) + EF Time
MOV Instruction: Instr Time = SRC Time + EF Time
{(ward only)

Single Operand
all instructions: Instr Time = DST Time + EF Time or
{nstr Time = SRC Time 4 EF Time

Branch, Jump, Control, Trap & Misc
all instructions: Instr Time = EF Time

C.1.2 USING THE CHART TIMES

To compute a particular instruction time, first find the instruction "EF'"”
Time. Select the proper EF Time for the SRC and DST modes. Observe
all “NOTES"” to the EF Time by adding the correct amount to basic EF
number.

Next, note whether the particular instruction requires the inclusion of
SRC and DST Times, if 5o, add the appropriate amounts to correct EF
number.

C.1.3 CHART TIMES
The times given in-the chart for Cache “hits'’; that is, ali the read cycles
are assumed to he in the Cache. The number of read cycles in each
subset of the instruction is also included so that timing can be calcu-
lated for a specific case of hits and misses, or timing can be calculated
hased on an average hit rate.
a) Specific hits and misses

Add 1.02 usec for each read cycle which is a miss instead of a hit.

by Awerage hit rate
If Pu is the percent of reads that are hits, add 31.02 x (1 — Pu) X
(Number of read cycles) to the instruction timing.

C-1

For example, an ADD A,B instruction using Mode 6 (indexed) address

modes:

1) Al Hits;
SRC time = 0.60 usec 2 read cycles
DST time = 0.60 usec 2 read cycles
EF time = 1.35usec 1 read cycle
TOTAL = 2.55usec 5 read cycles

2) 4 Hits, 1 Miss
Total = 2.65 + 1.02
= 3.57 usec

3) Read hit rate of 90%,

Total = 2.55 + (1.02) (.1) (5)

= 3.06 usec
C.1.4 NOTES

I. The times specified generally apply to Word instructions. In most
cases Even Byte instructions have the same time, with some Odd
Byte instructions taking longer. All exceptions are noied.

2. Timing is given without regard for NRP or BR serving. Core memory
is assumed to be iocated within the first 128K memory unit.

3. Times are not affected if Memory Management is anabled.
4, All times are in microseconds.

C.1.5 SOURCE ADDRESS TIME

Read
Source Memory

Instruction Mode SRC Time Cycles
Q 00 0
1 .30 1
2 .30 1
Double 3 TS 2
Operand 4 45 1
5 .90 2
6 B0 2
7 1.05 3

c-2

C.1.6 DESTINATION ADDRESS TIME

Read

DST Memory
Instruction Mode DST Time (A) Cycles

O .00 0
Single Operand ; :3,’3 i
and Double Oper- 3 '75 2
and (except MOV, 4 '45 1
MTPI, MTPD, IMP, 5 '90 2
JRS ’

6 60 2

7 1.05 3

NOTE {A): Add .15 usec for odd byte instructions, except DST Mode 0.

C.1.7 EXECUTE, FETCH TIME

Double Operand

Instruction EF Tirme EF Time EF Time
{SRC (SRG (SRC
Mode O} Mode 1.7} Mode 0-7)
{Use with {DST Read | {DST Read | {DST Mode 1-7) Read
SRC Time Mode O) Mem [Mode O Mem Mem
and DST Time} Cyc Cyc Cyt
ADD, 3UB, .30 1 45 2 1.20 1
BIC, BIS MOVB (D) (D) {C)
cmP, BIT .30 1 45 1 A5 1
(D} m (Cy
XOR .30 1 .30 1 1.20 1
(M o
NOTE {C): Add 0.15 psec if SRC is R1 to R7 and DST is R6 or R7.
NOTE (D}: Add 0.2 zsec if DST is R7.
EF Time EF Time Read
Instruction DST osT {SRC {SRC Memory
(Use with SRC Time) Mode Register | Mode = 0y Mode = 1-7) Cycles
0 06 .30 45 1
0 7 60 75 1
1 07 1.20 1.20 1
2 0-7 1.20 1.20 1
MOV 3 o-7 1.65 1.65 2
4 07 1.35 1.35 1
5 Q-7 1.80 1.80 2
6 0-7 1.50 165 2
rd o7 1.95 2.10 3

Cc-3

Single Operand

EF TIME EF Time Read
Instruction (DST Memory | {DST Memory
{Use with DST Time) | Mode =0} Cycles Mode 1 ta 7) Cycles
CLR, COM, INC, DEC, .30 1 1.20 1
ADC, SBC, ROL, {J}
ASL, SWAB, SXT
NEG .75 1 1.50 i
TST .30 1 A5 1
()
ROR, ASR .30 1 1.20 1
) (H)
ASH, ASHC 75 1 .80 1
(6 n
NOTE (H): Add 0.15 psec if cdd byte.
NOTE (I): Add 0.15 usec per shift.
NOTE (J): Add 0.30 psec if DST is R7.
Read
instruction Memory
(Use with SRC Times) EF Time Cycles
MUL 3.30 1
DIv
by zero .80 1
shortest 7.05 1
longest 8.55 1
Read
Memory
Instruction EF Time Cycles
MFPI 1.50 1 use
MFPD 1.50 1 with
SRC
times

c-4

Read
DST Memary
Instruction Mode Instruction Time Cycles
MTPI 0 .50 1
MTPD 1 1.65 2
2 1.65 2
3 210 3
4 1.80 2
5 2.25 3
&6 2.10 3
7 2.55 4
Branch Instructions
Read
Instr Time Instr Time Memuory
Instruction (Branch) (No Branch) Cycles
BR, BNE, BEQ, .60 .30 1
8PL, BMI, BYC,
BVS, BCC, BCS,
BGE, BLT, BGT,
BLE, BHI, BLOS,
BHiIS, BLO
S0B .60 75 1
Jump instructions
Read
DST Memory
Instruction Mode Instr Time Cycles
1 .90 1
2 .80 1
3 1.20 2
JMP 4 80 1
5 1.35 2
6 1.05 2
7 1.50 3
1 1.55 1
2 1.95 1
3 2.25 2
JSR 4 1.95 1
5 2.40 2
6 2.10 2
7 2.55 3

C5

Control, Trap & Miscellaneous Instructions

Read
Memory
instruction Instr Time Cycles
RTS 1.05 2
MARK .90 2
RTI, RTT 1.50 3
SET N, Z V. C
CLR, N, Z, Vv, C .60
HALT 1.05 0
WAIT R L 0
WAIT Loop
fora BR is
.3 usec.
RESET 10ms 1
10T, EMT, 3.30 3
TRAP, BRT
SPL 60 1
INTERRUPT 2.31 2
First Device

C.1.8 EFFECTIVE MEMORY CYCLE TIME
The overall effective cycle time of the CPU can be calculated from the

following formula:

TCe = Pa X [{Pa X TCu} + (1 — Pu) TCu] + (1 — Pzg) TCw

Where TCe = Effective cycle time
TCu = Cycle time for a read hit = 0.30 usec
TCx = Cycle time for a read miss = 1.32 usec
TCw = Cycle time for a write = 0.75 usec
Pz = Percent of cycles that are reads

Pu = Percent of reads that are hits
Thus, for an average PDP-11/70 program which has a read rate of 919

and a read hit rate of 939, the effective cycle time is:

TCp = .91 X [{.93 x .30} + (.07 X 1.32}] 4 (.09 X .75) = .41 usec

C-6

C.2 FLOATING POINT INSTRUCTION TIMING

INTROGUCTION

Floating Point instruction times are calculated in a manner similar to the
calculation of CPU instruction timing. Due to the fact that the FP11-C is
a separate processor operating in parallel with the main processor
however, the calculation of Floating Point instruction times must take
this parallel processing or overtap into account. The following is a
description of the method used to calculate the effective Floating Point
instruction execution times.

DEFINITIONS

Preinteraction CPU time required to decode a Floating Point
instruction OP Code and to store the general
register referred to in the Floating Point in-
struction in a temporary Floating Point regis-
ter (FPR). This time is fixed at 450 ns.

Address Calcuiation CPU time required to calculate the address
of the operand. This time is dependent on the
addressing mode specified, Refer to Table
c-1.

Wait Time CPU time spent waiting for completion by the
Floating Point Processor of a previous Float-
ing Point instruction in the case of Load Class
instructions. For Store Class instructions, the
Wait Time is the summation of time during
which the Floating Point completes a previous
Floating Point instruction and Floating Point
execution time for the store class instruction.
Wait Time is calculated as follows:

Load Class Instructions:

Wait Time = [Fleating Point execution time
(previous FP instruction)] — [Disengage and
Fetch Time (previous FP instruction)] — [CPU
execution time for interposing nonfloating
point instruction] — [Preinteraction time] —
{Address Calculation Timel. If the result is
=0 the Wait Time is O,

Store Class Instructions:

Wait Time = {[Floating Point execution time
(previous Floating Point instruction)] — [CPU
execution time for interposing nonFP instruc-
tion] — Disengage and Fetch time (previous
FP instruction)] — [Preinteraction]}* 4 Float-
ing Point execution time] — [Address Calcula-
tion time]. If Wait Time calculation result is
<0 the Wait Time is 0.

* I result of calculation in {1 is <0 then
it becomes O.

c-7

Resync Time

Interaction Time

Argument Fransfer Time

Disengage and Fetch Time

Floating Point
Execution Time

Effective Execution Time

If the CPU must wait for the Floating Point
Processor {i.e., Wait Time = 0), an additionat
450 ns must be added to the Effective Exe-
cution time of the instruction, H Wait Time =
0 then Resync Time = O,

CPU time required to actually initiate Floating
Point Processor operation.

CPU time required to fetch and transfer to
the Floating Point Processor the required
operand, This time s 300 ns x the number
of 16-bit words read from Memory (Load
Class Floating Point Instructions), or 1200 ns
% the number of 16-bit words written to
Memory {Store Class tnstructions).

CPU time required to fetch the next instruc-
tion from Memory. This time is 300 ns.

Time required by the Floating Point Processor
to complete a Floating Point instruction once
it has received all arguments {Load Class
Instructions). Execution times are contained
in Tabfe C-2.

Total CPU time required to execute a Floating
Paint instruction,

Effective Execution Time — Preinteraction +
Address Calculation 4+ Wait Time 4 Resync
Time + Interaction Time 4 Argument Trans-
fer | Disengage and Fetch,

Table C-1 Address Calculation Times

Address
Mode Calculation Time
Q 0 nsec
I 300
2 300
3 600
4 300
5 750
6 600
7 1050
Table C-2 FP11-C Execution Times
MIN MAX TYP
LDF 360 nsec 360 nsec
LDD 360 360
ADDF 900 2520 950
ADDD S00 4140 S80

c-8

Table C-2 FP11-C Execution Times (Cont.)

MIN MAX TYP
SUBF 800 1980 1130
SUBD 900 4140 1160
MULF 1800 3440 2520
MULD 3060 6220 4680
DIVF 1920 6720 3540
DIV 3120 14400 6000
MODF 2830 5990
MODD 3780 9770
LDCFD 420 420
LDCDF 540 540
STF* 0
STD+# 0
CMPF 540 1080
CMPD 540 1080
STCFD* 720 720 720
STCDF*# 540 720 540
LDCIF 1260 1440 1440
LDCID 1260 1440 1440
LDCLF 1260 1980
LOCLD 1260 198G
LDEXP 540 oS00
STCFI# 1200 1620
STCFL*® 1260 2160
STCDI* 1260 1620
STCDL* 1260 2160
STEXP* 360 360

MO Not MO

CLRF 180 2150
CLRD 180 4350
NEGF 360 2400
NEGD 360 2400
ABSF 360 2400
ABSD 360 2400
TSTF 180 180
TSTD 180 180
LOFPS 180 0
STFPS* 0
STST= 0
CFCC 0
SETF 180
SETD 180
SETI 180
SETL 180

Store Class Instructions

c9

toad Class Instructions are those which do not deposit resulis in a
memory location.

Execution of a Load Class Floating Point instruction by the Floating
Point occurs in parallel with CPU operation and hence can be overlapped.
Figure C-1 gives a simplified picture of how a Load Class Floating Point
instruction is executed.

Store Class Instructions are those which store a result from the Floating
Point intc a memaory location. Execution of a Store Class Instruction
by the Floating Pecint Processor must cccur before the result can be
stored, hence parallei processing cannot occur for Store Class Floating
Point Instructions.

CPU FPP
T

T Load Class Instruction

I is fetched. This occurs

| during previous
Effective | instruction execution.
Execution Tirme o

starts here—""[| Instruction is decoded,

I
[
!
1
|
Contents of CPU General |
Register are transferred | FPP is idle,
Ng Floating Point| | to temporary FPP Reg-
intervention yet ister, [
I
[
I
I
|
I—

¢ | Address of operand
is calculated.
Floating Point
must respond
(i.e., it must be
finished with
prior instruction
by here CPU starts FPP execut-
or CPU will wait ing this instruction (i.e., | FPP interacts with CPU,
interacts with FPP),

|~

- —

CPU is finished CPU passes arguments _FPP accepts arguments
with FPP; FPP to FPP from CPU.
will now execute |

instructions
on its own/ Feteh next instruction, FPP

Effective 7 executes
Execution Time
ends here instruction.

L« Floating Point is fin-
ished and ready to
accept next instruc-
tion,

Figure C-1 Load Class Floating Point Instruction.

c-10

Effective
Execution Time
starts here

FPP must
respond or

CP_U

Store Class Instruction
is fetched. This occurs
during previous instruc-
tion execution.

Instruction is decoded.

Contents of CPU
General Register are
stored in Temporary
FPP Register.

Address at which result
to be stored is calcu-
lated.

CPU will wait—"| CPU waits for FPP to

Effective
Execution Time

ends herg —— "

| complete execution.

L

| Since CPU entered Wait
| State, an additional 450
I ns Resync overhead is
| encountered.

e =

CPU interacts with FPP,
CPU stores
result

in Memory.

CPU fetches
next instruction,

FPP

P
[
|
|
I
| FPP is idle.
|
[
[
|

T

FPP begins execution—
does not respond until
execution is complete,

L.« FPP responds.

-
FPP interacts with CPU.

_-FPP passes
result to
CFU to
store in

Memory.

1FPP is idle.
1

Figure €C-2 Store Class Floating Point Instruction.

Figures C-1 and C-2 show, respectively, how timing associated with a
typical Load Class and Store Class instruction is derived.
Figures C-3 and C-4 show, pictorially, how Effective Execution Times for

actua! Floating Point instructions in a program are calculated, Note that
Effective Execution Times are dependent on previous Floating Point

instruction,

C-11

for MULF (RO), AC1
Effective Execution Time is the summation of the following:

Referencing Figure C-3, a sample calculation of Effective time would be:

Preinteraction Time 450 ns
Address Calculation Time {(Mode 1 from Table 11.1) 300 ns
Wait Time (Since FPP is idle, Wait = 0) G ns
Resync Time {Since Wait = 0, Resync = 0) Q ns
Interaction Time : 300 ns
Argument Transfer Time (Transfer 2 words @ 300 ns/word) 600 ns
Disengage and Fetch Time 300 ns
Effective Execution Time 1950 ns
for LDF X({R3),ACO {Ref. Figure C-3)
First we calculate Wait Time:
Wait Time = [Floating Point Execution {previous
FP instruction} (MULF)] 1800 ns
— [Disengage and Fetch Time (previous
FPT instruction)] - 300 ns
— [Execution Time of interposing
nonFPT instruction (SOB)] — 750 ns
— [Preinteraction Time] - 450 ns
— [Address Calculation (Mode & from
Table C-2)] - 600 ns
- 300 ns
Since calculation resulted in a negative
number, Wait Time = Q.

... %0 Effective Execution Time is the summation of the following:
Preinteraction Time 450 ns
Address Calculation Time (Mode & from Table 11.1} 800 ns
Wait Time (From above calculation) 0 ns
Resync Time {Since Wait Time = 0, Resync = O} O ns
Interaction Time 300 ns
Argument Transfer Time (2 words @ 300 ns/word) 600 ns
Disengage and Fetch Time 300 ns

Effective Execution Time 2250 ns

CPU TIME FPP TIAE

-

MULFIROL, 4C 1 R DECCDE
T serue
PRE INTERACTION e
FRT REG i
AOORESS |
ADDRESS CALCULATION CaLC !
| IMODE 1 '
4 3
INTERACTICN INTERACTION
EFFECTIVE EXECUTIONS 1950 nsec
ARGUMENT
ARGUMENT TRANSFER TRANSFER
T DEENGy T ¥
& FETCH
DISENGAGE & FETCH ErETC
508 R 1
EXECUTIVE
[NEIN FLOATING POINT INSTRUCTION) & FETCH
NEXT INST. FLOATING
PEINT
EXECUTION
£ {MULE)
LOF X{RY, &C0 | r pEcope
SET LR
FREEMTERACTICHN TEMP
EPT REG
+
ADDRESS
ADDRESS CALCULATION CALC +—1—
[MODE &)
EFFECTIVE EXECUTION:2250 nyee o
INTERACTION INTERACTION
ARGUMENT
ARGUMENT TRANSFER TRANSFER
T DISENGACE] LOAING
DISENGAGE & FETCH &
MEXT IMST EXECUTION
— e e e . 4 [{LOF}
ADOF AC2, AT R DECODE b
+ '
T SET P
PRE INTER ALTION sy '
| FRTREG .
EFFECTIVE EXECUTIONSIOSOnsac
INTERAZTION INTERACTION
4 4
DISENGAGE
DISENGAGE & FETCH & FETCH
MEXF IMST.
T FLOATING
POINT
EXECUTION
{ADDF|
_L__l_

Figure C-3 Calculation of Effective Execution Times for
Load Class Instructions

c13

I
i
. 1
STCFL &C0, KiR2) T _{: IR DECODE I‘
. T T SET UP |
FREINTERACTION TN |
| FPTREG T
ADDRESS
ADDRESS CALC Eg?ﬁ‘,‘"‘;
CALCULATION |MODE &) EXECLITION
|STLFI}
WLl
—+ T
1
EFFECTIVE EXECUTION:3900 n sac RESYNC !
L)
I
o s
INTERACTION
.
STORE.
ARG LIMENT F,ESUUS
TRANSFER MEMORY
=+ T
DISENGAGE '
DISENGAGE
& FE1CH & FETCH '
1 NExTNST 1
DIV F ACI, ACO Ie DECODE !
T |
PFRE INTERACTION A L
| FFTREG 1
EFFECTIVE EXECLHICIN= 1050 niwc | HTERACTION INTERACTION
DISENGAGE DISENGAGE
& FETCH & FETCH
FLOATING
POINT
EXECUTION
{OMFY

Figure C-4 Calculation of Effective Execution Time for
Store Class Instructions

C-14

dlilgliltlall

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters; Maynard, Massa-
chusetts 01754, Telephone: (617)897-5111 —SALES AND SERVICE OFFICES: UNITED
STATES —ALABAMA, Huntsville «+ ARIZONA, Phoenix and Tucson » CALIFORNIA,
El Sequndo, Los Angeles, Oakland, Ridgecrest, San Diego, San Francisco {(Mountain
View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland Hills » COLORADO,
Englewood « CONNECTICUT, Fairfield and Meriden + DISTRICT OF COLUMBIA,
Washington (Lanham, MD) « FLORIDA, Ft. Lauderdale and Orlandoe = GEORGIA,
Atlanta »+ HAWAIIL Honolulu + ILLINOIS, Chicago (Rolling Meadows) + INDIANA,
Indtanapolis « IOQWA, Bettendorf - KENTUCKY, Louisville » LOUISIANA, New Or-
leans (Metairie) » MARYLAND, Odenton » MASSACHUSETTS, Marlborough, Wal-
tham and Westfield * MICHIGAN, Detroit (Farmington Hills) « MINNESOTA, Min-
neapolis + MISSOURI, Kansas City {independence) and St. Louis » NEW HAMP-
SHIRE, Manchester » NEW JERSEY, Cherry Hill, Fairfield, Metuchen and Princeton »
NEW MEXICO, Albuguerque = NEW YORK, Albany, Buffalo {Cheektowaga), Long
Island (Huntington Station), Manhattan, Rochester and Syracuse = NORTH CARO-
LINA, Durham/Chapel Hill = OHIC, Cleveland (Euclid), Columbus and Dayton »
OKLAHOMA, Tuisa = OREGON, Eugene and Portland + PENNSYLVANIA, Allentown,
Philadelphia {Bluebell) and Pittsburgh » SOUTH CAROLINA, Columbia » TENNES-
SEE, Knoxville and Nashville « TEXAS, Austin, Dallas and Houston « {ITAH, Salt

Lake City + VIRGINIA, Richmond » WASHINGTON, Bellevue » WISCONSIN, Milwau-
kee {Brookfield} » INTERNATIONAL —ARGENTINA, Buenos Alres + AUSTRALIA,
Adelaide, Brisbane, Canberra, Melbourne, Perth and Sydney + AUSTRIA, Vienna =
BELGIUM, Brussels + BOLIVIA, La Paz + BRAZIL, Rio de Janeiro and Sao Paulo
CANADA, Calgary, Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver
and Winnipeg + CHILE, Santiago * DENMARK, Copenhagen + FINLAND, Helsinki

+* FRANCE, Lyon, Grenoble and Paris + GERMAN FEDERAL REPUEBLIC, Cologne,
Frankfurt, Hamburg, Hannover, Munich, Nuremburg, Stuttgart and West Berlin +
HONG KONG » INDIA, Bombay » INDONESIA, Djakarta « [IRELAND, Dublin = ITALY,
ITALY, Milan, Rome and Turin » IRAN, Tehran » JAPAN, Osaka and Tokyo « MALAY-
SIA, Kuala Lumpur +» MEXICO, Mexico City «+ NETHERLANDS, Utrecht » NEW ZEA-
LAMD, Auckland and Christchurch » NORWAY, Oslo + PUERTO RICO, Santurce =
SINGAPORE » SPAIN, Madrid « SWEDEN, Gothenburg and Stockholm « SWITZERLAND,
Geneva and Zurich « UNITED KINGDOM, Birmingham, Bristol, Epsom, Edinburgh,
Leeds, Leicester, London, Manchester and Reading « VENEZUELA, Caracas »

	0001
	0002
	001
	002
	003
	004
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	04-79
	04-80
	04-81
	04-82
	04-83
	04-84
	04-85
	04-86
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	xBackA
	xBackB

